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Abstract. A challenge that remains open in 3D deep learning is how to
efficiently represent 3D data to feed deep neural networks. Recent works
have been relying on volumetric or point cloud representations, but such
approaches suffer from a number of issues such as computational com-
plexity, unordered data, and lack of finer geometry. An efficient way
to represent a 3D shape is through a polygon mesh as it encodes both
shape’s geometric and topological information. However, the mesh’s data
structure is an irregular graph (i.e. collection of vertices connected by
edges to form polygonal faces) and it is not straightforward to integrate
it into learning frameworks since every mesh is likely to have a differ-
ent structure. Here we address this drawback by efficiently converting an
unstructured 3D mesh into a regular and compact shape parametriza-
tion that is ready for machine learning applications. We developed a sim-
ple and lightweight learning framework able to reconstruct high-quality
3D meshes from a single image by using a compact representation that
encodes a mesh using free-form deformation and sparse linear combina-
tion in a small dictionary of 3D models. In contrast to prior work, we
do not rely on classical silhouette and landmark registration techniques
to perform the 3D reconstruction. We extensively evaluated our method
on synthetic and real-world datasets and found that it can efficiently
and compactly reconstruct 3D objects while preserving its important
geometrical aspects.

1 Introduction

Most of us take for granted the ability to effortlessly perceive our surrounding
world and its objects in three dimensions with a rich geometry. In general, we
have good understanding of the 3D structure only by looking at a single 2D
image of an object even when there are many possible shapes that could have
produced the same image. We simply rely on assumptions and prior knowledge
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acquired throughout our lives for the inference. It is one of the fundamental goals
of computer vision to give machines the ability to perceive its surroundings as
we do, for the purpose of providing solutions to tasks such as self-driving cars,
virtual and augmented reality, robotic surgery, to name a few.

A specific problem that is of particular interest towards achieving this ambi-
tion of human-like machine perception is that of recovering 3D information from
a single image. This exceedingly difficult and highly ambiguous problem is typi-
cally addressed by incorporating prior knowledge about the scene such as shape
or scene priors [1–10]. This body of work has provided a valuable foundation for
this task and it has in particular indicated that the use of shape priors is highly
beneficial. With the online availability of millions of 3D CAD models across dif-
ferent categories, the use of 3D shape prior becomes even more attractive and
motivating. This is a realisation we propose to exploit in this work.

With the recent arrival of deep learning many interesting work have been
done to tackle 3D inference from 2D imagery by exploring the abundance of 3D
models available online [11–14]. Most of them rely on volumetric shape repre-
sentation, an approach arguably motivated by the ease of which convolutions
can be generalized from 2D to 3D. A significant drawback these methods have
is that the computational and memory costs scale cubically with the resolution.
Octrees [13] and point cloud [15] representations have been proposed to make
the learning more efficient. However, despite of its improved performance, such
representations still fail to capture fine-grained geometry as a dense 3D mesh
representation would might capture.

The aim of this work is to exploit a compact mesh representation to better
unlock fine-grained 3D geometry reconstruction from a single image. We propose
a novel learning framework based on a graph that embeds 3D meshes in a low-
dimensional space and still allow us to infer compelling reconstructions with
high-level details. We draw inspiration by the works in [10,16], where a graph
embedding to compactly model the intrinsic variation across classes of 3D models
has been proposed. Essentially, any 3D mesh can be parametrized in terms of
free-form deformation (Ffd) [17] and sparse linear combination in a dictionary.
Ffd allow us to embed a 3D mesh in a grid space where deformations can be
performed by repositioning a smaller number of control points. Although the
Ffd conserves the objects’ topology, the sparse linear combination step allows
it to be modified to better generalise the 3D reconstruction to unseen data.

