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Abstract. Detection of video shot transition is a crucial pre-processing
step in video analysis. Previous studies are restricted on detecting sud-
den content changes between frames through similarity measurement and
multi-scale operations are widely utilized to deal with transitions of var-
ious lengths. However, localization of gradual transitions are still under-
explored due to the high visual similarity between adjacent frames. Cut
shot transitions are abrupt semantic breaks while gradual shot transi-
tions contain low-level spatial-temporal patterns caused by video effects,
e.g. dissolve. In this paper, we propose a structured network aiming to
detect these two shot transitions using targeted models separately. Con-
sidering speed performance trade-offs, we design the following framework.
In the first stage, a light filtering module is utilized for collecting can-
didate transitions on multiple scales. Then, cut transitions and gradual
transitions are selected from those candidates by separate detectors. To
be more specific, the cut transition detector focus on measuring image
similarity and the gradual transition detector is able to capture tempo-
ral pattern of consecutive frames, even locating the positions of gradual
transitions. The light filtering module can rapidly exclude most of the
video frames from further processing and maintain an almost perfect
recall of both cut and gradual transitions. The targeted models in the
second stage further process the candidates obtained in the first stage to
achieve a high precision. With one TITAN GPU, the proposed method
can achieve a 30× real-time speed. Experiments on public TRECVID07
and RAI databases show that our method outperforms the state-of-the-
art methods. To train a high-performance shot transition detector, we
contribute a new database ClipShots, which contains 128636 cut transi-
tions and 38120 gradual transitions from 4039 online videos. ClipShots
intentionally collect short videos for more hard cases caused by hand-held
camera vibrations, large object motions, and occlusion. The database is
avaliable at https://github.com/Tangshitao/ClipShots.
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1 Introduction

Shot transition detector is a necessary component in many video recognition
tasks [10,23,29]. The goal of shot transition detection is to find semantic breaks
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Fig. 1. Challenge of shot boundary detection

in videos. Cut transitions are defined as abrupt transitions from one sequence
to another while gradual transitions are almost the same but in a gradual man-
ner. They share one common attribute, the start of a transition and the end of
a transition are semantically different. Previous methods focus on finding both
cut transitions and gradual transitions with one similarity function [25,27]. Such
methods have shown a great success in cut transition detection in the aspects of
both speed and accuracy. However, when applied to gradual transition detection,
it is not effective in the detection of gradual transitions. As Fig. 1 shows, it is
widely recognized that many large motions or occlusion, e.g. camera movement,
are detected as positive when only measuring similarity. In order to overcome
this shortcoming, recent research [9,17] begins to explore the temporal pattern
of gradual transitions. Therefore, in [9], the C3D ConvNet is adopted to clas-
sify segments into three classes (cut, gradual and background), which achieves
state-of-the-art performance. Yet C3D ConvNet not only consumes too much
computing resources, but is also not an effective architecture for handling both
cut and gradual transitions, i.e. the lengths of gradual transitions are varying but
C3D ConvNet is not designed for multi-scale detection. Inspired by this method
and previous similarity measurement method, we present a cascade framework,
consisting of a targeted cut transition detector and a targeted gradual transition
detector. The cut transition detector, for measuring the image similarity, is fast
and accurate while the gradual transition detector is capable of capturing the
temporal pattern of gradual transitions in multi-scale level. In addition, com-
pared to deepSBD, our framework can locate both cut transitions and gradual
transitions accurately.

In this work, we present a new cascade framework, a fast and accurate app-
roach for shot boundary detection. The first stage applies a ridiculously fast
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method to initially filter the whole video and selects the candidate segments.
This stage is for accelerating the framework (up to 2 times faster than not) and
facilitate the training for the cut/gradual detector. In the second stage, we use a
well designed 2D ConvNet learning the similarity function between two images
to locate the cut transitions. The third stage utilizes a novel C3D ConvNet
model to locate positions of gradual transitions. Typically, we use the notation
of default boxes introduced in [15] and propose a novel single shot boundary
detector (SSBD).

In sum, our framework is fast and accurate for shot boundary detection
and achieves state-of-the-art performance on many public databases running at
700 FPS without any bells and whistles.

