
123

Francis Bordeleau
Alberto Sillitti

Paulo Meirelles
Valentina Lenarduzzi

(Eds.)

15th IFIP WG 2.13 International Conference, OSS 2019
Montreal, QC, Canada, May 26–27, 2019
Proceedings

Open Source Systems

IFIP AICT 556

IFIP Advances in Information
and Communication Technology 556

Editor-in-Chief

Kai Rannenberg, Goethe University Frankfurt, Germany

Editorial Board Members

TC 1 – Foundations of Computer Science
Jacques Sakarovitch, Télécom ParisTech, France

TC 2 – Software: Theory and Practice
Michael Goedicke, University of Duisburg-Essen, Germany

TC 3 – Education
Arthur Tatnall, Victoria University, Melbourne, Australia

TC 5 – Information Technology Applications
Erich J. Neuhold, University of Vienna, Austria

TC 6 – Communication Systems
Aiko Pras, University of Twente, Enschede, The Netherlands

TC 7 – System Modeling and Optimization
Fredi Tröltzsch, TU Berlin, Germany

TC 8 – Information Systems
Jan Pries-Heje, Roskilde University, Denmark

TC 9 – ICT and Society
David Kreps, University of Salford, Greater Manchester, UK

TC 10 – Computer Systems Technology
Ricardo Reis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

TC 11 – Security and Privacy Protection in Information Processing Systems
Steven Furnell, Plymouth University, UK

TC 12 – Artificial Intelligence
Ulrich Furbach, University of Koblenz-Landau, Germany

TC 13 – Human-Computer Interaction
Marco Winckler, University of Nice Sophia Antipolis, France

TC 14 – Entertainment Computing
Rainer Malaka, University of Bremen, Germany

IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the first World
Computer Congress held in Paris the previous year. A federation for societies working
in information processing, IFIP’s aim is two-fold: to support information processing in
the countries of its members and to encourage technology transfer to developing na-
tions. As its mission statement clearly states:

IFIP is the global non-profit federation of societies of ICT professionals that aims
at achieving a worldwide professional and socially responsible development and
application of information and communication technologies.

IFIP is a non-profit-making organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees and working groups, which organize
events and publications. IFIP’s events range from large international open conferences
to working conferences and local seminars.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers
may be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a work-
ing group and attendance is generally smaller and occasionally by invitation only. Their
purpose is to create an atmosphere conducive to innovation and development. Referee-
ing is also rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of se-
lected and edited papers.

IFIP distinguishes three types of institutional membership: Country Representative
Members, Members at Large, and Associate Members. The type of organization that
can apply for membership is a wide variety and includes national or international so-
cieties of individual computer scientists/ICT professionals, associations or federations
of such societies, government institutions/government related organizations, national or
international research institutes or consortia, universities, academies of sciences, com-
panies, national or international associations or federations of companies.

More information about this series at http://www.springer.com/series/6102

http://www.springer.com/series/6102
http://www.springer.com/series/6102

Francis Bordeleau • Alberto Sillitti •

Paulo Meirelles • Valentina Lenarduzzi (Eds.)

Open Source Systems
15th IFIP WG 2.13 International Conference, OSS 2019
Montreal, QC, Canada, May 26–27, 2019
Proceedings

123

Editors
Francis Bordeleau
École de Technologie Supérieure (ÉTS)
Montreal, QC, Canada

Alberto Sillitti
Innopolis University
Innopolis, Russia

Paulo Meirelles
Federal University of São Paulo
São Paulo, Brazil

Valentina Lenarduzzi
Tampere University
Tampere, Finland

ISSN 1868-4238 ISSN 1868-422X (electronic)
IFIP Advances in Information and Communication Technology
ISBN 978-3-030-20882-0 ISBN 978-3-030-20883-7 (eBook)
https://doi.org/10.1007/978-3-030-20883-7

© IFIP International Federation for Information Processing 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-0511-5133
https://doi.org/10.1007/978-3-030-20883-7

Preface

Welcome to the 15th edition of the International Conference on Open Source Systems
(OSS 2019) held in Montreal, Quebec, Canada, during May 26–27, 2019. The
conference has been a reference point for the research community in Open Source
Systems for 15 years, promoting research activities in the area and anticipating trends.

All of the submitted research papers went through a rigorous peer-review process.
Each paper was reviewed by at least three members of the Program Committee. Of the
30 papers submitted, only ten were accepted as full papers (33%). We also accepted
five experience reports, with a committee of experts evaluating each submission for
new experiences that would be both interesting and beneficial to our community. We
accepted papers dealing with several different aspects of OSS including: Mining OSS
Data, Organizational Aspects of FLOSS Projects, FLOSS Adoption, FLOSS Cost and
Licenses, FLOSS Education and Training.

We hope that you will find the OSS 2019 proceedings useful for your professional
and academic activities.

Finally, we would like to thank all the people who contributed to OSS 2019
including the authors, the sponsors, the reviewers, the volunteers, and the chairs.

April 2019 Francis Bordeleau
Alberto Sillitti

Paulo Meirelles
Valentina Lenarduzzi

Organization

General Chair

Francis Bordeleau École de technologie supérieure (ÉTS), Canada

Program Chairs

Paulo Meirelles Federal University of São Paulo, Brazil
Alberto Sillitti Innopolis University, Russia

Program Committee

Alexandre Bergel University of Chile, Chile
Abby Cabunoc Mayes Mozilla, Canada
Andrea Capiluppi Brunel University, UK
Kevin Crowston Syracuse University, USA
Matt Germonprez University of Nebraska, USA
Jesus M.

Gonzalez-Barahona
Universidad Rey Juan Carlos, Spain

Imed Hammounda Chalmers and University of Gothenburg, Sweden
Daniel S. Katz University of Illinois at Urbana-Champaign, USA
Fabio Kon University of São Paulo, Brazil
Akinori Ihara Wakayama University, Japan
Luigi Lavazza University of Insubria, Italy
Valentina Lenarduzzi Tampere University, Finland
Manuel Mazzara Innopolis University, Russia
Sandro Morasca University of Insubria, Italy
Masood Mortazavi Huawei, USA
John Noll University of East London, and Lero, Irelend
Sarah Novotny Google, USA
Peter Rigby Concordia University, Canada
Chris Riley Mozilla, USA
Gregorio Robles Universidad Rey Juan Carlos, Spain
Walter Scacchi University of California, USA
Alolita Sharma Amazon Web Services, USA
Diomidis Spinellis Athens University of Economics and Business, Greece
Kate Stewart Linux Foundation, USA
Davide Taibi Tampere University, Finland
Jens Weber University of Victoria, Canada

Contents

Mining OSS Data

Building an Open-Source Cross-Cloud DevOps Stack
for a CRM Enterprise Application: A Case Study . 3

Sebastian Schork, Feroz Zahid, Dipesh Pradhan, Sébastien Kicin,
and Antonia Schwichtenberg

Open Source Vulnerability Notification . 12
Brandon Carlson, Kevin Leach, Darko Marinov,
Meiyappan Nagappan, and Atul Prakash

Organizational Aspects of FLOSS Projects

EJ: A Free Software Platform for Social Participation 27
Fábio Macêdo Mendes, Ricardo Poppi, Henrique Parra,
and Bruna Moreira

Introducing Agile Product Owners in a FLOSS Project 38
Matthias Müller, Christian Schindler, and Wolfgang Slany

What Are the Perception Gaps Between FLOSS Developers
and SE Researchers? A Case of Bug Finding Research 44

Yutaro Kashiwa, Akinori Ihara, and Masao Ohira

FLOSS Adoption

Fifteen Years of Open Source Software Evolution. 61
Francis Bordeleau, Paulo Meirelles, and Alberto Sillitti

Open Source Software Community Inclusion Initiatives
to Support Women Participation . 68

Vandana Singh and William Brandon

Predicting Popularity of Open Source Projects Using Recurrent
Neural Networks . 80

Sefa Eren Sahin, Kubilay Karpat, and Ayse Tosun

What Attracts Newcomers to Onboard on OSS Projects?
TL;DR: Popularity . 91

Felipe Fronchetti, Igor Wiese, Gustavo Pinto, and Igor Steinmacher

Why Do Developers Adopt Open Source Software?
Past, Present and Future. 104

Valentina Lenarduzzi, Davide Tosi, Luigi Lavazza,
and Sandro Morasca

Why Do People Give Up FLOSSing? A Study of Contributor
Disengagement in Open Source . 116

Courtney Miller, David Gray Widder, Christian Kästner,
and Bogdan Vasilescu

FLOSS Cost and Licences

Open Source for Open Source License Compliance 133
Oliver Fendt and Michael C. Jaeger

Opportunity Costs in Free Open-Source Software . 139
Siim Karus

FLOSS Education and Training

Does FLOSS in Software Engineering Education Narrow
the Theory-Practice Gap? A Study Grounded on Students’ Perception 153

Debora Maria Coelho Nascimento, Christina von Flach Garcia Chavez,
and Roberto Almeida Bittencourt

Faculty Development for FLOSS Education . 165
Becka Morgan, Gregory W. Hislop, and Heidi J. C. Ellis

Author Index . 173

viii Contents

Mining OSS Data

Building an Open-Source Cross-Cloud
DevOps Stack for a CRM Enterprise

Application: A Case Study

Sebastian Schork1(B), Feroz Zahid2, Dipesh Pradhan2, Sébastien Kicin1,
and Antonia Schwichtenberg1

1 CAS Software AG, Karlsruhe, Germany
{sebastian.schork,sebastien.kicin,antonia.schwichtenberg}@cas.de

2 Simula Research Laboratory, Fornebu, Norway
{feroz,dipesh}@simula.no

Abstract. Open Source software solutions play a critical role for the
SMEs by enabling easy access to reusable software. Also, with the
rapid growth in the popularity of the cloud technologies, computational
demands of SMEs are cost-efficiently met by the public clouds as users
can dynamically acquire resources on demand according to their needs.
However, non-standardized cloud interfaces, lack of inter-cloud trans-
parency, and complex cost models, often result in vendor lock-in. Once
in vendor lock-in, cloud users have to live with a single cloud provider and
accept whatever pricing schemes and SLAs are imposed. Moreover, new
regulations covered by the General Data Protection Regulation (GDPR)
in Europe require companies to enforce policies regarding secure stor-
age of data in the cloud, as well as restrict moving confidential datasets
outside Europe. This situation requires a more transparent use of cloud
resources from multiple cloud providers, that conform with user’s data
privacy needs, service requirements, and budget.

In this paper, we discuss challenges and pitfalls of designing a Cross-
Cloud DevOps stack for an app-based extension platform of a Customer
Relationship Management (CRM) system. The fully-automated DevOps
stack, based on open source software tools and technologies, has been
developed in close coordination with an open source integration project,
Melodic. With the help of our DevOps stack, third-party apps in our
CRM software are now Multi-Cloud ready, and the data storage in the
cloud by the users conforms to potential GDPR requirements. In addi-
tion, the deployment time of apps has been reduced to minutes, while
the platform is able to scale up and scale down apps efficiently based on
the current workload requirements, saving substantial cloud costs.

Keywords: Open source · Cross-Cloud · DevOps

This work has received funding from the European Union’s H2020 research and inno-
vation programme under grant agreement no. 731664 (MELODIC).

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
F. Bordeleau et al. (Eds.): OSS 2019, IFIP AICT 556, pp. 3–11, 2019.
https://doi.org/10.1007/978-3-030-20883-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20883-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-20883-7_1

4 S. Schork et al.

1 Introduction

The major growth of the ICT industry over the last decade can be attributed
towards enabling technologies based on open standards and protocols, making
it possible to develop software solutions that can be delivered and integrated on
any infrastructure, independent of the vendor. However, with the emergence of
the cloud computing paradigm, a step is taken backward [1]. Cloud users are
often forced into vendor lock-in due to the use of incompatible protocols and
standards by the cloud service providers (CSPs). Vendor lock-in or propriety
lock-in is an economic condition in which a customer is made dependent on the
vendor-specific technology, products, or services by making it fairly difficult and
costly to migrate to a competition [2].

The cloud-based customer relationship (CRM) software, SmartWe, is
designed by CAS Software1 to support users in an optimal way depending on
their role, the business sector they are working in and the respective workflows.
With the help of SmartWe’s software development kit (SDK) and UI tools, users
and CAS development partners can adapt existing apps or develop new apps for
the SmartWe platform. The apps can be offered and installed via an App Store.
Initially, the SmartWe supports apps to be deployed on a single cloud platform.
As we moved on with the development, we found that it was not easy to migrate
third-party apps to another cloud platform because SmartWe and its deployment
scripts became heavily dependent on the specific CSP’s APIs and management
tools. As the new General Data Protection Regulation (GDPR) started being
enforced in Europe, the user apps were obliged to conform to the data storage
regulations laid down. This was not an issue in the first place for the product
SmartWe due to its deployment in secure partner data centers but needs to be
considered for the third-party apps that are developed by partners and users.
For instance, some datasets used by extension apps, which are confidential to the
users according to their data privacy needs, may not be allowed to be migrated
to locations outside Europe. Furthermore, the requirements of the apps were
dynamic and often updated, requiring manual updates to several scripts and
resulting in slower cloud deployments for the third-party apps.

In general, no single CSP is able to provide all the features a user may
need in a cost-efficient way, while satisfying the user’s security and performance
requirements. As mentioned above, even the most dominant CSPs have lim-
ited geographical presence. If local legislation requires confidential data to be
stored within a country’s geographical boundaries, the cloud user will need to
rely on cloud providers owning infrastructure locally – or maybe even use a pri-
vate cloud. Still, the same cloud user would ideally want to take advantage of
cheap global cloud offerings for computation and storage when the strict data
security requirements do not apply. With these challenges in place, we joined
forces together with several other academic and industrial partners to tackle the
need of an automated Cross-Cloud DevOps solution under the umbrella of an

1 CAS Software AG - https://www.cas.de/en/homepage.html.

https://www.cas.de/en/homepage.html

Building an Open-Source Cross-Cloud DevOps Stack 5

open source research and innovation project, Melodic2. In this paper, we dis-
cuss challenges and pitfalls of designing such a Cross-Cloud DevOps stack for
SmartWe based on open source tools and technologies. With the help of our
DevOps stack, third-party apps management in SmartWe is now fully Multi-
Cloud ready bringing our users out of the potential vendor lock-in. In addition,
the data storage related to the third-party apps in the cloud now conforms to
the GDPR requirements as users can specify their requirements and constraints
through an innovate modelling interface. Furthermore, the deployment time for
SmartWe and apps has been reduced to minutes, while the platform is able to
scale up and down efficiently based on the current workload requirements.

The rest of this paper is structured as follows. In Sect. 2, we provide details
about our SmartWe CRM software. In Sect. 3, we define the requirements for
our automated Cross-Cloud DevOps system, as well as present the process of
selecting and integrating the available Open Source Software (OSS), together
with outlining the new development under Melodic. The resultant DevOps stack
is presented and evaluated in, Sects. 4 and 5, respectively. We conclude in Sect. 6.

2 The SmartWe CRM

The cloud-based CRM software, SmartWe, is designed to support customers in
their daily work by providing a tailored software tool with respect to the partic-
ular role of each user. Tailored business solutions support work flows according
to the needs of the users and are much more efficient and usable than generic
software systems [3]. SmartWe supports different ways to tailor the basic any-
thing relationship management (xRM) solution to user role specific tasks. For
instance, the user interface can be personalized by adding only a subset of the
available apps. Moreover, using the provided SDK, an existing app can be tai-
lored and extended, or a new apps can be developed for fulfilling user-specific
requirements. The idea of an app-based xRM cloud software that can be adapted
and extended to diverse use-cases and customer needs is highly promising from
a marketing and business perspective. However, it is also challenging from the
conceptual point of view, and even more so from the developer perspective.

The DevOps stack we present in this paper comes into play both for the
transparent deployments of the new or customized apps (such as compute- and
data-intensive extensions), as well as to make sure that the third-party apps do
not affect the SmartWe system’s performance and availability. For example, a
CAS partner may develop a new app for either integrating and analyzing existing
data from a third-party system or for analytics based on existing data from
the primary CRM system, requiring secure data management and on-demand
resource availability in the cloud. In these cases, there is a need for a dynamic,
customized, and scalable deployment solution for the apps. The aforementioned
two cases directly refer to SmartWe’s two main pillars:

2 The Melodic Cloud Project - https://melodic.cloud/.

https://melodic.cloud/

6 S. Schork et al.

– Third-party apps that extend the SmartWe solution: Both the data
storage and the apps deployments in the cloud need to conform to the specified
user-requirements related to the privacy and confidentiality.

– Scalable SmartWe base deployment: The dynamic increase in load to
the SmartWe base deployment, because of the data-intensive or compute-
intensive third-party apps, needs to be tackled automatically.

Both cases and their evaluation with the proposed DevOps stack is described
in detail in Sect. 5. The deployment of SmartWe with and without our DevOps
stack, based on an example two application instances with a load balancer and
an external third-party app, is shown in Fig. 1.

Fig. 1. SmartWe deployment without and with the DevOps stack based on Melodic

3 OSS Selection and Integration

In order to design a Cross-Cloud DevOps stack for the third-party apps in
SmartWe, we first lay down a set of requirements. Next, in the context of our
requirements, we surveyed the available OSS, and investigated related integra-
tion, compatibility, and licensing issues. Following requirements are specified.
Transparent deployment and execution is necessary to enable automated
app deployment across multiple CSPs. In addition, as both cloud by definition
are unpredictive [4], as well as load on SmartWe platform from third-party apps
is dynamic, we need a mechanism for runtime adaptation for SmartWe and
deployed apps. Furthermore, as discussed in Sect. 1, with the GDPR require-
ments in place, our DevOps stacks needs to support defining data and compo-
nent placement requirements and restrictions to cater for the user-specific need
of data privacy and confidentiality.

3.1 Related Work

The challenges we face for our DevOps stack fall broadly into three
areas: Cross-Cloud application deployments, resource management, and mod-
elling/optimization of data-aware applications on heterogeneous infrastructures.
In general, cloud federation [5] enables end users to integrate segregated resources
from different cloud systems. Popular open-source cloud orchestration solutions,

Building an Open-Source Cross-Cloud DevOps Stack 7

like OpenStack [6], provide mechanisms to complement private cloud infras-
tructure with dynamically acquired resources from public clouds. Nevertheless,
resource management is not well integrated with state-of-the-art federated cloud
solutions. Further, none of the current cloud orchestration platforms supports
context-awareness needed to optimize application deployments in Cross-Cloud
environments, as needed by the SmartWe platform. Furthermore, Cross-Cloud
application deployments are subjected to various resource abstraction models
offered by different CSPs and a unified approach needed for interoperability is
lacking [7,8].

Fig. 2. Overview of the DevOps stack based on Melodic

Recent efforts, such as those in the PaaSage project [9], have targeted model-
based approaches for the design, development, deployment, and self-adaptation
of Cross-Cloud applications. In particular, cloud modelling frameworks, such as
CloudMF [10], are in active development, to equip application developers with
capabilities to define a rich set of design-time and runtime attributes like appli-
cation requirements, Quality-of-Service (QoS) constraints, and security consider-
ations for Cross-Cloud deployments. However, a large number of challenges still
remain unaddressed. In particular, support of data-aware deployments in Cross-
Cloud environments is still very restricted. Recently, various cluster manage-
ment solutions have also gain popularity. But most of these solutions work only
on statically available cluster and cloud resources, such as Mesos [11], Kuber-
netes [12] and Docker/Swarm [13]. Some Multi-Cloud deployment solutions, such
as CYCLONE [14], are available but lack sufficient advanced reasoning sup-
port, as needed for the SmartWe app platform. DC/OS [15] integrates a range
of software, like Mesos and Marathon, to provide an integrated platform for
running applications and data services on heterogeneous platforms. However,
DC/OS lacks native support for Cross-Cloud deployments and adaptation of
applications. Moreover, advanced capabilities for reasoning for efficient resource
management, according to the user-defined requirements and constraints, are

8 S. Schork et al.

also missing. Furthermore, many advanced DC/OS features are only available
in their closed-source enterprise version.

3.2 Available OSS and Integration

With the related work survey described in Sect. 3.1, it is quite evident that we
need to both integrate the available OSS as well as develop additional capabilities
to fulfil the needs of our DevOps stacks for the SmartWe app platform. In the
Melodic project, we selected PaaSage OSS as the base Multi-Cloud platform for
our stack development. Advanced capabilities related to the data-awareness are
implemented as part of the new development in the Melodic OSS on top of the
PaaSage code-base.

3.3 Licensing Compatibility

License compatibility is a crucial issue for an OSS integration project built upon
existing software. The new components created in the scope of the Melodic
itself are released under Mozilla Public License (MPL) v2. The choice of this
particular license has resulted from deliberation over its compatibility with the
GNU GPL and the licenses used by the Apache Software Foundation. MPL is
a weak copyleft license designed to address the needs of both proprietary and
open source developers [16,17].

4 A Cross-Cloud DevOps Stack

An overview of the our DevOps stack architecture is given in Fig. 2. As shown in
the figure, the DevOps stack is conceptually divided into three main component
groups, the Melodic interfaces to the end users, the Upperware, and the Execu-
tionware. The Melodic interfaces to the end users include tools and interfaces
used by the Melodic users to model their applications and datasets and interact
with the Melodic platform. These interfaces are exposed to the SmartWe app
developers using a modelling language called CAMEL [18]. Applications and data
models created in CAMEL are given as input to the Melodic Upperware. The
job of the Upperware is to calculate the optimal data placements and application
deployments on dynamically acquired Cross-Cloud resources in accordance with
the specified application and data models in CAMEL as well as in considera-
tion of the current cloud performance, workload situation, and costs. The actual
cloud deployments for the SmartWe apps are carried out through the Execu-
tionware. The Executionware is capable of managing and orchestrating diverse
cloud resources, and it also enables support of Cross-Cloud monitoring of both
deployed apps and the SmartWe base platform.

Building an Open-Source Cross-Cloud DevOps Stack 9

●
●

●

●
●

●
● ●

●
●

●
●

●
● ● ● ●

0
20

40
60

80

Time (Minutes)

R
AM

 U
sa

ge
 (%

)

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5

●
●

●

●
●

●
● ●

●
●

●
●

●
● ● ● ●

● Instance 1
Instance 2
Instance 3
Average

Fig. 3. Autonomic optimization of RAM by Melodic-enabled SmartWe platform

5 Evaluation

We evaluate the DevOps stack designed for apps in SmartWe platform with two
different perspectives. First, we assess the usefulness, quality, and maintainabil-
ity of the open source software developed, in relation to Melodic, to gauge its
suitability for the long-term use by the SmartWe partners. Second, we evaluate
the SmartWe platform and app scalability features offered through autonomic
adaptation and optimization capabilities of the Melodic middleware platform.

CAS found that the initiative of an open source Cross-Cloud DevOps stack
is very useful for many SMEs. Besides addressing vendor lock-in, the DevOps
stack we developed also enables SMEs to adhere to the security and privacy
requirements related to the data storage and processing in the cloud. The plat-
form quickly became a catalyst to federate other companies dealing with similar
business scenarios and thus building a developer community around it, bound
by a common drive to support and improve open solutions for the cloud devel-
opment and deployments. The first stages of the Melodic development quickly
demonstrated that integrating existing software, with the help of an open source
community, quickly realizes the software which requires a large amount of devel-
opment time otherwise. Moreover, the quality of the software produced is sat-
isfactory promising long-term maintainability. Finally, although Melodic should
not be thought just as a free software, the fact that the providers require no
licensing fees remains a decisive advantage when looking at the potential total
cost of deploying the solution across the IT infrastructures.

From the technical perspective, SmartWe platform benefits from various fea-
tures Melodic offers. Our DevOps stack enables dynamic adaptations to the
deployed SmartWe platforms and apps. In the case of SmartWe platform, RAM
usage is a critical metric for our live deployments. Increasing numbers of user ses-
sions as well as app’s computational complexity leads to higher RAM usage and
therefore represent a bottleneck. Based on sensor values and scalability rules, the
mechanism autonomously decides on how to best optimize the current deploy-
ment. Figure 3 depicts an initial deployment of two instances of the SmartWe
system being handled by a central load balancer. A scalability rule was written

10 S. Schork et al.

requiring the average RAM load to be lower than 60% of the total available
RAM. The moment when this limit is succeeded, a third application instance
is added automatically by the Melodic, and the average RAM load stabilizes,
as shown in the figure. A point to note here, however, is that the optimization
offered by Melodic uses the concept of utility function. Each potential deploy-
ment solution determined by Melodic is evaluated regarding its utility before a
final selection is made. Utility functions are application and deployment specific
and were carefully designed for the SmartWe platform to meet our requirements.

6 Conclusion

In this paper, we discussed the need of an open source Cross-Cloud DevOps stack
for our SmartWe CRM solution. With the help of an open source integration
project, Melodic, our automated DevOps stack has enabled third-part apps,
installable in SmartWe, to counter vendor lock-in. In addition, the user apps in
SmartWe are now able to transparently take advantage of distinct characteristics
of available private and public clouds, dynamically optimize resource utilization,
and conform to the user’s privacy needs and service requirements.

References

1. McKendrick, J.: Cloud computing’s vendor lock-in problem: why the industry is
taking a step backward. Forbes, November 2011

2. Opara-Martins, J., Sahandi, R., Tian, F.: Critical review of vendor lock-in and its
impact on adoption of cloud computing (2014)

3. Weinhardt, C., Anandasivam, A., Blau, B., Stößer, J.: Business models in the
service world. IT Prof. 2, 28–33 (2009)

4. Schad, J., Dittrich, J., Quiané-Ruiz, J.A.: Runtime measurements in the cloud:
observing, analyzing, and reducing variance. Proc. VLDB Endow. 3(1–2), 460–471
(2010)

5. Kurze, T., Klems, M., Bermbach, D., Lenk, A., Tai, S., Kunze, M.: Cloud federa-
tion. Cloud Comput. 2011, 32–38 (2011)

6. Sefraoui, O., Aissaoui, M., Eleuldj, M.: OpenStack: toward an open-source solution
for cloud computing. Int. J. Comput. Appl. 55(3), 38–42 (2012)

7. Petcu, D.: Portability and interoperability between clouds: challenges and case
study. In: Abramowicz, W., Llorente, I.M., Surridge, M., Zisman, A., Vayssière, J.
(eds.) ServiceWave 2011. LNCS, vol. 6994, pp. 62–74. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24755-2 6

8. Taherkordi, A., Zahid, F., Verginadis, Y., Horn, G.: Future cloud systems design:
challenges and research directions. IEEE Access 6, 74120–74150 (2018)

9. Bubak, M., Balís, B., Kitowski, J., Król, D., Kryza, B., Malawski, M.: PaaSage:
model-based cloud platform upperware (2011)

10. Ferry, N., Song, H., Rossini, A., Chauvel, F., Solberg, A.: CloudMF: applying MDE
to tame the complexity of managing multi-cloud applications. In: IEEE/ACM 7th
International Conference on Utility and Cloud Computing (UCC), pp. 269–277.
IEEE (2014)

https://doi.org/10.1007/978-3-642-24755-2_6

Building an Open-Source Cross-Cloud DevOps Stack 11

11. Hindman, B., et al.: Mesos: a platform for fine-grained resource sharing in the data
center. In: NSDI, vol. 11, p. 22 (2011)

12. Mcluckie, C.: Containers, VMs, Kubernetes and VMware. https://cloudplatform.
googleblog.com/2014/08/containers-vms-kubernetes-and-vmware.html. Accessed
13 Jan 2019

13. Swarm: a Docker-native clustering system. https://github.com/docker/swarm/.
Accessed 13 Jan 2019

14. Slawik, M., et al.: CYCLONE unified deployment and management of federated,
multi-cloud applications. In: 2015 IEEE/ACM 8th International Conference on
Utility and Cloud Computing (UCC), pp. 453–457. IEEE (2015)

15. What is DC/OS? https://docs.mesosphere.com/1.7/overview/what-is-dcos/.
Accessed 13 Jan 2019

16. Rosen, L.: Which Open Source license should I use for my software. Open Source
Initiative (2001)

17. Rosen, L.: Open Source Licensing: Software Freedom and Intellectual Property
Law. Prentice Hall PTR, Upper Saddle River (2004)

18. Rossini, A.: Cloud application modelling and execution language (CAMEL) and
the PaaSage workflow. In: Advances in Service-Oriented and Cloud Computing-
Workshops of ESOCC, vol. 567, pp. 437–439 (2015)

https://cloudplatform.googleblog.com/2014/08/containers-vms-kubernetes-and-vmware.html
https://cloudplatform.googleblog.com/2014/08/containers-vms-kubernetes-and-vmware.html
https://github.com/docker/swarm/
https://docs.mesosphere.com/1.7/overview/what-is-dcos/

Open Source Vulnerability Notification

Brandon Carlson1, Kevin Leach2(B), Darko Marinov1, Meiyappan Nagappan3,
and Atul Prakash2

1 University of Illinois at Urbana-Champaign, Urbana, USA
{blcrlsn2,marinov}@illinois.edu

2 University of Michigan, Ann Arbor, USA
{kjleach,aprakash}@umich.edu

3 University of Waterloo, Waterloo, Canada
mei.nagappan@uwaterloo.ca

Abstract. The use of third-party libraries to manage software com-
plexity can expose open source software projects to vulnerabilities. How-
ever, project owners do not currently have a standard way to enable
private disclosure of potential security vulnerabilities. This neglect may
be caused in part by having no template to follow for disclosing such vul-
nerabilities. We analyzed 600 GitHub projects to determine how many
projects contained a vulnerable dependency and whether the projects
had a process in place to privately communicate security issues. We
found that 385 out of 600 open source Java projects contained at least
one vulnerable dependency, and only 13 of those 385 projects had a secu-
rity vulnerability reporting process. That is, 96.6% of the projects with
a vulnerability did not have a security notification process in place to
allow for private disclosure. In determining whether the projects even
had contact information publicly available, we found that 19.8% had no
contact information publicly available, let alone a security vulnerabil-
ity reporting process. We suggest two methods to allow for community
members to privately disclose potential security vulnerabilities.

Keywords: Vulnerable dependency · Security disclosure · Open source

1 Introduction

Open source project maintainers often ignore or overlook important preventative
maintenance tasks, including security scans for vulnerabilities in libraries [16],
even with automated upgrades of libraries [19]. Neglecting such scanning tasks
can impact both the end user and the software maintainer. “Using Components
with Known Vulnerabilities” [23] was listed among the top ten application secu-
rity risks in 2017.

Bug bounty programs can incentivize security disclosures [15] but have not
taken hold as a standard policy. The National Institute of Standards and Tech-
nology is constructing a new process for receiving, analyzing, and responding
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
F. Bordeleau et al. (Eds.): OSS 2019, IFIP AICT 556, pp. 12–23, 2019.
https://doi.org/10.1007/978-3-030-20883-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20883-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-20883-7_2

Open Source Vulnerability Notification 13

to vulnerability disclosures [25], providing at least a guideline for open source
projects to establish their own policies. Such vulnerability disclosure policies are
growing in importance due to the continued increase of information breaches [2].
For example, Equifax recently fell victim to a high-profile breach, resulting from
an unpatched open source dependency (Apache Struts) [24]. In this paper, we
suggest approaches to address this shortcoming in the open source community.

This paper makes the following contributions:

– An empirical study on how many open source projects are using vulnerable
dependencies, contain security policies, and ways for individuals to contact
the open source project.

– A quantitative analysis of the findings from the data collection process using
open source Java projects from GitHub.

– Recommendations for improving security of open source projects through
improved communication among the open source community, security
researchers, and the open source repository providers.

2 Motivating Experience

We were originally motivated by the Equifax breach [24], which was related to a
vulnerable dependency (Apache Struts). GitHub already provides a dependency
scanning tool that will alert project owners if vulnerabilities are discovered in
those dependencies [7]. However, project owners are not required to address such
reports. Indeed, project owners could decide the vulnerability is unexploitable
through their project or that it is not worth the effort to address. In such a
scenario, project owners that ignore reports from dependency scanning tools pose
a risk to the community at large. Thus, we sought to investigate the prevalence
of projects requiring vulnerable versions of Apache Struts.

We used Snyk [26], a dependency scanning tool, to analyze various open
source projects on GitHub for vulnerable dependencies. Indeed, we found many
projects depended on a vulnerable version of Apache Struts. We visited each
such repository to determine if a bug bounty program or disclosure process
was documented. In the majority of cases, projects contained no guidelines for
reporting vulnerabilities. We attempted to communicate this vulnerable depen-
dency through a combination of emails to project owners, opening issues, and
submitting pull requests.

Project owners offered myriad responses. While some did not respond and
some thanked us for the report, one owner requested private communications
over public pull requests or open issues. Unfortunately, attempting personal
contact for other projects resulted in our GitHub account being flagged for spam.
These diverse and sometimes discouraging responses suggest the open source
community could benefit from some standardized practice among open source
projects for reporting such vulnerabilities without facing retribution. Motivated
by this need, we chose to systematically analyze a corpus of open source projects
for vulnerable dependencies and corresponding policies for reporting them.

14 B. Carlson et al.

3 Project Selection and Data Collection

To learn whether open source projects contain both easy to access contact infor-
mation and a security vulnerability reporting policy we selected open source
Java projects from GitHub using seven different sources: (1) Libraries.io’s public
dataset [21]; (2) Legunsen et al. [17]; (3) Munaiah et al. [20]; (4) GitHub trend-
ing Java projects [11]; (5) GitHub and Government list of government-sponsored
open source projects [9]; (6) GitHub and Government list of government-funded,
research-related open source projects [10]; and (7)GitHub and Government list of
civic hackers open source projects [8]. These sources entail a combination of pub-
lic repositories (1 and 4), previously published work (2 and 3), and government-
funded and whitehat hacker projects (5, 6, and 7). We focused on Java projects
because it is a widely used language [12] amenable to our software scanning
infrastructure [26]. Table 1 summarizes the statistics of the projects from each
of these sources.

Table 1. Projects selected by resource

Resource Projects Stars Forks Issues Commits Contributors

Libraries.io [21] 209 141 57 12.6 608.6 12.6

Legunsen et al. [17] 126 244 103 14.5 333.1 11.8

Munaiah et al. [20] 83 2195 685 59.1 545.2 16.6

GitHub trending Java projects [11] 71 2400 923 52.1 1537.5 27.0

Government-sponsored [9] 68 8 7 3.0 648.1 8.1

Government-funded research [10] 22 8 5 2.9 152.0 3.4

Government civic hackers [8] 21 3 3 2.6 2536.4 6.4

Total projects 600

4 Evaluation

We seek to answer the following research questions (RQs):

– RQ1: How prevalent are vulnerable dependencies among our projects?
– RQ2: How common are security notification policies in open source projects?
– RQ3: How available is contact information for open source projects?

4.1 RQ1: Prevalence of Known Vulnerable Dependencies

Finding Vulnerable Dependency Libraries. We used Snyk [26] to scan
each of our 600 Java projects. Snyk maintains a database of libraries and cor-
responding vulnerabilities for each version of each library. These vulnerabilities
are associated with a Common Vulnerabilities and Exposures (CVE) ID or a

Open Source Vulnerability Notification 15

Common Weakness Enumeration (CWE) ID. We say a given project contains a
direct vulnerability if it uses a vulnerable library as reported by Snyk. Similarly,
we say that a project has a transitive vulnerability if a project’s dependency
itself uses a subsequent dependency with a vulnerability as reported by Snyk.
We also used the GitHub API to record statistics (e.g., stars, open issues) for
each project.

Results. In the 600 open source projects we examined, we found an average of
7.8 direct or transitive vulnerabilities per project. Further, we used the severity
scale based on the severity rating provided by Snyk as part of the scanning pro-
cess (derived from CVE and CWE reports). The average number of high severity
vulnerabilities was 4.1 per project, compared to medium severity level vulnera-
bilities which averaged only 3.6 per project, and low severity which averaged 0.1
vulnerabilities per project.

We further categorize these open source projects containing vulnerabilities
based on the severity level of vulnerabilities. A single project may contain mul-
tiple vulnerabilities that range from low to high severity. Overall, we obtained
the following numbers of projects:

– 266 projects used at least one dependency with a high severity vulnerability;
– 202 projects used at least one dependency with a medium severity;
– 39 projects used at least one dependency with a low severity;
– 215 had no known vulnerability.

Note that some of these sets overlap because some projects contained multiple
vulnerabilities with different severity levels.

Overall, 64.2% (385 of 600) of the projects we examined used at least one
vulnerable dependency. This result is consistent with a recent report that Java
applications are likely to include at least one vulnerable library [29]. Although
a vulnerable library does not necessarily mean that a project using that library
can be exploited, it does represent a risk to the community overall.1 Addition-
ally, OWASP’s 2017 report [23] described how such uncertainty could facilitate
adapting known exploits to many projects.

We note that not all vulnerabilities are exploited equally—CVE reports for a
vulnerability contain a Common Vulnerability Scoring System (CVSS) score [22],
a measure of how exploitable that vulnerability is. We leave the consideration of
CVSS and exploitability for future work.

Based on our results, the open source community is in need of a standard
process of reporting potential security vulnerabilities to open source project
owners. This process would allow the open source community and cyber security
researchers to privately disclose potential security issues in a standardized way.
Such a process could improve the quality and software of open source projects.

1 This effect can be viewed as a dual of herd immunity with immunization—the more
projects use vulnerable libraries, the more risk there is to the community as a whole.

16 B. Carlson et al.

4.2 RQ2: How Common Are Security Notification Policies?

Determining Whether the Open Source Project Has a Security Policy.
We first scanned the project’s README and CONTRIBUTING.md files for the key-
words security, vulnerability, reporting, or disclosure. We also looked
for files whose name contained a keyword. If no such files or keywords existed,
we scanned the owner’s user or group account page on GitHub for links to com-
pany or user webpages or public Wikis. When such pages existed, we (manually)
scanned them for bug bounty or security disclosure policies. In cases where no
such information could be gleaned, we considered that project to have no policy
for reporting security vulnerabilities.

Results. Recall from Sect. 4.1 that 385 of 600 open source projects contained
at least one vulnerable dependency. Of those projects, only 3.4% (13 of 385)
had a security vulnerability reporting process. The other 96.6% (372 of 385)
open source projects which had a vulnerability had no publicly available security
vulnerability reporting process. Overall, out of 600 open source projects, only
3.2% (19 of 600) had some type of security vulnerability reporting process. The
remaining 96.8% (581 of 600) had no security vulnerability reporting process
based on the aforementioned method.

For the remaining 581 projects, there is no standard recourse for reporting
vulnerabilities. Recall from Sect. 2 that opening issues, submitting pull requests,
or attempting private contact can result in unpredictable outcomes (including
losing a GitHub account to the spam flagging system).

For the 19 open source projects that contained a security notification policy,
we manually read through the policy. We broadly categorize these policies as:
bug bounty program, email address, or web form. First, 4 of 19 projects had
a bug bounty program administered through HackerOne [14], which outlined
the process, rules, and scope for an individual reporting a vulnerability. Second,
11 of 19 projects provided an email address to contact in case of a security
vulnerability. Some projects provided a more specific security reporting policy
that a security researcher might follow in reporting potential issues. Third, 1
of 19 projects contained a web form for submitting vulnerabilities. This project
provided a detailed security reporting process. The remaining 3 projects had
unique notification policies that did not fit into these three categories.

Security Policies at Scale. Next, we considered projects from popular hosting
platforms GitHub, GitLab, and BitBucket. We used two curated lists, one for
BugCrowd [1] and one for HackerOne [14], that contained a list of current bug
bounty programs [28]. We searched the bug bounty lists for projects contained
in the Libraries.io’s dataset [21]. Specifically, we used the repository owner name
and project name from Libraries.io to find Bug Bounty programs.

We found that, of the 30,705,634 repositories in Libraries.io’s dataset, only
6,645 open source projects have a bug bounty program. We interpret this as a
sign that the open source community does not have a standard process to report

Open Source Vulnerability Notification 17

Table 2. Location of contact information

Location of contact information Count

Account page 339

README 130

Other locations 12

None 119

security vulnerabilities. Additionally, our analysis suggests that significant effort
is required to find security policies in projects where they do exist. This has the
potential of inducing failures to report vulnerabilities appropriately or at all.

4.3 RQ3: Is Contact Information Available for Open Source
Projects?

Approximating Effort to Discern Point of Contact. We manually
inspected each open source project using the following steps:

1. Check the project’s README file
2. Check the CONTRIBUTING.md file
3. Check the GitHub Wiki page
4. Check on the repository’s account or group page
5. Check any provided website for the project (e.g., in the project description)
6. Check any provided website on the repository’s account or group page
7. Check whether the Top Contributor for the project has their contact infor-

mation publicly available (not just email addresses in Git commits)

We consider a project to have no contact information available if none of
the above steps yield contact information. We used a stopwatch to measure the
approximate time taken to find (or fail to find) contact information.

Results. We discovered 19.8% (119 of 600) of open source projects contained
no publicly available contact information. Among the remaining 481 open source
projects that provided contact information, 27.0% (130 of 481) contained con-
tact information in the README file. The remaining 351 projects required more
thorough investigation to determine contact information.

Table 2 shows the breakdown of where we found contact information for open
source projects. For the majority, we found the contact information on the repos-
itory group’s or top contributor’s account page on GitHub. The next most pop-
ular location was within the README file contained in the repository. For the
remaining open source projects, we found the contact information in a variety
of locations described above.