Our method first classifies the latent space of an image to retrieve a coarse
3D model from a graph of 3D meshes as initialization. Then, the compact shape
parameters are estimated from a feedforward neural network which maps the
image features to the shape parameters space - Ffd and sparse linear combina-
tion parameters. The dense 3D mesh model is then recovered by applying the
estimated deformations to the 3D model selected. An overview of the proposed
framework is illustrated in Fig. 1. In contrast to [10,16], our proposed method
neither rely on landmark and silhouette registration techniques nor manually
annotated 2D semantic landmarks which would limit its applicability.
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The main contributions of this paper are:

• We propose a simple and lightweight learning framework to infer a high-
quality 3D mesh model from a single image through a low-dimensional shape
embedding space;

• To the best of our knowledge, the proposed method is the first to estimate
visual compelling 3D mesh models with fine-grained geometry from a sin-
gle image neither relying on classical landmark and silhouette registration
techniques nor class-specific 2D landmarks;

• We demonstrate the performance of our method and its generalization capac-
ity through extensive experiments on both synthetic and real data.

Fig. 1. Given a single image, our framework employs a convolutional autoencoder to
extract the image’s latent space z to be classified into an index c and regressed to a
shape parametrization (ΔP, α). We use a graph embedding G to compactly represent
3D meshes. The estimated index c selects from G the closest 3D model to the image. The
selected model is then deformed with the estimated parameters - Ffd displacements
ΔP and sparse linear combination weights α. For instance, model 1 is selected (arrows
1 and 2), Ffd is then applied (arrows 3 and 4), and finally the linear combination with
the nodes 3, 4, 5, 6, and 7 (blue arrows on the graph that indicates the models in dense
correspondence with node 1) are performed (arrow 5) to reconstruct the final 3D mesh
(arrow 6). (Color figure online)

2 Related Work

Recent advances in neural networks and the online availability of 3D models
(such as ShapeNet [18]) has sparked a considerable interest in methods using
deep learning to solve tasks related to geometry and 3D reconstruction. Several
papers have proposed a 3D volumetric representation [11,12,19–27] so they can
feed deep neural networks applying 3D convolutions, pooling, and other tech-
niques that have been successfully applied to 2D images for the learning process.
Volumetric autoencoders [12,28,29] and generative adversarial networks (GANs)
have been proposed [30–32] to learn of the probabilistic latent space of object
shapes for object completion, classification and reconstruction. Despite of all the
great work, volumetric representation has a great drawback. The memory and
the computational costs grow cubically as the voxel resolution increases which
limit such works to low-resolution 3D reconstructions.
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Octree-based convolutional neural networks have been presented to manage
these limitations [13,14,33,34]. It splits the voxel grid by recursively subdividing
it into octants thus reducing the computational complexity of the 3D convolu-
tion. The computations are then focused on regions where most of the informa-
tion about the object’s geometry is contained - generally on its surface. Although
it allows for higher resolution outputs, around 643 voxels, and a more efficient
training, the volumetric models still lacks fine-scaled geometry. In trying to pro-
vide some answers to these shortcomings, a more efficient input representation
for 3D geometry using point clouds have been recently entertained [15,35–39].
In [36] it was proposed a generative neural network to output a set of unordered
3D points used for the 3D reconstruction from single image and shape comple-
tion tasks. These architectures have been demonstrated for the generation of
low-resolution 3D models and to scale them to higher resolution is yet to be
investigated. Moreover, generating 3D surfaces for point clouds is a challenging
problem, specially in the case of incomplete, noisy and sparse data [40].