Current datasets, i.e. TRECVID and RAI, are not sufficient for training
deep neural net due to limited dataset size. Besides, the training set is various
in different work when evaluating supervised methods on TRECVID and RAI
databases. For training a high performance neural network and a fair comparison
between different methods, we contribute a new large-scale video shot database
ClipShots consisting of different types of videos collected from Youtube and
Weibo. ClipShots is the first large-scale database for shot boundary detection
and will be released.

Aspects of novelty of our work include:

– We separate cut transition detection and gradual transition detection, design-
ing targeted network structures with different purposes.

– We design a cascade framework for accelerating the processing speed.
– We collect the first large-scale database for shot boundary detection training

and evaluation.

2 Related Work

In this section, we introduce the work related to our proposed framework.

Unsupervised Shot Boundary Detection Method. In decades, many
researchers explore to design similarity function finding transitions with hand-
crafted features. In [27], average Intensity Measurement (AIM), Histogram Com-
parison (HC), Likelihood Ratio (LR) is used as the feature extractor. It is
observed that similarities often vary gradually within a shot but abruptly in
shot boundaries so the paper proposes an adaptive threshold should be applied
when selecting positive samples. This method greatly improves the gradual tran-
sition performance compared to methods that only use static thresholds. Besides,
another benefit is that it runs very fast so we integrate it in our framework to
select potential shot boundaries. Yuan et al. [25] proposes a graph partition
model to perform temporal data segmentation. It treats every frame as a node
and calculate the similarity metrix and the scores of the cuts, selecting feasi-
ble cuts whose scores are the local minima of the corresponding neighborhoods.
These two methods all rely on well designed hand-crafted features to calculate
the similarity of two images.



580 S. Tang et al.

Supervised Shot Boundary Detection Method. Due to the shortcoming of
unsupervised methods, Yuan et al. [26] adopts a supervised way, a support vector
machine trained to classify different shot boundaries with extracted features.
In [16], shot boundaries are classified into 6 categories (cut, fast dissolve, fade
in, fade out, dissolve, wipe). Different features are used to train different SVMs
targeting at different shot boundaries. Researchers explore which features can
most effectively classify the shot boundaries.

Shot Boundary Detection with Deep Learning. Hassanien et al. [9] intro-
duces a simple C3D network that takes a segments of fixed length as input and
classify it into 3 categories (cut, gradual, background). This method shows the
effectiveness of ConvNet in this task. However, this method deals with gradual
transitions of different scales in the same way and cannot locate the accurate’
boundaries. Gygli [7] also adopts fully convolutional network. It takes the whole
video sequence as input and assigns the positive label to the frames in transitions.

Image Similarity Comparison. Deep learning has been successful on image
similarity comparison task. In [28], three architectures are proposed to compute
image similarities, siamese net, image concatenation net, pseudo-siamese net.
Empirical experiments show the image concatenation network and its variants
obtain the best performance. In [22], a ranking model that employs deep learn-
ing techniques to learn similarity metric directly from images. We apply the
similarity measurement only for the cut transition detection.

Object Detection. State-of-the-art methods for general object detection are
mainly based on deep ConvNet to extract rich semantic features from images. Liu
et al. [15] introduces single shot detector (SSD) using default boxes to match
the feature to ground truth and achieve the speed of 19–46 fps. Our gradual
detection model design share the same spirit with SSD.

Action Recognition. Carreira and Zisserman [13] has released the kinetics
database for large-scale action classification. I3D [3] shows a good weights ini-
tialization is necessary to train the C3D network. Qiu et al. [19] proposes a fast
network architecture based a spatial convolution kernel and temporal kernel to
explore the temporal information. Action recognition is closely related to our
work because we want to use temporal information to distinguish large motions
and the gradual transitions.