Table 3 shows the breakdown of different forms of communication we found in
these open source projects. In several cases we found multiple forms of commu-
nication but no preference or priority associated with each form. The majority

18 B. Carlson et al.

Table 3. Type of contact information found

Form of contact information Count

Email 312

Website 108

Gitter 29

Google group or forum 22

Twitter 17

IRC 6

Slack 5

LinkedIn 3

Mailing list 3

List of individual contacts 2

Discordapp 1

of cases had an email address. We note a heterogeneity of communication forms
associated with open source projects, adding to the potential communication
burden associated with reporting vulnerabilities.

We approximated effort required to find contact information by measuring
the time taken to search projects as described above. It took us an average of
44 s (±2.6 s with 95% confidence) to search a project for contact information.
Times ranged from 7 s to 300 s. We observed a bimodal effect with times: projects
would either take a very short time (e.g., if the top of the README happened to
contain contact information) or a very long time (e.g., if it was not clear without
searching through many files in the project).

While 44 s may not seem like a significant burden, Liu et al. [18] showed
that the first 10 s that users observe a newly loaded web page are critical. These
results suggest that a person may lose interest before successfully finding contact
information for an open source project.

5 Recommendations and Discussion

In this section, we discuss two potential approaches to addressing the reporting
of security vulnerabilities of open source projects. First, we suggest introducing a
standardized SECURITY.md file to projects that describes basic contact informa-
tion and disclosure processes for vulnerabilities. Second, we discuss a potential
addition to hosting platforms (such as GitHub) to support private or hidden pull
requests that enable developers or security researchers to disclose vulnerabilities.

5.1 SECURITY.md Mechanism for Vulnerability Notification

Given the dearth of security reporting policies among open source projects,
we recommend the creation of a SECURITY.md file in open source repositories.

Open Source Vulnerability Notification 19

This file would contain contact information and the disclosure policy of an open
source project. Of the 19 open source projects that contained such a policy,
only one of those projects described the policy in the repository itself, while the
remaining 18 projects required additional effort to find the relevant information.

The creation of a SECURITY.md file would provide a solution to the open
source community that is currently lacking a standard process as shown by
both our research and in the Snyk’s report [27]. Additionally, lacking public
information can make it difficult to assess the overall commitment to security
from an open source project and to understand how to disclose newly discovered
vulnerabilities to open source project owners [27].

We suggest an adaptation of an existing RFC, “A Method for Web Secu-
rity Policies” [6], modified for an open source repository. We suggest using the
SECURITY.md file in the root of a repository to contain basic contact informa-
tion (email addresses) and optionally contain text describing the security policy,
encryption, and contribution guidelines for the project. Such a file could help
inform the community and cyber security researchers with an effective way to
report vulnerabilities as they are discovered.

Adding SECURITY.md provides a beneficial method for standardization of
vulnerability reporting processes. This recommendation also helps to fix an issue
that was discovered in the 2017 Open Source Survey by GitHub where one of the
largest issues was “Incomplete or confusing documentation” [13]. Additionally,
by including this file in an open source project’s repository, it shows that the
project has a commitment to improving the security of the project.

Furthermore, Williams and Dabirsiaghi [29] suggest using a vetting process
when choosing whether to use a project’s library or source code. Considering
the majority of open source projects currently do not have a security reporting
process, the addition of the SECURITY.md would fulfill Williams and Dabirsiaghi’s
recommendation [29] by providing a way to vet projects.

5.2 Adapting Hosts to Facilitate Security Disclosures

As an alternative to SECURITY.md, open source hosting platforms could provide
new features to facilitate communication of vulnerabilities. For example, based
on our experience described in Sect. 2, we suggest the creation of a “verified
researcher” tags to be associated with an account that has built a reputation for
submitting pull requests or issues that disclose security vulnerabilities. These
tags would allow project owners to evaluate contributor account reputation.
As another example, hosting platforms could provide features for submitting
private/hidden pull requests and issues that would be visible to project owners
but not fully public.

Our recommendations seek to increase the interaction between the open
source communities and vulnerability research communities. Establishing better
interaction would reduce burden on reporting vulnerabilities and vetting contrib-
utors (e.g., by focusing on the requests from verified accounts). The increased
interaction could help improve security in open source projects.

20 B. Carlson et al.

6 Related Work

We draw inspiration for standardized security policies from several sources.
RFC2142 [3] suggests that organizations maintain a security@domain mail-

box that is used for security bulletins and questions. However, it does not specify
where or how such information should be made known publicly. We build upon
this work by suggesting standardized locations for security policy information
to be placed in an open source software repository.

Foudil and Shafranovich [6] suggest placing a security.txt file in the root
of a web server that allows websites to define security policies. Such information
could define how owners can be contacted with security concerns or how a bug
bounty program would work. We build on this work by suggesting SECURITY.md
be added to open source repositories.

Snyk’s report [27] investigated the top 400,000 public repositories on GitHub
to see if there was any documentation for basic security information for the
open source projects. No details were made available in the report about the
process they used to look for such information, which programming languages
they considered, or a definition for basic security information. Additionally, the
report did not propose a solution to this problem, but instead highlighted a
current problem in the open source community. In our work we focused on one
programming language, Java, and outlined how we selected open source projects
and gathered information. Additionally, we proposed a recommendation on how
to improve the current lack of security vulnerability reporting process in open
source projects.

Decan et al. [4] mined statistics about security vulnerabilities from over
600,000 open source projects. They found that 50% of security vulnerabilities
survive to 30 months after being introduced. However, they also found that 50%
of vulnerabilities were fixed within 1–2 months after discovery. This statistic
suggests that having a mechanism in place to disclose vulnerabilities could help
contribute to more rapidly fixing vulnerabilities.

GitHub already informs project owners about potentially vulnerable depen-
dencies included in a project by examining commit messages and CVEs [7].
However, GitHub’s technique only works for those projects that adopt GitHub’s
file format for describing dependencies, which is language-specific and limited to
Java, JavaScript, .NET, Python, and Ruby. It still does not address the issue
of how researchers or other developers (who may have developed other ways to
detect vulnerable dependencies) could privately disclose potential vulnerabilities.

7 Limitations

Our recommendation to add a SECURITY.md file may be a burden for project
developers to properly maintain. Additionally, older or abandoned open source
projects may not add new files. In this case, the only option for a security
researcher is to leave a public issue or pull request on the open source project
so that future users of the project are made aware of the security vulnerability

Open Source Vulnerability Notification 21

and have a way to fix it prior to using the project. We note there is currently
a limit—but no transparency!—on how many issues or pull requests a security
researcher can make before an account is flagged for spam.

Our other recommendation is that open source hosting platforms provide
new features for reporting security vulnerabilities. The limitation is that open
source project owners cannot do it just themselves as with the SECURITY.md file.

8 Conclusion

Both the open source community and the providers of open source repositories
need a method to communicate security vulnerabilities, which would both give
a voice to project owners about how they want disclosures to occur, and give
service providers (e.g., GitHub) better understanding of user needs.

In this study, we evaluated three different aspects of 600 open source Java
projects: (1) how frequently open source projects use known vulnerable libraries,
(2) whether open source projects contain security vulnerability reporting policies
and what kind of policy is it, and (3) how much effort is required to find contact
information for an open source project. Our findings showed a high ratio of
the open source projects currently contain at least one vulnerable dependency.
Although this does not guarantee the vulnerability can be exploited, it does show
that there is at least some risk to the project and its users until the dependency
can be updated to a non-vulnerable version. Additionally, with the exception of
19 open source projects, the majority of projects lacked some kind of security
vulnerability reporting process that was easily accessible. Finally, the majority
of open source projects studied did have some kind of contact information, but
it was often not easy to find, and there is no guarantee that contact information
found would be the correct person or group to contact about potential security
vulnerabilities.

To address the current shortcomings of security reporting policies in open
source projects, we proposed one recommendation to create a SECURITY.md file
that would contain the necessary details about the open source project’s security
reporting policy and who to contact when (or if) a potential security vulnerability
is discovered. To encourage the adoption of SECURITY.md, we could create a
website in similar to securitytxt.org [5] to gain feedback from the open source
community to improve the concept of SECURITY.md. Another recommendation is
for open source hosting platforms to provide new features for private disclosure
of vulnerabilities. Many challenges remain in the process of reporting potential
security vulnerabilities to the open source community.

Acknowledgments. We thank Snyk [26] for providing us access to their tool and
data. This material is based upon work partially supported by the US Air Force
Research Laboratory under Contract FA8750-15-2-0075 and US National Science
Foundation under Grant Nos. CNS-1646305, CNS-1646392, CNS-1740897, and CNS-
1740916.

22 B. Carlson et al.

References

1. BugCrowd: Bugcrowd. https://www.bugcrowd.com
2. Cavusoglu, H., Cavusoglu, H., Raghunathan, S.: Efficiency of vulnerability disclo-

sure mechanisms to disseminate vulnerability knowledge. IEEE TSE 33, 171–185
(2007)

3. Crocker, D.: Mailbox Names for Common Services, Roles and Functions. RFC 2142,
Internet Engineering Task Force (1997). http://www.rfc-editor.org/rfc/rfc2142.txt

4. Decan, A., Mens, T., Constantinou, E.: On the impact of security vulnerabilities
in the npm package dependency network. In: MSR (2018)

5. Foudil, E., Shafranovich, Y.: securitytxt.org. https://securitytxt.org
6. Foudil, E., Shafranovich, Y.: A method for web security policies. Technical report,

Internet Engineering Task Force (2018). https://datatracker.ietf.org/doc/html/
draft-foudil-securitytxt-03

7. GitHub: About security alerts for vulnerable dependencies. https://help.github.
com/en/articles/about-security-alerts-for-vulnerable-dependencies

8. GitHub: GitHub and government civic hackers projects. https://government.
github.com/community/#civic hackers

9. GitHub: GitHub and government open source projects. https://government.github.
com/community/

10. GitHub: GitHub and government research projects. https://government.github.
com/community/#research

11. GitHub: GitHub trending Java open source projects. https://github.com/
trending/java

12. GitHub: Octoverse. https://octoverse.github.com/projects#languages
13. GitHub: Open source survey. https://opensourcesurvey.org/2017
14. HackerOne: HackerOne. https://hackerone.com
15. HackerOne: Vulnerability disclosure policy basics: 5 critical components. https://

www.hackerone.com/blog/Vulnerability-Disclosure-Policy-Basics-5-Critical-
Components

16. Kula, R.G., German, D.M., Ouni, A., Ishio, T., Inoue, K.: Do developers update
their library dependencies? ESE 23, 384–417 (2018)

17. Legunsen, O., Hassan, W.U., Xu, X., Roşu, G., Marinov, D.: How good are the
specs? A study of the bug-finding effectiveness of existing Java API specifications.
In: ASE (2016)

18. Liu, C., White, R.W., Dumais, S.: Understanding web browsing behaviors through
Weibull analysis of dwell time. In: SIGIR (2010)

19. Mirhosseini, S., Parnin, C.: Can automated pull requests encourage software devel-
opers to upgrade out-of-date dependencies? In: ASE (2017)

20. Munaiah, N., Kroh, S., Cabrey, C., Nagappan, M.: Curating GitHub for engineered
software projects. ESE 22, 3219–3253 (2017)

21. Nesbitt, A., Nickolls, B.: Libraries.io open source repository and dependency meta-
data (2017)

22. NIST: National vulnerability database (2018). https://nvd.nist.gov
23. OWASP Foundation: Top ten security risks. https://www.owasp.org/index.php/

Category:OWASP Top Ten 2017 Project
24. Podjarny, G.: Open source vulnerabilities tripped Equifax, how can you defend

yourself? https://snyk.io/blog/equifax-breach-vulnerable-open-source-libraries
25. Rapid7: NIST cyber framework updated with coordinated vuln disclosure

processes. https://blog.rapid7.com/2017/12/19/nist-cyber-framework-revised-to-
include-coordinated-vuln-disclosure-processes

https://www.bugcrowd.com
http://www.rfc-editor.org/rfc/rfc2142.txt
https://securitytxt.org
https://datatracker.ietf.org/doc/html/draft-foudil-securitytxt-03
https://datatracker.ietf.org/doc/html/draft-foudil-securitytxt-03
https://help.github.com/en/articles/about-security-alerts-for-vulnerable-dependencies
https://help.github.com/en/articles/about-security-alerts-for-vulnerable-dependencies
https://government.github.com/community/#civic_hackers
https://government.github.com/community/#civic_hackers
https://government.github.com/community/
https://government.github.com/community/
https://government.github.com/community/#research
https://government.github.com/community/#research
https://github.com/trending/java
https://github.com/trending/java
https://octoverse.github.com/projects#languages
https://opensourcesurvey.org/2017
https://hackerone.com
https://www.hackerone.com/blog/Vulnerability-Disclosure-Policy-Basics-5-Critical-Components
https://www.hackerone.com/blog/Vulnerability-Disclosure-Policy-Basics-5-Critical-Components
https://www.hackerone.com/blog/Vulnerability-Disclosure-Policy-Basics-5-Critical-Components
https://nvd.nist.gov
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_2017_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_2017_Project
https://snyk.io/blog/equifax-breach-vulnerable-open-source-libraries
https://blog.rapid7.com/2017/12/19/nist-cyber-framework-revised-to-include-coordinated-vuln-disclosure-processes
https://blog.rapid7.com/2017/12/19/nist-cyber-framework-revised-to-include-coordinated-vuln-disclosure-processes

Open Source Vulnerability Notification 23

26. Snyk: Snyk. https://snyk.io
27. Snyk: The state of open source (2017). https://snyk.io/stateofossecurity
28. Tetelman, A.: bounty-targets-data (2018). https://github.com/arkadiyt/bounty-

targets-data
29. Williams, J., Dabirsiaghi, A.: The unfortunate reality of insecure libraries. https://

www.contrastsecurity.com/the-unfortunate-reality-of-insecure-libraries

https://snyk.io
https://snyk.io/stateofossecurity
https://github.com/arkadiyt/bounty-targets-data
https://github.com/arkadiyt/bounty-targets-data
https://www.contrastsecurity.com/the-unfortunate-reality-of-insecure-libraries
https://www.contrastsecurity.com/the-unfortunate-reality-of-insecure-libraries

Organizational Aspects of FLOSS
Projects

EJ: A Free Software Platform
for Social Participation

Fábio Macêdo Mendes1(B), Ricardo Poppi1,2, Henrique Parra2,
and Bruna Moreira1

1 Universidade de Brasilia (UnB), Braśılia, Brazil
{fabiomendes,brunamoreira}@unb.br

2 Instituto Cidade Democrática, São Paulo, Brazil
{ricardo,henrique}@cidadedemocratica.org.br

Abstract. As the Internet grows on importance as a forum for polit-
ical activity, it is necessary to occupy it with proper tools for demo-
cratic discussion, dialogue and deliberation. Currently, a substantial part
of political debate is conducted on social media inside proprietary net-
works. Those solutions are flagrantly inadequate to build consensus seek-
ing understandings and to mediate the interaction between the govern-
ment and the citizenry. This work present EJ, a platform for crowd-
sourced social participation which uses machine learning based intelli-
gence and gamification techniques to increase engagement and counteract
the formation of opinion bubbles and the “echo chamber” effect of social
networks.

Keywords: Social participation · E-governement · Web · Free software

1 Introduction

As a growing proportion of the world’s population gains access to the Internet, so
grows its importance as a place for public discourse and social organization. An
optimistic stance on this fact points to a networked democracy in which infor-
mation flows horizontally and the common citizen can exert real decision making
power and produce solutions to societal problems. On the other hand, the same
Internet has allowed mechanisms that support privacy violation, surveillance [1]
and spread of misinformation [6] in a scale never seen before. For better or for
worse, it is unquestionable that the Internet plays an important role in shaping
societies and political systems of the present and of the future [3].

This contradiction of potentialities is perhaps better demonstrated in today’s
largest social network, Facebook, with its more than 2 billion users1. The rise of
modern social networks has indeed delivered novel forms of horizontal commu-
nication and has given voice to actors that would otherwise be excluded from
traditional processes. At the same time, Facebook’s business model is centered
1 https://newsroom.fb.com/company-info/.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
F. Bordeleau et al. (Eds.): OSS 2019, IFIP AICT 556, pp. 27–37, 2019.
https://doi.org/10.1007/978-3-030-20883-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20883-7_3&domain=pdf
https://newsroom.fb.com/company-info/
https://doi.org/10.1007/978-3-030-20883-7_3

28 F. M. Mendes et al.

around keeping users connected to the platform to deliver targeted marketing
content, while gathering any information useful for profiling. This model has
been frequently abused to obtain audience and political gain via questionable
practices such inflammatory and sensationalist discourse, disinformation, hate
speech2, etc; all very detrimental to further democratic values, albeit frequently
treated as a tolerable source of revenue by the social network itself3.

We believe that a platform for social participation must be explicitly designed
to be resilient to those forms of manipulation rather than arise as an accessory
feature of a larger social network. Moreover, participation technologies (digital
and otherwise) should be seen as social goods and thus must employ greater levels
of transparency and public oversight than for-profit products. An acceptable
level of public control of software products is perhaps only attained by using
open source tools and technologies.

This report introduces a platform for social participation named EJ
(Empurrando Juntas) that aims to fill an specific niche in this universe. We
present EJ both at technical level and contextualize it in a more conceptual and
perhaps sociological discussion. Technical aspects are considered in Sects. 3 and
4, and technically oriented readers are invited to go there to understand the
rationale behind the technology and the most important architectural decisions.
The rest of the paper is dedicated to analyzing the role of the platform in pro-
moting participation and the challenges we perceived to creating the networked
democracy hinted in the first paragraph.

2 Platforms for Social Participation

Compared to more traditional processes for consultation and public debate, the
Internet enables a much faster flow of information which helps making large
scale decentralized organizations viable. Those features have certainly sparkled
many initiatives towards building tools for a networked democracy that aims to
bring prominence to the common citizen in shaping collective decisions. Those
initiatives can usually be categorized in 4 broader areas (with many possible
intersections): transparency4, petitions and public awareness5, debating6 and
deliberation7. We can also classify initiatives with regard to its relationship with
the State, in which some take a decisively anti-government stance (e.g., Wik-
ileaks8), while others are directly conducted or sponsored by the State.

While we acknowledge that all of those areas are similarly important, we
decided to focus our efforts on debating and consultation. We took this path out
2 https://www.theguardian.com/technology/2018/apr/06/myanmar-facebook-

criticise-mark-zuckerberg-response-hate-speech-spread.
3 https://www.propublica.org/article/facebook-enforcement-hate-speech-rules-

mistakes.
4 https://www.opengovpartnership.org/, https://serenata.ai/.
5 https://avaaz.org, https://www.change.org/.
6 https://debatemap.live/, https://www.artikulate.in/.
7 https://decidim.org/, https://arxiv.org/abs/1707.06526.
8 https://wikileaks.org/.

https://www.theguardian.com/technology/2018/apr/06/myanmar-facebook-criticise-mark-zuckerberg-response-hate-speech-spread
https://www.theguardian.com/technology/2018/apr/06/myanmar-facebook-criticise-mark-zuckerberg-response-hate-speech-spread
https://www.propublica.org/article/facebook-enforcement-hate-speech-rules-mistakes
https://www.propublica.org/article/facebook-enforcement-hate-speech-rules-mistakes
https://www.opengovpartnership.org/
https://serenata.ai/
https://avaaz.org
https://www.change.org/
https://debatemap.live/
https://www.artikulate.in/
https://decidim.org/
https://arxiv.org/abs/1707.06526
https://wikileaks.org/

EJ: A Platform for Social Participation 29

of the belief that the two major features of a platform for social participation
should be the possibility of probing opinions and listening to novel inputs that
users might add to the debate. The archetypal tools for handling each of those
cases are the discussion forum and the poll. The first is useful to construct
and refine positions and ideas in an unstructured fashion, in open dialogue; the
second probes perceptions of the crowd from a predefined set of options.

Internet forums have (an often deserved) reputation for leading to toxic
behaviors. Even when discounting for this possibility, participation in those envi-
ronments demand users to invest time and knowledge, presenting a substantial
barrier for engagement. There are of course many examples of groups of engaged
and uniquely qualified individuals that produce rich discussions and communi-
ties, but we believe that the discussion forum model is severely limited when
applicable to wide audiences.

If only a minority of interested users decide to participate, discussions may
feature an unfair representation. This fragility undermines the political weight of
those initiatives by making it easier to portray conclusions as instances of group-
think and undemocratic. Excluding the rare cases in which a hard consensus is
obtained, it is hard to elicit opinions in a structured form. How then should the
result of open discussions be used to support a collective decision?

While platforms for open ended discussion produce barriers to participation
and engagement, polls suffer from the opposite problem: the cost of participation
is very low, but more qualified users are unable to enrich the debate or introduce
novel ideas even when willing to do so. Polling make it relatively easy to educe the
preferences of the majority since data is created in a quantitative form. However,
users might feel alienated from the decision making process if they perceive all
options as unappealing or, worst yet, as being designed to fulfill some specific
agenda.

2.1 Crowdsourcing

In order to bridge those two approaches, we believe that the design of collective
deliberation must consider the pedagogical aspect of interaction. A good example
of digital tools with accessible interfaces that take elements from both ends
are the so called “crowdsourced discussion” architectures9 [4,15]. As a crude
approximation, those platforms are based on a polling mechanism in which the
list of alternatives can be continuously expanded with user interaction.

Participants of those platforms can control the energy dedicated to each
discussion by switching from “voting” to “making new contributions” modes.
Since users are constantly evaluating contributions from other users, it should be
possible to automate data analysis to understand and identify different opinion
profiles.

A good example of this kind of platform is the open source application Pol.is.
In its current state, it provides a simple interaction in which administrators
propose a theme for discussion and users can express their positions either by

9 https://www.allourideas.org/.

https://www.allourideas.org/

30 F. M. Mendes et al.

publishing a simple paragraph of text or by evaluating other user opinions. Pol.is
then uses machine learning algorithms to identify affinity groups and present this
information to all participants. While this is a promising approach, we believe
that there are improvements to be made on how to use this information to pro-
mote some kind of effective collective action. We use Pol.is as the main inspira-
tion of our approach, but add an additional layer of gamification in order to put
some incentives for user to engage and create prolific debates and deliberation.

2.2 Social Networks

The enormous user base of social network websites (Facebook alone comprises
almost a third of human population) guarantees a diverse audience. In spite
of that, each user may experience very low diversity of ideas: algorithms that
perform content selection end up placing users into “echo chambers” that recir-
culate a small set of ideas without challenging them with input from different
social groups [12]. Diversity of viewpoints are rarely appreciated and debates
tend to be contentious. This dynamics shifts the goal of political struggle from
seeking democratic compromises and consensus to establishing (real or apparent)
numeric majorities to subject the opposition to the rule of the crowd.

Those proprietary networks use their position as keepers of giant volumes of
data to control the flow of information and influence user behaviours. One plau-
sible response to those threats is to advocate for decentralization. This crucial
aspect can be handled in many different ways, the most simple one is distribu-
tion of a software product as open source. This gives the possibility of users and
organizations to manage their own deploys and set their own rules of governance.

Beyond that, some projects advocate for protocols and formats that enable
different instances to communicate and share data in a federated fashion.
Notable projects in this area include PeerTube10 and Mastodon11. More rad-
ical approaches like Tim Berners-Lee’s Solid [16] and the Dat network [11] even
calls for an overhaul of the Internet structure to favor local computation, gran-
ular access controls and P2P communication. It is conceivable those projects
they might experience short term success, but it is unlikely to be in a scale that
significantly changes the current panorama of social networks in spite of the very
interesting technical achievements.

2.3 The Role of the State in Participation Platforms

It seems to be a clear desire of governmental and civil society organizations to
have tools for democratic dialogue and direct communication. There are many
examples of governmental entities that sponsored initiative based on collective
intelligence, but most of those experiences suffered from difficulties in scaling or
generating the desired impact.

10 https://joinpeertube.org/.
11 https://joinmastodon.org/.

https://joinpeertube.org/
https://joinmastodon.org/

EJ: A Platform for Social Participation 31

A notable experience took place in Brazil during the consultations for the
Marco Civil da Internet (Brazil Rights Framework for the Internet), in which
an existing Open Source Social Network developed in Brazil called Nosfero12

was used. This lead to number of other public consultations using similar tech-
nologies for collective deliberation. State’s collaboration with those open source
communities to build shared digital goods preserves sovereignty, while ensuring
that citizens have autonomy to develop civic technologies independent of a direct
custody from a State actor.

3 Conception and Architecture

EJ was conceived to work both as a standalone product and as an embedded
component in some existing application. In both cases, we expect that most of
our user base will access the platform using mobile devices since that number
is growing worldwide and already accounts to most of web traffic, nowadays13.
Mobile access implies that we have the opportunity to engage our users in a
continuous manner, either by expecting constant availability, or by using more
active approaches such as push notifications and web apps.

3.1 User Experience

EJ organizes topics of discussion around “conversations”. Each conversation is
introduced with a single paragraph of text that should try to frame how users
should contribute to the discussion, like in Fig. 1. Users are then able to insert
comments associated with a conversation or vote if they agree or disagree with
other user’s propositions.

As users interact with some conversation (either proposing new comments or
by voting on propositions), it gradually become possible to recognize the different
opinion profiles. As soon as the platform is able to classify users into distinct
opinion groups, it display results to all participants. That way, not only owners
of each conversation can extract useful metrics to guide policy and decision
making, but they can also justify their decisions from the shared information
available on the platform. Moreover, each participant is able to access how their
own opinions, or those from their network of peers and compare with the whole.
We believe that this form of transparency towards information is an important
factor to counteract the “echo chamber” effect of traditional social networks.

Only minimal personal information is requested from new users and none of it
is exposed publicly like a social network. A potential threat of this model is that it

12 http://noosfero.org/.
13 StatCounter, a firm specialized on web traffic analysis, shows worldwide mobile

usage slightly above desktop at 52.98% vs 47.02% (http://gs.statcounter.com/
platform-market-share/desktop-mobile-tablet/worldwide). A more detailed account
(https://www.stonetemple.com/mobile-vs-desktop-usage-study/) shows even large
gaps depending on the selected metric (e.g., page views, unique users, time on site,
etc).

http://noosfero.org/
http://gs.statcounter.com/platform-market-share/desktop-mobile-tablet/worldwide
http://gs.statcounter.com/platform-market-share/desktop-mobile-tablet/worldwide
https://www.stonetemple.com/mobile-vs-desktop-usage-study/

32 F. M. Mendes et al.

Fig. 1. EJ user interface showing a conversation

provides little safeguards against bots and other malicious users since it lowers
the barrier for creating new accounts. We decided not to tackle this difficult
problem, but rather to make it possible to exclusively use external authentication
via OAuth and rely on an identity provider trusted by deployment.

3.2 Machine Learning

Machine learning enriches the platform in the detection of opinion groups and
understanding how each user relates to each group. In Machine Learning jar-
gon, detection of opinion groups is a non-supervised classification problem. We
tried a few classical methods (K-means and SVM) with moderate success. More
reliable outcomes are obtained when making allowance for prior information.
Our approach to classification requires conversations to be created in associa-
tion with some stereotypical opinion groups. Stereotypes are controlled by the
conversation author and behave similarly to regular users when interacting with
comments. Those users define their initial centroids in the clusterization algo-
rithm and serve as labels that more reliably identify clusters across different
classifications.

EJ encodes votes as +1 (agree), −1 (disagree) and 0 (skip). The set of user
interactions is thus a vector of components in that range. In a typical situation,
this data set comprises mostly of missing data entries, and requires a good
imputation strategy. We used a mean-value based imputation for simplicity and

EJ: A Platform for Social Participation 33

computational efficiency and better results were obtained by using collaborative
filtering [17], but at a significant efficiency cost.

Traditional K-means consists of 4 steps: (1) centroid initialization, (2) label-
ing elements to the closest centroid, (3) re-calculation of each centroid, and (4)
go to 2 until convergence. Our modification uses stereotypes as the initial cen-
troids in step (1) and forces that each stereotype will stay in its own cluster
by never re-labeling them in step (2). This simple modification not only is able
to introduce some form of prior information, but has the positive side-effect of
generating predictable labels for each run of the classification algorithm.

The default visualization display cluster sizes, similarities and diversity in a
stylized manner. We also employ classic machine learning algorithms for dimen-
sion reduction aimed at other visualization options. For instance, a scatter plot of
user inputs displays the opinion of each user together with the stereotypes. Our
empirical evaluation selected principal component analysis (PCA) as opposed
to more sophisticated alternatives such as t-SNE [9] or MDS [5] for its superior
reliability and efficiency. PCA is a rotation based method, which preserves some
intuitive geometric relationships between elements, making it more accessible to
non-experts.

3.3 Web Platform

As a web native platform, EJ subscribes to a few broad principles that guides
all architectural decisions.

Progressive enhancement: Web applications are created using HTML, CSS
and JavaScript. Progressive enhancement postulates that the website must
be usable in its most basic HTML-only form and each new layer (CSS,
JavaScript) should progressively enhance the user experience instead of being
a hard requirement.

Mobile first design: UX (user experience) and UI (user interaction) is designed
primarily for mobile, and desktop experience is enhanced with CSS media
queries. It also implies that the application should be usable from poor con-
nections on underpowered devices. We prioritize small JavaScript size, since
loading, parsing and executing implies non-trivial CPU costs which blocks
the main application thread.

Progressive web app: EJ only uses functionality available in the web plat-
form. We developed it as Progressive Web App (PWA) in order to avoid the
costs of a native implementation. PWAs blur the distinction of native mobile
applications and web sites. Users can install an icon on their home screens
and it spawns a background process that allows push notifications and offline
interaction. Those are not intrusive technologies and we were able to develop
most of the platform largely ignoring any specific needs for “PWAs”.

API as a product: Since we expect EJ to be easily embedded on user appli-
cations, the REST API is designed as an independent product and should be
able to easily expose any information or interaction to third parties. The API
also implements business logic regarding authentication and authorization
policies in the platform.

34 F. M. Mendes et al.

3.4 Technology Stack

EJ was initially conceived as fork of the open source project Pol.is14, which
is based on Node.js and Clojure (for a in-house implementation of Machine
Learning algorithms). This initial experience was afflicted with a bad deployment
story and poor communication with Pol.is core development team. This lead to
the decision of abandoning Pol.is and change the stack in favor of Python.

EJ uses the Django Framework15 for web development and the Pydata
stack (Numpy [20], Pandas [10], Scikit-Learn [13]) for building the data anal-
ysis pipelines. On the frontend side, it uses Sass to manage CSS and adopts
a somewhat traditional web architecture in which pages are rendered server-
side rather than by the client. This approach is sometimes touted as ROCA16

(Resource Oriented Client Architecture) to confront with the recent SPA (Single
Page Application) architectural trend, and is perhaps nothing more than adop-
tion of what used to be considered the best practices for web development a
few years ago. Following the principles of ROCA, we used a library for unob-
trusive JavaScript named Unpoly17 and decided to avoid client-side frameworks
completely.

By following the principle of progressive enhancement, it was possible to
create a product that is accessible by many clients, ranging from command line
web-browsers, web spiders, screen readers to the evergreen versions of major
Browsers. While we expect most users to lie in the last category, progressive
enhancement also benefit this audience by providing a workable (but degraded)
website even when connection is poor and downloads fail.

4 Development and Results

EJ is still in active development and has released only a single stable version.
We do not have data about its real use performance. This section rather discuss
how development was organized and which results were obtained.

4.1 Team

EJ has gone through two different development phases, each one carried by a
different team. In the first phase, it was developed by HackLab/São Paulo18,
which is a socially oriented Startup that employs and develops free software
technologies. This initial phase was focused on a product for the Perseu Abramo
Foundation, which is a Brazilian think tank associated with the Partido dos
Trabalhadores (Workers’ Party, of ex-president Lula da Silva fame). In the second
phase, development moved to the University, in which part of the original team

14 https://pol.is/.
15 https://www.djangoproject.com/.
16 https://roca-style.org.
17 https://unpoly.com/.
18 https://hacklab.com.br/.

https://pol.is/
https://www.djangoproject.com/
https://roca-style.org
https://unpoly.com/
https://hacklab.com.br/

EJ: A Platform for Social Participation 35

was replaced by students. This report describes the second phase of development
in which all authors took an active role and was a collaboration with the Federal
Government to create a participation platform to teenagers via the National
Secretary for the Rights of Children and Adolescents.

The team was divided roughly into 4 parts: design/UX, frontend, backend
and operations. Since EJ was developed as a University project in a Software
Engineering department, we took into account pedagogical outcomes when allo-
cating team members. Every two weeks, students could then negotiate the allo-
cation in each of the last 3 teams in which we encouraged a moderate level of
rotation so everyone could experience different aspects of development (some-
times at expense of raw productivity).

4.2 Continuous Delivery and Deployment

Continuous deployment was an important part of the development culture in EJ.
After some adjusting, we finally ended up organized our Git repository19 into two
main branches: a master branch which only receives tagged release commits and
a development branch that is used to integrate contributions from all developers.
Any commit in those branches that pass an automated test suite automatically
trigger a deploy script pointing to some specific instance of the platform.

The system is also integrated with Codeclimate20, a static analysis tool that
tracks the evolution of code quality metrics, test coverage and can alert to the
introduction of defects and regressions. Since most development takes place in
feature-specific branches, those warnings can prevent some defects from entering
into the main development branch. A negative side effect of requiring manual
merging of feature branches with explicit code review is that it burdens team
members assigned to those tasks. We decided that changes deemed low risk (e.g.,
updates to translation strings, documentation, small CSS fixes or improvements
to the test suite) should be developed directly into the development branch
without any external review step before merging.

Generally speaking, productivity increases when good tools and automations
are available [2]. Since we made the initial decision of hosting the code on Github,
the choice of tools was largely guided by the options that platform already
provides (e.g., issue tracker, project management Kanban board) and have a
good story of integration.

Since a large part of the development team is comprised of students with
high rotation rate and considerable learning curve, we decided to avoid empha-
sizing too much the role of processes and culture and tried to rely heavily on
automation. The objective is to gain better efficiency and shorter learning curve
due to better tooling, at the same time we guarantee all contributions to the
development process are crystallized in the form of code. Creation of automa-
tion scripts is thus treated as an important part of the development as is writing
application code. This includes code responsible for deployment and testing, but

19 https://github.com/ejplatform/ej-server/.
20 https://codeclimate.com/.

https://github.com/ejplatform/ej-server/
https://codeclimate.com/

36 F. M. Mendes et al.

also automation of everyday chores such as creating new environments, building
assets and test databases, managing and executing Docker images, etc.

5 Conclusions

Building effective and constructive social participation mechanisms is a chief
problem of contemporary democracies. Citizens are increasingly reporting a sense
of misrepresentation and frustration with democracy worldwide, and the per-
ceived efficacy of the government is diminishing [19]. Some scholars have pointed
that this growing scepticism on the capacity of democracies to solve social issues
may lead us to an unprecedented state of “a recession” [7], in the number of
democracies in the world. All this in a time in which humanity faces unique and
very pressing challenges in politics [8], economy [14], environment preservation
[18], health, education and many others aspects of life.

Of course, none of those problems have simple solutions. We, as technologists,
may offer tools that improve the collective capacity for finding answers to those
dilemmas. This report introduces EJ, a simple system of participation that can
be used to improve the dialogue between the government and autonomous orga-
nizations with the population. While the technology has not been adopted in
any large deployment yet, we believe that it was built taking into consideration
important aspects of collective participation.

Our two fundamental working hypothesis is that EJ is able to promote a
higher level of engagement than existing platforms for social participation, and
that its mechanisms to counteract polarization are effective for building civil dia-
logue and discussion. While engagement is easy to measure, polarization requires
more indirect observation. Existence of clearly separated opinion groups is not
necessarily an indication of polarization, but might rather stem from valid and
rational disagreements between different perspectives. Nevertheless, it is still pos-
sible to probe some indirect effects of polarization. Polarized discussions arise
from unfair and distorted perceptions about the other group’s motivations and
points of view and generally produces a mismatch in familiarity with basic facts
about a subject and acceptance of fake and incorrect information.

EJ was built on the notion that socially relevant technologies should be cre-
ated as common goods: making it free (as in freedom) for anyone to use, to study,
and to adapt. This provides a good level of control and oversight and protects
collectivity from vested interests from corporate owners of proprietary solutions.

Acknowledgements. The authors would like to thank Fundação Perseu Abramo and
the former Ministry of Human Rights (now transformed into a secretary by the current
Brazilian government) for recognizing the importance of direct social participation in
shaping public policy and for financial support.

References

1. Albrechtslund, A.: Online social networking as participatory surveillance. First
Monday 13(3) (2008). https://doi.org/10.5210/fm.v13i3.2142, http://journals.uic.
edu/ojs/index.php/fm/article/view/2142

https://doi.org/10.5210/fm.v13i3.2142
http://journals.uic.edu/ojs/index.php/fm/article/view/2142
http://journals.uic.edu/ojs/index.php/fm/article/view/2142

EJ: A Platform for Social Participation 37

2. Barry, E.J., Kemerer, C.F., Slaughter, S.A.: How software process automation
affects software evolution: a longitudinal empirical analysis. J. Softw. Maint. Evol.:
Res. Pract. 19(1), 1–31 (2007). https://doi.org/10.1002/smr.342

3. Best, M.L., Wade, K.W.: The internet and democracy: global catalyst or demo-
cratic dud? Bull. Sci. Technol. Soc. 29(4), 255–271 (2009). https://doi.org/10.
1177/0270467609336304

4. Brabham, D.C.: Crowdsourcing the public participation process for planning proje-
cts. Plan. Theory 8(3), 242–262 (2009). https://doi.org/10.1177/1473095209104824

5. Cox, T.F., Cox, M.A.A.: Multidimensional scaling. In: No. 88 in Monographs on
statistics and applied probability, 2nd edn. Chapman & Hall/CRC, Boca Raton
(2001)

6. Del Vicario, M., et al.: The spreading of misinformation online. Proc. Natl. Acad.
Sci. 113(3), 554 (2016). https://doi.org/10.1073/pnas.1517441113

7. Diamond, L.: Facing up to the democratic recession. J. Democr. 26(1), 141–155
(2015). https://doi.org/10.1353/jod.2015.0009

8. Levitsky, S., Way, L.: The rise of competitive authoritarianism. J. Democr. 13(2),
51–65 (2002). https://doi.org/10.1353/jod.2002.0026

9. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9(Nov), 2579–2605 (2008)

10. McKinney, W.: Data structures for statistical computing in python. In: Proceedings
of the 9th Python in Science Conference (SCIPY 2010), pp. 51–56 (2010). https://
doi.org/10.1016/S0168-0102(02)00204-3

11. Ogden, M., Mc Kelvey, K., Madsen, M.B., et al.: Dat-distributed dataset synchro-
nization and versioning. Open Sci. Fram. 10 (2017)

12. Pariser, E.: The Filter Bubble: What The Internet Is Hiding From You. Penguin
Books Limited (2011). https://books.google.com.br/books?id=-FWO0puw3nYC

13. Pedregosa, F., et al.: Scikit-learn: machine learning in python (2012). https://doi.
org/10.1007/s13398-014-0173-7.2. http://arxiv.org/abs/1201.0490

14. Piketty, T., Goldhammer, A.: Capital in the twenty-first century (2017). oCLC:
1063105013

15. Salganik, M.J., Levy, K.E.C.: Wiki surveys: open and quantifiable social data col-
lection. PLOS ONE 10(5), e0123483 (2015). https://doi.org/10.1371/journal.pone.
0123483, https://dx.plos.org/10.1371/journal.pone.0123483

16. Sambra, A.V., et al.: Solid: a platform for decentralized social applications based
on linked data (2016)

17. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering
recommendation algorithms. In: Proceedings of the 10th International Conference
on World Wide Web, WWW 2001, pp. 285–295. ACM, New York (2001). https://
doi.org/10.1145/371920.372071

18. Masson-Delmotte, V., et al.: IPCC. Global warming of 1.5Â◦C. An IPCC special
report on the impacts of global warming of 1.5Â◦C above pre-industrial levels and
related global greenhouse gas emission pathways, in the context of strengthening
the global response to the threat of climate c, p. 792 (2018). https://doi.org/10.
1017/CBO9781107415324

19. Van Reybrouck, D.: Against Elections (2013)
20. van der Walt, S., Colbert, S.C., Varoquaux, G.: The NumPy array: a structure for

efficient numerical computation. Comput. Sci. Eng. 13(2), 22–30 (2011). https://
doi.org/10.1109/MCSE.2011.37

https://doi.org/10.1002/smr.342
https://doi.org/10.1177/0270467609336304
https://doi.org/10.1177/0270467609336304
https://doi.org/10.1177/1473095209104824
https://doi.org/10.1073/pnas.1517441113
https://doi.org/10.1353/jod.2015.0009
https://doi.org/10.1353/jod.2002.0026
https://doi.org/10.1016/S0168-0102(02)00204-3
https://doi.org/10.1016/S0168-0102(02)00204-3
https://books.google.com.br/books?id=-FWO0puw3nYC
https://doi.org/10.1007/s13398-014-0173-7.2
https://doi.org/10.1007/s13398-014-0173-7.2
http://arxiv.org/abs/1201.0490
https://doi.org/10.1371/journal.pone.0123483
https://doi.org/10.1371/journal.pone.0123483
https://dx.plos.org/10.1371/journal.pone.0123483
https://doi.org/10.1145/371920.372071
https://doi.org/10.1145/371920.372071
https://doi.org/10.1017/CBO9781107415324
https://doi.org/10.1017/CBO9781107415324
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37

Introducing Agile Product Owners
in a FLOSS Project

Matthias Müller(B), Christian Schindler, and Wolfgang Slany

Institute of Software Technology, Graz University of Technology, Graz, Austria
{mueller,cschindler,wslany}@ist.tugraz.at

Abstract. Sponsored Open Source Software projects, driven by various
actors, have to balance the needs of volunteer contributors and business
objectives. This work presents Catrobat, a FLOSS project established
at Graz University of Technology, and how it introduced agile product
owners. Product owners communicate the product vision, provide a gen-
eral direction, decide about features, and prioritize requirements that are
implemented by the community, i.e., they are ultimately responsible for
the product. This agile approach is intended to ensure a certain outcome,
such as business objectives, but also to react to the needs of community
members and users on a short-term basis. This paper presents how there-
fore this role has been defined and the processes have been adapted.