3D shapes can be efficiently represented by polygon meshes to encode both
geometrical and topological information [41]. However, the data structure of a
mesh is an irregular graph (i.e. set of vertices connected by edges to form polyg-
onal faces) and it is not straightforward to integrate it into learning frameworks
since every mesh is likely to have a different structure. A deep residual network
to generate 3D meshes has been proposed in [42]. The authors used a regular
data structure to encode an irregular mesh by employing the geometry image
representation. Geometry images however can only manage simple surfaces (i.e.
genus-0 surface). Ffd has also been explored for 3D mesh representation where
one can represent an object by a set of polynomial basis and a fixed number
of control points used to deform the mesh. A 3D shape editing tool has been
presented in [43] and it uses a volumetric network to infer per-voxel deformation
flows using Ffd. Their method takes a volumetric representation of a 3D mesh
as input and a deformation intention label (e.g. sporty car) to learn the Ffd dis-
placements to be applied to the original mesh. A novel graph embedding based on
the local dense correspondences between 3D meshes has been proposed in [10,16].
The method is able to reconstruct the finer geometry of a single image based on
a low-dimensional 3D mesh parametrization. Although they showed impressive
results for high-quality 3D mesh reconstruction, it relies on classical landmark
and silhouette registration techniques that depend on manually annotated and
class-specific 2D/3D landmarks which considerably limit its applicability.

To step further, our work efficiently converts a given unstructured 3D mesh
into a regular and compact parametrization that is ready for machine learning
applications. Nevertheless, our proposed learning framework is able to recon-
struct high-quality 3D meshes from a single image.

3 Proposed Learning Framework

Given a single image from a specific category (e.g. bicycle, chair, etc.), our aim is
to learn a model to infer a high-quality 3D mesh. Our proposed framework does
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not build on classical landmark/silhouette registration techniques which might
constrain its applicability due to the need for image annotations. To efficiently
represent the 3D mesh data to feed neural networks we employed a compact
mesh representation [10,16] that embeds a 3D mesh in a low-dimensional space
composed of a 3D model index c, Ffd displacements ΔP (e.g. 32 control points),
and sparse linear combination weights α depending on the size of the graph G.

To estimate the 3D shape parameters, we train a multi-label classifier to infer
the index and a feedforward neural network to regress the Ffd displacements
and the sparse linear combination weights from the image latent space learnt
from a convolutional autoencoder (CAE). A model is then selected from the
graph using the estimated index and the Ffd parameters are applied to initially
deform the model. Once a satisfactory model candidate is selected and deformed,
we have, from the graph, the information about what models are possible to
establish dense correspondences. Finally, we apply the sparse linear combination
parameters to refine the 3D reconstruction. The framework is shown in Fig. 1.

3.1 3D Mesh Embedding

We parametrize a 3D mesh model using the compact shape representation
method presented in [10,16]. It uses a graph G with 3D mesh models from the
same class as nodes and its edges indicate whether we can establish dense cor-
respondences or not (see an example in Fig. 1). Note that the graph is not fully
connected but sparse. So in every subgraph we can perform sparse linear com-
binations to deform a 3D model (i.e. a union of subspaces). Mathematically,
consider Ω as an index set of the nodes in a certain subgraph with Sc(Vc,Fc)
as the central shape node. Here V and F stand for the shape vertices and faces.
Dense correspondences will always exist for all i ∈ Ω allowing us to deform the
model S(V,F) by linear combination,

V = αcVc +
∑

i∈Ω

αiVi
c, F = Fc, (1)

where α’s are the weights. A two-step process is then performed, first we need
to find a candidate model (i.e. a node) from G. Second, knowing the index that
indicates the central node we can deform the model by linearly interpolating it
with its dense correspondences from the subgraph. To select a good candidate
in the first step, Ffd is used to deform a model and pick the one which best fit
the image. A 3D mesh can be represented in terms of Ffd as

Sffd = BΦ(P + ΔP), (2)

where Sffd ∈ R
N×3 are the vertices of the 3D mesh, B ∈ R

N×M is the defor-
mation matrix, P ∈ R

M×3 are the control point coordinates, N and M are the
number of vertices and control points respectively, ΔP are the control point dis-
placements, and Φ ∈ R

3M×3M is a matrix to impose symmetry in the Ffd grid
as in [16]. The deformation matrix B is a set of Bernstein polynomial basis1.
1 Refer to [10,16] for more details about the graph creation and deformation process.
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Once we have the graph, we can embed a 3D mesh in a low-dimensional space.
We only need an index that indicates what model we should pick up from the
graph, the symmetric Ffd displacements ΔP to apply the initial deformation
to the selected model, and the sparse linear combination weights α to refine the
final 3D model. In this work however we tackle the following question: Could such
a low-dimensional parametrization be learned to infer high-quality 3D meshes
from a single image?