Action Detection. This task focuses on learning how to detect action instances
in untrimmed videos. Recently, many approaches adopt detection by classifica-
tion’ framework. Xu et al. [24] builds faster-RCNN style architecture for fast
classifying and locating actions. It first selects potential segments with region
proposal network and proposes the ROI 3D pooling layer to extract rich fea-
tures for further classification. In [14], the single shot detector locates action on
feature map extracted from well trained action classification ConvNets. Escorcia
et al. [6] proposes to generate a set of proposals based on the RNN network. Zhao
et al. [30] models the temporal structure of each action instance via a structured
temporal pyramid. Although some of the methods can be applied to gradual
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Fig. 2. An overview of our framework

detection directly, these methods rely on extracting rich spatial-temporal fea-
tures from a heavy ConvNet body, so these methods are far slower than our
proposed methods.

3 Our Approach

In this section, we will introduce our approach in details. The framework of our
approach is shown in Fig. 2.

3.1 An Overview

The framework takes a video as input and predicts the locations of transitions.
The proposed method, as shown in Fig. 2, is composed of three modules, includ-
ing initial filtering, cut transition detector and gradual transition detector, imple-
mented with three stages. (1) Adaptive thresholding produces a set of transition
candidates. Each candidate comes with a center frame index indicating whether
the content in frames has drastic changes. These positions may be transitions
or caused by large motion, e.g. camera movement. (2) The candidate transitions
are further feed into a strong cut transition detector to filter out false cut tran-
sitions. (3) For the remaining center frames which have negative responses to
the cut detector, we expand them by x frames on both forward and backward
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temporal directions to form candidate segments. The gradual transition detector
processes all these segments, locating the gradual transitions. The whole frame-
work is designed in a cascade way and the computation of the earlier stage is
lighter than the later.

3.2 Initial Filtering

As most of the consecutive video frames are highly similar to each other, a
trivial unsupervised algorithm can be applied to reduce the candidate regions
for further processing. A fast method, adaptive thresholding, is chosen as the
initial filtering step.

Let In and In+1 be the potential transition candidates and Fn−a+1, Fn−a+2,
..., Fn+a be a set of features extracted from consecutive video frames in a sliding
window of length 2a centered at frame n. In practice, we use the feature extracted
from SqueezeNet [11] trained on Imagenet [4]. The computation cost in this step
is subtle. We calculate the similarity metric of each frame Si, which is represented
as the cosine distance between the current frame feature and its neighboring
frame feature. Given the similarity metric of these frames as Sn−a+1, Sn−a+2,
Sn−a+3, ..., Sn+a−1, the threshold of a window is calculated as

T = t +
σ

2α

n+a−1∑

i=n−a+1

(1 − Si) (1)

The hyper-parameter σ is the dynamic threshold ratio and t is the static thresh-
old. In practice, we set σ to 0.05 and t to 0.5. The frame is selected as a candidate
center if 1 − Sn is larger than T . Lengths of gradual transitions vary greatly. In
order not to miss any gradual transition, we down-sample frames with multiple
temporal scales. At scale ω, we sample one video frame every ω frames and do the
above thresholding operations on these down-sampled frames. Finally, results of
different scales are merged together. If two candidates on different scales are too
close, i.e., within a distance of 5 frames. The candidate with a lower scale will
be kept. In practice, we use scales of 1, 2, 4, 8, 16, and 32.

3.3 Cut Model

Some image pairs are semantically similar even when they are cut transitions, i.e.
images containing the same object but the backgrounds are different. Therefore,
a stronger cut transition detector is needed to filter out these negative cut can-
didates from the candidates selected by adaptive thresholding. Zagoruyko and
Komodakis [28] show CNN can learn the similarity function directly from image
pairs. We design a ConvNet to determine whether a image pair is a cut transition
or not. In this paper, we compare four models, including siamese, image con-
catenation, feature concatenation and C3D ConvNet. In contrast to deepSBD,
where the position of the cut transition is unknown in one segment, adaptive
thresholding can find the cut transition position accurately since it selects the
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pair of adjacent frames with the largest dissimilarity as the center, facilitating
the learning task for our cut detector.

Siamese. A siamese neural network consists of twin networks that accept dis-
tinct images and output their features. The parameters are shared between the
twin networks and each network computes the same function. An energy loss
function is added to the top for optimization. In our problem, we choose con-
trastive loss as the top energy function. The siamese net outputs a similarity
score. At inference, we select the score above some threshold.