Keywords: FLOSS · Open Source Software ·
Agile Software Development · Sponsored Open Source Communities

1 Introduction

Governing Free/Libre Open Source Software (FLOSS) projects has already been
subject of extensive research in the past. Publications on FLOSS [10] pointed out
the role of leaders in such communities, that are either fulfilled by the projects’
initiators or core-contributors. A main task for them is to provide a shared vision
and govern the projects [7,10]. However, in recent years we observed an increas-
ing involvement of businesses in open source communities. Open source projects
are nowadays often situated in ecosystems strongly connected to companies and
social communities [5]. This means that businesses and other entities are estab-
lishing new, so called sponsored, open source projects [17]. These project not
only follow a shared vision, but also business objectives set by the establish-
ing entity. The challenge in governing these projects is to find a balance between
the motivation of the contributors and business objectives [12]. Governance must
therefore consider several aspects such as decision making, interaction, or release
planning [5]. Failing in governing this relation between business objectives and
community interests has been identified as a potential reason for the collapse
of open source projects [1]. In general, leaders must be trusted by the commu-
nity [7]. Therefore, governing open source projects becomes increasingly chal-
lenging and needs to respect a variety of different aspects.
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
F. Bordeleau et al. (Eds.): OSS 2019, IFIP AICT 556, pp. 38–43, 2019.
https://doi.org/10.1007/978-3-030-20883-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20883-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-20883-7_4

Introducing Agile Product Owners in a FLOSS Project 39

In this work we present the case of Catrobat, a FLOSS project at Graz
University of Technology, developing mobile visual programming frameworks and
tools [15]. Although it is based on an open community, the main contributors
are students who may participate as part of their curriculum [8]. These students
are limited in the freedom of contribution, since a certain academic outcome
is mandatory and there is also connected research with certain requirements
that must be satisfied. In addition to that, the created software is published on
different markets that require certain standards to be fulfilled. Requirements,
originating independently of the contributors and users, e.g., by research or
cooperation, must be balanced with the community’s interests to keep them
actively involved. Therefore, the project’s leaders act as agile product owners
since 2018. In this work we line out the process how this role was introduced in
this project and how the resulting connected up- and downsides are dealt with.

2 Motivation to Introduce Product Owners

An all-time issue within the project has been that the number of proposed issues,
representing user-stories and bugs, grew faster than the number of solved issues.
Therefore, the need of prioritization came up to ensure that urgent and impor-
tant requirements get finished in time. Furthermore, contributors did not thor-
oughly maintain the publicly reported issues, e.g., bugs or missing functionali-
ties, resulting in a constantly growing issue pool. As also outlined in previous
research [4], features requested by external parties often get unrecognized by
core-developers. Lacking to meet requests from users can be frustrating for the
community and may impact the project negatively [1]. These aspects made it
necessary to introduce a role to keep track of, sort, prioritize issues independently
from their origin. Catrobat already applies several individual agile methods and
various chances and challenges of these methods were already discussed in the
past [2,3,9]. Due to the positive experiences with agile principles, also this new
role was supposed to be based on agile methodologies.

3 Product Owner Within Catrobat

The introduction of product owners required several organizational changes.
Besides defining this formal role, also processes and communication needed to be
adapted to the new circumstances, as outlined in the following sections. Although
this role is common in industry, special attention is needed in open communi-
ties such as Catrobat. Their character requires to focus on the balance between
the different needs of contributors, users and external stakeholders, that are all
involved for different individual reasons. Also the constant change of the com-
munity and direct involvement of users comes along with further challenges.

3.1 The Role “Product Owner”

Leaders in open source projects implicitly perform actions and fulfill responsi-
bilities as they are described for product owners. In Scrum, a product owner

40 M. Müller et al.

has the responsibility for the backlog to maximize value and represent exter-
nal interests [6,13]. Furthermore, they need to communicate the vision of the
desired product and be a leader for the team [11]. It is important to note that
these responsibilities are based on collaboration with the team, making it nec-
essary to have a common understanding and language [13]. However, decisions
by the product owner must be made visible to and be respected by all people
involved [14]. “The product owner is the one person ultimately responsible for the
success or failure of the project” [6]. Therefore, the founder of the project and
experienced contributors have been assigned with this role. Although, Scrum
defines this role for a single person [11,14], these product owners form a board,
similar to a committee that is common for FLOSS projects [7]. Derivations of
Scrum, also having multiple product owners, can be found in successful industry
projects too [16]. The decision therefore was based on the constant need of hav-
ing a product owner available to the contributors, since previous research has
shown contributors are working on an irregular schedule [9]. Therefore, constant
availability for information exchange must be ensured. This has been identified
as a main success factor for Scrum in industry [16]. Furthermore, whereas in
industry this role should be performed as full-time position [11], in Catrobat, for
a lack of resources, this role can just be fulfilled on a part-time basis, resulting
in the need for several people.

Specific parts of the project also have project owners that are long-term and
experienced contributors, having the same responsibilities and possibilities as
the product owners within their specific scope. However, they are not allowed to
develop user stories that they have specified themselves. This shall foster collab-
oration between all involved contributors. The co-structure of product owners
representing sponsored goals, e.g., by research, cooperation or user-feedback, and
projects owners originating from the community shall increase the commitment
to the project. Introducing a governing structure that pays respect to both sides
can be considered a main task for such open source communities [17].

Fig. 1. Catrobat’s development workflow considering product owner interactions.

Introducing Agile Product Owners in a FLOSS Project 41

3.2 Development Workflow

To introduce this new role, a development process, as illustrated in Fig. 1, needed
to be introduced. Catrobat’s development is managed through a issue tracking
system, which is open for all interested contributors. Also non-programmers are
enabled by such issue tracking systems to report bugs and feature requests,
which reflect the ideas of the users [4]. To prevent duplicate work and ensure the
quality standards are met also external contributors are invited to work with
this system. Besides that, this workflow is intended to allow frequent and fast
releases, which is a challenge for many community driven projects [17]. Therefore,
product owners in this workflow have three major tasks:

– Defining and prioritizing requirements and issues for the developers. Whereas,
external contributors are not necessarily required to follow these predefined
issues (e.g. work freely on ideas), participating students have to choose issues
provided in Ready for development. However, also common contributors are
asked to communicate their ideas to avoid rejection in the acceptance phase.
Therefore, the creation of new issues is open for the public, also allowing
to consider these ideas in the workflow, avoiding the mentioned rejection
afterwards and foster involvement of users and the community.

– Discussing proposed requirements in planning games to clearly communicate
the objectives and to get the developers’ commitment.

– Functional acceptance of issues and merging them into the main repository.
This step is necessary for all contributors to ensure the quality and prevent
unfinished, buggy or inappropriate work being published.

The transition of issues from Backlog to Ready for development happens in
a joint planning game. In this, the issues are estimated and developers assure
a joint understanding of them. Whereas product owners have the key role in
the first and last phase of the process, development is managed entirely by
the developers. This includes that issues are not preassigned to contributors,
reducing dependencies on certain individuals. Therefore, discussing proposed
requirements with the developers and getting their commitment is essential for
this agile workflow. Developers are also asked to review the work of others if it
complies to the project’s quality standards. This shall strengthen the collective
code ownership in this process. An exemption in the workflow exists for bugs.
They can be claimed by developers at any time without the involvement of
product owners. Although, final product owner approval must be granted just
like with scheduled issues. This supports the benefit of open source software
projects - that bugs can be found, fixed and released quickly.

3.3 Communication

An important requirement for the introduction of product owners has been
strengthening communication within the project. This step also focused on
encouraging exchange between contributors, e.g., jointly discussing development
tasks. Regular on-site meetings with student-contributors get reinforced and

42 M. Müller et al.

Slack got introduced as main communication platform for all contributors, stim-
ulating discussion in different topic specific channels. This is also intended to
document decisions and information for currently absent contributors that might
be involved in the following implementation phase. Beside the communication
within the team, also product owners need regular meetings and exchange about
the project’s status. Therefore, following activities have been put into focus:

– Weekly Get-Together of to discuss upcoming features and requirements. This
also includes backlog refinement and obtaining feedback from contributors.

– Monthly Planning-Games of product owners with the development team to
schedule issues for Ready for development. During this event also the specifi-
cation of issues is discussed, e.g., if developers need further clarifications, or
if they are blocked by each other. Product owners hand over the prioritized
issues for the next month to the contributors.

– Continuous exchange about current issues on designated Slack-channels and
on an individual basis, e.g., via e-mail or comments on Jira and GitHub.

All this is intended to be open and transparent, what is essential for success-
fully governing FLOSS projects [7]. A challenge is the efficient communication
between product owners. Especially for the case when one product owner answers
questions from contributors, it is important that all others are informed about
decisions made in their absence. This makes documentation and communication
essential for this multi-person product owner approach.

4 Discussion

Although this workflow has just been introduced in early 2018, positive feedback
is received from contributors. A challenge identified is to centralize communi-
cation that got essential for the collaborative nature of the workflow. Whereas
contributors before exchanged in a way preferable for them, they must now be
streamlined on dedicated channels. This is also true for the introduced product
owners. An increasing number of messages and online time by contributors is
outlining a preferable progress to tackle this challenge. Since this work solely
points out the experience of this specific case, further long-term research on this
approach is needed to be able to evaluate its success.

5 Conclusion

This work provides an approach for sponsored open source projects to balance
the involved parties’ needs and the freedom of contributors in an agile way. A
simple workflow with clear responsibilities is provided that might be a response
to the growing involvement of businesses or public institutions in open source
communities. The introduced role of product owners can be seen as an extension
to the already often defined role of leaders governing a FLOSS project. However,
by following the proposed workflow and role definition based on Scrum, collabo-
ration and communication in this open setting can be fostered, by ensuring the
development of required business objectives at the same time.

Introducing Agile Product Owners in a FLOSS Project 43

References

1. Ehls, D.: Open source project collapse-sources and patterns of failure. In: Proceed-
ings of the 50th Hawaii International Conference on System Sciences (2017)

2. Fellhofer, S., Harzl, A., Slany, W.: Scaling and internationalizing an agile FOSS
project: lessons learned. In: Damiani, E., Frati, F., Riehle, D., Wasserman, A.I.
(eds.) OSS 2015. IAICT, vol. 451, pp. 13–22. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-17837-0 2

3. Harzl, A.: Combining FOSS and Kanban: an action research. In: Crowston, K.,
Hammouda, I., Lundell, B., Robles, G., Gamalielsson, J., Lindman, J. (eds.) OSS
2016. IAICT, vol. 472, pp. 71–84. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-39225-7 6

4. Heppler, L., Eckert, R., Stuermer, M.: Who cares about my feature request? In:
Crowston, K., Hammouda, I., Lundell, B., Robles, G., Gamalielsson, J., Lindman,
J. (eds.) OSS 2016. IAICT, vol. 472, pp. 85–96. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-39225-7 7

5. Kilamo, T., Hammouda, I., Mikkonen, T., Aaltonen, T.: From proprietary to open
source—growing an open source ecosystem. J. Syst. Softw. 85(7), 1467–1478 (2012)

6. Lacey, M.: The Scrum Field Guide: Practical Advice for Your First Year. Addison-
Wesley Professional, Boston (2012)

7. Lerner, J., Tirole, J.: Some simple economics of open source. J. Ind. Econ. 50(2),
197–234 (2002)

8. Müller, M., Schindler, C., Slany, W.: Engaging students in open source: establishing
FOSS development at a university. In: Proceedings of the 52nd Hawaii International
Conference on System Sciences (2019)

9. Müller, M.: Agile challenges and chances for open source: lessons learned from
managing a FLOSS project. In: 2018 IEEE Conference on Open Systems (ICOS),
pp. 1–6 (2018)

10. Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., Ye, Y.: Evolution patterns
of open-source software systems and communities. In: Proceedings of the Interna-
tional Workshop on Principles of Software Evolution, pp. 76–85. ACM (2002)

11. Pichler, R.: Agile Product Management with Scrum: Creating Products that Cus-
tomers Love. Addison-Wesley Professional, Boston (2010)

12. Rosén, T.: Open source business model: balancing customers and community.
Ph.D. thesis, Industrial Marketing and Industrial Economics, The Institute of Tech-
nology, Linköping University (2008). Report code: LiU-TEK-LIC 2008:26

13. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press, Redmond
(2004)

14. Schwaber, K., Sutherland, J.: The Scrum Guide. Scrum Alliance (2017)
15. Slany, W., Luhana, K.K., Müller, M., Schindler, C., Spieler, B.: Rock bottom,

the world, the sky: catrobat, an extremely large-scale and long-term visual coding
project relying purely on smartphones. In: Constructionsim 2018 (2018)

16. Sverrisdottir, H.S., Ingason, H.T., Jonasson, H.I.: The role of the product owner in
scrum-comparison between theory and practices. Procedia-Soc. Behav. Sci. 119,
257–267 (2014)

17. West, J., O’Mahony, S.: Contrasting community building in sponsored and com-
munity founded open source projects. In: Proceedings of the 38th Annual Hawaii
International Conference on System Sciences, p. 196c (2005)

https://doi.org/10.1007/978-3-319-17837-0_2
https://doi.org/10.1007/978-3-319-17837-0_2
https://doi.org/10.1007/978-3-319-39225-7_6
https://doi.org/10.1007/978-3-319-39225-7_6
https://doi.org/10.1007/978-3-319-39225-7_7
https://doi.org/10.1007/978-3-319-39225-7_7

What Are the Perception Gaps Between
FLOSS Developers and SE Researchers?

A Case of Bug Finding Research

Yutaro Kashiwa(B), Akinori Ihara, and Masao Ohira

Wakayama University, Wakayama, Japan
kashiwa.yutaro@g.wakayama-u.jp,{ihara,masao}@sys.wakayama-u.ac.jp

Abstract. In recent years, many researchers in the SE community have
been devoting considerable efforts to provide FLOSS developers with a
means to quickly find and fix various kinds of bugs in FLOSS products
such as security and performance bugs. However, it is not exactly sure
how FLOSS developers think about bugs to be removed preferentially.
Without a full understanding of FLOSS developers’ perceptions of bug
finding and fixing, researchers’ efforts might remain far away from FLOSS
developers’ needs. In this study, we interview 322 notable GitHub devel-
opers about high impact bugs to understand FLOSS developers’ needs
for bug finding and fixing, and we manually inspect and classify devel-
opers’ answers (bugs) by symptoms and root causes of bugs. As a result,
we show that security and breakage bugs are highly crucial for FLOSS
developers. We also identify what kinds of high impact bugs should be
studied newly by the SE community to help FLOSS developers.

Keywords: Open source software · High impact bug · Interview

1 Introduction

The importance of FLOSS is increasing day by day, not only for personal use
but also for enterprises to incorporate it into parts of their products. With the
increase in the number of FLOSS users, use cases have also been expanding.
As a result, lots of bugs are being reported to FLOSS projects. In the field of
software engineering, many methods have been proposed to help FLOSS devel-
opers predict faults in modules, localize and repair faults in source code, and
so on. However, these methods are too diverse for FLOSS developers to follow
and effectively adapt to their projects as needed. Although several studies [28]
provided a systematic review to mitigate the difficulty in understanding existing
methods, they are neither beyond grouping existing studies nor necessarily in
line with FLOSS developers’ needs for support. Ideally speaking, we should try
to thoroughly understand which bugs cause the most trouble for FLOSS devel-
opers and propose solutions to fix the bugs effectively and efficiently. In this

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
F. Bordeleau et al. (Eds.): OSS 2019, IFIP AICT 556, pp. 44–57, 2019.
https://doi.org/10.1007/978-3-030-20883-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20883-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-20883-7_5

What Are the Gaps Between FLOSS Developers and SE Researchers? 45

study, we try to reveal the gap between the way that FLOSS developers and
researchers perceive bug finding and fixing, through interviews with 322 notable
GitHub developers. In the interviews, we do not directly ask the developers about
what troubleshooting tools are highly in-demand, but instead we ask them about
what kinds of bugs causes them severe troubles, in order to enable us to precisely
understand the problems they face. After the interviews, we discuss what kinds
of high impact bugs are able to be solved or not by existing studies, in order
to provide researchers with insights to come up with new solutions. This work
is separate from general bug categorizations, and to the best of our knowledge,
our work is the first bug categorization focusing on only high impact bugs. In
this paper, we address the following research questions;

RQ1: What kinds of high impact bugs are mainly considered high
impact by FLOSS developers?

RQ2: What kinds of high impact bugs do FLOSS developers encounter
most frequently?

RQ3: What kinds of high impact bugs should be studied newly by the
SE community in order to support FLOSS developers?

Our contributions to the study are as follows;

– We revealed symptoms and causes of bugs considered high impact by FLOSS
developers, through interviews and manual inspections of bug reports.

– For FLOSS developers, we identified which kinds of high impact bugs are
supported by previous studies.

– For researchers, we showed the area where FLOSS developers’ needs are still
not fulfilled.

2 High Impact Bugs

Over the past two decades, the SE community have dedicated considerable efforts
to help software developers to predict faults in modules, localize and repair
faults in source code, and so on. Although the existing, traditional studies had
not thoroughly considered the characteristics nor the impacts of bugs, in recent
years they began to tackle with the impacts of bugs on users and the development
process. In what follows, we introduce some existing studies on finding and fixing
high impact bugs.

A Security bug [8] can cause serious problems which often impacts on uses
of software products directly. Since Internet devices (e.g., smartphones) usage
is increasing every year, security issues of software products are of interest to
many people. In general, security bugs are fixed as soon as possible.

A Performance bug [22] is defined as “programming errors that causes sig-
nificant performance degradation.” The performance degradation contains poor
user experience, laggy application responsiveness, lower system throughput, and
waste computational resources [18]. [22] showed that a performance bug needs
more time to be fixed compared with a non-performance bug.

A Breakage bug [30] is a type of functional bug which is introduced into a
product when the source code is modified to add new features or to fix existing

46 Y. Kashiwa et al.

bugs. Though it is well-known as regression, a breakage bug mainly focuses
on regression in functionalities. A breakage bug causes problems which make
available functions in one version unusable after releasing newer versions.

A Blocking bug [7] is a bug that prevents other bugs from being fixed. It
is often caused due to a dependency relationship among software components.
Since a blocking bug inhibit developers from fixing other dependent bugs, it can
highly impact on developers’ task scheduling since a blocking bug takes more
time to be fixed [7] (i.e. a developer would need more time to fix a blocking bug
and other developers need to wait for being fixed to resolve the dependent bugs).

A Surprise bug [30] is a new concept of software bugs. It can disturb the
workflow and/or task scheduling of developers since it appears at unexpected
times (e.g., bugs detected in post-release) and locations (e.g., bugs found in files
are rarely changed in pre-release). As a result of a case study of a proprietary,
telephony system which has been developed for 30 years, [30] showed that the
co-changed files and the amount of time between the latest pre-release date and
the release date can be good indicators of predicting surprise bugs.

A Dormant bug [4] is also a new concept on software bugs and is defined
as “a bug that was introduced in one version (e.g., Version 1.1) of a system, yet
it is not reported until after the next immediate version (i.e., a bug is reported
against Version 1.2 or later).” [4] showed that 33% of the reported bugs in
Apache Software Foundation projects were dormant bugs and were fixed faster
than non-dormant bugs.

3 Study Design

3.1 Overview

In this study, we e-mail and ask notable developers in GitHub [9] to answer a
questionnaire about high impact bugs. After aggregating collected responses, we
show the developers’ demographic information (Q1), and the distribution of the
bugs that are considered high impact (Q2-1). As the questionnaire includes an
open question (Q2-2) to tell us actual bug reports which caused troubles in the
past, we manually inspect the bug reports and categorize them by symptoms.

3.2 Participant Selection

In order to select notable developers to invite to our interview in this study, we
use contribution which represents the amount of the developer’s commit activity
to GitHub repositories and can be calculated with GitHub API [10]. First, we
make a list of all repositories in GitHub and calculate the total number of con-
tributions for each repository. Note that we only calculate contributions for the
most committed repositories if the repositories have the same name, since forked
repositories partly (sometimes largely) include the same commits from original
repositories and we need to avoid multiple counts for the same contributions by
the same developer. Next, the total contributions of each developer is calculated

What Are the Gaps Between FLOSS Developers and SE Researchers? 47

based on the selected repositories above, and we choose candidates who mark
over 100 contributions. Finally, we sent e-mails to 22,228 candidate developers
to ask them to participate in our interview.

3.3 Questionnaire

We prepared Google Forms for our interview which consisted of three questions
to know the developers demography (Q1), one closed question to reveal a dis-
tribution of high impact bugs considered important by developers (Q2-1), and
one open question to collect and further analyze actual reports on high impact
bugs (Q2-2). The questionnaire has six more questions, but in this paper, we
only focus on the five questions above due to the space limitations.

[Q1. Profile]

Q1-1 Your main project
Q1-2 Your experience with FLOSS development
Q1-3 Your motivation to participate in FLOSS development

[Q2. High impact bugs]

Q2-1 What kind of bug would be much more important to be fixed?
– a bug threatening systems’ security (Security bug)
– a bug deteriorating system’s performance (Performance bug)
– a bug blocking other bug fixes (Blocking Bug)
– a bug found in unexpected timing and location (Surprise bug)
– a bug introduced in older releases and found in a newer releases (Dormant

bug)
– a bug introduced in a newer release and breaking functions of older

releases (Breakage bug)
– others [free text]

Q2-2 Please tell us high impact bug(s) you encountered in the past.

3.4 Categorization of Bug Symptoms

Based on the responses of Q2-2, we collect actual bug reports from developers’
projects and confirm the symptoms of the bugs, in order to discuss what tech-
niques have been already proposed or that will be required to find and fix those
high impact bugs. The first and second authors independently and manually
inspect symptoms of actual high impact bugs and classify them by the card sort
technique [23]. After the independent classification, the two authors discuss each
classification result together and merge the results by mutual consent to make
one classification. Here, the inspectors include one Ph.D. student (first author),
who worked at a software company for two years as a full-time developer, and
one professor who has been studying FLOSS development over ten years.

48 Y. Kashiwa et al.

4 Interview and Classification Results

4.1 Developer Demography (Q1)

As we described earlier, we invited 22,228 developers to join our interview. Dur-
ing the two weeks interview period, we got responses from 322 developers. Table 1
shows the product domains where the developers participated. We can see “web
application” is the most popular domain (7%) but it does not stand out from the
others. The product domains spread across a wide area. We can assume that the
results of our interviews reflect a wide range of situations across FLOSS develop-
ment. Table 2 shows the developers’ experience with FLOSS development. The
majority of the developers have over five years experiences. It is no surprise
because we only invite active developers who have made at least over 100 com-
mits to GitHub repositories. Table 3 shows developers’ motivations to FLOSS
development. 59% (126 + 64) of the developers contribute to FLOSS projects as
part of work.

Table 1. Product domains where GitHub developers join (Q1-1)

Domain # % Domain # % Domain # %

Web application 22 7% Database 9 3% Machine learning 5 2%

Development tool 19 6% Network server 9 3% UI 5 2%

Analysis 19 6% Messaging tool 9 3% Mobile app 5 2%

Language & compiler 17 5% Education 8 2% Desktop system 4 1%

OS 15 5% Simulator 7 2% Mail 4 1%

Graphic 14 4% Finance 7 2% Browser 3 1%

Game 13 4% Resource monitoring 7 2% Others 37 11%

Programming tool 12 4% Image editor 6 2% No answer 34 11%

Blog 11 3% Network tool 6 2%

Embedded OS 9 3% Security tool 6 2% Total 322 100

Table 2. Experience with
FLOSS development (Q1-2)

Experience Developers

More than five years 213
Three to five years 63
One to three years 45
Less than one year 1

Table 3. Motivation to
participate in FLOSS
development (Q1-3)

Motivation Developers

Hobby 111
Work 126
Both 64
Other 21

Table 4. A distribution of
high impact bugs in Q2-1

High impact bugs # %

Security bug 171 53%
Breakage bug 72 22%
Performance bug 20 6%
Blocking bug 16 5%
Dormant bug 12 4%
Surprise bug 7 2%
Others 24 7%

What Are the Gaps Between FLOSS Developers and SE Researchers? 49

4.2 RQ1: What Kinds of High Impact Bugs Are Mainly Considered
High Impact by FLOSS Developers?

In Q2-1, we asked the developers to select one of the six kinds of high impact
bugs which are introduced in the previous section and have been well studied in
the SE community. Table 4 shows the responses from the developers. We can see
the FLOSS developers from GitHub attach greater importance on security bugs
(53%) and breakage bugs (22%). It was unexpected for us that the other four
bugs attract less attention from the FLOSS developers. It partly indicates the
perception of gaps between researchers and FLOSS developers. Some researchers
in the SE community might misunderstand FLOSS developers’ actual needs.

Researchers in the SE community have been studying to help developers find
and fix bugs especially in terms of impacts on users’ satisfaction and during the
development process (release) [13]. Although high impact bugs have been studied
individually so far, it was not clear if FLOSS developers are mostly concerned
with particular high impact bugs. From the result of Q2-1, we now answer RQ1
as follows.

Answer to RQ1: Researchers have been dedicating to provide a means to find
and fix a variety of high impact bugs, but FLOSS developers mainly emphasize
a focus on security and breakage bugs.

4.3 RQ2: What Kinds of High Impact Bugs Do FLOSS Developers
Encounter Most Frequently?

In Q2-2, we asked the developers to describe the high impact bugs they have
encountered in the past. Many of the developers described characteristics of high
impact bugs in the free text format and also gave us direct links to actual bug
reports which present symptoms discussed among developers and users.

Table 5 shows symptoms of bugs considered high impact by the respondents.
In the table, we count multiple times if a developer described several high impact
bugs. The percentage in the table is the ratio of developers’ answers in each cate-
gory, but the total percentage does not become 100% due to the above reason. As
we described earlier, we manually inspected and categorized the information on
high impact bugs by symptom. In what follows, we summarize the classification
result.

We had 249 valid answers from 192 developers about symptoms of high
impact bugs which actually get FLOSS developers in trouble in the past. In
Table 5, the most common symptom was “unexpected processing” responded
by 17% of developers (42 cases). As regards “unexpected processing”, we could
confirm less in common with bug reports. They ranged from different calcula-
tion results to unexpected rendering. The next most frequent was “sudden stop”
responded by 16% of developers (39 cases). The corresponding bug reports shown
by the developers suggested us that it often happened due to null pointer excep-
tion, run-time error exception, segmentation error, and overflow. Although the

50 Y. Kashiwa et al.

Table 5. Symptoms described in actual bug reports

Category Subcategory Description # % Ref

Behavior Disable start Users cannot install, compile or start an

application

19 8% [1,27,36]

Never start

function

A function never start once a user clicks a

button

21 8% [5,30,32,34]

Sudden stop A program suddenly stops during running 39 16% [2,25,26,33]

Unexpected

processing

A program does not output or behave as

developers expected

42 17% [31,32]

Never finishing

state

A process never finish (e.g, hang up and

infinite loop)

5 2%

Unable to

login

Users cannot login a system 4 2%

Others Lack of items in display, wrong warnings,

lower user experiences etc.

8 3%

Effect Lower

performance

A program lowers performance (e.g, too large

memory usage)

13 5% [20–22,35]

Damage other

systems

A program damages other systems (e.g, OS

cannot boot)

5 2%

Others Making a disk full etc. 3 1%

Security Vulnerability Security defects allow an attack to cause an

abnormal behavior

22 9% [6,17,29]

Unauthorized

access

An impersonating account accesses to a

server, service, or data

28 11% [12,16,19]

DDoS Massive accesses from multiple terminals

make a service unable

7 3%

Data Data loss A program deletes data in a product (e.g.,

user data and database breakage)

12 5%

Incorrect data A program produces incorrect or duplicated

data

1 0%

Development Architecture

change

It forces developers to change a architecture

or core program in a product

3 1%

Reproduce Developers cannot reproduce a reported bug 3 1%

Others Blocking other bugs fixed etc. 4 2%

Reputation Compatibility Compatibility is broken (e.g, API, hardware

and OS)

7 3%

Execution env. A product can not guarantee an execution

environment

3 1%

above two are related to “Behavior” of a program, the third and fourth most
common symptoms were “Security” concerns such as “vulnerability” and “unau-
thorized access.” About “vulnerability,” the corresponding bug reports suggested
the developers especially concerned with XSS and SQL injection attacks. The
OpenSSL problem (i.e., Heartbleed) and the hidden way of leaking user data
were included in bug reports about “unauthorized access.”

In RQ1, 53% of developers think that security is the biggest concern among
high impact bugs in the previous studies. However, the result in RQ2 shows that
the developers come across high impact bugs about Behaviour more often than
the one about security. In fact, one developer said, “Since the mentioned project
is (mostly) a client-side javascript library, security problems aren’t common.”
Based on the results here, we answer RQ2 as follows.

What Are the Gaps Between FLOSS Developers and SE Researchers? 51

Answer to RQ2: FLOSS developers most frequently encounter bugs relating
to behaviors such as unexpected behaviors and sudden stops. Security bugs
such as vulnerabilities and unauthorized accesses are also often encountered.

4.4 RQ3: What Kinds of High Impact Bugs Should Be Studied
Newly by the SE Community in Order to Support FLOSS
Developers?

The percentages in Table 5 are indicated by boldface if the corresponding symp-
toms account for about 80% of all the symptoms (i.e., the developers frequently
encounter the symptoms with boldface.). For the majority of the symptoms, we
surveyed existing studies which have tried to find and/or resolve the symptoms
and showed references as “Ref” in Table 5.

The percentages of the symptoms in “Behavior” category are relatively high
and these have been well-studied by the SE community [1,2,5,25–27,30–34,36].
For instance, “never start function” is well studied breakage bugs [30] so-called
regressions which disable existing functions due to additional changes to software
products. Although in the paper we did not introduce this as a high impact bug,
“unexpected processing” is well studied as a functionality bug or feature bug
[32]. “disable start” and “sudden stop” are also studied as build bugs [36] and
crash bugs [2] respectively.

As we confirmed “vulnerability” and “unauthorized access” achieved rela-
tively high attention from the developers, security bugs are also considered high
impact by researchers and have been well studied [6,12,16,17,19,29,35]. “Lower
performance” in “Effect” category is also well studied [20–22,35] as performance
bugs. However, to the best of our knowledge, there is no study on “data loss” in
“Data” category which is of relatively high concern to FLOSS developers (5%).
For instance, a bug on “data loss” in “Data” category is observed when deleting
data related to the operation under a condition. Other data loss bugs occurred
due to executing the wrong processing of multi-transaction or by using variables
not multi-threaded (e.g., HashMap in Java). In fact, for instance, loss of users’
data such as their pictures was recently reported in the update of Windows 10
[3]. We regard it is one of the perception gaps between FLOSS developers and
SE researchers and should be should be studied, allowing us to address the issue.
Based on the results here, we answer RQ3 as follows.

Answer to RQ3: Existing studies can cover FLOSS developers’ concerns
about high impact bugs, but researchers still have space to further study other
kinds of high impact bugs such as “data loss”.

52 Y. Kashiwa et al.

5 Discussions

5.1 Is the Current Support for High Impact Bugs Enough? How
Can We Help FLOSS Developers Fix Bugs?

Many studies focus on symptoms of bugs and observe their characteristics and
impacts [4,7,22,30]. We classified bugs based on the symptoms of high impact
bugs included in the answers from the interviews. However, it is not enough to
support fixing bugs because we can not fix them only by knowing the symptoms
of high impact bugs. In this section, similar to the classification of the symp-
toms, we classify causes of high impact bugs obtained in the answers from the
interviews. With the classification of the causes, we discuss how we can support
fixing the high impact bugs in each category.

Table 6 shows the causes of bugs considered high impact by the respondents.
Here, we had 182 valid answers including the root causes of high impact bugs
(from 142 developers). In Table 6, the most common root cause was “insufficient
processing” reported by 35% developers (49 cases). Furthermore, we broke down
the 49 cases of “insufficient processing” and found that they consisted of 13
cases of “insufficient checks for inputs by users”, nine cases of “insufficient checks
against malicious inputs”, five cases of “insufficient null checks such as arguments
and return values”, four cases of “insufficient authority checks “(e.g., database),
and “others” (16 cases). The second and third most common root causes were
“problem in 3rd party” and “change in 3rd party” respectively which relate to
3rd party libraries and systems.

Figure 1 depicts the relationship between symptoms and causes. The line
width shows how symptoms and causes have strong relationships. For ease of read-
ing graph, we only show the relationships that appeared more than two-times
(which account for 52% of all the relationship). For further information, we pro-
vide the data and the figures showing all the relationships on our online appendix
[24]. Looking into the causes of “unexpected processing”, the most frequent causes
are “insufficient processing” (11 cases), and “problem in 3rd party” (5 cases), and
“usage” (4 cases) are following. Furthermore, we investigated the detail of the bugs
and found that nine of 11 cases were happened via regular usages and two cases
were occurred by abnormal usage. These bugs should be found by unit test, or
developers can utilize many studies (e.g, test case generation) to find them. “Sud-
den stop” is also caused by “insufficient processing” (11 cases). Eight of the 11
cases are caused by insufficient checks for inputs by users or by insufficient null
checks, which are able to be applied by binary analysis [25].

The causes of both “disable start” and “never start function” are related on
3rd parties. The main causes of “disable start” are “changes in 3rd party”. We
found two interesting answers indicating difficulty in finding the bugs are brought
by “changes in 3rd party”. One developer said, “It was just to update dependen-
cies but finding bug was hard”. Moreover, another developer said, “Because there
are too many packages in the repository, nobody can keep an eye on all the pack-
ages”. Even though developers roughly know that the causes of the bugs are
caused by changes in 3rd parties, it is difficult to specify which changes by third

What Are the Gaps Between FLOSS Developers and SE Researchers? 53

Table 6. Root causes described in actual bug reports

Category Subcategory Description # %

Design Usage A program usage unanticipated by
developers (e.g., no network)

12 7%

Architecture An architecture has an inappropriate
algorithm etc.

2 1%

Wrong processing A program has incorrect processing 10 5%

Superfluous processing A program have superfluous processing 3 2%

Insufficient processing A program needs another processing
(e.g., null checks)

39 21%

Others Incorrect encryption etc. 6 3%

Implement Exception handling A program throws a wrong Exception
or cannot catch it

11 6%

Condition A program has wrong conditions (e.g.,
for and if)

7 4%

Usage of variables A program use wrong variables or data
type

5 3%

Method use Developers incorrectly use methods in
their product or 3rd party library

8 4%

Memory management A program cannot appropriately
manage memory

9 5%

Others Wrong implementation of async, data
or race competition etc.

6 3%

Operation and
Maintenance

Problem in 3rd party A program is affected on a problem in
3rd party library or systems

21 12%

Changes in 3rd party A program is affected on a change in
3rd party library or systems

13 7%

Execution env. Developers did not check if a program
can run on some OS or shells

9 5%

Change effects A change in the module affects on
other modules

5 3%

Setting Developers use a wrong setting (e.g,
buffer size and database access
authority)

5 3%

Others Incorrect document, refactoring, or
operation etc.

11 6%

party products created the bug. Although Ma [15] et al. investigated common
practice to fix cross-project correlated bugs in the GitHub scientific Python
ecosystem, there are no approaches to specify the root causes of cross-project
bugs.

“Vulnerability” and “unauthorized access” are mostly caused by “insufficient
processing” (6 cases each). Among the subcategories of “insufficient processing”,
the most common causes are derived from insufficient checks against malicious
inputs (3 cases each). Fuzzing techniques [11,14] are able to be used to find the
insufficient checks.

54 Y. Kashiwa et al.

Fig. 1. Relationships between symptoms (left axis) and causes (right axis)

The cause of “data loss” is “insufficient processing”, which can be broken
down into three different cases: “insufficient checks for input by users”, “insuf-
ficient checks against malicious inputs”, and “others”. Because of no similari-
ties, we could not find any approaches to address “data loss” bugs, therefore it
requires further work in the future.

5.2 Threats to Validity

Internal validity: The categorization of Table 5 and 6 may not be perfect. We
have a good deal of knowledge about software, but we also recognize the limi-
tations of our knowledge about specific domains. We also might bias in creating
the category. External validity: Although the developer demography consists
of developers working in a wide range of product domains, a judgment if a bug
is high impact or not would depend on a product domain. Construct validity:
To avoid bias in the developers responses, we asked them about high impact bugs
without providing rigorous definitions of high impact bugs. Attitudes towards
high impact bugs might be different among the developers.

6 Conclusion and Future Work

In this study, we interviewed 322 notable GitHub developers to reveal the per-
ception gaps between FLOSS developers and researchers on bug finding and
fixing. We manually inspected and classified actual bug reports which were pre-
sented and considered high impact by the developers. As a result, we concluded
that security and breakage bugs are highly important for FLOSS developers. We
also identified “data loss” bugs should be studied newly by the SE community
to support FLOSS developers. Based on the bug report data presented by the
developers in this study, we plan to investigate actual impacts of bugs on the
size of source code change, resolution time, and so forth in the future.

What Are the Gaps Between FLOSS Developers and SE Researchers? 55

Acknowledgment. We really appreciate the cooperation of developers in GitHub
in completing our survey. This research is conducted as part of Grant-in-Aid for
Japan Society for the Promotion of Science Research Fellow and Scientific Research
(JP17J03330, JP17H00731, JP18K11243).