3.2 Collecting Synthetic Data

Since our goal is to infer a 3D mesh parametrization from a single image, we need
to synthetically generate data containing 3D meshes, its compact parametriza-
tion (c, ΔP and α parameters) and rendered images. One may question why
we do not simply parametrize the whole ShapeNet, for example, using the shape
embedding proposed in [16]. One of the drawbacks of such an approach would
be that it relies on 3D semantic landmarks that were manually annotated in
some CAD models from ShapeNet to obtain a compact shape embedding. For
this reason we decided to use the graph to generate data for each object class
instead of manually annotating 3D anchors on several models which is laborious.

To generate the data, we randomly choose an index and then we deform
the selected model by applying ΔP and α from a learned probability density
function (PDF). To learn a PDF for the displacements ΔP we use a Gaussian
Mixture Model (GMM) to capture information about the nature of the desired
deformations. Since we have from the graph creation process the Ffd parameters
for every pair of 3D models in the graph (obtained during the deformation pro-
cess to find dense correspondences in [16]), we can learn a GMM from such prior
information. For the sparse linear coefficients’ PDF we simply fit a normal distri-
bution to a set of α’s from 3D reconstructions on the PASCAL3D+ dataset [44]
from [16]. Armed with this, we can synthetically generate deformed 3D meshes
and images with their respective low-dimensional shape parametrizations.

3.3 Learning the Image Latent Space

To obtain a lower-dimensional representation for the images, a convolutional
autoencoder is proposed to extract useful features in an unsupervised manner.
The encoder network consists of three fully convolution layers with numbers
of kernels {8, 16, 32}, kernel sizes {5, 3, 3}, and strides {3, 3, 3}. The decoder
network has three fully transposed convolutional layers with numbers of kernels
{16, 8, 1}, kernel sizes {3, 3, 5}, and strides {3, 3, 3}. The input takes grayscale
images of size 220 × 220. All layers use ReLU as activation functions except the
last one that uses tanh. This gives us a network flow of size 2202 → 722 → 242 →
82 → 242 → 722 → 2202, respectively. We take the image latent space z ∈ R

2,048

from the last layer of the encoder as feature representation.
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3.4 Learning the Index to Select a Model

Firstly we need to retrieve a 3D model from the graph (a graph is explained in
Subsect. 3.1). We treat it as a multi-label classification problem. For example,
if a graph of the class ‘car’ would have 30 different cars/nodes it would have
30 indices/labels (1 to 30) that an image of a car could be classified as. In this
way, the “closest” car to the image can be selected from the graph according to
the estimated index. For this purpose, we propose a simple yet effective multi-
label classifier to estimate graph indices. The input is the image latent space
from the convolutional autoencoder of size 2,048 (8 × 3 × 3). The output is a
one-hot encoded vector that represents the ground truth indices. The network
has one hidden layer of size 1,050 and ReLU is used as activation function.

3.5 Learning the Shape Parameters

We wish to learn a mapping from the image feature representation z of size 2,048
to its corresponding 3D shape parameters ΔP and α, i.e. f : z → {ΔP,α}.
Given the training set of image features and the ground truth shape parameters,
we learn this mapping using a feedforward neural network. The input is the
image latent space of size 2,048. The output is a vector containing the shape
parameters κ ∈ R

MN where M and N are the number of Ffd and sparse linear
combination parameters α respectively. For instance, κ ∈ R

126, where 96 values
would be the Ffd parameters (32×3) and the remaining 30 values would be the
α parameters for the sparse linear combination of models in the graph. To handle
different number of α coefficients that might differ according to the subgraph
selected, we consider a fixed-size vector according to the size of G and then we
pick only the estimated α’s corresponding to the subgraph (i.e. we ignore the
other α’s). The network has one hidden layer of size 1,500 and it uses ReLU as
activation function.