Feature Concatenation. This network can be seen as a variant of siamese
network. More specifically, it has the structure of the siamese net described
above, computing the feature using the same network architecture and weights.
The loss energy function is not applied directly to the features. Instead, we
concatenate features from both images and add cross entropy loss function to
the top.

Image Concatenation. We simply consider the two patches of an RGB image
pairs as a 6-channel image and feed it to a generic network. This network provides
greater flexibility compared to the above models as it starts by processing the two
patches jointly. It is fast to train and infer. Further more, it allows to concatenate
multiple images as a input. We find the performance is much improved when
using more images.

C3D ConvNet. Hassanien et al. [9] shows the C3D ConvNet is capable of
classifying cut transitions. Therefore, we also test this structure for comparison.
However, the C3D ConvNet is more complex than 2D ConvNet, which requires
much computation resources.

3.4 Gradual Model

Inspired by region proposal network [20] and single shot detector [15], we propose
a single shot boundary network, a novel network to locate gradual transitions in
a continuous video stream. The network, illustrated in Fig. 3, consists of 2 com-
ponents, a shared C3D ConvNet feature extractor and subnets for classification
and localization.

Feature Hierarchies. Innovated by deepSBD, the C3D ConvNet shows impres-
sive performance in this task. Therefore, we use a C3D ConvNet to extract rich
temporal feature hierarchies from a given input video buffer. The input to our
model is a sequence of RGB video frames with a dimension of 3 × L × H × W
and we use ResNet-18 proposed in [8] as the backbone network. We modify all
the temporal strides to 1 in ResNet-18 so that the length of the final feature
map is also L. The number of frames L can be arbitrary and is only limited by
memory.

Subnets for Classification and Location. Since the lengths of gradual tran-
sitions are various, we use the same notion default boxes introduced in [15]. In
our task, we call it default segments. Default segments are predefined multi-scale
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Fig. 3. An overview of gradual detector

windows centered at a location. we put one default segment every l × (1 − a)
frames where l is the length of the default segment and a is the positive IOU
threshold. Therefore, each ground truth whose length is between l/a and l × a
can be matched to a default segment. The total number of default segments is
L/(l × (1 − a)). The default segments serve as reference segments for ground
truth matching. To get features for predicting gradual transitions, we first apply
a spatial global average pooling layer to reduce the spatial dimension to 1×1. At
each location which has k default segments, we apply a 2k×3×1×1 filter A for
binary classification, and a 2k×3×1×1 filter B for location refinement. For both
A and B, 3 is the size of the temporal convolution kernel. For A, 2 corresponds
to binary classification of a gradual transition or not. For B, 2 corresponds to
two relative offsets of {δci, δli} to the center location and the length of each
default segment respectively, where the ground truth of {δci, δli} is defined as

δci = (c − ci)/li (2)
δli = log(l/li) (3)

The mark ci and li are the center location and the length of default segments
while c and l is the ground truth position and length.

Optimization Strategy. In training, positive/negative labels are assigned to
default segments. Following the same protocol in object detection, positive labels



Fast Video Shot Transition Localization with Deep Structured Models 585

are assigned if default segments are overlapped with some ground truth if inter-
section of union IOU > a and negative labels are assigned for default segments
if IOU < b. Segments with IOU between a and b are ignored during training. In
practice, we set a to 0.5 and b to 0.1, which achieves the best performance. As
the length of the gradual transitions in our training data ranges in 3 to 40, we use
2 default segments of length 6 and 20 to cover all true transitions. Similar to sin-
gle shot detector, we implement hard negative example mining and dynamically
balance the positive and negative examples with a ratio of 1:1 during training.
To utilize the GPU efficiently, we fixed the length of each segment, consisting of
L consecutive frames, i.e., L is 64 in our experiment.