References

1. Abate, P., Di Cosmo, R., Gesbert, L., Le Fessant, F., Treinen, R., Zacchiroli, S.:
Mining component repositories for installability issues. In: Proceeding of the 12th
Working Conference on Mining Software Repositories, pp. 24–33 (2015)

2. An, L., Khomh, F., Guéhéneuc, Y.G.: An empirical study of crash-inducing com-
mits in Mozilla Firefox. Softw. Qual. J. 26(2), 553–584 (2018)

3. Ars Technica. https://arstechnica.com/gadgets/2018/10/microsoft-suspends-
distribution-of-latest-windows-10-update-over-data-loss-bug/

4. Chen, T.H., Nagappan, M., Shihab, E., Hassan, A.E.: An empirical study of dor-
mant bugs. In: Proceedings of the 11th Working Conference on Mining Software
Repositories, pp. 82–91 (2014)

5. Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., Ulbrich, M.: Automating
regression verification. In: Proceedings of the 29th ACM/IEEE International Con-
ference on Automated Software Engineering, pp. 349–360 (2014)

6. Gao, F., Wang, L., Li, X.: BovInspector: automatic inspection and repair of buffer
overflow vulnerabilities. In: Proceedings of the 31st IEEE/ACM International Con-
ference on Automated Software Engineering, pp. 786–791 (2016)

7. Garcia, H.V., Shihab, E.: Characterizing and predicting blocking bugs in open
source projects categories and subject descriptors. In: Proceedings of the 11th
Working Conference on Mining Software Repositories, pp. 72–81 (2014)

8. Gegick, M., Rotella, P., Xie, T.: Identifying security bug reports via text mining:
an industrial case study. In: Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering, pp. 11–20 (2010)

9. GitHub. https://github.com/
10. GitHub API. https://developer.github.com/v3/
11. Jiang, B., Liu, Y., Chan, W.K.: ContractFuzzer: fuzzing smart contracts for vulner-

ability detection. In: Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, pp. 259–269 (2018)

12. Kafali, O., Jones, J., Petruso, M., Williams, L., Singh, M.P.: How good is a security
policy against real breaches? A HIPAA case study. In: Proceedings of the 39th
International Conference on Software Engineering, pp. 530–540 (2017)

13. Kashiwa, Y., Yoshiyuki, H., Kukita, Y., Ohira, M.: A pilot study of diversity in
high impact bugs. In: Proceedings of the 30th International Conference on Software
Maintenance and Evolution, pp. 536–540 (2014)

14. LibFuzzer. https://llvm.org/docs/LibFuzzer.html
15. Ma, W., Chen, L., Zhang, X., Zhou, Y., Xu, B.: How do developers fix cross-project

correlated bugs? A case study on the GitHub scientific python ecosystem. In: Pro-
ceedings of IEEE/ACM 39th International Conference on Software Engineering,
pp. 381–392 (2017)

16. Mathis, B., Avdiienko, V., Soremekun, E.O., Bohme, M., Zeller, A.: Detecting
information flow by mutating input data. In: Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, pp. 263–273 (2017)

https://arstechnica.com/gadgets/2018/10/microsoft-suspends-distribution-of-latest-windows-10-update-over-data-loss-bug/
https://arstechnica.com/gadgets/2018/10/microsoft-suspends-distribution-of-latest-windows-10-update-over-data-loss-bug/
https://github.com/
https://developer.github.com/v3/
https://llvm.org/docs/LibFuzzer.html

56 Y. Kashiwa et al.

17. Meng, N., Nagy, S., Yao, D., Zhuang, W., Argoty, G.A.: Secure coding practices
in Java: challenges and vulnerabilities. In: Proceedings of the 40th International
Conference on Software Engineering, pp. 372–383 (2018)

18. Molyneaux, I.: The Art of Application Performance Testing: Help for Programmers
and Quality Assurance, 1st edn. O’Reilly Media Inc., Newton (2009)

19. Near, J.P., Jackson, D.: Finding security bugs in web applications using a catalog
of access control patterns. In: Proceedings of the 38th International Conference on
Software Engineering, pp. 947–958 (2016)

20. Nguyen, T.H.D., Nagappan, M., Hassan, A.E., Nasser, M., Flora, P.: An industrial
case study of automatically identifying performance regression-causes. In: Proceed-
ings of the 11th Working Conference on Mining Software Repositories, pp. 232–241
(2014)

21. Nistor, A., Chang, P.C., Radoi, C., Lu, S.: CARAMEL: detecting and fixing per-
formance problems that have non-intrusive fixes. In: Proceedings of the 37th Inter-
national Conference on Software Engineering, vol. 1, pp. 902–912 (2015)

22. Nistor, A., Jiang, T., Tan, L.: Discovering, reporting, and fixing performance bugs.
In: Proceedings of the 10th Working Conference on Mining Software Repositories,
pp. 237–246 (2013)

23. Nurmuliani, N., Zowghi, D., Williams, S.: Using card sorting technique to classify
requirements change. In: Proceedings of 12th International Requirements Engi-
neering Conference, pp. 224–232 (2014)

24. Online Appendix. https://github.com/YutaroKashiwa/OSS2019
25. Pham, V.T., Ng, W.B., Rubinov, K., Roychoudhury, A.: Hercules: reproducing

crashes in real-world application binaries. In: Proceedings of the 37th International
Conference on Software Engineering, vol. 1, pp. 891–901 (2015)

26. Seo, H., Kim, S.: Predicting recurring crash stacks. In: Proceedings of the 27th
International Conference on Automated Software Engineering, p. 180 (2012)

27. Seo, H., Sadowski, C., Elbaum, S., Aftandilian, E., Bowdidge, R.: Programmers’
build errors: a case study (at Google). In: Proceedings of the 36th International
Conference on Software Engineering, pp. 724–734 (2014)

28. Shafiq, H., Arshad, Z.: Automated debugging and bug fixing solutions: a systematic
literature review and classification, M.Sc thesis, Blekinge Institute of Technology
(2014)

29. Shar, L.K., Beng Kuan Tan, H., Briand, L.C.: Mining SQL injection and cross site
scripting vulnerabilities using hybrid program analysis. In: Proceedings of the 35th
International Conference on Software Engineering, pp. 642–651 (2013)

30. Shihab, E., Mockus, A., Kamei, Y., Adams, B., Hassan, A.E.: High-impact defects:
a study of breakage and surprise defects. In: Proceedings of the 19th ACM SIG-
SOFT Symposium and the 13th European Conference on Foundations of Software
Engineering, pp. 300–310 (2011)

31. Sullivan, M., Chillarege, R.: Software defects and their impact on system
availability-a study of field failures in operating systems. In: Proceedings of the
Fault-Tolerant Computing: The Twenty-First International Symposium, pp. 2–9
(1991)

32. Tan, L., Liu, C., Li, Z., Wang, X., Zhou, Y., Zhai, C.: Bug characteristics in open
source software. Empir. Softw. Eng. 19(6), 1665–1705 (2014)

33. Tan, S.H., Dong, Z., Gao, X., Roychoudhury, A.: Repairing crashes in Android
apps. In: Proceedings of the 40th International Conference on Software Engineer-
ing, pp. 187–198 (2018)

https://github.com/YutaroKashiwa/OSS2019

What Are the Gaps Between FLOSS Developers and SE Researchers? 57

34. Tan, S.H., Roychoudhury, A.: Relifix: automated repair of software regressions. In:
Proceedings of the 37th International Conference on Software Engineering, vol. 1,
pp. 471–482 (2015)

35. Zaman, S., Adams, B., Hassan, A.E.: Security versus performance bugs: a case
study on Firefox. In: Proceedings of the 8th Working Conference on Mining Soft-
ware Repositories, pp. 93–102 (2011)

36. Zhao, X., Xia, X., Kochhar, P.S., Lo, D., Li, S.: An empirical study of bugs in
build process. In: Proceedings of the 29th Annual ACM Symposium on Applied
Computing, pp. 1187–1189 (2014)

FLOSS Adoption

Fifteen Years of Open Source
Software Evolution

Francis Bordeleau1, Paulo Meirelles2, and Alberto Sillitti3(B)

1 Ecole de Technologie Supérieure (ETS), Montreal, Canada
francis.bordeleau@cmind.io

2 Federal University of Sao Paulo, Sao Paulo, Brazil
paulo.meirelles@unifesp.br

3 Innopolis University, Innopolis, Russian Federation
a.sillitti@innopolis.ru

Abstract. The Open Source Software (OSS) ecosystem and community
has evolved enormously from the first edition of the OSS conference that
took place in Genoa (Italy) in 2005. Such evolution happened in every
aspect of OSS including research, technology, and business pushing its
adoption to an unpredictable scale. Nowadays, it is almost impossible for
people not using OSS in every interaction they have with technology. This
fact is a tremendous success for OSS but such evolution and adoption
has not always followed the intended path and some relevant deviations
have occurred during such long journey.

This paper provide an overview of the evolution of OSS in the three
mentioned areas (research, technology, and business) highlighting the
main aspects and identifying the current trends that will be the basis for
its future evolution.

Keywords: OSS evolution · OSS research · OSS technology ·
OSS business

1 Introduction

In an very famous article published in The Wall Street Journal in August 2011
titled “Why Software Is Eating The World” [1], Marc Andreessen provided a
deep analysis of the IT industry and analyzed how value was moving out from
hardware while it was increasing in software helping a new generation of compa-
nies and entrepreneurs to build new business at a fraction of the costs compared
to the beginning of the century.

The identified trend is still in place and become even more complex with the
development of synergies between hardware devices and software in many appli-
cation areas (e.g., smart home assistants, autonomous vehicles, etc.) inspired by
the Apple’s iOS ecosystem.

However, what the article of the 2011 was not discussing is a similar evolution
that was already happening inside the software domain. As the commoditization
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
F. Bordeleau et al. (Eds.): OSS 2019, IFIP AICT 556, pp. 61–67, 2019.
https://doi.org/10.1007/978-3-030-20883-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20883-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-20883-7_6

62 F. Bordeleau et al.

of hardware (also through virtualization and the introduction of cloud services
such as Amazon AWS) reduced the costs for running the computing infrastruc-
ture, the extensive usage of quality OSS reduced the costs for running the basic
software infrastructure (e.g., operating system, database, web server, application
server, etc.), the development environments (e.g., IDEs), and applications (e.g.,
office automation tools, browser, data analysis tools, etc.). This trend was and
still is a powerful support to the creation of new startup companies that require
a fraction of the budget compared to the early 2000s. However, such effect has
not only positive aspects but also negative ones when we consider the entire
software ecosystem enabling free riders taking advantage of the OSS community
without giving back.

Moreover, with the development of IoT, Smart Cities, etc., the value is still
moving upwards leaving even the software domain towards the data that actually
enable a whole new category of applications that are software-based but not
implementable with just software (e.g., applications based on machine learning
algorithms).

The paper is organized as follows: Sect. 2 and subsections analyze the OSS
evolution according to the different perspectives identified: research (Sect. 2.1),
technology (Sect. 2.2), and business (Sect. 2.3); Sect. 3 discusses the current
trends in the above mentioned areas; finally, Sect. 4 draws the conclusions and
introduces possible future work.

2 Open Source Software Evolution

OSS has been evolved in the last 15 years from several perspectives that are
partially related to each other. We have decided to focus on the following ones:

1. Research: how the research has evolved considering the problems investi-
gated, the types of activities performed, and papers published.

2. Technological: how the technology has changed considering the popularity
of the projects, how people contribute, and how the technology has been
adopted by users.

3. Business: how business models have changed, which ones emerged and which
ones has been dismissed.

Such perspectives are not the only ones that can be identified but they are
just a starting point for a deeper investigation.

2.1 The Research Perspective

The research environment has changed dramatically in the last 15 years from
several points of view:

– Publication venues: the number of papers published in top venues dealing
with OSS was very limited. As an example, just look at the proceedings of
the International Conference of Software Engineering (ICSE) in 2005 [11]

Fifteen Years of Open Source Software Evolution 63

and 2019 [12] for comparison. This could be related to the fact that results of
research activities sponsored by companies were rarely released to the com-
munity and public sponsored research grants were not pushing researchers
to release their results other than through publications. Nowadays, most of
the papers published in top venues deals with OSS since the research behind
them is using OSS as a source of data (e.g., in terms of code, developers
activity, etc.), use OSS as a tool for extracting and/or analyzing data (e.g.,
as in machine learning tools for building models), release tools as OSS, etc.
Moreover, most companies have an OSS strategy that allows or even force
researchers to release OSS and public sponsored research grants often require
the release of results and tools as OSS.

– Investigated topics: the investigated topics were often related to the adop-
tion of OSS in different contexts (e.g., in the public administrations), the
migration from proprietary solutions to OSS [13–15], the quality of OSS from
the point of view of the code produced and the development process [8–10],
licensing aspects. Nowadays, the focus is more oriented to areas in which OSS
enable research activities that are not possible in other environments such as
the investigations related to the analysis of large code repositories and their
evolution [2–4], the analysis of communities [5,7], resource usage [6], security
issues, etc. As a general trend, the focus now is more on the data and its
analysis with machine learning approaches present almost everywhere.

– Specialized venues: the OSS conference series has evolved since OSS-related
papers are now published everywhere and not in specialized venues anymore.
OSS is now a first class citizen in any research-oriented conference or journal
and not the exception. The current trend requires authors to release their
code and datasets to enable other researchers to replicate their findings and
justify if this is not possible for any reason. This is a fundamental paradigm
shift that is not completed yet but it has started and it is spreading across a
number of top quality conferences and journals.

– Open access: it is now a common practice for authors to pay for allowing
people to access their papers for free to increase the dissemination of their
work. This practice is often supported by public research grants to assure
the maximum exposition of the research results they have sponsored. Even if
the approach is controversial for many reasons (e.g., conflicts of interests of
publishers that may lead to lower quality), it has the advantage of making
research outcomes available to everybody without any paywall.

2.2 The Technological Perspective

The technology has evolved in many different areas but some have been affected
more in depth:

– Software technologies: OSS is part of almost any software product due
to the popularity of powerful and high quality libraries (e.g., the ones from
the Apache Foundation, the ones released by major IT companies such as
Google, Facebook, IBM, etc.) published according to licenses that allows their

64 F. Bordeleau et al.

integration in both open and closed products (e.g., BSD, MIT, LGPL, etc.).
Moreover, many basic components of the overall infrastructure are powered
by OSS (e.g., databases, web servers, etc.).

– Hardware technologies: also any product that include a software compo-
nent nearly always include OSS. TVs, cars, IoT devices, etc. often include
stripped down versions of open operating systems, libraries, web servers to
provide easy to use user interfaces, etc.

– Software-as-a-Service (SaaS) technologies: with the development of this
approach to the delivery of software systems, a new set of problems have
been identified for OSS. Open licenses were not ready to cope with this novel
approach for releasing software and many companies took advantage of OSS
breaking the basic ideas behind openness. As an example, the GPL license
requires that the entire code of a product that use a GPL component needs
to be released as GPL if it is released. With SaaS, the code is never released
but only used through the Internet. This enabled many companies (including
giants like Google, Facebook, Amazon, etc.) to build closed services taking
advantage of the open source communities without giving anything back vio-
lating the spirit of the GPL. For this reason, a new version of the AGPL
license have been developed. This license forces developers to release their
code to the community even if the developed product is not released but just
delivered as SaaS.

– Mobile technologies: with the introduction of the Android operating sys-
tem, OSS has heavily penetrated the consumer environment becoming the
most used operating system. Other open mobile operating systems have been
proposed such as Tizen or Sailfish OS but they have a very small market
share. Moreover, the popularity of OSS powered hardware platforms such as
Arduino and Raspberry PI have made OSS the de facto standard for the
development of prototypes, custom IoT projects, etc.

– Cloud and big data technologies: many technologies for running the cloud
infrastructure has been released as OSS due to changes in the business models
(see Sect. 2.3). A similar approach has been adopted in big data technologies
where OSS is the major player with contributions provided by many kinds of
companies that cooperate in the development of the technology (e.g., Apache
Hadoop ecosystem) but compete in providing solutions to the customers.

– Machine learning technologies: all the major IT companies has released
their tools as OSS (e.g., Google with Tensorflow, Facebook with PyTorch,
Microsoft with CNTK, etc.) offering developers their cloud services for run-
ning them. Moreover, such tools are not very useful without a wide amount of
data that is needed to build the models able to be used in actual applications.

2.3 The Business Perspective

Business models have evolved from focusing on selling software to focusing
on providing on-demand services based on OSS. The business of software has
changed in many aspects including the following:

Fifteen Years of Open Source Software Evolution 65

– Software commoditization: the value in the software business is continu-
ously moving upwards transforming the basic infrastructure and applications
into a commodity. Nowadays, leading applications include a relevant set of
features powered by machine learning algorithms that are based on the anal-
ysis of a huge amount of data that is not available to the community while
software is. For this reason, the business models are changing moving towards
the data that will be able to provide competitive advantages to companies
that own them. This is a relevant problem for the open source communities
that currently do not have the ability to collect and exploit such amount of
data preventing the creation of cutting edge applications.

– Value of data: machine learning algorithms require a huge amount of data
for the definition of reliable models. Such data is continuously collected and
enhanced by large IT companies that base their products on them. Data
are collected to improve the models that make the products more useful
and reliable from which additional data are collected. For this reason data
complement software enabling the creation of a new generation of products.

– Introduction of new OSS licenses: the introduction of the AGPL license
was required to keep the spirit of the GPL license valid also in a world where
software is not delivered anymore but offered as a service. This change in the
software delivery paradigm requires an adaptation to the licensing approaches
as it happens with the increasing value of data.

3 Current Trends

According to the three perspectives analyzed in Sect. 2, it is clear that OSS has
penetrated all the business and research environments helping in shifting the
focus from the basic software to higher levels that provide more value to the final
customers. Moreover, it is clear that pure software is not enough anymore since
data is the new king and applications cannot be tuned and work as customers
expect without analyzing a massive amount of data extracting useful information
that can be used to enhance the user experience.

Open source communities have to deal with these two new aspects and define
a proper way to manage them. About SaaS, the community has introduced the
AGPL that is able to keep the spirit of openness also in such environments.
However, currently, there are no well established approaches to deal with data
and assure that they stay open for the usage of the entire community. This is
a new challenge that needs to be addressed as soon as possible to keep value in
OSS.

4 Conclusions and Future Work

The paper presents an initial qualitative investigation of the evolution of the
OSS in the last 15 years under three perspectives: research, technological, and
business. The main challenges that OSS have to deal with are related to the

66 F. Bordeleau et al.

delivery of SaaS and managing the value of data that is the key enabler for the
development of a new generation of applications.

A more detailed analysis is needed through the collection and the analysis of
quantitative data to provide a more complete overview of the identified trends
and how they are connected to each other.

References

1. Andreessen, M.: Why software is eating the world. Wall Street J. (2011). https://
a16z.com/2011/08/20/why-software-is-eating-the-world/

2. Ciancarini, P., Poggi, F., Rossi, D., Sillitti, A.: Improving bug predictions in mul-
ticore cyber-physical systems. In: Ciancarini, P., Sillitti, A., Succi, G., Messina,
A. (eds.) Proceedings of 4th International Conference in Software Engineering for
Defence Applications. AISC, vol. 422, pp. 287–295. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-27896-4 24

3. Ciancarini, P., Sillitti, A.: A model for predicting bug fixes in open source operating
systems: an empirical study. In: 28th International Conference on Software Engi-
neering and Knowledge Engineering (SEKE 2016), Redwood City, San Francisco
Bay, CA, USA (2016)

4. Ciancarini, P., Poggi, F., Rossi, D., Sillitti, A.: Analyzing and predicting concur-
rency bugs in open source systems. In: 30th International Joint Conference on
Neural Networks (IJCNN 2017), Anchorage, AK, USA (2017)

5. Di Bella, E., Sillitti, A., Succi, G.: A multivariate classification of open source
developers. Inf. Sci. 221, 72–83 (2013)

6. Georgiev, A., Sillitti, A., Succi, G.: Open soruce mobile virtual machines: an energy
assessment of Dalvik vs. ART. In: 10th International Conference on Open Source
Systems (OSS 2014), San Jose, Costa Rica (2014)

7. Jermakovics, A., Sillitti, A., Succi, G.: Exploring collaboration networks in open-
source projects. In: Petrinja, E., Succi, G., El Ioini, N., Sillitti, A. (eds.) OSS 2013.
IAICT, vol. 404, pp. 97–108. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38928-3 7

8. Petrinja, E., Sillitti, A., Succi, G.: Overview on trust in large FLOSS communities.
In: Russo, B., Damiani, E., Hissam, S., Lundell, B., Succi, G. (eds.) OSS 2008.
ITIFIP, vol. 275, pp. 47–56. Springer, Boston, MA (2008). https://doi.org/10.1007/
978-0-387-09684-1 4

9. Petrinja, E., Nambakam, R., Sillitti, A.: Introducing the open maturity model. In:
2nd Emerging Trends in FLOSS Research and Development Workshop at ICSE
2009, Vancouver, BC, Canada (2009)

10. Petrinja, E., Sillitti, A., Succi, G.: Comparing OpenBRR, QSOS, and OMM assess-
ment models. In: Ågerfalk, P., Boldyreff, C., González-Barahona, J.M., Madey,
G.R., Noll, J. (eds.) OSS 2010. IAICT, vol. 319, pp. 224–238. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13244-5 18

11. Roman, G.-C., Griswold, W., Nuseibeh, B.: Proceedings of the 27th International
Conference on Software Engineering (ICSE 2005). ACM (2005)

12. Atlee, J., Bultan, T., Whittle, J.: Proceedings of the 41st International Conference
on Software Engineering (ICSE 2019). ACM (2019)

13. Rossi, B., Scotto, M., Sillitti, A., Succi, G.: Criteria for the non invasive transition
to OpenOffice. In: 1st International Conference on Open Source Systems (OSS
2005), Genoa, Italy (2005)

https://a16z.com/2011/08/20/why-software-is-eating-the-world/
https://a16z.com/2011/08/20/why-software-is-eating-the-world/
https://doi.org/10.1007/978-3-319-27896-4_24
https://doi.org/10.1007/978-3-319-27896-4_24
https://doi.org/10.1007/978-3-642-38928-3_7
https://doi.org/10.1007/978-3-642-38928-3_7
https://doi.org/10.1007/978-0-387-09684-1_4
https://doi.org/10.1007/978-0-387-09684-1_4
https://doi.org/10.1007/978-3-642-13244-5_18

Fifteen Years of Open Source Software Evolution 67

14. Rossi, B., Scotto, M., Sillitti, A., Succi, G.: An empirical study on the migration
to OpenOffice.org in a public administration. Int. J. Inf. Technol. Web Eng. 1(3),
64–80 (2006)

15. Russo, B., Braghin, C., Gasperi, P., Sillitti, A., Succi, G.: Defining the total cost
of ownership for the transition to open source systems. In: 1st International Con-
ference on Open Source Systems (OSS 2005), Genoa, Italy (2005)

Open Source Software Community Inclusion
Initiatives to Support Women Participation

Vandana Singh(&) and William Brandon

School of Information Sciences, University of Tennessee-Knoxville,
1345 Circle Park Drive, Suite 451, Knoxville, TN 37996-0332, USA

vandana@utk.edu, wbrando1@vols.utk.edu

Abstract. This paper focuses on the inclusion initiatives of Open Source
Software (OSS) Communities to support women who participate in their online
communities. In recent years, media and research has highlighted the negative
experiences of women in OSS and we believe that could be detrimental to the
women of OSS. Therefore, in this research, we built upon the research that
demonstrates the value of Codes of Conduct for minorities in an online com-
munity. Additionally, we focus on women only spaces in OSS, because past
research on women and IT shows that women perform better when they can
build connections and mentoring networks with other women. We investigated
355 OSS websites for presence of women only spaces and searched for, col-
lected and analyzed the Codes of Conduct on the websites of these OSS.
Qualitative content analysis of the websites show that only 12 out of 355
websites have women only sections. Less than ten percent (28) of the analyzed
websites had a code of conduct.

Keywords: Open Source Software � Gender and IT �Women in open source �
Code of conduct � Women only spaces

1 Introduction

Open Source Software (OSS) communities depend on the participation and contribu-
tion of voluntary members to ensure sustainable growth and day-to-day management.
In more than a decade, OSS communities have shown no growth in the percentages of
women participating in these communities [5]. Women form more than half of the
workforce in the United States, but the participation from women in Information
Technology is not even thirty percent [13]. In addition, when we zoom in deeper into
OSS communities; we find that the percentage of women in OSS communities is a
measly three to five percent [15] or even one percent according to some sources
[OS4W.org]. It behooves OSS communities to understand and address the issues
related to the under representation and mistreatment of women. In order to encourage
more women to participate in OSS communities, it is important to take measures to
demonstrate that the communities are inclusive, welcoming and supportive to the
women who participate and contribute.

Anecdotal evidence about the negative experiences of women in the OSS com-
munities has been in the spotlight via media and on the internet [6, 8, 17] and highly

© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
F. Bordeleau et al. (Eds.): OSS 2019, IFIP AICT 556, pp. 68–79, 2019.
https://doi.org/10.1007/978-3-030-20883-7_7

http://OS4W.org
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20883-7_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20883-7_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20883-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-20883-7_7

controversial empirical research [18] that show that the contributions of women receive
inferior treatment than the contributions of men. It is important for OSS communities to
demonstrate that they take efforts to regulate the behavior of their community and that
they are committed to providing an inclusive collaborative-shared environment where
all the people and their views are welcome. The inclusion initiatives of OSS com-
munities should be visible to the newcomers and should be available to community
members who can use these to call out unwanted behavior.

Codes of conduct and women only spaces have shown to facilitate women
engagement and retention in online communities. These safe spaces also allow women
to be engaged and be creative [11]. In past research, we surveyed and interviewed
women from across the globe to document their experiences of participating in OSS
communities. Most of the surveyed and interviewed women indicated that along with
mentoring, codes of conduct and women only spaces played an important role in their
experiences within the open source communities. Other research had similar findings
[2] regarding the value of Codes of conduct and therefore, this research aims to
investigate the presence of Codes of Conduct in OSS communities and find out if any
of these codes of conduct specially address issues or gender equality. We are also
interested in finding out what types of women only spaces exist in OSS communities
and the purpose and the scope of activities for these women only spaces. Cumulatively,
these seem to create a visibly welcoming, inclusive and safe collaborative environment
for women of OSS.

In the following sections of this paper, we will present the relevant past research on
this topic, the research methods that we used to approach the aims of this study, the
results from the research and a discussion of the results, limitations and future research
areas.

2 Literature Review

Open source software communities are often seen as political communities, and the
members are often viewed as ‘citizens.’ Carillo, Huff, and Chawner [1] address this
aspect, noting how important the proper ‘socialization’ of new members is to both their
performance of particular tasks and their participation in maintaining the community as
a whole, the latter of which they refer to as ‘citizenship behaviors.’ When it comes to
‘socialization,’ the authors note that ‘codes of conduct’ are one important means of
community maintenance (p. 338). Coelho and Valente [4] discuss whether lacking a
‘code of conduct’ is one of the reasons open source projects fail when they do.
Although they do conclude that the adoption of a code of conduct is statistically
negligible when it comes to differentiating the failed projects from the most popular
ones in their sample set, they note that not one of the failed projects had a code of
conduct. Neither did any included in the ‘least popular’ category. Thirteen percent of
the most popular projects, on the other hand, implemented codes of conduct, and atleast
some of the developers of the failed projects considered cited ‘conflict among devel-
opers’ as a reason for failure.

Online communities including OSS groups often rely on ‘codes of conduct’ to
regulate behavior among members. Many scholars have addressed codes of conduct in

OSS Community Inclusion Initiatives to Support Women Participation 69

passing as they explored various aspects of OSS and other online communities such as
how they develop [2, 9, 10], how these ‘collaborative’ projects work in general (e.g.
Scacchi, Grundy, Hoek, and Whitehead [16]) and the role of a ‘leader’ or ‘manager’ in
such a community [2, 12, 16]. Others studied, the values that these communities
embody [20], what other types of organizations can learn from them e.g. [14], and how
integrating women in software development leads to a more balanced “community
smell” [3]. Recently, however, scholars have become interested in the code of conduct
as an object of study in its own right. What kinds of things does it include? Tourani,
Adams, and Serebrenik [19] offer a sustained discussion of online communities’ ‘codes
of conduct’ in the literature to date. The authors investigate a number of different codes
of conduct through both web searches for the codes themselves and interviews with
some members of the communities who adopt them. The questions they attempt to
answer with this empirical research concern the kinds and number of codes there are,
what they say, and how they are used (pp. 24–25).

In this research, we built upon the research on Codes of Conduct by Tourani, et al.
[19] and started a new inquiry into the women only spaces of OSS to explore the OSS
communities and their inclusion initiatives for women.

3 Research Methods

Research Objective: The main objective of this research is to investigate the inclusion
initiatives of OSS communities in the form of women only spaces and codes of conduct
that are available on the websites of OSS.

Research Questions

1. How many OSS communities have women only spaces on their website?
2. What is the nature and scope of these women only spaces?
3. How many OSS communities have Codes of Conduct on their website? What are

the common and differentiating elements in these codes of conduct?
4. How do the Codes of Conduct demonstrate support for women in OSS

communities?

3.1 Data Collection and Analysis

For this exploratory qualitative research, we used the list of OSS available from
Wikipedia at https://en.wikipedia.org/wiki/List_of_free_and_open-source_software_
packages. The list was collected on March 1, 2018. On that date, there were 355
OSS listed on that Wikipedia entry and included 22 categories of open source software.
The list is a good starting point of representative open source software and provided a
functional sample of popular and not so popular OSS.

A spreadsheet was created with the 355 software and the corresponding website for
each of the software. Each website was searched for women only spaces and Codes of
Conduct. We use the following keywords to search the websites with a search feature:

70 V. Singh and W. Brandon

https://en.wikipedia.org/wiki/List_of_free_and_open-source_software_packages
https://en.wikipedia.org/wiki/List_of_free_and_open-source_software_packages

Women, Female, Codes of Conduct, Guidelines and Values. The websites that did not
have a search feature for the overall website were examined by reviewing all the
individual sections of the website, these sections included, Blogs, Forums, Mailing
Lists, IRC, Community FAQs, About Us, News, Announcements, Wiki, GitHub Link
and Support section. Very few websites had women only spaces and/or Codes of
Conduct. All the Codes of Conduct that were available on these sites were collected
and stored in the spreadsheet for further analysis. Notes were created for women only
spaces and a URL of the women only space was recorded in the spreadsheet.

For examining the women only spaces on the OSS websites, we investigated the
types and the purpose of these spaces. We reviewed the content on these spaces to
understand their objectives and activities.

For analyzing the codes of conduct, we built upon the five components developed
by Tourani et al. [19] by adding three new components specific to our research
objectives. The three new components that we added are, name used to refer to the code
of conduct; the intended audience of the code of conduct and the explicit mention of
specific groups (women). The five components from the Tourani study are purpose;
honorable behavior; unacceptable behavior; enforcement and scope. We used these
collective eight categories to analyze the elements of all the codes of conducts for
presence of these elements. Then we qualitatively analyzed the text for the eight
elements using NVIVO software to develop common themes across the elements of the
Codes of Conduct. This gave us a deeper understanding of the focus and intent of each
of the eight elements of the Codes of Conduct.

4 Results

In this section, we present results starting with the inquiry into the women only spaces,
the purpose of these spaces and the activities of these spaces. In the next sub-section,
we discuss the results about the Codes of Conduct. We present results about the
number of codes found, the names of these codes and an analysis of the key elements of
these codes.

4.1 Women Only Spaces in Open Source Software Communities

Out of the 355 OSS websites listed on the Wikipedia page (https://en.wikipedia.org/
wiki/List_of_free_and_open-source_software_packages), only twelve websites had
women only spaces or they provided a link to an external website that was for women
using that software. Some examples of the external websites are Facebook groups and
local chapters of meet up groups. Table 1 presents a list of the websites that have
women only spaces and the names and URL of these spaces.

OSS Community Inclusion Initiatives to Support Women Participation 71

https://en.wikipedia.org/wiki/List_of_free_and_open-source_software_packages
https://en.wikipedia.org/wiki/List_of_free_and_open-source_software_packages

4.2 Purposes of Women Only Spaces on OSS Communities

The different types of women only spaces that we found on OSS communities to
support women in participating in the community range from completely dedicated
websites for women, to women only IRC Channels, dedicated blogs, collection of
resources for women in a blog post, dedicated Facebook pages and local meet-up
groups. The purposes explicitly reported on each of these spaces are presented in
Table 2.

Table 1. OSS websites with women only spaces.

Software
package

Name of the space URL

ArchLinux Arch Linux for Women http://archwomen.org
Bitcoin Women in Bitcoin

Madchenabend in Berlin
https://www.facebook.com/
womeninbitcoin/

BonitaSoft Blog Post about Community efforts
for encouraging women

https://community.bonitasoft.com/behind-
scenes-bonita-21-27-feb-2011

Debian Debian Women https://www.debian.org/women
Drupal Women in Drupal http://www.womenindrupal.org/
Fedora Fedora Women http://fedoraproject.org/wiki/Women
FreeNX IRC Channel for Women https://archwomen.org/wiki/aw-org:irc
GNOME GNOME Women https://wiki.gnome.org/GnomeWomen

http://gnome.org/opw/
KDE IRC Channel for Women https://userbase.kde.org/IRC_Channels
Mozilla WoMoz http://www.womoz.org/blog/
PHP PHP Women http://phpwomen.org/
Ubuntu Ubuntu Women Project https://wiki.ubuntu-women.org/

Table 2. Purposes of the women only spaces on OSS websites

Name of the space Purpose of the space

Arch Linux for Women Helping more women become involved
Women in Bitcoin
Madchenabend in Berlin

Networking and promoting women in bitcoin

Bonita Soft Recruiting more women developers
Debian Women Engaging and promoting women
Women in Drupal To offer women only space, promote women
Fedora Women Foster involvement of women
IRC Channel for Women Talk about women issues, etc.
GNOME Women Female only space, encouraging women of GNOME
KDE IRC Channel Women only chatting space
WoMoz Blog Dedicated to women
PHP Women Online community, events and mentoring for women
Ubuntu Women Project Fostering women contributions through mentoring and

inspiration

72 V. Singh and W. Brandon

http://archwomen.org
https://www.facebook.com/womeninbitcoin/
https://www.facebook.com/womeninbitcoin/
https://community.bonitasoft.com/behind-scenes-bonita-21-27-feb-2011
https://community.bonitasoft.com/behind-scenes-bonita-21-27-feb-2011
https://www.debian.org/women
http://www.womenindrupal.org/
http://fedoraproject.org/wiki/Women
https://archwomen.org/wiki/aw-org:irc
https://wiki.gnome.org/GnomeWomen
http://gnome.org/opw/
https://userbase.kde.org/IRC_Channels
http://www.womoz.org/blog/
http://phpwomen.org/
https://wiki.ubuntu-women.org/

Some of the women only spaces include blog posts and describe the initiatives that
the community is taking to support women. This type of posts are good minimal
investment ways to make the community efforts visible to newcomers. Bonita Soft, for
example, presented the statistics related to women participating in their community and
the growth in that participation. The Debian women community explains the roles in
which women can start contributing and offer a safe place to ask questions. Drupal
women site expresses a sense of community by creating a place for sponsoring women,
solving issues that women face in Drupal or outside and have fun and celebrate life
together. Fedora women page was very clear in being inclusive for women, trans and
genderqueer people. Fedora Women also does a great job at highlighting the existing
women in the community. The IRC channels support women by having technical
channel and an off topic channel, so that women can feel free to connect with other
women about “off topic” concerns. The Arch Linux IRC channel for women was
interesting for multiple things, including explicit messages about the unacceptable
behavior including “ If you make us feel uneasy or “creeped out”. This
is both not quantifiable and not negotiable. It is a judgment call
and entirely at the discretion of the Op requesting your exit.” In
addition “Looking for dating advice. This is not a dating service.
This is also not a lonely hearts channel. We like sex and rela-
tionships fine. But that’s not what we’re here for.” And “Discus-
sion of self harm.” This channel also listed resources for people feeling depressed
and/or suicidal.

4.3 Codes of Conduct

Out of the 355 OSS packages listed on the Wikipedia page, only 28 websites had
Codes of Conduct or other similar guidelines for regulating the behavior of participants
in the communities. After this observation, we refer to the general name as “community
rules” and reserve the use of “Code of Conduct” for the community rules that are called
“Codes of Conduct”. We collected these community rules by searching each of the
website using the keywords “Code of Conduct”, “Values” and “Guidelines” or by
browsing all the sections of the website. Interestingly, not all the communities used the
specific term “Code of Conduct” even when they had some rules for the community.
The different names under which community rules were found varied significantly and
included terminology such as guidelines, principles, rules, netiquette, etc.

Out of the 28 websites, 14 websites used the term Code of Conduct, three websites
used Guidelines and two websites used Principles to refer to their community rules.
The rest of the communities used the following one time occurring terms when
referring to their community rules - Community guidelines, forum guidelines, funda-
mental freedoms and values, ListEtiquette, Netiquette guidelines, Rules, Values, and
Goals. Within the code of conducts, there were sections such as Board rules, Chati-
quette, common code, common etiquette rules, core values, event policy, forum code,
mailing list code, Policy (Welcoming Policy, Anti-harassment policy, and complaint
procedure), Statutes, Values and Goals, IRC rules and “Principles, guidelines and
actions”.

OSS Community Inclusion Initiatives to Support Women Participation 73

Community rules were collected from the following 28 websites: 3DSlicer,
Apache, Apereo, Asterisk, Chromium, CiviCRM, Compiere ElasticSearch, ERPNext,
Evergreen, IRC, Fiji, FreeNX, FreePBX, GIMP, HandBrake, Inkscape, ITK, KitenK-
MyMoney, LedgerSMB, Moodle, Natron, OpenAFS, OpenBravo, Opencog, OpenSSL,
Pencil2D, PM and Tryton.

4.4 Key Elements of the Community Rules

In order to identify the common and differentiating elements in the 28 community
rules, we conducted content analysis and coded each one for common elements. We
used the five common elements as outlined by Tourani et al. [19] they derived these
elements from an analysis of seven Codes of Conduct, which they found were basis of
a large number of codes of conduct in OSS communities. We used these five elements
as an initial starting point, added more element categories, and customized the defi-
nition of the eight elements according to our data set. We analyzed the 28 community
rules for the following eight elements.

1. Terms Used – We added this new category because our searches on the website
were not limited to “Codes of Conduct” keyword, but included any initiatives that
were about community regulation and laid guidelines for the behavior of members
of the community. This category allowed us to see the diverse range of terminology
that the communities use to refer to their rules. It is important to know about the
different ways in which communities express their approach and acknowledging
this allows us to do a more comprehensive inquiry into inclusion initiatives.

2. Length of the rule – This was also a new element category that we added in order to
record the varying lengths of the rules. The length of the rule can be an influencing
factor in the usage of the rule. If it is too long, if it is ever read completely and if it is
not read, then does it serve any purpose? The purpose for this category element is to
guide understanding what would be good length for a code of conduct.

3. Purpose of the community rule – This element category is defined as the reason for
the community rule to exist and the intent of this code for the community. What is it
that the community wants to achieve and what do they focus on in order to achieve
that goal or intent.

4. Honorable Behavior Examples – This element category is defined as the section of
community rules that expresses what type of behavior is expected from the com-
munity members. These are positive examples of how the community expects
members to behave.

5. Unacceptable Behavior Examples – This element category is defined as the section
of the community rules that describes the behavior that is negative, discouraged and
is to be avoided in the community

6. Enforcement – this elements category is defined as the section of the community
rules that outlines consequences of not following the community rules, the actions
that the community will take if the community rules are violated and it includes
clear articulation of what a member of the community should do if they witness
violation of community rules.

74 V. Singh and W. Brandon

7. Scope of the code – this element category is to record the applicability of the code
of conduct – if it is application to a section of the website (such as forums), or if it is
for the entire community or if it is for online and offline community interactions and
if it included the intended audience for the community rules.

8. Specific mention of minority groups/gender – Since we are specifically interested in
the inclusion activities of the communities per their community rules, we added an
element category to record the community rules that specifically include gender and
generally any minority groups.

As presented in Table 3, all the 28 community rules that were analyzed had a term
for the rules, a purpose of the rules, an articulation of the scope of the rules and
enforcement of the rules, in case of a violation. Most of the codes also included
examples of honorable and unacceptable behavior, though not all. Only 13 (less than
half) of the community rules that were analyzed had an explicit mention of gender
and/or minority. Even though, the purpose of all the communities reflected the goal of
an inclusive community, they all do not address gender or minorities in the language of
the code.

4.5 Main Themes for Each Key Element of Community Rules

In depth, qualitative analysis of each of the element category gave insights into the
approach of the respective OSS community. The length of the rules of the community
also varied greatly, with OpenSSL code being the shortest in length with 146 words
and the ITK code with more than 7000 words. The explicit purpose of most of these
codes of conduct can be summarized as that of creating a shared collaborative envi-
ronment, ensuring good community health, creating a positive community vibe, sharing
and ensuring a good safe community environment. They express their goal to achieve
their purpose by focusing on activities such as conversations, collaboration, welcom-
ing, getting involved, leveraging diverse perspectives, willingness to learn and having a
good time. Interestingly, many communities specifically outline the goal to be happy,
stress free, friendly and helpful in this productive learning environment. The honorable
behavior examples include two types of behavior; one is about how each community

Table 3. The elements of community rules

CoC Element No. of Instances out of 28

Terms Used 28/28 – 11 different terms were used in 28 examples
Length of the Code Range of Length – 146 words to 7080 words
Purpose 28/28
Honorable Behavior Examples 27/28
Unacceptable Behavior Examples 25/28
Enforcement 28/28
Scope 28/28
Gender/Minority 13/28

OSS Community Inclusion Initiatives to Support Women Participation 75

member should behave with others in the community e.g. being open, considerate,
polite, friendly, respectful, kind, empathetic and taking responsibility of their own
actions and speech. In addition, the second type of examples include the responsibility
of each community member to support other community members by flagging bad
behavior and engaging when others are being disrespected. One code of conduct
specifically discussed resolving disagreements constructively and asking for help when
unsure what to do. In the unacceptable behavior examples elements category, we found
a range of approaches being used by the OSS communities, including not mentioning
any unacceptable behavior to giving very specific definitions and examples of unac-
ceptable behavior. Some common themes that most of these examples included are
harassment, verbal abuse, sharing private information about others, spamming, being
rude or offensive, exclusionary behavior, trolling and personal attacks. Some Codes of
conduct use this section of the code to condemn any acts of harassment related to
gender or otherwise. A standard template language was often used to explain these
unacceptable behaviors; this language is from a standard template and was found across
multiple websites. E.g. “Examples of harassment: Verbal taunting,
racial and ethnic slurs, comments that are degrading or unwel-
come regarding a person’s nationality, origin, race, color,
religion, gender, sexual orientation, age, body disability or
appearance”. Specific examples against sexual harassment were also found such as;
“sexual harassment of any kind, defined as unwelcome sexual
advances, verbal sexual innuendos, suggestive comments, jokes
of a sexual nature, requests for sexual favors, distribution or
display of sexually suggestive graphic materials, and other
verbal or physical conduct of an unwanted sexual or intimidat-
ing nature and contributing to an unwelcoming environment.” In the
enforcement category, we found examples that describe how the community will
enforce its code, how the community members can ensure that the code is followed and
who should be contacted to inform about the violation of the code. Some of the
consequences of violation outlined in the code of conducts are removal of content,
verbal warning, public censure of the member and expulsion from the community.
Removal of offensive content or illegal content is often the first act after a report is
made. In most codes, this section also explains the process of registering a complaint
and the steps taken by the community. Only one community mentions legal actions
against community members if they post illegal content. Community moderators
contact information is provided in most of the codes and specific names were provided
in some instances. In the scope element category, all the codes of conduct defined their
community and distinguished the spaces based on being online or offline. Online
included forum, mailing list, wiki, web site, code repository, IRC channels, and private
correspondence and public meetings. In offline events, it included meetups, hackathons,
events, conferences and public meetings. The intended audience for all the community
was specified as the users of the spaces and members who belonged to the community.
In the specific mention of gender and/or minority category, we found examples of
template-based language that was repeated in less than half of the total codes of
conduct. A common excerpt for this category is, “We are committed to making
participation in this project a harassment-free experience for

76 V. Singh and W. Brandon

everyone, regardless of level of experience, gender, gender
identity and expression, sexual orientation, disability,
personal appearance, body size, race, ethnicity, age, reli-
gion, or nationality.”