4 Experiments

Dataset. To train our framework we take the approach of synthesizing 3D
mesh models using the strategy discussed in the Subsect. 3.2. We generated
5,000 deformed 3D models of eight object categories (car, bicycle, motorbike,
aeroplane, bus, chair, dining table, and sofa) using the graphs from [16]. Every
graph has 30 CAD models sampled from ShapeNet [18] except for the bicycle and
motorbike graphs that have 21 and 27 CAD models, respectively. We rendered
for every 3D synthesised model a 2D view of size 256 × 192 using different view-
points with a white background. We also produced uniform lighting across the
surfaces of the object. With the images and the ground truth 3D meshes, indices
and shape parameters, we can train our framework and evaluate its performance.
The data was split in 70% for training and 30% for testing.

Evaluation Metrics. To quantify the quality of the classification step we
employed the accuracy, precision and recall metrics. To evaluate the estimated
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shape parameters we use the mean squared error (MSE). For the 3D shape recon-
struction measure we use the symmetric surface distance sdist to the ground
truth. sdist is computed by densely sampling points on the faces and using nor-
malized points distance to estimate the model similarity and it is defined as

dist3D =
1

|V̂|
∑

vi∈V̂

dist(vi,S) +
1

|V|
∑

vi∈V

dist(vi, Ŝ), (3)

where V̂, Ŝ, V, S are the estimated vertices and surfaces, and the ground truth
vertices and surfaces, respectively.

Moreover, we use the intersection over union (IoU) as a metric to compare
different voxel models as in [11] defined as (V̂ ∩ V)/(V̂ ∪ V), where V̂ and V are
the voxel models of the estimated and ground truth models respectively.

Table 1. Evaluation of our method on synthetic data. We show the performance of
the convolutional autoencoder (CAE), the multi-label classification for the 3D model
selection, the feedforward network for the parameters estimation, and the 3D recon-
struction from single image. Acc, Prec, Rec, and t stand for the accuracy, precision,
recall, and the training time, respectively.

CAE 3D model selection Params estimation 3D reconstruction

MSE ∼ t

(min)

Acc(%) Prec(%) Rec(%) ∼ t

(min)

MSE ∼ t

(min)

dist3D IoU

Car 0.0012 30 92.13 92.11 93.33 76 0.0176 197 0.006 0.664

Bicycle 0.0068 25 92.07 92.00 92.18 73 0.0102 208 0.025 0.795

motorbike 0.0045 21 97.80 97.87 97.72 74 0.0150 322 0.007 0.679

Aeroplane 0.0017 24 77.33 76.90 78.09 96 0.0108 209 0.023 0.551

Bus 0.0013 35 90.20 90.05 92.14 74 0.0329 156 0.003 0.776

Chair 0.0022 21 87.33 86.97 88.74 75 0.0090 158 0.034 0.403

Dining table 0.0020 22 73.60 73.60 74.98 75 0.0119 158 0.165 0.332

Sofa 0.0013 21 76.20 76.47 77.69 74 0.0119 156 0.063 0.402

Mean 0.0024 25 85.86 85.75 86.86 77 0.0144 195 0.041 0.575

4.1 Estimating the Image Latent Space

The first set of experiments were performed on the CAE to learn a latent repre-
sentation from an image. We found the architecture described in the Subsect. 3.3
to have the better performance. The image feature representation is discrimina-
tive and performed well on the classifier and on the feedforward network to
estimate the shape parameters. Table 1 shows the MSE on the test set and the
time spent training the network for every class used. We used the MSE evalu-
ated on the test set as a measure of how close the input image (ground truth)
is from the image generated by the decoder. It does not mean the latent space
is representative as image descriptors but we further validated it in the classi-
fication and regression steps by achieving high accuracies. This means that the
descriptors learnt are indeed discriminative.
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4.2 Selecting a 3D Mesh