We train the network by optimizing the classification and the regression losses
jointly with a fixed learning rate of 0.001 for 5 epochs. We adopt softmax loss
for classification and smooth L1 loss for regression. The loss function is given
in (4). The hyper-parameter λ is set to 1 in practice. Y 1

i is the predicted score
and T 1

i is the assigned label. Y 2
i = {δci, δli} is the predicted relative offset to

the default segments and T 2
i is the target location. The loss function is the same

as [15], which is

Loss =
1

Ncls

∑

i

Lcls(Y 1
i , T 1

i ) + λ
1

Nloc

∑

i

Lloc(Y 2
i , T 2

i ) (4)

Inference. At inference, the framework processes input videos of varying
lengths. However, in order not to exceed the limit of memory, a video will be
divided into segments of length Tseg with a overlap of 1

2Tseg such that transitions
won’t be missed due to the division. After predicting one video, we apply non
maximum suppression (NMS) to all the predictions. If two predicted gradual
transitions are overlapped, we remove the one with lower classification score.

4 ClipShots

Current datasets, i.e. TRECVID and RAI, are not sufficient for training deep
neural network due to a limited size. In addition, previous work utilized differ-
ent training sets when evaluating their supervised methods on TRECVID and
RAI. Therefore, a benchmark is made for comparing different methods fairly.
ClipShots is the first large-scale dataset for shot boundary detection collected
from Youtube and Weibo covering more than 20 categories, including sports, TV
shows, animals, etc. In contrast to TRECVID2007 and RAI, which only consist
of documentaries or talk shows where the frames are relatively static, we con-
struct a database containing 4039 short videos from Youtube and Weibo. Many
short videos are home-made, with more challenges, e.g. hand-held vibrations and
large occlusion. The training set consists of 3539 videos, 122760 cut transitions,
and 35698 gradual transitions while the evaluation set consists of 500 videos,
5876 cut transitions, and 2422 gradual transitions. The types of these videos
are various, including movie spotlights, competition highlights, family videos
recorded by mobile phones etc. Each video has a length of 1–20 min. The grad-
ual transitions in our database include dissolve, fade in fade out, and sliding in
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sliding out. In order to annotate such a large dataset, we design an annotation
tool allowing annotators to watch multiple frames on a single page and select
the begin frame and the end frame of transitions. More details are given in the
appendix.

5 Experiments

5.1 Databases and Evaluation Metrics

Training and Evaluation Set. The proposed framework is trained and tested
on ClipShots. In order to illustrate the effectiveness of our approach and Clip-
Shots, we also evaluated them on two public databases (TRECVID2007, RAI).

Evaluation Metrics. For all 3 databases, we use the standard TRECVID eval-
uation metrics: one-to-one match if the predicted boundary has at least 1 frame
overlapped with the ground truth. For our testing set, we add an additional crite-
rion using IOU to measure the localization performance. We assess performance
quantitatively using precision (P), recall (R) and F-score (F).

5.2 Experiments Configuration

We adopt adaptive thresholding to find candidate segments and adjust the
parameters to make sure it achieves nearly 100% recall for both cut and grad-
ual transitions. For cut detector, 122760 positive examples and 224312 negative
examples are used for training. For gradual detector, the training set contains
35698 ground truths. The potential segments filtered by adaptive thresholding
are divided into subsegments of fixed length 64, with overlapped length of 32
between 2 consecutive segments. We choose ResNet-18 3D- ConvNet as the back-
bone, setting all the strides in the temporal dimension to 1 so that the temporal
length of the output feature is identical with the input length. The weights of
3D ResNet-18 are initialized with model pretrained on kinetics database, as the
inflated 3D-Conv [3]. For both cut and gradual model, the positive examples and
negative examples are highly unbalanced so the positive and negative samples
are dynamically balanced with ratio 1:1 in each mini-batch.

5.3 Experiments on ClipShots

Cut Detector Comparison. In this section, we choose four potential models
introduced in Sect. 3.3 and test their performance. We use ResNet-50 as the back-
bone for all models and a fixed learning rate of 0.0001, We train each model for
5 epochs from scratch. For C3D, we adopt the same configuration as deepSBD.
For image concatenation model, we evaluated it with different number of images.
We expand x frames to the forward and backward in the temporal direction. As
Table 1 shows, the image concatenation model obtains best performance among
these four models when using 4 or more frames. Siamese net performs worse than
image concatenation (2 frames) and C3D network. Given the fact that siamese
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Table 1. Comparison of cut models. Image concat(6 frames) obtains the best perfor-
mance.