5 Discussions and Future Research

The results show that different types of women only spaces are present in very few OSS
communities. These spaces are considered “safe” spaces for women and are focused on
mentoring, supporting, helping, guiding, advancing women in these communities. The
objectives of these spaces are very much in line with the research that shows that when
women feel safe, they are able to participate, engage and create better [11]. Some of the
spaces we studied also had very specific information about sexual harassment, self-
harm issues and “no defined topic” areas. These “no defined topic” areas are for any
discussion that the women would like to have with other women and was not restricted
to OSS or technology. We believe the concept of peer parity (when an individual can
identify with at least one other member when interacting in a community) [7] would be
valuable in OSS communities to improve the participation and retention of women.
Fedora Women does that by identifying and posting profiles of other women who are
successful in the Fedora community. More OSS communities should consider creating
women only spaces in order to become more inclusive for women and to provide
resources to women who participate. The expenses for creating these women only
spaces would be mitigated by the larger number of women who will participate and the
improved sense of safety and equality that the women will experience. The impact of
these safe spaces for women has been studied in other areas [10], but not specifically in
OSS communities. The authors of this study will continue this research by studying a
larger number of such women only spaces in OSS communities and by interviewing the
members of these communities to assess the perceived impact. Codes of Conduct
investigation revealed very few OSS communities have a Code of Conduct. Recent
research has shown an increasing trend [20], but there needs to be more awareness
about the value of Codes of Conduct for fair treatment of all participants of a com-
munity. Specially, since there are several existing templates for Codes of conduct, we
urge the creators of the OSS communities to adopt one of the existing ones, if they are
not able to revise the existing ones for their own community. The codes of conduct that
are present also do not always highlight women and or minority equality and inclusion.
This might be due to a number of reasons, but having these explicit gives an oppor-
tunity to the community members to cite these whenever they have to address a conflict
or have to flag out a violation of the code. A combination of women only spaces and
community rules that explicitly include women will create a positive and welcoming
environment for newcomers and veteran women members of the community. The
results from the women only spaces show a variety of positive ways in which OSS
communities are supporting women. The code of conduct can benefit from adopting
some of the same language and activities. The authors of this study acknowledge that
codes are conduct are often time added to communities, when they are already suc-
cessful. We believe that adopting a Code of Conduct early on in the life of a project,

OSS Community Inclusion Initiatives to Support Women Participation 77

will be a contributing factor for the success of a project. Presence of a code of conduct
will demonstrate an interest in building a fair and collaborative space.

We note that this exploratory study is limited in its sample selection and the sample
size is not representative of the entire OSS environment. In future research, we will
expand our sample size to include trending projects on GitHub and continue to evaluate
the role of community rules and women only spaces in an OSS community. As a next
step to this research, we are analyzing the women only spaces for membership,
longevity and topics. We believe that women only spaces and inclusive community
rules will provide a strong foundation for OSS communities to attract more women and
retain the existing women contributors.

References

1. Carillo, K.D.A., Huff, S., Chawner, B.: What makes a good contributor? Understanding
contributor behavior within large Free/Open Source Software projects – a socialization
perspective. J. Strateg. Inf. Syst 26(4), 322–359 (2017)

2. Carillo, K.D.A., Huff, S., Chawner, B.: It’s not only about writing code: an investigation of
the notion of citizenship behaviors in the context of Free/Libre/Open Source Software
communities. In: 2014 47th Hawaii International Conference on System Sciences, Waikoloa,
HI, pp. 3276–3285 (2014)

3. Catolino, G., Palomba, F., Tamburri, D.A., Serebrenik, A., Ferrucci, F.: Gender diversity and
women in software teams: how do they affect community smells? In: 41st International
Conference on Software Engineering, (ICSE 2019). Software Engineering in Society (2019)

4. Coelho, J., Valente, M.T.: Why modern open source projects fail. In: Proceedings of 2017
11th Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering, Paderborn,
Germany, 4–8 September 2017 (ESEC/FSE 2017), 11 p. (2017)

5. Department of Labor Force Statistics from the Current Population Survey - 2017 (2017).
https://www.bls.gov/cps/cpsaat11.htm

6. Finley, K.: Diversity in open source is even worse than in tech overall.WiredMagazineWebsite
(2017) https://www.wired.com/2017/06/diversity-open-source-even-worse-tech-overall/

7. Ford, D., Harkins, A., Parnin, C.: Someone like me: how does peer parity influence
participation of women on stack overflow? In: 2017 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), Raleigh, NC, pp. 239–243 (2017)

8. IRINEP: Is open source open to women (2017). https://wotc.crn.com/blog/is-open-source-
open-to-women

9. Karpf, D.: Open source political community development: a five-stage adoption process.
J. Inf. Technol. Politics 8(3), 323–345 (2011)

10. Kilamo, T., Hammouda, I., Mikkonen, T., Aaltonen, T.: From proprietary to open source—
growing an open source ecosystem. J. Syst. Softw. 85(7), 1467–1478 (2012)

11. Lewis, R., Sharpe, E., Remnant, J., Redpath, R.: ‘Safe spaces’: experiences of feminist
women-only space. Soc. Res. Online 20 (2015). https://doi.org/10.5153/sro.3781

12. Michlmayr, M.: Community management in open source projects. Upgrade 10(2), 22–26
(2009)

13. NCWIT National Council of Women in Information Technology (2016). https://www.ncwit.
org/sites/default/files/resources/btn_03092016_web.pdf

78 V. Singh and W. Brandon

https://www.bls.gov/cps/cpsaat11.htm
https://www.wired.com/2017/06/diversity-open-source-even-worse-tech-overall/
https://wotc.crn.com/blog/is-open-source-open-to-women
https://wotc.crn.com/blog/is-open-source-open-to-women
http://dx.doi.org/10.5153/sro.3781
https://www.ncwit.org/sites/default/files/resources/btn_03092016_web.pdf
https://www.ncwit.org/sites/default/files/resources/btn_03092016_web.pdf

14. Raasch, C., Herstatt, C., Abdelkafi, N.: Open source innovation: characteristics and
applicability outside the software industry. Working Paper 53 (2008)

15. Robles, G., Reina, L.A., González-Barahona, J.M., Domínguez, S.D.: Women in
Free/Libre/Open Source Software: the situation in the 2010s. In: Crowston, K., Hammouda,
I., Lundell, B., Robles, G., Gamalielsson, J., Lindman, J. (eds.) OSS 2016. IAICT, vol. 472,
pp. 163–173. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39225-7_13

16. Scacchi, W.: Collaboration practices and affordances in Free/Open Source Software
development. In: Mistrík, I., Grundy, J., Hoek, A., Whitehead, J. (eds.) Collaborative
Software Engineering, pp. 307–327. Springer, Berlin (2010)

17. Taft, D.: Amidst Bias, Women Work to Find a Place in Open Source Communities (2017).
https://thenewstack.io/women-open-source-still-fighting-good-fight/

18. Terrell, J., et al.: Gender differences and bias in open source: pull request acceptance of
women versus men. PeerJ Comput. Sci. 3, e111 (2017). https://doi.org/10.7717/peerj-cs.111

19. Tourani, P., Adams, B., Serebrenik, A.: Code of conduct in open source projects. In: IEEE
24th International Conference on Software Analysis, Evolution, and Reengineering
(SANER), pp. 24–33 (2017)

20. Weller, M.: The distance from isolation: why communities are the logical conclusion in e-
learning. Comput. Educ. 49(2), 148–159 (2007)

OSS Community Inclusion Initiatives to Support Women Participation 79

http://dx.doi.org/10.1007/978-3-319-39225-7_13
https://thenewstack.io/women-open-source-still-fighting-good-fight/
https://doi.org/10.7717/peerj-cs.111

Predicting Popularity of Open Source
Projects Using Recurrent

Neural Networks

Sefa Eren Sahin(B), Kubilay Karpat(B), and Ayse Tosun(B)

Faculty of Computer and Informatics Engineering, Istanbul Technical University,
34469 Istanbul, Turkey

{sahinsef,karpatk,tosunay}@itu.edu.tr

Abstract. GitHub is the largest open source software development plat-
form with millions of repositories on variety of topics. The number of
stars received by a repository is often considered as a measure of its
popularity. Predicting the number of stars of a repository has been asso-
ciated with the number of forks, commits, followers, documentation size,
and programming language in the literature. We extend prior studies
in terms of input features and algorithm: We define six features from
GitHub events corresponding to the development activities, and addi-
tional six features incorporating the influence of users (followers and
contributors) on the popularity of projects into their development activ-
ities. We propose a time-series based forecast model using Recurrent
Neural Networks to predict the number of stars received in consecutive
k days. We assess the performance of our proposed model with varying
k (1, 7, 14, 30 days) and with varying input features. Our analysis on
five topmost starred repositories in data visualization area shows that
the error rate ranges between 19.76 and 70.57 among the projects. The
best performing models use either features from development activities
only, or all metrics including all the features.

Keywords: Open source projects · Predicting stars ·
Recurrent Neural Networks

1 Introduction

GitHub is a web-based collaborative software development platform built on the
git version control system; it is also considered as a social community of devel-
opers [13]. In GitHub, users can follow the projects that they are interested in
through GitHub stargazers [14]. GitHub keeps millions of repositories on variety
of topics. The number of projects are generally high on popular topics such as
machine learning, visualization libraries, web application platforms. Since there
are many similar projects specialized on the same topic that a user can follow,
it is necessary to make a decent analysis on the existing alternatives in order to

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
F. Bordeleau et al. (Eds.): OSS 2019, IFIP AICT 556, pp. 80–90, 2019.
https://doi.org/10.1007/978-3-030-20883-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20883-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-20883-7_8

Predicting Popularity of Open Source Projects 81

find the most suitable library or tool for a specific requirement of a user. The
number of GitHub stars can be an appropriate criterion for this selection, since
it is viewed as a measure of others developers’ approval on the suitability of a
project for a specific task, or in other words, a project’s popularity [17].

Long-term support is an important factor while evaluating both OSS and
commercial software projects, however OSS projects do not offer any binding
contract about any future updates and maintenance. At this point, forecasting
the number of stars of those OSS projects could be helpful. For example, Borges
et al. [3] built a forecast model for GitHub projects based on the number of
forks, commits and contributors, code features (age, programming language)
and documentation of the projects. Incorporating other features from issues
and users [1,6] into the development activity of those projects produced more
valuable insights in other studies. Models on predicting the number of stars are
often built with time-series data using different regression techniques [3,17]. We
extend those models by adding both events taken from GitHub API such as
number of forks, releases, commits, and issues, and weighting them based on
the users’ (developers and followers) influence. We also use a special variation of
Recurrent Neural Networks (RNNs) which has been popularly used in time-series
forecasting (e.g. [7,8,18]). We have built prediction models for the five topmost-
starred data visualization projects in GitHub, and assessed the performance of
the models for the following research questions:

– RQ1: How does the proposed model predict the number of stars with varying
days (k)?

– RQ2: What are the effects of user-score based, weighted metrics on the pre-
dicting the number of stars?

Using contemporary forecasting techniques and a combined set of features, we
believe our proposed model could guide users to understand the evolution of OSS
projects, and to select which projects to contribute in their future development
activities [5]. In the rest of the paper, we summarize related work (Sect. 2),
describe our methodology for collecting the projects, extracting metrics and
model construction and evaluation (Sect. 3), discuss our results in Sect. 4 and
finally, we share our conclusions in Sect. 6.

2 Related Work

As GitHub became the widespread for OSS development, investigating its dif-
ferent aspects has become inevitable for our community. Secondary studies on
GitHub (e.g. [9,13]) report that researchers mine GitHub repositories to under-
stand software development such as pull requests and forks, characterize projects
with respect to popularity, collaboration and transparency, and model social fac-
tors through users and developers. In predicting the popularity of projects, stud-
ies investigate the number of stars, forks, followers and found strong relations
among those [9]. Having more consistent documentation as well as having many
contributors are found to be other factors explaining popularity of a project [9].

82 S. E. Sahin et al.

We found many studies on understanding a project’s popularity in GitHub, but
discussed three studies on predicting the popularity of projects in terms of num-
ber of stars [3,4,17] below.

Borges et al. built models for predicting the number of stars of 2500 GitHub
repositories in two of their studies [3] and [4]. In [4], different features from
around 2500 GitHub repositories were extracted, such as the project age, the
number of forks, commits, contributors, application domain, programming lan-
guage and repository owner. They analyzed the relationship between these fea-
tures and the number of stars, and found that there is a weak correlation between
the age, the commits, and its star count, however there is a strong correlation
between forks and stars [4]. After major releases, projects tend to get a lot
of stars. Furthermore, projects are likely to receive more stars right after the
first public release. Following that research, [3] expanded their initial model by
clustering repositories by their growth rate, making in-cluster predictions and
comparing those in-cluster predictions with generic predictions. They built a
multiple linear regression model to predict the number of stars of GitHub repos-
itories using previous star counts as their model input. The authors were able
to predict the number of stars six months ahead with high confidence using star
events of past six months, and they mostly observed more accurate results with
in-cluster predictions [3]. Weber and Luo [17] mined two snapshots of GitHub
projects, and extracted 38 features, 20 of which were from Python abstract syn-
tax trees (in-code features) and 18 of which were related to project volume,
documentation volume, presence of supporting files, and standard library usage.
The GitHub snapshots were divided into two even groups, 1000 low popularity
and 1000 high popularity projects. Using decision tree classifier, [17] reports the
most important features for distinguishing a low popular project from a high
popular one as readme file size, continuous integration file size, class definitions,
and comment ratios. The division of projects into two classes and the features
are different from general practices in this area, and the decision tree classifier
is used for finding the importance of features rather than predicting the stars
using these features.

In our study, we propose a time-series based model to predict the number of
stars received in consecutive k days. Previous works on predicting the number of
stars [3,4,17] and on predicting the number of forks [6] are similar to our research
goal, although they differ from our work in terms of methodology, algorithm
and collected data. [4] did not build a predictive model but by using descriptive
analytics, it is reported that forks and release dates are important factors for
predicting the popularity. We use the forks, commits, releases as some of the
features in our model. We also follow prior studies’ findings and extend the set
of features by incorporating the effect of users (contributors and followers of the
projects) [5,16] and issues [2] on the star counts. [3] uses multi linear regression
model to predict star counts, and reported accurate results in most projects,
yet considered as unreliable for repositories with non-linear growth by authors
themselves. [6] predicts the number of forks after T months since the project’s
start date and uses a stepwise linear regression model for all projects. Different

Predicting Popularity of Open Source Projects 83

from both these works, we utilize the power of deep learning methods which do
not depend on the linearity constraints. We use a special variation of recurrrent
neural networks for time series forecasting as these techniques were successfully
applied to other problems in [7,12,18], especially when incorporating many input
features in the form of time-series. Furthermore, our model predicts the number
of stars received in consecutive k days. We believe predicting cumulative star
count is more challenging because it either increases over days or gets stabilized
after the project activity degrades. For the projects with high number of stars,
the number of stars received over a week/month may not affect the total number
of stars and therefore, forecast models may produce low error rates which is
misleading for the star count prediction. Therefore, we aim to find the evolution
of the number of stars in GitHub projects using recurrent neural networks.

3 Methodology

In this section, we describe our dataset, our methodology of extracting and
interpreting metrics, the training algorithm and the model construction.

3.1 Dataset

Our research focuses on a set of interchangeable repositories which operate in the
same application area, namely data visualization, since the earlier work report
that the distribution of the number of stars by application area is significantly
different [4]. The dataset used in this study includes historical data of the selected
area. All the data was collected through the public API provided by GitHub.
For each data-visualization repository, we collected commit, issue opening, issue
closing, starring, forking and publishing a release events in terms of who and
when performed the event. All these events can be interpreted as potential fea-
tures for predicting the stars. Commits are the main activities in GitHub. Hence,
an actively developed repository with frequent commits may attract the com-
munity more than a repository which does not receive commits on a regular
basis. Issue tracking systems are significant parts of software development as
they lead to the participation of community while reporting bugs and request-
ing new features [2,10]. Thus, issue opening/closing activities can be associated
with the interest of community. Forks on the other hand, is highly correlated
with the number of stars [4]. Publishing releases also may attract the community.
We built a time-series data of each repository. The time-series datasets contain
daily number of received stars and other metrics extracted from the events. Even
though we collected the whole timeline of the repositories, we limit our dataset
to the beginning of 2013. We also selected five topmost starred repositories as
our dataset for the experiments. Table 1 shows the selected repositories and their
number of stars as of the date their data were crawled from GitHub.

Metrics. We have selected six metrics based on the GitHub events collected
from data visualization repositories. In order to see the effect of the users, we also

84 S. E. Sahin et al.

Table 1. Five topmost starred repositories (as of 2017-11-14).

Repository No. of stars

d3/d3 70049

chartjs/Chart.js 33416

ecomfe/echarts 21785

Leaflet/Leaflet 19944

gionkunz/chartist-js 10151

derived a time-aware user scoring method, calculated six additional weighted
metrics based on user scoring, and computed 12 metrics in total. Since we have
built a daily time-series data, all of the metrics are computed on a daily basis.
The weighted metrics, on the other hand, are aggregated by summing scores of
all the users related with the repository until day t. We listed the metrics and
their brief descriptions in Table 2.

Table 2. Metrics and their descriptions.

Metric Description

Number of stars The number of stars received by the repository at day t

Number of forks The number of forks received by the repository at day t

Number of commits The number of commits made on the repository at day t

Number of opened issues The number of issues opened on the repository at day t

Number of closed issues The number of issues closed on the repository at day t

Number of releases The number of releases published by the repository at day t

User Scoring. Previous models in the area of measuring developer influence
propose metrics like the number of followers in GitHub [2,10]. [2] also proposed a
method for ranking developers through an influence propagation over a network
of users. Our scoring mechanism also calculates an influence score for a developer
by adhering to the development and community activities within the repositories
on data visualization area. However, weighting a metric on day t1 with user score
on day t2 may cause incorrect results. Thus, instead of using static user scores, we
have created a time-series data of user scores such that the metrics on day t are
weighted based on the scores of the users in data-visualization repositories until
day t. We have seven main user-scoring metrics. The user-score metrics and their
descriptions can be seen in Table 3. Equation 1 shows our heuristic formulation
for calculating the user score on day t. We weighted each metric based on its
importance value and normalized the metric by dividing it to the sum of the
importance values. With this calculation, the impact of a user increases over
time as the user actively contributes to the projects in the selected application
area.

Predicting Popularity of Open Source Projects 85

Table 3. User-score metrics, their descriptions and importance (I) values.

Metric Description I

Number of commits The number of commits made by the user until day t 7

Number of closed issues The number of issues closed by the user until day t 6

Number of releases The number of releases published by the user until day t 5

Number of contributed repositories The number of repositories the user made contributed until day t 4

Number of opened issues The number of issues opened by the user until day t 3

Number of forks The number of repositories forked by the user until day t 2

Number of stars The number of repositories starred by the user until day t 1

score(u,t) =
∑

i metrici(u, t) ∗ importancei∑
i importancei

(1)

3.2 Algorithm

Even though there are linear regression models and ARIMA to model time series
data, we use Long Short Term Memory (LSTM) as our forecast model. LSTM
is a special variation of Recurrent Neural Network (RNN) as a solution for the
problem of blowing up and vanishing of recurrent back-propagation in traditional
RNNs [11]. A simple LSTM unit consists of a memory cell and gates [11]. In
memory cell, important information of the input sequence is stored. The gates
determine whether the information will be stored or not. Thus, this makes it
applicable for predicting time-series. The architecture of LSTM makes it suitable
for training steps of time-lag sequences with different input and output steps.
Our motivation is to build a flexible forecast model which is capable of making
predictions for k consecutive days by learning from historical time-series data,
and hence, LSTM fits perfectly to this requirement.

There have been many applications of LSTM for time series forecasting (e.g.
[7,12,18]). Previous studies show that LSTM outperformed models built with
Support Vector Regression on both univariate and multivariate data for phone
price prediction in [7], and with ARIMA for CPU usage prediction [12]. It is also
proven that multiple features can be fed into time-series forecasting with LSTM
[18].

3.3 Model Construction

As LSTM Networks are capable of learning sequences in different fields, this
algorithm allow us making multi-step predictions. To accomplish that, we for-
matted our time-series dataset as input sequences which have historical data
and future data consists of each sample corresponding to a day. To answer RQ2,
while creating sequences at each time sample, we took data of input metrics in
previous 180 days as input, and stars in next 30 days as output. This means that
our model predicts stars received daily in the next 30 days given the previous
180 days’ data. Then, we split the dataset as 70% for training and 30% for test.
Instead of a general training model which involves all the data visualization

86 S. E. Sahin et al.

repositories, we have specialized and trained a LSTM Network for each repos-
itory individually. These constructed LSTM networks are formed by one input
layer, two LSTM layers each of which contain 500 hidden units and an output
layer.

3.4 Performance Evaluation

We evaluate our models with Mean Absolute Percentage Error (MAPE) which
is widely used for evaluating the accuracy of forecast models. It is defined as
follows:

MAPE = 100 ∗ (
1
n

n∑

t=1

|Yt − Ft|
Yt

) (2)

where Yt denotes the actual value, Ft denotes the forecasted value and n denotes
the number of samples. Even though MAPE is widely used for evaluating forecast
accuracy, outliers drastically increases the error [15]. Therefore we also report
the box plots of Absolute Percentage Error (APE) for each model over multiple
iterations.

4 Results

We built different models having different combinations of metrics as their
inputs. The input combinations are as follows: Model 1. Number of stars only.
Model 2. Repository based metrics (Table 2). Model 3. User-Score based,
weighted metrics (Metrics in Table 2 weighted based on Eq. 1). Model 4. All
metrics. Our prediction models generated forecasts for the k consecutive days
for each instance in our dataset. We chose k to be 1, 7, 14 and 30 indicat-
ing predictions made for 1 day ahead, 7 days ahead, 14 days ahead and 30 days
ahead, respectively. To answer RQ1 and RQ2, we obtained predictions for con-
secutive 30 days for each model constituted by different input combinations, and
evaluated the input combinations to see how different input metrics impact the
performance of the model. Table 4 shows the calculated MAPE values for the
input combinations across all repositories.

RQ1 aims to evaluate the performance of the proposed models on predicting
the number of stars for different days. Our experiments were made for k = 1,
7, 14, 30 days. It seems there is not a generic pattern in the change of MAPE
values over different k. The models perform almost the same for different k days.
There exists an irregular increase in MAPE values for Models 2 to 4, as the
predictions are made for further days for gionkunz/chartist-js. But the increase
is not statistically significant. d3/d3 is the best performing repository in all cases
with MAPE values less than 30%. We also computed the distribution of absolute
percentage error (APE) values of the repositories over multiple iterations of
model evaluation. Figure 1 shows APE distribution for d3/d3 project only, as
the pattern is the same for all the projects. For all cases, it is observed that the
outlier APE values cause the increase in MAPE.

Predicting Popularity of Open Source Projects 87

Table 4. MAPE values for four models across all repositories. The column k indicates
the predicted day.

Model 1 Model 2 Model 3 Model 4
k k k k

Repositories 1 7 14 30 1 7 14 30 1 7 14 30 1 7 14 30
d3/d3 28.56 28.56 28.52 28.76 20.34 20.4 21.06 19.76 20.46 21.26 22 19.79 21.07 21.13 21.23 20.45
chartjs/Chart.js 32.89 32.89 33.56 30.03 33.27 32.2 31.57 37.02 32.09 29.87 29.8 33 31.82 27.93 29.49 31.87
ecomfe/echarts 42.99 42.99 44.05 47.23 39.89 45.07 45.02 48.11 53.13 53.3 53.32 53.67 44.44 50.84 47.72 49.22
Leaflet/Leaflet 35.39 35.39 35.57 37.99 32.95 33.15 33.35 34.62 37.89 37.45 35.56 36.42 36.95 34.69 34.9 36.32
gionkunz/chartist-js 73.25 73.25 69.78 70.48 51 57.31 59.82 66.83 65.98 54.5 58.03 70.57 48.8 48.9 48.85 59.5

Fig. 1. APE values for Day 1, Day 7, Day 14 and Day 30 for d3/d3.

RQ2 aims to assess the performance of predictions using different metric
sets in terms of MAPE values reported in Table 4. For all repositories except
ecomfe/echarts, adding metrics in addition to number of stars leads to more
accurate predictions. Especially for d3/d3 and gionkunz/chartist-js, error values
significantly decreases when the metrics are included to the model. Even though
adding user-score based, weighted metrics slightly decreases the error values for
gionkunz/chartist-js in all days, and for d3/d3 for Model 4, repository based
metrics (Model 2) or the combination of all (Model 4) perform much better for
d3/d3, chartjs/Chart.js, Leaflet/Leaflet, gionkunz/chartist-js.

Discussion. In RQ1, the performance of the models did not improve as they
generated predictions for bigger k days (k = 14, k = 30). This finding supports
the conclusions in [3]: For smaller k values, average relative squared error (RSE)
rates are above 30, whereas for k= 52 weeks, RSE rates decrease down to 5 in top
starred repositories [3]. Among all the models, we achieved MAPE between 19.76
and 70.57 for k = 30 days. However, predictions at k= 1 day are between 20.4 and
73.25. But the k values picked in our study are still below the k’s picked in [3], and
hence, it is expected to observe higher error rates than the prior work. Findings
of RQ2 also support the previous findings that events in GitHub in terms of
development and users contributed to the repositories are good indicators of
number of stars. In three of the projects (d3/d3, ecomfe/echarts, Leaflet/Leaflet,
only repository metrics produce an average MAPE of 20% to 44%, whereas
in the two projects (chartjs/Chart.js, gionkunz/chartist-js) all metrics perform
better with an average MAPE of 30% and 51%. When we look at the projects

88 S. E. Sahin et al.

in detail, each project has a different characteristics and hence, a different best-
performing model. The best-performing models are mostly achieved in Model 2
(d3/d3, ecomfe/echarts, Leaflet/Leaflet) with varying k. The other two projects
(chartjs/Chart.js, gionkunz/chartist-js) have better predictions with Model 4
and k = 7 and k= 14. The deviations in MAPE values show that predictions for
recent days are still challenging, and there might be other factors such as social
media attention of a project [5] causing sudden increases in star counts for the
projects. In order to focus on the area expertise of the developers we only use
their contributions to the data visualization area. However, the features and the
LSTM model are independent of the application area. Thus, our method can be
applied to different domains.

5 Threats to Validity

In this study we evaluated only one application area in GitHub, namely data
visualization, and assessed the performance of deep learning techniques on the
prediction of star counts. Fluctuations on growth trends and user interactions
particularly in this application area are likely to influence our findings. As this
study depends on development activities and community interactions of reposito-
ries, our methodology could be applied to other application areas using suitable
projects with active development activities and high star counts. Since we used
several user-score weighting metrics based on aggregated findings from litera-
ture, we had to derive a formula to come up with a single user-score weight
at a particular snap shot. The formula used is weighting all metrics based on
their importance values decided by votes of the three researchers. These impor-
tance values may change, and impact the overall weights of users at any time t,
however the values are assigned based on our experience in using GitHub and
previous studies’ highlights on the important factors influencing a user’s impact
on the community. We used MAPE to assess the performance of our model as
it is stated as a better measure to assess the forecast errors in [15]. We also
observed that MAPE is sensitive to outliers, and hence plotted APE values over
all iterations of the model.

6 Conclusion

This study proposes a methodology to predict the number of stars received at the
consecutive k days in GitHub using LSTM. Our results show that predictions
for recent days (up to 30 days) can be made with varying error rates as the
performance of LSTM differs among the selected projects. The best performing
model is achieved in d3/d3 project with a MAPE value of 19.76. As a future
work, we would like to add user-score metrics using a different heuristics into the
model, and observe the effect of these heuristics on the model performance. We
would also like to investigate the effects of individual features on predicting the
star counts. We believe LSTM performed very well on time-series GitHub events,
as it captures changes on development and contributions at the lowest granularity

Predicting Popularity of Open Source Projects 89

(daily) and adds multiple metrics’ time series data into a single model. Therefore
it is very powerful for analysis on time-series forecasting problems, and can be
configured in various forms in the future. Our proposed LSTM model can also
be applied on other repositories.

Acknowledgments. This research is supported in part by Scientific Research
Projects Division of Istanbul Technical University with project number MGA-2017-
40712 and Scientific and Technological Research Council of Turkey with project number
5170048.

References

1. Badashian, A.S., Stroulia, E.: Measuring user influence in GitHub: the million
follower fallacy. In: International Workshop on CrowdSourcing in Software Engi-
neering, pp. 15–21 (2016)

2. Bissyande, T.F., Lo, D., Jiang, L., Reveillere, L., Klein, J., Traon, Y.L.: Got issues?
Who cares about it? A large scale investigation of issue trackers from GitHub. In:
International Symposium on Software Reliability Engineering, pp. 188–197 (2013)

3. Borges, H., Hora, A., Valente, M.T.: Predicting the popularity of GitHub repos-
itories. In: International Conference on Predictive Models and Data Analytics in
Software Engineering, pp. 1–10 (2016)

4. Borges, H., Hora, A., Valente, M.T.: Understanding the factors that impact the
popularity of GitHub repositories. In: IEEE International Conference on Software
Maintenance and Evolution (2016)

5. Borges, H., Valente, M.T.: What’s in a GitHub star? Understanding repository
starring practices in a social coding platform. J. Syst. Softw. 146, 112–129 (2018)

6. Chen, F., Li, L., Jiang, J., Zhang, L.: Predicting the number of forks for open
source software project. In: International Workshop on Evidential Assessment of
Software Technologies, pp. 40–47 (2014)

7. Chniti, G., Bakir, H., Zaher, H.: E-commerce time series forecasting using LSTM
neural network and support vector regression. In: International Conference on Big
Data and Internet of Thing, pp. 80–84 (2017)

8. Connor, J.T., Martin, R.D., Atlas, L.E.: Recurrent neural networks and robust
time series prediction. IEEE Trans. Neural Netw. 5(2), 240–254 (1994)

9. Cosentino, V., Izquierdo, J.L.C., Cabot, J.: A systematic mapping study of software
development with GitHub. IEEE Access 5, 7173–7192 (2017)

10. Grammel, L., Schackmann, H., Schröter, A., Treude, C., Storey, M.A.: Human
aspects of software engineering, pp. 1–6 (2010)

11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

12. Janardhanan, D., Barrett, E.: CPU workload forecasting of machines in data cen-
ters using LSTM recurrent neural networks and ARIMA models. In: International
Conference for Internet Technology and Secured Transactions (2017)

13. López, A.R.: Analyzing GitHub as a collaborative software development platform:
a systematic review. MSc thesis, University of Victoria (2017)

14. Neath, K.: Notifications & stars, August 2012
15. Shcherbakov, M.V., Brebels, A., Shcherbakova, N.L., Tyukov, A.P., Janovsky,

T.A., Kamaev, V.A.: A survey of forecast error measures. World Appl. Sci. J.
24(24), 171–176 (2013)

90 S. E. Sahin et al.

16. Tsay, J., Dabbish, L., Herbsleb, J.: Influence of social and technical factors for
evaluating contribution in GitHub. In: 36th Internaitonal Conference on Software
Engineering, pp. 356–366 (2014)

17. Weber, S., Luo, J.: What makes an open source code popular on GitHub? In:
International Conference on Data MiningWorkshop, December, pp. 851–855 (2014)

18. Zhang, L., Liu, P., Gulla, J.A.: A neural time series forecasting model for user
interests prediction on Twitter. In: 25th Conference on User Modeling, Adaptation
and Personalization, pp. 397–398 (2017)

What Attracts Newcomers to Onboard
on OSS Projects? TL;DR: Popularity

Felipe Fronchetti1(B), Igor Wiese2, Gustavo Pinto3, and Igor Steinmacher4

1 University of São Paulo, São Paulo, São Paulo, Brazil
fronchetti@usp.br

2 Federal University of Technology, Campo Mourão, Paraná, Brazil
igor@utfpr.edu.br

3 Federal University of Pará, Belém, Pará, Brazil
gpinto@ufpa.br

4 Northern Arizona University, Flagstaff, Arizona, USA
igor.steinmacher@nau.edu

Abstract. Voluntary contributions play an important role in maintain-
ing Open Source Software (OSS) projects active. New volunteers feel
motivated to contribute to OSS projects based on a set of motivations.
In this study, we aim to understand which factors OSS projects usu-
ally maintain that might influence their new contributors’ onboarding.
Using a set of 450 repositories, we investigated mixed factors, such as
the project age, the number of stars, the programming language used, or
the presence of text files that aid contributors (e.g., templates for pull-
requests or license files). We used a K-Spectral Centroid (KSC) clustering
algorithm to investigated the newcomers’ growth rate for the analyzed
projects. We could found three common patterns: a logarithmic, an expo-
nential, and a linear growth pattern. Based on these patterns, we used a
Random Forest classifier to understand how each factor could explain the
growth rates. We found that popularity of the project (in terms of stars),
time to review pull requests, project age, and programming languages are
the factors that best explain the newcomers’ growth patterns.

Keywords: Open Source Software · Newcomers · Attractiveness

1 Introduction

Voluntary contributions play an important role in maintaining Open Source
Software (OSS) projects active [29]. This is because OSS projects work in a
symbiotic way. While communities need to motivate, engage, and retain new
developers to remain sustainable [19], a large, globally distributed community of
developers wants to contribute for a variety of reasons, including learning, the
necessity to fix a bug, and reputation [13,24,33].

However, as shown before in several studies [28–30], the newcomers face sev-
eral barriers while joining to OSS projects. This can lead to demotivation and,
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
F. Bordeleau et al. (Eds.): OSS 2019, IFIP AICT 556, pp. 91–103, 2019.
https://doi.org/10.1007/978-3-030-20883-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20883-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-20883-7_9

92 F. Fronchetti et al.

ultimately, dropouts. Given the importance of the newcomers to the projects
and the barriers they face, it is important to study the different aspects of the
joining process. As previously stated by Steinmacher et al. [30], joining a project
is a complex process composed of different stages and a set of forces that push
newcomers towards (motivation and attractiveness) or away (onboarding barri-
ers) from the project. While motivation is something that is usually inherent to
the developers, attractiveness is a force that—to some extent—can be managed
by the projects.

Some previous studies analyzed project attractiveness by analyzing its rela-
tionship with license [22], source code attributes [15,16], and code base [4].
However, the existing literature does not analyze the temporal aspect of the
newcomers’ joining, nor consider the recent phenomenon of social coding envi-
ronments and their characteristics, which introduced a more standardized way
to contribute [9]. This perspective is important, since, according to Capiluppi
and Michlmayr [3] “the success of a project is often related to the number of
developers it can attract”.

In this paper, we start filling this gap by investigating which projects’ char-
acteristics are related to the increase of newcomers growth temporally in OSS
projects maintained on GitHub. To achieve that, we selected a set of factors
inherently from the OSS projects that might explain the increase of newcom-
ers. We place these factors in context, measuring their effects on 72 weeks of
growth of newcomers in 450 OSS projects. Our approach included clustering the
OSS projects in terms of newcomers’ joining growth, aiming to identify different
growth patterns. Based on the patterns identified, we leveraged the Random
Forest [2] classifier to measure the effects of the projects’ characteristics aiming
to explain each pattern.

The contributions of this study include: (i) empirical evidence of different
patterns of newcomers growth in OSS projects, adopting a time series analysis;
and (ii) identifying the factors that could potentially lead to attraction of new-
comers in OSS projects. Ultimately, the results of this work may benefit project
maintainers who can get acquainted with ways to make their project’s more
attractive, creating a more welcoming environment for newcomers.

2 Methodology

To guide our research towards this goal, we designed the following research
questions:

– RQ1. What are the newcomer joining rates in OSS projects? The
answer to this question is relevant to understand if projects receive constant
rates of newcomers temporally, or if there are different trends for different
projects. In case we find different trends of temporal joining rates, it is worth
understanding how these different trends can be classified. By having a com-
prehensive classification of newcomers joining rate per time, it is possible to
go in-depth and explore the reasons for the differences.

What Attracts Newcomers to Onboard on OSS Projects? 93

– RQ2. What are the project’ factors that may influence the joining
rate? The answer to this question aims to explain what are the factors that
may influence different rates of newcomer joining, which may bring to light
potential ways to attract more developers to OSS projects.

2.1 Curating the Corpus of OSS Projects

To explore the attractiveness of OSS projects, we retrieved data from 450 OSS
projects hosted on the GitHub coding platform. To improve the variety of
projects, we first selected the fifteen most popular programming languages used
on GitHub [20]. The set of programming languages was composed of C, Clojure,
CoffeeScript, Erlang, Go, Haskell, Java, JavaScript, Scala, Objective-C, Perl,
PHP, Python, Ruby, and TypeScript. To avoid unmaintained projects, for each
selected programming language, we filtered the 30 most starred OSS projects.
We followed recent related work that considers stars as a measure of attractive-
ness in OSS projects [1]. We ended up with 450 OSS projects, written by 15
popular programming languages. The set of sampled projects included:

– scala/scala: The Scala programming language was released in 2001 and
has received more than 31 K commits. Mostly written in Scala.

– django/django: High-level web application framework. Release in 2005, it
has received more than 26 K commits. Mostly written in Python.

– vim/vim: Highly configurable text editor. Released in 1991, it has received
more than 9 K commits. Mostly written in C.

of Stars

F
re

qu
en

cy

0 10000 20000 30000 40000

0
50

10
0

15
0

Fig. 1. Stars per project

As one can see, Fig. 1 suggests that even
selecting projects with the highest number
of stars, the distribution of stars varies sig-
nificantly in the dataset, ranging from 6 to
39,990 stars (Q1: 3,648; Median: 10,470; Q3:
18,900). The data was collected using the
GitHub API, and it was conducted in Octo-
ber 2018. To access the complete dataset and
the source code of the tools used in this
research are publicly available in our reposi-
tory1.

In our analysis, we collected a set of fac-
tors from the selected projects’ repositories, including project popularity, matu-
rity, receptivity/welcoming features. We used these factors in our model, and
their descriptions are presented in Table 1. We also calculated the Spearman
correlation coefficients [12] on the factors in order to remove the strongly corre-
lated ones (ρ > 0.7). The number of forks was removed from the list of factors
since it has a high correlation with the number of stars.

1 https://github.com/fronchetti/OSS-2019.

https://github.com/fronchetti/OSS-2019

94 F. Fronchetti et al.

Table 1. Factors extracted from repositories

Factor Description

Age Number of years since the repository creation

Main language Most used programming language

Time to merge Average of days for pull requests (PR) to be merged

Account type If the OSS is hosted on an Organization or User account

Domain The software application domain

of stars Number of stars

of languages Number of used programming languages

of integrators Number of contributors with rights to merge pull requests

Has PR template Repository has a standard template for new pull requests

Has issue template Repository has a standard template for new issues

Has license Repository has the LICENSE file

Has code of conduct Repository has CODE OF CONDUCT file

Has readme Repository has the README file

Has contributing Repository has the CONTRIBUTING file

Has wiki Repository has WIKI+ section

It is important to note that some of these factors are not straightforwardly
available in the GitHub repository, which is the case of the domain of the repos-
itories. For this particular factor, we followed the Borges et al. methodology to
define projects domain [1], and manually added it by doing a qualitative analysis
over the website and documentation of the projects. As an example, we manually
evaluate the Linux website2 to define it as part of the system software domain.

To characterize the project attractiveness temporally, we collected the new-
comers’ growth rate for each project, considering one week as the observation
unit. The growth of newcomers is represented by a time series, which associates
the evolution of the number of newcomers with the number of weeks existent in
each project (newcomers per week). To this end, we define a newcomer as any
contributor that submitted their very first contribution (commit) to the master
branch. It is worth mentioning that each contributor was considered a newcomer
only once, in the particular week that they submitted their first commit.

2.2 Identifying Growth Patterns

To identify the different newcomers’ growth patterns, we clustered the sampled
OSS projects growth according to the time series mentioned before. We used
the K-Spectral Centroid (KSC) clustering algorithm [32] to create the clusters.
The KSC algorithm finds clusters of time series that share distinct temporal

2 https://www.linux.com/what-is-linux.

https://www.linux.com/what-is-linux

What Attracts Newcomers to Onboard on OSS Projects? 95

patterns, following a similar approach as the used in the classical K-means clus-
tering algorithm [11]. We chose to apply the KSC clustering algorithm because
the clustering is performed independently of shifts (i.e., dates) and scale (i.e.,
volume), focusing rather on the overall shape of the time series [7]. Moreover,
the KSC algorithm was applied in well-established papers that follow a similar
approach in different contexts [1] and domains [8].

The KSC algorithm requires that all the time series used during the clusteriza-
tion have the same length. For this reason, we used only the time frame compris-
ing the last 72 weeks of newcomers inflow for each project, considering the date
of the dataset creation (October 2018). We use the length of 72 weeks because all
projects are at least 72 weeks old. The KSC algorithm also requires the definition
of a specific number of k clusters. To decide the best number of k clusters, we used
the βCV [17] heuristic. The βCV heuristic is defined as the ratio of two coefficients:
variation of the intracluster distances and variation of the intercluster distances.
The smallest value of k after which the βCV ratio remains roughly stable should
be selected, as a stable βCV implies that new splits affect only marginally the vari-
ations of intracluster and intercluster distances [8].