The first stage of our learning framework after having the image latent space
is the selection of a 3D mesh from the given graph. The performance of the
proposed multi-label classifier is shown in Table 1. One can note that the overall
performance on the test set was satisfactory in terms of accuracy (85.68%),
precision (85.75%) and recall (86.86%). The best performance was achieved on
the motorbike category (27 labels) with an accuracy of 97.80%. The category has
very different motorbikes from each other which explains the great performance.
Besides, the dining table category (30 labels) had the lowest performance, with
an accuracy of 73.60%. This is presumably due to the high degree of similarity
between the synthesised images as there are not many unique tables in this object
class. Moreover, we fixed the network architecture for all classes. Fine tuning the
classifier for specific classes would more than likely improve performance.

4.3 Estimating the Shape Parameters

The last stage of our framework before the final 3D reconstruction is the estima-
tion of the shape parameters. The results are also shown in Table 1. The overall
MSE (0.0144) on the testing set shows that the network is indeed learning a
mapping function to estimate the Ffd and the α parameters from the image
latent space. The graphs used have about 30 mesh models each which means
that once we have selected a model we can establish dense correspondences with
up to 29 models (29 α values). The resolution of the Ffd grid is of 43 that gives
us 64 control points to free-deform the model. Since the majority of man-made
object are symmetric, we impose a symmetry on the Ffd grid so that the defor-
mations are forced to be symmetric and more realistic. Therefore, we have to
estimate only half of the Ffd parameters. The feedforward network then maps
the image latent space to 32 displacements of the control points in the 3D space,
ΔP ∈ R

32×3, and to 30 sparse linear combinations parameters, α ∈ R
30 (29 +

the model selected). The estimated parameters, in this case, is of size κ ∈ R
126.

One can note that it is a very low-dimensional parametrization that is efficiently
learned through a simple and lightweight network architecture.

4.4 3D Reconstruction from a Single Image

Given a single image we can forward pass it to our learned framework to estimate
an index c and the shape parameters κ. A 3D mesh is initially selected from the
class-specific graph by the estimated index c. Afterwards, the Ffd displacements
ΔP is applied to free-deform the model using Eq. 2, Sffd = BΦ(P + ΔP). Note
that we only need to add the estimated displacements to the initial grid of control
points P. Finally, we can apply the linear combination parameters α to deform
the model through Eq. 1, V = αcVc +

∑
i∈Ω αiVi

c.

3D Reconstruction from Synthetic Images. The initial experiments were
performed on synthetic images from the 8 classes where we have the ground
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Fig. 2. Given an input image of a car and a graph G with 30 models as nodes, our
method first selected the model 7 from G. Then it is deformed by the Ffd displacements
ΔP on the initial grid P. Afterwards, the linear combination is performed with the
estimated α to reconstruct the final model. The black arrows on G show what models
are possible to perform linear combination with the selected model (i.e. models in dense
correspondences). Note that not all the models were selected, but 6 out of 9 models
in this example. For illustration, the node size in G is proportional to the number of
edges starting from the node.

truth 3D meshes and also the shape embedding parameters. Figure 2 shows a
real example of our framework flow. Table 1 summarizes the quantitative results
of our 3D reconstruction on the synthetic test set. We measured the quality of
the 3D reconstruction through the surface distance metric dist3D and the IoU
between the reconstructed and the ground truth model. Our framework clearly
performed well on the synthetic dataset according to the surface distance metric.
The IoU for the classes aeroplane, chair, dining table, and sofa had the lowest
values which means that a good voxel intersection between the reconstructed
model and the ground truth was not possible. In fact, IoU between thin structures
(e.g. chair’s legs, aeroplane’s wings, etc.) are low if they are not well aligned.