Model P R F

Image concat(2 frames) 0.771 0.793 0.782

Image concat(4 frames) 0.775 0.862 0.816

Image concat(6 frames) 0.776 0.934 0.848

Feature concat(2 frames) 0.231 0.574 0.329

Siamese(2 frames) 0.638 0.852 0.729

C3D(16 frames) 0.760 0.910 0.831

net cannot explore information on multiple frames and its computation cost is
much larger than image concatenation, this architecture is not adopted in our
framework. C3D network (16 frames) is a little better than image concatenation
(2 frames), but much worse than image concatenation (4 frames or 6 frames).
Feature concatenation is not a working architecture, but we still list it here.
For image concatenation, we also study the relationship between the number
of input images and performance. More input frames can improve performance.
The model gains improvements when increasing the frame number from 2 to 6
and saturates around 6. Therefore, we use an input of 6 frames in our method
considering both performance and the processing speed.

Table 2. All methods under a unified viewpoint. Different cut models and gradual
models are compared.

Method Initial filtering Cut Gradual

(1) No DeepSBD DeepSBD

(2) Yes DeepSBD DeepSBD

(3) Yes Image concat(6 frames) DeepSBD

(4) Yes Image concat(6 frames) SSBD

Ablation Study. We conduct ablation study with different options. The
detailed setting is shown in Table 2. The difference is mainly at cut models, grad-
ual models, and whether initial filtering is used. We also implement deepSBD
but the post processing technology introduced in [9] is abandoned for a fair com-
parison. We adopt 3D ResNet-18 as the backbone for both deepSBD and our
single shot boundary detector (Table 3).

Method (1). The model classifies segments directly into 3 categories (cut, gradual,
and background).

Method (2). Compared to method (1), initial filtering is utilized to find candidate
segments for deepSBD. As is shown, the performance of gradual transition is
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Table 3. Performance of different methods. Our method (4) obtains the best perfor-
mance in both cut transition detection and gradual transitions detection.

Methods Cut Gradual

P R F P R F

(1) 0.765 0.910 0.831 0.770 0.622 0.688

(2) 0.757 0.902 0.823 0.699 0.810 0.750

(3) 0.776 0.934 0.848 0.711 0.830 0.766

(4) 0.776 0.934 0.848 0.840 0.904 0.870

higher than the original deepSBD. It is implied that the initial filtering can also
improve performance of deepSBD.

Method (3). For gradual transitions, the deepSBD model only classifies the seg-
ments into 2 categories (gradual transition and background) so cut transitions
are treated as negative samples. For cut detector, we use image concatena-
tion model. The results show the single shot boundary detector is better than
deepSBD by a large margin.

Method (4). The results reveals that our single shot boundary detector is far bet-
ter than deepSBD. We attribute the performance gain to the following reasons:
(1) The receptive field of our model is much bigger than deepSBD, hence the
detector can exploit more temporal information. (2) Our default segment design
is effective for dealing with gradual transitions of multi scales.

Benchmark in ClipShots. We implement [9] and evaluate them in Clip-
Shots. Table 4 summaries performance of different methods. DeepSBD with 3D
ResNet-18 is significantly better than the original network (3D Alexnet alike).

Table 4. Benchmark in ClipShots

Methods Cut Gradual

P R F P R F

deepSBD (Original) 0.731 0.921 0.815 0.837 0.386 0.528

deepSBD (ResNet-18) 0.765 0.910 0.831 0.770 0.622 0.688

DSM (Ours) 0.776 0.934 0.848 0.840 0.904 0.870

Speed Comparison. In this section, we compare the speeds of different models
as shown in Table 5. The code is implemented using PyTorch and tested with
one TITAN XP GPU. Our method is nearly 2 times faster than the original
deepSBD on account of adaptive thresholding based initial filter (Table 6).

Gradual Model Localization Performance. An accurate localization of
gradual transitions is important in many video recognition task. Therefore, we
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Table 5. Comparison of speed

Model Speed (FPS)

deepSBD 382

Adaptive thresholding+deepSBD 680

Ours 700

Table 6. Localization performance. We calculate the F1-score at different IOU
threshold.