Fig. 2. The βCV ratios

Figure 2 presents an association
between the βCV ratios and the k clus-
ters for the newcomers time series.
When considering the βCV ratios and
the number of projects per cluster, we
decided to use k = 3 clusters in the
K-SC algorithm. Note that k = 4 clus-
ters could represent a better number
of clusters in terms of ratio stability.
By testing the clustering algorithm for
k = 3 and k = 4, we found that the
results were similar, and two groups
could clearly be merged. Moreover,
having a small number of projects per
cluster would affect the future classification of patterns presented in Sect. 2.3.
Thus, we kept with k = 3 clusters.

2.3 Identifying Explanations to the Growth Patterns

Our next step was to explore the different newcomers’ growth patterns. To
achieve this goal, we used a Random Forest [2] classifier to measure the effects of
the independent variables (factors) in the explaining of the dependent variable
(growth patterns). We selected Random Forest because it is fast [23], robust
in the presence of noise and outliers [21], and has a great performance with
numerical and categorical data [25].

To develop our model, we used the RandomForestClassifier class from
the scikit-learn framework. The predictors used were the factors defined in
Table 1, and the target variables were the growth patterns found. Using a mea-
sure called Mean Decrease Impurity (MDI) [14], RandomForestClassifier also

96 F. Fronchetti et al.

provides a ranking of the most important features in the prediction of the tar-
get variables. The higher the score of the feature, the greater is its importance.
We used the scores obtained from the classifier to understand the relationship
between the factors and the growth patterns. Finally, we measured the effec-
tiveness of the classifier using three commonly used metrics of Machine Learn-
ing: Precision, Recall, and F-measure. The code related to the clusterization
and classification of the growth patterns are publicly available in our repository
(See footnote 1).

Table 2. Description of the clusters

Cluster Pattern # repositories Growth (%)

C1 Logarithmic 71 (15.7%) 12.6%

C2 Exponential 57 (12.6%) 27.6%

C3 Linear 322 (71.5%) 19.9%

3 RQ1. On the Newcomer Joining Rates in OSS Projects

Figure 3 presents the growth patterns found, which we named as logarithmic,
exponential and linear growth of newcomers. We chose these names based on the
centroids’ trends, defined as the average growth of the clusters (also presented in
Fig. 3). In Table 2 we present a clusters overview, including the number of repos-
itories per cluster and the percentage increase of newcomers obtained from the

(a) Cluster 1 (Log.) (b) Cluster 2 (Exp.) (c) Cluster 3 (Linear)

(d) Cluster 1 (Centroid) (e) Cluster 2 (Centroid) (f) Cluster 3 (Centroid)

Fig. 3. Growth patterns clusters and centroids.

What Attracts Newcomers to Onboard on OSS Projects? 97

centroids in 72 weeks. Linear growth includes the highest number of repositories
(71.5%), with a percentage increase of newcomers of 19.9%. The Logarithmic
growth is the second one with most repositories (15.7%), but different from the
Linear growth, it has the lowest increase of newcomers (12.6%). The Exponential
growth is the less representative cluster, represented by only 12.6% of the repos-
itories. On the other hand, its percentage increase of newcomers is the highest
one (27.6%).

To put these results in a better context, we investigated OSS projects for
each one of the growth patterns. In the linear growth, we perceived that projects
definitelytyped/definitelytyped, rails/rails, and symfony/symfony,
follow this tendency from the very beginning. We perceived a similar trend when
analyzing the projects that fit on the logarithm growth. The projects alpaca-

lang/alpaca and chaplinjs/chaplin are interesting samples because both
are active projects that received their first newcomer only after the first
two months of analysis. On the other hand, the projects ionic-team/ionic,
synrc/n2o, and DrKLO/Telegram are the ones who fit in the exponential
growth. In particular, project Ionic grew from 25 to 45 newcomers in only ten
weeks of activity.

RQ1 Summary. Three different growth patterns represent the entry of
newcomers into OSS projects: Linear, exponential and logarithmic. Linear
growth represents the majority of repositories with an intermediate growth;
exponential growth represents the smallest number of repositories, but holds
the highest growth of newcomers; and logarithmic growth represents an inter-
mediate number of repositories, but has the lowest growth among the three
patterns.

4 RQ2: On the Factors that May Influence the Joining
Rate

After running the Random Forest classifier and calculating the MDI for the
factors in our prediction model, we rank the projects’ factors. Table 3 presents
factors ordered by importance in predicting of newcomers growth patterns. As
one could see, the highest score is the number of stars. This finding is particularly
interesting because, contrary to well-known beliefs that suggest that newcom-
ers may be more tempted to contribute to OSS projects that are written in a
programming language that they are more familiar with, than a popular one.
Time to merge appears next in the top factors explaining the newcomers’ growth
rate. This is interesting, because it shows a relationship between a newcomers
onboarding and the good practice of giving timely review, feedback, and closing
pull requests. Completing the list of the top factors (with scores higher than
0.10), we have factors that are intrinsically related to the project, such as age
and the number of programming languages used.

Moreover, the presence of text files such as the CONTRIBUTING file, the
LICENSE file, and the CODE OF CONDUCT file, which are even recommended

98 F. Fronchetti et al.

Table 3. Ranking of the most important factors

Ranking Factor Score

1 # of stars 0.1753

2 Time to merge 0.1535

3 # of languages 0.1278

4 Age 0.1027

5 # of integrators 0.0995

6 Main language 0.0946

7 Domain 0.0708

8 Has contributing 0.0396

9 Has wiki 0.0308

10 Has issues template 0.0260

11 Owner type 0.0252

12 Has license 0.0236

13 Has PR template 0.0183

14 Has code of conduct 0.0118

as community best practices3, are among the worst ranked factors in our model
(they scored 0.0396, 0.0236, and 0.0118, respectively). Still, having issues and
pull requests templates, which are also recommended to welcome newcomers,
presented very low scores (0.0260 and 0.0183, respectively).

We also investigated the effectiveness of the classifier in predicting the growth
patterns. We used three metrics from scikit-learn4 to investigate the effective-
ness: Precision, Recall, and F-measure [26]. Precision measures the correctness
of the classifier in predicting growth patterns. Recall measures the effectiveness
of the classifier in identifying the growth patterns. F-measure is the harmonic
mean of precision and recall. Table 4 shows the metrics’ results divided by clus-
ter, along with an overall result based on the micro-average of each metric [27].

Table 4. Precision, recall, and f-measure of the classification model. Divided by clus-
ters, and an overall.

Growth Pattern Precision Recall F-measure
Logarithmic 0.44 0.19 0.27
Exponential 0.33 0.06 0.10

Linear 0.75 0.95 0.84
Overall 0.72 0.72 0.72

3 https://opensource.guide.
4 https://scikit-learn.org.

https://opensource.guide
https://scikit-learn.org

What Attracts Newcomers to Onboard on OSS Projects? 99

In general, the Random Forest classifier obtained a significant performance,
with a micro-average of 72% for precision, recall, and F-measure. The Linear
growth group presented the highest results, and almost all its instances were
correctly classified (Precision: 75%, Recall: 95%, F-measure: 84%). On the other
hand, we could not observe good results for the Logarithmic and Exponential
groups. Only 6% of the Exponential instances were identified correctly (Preci-
sion: 33%, Recall: 6%, F-measure: 10%). The bad results may be justified by
the number of instances analyzed (We only used 450 projects), the number of
instances per growth group (since 71.5% of the instances belong to the Linear
pattern), and the characteristics used during the prediction (Other characteris-
tics may also affect the distinction of patterns). However, to understand these
differences accurately, a broader study is needed.

RQ2 Summary. Popularity of the project (in terms of stars), time to review
pull requests, and project characteristics like age and programming lan-
guages are the factors that best explain the newcomers’ growth patterns. In
addition, GitHub recommended community standards (https://github.com/
github/opensource.guide/community) have a lower influence on the observed
growth patterns.

5 Related Work

Several studies focus on how newcomers join OSS projects [18,30,31]. Von Krogh
et al. [31] propose a joining script for developers who want to take part in a
project. Similarly, Nakakoji et al. [18] proposed an onion based structure (the
onion patch) to explain the OSS joining process. Steinmacher et al. [30] proposed
a joining model, in which they represent motivation and attractiveness as forces
that influence outsiders to become newcomers to OSS project. In this study, we
focus on the characteristics of the project that may explain the attraction of
newcomers in terms of temporal onboarding growth.

The attractiveness topic had also been previously studied. For example, San-
tos et al. [22] defined a theoretical cause-effect model for attractiveness to OSS
projects, proposing its typical causes (license type, intended audience, type of
project, development status), indicators (hits, downloads, members), and con-
sequences (number of open tasks, time for task completion). They found that
projects for end-users and developers have higher attractiveness, that application
domain impacts attractiveness, and that projects licensed under most restrictive
licenses tend to be less attractive. These results contradict Colazo and Fang’s [5]
results, which analyzed 62 projects from SourceForge and found that restrictively
licensed projects are more attractive to volunteer OSS developers.

From a different perspective, Meirelles et al. [16] applied the same model as
Santos [22], inserting source code metrics as a typical attractiveness causes. They
observed that structural complexity and software size (lines of code and number
of modules), indicating that structural complexity negatively influences attrac-
tiveness, whereas software size positively influences it. Chengalur-Smith et al. [4]

https://github.com/github/opensource.guide/community
https://github.com/github/opensource.guide/community

100 F. Fronchetti et al.

analyzed whether codebase size, project age, and niche size (a measure borrowed
from ecology) influenced project attractiveness, finding that these three charac-
teristics indeed influence the project’s ability to attract and retain developers.

Although the attractiveness topic has been explored from different perspec-
tives, the studies mentioned to not consider temporal growth trends in new-
comer’s onboarding. Moreover, the aforementioned studies do not analyze the
attractiveness after the social coding environments become commonplace in OSS
development. One exception is the paper by Gupta et al. [10], who analyzed how
the adoption of continuous integration impacts developer attraction. However,
they analyzed this single intervention, without considering any other project
characteristic.

6 Limitations

In a study such as this, there are always many limitations and threats to valid-
ity. First, we considered only a limited number of attributes to explain the
phenomenon of newcomers onboarding growth. Although we understand that
different attributes and different ways to compute the factors should be used,
we focused on factors that cover project popularity, maturity, skills required,
receptivity/welcoming features.

Second, we focused only on GitHub OSS projects—the largest OSS hosting
environment to date —, which means that our findings may not generalize to
other platforms with different contributing characteristics. Moreover, we diver-
sified our sample including 30 projects for each of the 15 most popular pro-
gramming languages in GitHub, which naturally increases the diversity of our
sample. However, our focus on the most popular OSS projects may have influ-
enced factors such as the “# of Stars”. Nevertheless, as depicted at Fig. 1, the
selected OSS are greatly diverse, when it comes to the number of stars. Still,
although large, our dataset clearly does not comprehend the whole universe of
OSS projects available. Also, we did not distinguish spare time contributors from
employees hired by a software company to contribute to OSS. We are aware that
they may have different contributing behaviors [6], but a comprehensive analysis
of their joining rate is left this for future work.

Third, the decisions regarding the observation unit (in our case, one week)
can also be seen as a limiting factor. However, it is important to note that, when
exploring our data, and we found similar behavior for higher time windows.
Similarly, we also considered that the use of 72 weeks to represent the joining
rate of newcomers may not be sufficient. However, this is a limitation of the KSC
algorithm, which requires an equivalent time window for all analyzed series.

Finally, we understand that only three clusters may not represent the diver-
sity of joining rates found in OSS projects. However, we tried to overcome this
limitation by using the βCV heuristic. Yet, one might argue that our cluster
may not strictly follow the function curves we indicated (exponential, linear,
and logarithm). However, to make sense of this, we investigated the coefficients
that indicate a strong correlation with the centroids and the growth patterns.

What Attracts Newcomers to Onboard on OSS Projects? 101

Figure 4 shows this relationship. In each figure, there is a black line (the centroid
line) and a red dotted line (the trend line that represents the function curve).
As indicated, both lines follow roughly the same curve (the closer R2 is to 1
indicates the stronger is the correlation).

(a) Cluster 1 (Log.) (b) Cluster 2 (Exp.) (c) Cluster 3 (Linear)

Fig. 4. Comparing the growth patterns with the default curves. (Color figure online)

7 Conclusion

In this paper, we investigated the projects’ characteristics that may explain the
different patterns of newcomers growth in OSS projects. Through a sequence of
quantitative and statistical analyses based on data mined from 450 OSS projects,
we were able to uncover several so far unknown behaviors of OSS projects.
For instance, we perceived that there are three main onboard growth patterns
(namely a logarithm growth pattern, a linear growth pattern, and an exponential
growth pattern). Moreover, we also shed some light on the factors that might
encourage newcomers to onboard on the OSS projects. The Top-3 ranked factors
were: the number of stars, the time to merge a pull-request, and the number of
programming languages used. For future work, we plan to leverage qualitative
analysis to better understand what external reasons (e.g., new release, recently
open sourced, the first page on HackerNews, etc.) might lead some projects to
an exponential growth of newcomers.

Acknowledgment. This work is partially supported by CNPq (#430642/2016-4 and
#406308/2016-0), Fundação Araucária and FAPESP (#2015/24527-3).

References

1. Borges, H., Valente, M.T.: What’s in a GitHub star? Understanding repository
starring practices in a social coding platform. J. Syst. Softw. 146, 112–129 (2018)

2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
3. Capiluppi, A., Michlmayr, M.: From the cathedral to the bazaar: an empirical

study of the lifecycle of volunteer community projects. In: Feller, J., Fitzgerald,
B., Scacchi, W., Sillitti, A. (eds.) OSS 2007. ITIFIP, vol. 234, pp. 31–44. Springer,
Boston, MA (2007). https://doi.org/10.1007/978-0-387-72486-7 3

https://doi.org/10.1007/978-0-387-72486-7_3

102 F. Fronchetti et al.

4. Chengalur-Smith, I.N., Sidorova, A., Daniel, S.L.: Sustainability of free/libre open
source projects: a longitudinal study. J. Assoc. Inf. Syst. 11(11), 657–683 (2010)

5. Colazo, J., Fang, Y.: Impact of license choice on open source software development
activity. J. Am. Soc. Inf. Sci. Technol. 60(5), 997–1011 (2009). https://doi.org/10.
1002/asi.v60:5

6. Dias, L.F., Steinmacher, I., Pinto, G.: Who drives company-owned OSS projects:
internal or external members? J. Braz. Comp. Soc. 24(1), 16:1–16:17 (2018)

7. Figueiredo, F.: On the prediction of popularity of trends and hits for user generated
videos. In: Proceedings of the Sixth ACM International Conference on Web Search
and Data Mining, pp. 741–746. ACM (2013)

8. Figueiredo, F., Almeida, J.M., Gonçalves, M.A., Benevenuto, F.: On the dynamics
of social media popularity: a YouTube case study. ACM Trans. Internet Technol.
(TOIT) 14(4), 24 (2014)

9. Gousios, G., Pinzger, M., Deursen, A.: An exploratory study of the pull-based
software development model. In: 36th International Conference on Software Engi-
neering, ICSE 2014, pp. 345–355 (2014)

10. Gupta, Y., Khan, Y., Gallaba, K., McIntosh, S.: The impact of the adoption of
continuous integration on developer attraction and retention. In: 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR), pp. 491–
494, May 2017

11. Hartigan, J.A.: Clustering algorithms (1975)
12. Hauke, J., Kossowski, T.: Comparison of values of Pearson’s and Spearman’s cor-

relation coefficients on the same sets of data. Quaestiones geograph. 30(2), 87–93
(2011)

13. Ke, W., Zhang, P.: The effects of extrinsic motivations and satisfaction in open
source software development. J. Assoc. Inf. Syst. 11(12), 784–808 (2010)

14. Louppe, G., Wehenkel, L., Sutera, A., Geurts, P.: Understanding variable impor-
tances in forests of randomized trees. In: Advances in Neural Information Process-
ing Systems, pp. 431–439 (2013)

15. Maalej, W., Happel, H.J., Rashid, A.: When users become collaborators: towards
continuous and context-aware user input. In: Proceeding of the 24th ACM SIG-
PLAN Conference Companion on Object Oriented Programming Systems Lan-
guages and Applications, OOPSLA 2009, pp. 981–990. ACM (2009)

16. Meirelles, P., Santos, C., Miranda, J., Kon, F., Terceiro, A., Chavez, C.: A study of
the relationships between source code metrics and attractiveness in free software
projects. In: 2010 Brazilian Symposium on Software Engineering, SBES 2010, pp.
11–20. IEEE (2010)

17. Menasce, D.A., Almeida, V.A.: Capacity Planning for Web Services: Metrics, Mod-
els, and Methods. Prentice Hall PTR, Upper Saddle River (2002)

18. Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., Ye, Y.: Evolution pat-
terns of open-source software systems and communities. In: Proceedings of the
International Workshop on Principles of Software Evolution, IWPSE 2002, pp.
76–85. ACM, New York (2002)

19. Qureshi, I., Fang, Y.: Socialization in open source software projects: a growth
mixture modeling approach. Organ. Res. Methods 14(1), 208–238 (2011)

20. Ray, B., Posnett, D., Filkov, V., Devanbu, P.: A large scale study of programming
languages and code quality in GitHub. In: Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 155–165.
ACM (2014)

https://doi.org/10.1002/asi.v60:5
https://doi.org/10.1002/asi.v60:5

What Attracts Newcomers to Onboard on OSS Projects? 103

21. Robnik-Šikonja, M.: Improving random forests. In: Boulicaut, J.-F., Esposito, F.,
Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 359–
370. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30115-8 34

22. Santos, C., Kuk, G., Kon, F., Pearson, J.: The attraction of contributors in free
and open source software projects. J. Strategic Inf. Syst. 22(1), 26–45 (2013)

23. Segal, M.R.: Machine learning benchmarks and random forest regression (2004)
24. Shah, S.K.: Motivation, governance, and the viability of hybrid forms in open

source software development. Manag. Sci. 52(7), 1000–1014 (2006)
25. Shi, T., Horvath, S.: Unsupervised learning with random forest predictors. J. Com-

put. Graph. Stat. 15(1), 118–138 (2006)
26. Sokolova, M., Japkowicz, N., Szpakowicz, S.: Beyond accuracy, f-score and ROC: a

family of discriminant measures for performance evaluation. In: Sattar, A., Kang,
B. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 1015–1021. Springer, Heidelberg
(2006). https://doi.org/10.1007/11941439 114

27. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for
classification tasks. Inf. Process. Manag. 45(4), 427–437 (2009)

28. Steinmacher, I., Conte, T., Gerosa, M.A., Redmiles, D.: Social barriers faced by
newcomers placing their first contribution in open source software projects. In:
Proceedings of the 18th ACM Conference on Computer Supported Cooperative
Work and Social Computing, CSCW 2015, pp. 1379–1392. ACM (2015)

29. Steinmacher, I., Conte, T.U., Treude, C., Gerosa, M.A.: Overcoming open source
project entry barriers with a portal for newcomers. In: Proceedings of the 38th
International Conference on Software Engineering, ICSE 2016, pp. 273–284. ACM,
New York (2016)

30. Steinmacher, I., Gerosa, M.A., Redmiles, D.: Attracting, onboarding, and retain-
ing newcomer developers in open source software projects. In: Proceedings of the
Workshop on Global Software Development in a CSCW Perspective, CSCW 2014
Workshops (2014)

31. von Krogh, G., Spaeth, S., Lakhani, K.R.: Community, joining, and specialization
in open source software innovation: a case study. Res. Policy 32(7), 1217–1241
(2003)

32. Yang, J., Leskovec, J.: Patterns of temporal variation in online media. In: Pro-
ceedings of the Fourth ACM International Conference on Web Search and Data
Mining, pp. 177–186. ACM (2011)

33. Ye, Y., Kishida, K.: Toward an understanding of the motivation open source soft-
ware developers. In: 25th International Conference on Software Engineering, ICSE
2003, pp. 419–429. IEEE Computer Society, Washington (2003)

https://doi.org/10.1007/978-3-540-30115-8_34
https://doi.org/10.1007/11941439_114

Why Do Developers Adopt Open Source
Software? Past, Present and Future

Valentina Lenarduzzi1 , Davide Tosi2 , Luigi Lavazza2(&) ,
and Sandro Morasca2

1 Tampere University, Tampere, Finland
valentina.lenarduzzi@tuni.fi

2 Università degli Studi dell’Insubria, Varese, Italy
{davide.tosi,luigi.lavazza,

sandro.morasca}@uninsubria.it

Abstract. Free/Libre Open Source Software has evolved dramatically in the
last twenty years and many open source products are now considered similar, or
even better than proprietary counterparts. Given the evolution of software – both
concerning its development and its usage – it is likely that the motivations for
adopting an open source rather than a proprietary product have changed over
time. The goal of this work is to identify the current motivations for adopting
open source software, and compare them with the motivations that held in the
past. We conducted a set of interviews among software practitioners, asking
them to rank motivations for the adoption of open source software, and we
compared these new results with the motivations elicited in previous surveys
published in 2010 and 2013. The results show that motivations have actually
changed over time.

Keywords: Open source software � Free software � Adoption motivations

1 Introduction

Free and Libre Open Source Software (FLOSS) is nowadays integrated in several
commercial software products. Companies commonly use FLOSS libraries and prod-
ucts as components, or customize FLOSS for delivering new services.

In the last ten years, several researchers have proposed FLOSS adoption models or
investigated the motivations that lead to the adoption of FLOSS instead of other types
of software [3, 4, 6, 8, 10, 11]. The goal of this work is to take a snapshot of the current
motivations that lead companies to integrate FLOSS in their products, and to support
FLOSS producers in understanding which factors their users commonly look into when
they are selecting software components. We replicated the surveys published by Del
Bianco et al. in 2010 [1] and Taibi in 2013 [2] by interviewing FLOSS adopters in the
October 2015–December 2016 period. We interviewed 64 practitioners, to understand
the actual trend of motivations that drive FLOSS adoption. Results show that moti-
vations have changed over time and nowadays developers do not care mostly about
quality, ethic and economic issues, as they did in the past, but are more interested in
modifiability and professional support.

© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
F. Bordeleau et al. (Eds.): OSS 2019, IFIP AICT 556, pp. 104–115, 2019.
https://doi.org/10.1007/978-3-030-20883-7_10

http://orcid.org/0000-0003-0511-5133
http://orcid.org/0000-0003-3815-2512
http://orcid.org/0000-0002-5226-4337
http://orcid.org/0000-0003-4598-7024
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20883-7_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20883-7_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20883-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-20883-7_10

The paper is structured as follows. Section 2 describes the related work and the
background of this study. Section 3 presents the new survey. In Sect. 4, we illustrate
and discuss the results. Section 5 discusses the threats to validity of this work and
Sect. 6 draws some conclusions and outlines future work.

2 Related Work

Previous research on the adoption of FLOSS has mainly focused on adoption models,
which suggested that potential adopters take into account economic factors, license,
development process, product quality, while some other work highlighted economic
motivations, such as the total cost of ownership (TCO) and the return on investment
(ROI) [4, 10], or technological reasons [1, 5]. Qualification and Selection of Open
Source Software (QSOS) [4], Business Readiness Rating (BRR) [11], and OpenBQR
[3] also consider customer related factors, such as to what degree a product satisfies
customer requirements. Some evaluation models, such as the Model of Open Source
Software Trustworthiness (MOSST) [7], are based on the evaluation of a set of factors,
weighted according to their importance, and aim at predicting the trustworthiness of a
specific FLOSS product and the likelihood of its adoption. Instead, other models are
usually considered by potential users when they select a new FLOSS product [5, 9].
A few studies empirically investigated the motivations considered during the adoption
of FLOSS by different organization [1, 2, 6, 8, 9, 14, 15]. In 2005, Glynn et al.
highlighted personal interest and relative advantage as important factors [14].

In 2009, Del Bianco et al. provided an evidence-based models for the evaluating
OSS trustworthiness based on objective measures of OSS [19, 21–23]. They collected
100 questionnaires, containing 722 product evaluations [8]. In 2007–2009, Del Bianco
et al. [1] ran a survey collecting motivations for adopting FLOSS from 151 participants.
Product reliability and the degree to which a FLOSS product satisfies functional
requirements turned out to be the most important adoption drivers. In 2012, Del Bianco
et al., while investigating marketing and communication strategies of three FLOSS
producers, highlighted that personal opinion and the product websites play an impor-
tant role in FLOSS adoption [6]. In 2011 Basilico [26] and Lavazza [25] proposed an
OSS evaluation model to recommend OSS providers the information they should
publish on their portals, based on the information required by OSS identified in [1]. The
same information has been used to support developers in generating the OSS testing
documentation [27], and to certify the testing process [19, 28].

In 2013, Li et al. [9] conducted a survey among 294 FLOSS adopters and 212 non-
adopters in Asia, identifying as main motivations personal interest, regulations &
political influence, accomplishment and experiencing stimulation emerged as relevant
factors. In 2013, Taibi [2] replicated the study [1] by interviewing 38 participants. He
identified 22 adoption motivations, fourteen of which had already been found in [1].
The ease of customization and ethical motivations, not included in [1], were considered
the most important drivers for the adoption of FLOSS. In 2015, Yamakami [15]
proposed a set of OSS migration strategies identifying cost, coordination, and devel-
opment process as main adoption drivers.

Why Do Developers Adopt Open Source Software? 105

In 2017, Wasserman et al. [18] presented the OSSpal model, as the successor to the
BRR model [11]. OSSpal is a generic FLOSS adoption model, which aims to be
applicable to any kind of user. In OSSpal, the evaluation accounts for functionality
(how well the software meets the user’s requirements), operations (namely, security,
performances, scalability, usability, configuration and ease of maintenance), support
and services, documentation availability, technology attributes (software architecture,
modularity, flexibility, portability, extensibility, integration easiness, completeness,
faultiness), development process. The aforementioned characteristics have been pro-
posed as elements of a guideline for FLOSS evaluation based on the authors’ expe-
rience, not elicited empirically based on what criteria companies adopt during the
adoption of open source code or products.

Sbai et al. classified the information considered by the OSS adopters, focusing on
the information that can be automatically extracted from different platforms [24].

3 The Replicated Study

We carried out this study to investigate the current motivations that drive practitioners
when selecting a FLOSS products to be integrated in the software they develop, and to
outline motivation trends in the last 6 years by comparing current motivations with
those identified by previous studies [1, 2]. We formulated our goal as:

Analyze FLOSS adoption process, for the purpose of understanding, with respect to
motivations from the point of view of developers, custom integrators and project
managers, in the context of development companies integrating FLOSS or extending
FLOSS in their software products.

It is important to notice that we considered only motivations for the selection of
FLOSS that can be integrated into existing software development processes, such as
libraries, components, frameworks, or any tool including IDEs and Databases and
others. Standalone products used for generic purposes, such as office suites or other
tools were not considered in this work.

Based on the main goal, we defined the following research questions:

RQ1: What are the most common motivations for choosing a specific FLOSS
product over proprietary software?
RQ2: How did motivations evolve over time?

We followed the guidelines proposed by Carver for reporting replications [12], and
we designed the study as an exploratory, descriptive survey carried out my means of a
questionnaire, as a replication of previous studies [1, 2]. The survey consists of closed
questions based on the results reported in [1, 2]. The interview was designed to be
carried out in person, to ease communication and get a better understanding of the
answers provided.

To accurately replicate the previous works, our questionnaire had the same struc-
ture of the ones used in the previous studies, and consisted of three main sections:

106 V. Lenarduzzi et al.

• Background and Skills of Respondents. We collected the profile of the respondents:
age, country and the predominant role in the company, the experience with FLOSS
products, and the level of adoption in the organizational unit.

• Company Profile: We collected information about the type and size of the company
and industrial sector.

• Adoption Motivations: We asked the interviewees to rank the motivations for the
adoption of FLOSS software identified in [1] and [2] based on their importance, on
a scale from 0 to 10, where 0 meant “totally irrelevant” and 10 meant “funda-
mental”. We also invited the participants to add and rank new motivations.

As in the two previous surveys, the interviewees were not selected according to any
specific criterion. We interviewed 64 developers and professionals. All the interviews
were collected by the same interviewer, who also took care of considering synonyms so
as to group similar motivations. During interviews, we did not provide a set of moti-
vations; instead, we let the participants mention their own motivations and, if some of
the motivations provided in [1] and [2] where not mentioned, we asked to rank their
importance. The interviewer took note of the explanation of the motivation, to
understand and clarify possible misunderstandings.

Before analyzing the collected responses, we partitioned them into homogeneous
groups, based on demographic information. Ordinal data were not converted into
numerical equivalents, since using a conversion from ordinal to numerical data entails
the risk that subsequent analysis will give misleading results if the equidistance
between the values cannot be guaranteed. Moreover, analyzing each value of the scale
allows us to better identify the possible distribution of the answers. We ranked each
answer based on the median of the importance reported in the interviews.

4 Results

As reported in Table 1, more than half of the interviewees were software developers.
All the participants had experience in evaluating OSS, and have the power to decide if
integrate a FLOSS component or adopt a FLOSS tool in the development process (IDE,
Database, …).

4.1 Motivations for Adopting FLOSS (RQ1)

We collected 22 different motivations. The medians of the importance expressed by
respondents are given in Table 2 and Fig. 1. Results are presented for all the inter-
viewees (column “All Participants”) and grouped by role.

Evaluations by the whole set of participants range from level 1 (least important) to
level 8 (most important). For instance, Ease of Customization is ranked at level 8, so it
is deemed more important than Quality and Flexibility, which are ranked at level 7.

It can be observed that there is substantial agreement between Developers and
Custom Integrators, while, as could be expected, managers tend to give greater
importance to economic and organizational aspects. Figure 2 shows the box plots
representing the distributions of motivation importance provided by respondents. It can

Why Do Developers Adopt Open Source Software? 107

Table 1. Characteristics of respondents.

Respondents’ organization role % Company size %

Developers 51.6 Medium-sized enterprises 53.1
Custom integrator 23.4 Large corporations 31.3
Project manager 12.5 SMEs 15.6
Project manager and developers 7.8
Project manager and custom integrators 4.7
Organizations’ industrial sector % Experience with FLOSS %
Hardware/software development 32.8 Less than 2 years 20.3
Security 12.5 Between 2 and 5 years 37.5
Finance 7.8 More than 5 years 42.2
Public administration 7.8
Avionics 6.3
Telecommunications 3.1
Other domains 29.7

Table 2. Importance of motivations for adopting FLOSS (medians) (RQ1).

Motivation All
participants

Developers Custom
integrators

Project
managers

Ease of customization 8 8 8 7
Community support 8 8 8 5
Professional support 7 7 8 8
Quality 7 7 6 7
Flexibility 7 7 6 5
Maturity 7 7 7 5
Reliability 7 7 7 8
Innovation 6 6 6 3
Multiplatform
Development

6 6 6 4

Partnership 5 5 5 6
Competitiveness 5 4 5 6
No vendor lock-in 5 3 5 5
Ethics 4 4 4 5
Personal productivity 4 4 4 3
Economic aspects 4 4 4 6
Freedom 4 4 4 1
Free updates 3 3 3 3
Security 2 2 3 2
Customer requirements 2 2 2 3
Training 2 2 2 1
Reuse 2 2 2 3
Imposed by the
company

1 1 1 1

108 V. Lenarduzzi et al.

be observed that there is a strong agreement among respondents on the most important
motivations: for instance, the majority of the evaluations concerning Ease of Cus-
tomization, Community Support, Professional Support, Quality and Flexibility were in
a 2-grade range. The data in Table 2 provide the answer to our research question RQ1.

4.2 Motivations: Trend Over 6 Years (RQ2)

The results of our survey and those from previous surveys are given in Table 3. No
new motivations emerged in the 2016 survey with respect to the union of those
identified in the 2013 and 2010 studies. In the 2016 survey, all respondents specified
the importance of all motivations previously detected, whereas in [1] and [2] respon-
dents were free to mention and rank only the motivations they considered relevant.
Hence, there are some motivations–such as Flexibility, Maturity, Ethics, etc.–that do
not appear in the “2010” column, since nobody mentioned those motivations in the
2010 survey. Similarly, nobody mentioned Professional Support in the 2013 survey.

In Table 3, arrows represent changes in the importance of a motivation comparing
the first survey (2010) with the last one (2016). For example, a downwards arrow
shows that the importance of Reliability decreased (from 8 in 2010 to 7 in 2016). The
data in Table 3 provide a first answer to our research question RQ2; however, the
following observations appear useful to get a complete view of the motivations for
FLOSS adoption through years.

In 2016, Developers considered Ease of Customization, and Community Support as
the most important motivations, while in 2013 they considered Ethics, together with
Ease of Customization, as the most important motivations; back in 2010, Customer
Requirements were the main adoption driver for developers.

In 2016, Custom Integrators considered at the highest importance level also Pro-
fessional Support, together with Ease of Customization and Community Support, while
in 2013, Quality was considered by Custom Integrators as the most important moti-
vation with Ease of Customization; back in 2010, Reliability was the main driver for
adoption according to Custom Integrators.

0

1

2

3

4

5

6

7

8

9

10

Ea
se

 o
f C

us
to

m
iz

at
io

n

C
om

m
un

ity
 S

up
po

rt

Pr
of

es
si

on
al

 S
up

po
rt

Q
ua

lit
y

Fl
ex

ib
ili

ty

M
at

ur
ity

R
el

ia
bi

lit
y

In
no

va
tio

n

M
ul

tip
la

tfo
rm

 D
ev

el
op

m
en

t

Pa
rtn

er
sh

ip

C
om

pe
tit

iv
en

es
s

N
o

Ve
nd

or
 L

oc
k-

in

Et
hi

cs

Pe
rs

on
al

 P
ro

du
ct

iv
ity

Ec
on

om
ic

 A
sp

ec
ts

Fr
ee

do
m

Fr
ee

 U
pd

at
es

Se
cu

rit
y

C
us

to
m

er
 R

eq
ui

re
m

en
ts

Tr
ai

ni
ng

R
eu

se

Im
po

se
d

by
 th

e
co

m
pa

ny

Developers Custom Integrators Project Managers

Fig. 1. Importance of motivations for adopting FLOSS in 2016 (medians) (RQ1).

Why Do Developers Adopt Open Source Software? 109

Finally, in 2016 Project Managers provided indications that are partly different with
respect to the other roles: Professional Support and Reliability are deemed most
important. In 2013, Economic Aspects were considered by Project Managers as the
most important motivation, while in 2010, Reliability and Customer Requirements
were their main drivers for adopting FLOSS (Fig. 3).

Fig. 2. Importance of motivations for adopting FLOSS in 2016: boxplots (all participants).

Table 3. Importance of motivations for adopting FLOSS (medians) (RQ1).

Motivation
All Participants Developers Custom Integrators Project Managers

2016 2013 2010 2016 2013 2010 2016 2013 2010 2016 2013 2010
Ease of Customization 8 8 4 8 8 4 8 8 3 7 7 3
Community Support 8 4 6 8 3 5 8 6 6 5 2 6
Professional Support 7 5 7 5 8 5 8 6
Quality 7 6 5 7 6 5 6 8 6 7 6 6
Flexibility 7 2 7 6 2 5
Maturity 7 1 7 1 7 2 5
Reliability 7 1 8 7 7 7 1 8 8 1 8
Innovation 6 2 6 6 2 3 3
Multiplatf. Develop. 6 2 4 6 3 4 6 5 4 2 3
Partnership 5 5 5 5 4 6 7
Competitiveness 5 2 4 5 2 6 3
No Vendor Lock-in 5 1 1 3 2 1 5 2 5 1
Ethics 4 7 4 8 4 7 5 7
Personal Productivity 4 6 4 7 4 7 3 1
Economic Aspects 4 6 2 4 2 2 4 4 1 6 9 3
Freedom 4 4 4 5 4 3 1
Free Updates 3 1 4 3 2 3 4 3 1 3
Security 2 2 5 2 2 4 3 3 5 2 5
Customer Reqs 2 1 8 2 8 2 7 3 1 8
Training 2 1 2 2 2 2 4 1 1 1
Reuse 2 1 4 2 2 5 2 5 3 2 4
Imposed by company 1 1 1 1 1 1 1 1 1 1 1

110 V. Lenarduzzi et al.

Our results confirm that – as natural and expected – Project Managers continue to
focus on factors that can impact the management process of a project, while developers
mainly focus on factors that affect the development phases.

As for the evolution of the motivations in the last ten years, we can see big changes
from several points of views. Several motivations kept growing: for instance, the
importance of Quality increased from level 5 in 2010 to 6 in 2013 to 7 in 2016.
Similarly, the importance of Community Support kept growing from 2010 to 2016,
resulting in one of the most important motivations in 2016. Flexibility, Maturity,
Multiplatform Development, and Innovation dramatically increased their relevance in
2016 compared to 2013, not having been mentioned in 2010. Other motivations appear
to have an oscillating importance: for instance, in 2010, FLOSS Reliability was among
the most important adoption drivers, then its importance dropped to level 1 in 2013,
and raised back at level 8 in 2016. It is very difficult to draw conclusions about these
oscillating motivations.

Some motivations were constantly considered relevant: for instance, Ease of cus-
tomization, Professional support, and Partnership received the same evaluation in 2013
and 2016. Some motivations’ importance decreased since 2010. Other motivations,
such as Training, Reuse, and Company imposition, appear definitely not relevant,
having received low grades through the three surveys.

Considering role-specific evaluations, the importance of Economic aspects for
managers, was very high (level 9) in 2013, but descended to level 6 in 2016, showing
that the managers pay more attention to the effectiveness of the whole FLOSS-using
development process, rather than to sheer costs.

4.3 Discussion

The first result of the study is that nowadays FLOSS appears to be selected by using a
different approach than in 2010. The adoption drivers have changed, and economic
aspects are no longer as important as in 2010 and 2013. FLOSS was initially perceived

0

1

2

3

4

5

6

7

8

9

2016 2013 [2] 2010 [1]

Fig. 3. Importance of motivations in 2010, 2013, and 2016 (median for all participants).

Why Do Developers Adopt Open Source Software? 111

as a free product while now it is correctly perceived as recommended by the Free
Software Foundation as “free as in free speech, not as in free beer” [16]. Therefore,
developers are now aware that FLOSS is not free of charge and are paying less
attention to cost issues, as researchers had already predicted back in 2007 [17]. Sim-
ilarly, ethical issues are no longer considered that important, probably because the
ethical debate on FLOSS appears to have been settled by now.

Our interviewees preferred FLOSS since they can easily customize it, without
having to deal with proprietary issues, and can provide the highest possible value to
their customers. Therefore, our interviewees were highly interested in Community and
Professional support, with the importance of Professional Support growing sensibly
since 2010 and almost equaling Community Support. Nowadays, companies appear
willing to pay for technical support from FLOSS providers – as would be the case with
proprietary software – but with the freedom to access the source code and modify it. In
fact, being the ease of customization a dominant motivation for adopting FLOSS, the
availability of the source code is extremely important; nonetheless, having just the code
is not enough: support from the community and professionals is also needed.

As expected, Quality is always considered very important by all roles, and its
importance has increased over time. Other quality aspects, such as project Maturity,
Reliability, and Multiplatform Development are also definitely important, thus sup-
porting the idea that non-functional aspects of FLOSS are increasingly relevant.

Personal Productivity and potential Partnerships, which were first detected in 2013
survey, are still considered drivers of medium importance. For Personal Productivity,
interviewees appear to behave as end users (as opposed to developers): they do not care
for FLOSS or non-FLOSS tools, they ask for (black-box) tools and apps that help their
every-day tasks. As for potential Partnerships, commercial solutions appear to be
currently considered as more apt to favor the creation of business partnerships than
FLOSS communities.

The results from our survey partially confirm the evaluation categories proposed by
the OSSpal evaluation model [19]. OSSpal consider qualities – such as Professional
and Community Support, and Ease of Customization – that ranked as important by the
developers we interviewed. OSSpal also accounts for motivations considered as rele-
vant by software end users. However, OSSpal considers several factors (such as per-
formances and usability) that are of low importance to our interviewees, and other
characteristics (such as installation and configuration easiness) never mentioned by our
respondents.

5 Threats to Validity

In this section, we discuss the threats to validity and explain the adopted tactics [13].
Concerning internal validity, we identified the following issues.

Participants Selection: We selected participants with a similar background. In order to
avoid any bias due to different roles, we tried to have as equal as possible frequency of
roles (Developers, Custom Integrator, Managers) in the three studies. Only for Man-
agers role we have proportionally fewer participants in the 2016 replication.

112 V. Lenarduzzi et al.

Testing: We avoided that the pre-testing (first survey) could affect the scores on the
post-test, since, first we asked to the participant what they considered during the
FLOSS adoption process, then, in case the answers were different from the previous
surveys, we asked to express an opinion also on the motivations emerged from pre-
vious surveys.

Instrumentation: During the study we avoided changing the way data were collected
and analyzed.

Design Contamination During the Different Surveys: We avoided any possible
design contamination during the different surveys.

Concerning external validity, we identified the following issues.

Population Validity: The selected samples are representative enough of developers and
project managers, but not enough of top management roles such as CEOs. From the
results of the 2010 survey [1], we only considered the answers provided by developers
and custom integrators and ignored the ones obtained from the end users.

Study Results: This survey is – at most– representative for developers using FLOSS.
Concerning reliability, in this survey, we adopted the same questionnaire used in

[1] and [2]. The Questionnaire was checked by empirical studies experts.

6 Conclusions

In this paper, we investigated the motivations for the adoption of FLOSS up to 2016. In
2010, the vast majority of users was interested in getting FLOSS as-is without paying
any license fee. More recent results show that ethical and economic motivations are not
driving the choice of FLOSS over proprietary software: already in 2013, economic
aspects and type of license were no longer considered important. New motivations, like
the ease of customization, have emerged, because developers started perceiving FLOSS
as means to build better products more easily.