Qualitative results are shown in Fig. 3. Our proposed learning framework per-
formed well at selecting a proper model to start the deformation process, and
also at estimating the shape parameters to obtain the final deformed mesh. In
the successful cases, one can see the final models are similar to the ground truth
with slight differences that can be hard to point them out. An interesting exam-
ple to show the expressiveness of our proposed method is the chair instance. One
can note that the selected chair has long legs, but the estimated Ffd parame-
ters managed to deform the chair to get shorter legs before applying the linear
combination parameters to get the final model. A failure case is shown on the
last row in red where an “incorrect” model was selected from the graph, in this
case a fighter jet instead of a commercial airplane. This can in part be explained
by the challenging image perspective of this instance. Even for a human it is
difficult to correctly classify such an image, in this case a fighter jet is in fact a
highly plausible choice of model2.

2 More results, failure cases, and videos can be found in the supplementary material.
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(a) Input (b) Selected model (c) FFD (d) Final model (e) Voxel model (f) GT

Fig. 3. Visual results on synthetic data. (a) shows the input image; (b) the selected
model from the graph; (c) the selected model deformed by Ffd. The final 3D model
deformed by linear combination is shown in (d). The voxelized final model is shown
in (e) and the ground truth in (f). In the success cases (blues), one can note the final
models are similar to the ground truth with slight differences that can be hard to point
it out. A failure case is shown on the last row in red where a “wrong” model was
selected from the graph. (Color figure online)

3D Reconstruction from Real World Images. To verify our framework’s
generalization capacity we test it on a dataset with real world images. We eval-
uated the performance of the proposed method on the PASCAL3D+ dataset
and we compared to the results presented in [16]. We found that it is a fair
comparison since we are not playing with volumetric or point cloud representa-
tions but with dense polygonal meshes. In order to forward pass the real world
images to our learning framework, we used the image silhouettes provided by the
PASCAL3D+ dataset since our framework was trained on images with uniform
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Table 2. Evaluation of our method on the PASCAL3D+ dataset and comparison with
the method presented in [16].

[16] Ours

dist3D IoU dist3D IoU

Car 0.174 0.382 0.179 0.371

Bicycle 0.290 0.419 0.282 0.402

Motorbike 0.084 0.384 0.186 0.309

Aeroplane 0.262 0.442 0.153 0.366

Bus 0.091 0.376 0.058 0.280

Chair 0.309 0.261 0.461 0.236

Dining table 0.353 0.256 0.695 0.223

Sofa 0.346 0.241 0.573 0.207

Mean 0.239 0.345 0.323 0.299

background. Table 2 summarizes the results of our method and the results pre-
sented in [16] in terms of the surface distance dist3D and the IoU. Our method
did not outperform the method proposed in [16], except for some classes. How-
ever, we achieved a similar performance on the real world dataset neither relying
on silhouette and landmark registration algorithms nor using class-specific land-
marks. Moreover, since the ground truth models in the PASCAL3D+ dataset
were aligned to images by humans, the comparison metrics are not robust. As
stated in [16], most of the 3D reconstructions look closer to the images than the

Fig. 4. Qualitative example showing the importance of every step in our method. The
upper part shows the Ffd and the linear combination (LC) being applied to the selected
model (IDX). It shows that even with a strong Ffd deformation the LC step managed
to deform the mesh to look similar to the GT model. The bottom part shows the 3D
reconstruction when omitting the Ffd step. The LC step managed to deform the van
into a compact car (perhaps SUV?) but it is still different from the GT . If we omit the
LC step one can notice that the Ffd model looks very different from the GT .
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ground truth models themselves. This explains the high values for the surface
distance and the low values for the IoU.

Qualitative results are shown in Fig. 5. One can see that our proposed method
performed well on a real-world dataset. In the motorbike example it is clear when
looking at the image that the motorbike does not have a backrest. The selected
model was a good choice, since it shares topological similarities and although
it has a backrest device, the linear combination step managed to diminish it.
Another interesting example is the airplane where the selected model has a
different type of wings, but the deforming process made it appear much more
similar to the input image.