IOU P R F

0.1 0.813 0.865 0.839

0.5 0.726 0.772 0.748

0.75 0.599 0.637 0.618

also evaluate performance of the gradual transition localization using the pro-
posed framework. F1 scores are measured at different IOU level (0.1, 0.5, 0.75).
A predicted gradual transition is considered as correct only if its IOU > a,
otherwise it’s considered wrong. When the IOU is 0.75, we can still obtain a
F1 score of 0.618, indicating the proposed gradual detector is able to accurately
locate gradual transitions.

Table 7. Trecvid07 top performers.

Methods Cut Gradual

P R F1 P R F1

ATT [16] 0.996 0.979 0.972 0.802 0.709 0.753

THU11 [26] 0.982 0.968 0.975 0.733 0.718 0.725

Marburg [18] 0.942 0.945 0.944 0.595 0.766 0.670

NHT [12] 0.975 0.816 0.945 0.768 0.578 0.66

Priya [5] 0.972 0.976 0.974 0.869 0.719 0.78

DeepSBD [9] 0.978 0.968 0.973 0.826 0.731 0.776

Ours 0.971 0.988 0.980 0.813 0.806 0.810

Ours (correct label) 0.981 0.997 0.989 0.838 0.845 0.841

5.4 Experiments on TRECVID07

TRECVID07 contains a total of 17 videos, including 2236 cut transitions and
225 gradual transitions. They are all color and black/white documentaries. The
videos include cases such as global illumination variation, smoke, fire, and fast
non-rigid motion. We take the ground truth from TRECVID07 SBD task. In
addition, the experimental results of the proposed method over this database
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are compared to the top performers of TRECVID07 SBD task. We find some
of the ground truths are wrong, so we correct these labels. Evaluation results
using original labels and corrected labels are both reported. The cut and gradual
models are trained with the same training setting described in Sect. 5.2.

In Table 7, we present a comparative evaluation of the shot boundary detec-
tion performance with existing state-of-the-art approaches in terms of F1-score
and report the results using both the original ground truth and the corrected
ground truth. We evaluate cut transitions and gradual transitions separately. Cut
transitions are the most part of all transitions in a video so it plays a dominate
role in the overall performance. For cut transitions, we improve the-state-of-art
by 0.6%, which is a huge improvement considering there is no much space for
improvement. In fact, the errors concentrate in black/white videos due to the
lack of similar ones in the training set. Further improvement can be achieved
through adding more black/white videos into the training set. For gradual tran-
sitions, we achieve 2.9% improvement comparing to the state-of-the-art when
using the original ground truth and 6.4% improvement when using the corrected
ground-truth (Table 8).

Table 8. RAI comparison

F1 score

Apostolidis et al. [1] 0.84

Baraldi et al. [2] 0.84

Song et al. [21] 0.68

Michael et al. [7] 0.88

Hassanien et al. [9] 0.934

Ours 0.935

5.5 Experiments on RAI

RAI database is a collection of ten randomly selected broadcasting videos from
the Rai Scuola video archive 1, which are mainly documentaries and talk shows.
This database includes 722 cut transitions and 263 gradual transitions. Shots
have been manually annotated by a set of human experts. The proposed method
achieves a competitive results compared to deepSBD. It is noted that DeepSBD
adopts posting-processing technology, i.e. filtering the segments whose HSV sim-
ilarity under a threshold, which is not used in our methods. We perform eval-
uations on TRECVID and RAI using the same models, weights, and hyper-
parameters, which indicates the proposed framework are robust on different
databases.

6 Conclusion

We propose a cascade shot transition detection framework and annotate the first
large-scale shot boundary database. Adaptive thresholding is adopted to find
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candidate regions for acceleration. The cut and gradual transition detector are
designed separately. The cut transition detector is for measuring similarity while
the gradual transition detector is for capturing temporal patterns. Especially,
the gradual detector is able to locate gradual transitions of multi-scales. We
outperform state-of-the-art methods on both TRECVID and RAI databases. In
addition, our framework is very fast, achieving a 30× real-time speed.
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