References

1. Del Bianco, V., Lavazza, L., Morasca, S., Taibi, D.: A survey on open source software
trustworthiness. Software 28, 67–75 (2011)

2. Taibi, D.: An empirical investigation on the motivations for the adoption of open source
software. In: 10th International Conference on Software Engineering Advances - ICSEA,
Barcelona (2015)

3. Taibi, D., Lavazza, L., Morasca, S.: OpenBQR: a framework for the assessment of OSS. In:
Feller, J., Fitzgerald, B., Scacchi, W., Sillitti, A. (eds.) OSS 2007. ITIFIP, vol. 234, pp. 173–
186. Springer, Boston, MA (2007). https://doi.org/10.1007/978-0-387-72486-7_14

4. Origin, A.: Method for qualification and selection of open source software (QSOS). Version
1.6. https://www.qsos.org

5. Buffett, B.: Factors influencing open source software adoption in public sector national and
international statistical organizations. In: Meeting on the Management of Statistical
Information Systems (MSIS 2014), Dublin, Ireland and Manila, Philippines (2014)

Why Do Developers Adopt Open Source Software? 113

http://dx.doi.org/10.1007/978-0-387-72486-7_14
https://www.qsos.org

6. del Bianco, V., Lavazza, L., Lenarduzzi, V., Morasca, S., Taibi, D., Tosi, D.: A study on
OSS marketing and communication strategies. In: Hammouda, I., Lundell, B., Mikkonen, T.,
Scacchi, W. (eds.) OSS 2012. IAICT, vol. 378, pp. 338–343. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33442-9_31

7. del Bianco, V., Lavazza, L., Morasca, S., Taibi, D.: Quality of open source software: the
QualiPSo trustworthiness model. In: Boldyreff, C., Crowston, K., Lundell, B., Wasserman,
A.I. (eds.) OSS 2009. IAICT, vol. 299, pp. 199–212. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-02032-2_18

8. Del Bianco, V., Lavazza, L., Morasca, S., Taibi, D.: The QualiSPo approach to OSS product
quality evaluation. In: Workshop on Emerging Trends in FLOSS Research and Development
(FLOSS-3), pp. 23–28 (2010)

9. Li, Y., Tan, C.H., Xu, H., Teo, H.H.: Open source software adoption: motivations of
adopters and amotivations of non-adopters. ACM SIGMIS Database 42, 76–94 (2011)

10. Lenarduzzi, V.: Towards a marketing strategy for open source software. In: 12th
International Conference on Product Focused Software Development and Process Improve-
ment, pp. 31–33 (2011)

11. Business Readiness Rating for Open Source - A Proposed Open Standard to Facilitate
Assessment and Adoption of Open Source Software, BRR 2005 RFC 1. http://www.open
brr.org

12. Carver, J.: Towards reporting guidelines for experimental replications: a proposal. In: 1st
International Workshop on Replication in Empirical Software Engineering Research (2010)

13. Yin, R.K.: Case Study research. Applied Social Research Methods Series. Design and
Methods. Sage Publications, London (2009)

14. Glynn, E., Fitzgerald, B., Exton, C.: Commercial adoption of open source software: an
empirical study. In: International Symposium on Empirical Software Engineering, pp. 17–
18. (2005)

15. Yamakami, T.: Open source software adoption patterns and organizational transition stages
for software vendors. In: Conference on Information Sciences and Interaction Sciences (2010)

16. GNU: What is free software? https://www.gnu.org/philosophy/free-sw.html
17. Lavazza, L.: Beyond total cost of ownership: applying balanced scorecards to open-source

software. In: 2nd International Conference on Software Engineering Advances – ICSEA
(2007)

18. Wasserman, A.I., Guo, X., McMillian, B., Qian, K., Wei, M.-Y., Xu, Q.: OSSpal: finding
and evaluating open source software. In: OSS 2017 (2017)

19. Morasca, S., Taibi, D., Tosi, D.: OSS-TMM: guidelines for improving the testing process of
open source software. Int. J. Open Source Softw. Process. 3(12), 1–22 (2011)

20. Lavazza, L., Morasca, S., Taibi, D., Tosi, D.: An empirical investigation of perceived
reliability of open source Java programs. In: Symposium on Applied Computing - SAC
(2012)

21. del Bianco, V., Lavazza, L., Morasca, S., Taibi, D., Tosi, D.: An investigation of the users’
perception of OSS quality. In: Ågerfalk, P., Boldyreff, C., González-Barahona, J.M., Madey,
G.R., Noll, J. (eds.) OSS 2010. IAICT, vol. 319, pp. 15–28. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13244-5_2

22. Lavazza, L., Morasca, S., Taibi, D., Tosi, D.: Predicting OSS trustworthiness on the basis of
elementary code assessment. In: ESEM 2010 (2010)

23. Taibi, D., del Bianco, V., Carbonare, D.D., Lavazza, L., Morasca, S.: Towards the
evaluation of OSS trustworthiness: lessons learned from the observation of relevant OSS
projects. In: Russo, B., Damiani, E., Hissam, S., Lundell, B., Succi, G. (eds.) OSS 2008.
ITIFIP, vol. 275, pp. 389–395. Springer, Boston, MA (2008). https://doi.org/10.1007/978-0-
387-09684-1_37

114 V. Lenarduzzi et al.

http://dx.doi.org/10.1007/978-3-642-33442-9_31
http://dx.doi.org/10.1007/978-3-642-02032-2_18
http://dx.doi.org/10.1007/978-3-642-02032-2_18
http://www.openbrr.org
http://www.openbrr.org
https://www.gnu.org/philosophy/free-sw.html
http://dx.doi.org/10.1007/978-3-642-13244-5_2
http://dx.doi.org/10.1007/978-0-387-09684-1_37
http://dx.doi.org/10.1007/978-0-387-09684-1_37

24. Sbai, N., Lenarduzzi, V., Taibi, D., Sassi, S.B., Ghezala, H.H.B.: Exploring information
from OSS repositories and platforms to support OSS selection decisions. Inf. Softw.
Technol. 104, 104–108 (2018)

25. Lavazza, L., Morasca, S., Taibi, D., Tosi, D.: OP2A: how to improve the quality of the web
portal of open source software products. In: Filipe, J., Cordeiro, J. (eds.) WEBIST 2011.
LNBIP, vol. 101, pp. 149–162. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28082-5_11

26. Basilico, G., Lavazza, L., Morasca, S., Taibi, D., Tosi, D.: Op2A: assessing the quality of the
portal of open source software products. In: WEBIST 2011 (2011)

27. Morasca, S., Taibi, D., Tosi, D.: T-DOC: a tool for the automatic generation of testing
documentation for OSS products. In: Ågerfalk, P., Boldyreff, C., González-Barahona, J.M.,
Madey, G.R., Noll, J. (eds.) OSS 2010. IAICT, vol. 319, pp. 200–213. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13244-5_16

28. Morasca, S., Taibi, D., Tosi, D.: Towards certifying the testing process of open-source
software: new challenges or old methodologies? In: Workshop on Emerging Trends in
Free/Libre/Open Source Software Research and Development (2009)

Why Do Developers Adopt Open Source Software? 115

http://dx.doi.org/10.1007/978-3-642-28082-5_11
http://dx.doi.org/10.1007/978-3-642-28082-5_11
http://dx.doi.org/10.1007/978-3-642-13244-5_16

Why Do People Give Up FLOSSing?
A Study of Contributor Disengagement

in Open Source

Courtney Miller1(B), David Gray Widder2(B), Christian Kästner2(B),
and Bogdan Vasilescu2(B)

1 New College of Florida, Sarasota, USA
courtney.miller17@ncf.edu

2 Carnegie Mellon University, Pittsburgh, USA
{dwidder,kaestner,vasilescu}@cmu.edu

Abstract. Established contributors are the backbone of many free/libre
open source software (FLOSS) projects. Previous research has shown
that it is critically important for projects to retain contributors and it
has also revealed the motivations behind why contributors choose to
participate in FLOSS in the first place. However, there has been lim-
ited research done on the reasons why established contributors disen-
gage, and factors (on an individual and project level) that predict their
disengagement. In this paper, we conduct a mixed-methods empirical
study, combining surveys and survival modeling, to identify the reasons
and predictive factors behind established contributor disengagement. We
find that different groups of established contributors tend to disengage
for different reasons; however, overall contributors most commonly cite
some kind of transition (e.g., switching jobs or leaving academia). We
also find that factors such as the popularity of the projects a contributor
works on, whether they have experienced a transition, when they work,
and how much they work are all factors that can be used to predict their
disengagement from open source.

1 Introduction

Contributor disengagement in open source is widely known as a costly and crit-
ical issue [9,19,49], as it can directly affect the sustainability of projects. For
example, in a recent study Coelho et al. reported that 41% of failed open source
projects cited a reason involving the developer team, such as lack of interest or
time of the main contributor [9]. Such local (project-level) sustainability issues
in open source can have cascading effects on the entire ecosystem because of
project interdependencies [12,53]. So-called “core”, i.e., established, contributors
are particularly critical for the sustainability of open source projects [19,57].

C. Miller—Part of this work was carried our during the author’s REU program at
CMU.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
F. Bordeleau et al. (Eds.): OSS 2019, IFIP AICT 556, pp. 116–129, 2019.
https://doi.org/10.1007/978-3-030-20883-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20883-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-20883-7_11

Why Do People Give Up FLOSSing? 117

There are many reasons why established contributors disengage. Some may
be unavoidable, whereas others could perhaps be prevented through interven-
tions or by providing better community support. Likely there are various dynam-
ics in play, including the role of volunteers as compared to corporate employ-
ees [44], the role of external events such as family planning and job changes,
and the role of perceived purpose, community support, and stress. Effects might
include abruptly leaving the project, but also slow disengagement, or causing
rippling frustrations through delays or cynicism.

The goal of our research is to better understand disengagement factors and
which established contributors are at risk and when; this will enable us to build
and validate a conceptual framework and theory. Moreover, we pursue a data-
driven approach, operationalizing uncovered factors based on publicly available
trace data. This way, we can identify at-risk open source contributors and com-
munities, and help guide resources (e.g., volunteers, sponsors) toward projects
and contributors in need, enhancing the sustainability of the overall ecosystem.

We identify potential disengagement factors from literature on turnover and
open source retention, cross-validate them with results from a survey among con-
tributors who recently stopped all open source activities on GitHub, operational-
ize select factors with public trace data, and finally conduct survival modeling
among a set of 206 GitHub users to triangulate the survey results.

Among others, we identify the degree to which contributors work outside
of typical office hours and to what degree they engage in support activities as
important moderating factors. According to Claes et al. [8], 33% of open source
contributors do not follow typical working hours, but instead work nights and
weekends. Our survey shows that contributors who work nights and weekends
proportionally tend to disengage for different reasons than those working regular
hours. In addition, our survey reveals that the most common reasons for complete
disengagement relate to transitions in employment, such as graduating from
academia, changing employers, and changing roles.

To validate disengagement factors beyond our survey, we model to what
degree hypothesized factors—such as working hours, engagement in support
activities, and team size, which can be measured in public trace data of con-
tributor activities—can predict the later disengagement of those contributors.
To that end, we use the quantitative statistical method of survival modeling. As
a key factor in our model, derived from our survey results, we incorporate tran-
sitions identified from public CVs of developers. Specifically, we analyze which
contributor populations are more resilient to transitions such as job changes.

We find that working predominantly during office hours and experiencing
a transition both increase a contributors risk of disengagement. Conversely, we
find that increased levels of activity and working on more popular projects both
decrease a contributors risk of disengagement.

In summary, we contribute (1) a survey revealing the reasons behind contrib-
utor disengagement; (2) a comparison between different groups of contributors;
(3) measures to differentiate between groups, which could be used to help identify
at-risk groups and better target support interventions; (4) a novel operational-

118 C. Miller et al.

ization of transition data; and (5) a survival model demonstrating which factors
are able to predict contributor disengagement.

2 Related Work

Turnover. Prior work has shown that the turnover rate of a project profoundly
affects its survival probability [33,46] and code quality [21]. Approximately 80%
of open source projects fail due to contributor turnover related issues [46]. Even
within projects that do not outright fail, contributor turnover has a significant
adverse effect on software quality [21]. On a project level, contributor disengage-
ment results in knowledge loss, which is a particularly expensive issue [33].

Employee turnover and retention have been broadly studied across many
fields [31,35]. In professional settings, early turnover research has focused often
on personal characteristics (e.g., ability, age) and employee satisfaction, mea-
sured with hiring tests and surveys, whereas later research has explored many
more nuanced factors, such as labor market (e.g., job opportunities), non-work
values, and organizational commitment [31]. Research has shown that, while far
from all turnover can be explained by dissatisfaction and similar factors [38],
there are positive and negative factors that can buffer against shocks such as
external job offers [6,20]. Turnover among volunteers is less explored: Although
some research suggests that similar personal and environmental factors influ-
ence their decisions to quit [41], other researchers point out that satisfaction
and achievement, compatible working hours, training, challenging work, and role
identity may play particularly strong roles [25,34,50].

Whereas reasons for joining open source [5,24,37,44,48,54,55] and interven-
tions to improve the onboarding experience for new developers [7,18,30,52] have
been studied in depth, studies of contributor retention are rarer. Prior research
has focused primarily on testing basic attributes [11,39,40,46,49,53,58]. For
example, they have shown that retention is higher for contributors that have
participated longer [39,49], contributed more code changes [11,39], and commu-
nicated more [11]. However, there has been a limited amount of prior research
has also explored more nuanced factors, like whether a developers gender and
social network effect their risk of disengagement [43]. Using surveys, researchers
further associated ratings of general dissatisfaction and lack of community iden-
tification with higher perceived turnover and turnover intentions [32,56]. Zhou et
al.’s case study of three projects further suggests that commercial participation
can crowd out volunteers [58].

Long working hours, lack of sleep, and lack of recovery on weekends are
often discussed as stressors. Many studies confirm the importance of “mentally
switching off” [1,4,51]. In software engineering, several studies have shown the
influence of time-related factors, such as late-night commits and long working
sessions being more likely to contain bugs [17,45], sleep deprivation reducing
code quality [22], Monday commit comments using more negative language [29],
and time pressure is often seen as an important stressor [36].

Why Do People Give Up FLOSSing? 119

Open Source Practitioners Reporting Stress. In addition to the academic liter-
ature, open source practitioners also spoke out about frustrations, funding con-
cerns, stress, and even burnout. Often, there are high expectations and copious
amounts of pressure placed on established open source contributors.

Many stories via blog posts from maintainers who disengaged have a similar
narrative that describes the growing pressures and responsibilities they expe-
rienced that lead to their disengagement. One such blog post describes how
“as [my project’s] popularity rose and rose, my drive to continue to create new
projects, fell. All while the burden of supporting the needs of the massive user
bases of my successful projects and the pressure of maintaining those projects
grew.”1

In addition to blog posts, there were also participants from the survey we
ran who explicitly cited a lack of support as a reason for their disengagement.
For example “[The open source project] is increasingly depended upon by other
projects, but very few external developers are interested/willing enough to [under-
stand the company] let alone contribute improvements/fixes. The support burden
is a good problem to have (people are finding [the project] useful), but it does
impose a productivity (and sometimes a motivation) burden.” (P35)

Contributors are broadly expected to maintain their projects. Having a seem-
ingly never-ending list of tasks is another commonly cited reason for disen-
gagement among the aforementioned blog posts and survey respondents. As
described in a blog post by a now-retired developer, “working long hours for
endless months” was a critical reason for their disengagement.2

3 Overview: Mixed-Method Research

Our mixed-method empirical study follows a sequential exploratory design [14],
combining qualitative and quantitative analysis of survey and GitHub trace data.

Step 1: Survey (Sect. 4). Although the turnover literature (Sect. 2) provides
several starting points for potential disengagement factors, there has been only
limited research on the actual reasons why open source contributors disengage.
Therefore, we decided to ground our research by conducting an open-ended sur-
vey among developer who recently disengaged from all public GitHub activities.
We furthermore analyze the frequency of self-reported reasons for disengagement
regarding whether different populations disengage for different reasons.

Step 2: Survival analysis (Sect. 5). We test to what degree the potential dis-
engagement factors identified statistically explain disengagement. To that end,
we operationalize several disengagement factors, including when and what con-
tributors worked on as well as job transitions in historic trace data and public
CVs, and use survival modeling [42] to test their significance.

1 https://www.kennethreitz.org/essays/the-reality-of-developer-burnout.
2 https://hackernoon.com/what-is-programmer-burnout-651aa48984ef.

https://www.kennethreitz.org/essays/the-reality-of-developer-burnout
https://hackernoon.com/what-is-programmer-burnout-651aa48984ef

120 C. Miller et al.

4 Self-reported Reasons for Disengagement (Survey)

4.1 Survey Methodology

To ground our analyses, we surveyed a sample of open source contributors who
recently disengaged from all public GitHub activities, asking about their reasons.

Recently Disengaged Established Contributors. We invited open source contrib-
utors who stopped all public activity on GitHub after being active for at least
18 month. We identified such contributors from GHTorrent [26] trace data (ver-
sion 2018-08). We then constructed six-month panels aggregating contributions
(commits and issue/pull request events) per person, and selected those con-
tributors who contributed at least 100 commits per six-month period for three
consecutive periods, but at most 5 commits in the following period (the five com-
mit threshold allows for some residual activity). This way, we identified a total
of 702 contributors who disengaged (i.e., stopped contributing publicly) within
the last year and had public email addresses listed on their GitHub profile pages.

We specifically sampled only previously active contributors with at least 100
commits per period across all of GitHub. Previous research has shown that within
a single project, there are many different kinds of contributors, with one of the
most popular models being the onion model [15]. With our threshold we target
contributors who are likely very active in at least one project, rather than more
peripheral or episodic contributors, which may have different motivations [2].

Survey Design. We designed a simple, single-question, open-ended survey, asking
“Could you help us understand your reasons for reducing your contributions to
GitHub projects?” We chose the open-ended format to avoid priming the partici-
pants to ensure organic but relevant responses. We use the single-question format
without external survey software, because it reduces the barrier to participation.
We invited all 702 identified candidates and received 151 valid answers (21.5%
response rate). Our response rate is in line with other GitHub surveys, e.g., [27].

Card Sorting Analysis. We used card sorting, a qualitative content analysis [47]
method, to analyze the survey answers. Two researchers reviewed the cards and
organized them into mutually agreed upon categories using a ground-up pro-
cess resulting in 17 subgroups. These subgroups were then further grouped into
three overarching themes: Technical, Social, and Occupational. Note that many
participants cited multiple reasons, resulting in 239 reasons from 151 responses.

Quantitative Analysis. In addition to identifying common self-reported reasons
for disengagement from the survey responses, we additionally explore whether
different populations report different reasons. Based on the literature and reports
from open source practitioners (cf. Sect. 2), we specifically investigate whether
contributors (a) working mostly “regular” office hours or (b) performing more
support activities report disengaging for different reasons.

Why Do People Give Up FLOSSing? 121

Working Hours: Analyzing GitHub data, we measure what percentage of con-
tributions are made between 7am and 7pm local time, Monday through Friday,
captured as indexWorkHours (the slightly wider interval than the traditional
9am to 5pm increases robustness to daylight savings [8]). To detect the contrib-
utor’s local time, we adjusted the UTC times in GHTorrent with the average
time zone offset for each developer, collected from a small random sample of
their commits after cloning repositories locally. We then separate our survey
participants into two groups, Office Hours (more likely paid contributors) and
Nights and Weekends (more likely volunteers), based on whether they perform
more or less relative amount in the office hour window described above than
average (average indexWorkHours = 0.6; design following prior research [39]).

Support Activity: We also measured indexSupport as the percentage of support
activities among all activities, i.e., all non-commit GHTorrent events related to
managing issues and pull requests. We distinguish between High Support Work
and Low Support Work relative to the mean (indexSupport = 0.2).

Note that given the different ways in which we aggregate the survey responses
and the relatively small sample size overall, we cannot draw sound statistical
conclusions about differences between the (sub)groups. While we report exact
numbers, readers should focus on qualitative differences.

Threats to Survey Validity. As usual for surveys, our results may be affected
by a selection bias: contributors who did not answer may have had different

Table 1. Self-reported reasons for disengagement in survey

troppuSeroMsrHecffiOtnuoCpuorgbuS
vs Nights&We vs Less

Occupational reasons
Got new job that doesn’t support FLOSS 37
Changed role/project 25
Left job where they contributed to FLOSS 16
No time: new job 15
No time: existing job 10
Left school where they contributed to FLOSS 12
No time: in school 12
FLOSS in school, now job doesn’t support FLOSS 7
Too much coding at work 4

Social reasons
Lost interest in FLOSS 24
No time: personal 23
Lack of peer support 16
No time: nondescript 15

Technical reasons
Issues w GitHub or industry 14
Individually moved to private repos 12

01mroftalpdegnahC
Feature complete project 3

30 20 10 0 10 20 30 30 20 10 0 10 20 30

122 C. Miller et al.

reasons for disengaging. To identify contributors who had disengaged, we used
public GitHub data, which covers much but not all open source activities, as also
visible in 10 (of 151) survey responses that indicate changing platforms. Deriv-
ing the survival model data from survey participants enabled modeling only
contributors confirmed to have disengaged. Note that we consider moving to
private repositories (12 answers) still as disengagement from public open source
activities. Furthermore, our approach to identify disengagement looks for sud-
den disengagement (within a six-month window) and results may not generalize
to contributors who disengage more gradually. Contributors may also deliber-
ately or unconsciously self-censor in their answers, providing socially acceptable
reasons rather than real—a common concern in turnover research [31]. Note
however, that our survival model (discussed later) is built entirely on historic
trace data rather than self-reported answers, and thus reduces this threat.

4.2 Results from Survey

In Table 1, we show the survey results. The most common self-reported reason
for disengagement was changing jobs to a job that does not support open source
work and occupational reasons were generally the most frequent.

Furthermore, we observe differences across populations: Contributors who
work nights and weekends tend to disengage for different reasons than those who
work during office hours: contributors who worked nights and weekends most
commonly cited social reasons, whereas those who worked during office hours
most commonly cited occupational reasons; the largest difference is between
those who cited Left job where they contributed to OSS, with 19% and 0% citing
it respectively.

Next, we turn to the aggregation by type of work, noting Contributors who
do less support work tend to disengage for different reasons than those who do
more: In particular, only 67% of the More Support Work group cited at least once
Occupational reason, compared to 72% of the Less Support Work group. The
difference between these two groups may be because since they are less stressed
when major life changes occur (i.e., getting a new job or leaving school), they
are better able to cope with transitions.

Finally, we emphasize a surprising result. For all contributors, occupational
reasons such as major life changes (e.g., getting a new job or leaving school)
were the most cited (with 106 citations), significantly more than lacking peer
support or losing interest that are more commonly discussed in the literature.
This motivated us to consider transitions explicitly in our survival analysis below.

5 Modeling Disengagement Factors (Survival Analysis)

5.1 Survival Model Methodology

We use survival analysis to triangulate the survey results and model the rela-
tive strengths of the effects of the three main factors emerging from the survey

Why Do People Give Up FLOSSing? 123

analysis on the risk of disengagement from public GitHub activity (Work Hours
vs Nights and Weekends; High Support Work vs Low Support Work ; and Job
Transitions). Survival analysis is a statistical modeling technique that special-
izes in time-to-event data [42], particularly suited for modeling right censored
data. In our study, the event is public GitHub disengagement ; right censorship
can occur for contributors whose last recorded event may be very close to the
end of the observation period, for which it is not clear whether they will return
to contribute more. In particular, we use a Cox Proportional Hazards regression
model [13]. The estimated regression coefficients describe each variable’s hazard
ratio (HR), which is analogous to an odds ratio in for multiple logistic regression
analysis. Briefly, an HR > 1 indicates an increased risk of observing the event,
and an HR < 1 indicates a decreased risk, relative to a one unit change in a pre-
dictor variable (or flipping the value, in case of binary variables), while holding
all other predictors constant.

Data. We collect GitHub data on several variables for the open source contrib-
utors who disengaged and responded to our survey (the ‘treatment’ group), as
well as for an equal sized ‘control’ group of contributors who did not disengage.
With this design, a survival model estimates which factors are statistically useful
for distinguishing groups.

For job transition data, we collect publicly available CV data from contribu-
tors by following links on their GitHub profiles. Since our data collection is not
yet fully automated, we can currently only assemble a dataset of moderate size,
therefore we only collected data for our survey participants (plus the control
group), because their survey answers validate that they actually disengaged. For
non-CV data, we use GHTorrent (Sect. 4). We discard 34 participants for which
we cannot find CVs or similar information from which we can deduce past tran-
sitions, leaving us with a dataset of 206 contributors of which 103 disengaged.
By construction, both groups contributed actively for 18 months (at least 100
commits per six-month period for three consecutive periods; Sect. 4); the ‘con-
trol’ group contributors then remained active for at least another six months at
similar levels or higher, while the ‘treatment’ group contributors made at most
five commits in the following period, i.e., they disengaged.

Model Factors and Operationalization. We compute:

– Activity level: Prior work has shown that more active contributors are less
likely to disengage [11], hence we control for the average quarterly activity
level by counting all activities (commits and support) per person.

– Working hours and support: We use the two factors indexWorkHours and
index-Support as introduced in Sect. 4.1 to characterize the degree of work
outside regular working hours (more likely volunteers) and the degree of sup-
port activities, both identified as stressors by practitioners (cf. Sect. 2). We
compute dummy variables indicating being above or below the mean.

– Organizational affiliation: Previous research has shown that on a project
scale, having an organizational affiliation can help increase developer reten-
tion rates [58]. We test whether organizational affiliation has the same affect

124 C. Miller et al.

on engagement on an individual scale as it does on a project scale. Using
GHTorrent, we record whether contributors had an Organizational Affilia-
tion listed on their GitHub public profile.

– Team size: Turnover research regularly reveals social embedding in a team
as an antidote to turnover [19]. We operationalize this as the number of
contributors per project. Since a contributor may be part of multiple projects,
we consider only their main projects (for a contributor, taking all projects
with the highest number of contributions that together constitute at least 50%
of all contributions) and record the average team size among those projects.
‘Teams’ comprise everyone who authored at least one commit.

– Project popularity: To control for whether contributors are more likely to
disengage from small or very popular projects, we use the number of stars
a project has on GitHub as a proxy for its popularity (standard measure
in GitHub research [16]). We model popularity in addition to activity level
because previous research has shown that the popularity of a project influ-
ences its survival probability [53], and we are interested in whether the popu-
larity of a project also affects the survival probability of its contributors on an
individual level. For contributors working on multiple projects, we consider
the max popularity of the contributor’s active projects (see team size).

– Transition found: Finally, to operationalize a contributor’s transition data,
identified as very important in our survey, we went to their linked publicly
available CV and created a binary variable that recorded whether there was
a transition present in the last year or not. We considered a transition to be
either the stopping or starting of a job or educational program.

Model Diagnostics. We performed the standard model diagnostics: We log trans-
formed variables with highly skewed distributions, as necessary, to reduce het-
eroscedasticity [23]. We tested for multicollinearity using the variance inflation
factor (VIF< 3) [10]. We also inspected Schoenfeld residual plots to graphically
diagnose Cox regression modeling assumptions [28].

Threats to Model Validity. Regarding the survival model, statistical power is
limited by the small sample size, which is limited by our design of modeling only
survey participants with public CV data (due to confirming disengagement with
the survey and manual effort required, as discussed). Since our treatment group
was limited to the survey respondents, our survival model also has the risk of
suffering from selection bias. As usual, our operationalization of factors in our
survival model can only capture part of the concept to be measured. While we
experimented with different operationalizations of our factors to ensure construct
validity and robustness, one needs to be careful in generalizing our results beyond
our specific operationalizations.

5.2 Results from Survival Modeling

Table 2 presents the results from the two survival models created; a base model
without the novel transition found variable, and a full model with.

Why Do People Give Up FLOSSing? 125

Table 2. Survival models for contributor disengagement.

Base model Full model

activity 0.36 (0.21)∗∗∗ 29.00∗∗∗ 0.36 (0.21)∗∗∗ 27.92∗∗∗

orgAffiliation 0.90 (0.21) 0.27 0.92 (0.21) 0.17

maxTeamSize 1.17 (0.08) 3.59 1.17 (0.08) 3.41

maxNumStars 0.85 (0.05)∗∗ 10.01∗∗ 0.86 (0.05)∗∗ 9.08∗∗

highSupportWork TRUE 1.29 (0.26) 0.96 1.43 (0.27) 1.74

workHours TRUE 1.56 (0.21)∗ 4.52∗ 2.20 (0.30)∗∗ 5.59∗

jobTransition 2.48 (0.31)∗∗ 8.15∗∗

workHours:jobTransition 0.55 (0.42)

R2 0.21 0.25
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

The base model had a goodness of fit of R2 = 0.21. The controls behave
as expected. Total activity had a hazard rate of 0.36, meaning it decreases a
contributor’s risk of disengaging by a factor of 0.38. Similarly, contributors who
work on more popular projects are less likely to disengage (Max number of stars
has a hazard ratio of 0.85).

As predicted based on previous research, the workHours dummy affects a
contributor’s risk of disengaging, having a hazard ratio of 1.56. This suggests
that working during business hours more than the average contributor increases
the risk of disengaging by a factor of 1.56. Surprisingly, we do not observe any
statistically significant effects of doing more support work than average (the
highSupportWork dummy), perhaps due to our operationalization or relatively
small sample size.

The full model fits the data better (R2 = 0.25), meaning that adding in
the jobTransition variable helped increase the explanatory power of the model.
The jobTransition variable has a hazard ratio of 2.48, meaning, as suggested
by the survey results, that experiencing a transition significantly increases a
contributor’s risk of disengagement by a factor of 2.48.

6 Discussion and Conclusions

In this research, we have looked at the reasons why established open source
contributors disengage, using a survey with 151 responses and a survival model
to quantify factors which predict disengagement. From the grouped analysis
of survey results, we learned that the Nights and Weekends and Office Hours
groups tend to cite different reasons for their disengagement, and so do more the
Less Support Work and More Support Work groups.

Importantly, our study shows that operationalizations of different disengage-
ment risk factors using publicly observable trace data are plausible. For example,
since occupational reasons were the most commonly cited, we used online pub-
lic CVs to operationalize the jobTransition variable; however, other commonly

126 C. Miller et al.

cited reasons from the survey may also be operationalizable. Another commonly
cited reason was ‘no time, personal circumstance’, more specifically people often
cited having children or getting married. Such circumstances may be observ-
able on social networking platforms. This suggest that a data-driven systems
could be developed to help identify at-risk groups on a significantly larger scale,
instead of having to rely on relatively expensive survey data. This information
could be useful to different stakeholders, such as open source foundations and
other funding agencies, looking to target support interventions. Overall, sup-
port interventions targeted more appropriately could significantly increase the
sustainability of open source ecosystems.

We aim to work on these extensions of the research and more, to better
understand the reasons why different kinds of established contributors disengage,
since defining the problem is the first step to solving it [3].

Acknowledgements. This work was supported through CMU’s REU in SE, NSF
(1318808, 1552944, 1717022, and 1717415), and AFRL and DARPA (FA8750-16-2-
0042). We thank our survey participants, and colleagues at CMU, especially Jim Herb-
sleb, Chris Bogart, Marat Valiev, and Sophie Rosas-Smith.

References

1. Bannai, A., Tamakoshi, A.: The association between long working hours and health:
a systematic review of epidemiological evidence. Scand. J. Work Environ. Health
40, 5–18 (2014)

2. Barcomb, A., Kaufmann, A., Riehle, D., Stol, K.-J., Fitzgerald, B.: Uncovering
the periphery: a qualitative survey of episodic volunteering in free/libre and open
source software communities. IEEE Trans. Softw. Eng. (2018)

3. Bardach, E., Patashnik, E.M.: A Practical Guide for Policy Analysis: The Eightfold
Path to More Effective Problem Solving. CQ Press, Washington D.C. (2015)

4. Binnewies, C., Sonnentag, S., Mojza, E.J.: Recovery during the weekend and fluc-
tuations in weekly job performance: a week-level study examining intra-individual
relationships. J. Occup. Org. Psychol. 83(2), 419–441 (2010)

5. Bonaccorsi, A., Rossi, C.: Comparing motivations of individual programmers and
firms to take part in the open source movement: from community to business.
Knowl. Technol. Policy 18(4), 40–64 (2006)

6. Burton, J.P., Holtom, B.C., Sablynski, C.J., Mitchell, T.R., Lee, T.W.: The buffer-
ing effects of job embeddedness on negative shocks. J. Vocat. Behav. 76(1), 42–51
(2010)

7. Canfora, G., Di Penta, M., Oliveto, R., Panichella, S.: Who is going to mentor
newcomers in open source projects? In: Proceedings of International Symposium
Foundations of Software Engineering (FSE), p. 44. ACM Press, New York (2012)

8. Claes, M., Mäntylä, M.V., Kuutila, M., Adams, B.: Do programmers work at night
or during the weekend? In: ICSE, pp. 705–715. ACM (2018)

9. Coelho, J., Valente, M.T.: Why modern open source projects fail. In: ESEC/FSE,
pp. 186–196. ACM (2017)

10. Cohen, P., West, S.G., Aiken, L.S.: Applied Multiple Regression/Correlation Anal-
ysis for the Behavioral Sciences. Psychology Press, London (2014)

Why Do People Give Up FLOSSing? 127

11. Constantinou, E., Mens, T.: An empirical comparison of developer retention in
the RubyGems and NPM software ecosystems. Innov. Syst. Softw. Eng. 13(2–3),
101–115 (2017)

12. Constantinou, E., Mens, T.: Socio-technical evolution of the Ruby ecosystem in
GitHub. In: SANER, pp. 34–44. IEEE (2017)

13. Cox, D.R.: Analysis of Survival Data. Routledge, Abingdon (2018)
14. Creswell, J.W., Clark, V.L.P.: Designing and Conducting Mixed Methods Research.

Wiley, Hoboken (2007)
15. Crowston, K., Annabi, H., Howison, J., Masango, C.: Effective work practices for

software engineering: free/libre open source software development. In: Proceedings
of the 2004 ACM Workshop on Interdisciplinary Software Engineering Research,
pp. 18–26. ACM (2004)

16. Dabbish, L., Stuart, C., Tsay, J., Herbsleb, J.: Social coding in GitHub: trans-
parency and collaboration in an open software repository. In: Proceedings of the
ACM 2012 Conference on Computer Supported Cooperative Work, pp. 1277–1286.
ACM (2012)

17. Eyolfson, J., Tan, L., Lam, P.: Do time of day and developer experience affect com-
mit bugginess? In: Proceedings of the 8th Working Conference on Mining Software
Repositories, pp. 153–162. ACM (2011)

18. Fagerholm, F., Guinea, A.S., Borenstein, J., Münch, J.: Onboarding in open source
projects. IEEE Softw. 31(6), 54–61 (2014)

19. Fang, Y., Neufeld, D.: Understanding sustained participation in open source soft-
ware projects. J. Manag. Inf. Syst. 25(4), 9–50 (2009)

20. Feldman, D.C., Ng, T.W.H.: Careers: mobility, embeddedness, and success. J.
Manag. 33(3), 350–377 (2007)

21. Foucault, M., Palyart, M., Blanc, X., Murphy, G.C., Falleri, J.-R.: Impact of devel-
oper turnover on quality in open-source software. In: ESEC/FSE, pp. 829–841.
ACM (2015)

22. Fucci, D., Scanniello, G., Romano, S., Juristo, N.: Need for sleep: the impact of a
night of sleep deprivation on novice developers’ performance. IEEE Trans. Softw.
Eng. (2018)

23. Gelman, A., Hill, J.: Data Analysis Using Regression and Multilevel/Hierarchical
Models. Cambridge University Press, Cambridge (2006)

24. Ghosh, R.A., Glott, R., Krieger, B., Robles, G.: Free/libre and open source soft-
ware: survey and study - part 4: survey of developers. Technical report, Interna-
tional Institute of Informatics, University of Maastricht, Maastricht (2002)

25. Gidron, B.: Predictors of retention and turnover among service volunteer workers.
J. Soc. Serv. Res. 8(1), 1–16 (1985)

26. Gousios, G.: The GHTorent dataset and tool suite. In: MSR, pp. 233–236. IEEE
(2013)

27. Gousios, G., Zaidman, A., Storey, M.-A., Van Deursen, A.: Work practices and
challenges in pull-based development: the integrator’s perspective. In: ICSE, pp.
358–368. IEEE (2015)

28. Grambsch, P.M., Therneau, T.M.: Proportional hazards tests and diagnostics based
on weighted residuals. Biometrika 81(3), 515–526 (1994)

29. Guzman, E., Azócar, D., Li, Y.: Sentiment analysis of commit comments in GitHub:
an empirical study. In: Proceedings of the 11th Working Conference on Mining
Software Repositories, pp. 352–355. ACM (2014)

30. Hannebauer, C., Gruhn, V.: On the relationship between newcomer motivations
and contribution barriers in open source projects. In: Proceedings of International
Symposium on Open Collaboration, OpenSym 2017, pp. 2:1–2:10. ACM, New York
(2017)

128 C. Miller et al.

31. Hom, P.W., Lee, T.W., Shaw, J.D., Hausknecht, J.P.: One hundred years of
employee turnover theory and research. J. Appl. Psychol. 102(3), 530 (2017)

32. Homscheid, D., Schaarschmidt, M.: Between organization and community: inves-
tigating turnover intention factors of firm-sponsored open source software devel-
opers. In: Proceedings of Conference Web Science (WebSci), pp. 336–337. ACM,
New York (2016)

33. Izquierdo-Cortazar, D., et al.: Using software archaeology to measure knowledge
loss in software projects due to developer turnover. In: HICSS, pp. 1–10. IEEE
(2009)

34. Jamison, I.B.: Turnover and retention among volunteers in human service agencies.
Rev. Publ. Pers. Adm. 23(2), 114–132 (2003)

35. Kim, H., Kao, D.: A meta-analysis of turnover intention predictors among us child
welfare workers. Child. Youth Serv. Rev. 47, 214–223 (2014)

36. Kuutila, M., Mäntylä, M.V., Claes, M., Elovainio, M.: Reviewing literature on time
pressure in software engineering and related professions: computer assisted inter-
disciplinary literature review. In: 2017 IEEE/ACM 2nd International Workshop on
Emotion Awareness in Software Engineering (SEmotion), pp. 54–59. IEEE (2017)

37. Lakhani, K., Wolf, R.G.: Why hackers do what they do: understanding motiva-
tion and effort in free/open source software projects. Technical report, MIT Sloan
Working Paper (2003)

38. Lee, T.W., Mitchell, T.R.: An alternative approach: the unfolding model of volun-
tary employee turnover. Acad. Manag. Rev. 19(1), 51–89 (1994)

39. Lin, B., Robles, G., Serebrenik, A.: Developer turnover in global, industrial open
source projects: insights from applying survival analysis. In: 2017 IEEE 12th Inter-
national Conference on Global Software Engineering (ICGSE), pp. 66–75. IEEE
(2017)

40. Midha, V., Palvia, P.: Retention and quality in open source software projects. In:
AMCIS 2007 Proceedings, p. 25 (2007)

41. Miller, L.E., Powell, G.N., Seltzer, J.: Determinants of turnover among volunteers.
Hum. Relat. 43(9), 901–917 (1990)

42. Miller Jr., R.G.: Survival Analysis, vol. 66. Wiley, Hoboken (2011)
43. Qiu, H.S., Nolte, A., Brown, A., Serebrenik, A., Vasilescu, B.: Going farther

together: the impact of social capital on sustained participation in open source.
In: International Conference on Software Engineering, ICSE. IEEE (2019)

44. Roberts, J.A., Hann, I.-H., Slaughter, S.A.: Understanding the motivations, partic-
ipation, and performance of open source software developers: a longitudinal study
of the Apache projects. Manag. Sci. 52(7), 984–999 (2006)

45. Rodriguez, A., Tanaka, F., Kamei, Y.: Empirical study on the relationship between
developer’s working habits and efficiency. In: Proceedings of Conference on Mining
Software Repositories (MSR) (2018)

46. Schilling, A., Laumer, S., Weitzel, T.: Who will remain? An evaluation of actual
person-job and person-team fit to predict developer retention in FLOSS projects.
In: HICCS, pp. 3446–3455. IEEE (2012)

47. Schreier, M.: Qualitative Content Analysis in Practice. Sage Publications, Thou-
sand Oaks (2012)

48. Shah, S.K.: Motivation, governance, and the viability of hybrid forms in open
source software development. Manag. Sci. 52(7), 1000–1014 (2006)

49. Sharma, P.N., Hulland, J., Daniel, S.: Examining turnover in open source software
projects using logistic hierarchical linear modeling approach. In: Hammouda, I.,
Lundell, B., Mikkonen, T., Scacchi, W. (eds.) OSS 2012. IAICT, vol. 378, pp. 331–
337. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33442-9 30

https://doi.org/10.1007/978-3-642-33442-9_30

Why Do People Give Up FLOSSing? 129

50. Skoglund, A.G.: Do not forget about your volunteers: a qualitative analysis of
factors influencing volunteer turnover. Health Soc. Work 31(3), 217 (2006)

51. Sonnentag, S., Binnewies, C., Mojza, E.J.: Staying well and engaged when demands
are high: the role of psychological detachment. J. Appl. Psychol. 95(5), 965 (2010)

52. Steinmacher, I., Conte, T., Gerosa, M.A.: Redmiles, D.: Social barriers faced by
newcomers placing their first contribution in open source software projects. In:
Proceedings of Conference on Computer Supported Cooperative Work (CSCW),
pp. 1379–1392. ACM, New York (2015)

53. Valiev, M., Vasilescu, B., Herbsleb, J.: Ecosystem-level determinants of sus-
tained activity in open-source projects: a case study of the PyPI ecosystem. In:
ESEC/FSE. ACM (2018)

54. Von Krogh, G., Haefliger, S., Spaeth, S., Wallin, M.W.: Carrots and rainbows:
motivation and social practice in open source software development. MIS Q. 36(2),
649–676 (2012)

55. West, J., Gallagher, S.: Challenges of open innovation: the paradox of firm invest-
ment in open-source software. R&D Manag. 36(3), 319–331 (2006)

56. Yu, Y., Benlian, A., Hess, T.: An empirical study of volunteer members’ perceived
turnover in open source software projects. In: Proceedings of Hawaii International
Conference on System Sciences (HICSS), pp. 3396–3405. IEEE (2012)

57. Zhou, M., Mockus, A.: Developer fluency: achieving true mastery in software
projects. In: ESEC/FSE, pp. 137–146. ACM (2010)

58. Zhou, M., Mockus, A., Ma, X., Lu, Z., Mei, H.: Inflow and retention in OSS com-
munities with commercial involvement: a case study of three hybrid projects. ACM
Trans. Softw. Eng. Methodol. (TOSEM) 25(2), 13 (2016)

FLOSS Cost and Licences

Open Source for Open Source License
Compliance

Oliver Fendt and Michael C. Jaeger(&)

Siemens AG, Corporate Technology,
Otto-Hahn-Ring 6, 81379 Munich, Germany

{oliver.fendt,michael.c.jaeger}@siemens.com

Abstract. Today, many software systems are of a level of complexity that no
single company can implement modern solutions alone. Thus many companies
engage in the open source software (OSS) ecosystem to keep the development
costs manageable. But the usage of third-party components (both OSS and
commercial) also mandates the need of a license compliance process supported
by suitable tools. This paper is focused on using open source tools and relevant
processes for open source license compliance. OSS license compliance is a very
important topic, and requires appropriate processes, culture, and tools.
This work is based on extensive practical industrial experience and broad use

at Siemens AG. We first describe the process and culture, then a set of tools. We
complement this with related work in the community and future directions.