Ablation Study. We performed an extensive ablation experiment where the 3D
reconstruction error is evaluated at each step, model selection, Ffd and linear
combination, to shows how sensitive the model is to the noise of each step. A
qualitative example showing the importance of every step is shown in Fig. 4.
Please refer to the supplementary material for the quantitative analysis.

(a) Input (b) Selected model (c) FFD (d) Final model (e) [16] (f) GT

Fig. 5. Visual results on real-world data. (a) shows the input image; (b) the selected
model; (c) the selected model deformed by Ffd. The final 3D model reconstructed by
linear combination is shown in (d). We compare with [16] in (e) and the ground truth
is shown in (f).
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4.5 Implementation Details and Limitations

We designed our networks using PyTorch [45] on a GPU Nvidia Tesla M40. We
trained the convolutional autoencoder using a MSE loss function and the Adam
optimizer [46] with a learning rate of 1e−3 and a weight decay of 1e−5 during
100 epochs. To train the multi-label classifier we used a multi-label soft margin
loss function and for the feedforward neural network we trained it using a MSE
loss function. For both models we used the Adam optimizer with a learning rate
of 1e−3 during 1,000 epochs.

One of the main limitations, which our method inherits from [16], is the need
for a good embedding graph. One can see in Fig. 2 that some models for the
linear combination step have some crinkles on its surfaces. This happens during
the graph construction when searching for dense correspondences between the
models. This is especially important for achieving high-quality 3D reconstruc-
tions. However, finding dense correspondences between two different models that
do not share the same number of vertices is still an open problem [16]. Another
limitation is that we synthesise the images with white background so real images
must be segmented beforehand for the 3D reconstruction. GANs can fit in this
context to generate more realistic images.

5 Discussion

The proposed method is category-specific, meaning that we need one model for
every class. Although [36] is able to better generalize to multiple object categories
with a single model trained on 2k classes, we believe our paper makes a step
in 3D reconstruction in the mesh domain which has largely been unexplored.
Moreover, we would like to reinforce the generalization capacity of our method
to specific classes, where a single graph embedding model is able to generalize to
unseen 3D meshes by using Ffd and linear combination in a small dictionary.
We successfully validated this using the PASCAL3D+ dataset since its shape
distribution differs from the trained models on synthetic data.

We would like to reiterate our argument that even though [16] performed
better in some categories, our method is able to achieve similar fine-grained
mesh reconstruction without the need to rely on any class-specific landmarks or
any silhouette registration whatsoever. This is a significant improvement in the
utility of these approaches with the removal of these limiting constraints.

A comparison with [36] would not be entirely straightforward or terribly infor-
mative as we propose a mesh representation with fine-grained geometry whereas
[36] proposes a coarse point cloud representation. Moreover, IoU of coarse volu-
metric models is not a robust metric to capture fine-grained geometry contained
on the surface of mesh models. From visual inspection, one can observe that our
deformation of mesh models and their detailed geometry clearly outperforms [36]
and [34]. We considered a comparison with [34], however the authors have not
yet shared their code and the information found in the paper is not enough to
reproduce their results. For this reason we decided to restrict our comparisons
to competing methods as [16] (and implicitly with [10]).
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6 Conclusion

We have proposed a simple yet effective learning framework to infer 3D meshes
from a single image using a compact mesh representation that does not rely on
class-specific object landmarks which would limit its applicability. A 3D mesh is
embedded in a low-dimensional space that allows one to perform deformations
by Ffd and sparse linear combination. Experiments on synthetic and real-world
datasets show that our method convincingly reconstructs 3D meshes from a sin-
gle image with fine-scaled geometry not yet achieved in previous works that rely
on volumetric and point cloud representations. Although our method relies on
background segmentation, we do believe the field is mature to provide off-the-
shelf segmentation techniques for a practical application. Such high quality 3D
representation and reconstruction as proposed in our work is extremely impor-
tant, especially to unlock virtual and augmented reality applications. Finally, we
believe that this work is a great first step towards more effective mesh represen-
tations for 3D geometric learning purposes.
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