Keywords: License compliance � License scanning � Component inventory �
Open source management

1 Elements for an OSS Management Process

The clearing of components and involved licenses is part of an OSS management
process that covers the handling of 3rd party software. As described in [1] the following
main goals have to be achieved by the OSS management process:

• Assurance that only suited components are approved for integration – after the
involved licensing has been determined and understood.

• Assurance of license requirement fulfillment – determining the involved licenses
and understanding involved terms has the purpose to actually implement those
license requirements in order to provide a compliant product or delivery.

• Storing and tracking of OSS components. An organization takes advantage from
keeping track of 3rd party software use: on one hand, it serves the purpose of
documentation if questions or inquiries arise about OSS usage for example. On the
other hand, an organization wants to prevent redundant clearing work and reuse
clearing results for future uses of the same component.

The management process requires different elements in an organization for its imple-
mentation. On one side there are organizational aspects, which can be responsibilities,
roles, contact persons and a decision board. These aspects are for example summarized

© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
F. Bordeleau et al. (Eds.): OSS 2019, IFIP AICT 556, pp. 133–138, 2019.
https://doi.org/10.1007/978-3-030-20883-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20883-7_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20883-7_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20883-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-20883-7_12

by the OpenChain (https://www.openchainproject.org) standard which describes which
basic organization elements should be present.

And of course, a culture that is “open” to the use of open source is a key element of
any open source management. Mentioning our organization as an example, we have
regular internal events on OSS and a broadly-used web-based training educating all
employees not only in software development related roles, but also beyond e.g. pro-
curement and product management. Since its introduction in 2015, several ten thou-
sands have attended the Web-based training so far. As an example for a dedicated role
with decision responsibility, “third-party software experts” of the various business units
regularly meet to discuss and agree on common approaches, best practices and chal-
lenging cases of 3rd party software usage.

In addition to company-internal activities described here, we also actively engage in
world-wide activities of the OSS community. Such engagement is not only limited to
re-using OSS components, and re-using OSS clearing results, but also other aspects
such as agreeing on standard formats like SPDX (https://spdx.org/) and joining
activities like the OpenChain projects that promote a high level of license clearing
processes and enable sharing of cleared components.

This paper focuses on the use of tools and services which are available as open
source from the community for implementing license compliance. Despite commercial
tools being available, our work shows that OSS tools can be adopted by organizations
and provide an effective and open approach. Among many advantages, OSS software
allows for modification and adaptation to own needs; can better use the latest inno-
vative approaches from the OSS community; do not require the establishment of a
commercial contractual relation; and it allows for using software without spending
monetary resources, which is an advantage also for non-commercial organization.

An open source management process needs to count on different artifacts for a
successful implementation. These include a tool for analyzing the licenses present in
3rd party software components, a database that holds license interpretation of used
licensing, a catalogue application that keeps track of 3rd party software in products and
services, an application that keeps track of the progress of clearing tasks as well as
providing an overview of all involved 3rd party component w.r.t. clearing status, a
source code and component and repository that stores used software for analyses and
reference to clearing results, an application which generates the licensing documen-
tation for distribution as well as for internal approval purpose, product OSS code
collector, and a code verifier.

The management of software component takes place inside the software engi-
neering process – there are software repositories, dependency management systems and
packing tools which already create various software artifacts for distribution. Naturally,
the open source management tools must be integrated with the already existing soft-
ware engineering facilities, for example continuous integration tools.

Figure 1 shows a general setup and context of software management, including
basic elements for a software development tool chain. On the left there are different
sources for 3rd party software as well as information about them. All these elements are
outside of the organization and are relevant sources for OSS management. In addition
to inbound 3rd party software, public repositories and databases holding information
about 3rd party software components exist which can hold relevant information for
component and license clearing.

134 O. Fendt and M. C. Jaeger

https://www.openchainproject.org
https://spdx.org/

In the middle of this diagram, the integration of OSS management tools with
existing software engineering tools is outlined: internal repositories and tools for
building the software are integrated with clearing tools. Organizational internal
repositories for software exist that contain information used for component clearing,
but more importantly, checks and analyses tool for a clearing are triggered by the build
and software production automation.

In basic terms, the input for managing 3rd party components, originates from the
software building infrastructure. Going further right, the software is prepared for dis-
tribution which involves the generation of distribution documentation as well as checks
if the license terms are fulfilled. Around all this, organization internal repositories, such
as internal git servers, but also artifact servers are not only relevant for software
development, but also for OSS management. In additional, a central element is a
component catalogue application which acts as a central inventory capturing compo-
nent usage. It is fed by analysis information of 3rd party components as well as usage
information in products and services.

2 OSS Software Projects and Tools

For the elements depicted in the Fig. 1, different OSS tools exist for the implementation
of the given elements. We would like to introduce a minimal set for implementing a
OSS management process with the goals given above. The first part on the right hand
side refers, of course, to OSS published software (e.g. Sourceforge, or nowadays
Github or git servers of OSS foundations), but also software package servers, such as
those for Linux distributions as well as those for developing software for a particular
languages (e.g. Nuget for C# components). In addition, software can be obtained from
commercial vendors and as such, represents also inbound 3rd party software.

As a second element that an organization can use are the now growing offerings for
information about 3rd party software. Some companies offer concluded licensing
information, some analyses and metadata describing how sane the software project is.
Moreover, public information relevant for an OSS management process are license
(text) collections and interpretations about licenses. A license collection is very useful

Fig. 1. Context of 3rd party software management

Open Source for Open Source License Compliance 135

for identifying license texts as found in OSS. As for the interpretation of licenses, there
are also libraries in the form of offering interpretations for licenses, as well as infor-
mation pages about articles that discuss licenses cases from a legal point of view.

There are a number of open source tools for various aspects of open source license
clearing andmanagement. In our organization, the twomain OSS tools we use for this are
FOSSology (https://www.fossology.org/, https://github.com/fossology/fossology) and
SW360 (https://eclipse.org/sw360, https://github.com/eclipse/sw360). FOSSology is a
Linux Foundation project which has ameanwhile over 10 year project history providing a
solution for license scanning [2]. It has a very precise license scanning facility that allows
us to identify licenses as well as copyright information well. SW360 is a project hosted by
the Eclipse foundation. It provides both a web application and a repository to collect,
organize and make information available about software components.

For the “Assurance of license requirement fulfillment” step in the license clearing
process all of the OSS licenses of the approved component have to be thoroughly
examined by FOSSology to clearly identify the requirements (license obligations) to
fulfill as well as to define the ways of fulfilling the obligations. For the “Storage and
tracking of OSS components” step we use SW360. With it, the usage of the approved
components are typically registered and uniquely tracked for future reference and
reuse. The goal is not only to have a database of already approved OSS components
with all their associated information (e.g. suitability ranking, copyright holders,
applicable licenses, set of requirements the products have to fulfill derived from the
license situation, etc.). An additional goal is also to provide a means for internal (and
external) knowledge sharing on how to use, integrate and analyze the component.

Figure 2 shows a high level overview of an integrated compliance tool chain,
which represents also a more detailed diagram compared to Fig. 1. On the left side, the
incoming software is depicted. For successful use of OSS, also contributions to the
project should be considered. The right side shows the deliverables, products, or the
software which the organization conveys. In the middle part, a collection of elements is
shown which play a role license compliance and OSS management. The connection of
all the elements together, integrated with build infrastructure provides us with a
compliance tool chain.

Fig. 2. Overview of an integrated compliance tool chain

136 O. Fendt and M. C. Jaeger

https://www.fossology.org/
https://github.com/fossology/fossology
https://eclipse.org/sw360
https://github.com/eclipse/sw360

3 Related Work

We are part of a vibrant and growing community in the area of open source tools of
open source license compliance. Numerous members of this community presented at a
forum organized by the German BITKOM organization [3] and the community strives
to find ways to further foster the ecosystem of OSS-based tools for OSS license
compliance and related topics. In addition to our own participation (FOSSology,
SW360), other tools include Quartermaster (https://qmstr.org, https://github.com/qmstr/
qmstr) and OSS Review Toolkit (https://github.com/heremaps/oss-review-toolkit).

More relevant OSS tools and activities include: ScanCode, another OSS license
clearing tool, Tern which analysis containers for their used OSS for compliance (https://
github.com/vmware/tern), and ClearlyDefined (https://clearlydefined.io, https://github.
com/clearlydefined). ClearlyDefined and its hosting foundation, the Open Source Ini-
tiative, are on a mission to help OSS projects by being, clearly defined in terms of
compliance relevant information. According to ClearlyDefined, a lack of clarity around
licenses and security vulnerabilities reduces engagement and this can lead to fewer user,
contributors and a smaller community. Although not being a tool, the Software Heritage
project (https://www.softwareheritage.org/) is an important part of the OSS ecosystem.
Ideally, it could be a central source that the various tools could use as the central
repository of the OSS source code which would be of significant benefit to the entire
community.

4 Summary and Future Work

Modern software engineering seems to be increasingly use OSS including many of the
aspects that have been a hallmark of OSS – transparency, improvement, sharing, and
collaboration. As open source becomes more and more prevalent in our products, and
also in the tools that help create those products, it is logical to also increasingly use
open source tools and processes to do OSS license compliance. The open source
community on this topic is active and includes well-established tools with a long history
such as FOSSology, but also a set of numerous other tools as well. We encourage the
community to continue to work together to further extend the scope and the increased
use of these tools in practice.

We are firmly convinced that an open source approach is the best way to able to
keep up with the fast and ever-faster changing software world. Some of the future
directions and areas for future work for the international OSS community are:

• Reuse of (a subset of) clearing results across an external ecosystem,
• License compliance in the context of continuous delivery/DevOps ecosystem

identification of dependencies, automatic download of the source code packages of
the used packages (incl. dependencies), license analysis – and licenses determina-
tion, copyrights and automatic generation of license compliance artifacts. To realize
a fully functional DevOps setup the license compliance as well as cyber-security
processes need to be seamless integrated in the environment,

• Enhancing automatic container analysis for license compliance with the goal to
identify all applicable licenses.

Open Source for Open Source License Compliance 137

https://qmstr.org
https://github.com/qmstr/qmstr
https://github.com/qmstr/qmstr
https://github.com/heremaps/oss-review-toolkit
https://github.com/vmware/tern
https://github.com/vmware/tern
https://clearlydefined.io
https://github.com/clearlydefined
https://github.com/clearlydefined
https://www.softwareheritage.org/

References

1. Fendt, O., Jaeger, M.C., Serrano, R.J.: Industrial experience with open source software
process management. In: IEEE COMPSAC (2016)

2. Jaeger, M.C., et al.: The FOSSology project: 10 years of license scanning. Int. Free Open
Source Softw. Law Rev. 9(1), 9 (2017)

3. Forum Open Source 2018 - BITKOM 2018. https://www.bitkom.org/-Themen/Technologien-
Software/Open-Source/Forum-Open-Source-2018.html

138 O. Fendt and M. C. Jaeger

https://www.bitkom.org/-Themen/Technologien-Software/Open-Source/Forum-Open-Source-2018.html
https://www.bitkom.org/-Themen/Technologien-Software/Open-Source/Forum-Open-Source-2018.html

Opportunity Costs in Free Open-Source
Software

Siim Karus(&)

University of Tartu, 51009 Tartu, Estonia
siim.karus@ut.ee

Abstract. Opportunity cost is a key concept in economics to express the value
one misses out on when choosing one alternative over another. This concept is
used to explain rational decision making in a scenario where multiple mutually
exclusive alternative choices can be made. In this paper, we explore this concept
in the realm of open-source software. We look at the different ways for mea-
suring the cost and these can be used to support decisions involving open-source
software. We review literature on opportunity cost use in decision support in
software development process. We explain how the opportunity cost analysis in
the realm of open-source software can be used for supporting architectural
decisions within software projects. We demonstrate that different measures of
costs can be used to mitigate problems (and maintenance complexity) arising
from the use of open source software, allowing for better planning of both
closed-source commercial and open-source community projects alike.

Keywords: Code churn �What-if analysis � Scenario analysis � Coding effort �
Alternative cost � Opportunity cost � Software cost

1 Introduction

A large subdivision of software engineering research is focused on software estimation.
Software estimation is concerned with devising and validating models that can be used
to predict or estimate some aspect of software. These estimation models can be used for
detecting trends in software development or to support decision making process or
planning processes in software development. As such, the aim of many of these models
is to provide decision makers with comparable values for different alternatives. Despite
much effort put into evaluating and improving the accuracy of different models [1], the
applicability of these models for actual comparison of alternatives is often overlooked.
Hereby, we aim to collect the different approaches to measure cost in software devel-
opment and review the approaches’ applicability for comparing alternative actions.

In order to accomplish the set task, we perform an analytical review of objective
comparison options. That is, we give emphasis on data-driven options instead of sub-
jective expert (or community) opinion or evaluation. As a limitation, the options are
only readily applicable on open source software, which makes relevant data available.
We start by reviewing options for estimating the cost of software development. This is
then complemented with an overview of literature reporting opportunity cost or alter-
native cost use in software engineering. In particular, we look for the following aspects:

© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
F. Bordeleau et al. (Eds.): OSS 2019, IFIP AICT 556, pp. 139–150, 2019.
https://doi.org/10.1007/978-3-030-20883-7_13

http://orcid.org/0000-0002-1029-7122
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20883-7_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20883-7_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20883-7_13&domain=pdf
https://doi.org/10.1007/978-3-030-20883-7_13

1. What is the measure of the cost used?
2. Is the estimation model objective? That is: can the estimation be made solely based

on the data?
3. Does the literature confirm the generalisability of the estimation model on different

projects?
4. Does the literature report the confidence and accuracy of the model?

The first aspect is for classification of the approaches and identification of different
measures of cost used in software engineering. The second and the third aspect describe
the models’ independence from specialized knowledge of experts that might not be
available or have comparable skill level to the experts used in the original studies. As
such, objective data-based models that have been evaluated on multiple projects are
preferred due to their wider applicability and higher theoretical reproducibility. The last
aspect evaluates whether the model can be used for comparison of alternatives in
general. It is important to know the accuracy of the estimations in order to assess,
whether two estimations are significantly different from one another. If two estimations
differ less than the estimation error at given confidence level (or, to a limit, to given p-
value), then the estimations can not be considered significantly different from each other.

The literature overview is followed by examples of how decision making in or
involving free open-source software setting can benefit from the comparison of alter-
natives based on the estimation models. We highlight the challenges of extending the
process of comparing alternatives to closed-source commercial software development
(as opposed to FOSS) and list the main limitations of opportunity cost analysis. Finally,
we conclude the study by listing opportunities for the future.

2 Measures of Cost

Cost is an amount that has to be paid or given up in order to get something [2]. In
business, cost is usually a monetary valuation of (1) effort, (2) material, (3) resources,
(4) time and utilities consumed, (5) risks incurred, and (6) opportunity forgone in
production and delivery of a good or service [2]. In software projects, cost can be
measured using several units. In commercial environments, the value of different goods
is made comparable by introducing a conversion rate for all goods into a common good
- currency. Consequently, currency is commonly used to evaluate costs.

2.1 Monetary Value

Even though the monetary value is most commonly used for cost measurement, it has
many variations. A contemporary good cost estimation model is supposed to take into
account any development and delivery effort until a release of the software [3].
Sometimes the monetary cost is also considered to include sales effort and expenses,
efforts to adjust to changes, maintenance efforts, operational efforts and expenses,
brand-related turnover, or other expenses or revenue opportunities. As such, the dif-
ferent monetary cost estimation methods can lead to very different estimations and need
to be evaluated separately.

140 S. Karus

In free open-source software development, the monetary cost is usually of negli-
gible interest, as the product is not sold for profit. In some extreme cases the projects
may be sponsored, in which case the monetary dimension comes to play as the product
needs to keep the sponsors interested and the sponsorship is an opportunity to allow
higher expenses in the project.

2.2 Effort (Person-Hours)

As noted before, cost is usually measured in monetary evaluation. However, cost can
be measured using other metrics as well. As the cost of workforce is highly volatile, a
proxy of monetary cost, effort in worktime (usually person-hours or person-months) is
used instead [1]. This measure is much more stable as the cost is measured directly and
therefore does not differ as much in time and space as currency [3]. Nevertheless, such
cost is highly dependent on the individual assigned to the task, as different developers
can need different amount of time to complete the same task. To make the situation
even more complicated, reliable measuring of time spent on task is very difficult. As
software development requires planning and substantial mental work, it is not limited
to a location or registered by automatic means. Consequently, time measurements are
often based on self-reporting of the developers, which is not very accurate.

2.3 Time (Calendar)

The release cycle and release timings have become an important aspect of software
development. It is the need to publish early that competes with the time available for
development and testing [4, 5]. Consequently, the value measured by the cost can be
the earliness of the next release. The cost does not have to be linear or even monotonic
in relation to calendar time as certain dates or weekdays can be considered more
valuable or less valuable than others.

2.4 Size

Sometimes the amount of code is used as a measure of cost. The size reflects the
amount of effort put into developing the software – at least in the actual writing effort.
Nevertheless, sometimes smaller size can be more valuable as it means less code to go
through and to understand. As such, the size of the software can have a positive or
negative value depending on the evaluator’s objective.

2.5 Code Churn

Code maintenance effort is often evaluated based on code churn. Whilst code churn can
be measured in several different units from modules and files to tokens and symbols, it
is most commonly measured in lines of code (LOC). Code churn in lines of code is
calculated as the sum of the number of lines of code added, modified and deleted
between two revisions of a software module [6]. Some studies only count lines that are
written in certain programming language and affect program logic. However, all source
code needs to be maintained.

Opportunity Costs in Free Open-Source Software 141

In addition to providing an indicator of code maintenance effort, code churn has
also been shown to be correlated with software defects [7, 8]. In those cases, code
churn is usually aggregated over a certain period of time (commonly a year [9–11]).

Naturally, code churn estimates over a certain period of time show how stable is the
code-base. Projects with stable code-base can be considered more mature as there is
less on-going development and fewer bug fixing going on. Thus, in situations where
high reliability and low maintenance costs are important, projects with low code churn
estimates would be generally preferable. Of course, this is on the premise that the
stability of the project is not confused with the abandonment of the project.

Code churn is often estimated based on object-oriented metrics of the project [9, 12,
13]. Nevertheless, process-based metrics and organisational metrics have been shown
to provide far better results [14–16].

2.6 Other Cost Measures

In addition to these more common cost measures, sometimes the relevant and sub-
stantial costs can be of very specific or difficult to measure kinds. For example, costs of
brand, morale or public opinion can be detrimental. When discussing technical debt,
effects towards monetary cost are always to be considered together with potentially
longer term effects on morale, productivity, risk, and quality [17]. The practical limi-
tation for uniform opportunity cost assessment is that some of these costs (e.g. morale)
are very difficult to quantify. In those cases, the opportunity cost evaluations will need
to be multi-dimensional in order to take account of all the different costs and scales they
can be measured on.

3 Opportunity Cost in FOSS

The comparison of alternative actions requires the valuation of the outcomes from
making a decision. The basis for such rational value-based decision-making in eco-
nomics is opportunity cost. An opportunity cost (also known as alternative cost) is a
benefit, profit, or value of something that must be given up to acquire or achieve
something else [2]. That is, an opportunity cost can be expressed as:

Opportunity cost ¼ value of an option not chosen� value of chosen option:

Table 1. Search results and topics. Search results shows ‘number of results from keywords
“opportunity cost” “software”’ + ‘number of results from keywords “alternative cost”
“software”’.

Database IEEE Xplore ACM Digital Library ScienceDirect Total

Search results 13 + 4 8 + 3 51 + 11 90

Software engineering articles 10 6 19 35

Relevant articles 4 2 2 8

Topics Maintenance, testing, planning Testing, planning Testing, planning

Measures Monetary, effort Monetary Monetary

Data-based articles 1 0 0 1

142 S. Karus

In rational value-based decision-making, the chosen option should always be the
highest-valued option. As such, one can look at decision-making as an optimisation
process.

Even though the formula is simple, the evaluation of alternatives rarely is. The main
complexity stems from the fact that the “value” of an alternative is often difficult to
define precisely. The cost estimation models are generally focusing just a few of the
measures of the true value of an option (e.g. some models try to estimate monetary gain
or loss, others focus on delivery times), which might not even be directly relatable to
one-another. Consequently, if multiple factors apply the optimal decision can be found
using Pareto optimisation [18]. This also means that the best option may have sub-
optimal value in some respect. For example, faster delivery date may be more
important than lower monetary expense for some projects.

We searched three major repositories of research relating to software engineering:
IEEE Xplore1, ACM Digital Library2 and ScienceDirect3. As keywords, we used
“opportunity cost” and “alternative cost”. The search was refined by adding a keyword
“software” to both searches to eliminate the bulk of studies not relating to software.
Nevertheless, the results still contained largely studies that did not discuss topics
relating to software development as studies discussing opportunity cost in other fields
commonly listed the software packages used for opportunity cost estimation and
comparison. In summary, the search from the databases yielded 90 results with only 35
relating to software development processes4. The 55 results were rejected based on the
review of titles and abstracts, which revealed these to be discussing opportunity costs in
agriculture, medicine, (non-software) economics, or other fields. The remaining 35
papers were manually reviewed to filter out papers where opportunity costs were
discussed only in reference (e.g. as future work, introduction or only in abstract) or did
not relate to decision-making in any way (e.g. algorithm optimisation). This left us with
eight papers (four from journals, four from proceedings with the earliest from 1990 and
latest from 2016) relevant to our current focus. The review also identified additional
related keyword “options analysis”, but searching using this keyword did not reveal
additional articles of relevance to our study. The statistics of the search results can be
found in Table 1.

We found three studies discussing opportunity costs in the planning of software
development activities: [19, 20], and [21]. All of these studies were conducted in
commercial environment and had monetary cost included in the analysis. Spinola et al.
defined indexes that can be used for balancing effort with monetary cost when
assessing resource (developers) reallocation options [19]. Whilst the paper shows a nice

1 https://ieeexplore.ieee.org/.
2 https://dl.acm.org/.
3 https://www.sciencedirect.com/.
4 We also looked into Google Scholar search, but found its tools for filtering the results too limiting for
practical use. The original search keywords would get about 40,000 hits due to the popularity of
“opportunity cost” in many fields. Unfortunately, Google Scholar does not provide means to limit
search to specific fields and by adding exclusion keywords for more frequent non-related fields, we
could limit the search results down to about 4000 before hitting the limitations of Google Scholar
query complexity.

Opportunity Costs in Free Open-Source Software 143

https://ieeexplore.ieee.org/
https://dl.acm.org/
https://www.sciencedirect.com/

example of how to derive the indexes needed for cost computation and comparison, the
practical application of the analysis process would require expert input in order to
identify appropriate index values. Similarly, Cai et al. proposes a framework that can be
used to justify architectural decisions by minimising the risks and monetary costs of
potential changes [21]. Özogul et al., on the other hand, presents a case study of a
formula used to evaluate alternative investments in a hospital information system
development and operation [20]. The investment value estimation is based on sub-
estimates from experts or past experience.

Papers relating to software testing were the most common among the software
engineering papers on opportunity cost: 4 out of 8 studies looked at aspects of testing.
Two of these were trying to answer the question of when should one stop testing and
release the software: [4] and [5]. Both of these looked at monetary cost balance of the
cost of testing (and fixing bugs found during testing) and the cost of resolving bugs in
released software. In [4], the authors try to improve a previously developed model for
assessing the optimal time to stop testing by adding measures to handle uncertainty of
the values of some components of the model. In overall, their model is robust but rather
simplified with only the efficiency of the testing team (that is, how fast do they detect
bugs) left to the experts to evaluate. [5] offers a more detailed model for calculating the
costs and introduces the concept of patching to the model. The other two articles look
into prioritization of tests in order to balance testing expenses with the risks from
missed bugs [22], and finding the balance between the number of automated test cases
and the number of human test executions [23].

Finally, one paper discussed opportunity cost in software maintenance: [24]. In
there, the authors were looking at the opportunity costs from the inner-company client’s
perspective. They concluded that in their case study the costs for the IT department were
not affected by the time bugs remained open (the “lead time”). However, they did find
that it does influence the opportunity costs of the users of the information systems and
could lead to sub-optimal distribution of costs within a company. As the analysis was
performed on actual historic data, it does not rely on the availability and skill of experts,
which makes it stand out of all the papers on opportunity cost reviewed here.

Even though “opportunity cost” is a term rarely used in current software engi-
neering research, a properly reported study of “cost estimation” can be used for
assessing opportunity costs as well. This is an advantage as “cost estimation” is a
popular topic with a combined total of over more than 2000 search hits in the three
databases used in this study.

4 Opportunity Cost in Decision Making

Opportunity cost can be used in several different decision-making scenarios. For
example, it is useful for picking the platforms or libraries for use in a project potentially
avoiding the need to reverse such decisions (e.g. reverting from Angular JS due to
maintenance costs incurred by its fast pace of changes); or evaluation of options for
refactoring a project’s component and/or dependency structure. Hereby we give
examples on how opportunity cost analysis can be used in these scenarios depending
on the available cost measure.

144 S. Karus

4.1 Choosing a Product

Let us assume a scenario where a project manager needs to choose, which software
library or framework to use in the project. There are several approaches to solving this
task depending on the aim of the project. Given two or more alternative options, the
project manager can make a preliminary choice of one library that seems most suitable
(alternatively, he could choose to not use a third party library). Based on the choice, the
project manager can calculate the costs of adopting alternative libraries. If the oppor-
tunity cost of adopting an alternative library is favourable, the project manager can
change the choice to become the better alternative.

The monetary opportunity cost should be easy to understand – positive opportunity
cost means that the monetary gains from adopting the alternative library outweigh the
gains from the current choice. Accordingly, negative monetary opportunity cost
favours current choice.

The opportunity cost in effort (person-hours) is a bit more complex to act upon. As
effort is by its nature a loss (the team spends effort) and the opportunity cost is defined
as difference of gains, the opportunity cost in effort is the negative of the difference of
the team’s efforts. Thus, a positive opportunity cost in effort means that the alternative
requires less work than the current choice. This means that if the project is mostly
voluntary, the minimisation of effort might be preferred (thus, the choice should be
changed if opportunity cost is positive). In some cases, both the effort and monetary
costs need to be considered together as separate dimensions. This can be a case if there
are license or infrastructure costs linked to the adoption of libraries. We highlight that
the comparison is not linear as the difference in monetary cost can be insignificant if the
budget is high or the monetary cost difference can be limiting due to budget limitations.
Thus, the monetary cost component tends to behave in a stair-like fashion rather than
linear fashion.

The opportunity cost in time is even more complicated to calculate, as the value of
the timing of actions is rarely monotonic. For example, optimal release opportunities
tend to depend on the weekly and monthly cycles. In addition, special external events
or deadlines from clients may make certain periods (e.g. releasing consumer-oriented
services ahead of major holidays) more favourable than others. The same applies to the
team members’ ability to react to other team members’ changes in the source code.

As mentioned in the description of the measure of size, size can be either a positive
or a negative attribute of the software. Consequently, it needs to be handled accord-
ingly when calculating the opportunity cost.

As code churn is an indicator of maintenance effort, it can provide interesting
insights into the quality and development stage of the library. A high code churn
estimation will indicate that the library will be actively developed or maintained. A low
estimation means that the module is either stable or abandoned. Consequently, when
looking to adopt a more stable library, one would prefer libraries with lower code churn
estimation (code churn is a negative feature). If one would like to use more changing
and agile libraries, high code churn would be preferred (code churn is a positive
feature). In general, commercial companies focused on reliability are more interested in
using stable libraries and frameworks in their projects [25].

Opportunity Costs in Free Open-Source Software 145

This example of choosing a library or a framework can be extended to a scenario of
choosing a software application from multiple alternatives. For example, software with
lower estimated code churn can be expected to be more stable than other alternatives.

4.2 Refactoring Options

Software component maintainability can be an important factor when deciding how to
refactor the software. The refactoring options can include replacement of a component,
integration of a component into other source code, or preservation and continued
maintenance of the component. Using a framework for assessing a module’s or
component’s quality (e.g. via a method proposed by Upadhyay et al. [26]), will give
general quality assessment on the module, but does not give an accurate assessment of
the cost of replacing or integrating the component as the maintenance of software
components is highly dependent on one-another (as shown by Mari et al. [27].
Understanding this, we can devise a following method for assessing the alternative cost
of a software module.

Let us assume that a project manager or architect is wondering whether certain
sections of the software should be replaced or removed from the project. We can find
out, whether removing (or replacing) the modules has positive effect on the mainte-
nance of the software by simulating the removal (or replacing) of the module and
estimating the opportunity cost in maintenance effort.

From the general definition of opportunity cost, we construct the definition of
opportunity cost of maintaining a software module. Opportunity cost or alternative cost
of not having a module m in project p (Ap

m) is the difference between the cost of
maintaining or developing the project without the module (Ep

m) and the cost of main-
taining or developing the project with the module (Cp).

Ap
m ¼ Ep

m � Cp

It is clear from the definition, that in order to calculate the opportunity cost of main-
tenance of the project without a module, we need to know both the cost of developing
the project with and without a module. These two costs never occur in the same project
at the same time, which rules out using actual data for calculating the opportunity cost.
Therefore, we need to use an oracle that would tell how much the development in one
or another scenario would cost. The part of the oracle can be performed by a cost
estimation model, which allows reproducible objective analysis of options, or by
experts (or a combination of experts and cost models), which is less generalizable.

Having found out that the opportunity cost of removing the module is significantly5

negative, we know that we should keep the module. If the opportunity cost would have
turned up significantly positive, you would know that the module is safe to remove. If
the opportunity cost is near zero, the removal of the module is likely to have little to no
effect on the maintainability of the project. Similarly, one can simulate any refactoring

5 Significantly means that the probability of being mistaken is less than acceptable by your confidence
threshold. Commonly confidence of 0.95 or higher is used meaning the probability of being mistaken
is 5% or less.

146 S. Karus

option and calculate corresponding opportunity cost. Therefore, it would be possible to
evaluate all refactoring options before taking action.

As the possible simulations are not limited by anything but the oracle’s ability to
sense the changes, the same process can be used for more accurate evaluation of
implementation alternatives. The oracle has another limitation – one needs to know
whether the oracle’s accuracy is below or above the significance threshold (confidence)
of the developer. Thus, only estimation models with published error and confidence (or
p-value) can be used as an oracle.

4.3 Commercial Applications

In commercial applications, the monetary cost of the project becomes more relevant
than in free software. The opposite is often true for the effort as the availability of
workforce is less volatile. Simplistically, the monetary value can be assumed to stem
from effort alone [1]. In practice, this can be an oversight as depending on the project,
the infrastructure costs or even public image can have higher impact on the monetary
costs than developer salary. Commercial evaluation also needs to take into account
inflation, which affects monetary costs [20].

On the other hand, a more rigid structure of commercial projects will allow more
precise cost estimation methods to be used for opportunity cost estimation. This can
lead to much more accurate opportunity cost analysis and better options for finding the
optimal behaviour. In this study, we focus on free software as the data on free software
has better availability and lends itself to easier replication of the study.

5 Limitations of Cost Estimation

An important factor that was highlighted by Özogul et al. is that the value of the
measurement unit changes in time [20]. As they were studying the monetary costs, they
resolved that limitation by calculating the present value of any future values. They could
do that on the assumption of knowing the approximate average inflation rate for the
prices in the studied currency. In general, it is not that simple to compare values or costs
from different time periods. This also applies to code churn as the efficiency of software
developers is increasing due to the introduction of frameworks, higher level languages
and design-time code generation. However, we are currently not aware of any standard
methods or discounting the effects of such advancements in code churn analysis.

As all estimations, cost estimation are not ideal and exact. Thus, one needs to
consider the limitations of the accuracy of cost estimation models used. We highlighted
that as a requirement for any cost estimation model to be generally useable as it is
possible to identify significant cost differences only with models that have known error
ranges and confidence levels. Not understanding and controlling for the significance of
difference can easily lead to invalid conclusions. As in our experience similar software
modules often have similar cost estimations, this can lead to project managers
switching software modules and components too often (even when there is no sig-
nificant benefit of cost) causing more cost to incur due to instability of the project
architecture.

Opportunity Costs in Free Open-Source Software 147

6 Conclusions and Future Perspectives

Opportunity cost is a key concept in economics when describing rational decision-
making. A literature search of opportunity cost in software in three larger software-
related research databases found only a handful of relevant results. Therefore, it is clear
that the value-based decision making rationales in software engineering are not well
established. Even more, we found that only 1 of 8 papers demonstrated opportunity
cost calculation without relying on expert opinion. Only 1 out of 8 papers claimed that
the approach used was tested on more than 2 projects and none of the studies claimed
verification from more than 2 experts when expert opinion was needed. As such, the
generalisability of the current studies is weak. None of the studies reported the accuracy
and confidence of the proposed methods.

On positive note, we found that there is at least one cost estimation method that can
be used for opportunity cost analysis. Furthermore, the identified method uses a model
that does not require any expert input – the estimations were based solely on the data
available in a source code repository history. This allows the approach to be used even
in situations where experts with sufficient competence are not available without
needlessly exposing the estimation process to a potential human error. The technique
presented in this paper shows how the effects of decisions made during software
development process can be simulated. More specifically, we offer an approach for
better identification of the drivers of software coding effort in open source software
projects. As such, we cater for the future-oriented needs of software development
analysts as defined by Buse et al. [28]. As an added benefit of using easy-to-use end-
user-oriented analysis platform, our analysis technique can be easily deployed without
deep understanding of statistics, databases or software source code management
systems.

The obvious future perspective is the need for more studies of opportunity cost
modelling in software engineering. Some of the scarcity of opportunity cost modelling
can be due to the performance of the estimation models, which we have seen to be
sufficient for limited success. Improving the estimation abilities of the models can lead
to significantly better and more detailed what-if analysis.

Acknowledgement. Thisworkwassupportedby theEstonianResearchCouncil (grant IUT20-55).

References

1. Jørgensen, M., Shepperd, M.J.: A systematic review of software development cost
estimation. IEEE Trans. Softw. Eng. 33(1), 33–53 (2007)

2. BusinessDictionary. http://www.businessdictionary.com/
3. Pandey, P.: Analysis of the techniques for software cost estimation. In: Proceedings of 2013

Third International Conference on Advanced Computing and Communication Technologies,
pp. 16–19. IEEE, Rohtak (2013)

4. Dalal, S.R., Mallows, C.L.: Some graphical aids for deciding when to stop testing software.
IEEE J. Sel. Areas Commun. 8(2), 169–175 (1990)

148 S. Karus

http://www.businessdictionary.com/

5. Kapur, P., Shrivastava, A.: Release and testing stop time of a software: a new insight. In:
Proceedings of 4th International Conference on Reliability, Infocom Technologies and
Optimization. IEEE, Noida (2015)

6. Hall, G.A., Munson, J.C.: Software evolution: code delta and code churn. J. Syst. Softw. 54
(2), 111–118 (2000)

7. Munson, J.C., Elbaum, S.G.: Code churn: a measure for estimating the impact of code
change. In: Proceedings of International Conference on Software Maintenance (ICSM),
pp. 24–31 (1998)

8. Nagappan, N., Ball, T.: Use of relative code churn measures to predict system defect density.
In: Proceedings of the International Conference on Software Engineering, pp. 284–329
(2005)

9. Thwin, M.M., Quah, T.-S.: Application of neural networks for software quality prediction
using object-oriented metrics. J. Syst. Softw. 76(2), 147–156 (2005)

10. Koten, C.V., Gray, A.R.: An application of Bayesian network for predicting object-oriented
software maintainability. Inf. Softw. Technol. 48(1), 59–67 (2006)

11. Karus, S., Dumas, M.: Predicting coding effort in projects containing XML. In: Proceedings
of 16th European Conference on Software Maintenance and Reengineering (CSMR),
pp. 203–212 (2012)

12. Li, W., Henry, S.: Object-oriented metrics which predict maintainability. J. Syst. Softw. 23
(2), 111–122 (1993)

13. Zhou, Y., Xu, B.: Predicting the maintainability of open source software using design
metrics. Wuhan Univ. J. Nat. Sci. 13(1), 14–20 (2008)

14. Rahman, F., Devanbu, P.: How, and why, process metrics are better. In: Proceedings of the
2013 International Conference on Software Engineering, pp. 432–441. IEEE Press, San
Francisco (2013)

15. Karus, S., Dumas, M.: Code churn estimation using organisational and code metrics: an
experimental comparison. Inf. Softw. Technol. 54(2), 203–211 (2012)

16. Nagappan, N., Murphy, B., Basili, V.R.: The influence of organizational structure on
software quality: an empirical case study. In: Proceedings of 30th International Conference
on Software Engineering (ICSE), pp. 521–530. ACM, Leipzig (2008)

17. Tom, E., Aurum, A., Vidgen, R.: An exploration of technical debt. J. Syst. Softw. 86(6),
1498–1516 (2013)

18. Wierzbicki, A.P.: A mathematical basis for satisficing decision making. Math. Model. 3(5),
391–405 (1982)

19. de Mesquita Spinola, M., de Paula Pessoa, M.S., Tonini, A.C.: The Cp and Cpk indexes in
software development resource relocation. In: Portland International Center for Management
of Engineering and Technology, pp. 2431–2439. IEEE, Portland (2007)

20. Özogul, C.O., Karsak, E.E., Tolga, E.: A real options approach for evaluation and
justification of a hospital information system. J. Syst. Softw. 82(12), 2091–2102 (2009)

21. Cai, Y., Sullivan, K.J.: A value-oriented theory of modularity in design. In: Proceedings of
the Seventh International Workshop on Economics-Driven Software Engineering Research,
pp. 1–4. ACM, St. Louis (2005)

22. Schwartz, A., Do, H.: Cost-effective regression testing through adaptive test prioritization
strategies. J. Syst. Softw. 115, 61–81 (2016)

23. Ramler, R., Wolfmaier, K.: Economic perspectives in test automation: balancing automated
and manual testing with opportunity cost. In: Proceedings of the 2006 International
Workshop on Automation of Software Test, pp. 85–91. ACM, Shanghai (2006)

24. Chan, T.: Beyond productivity in software maintenance: factors affecting lead time in
servicing users’ requests. In: Proceedings of International Conference on Software
Maintenance, pp. 228–235. IEEE (2000)

Opportunity Costs in Free Open-Source Software 149

25. Raemaekers, S., Deursen, A.V., Visser, J.: Measuring software library stability through
historical version analysis. In: Proceedings of the 28th IEEE International Conference on
Software Maintenance (ICSM), pp. 378–387. IEEE, Trento (2012)

26. Upadhyay, N., Despande, B.M., Agrawal, V.P.: Towards a software component qualitymodel.
In: Meghanathan, N., Kaushik, B.K., Nagamalai, D. (eds.) CCSIT 2011. CCIS, vol. 131,
pp. 398–412. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17857-3_40

27. Mari, M., Eila, N.: The impact of maintainability on component-based software systems. In:
Proceedings of 29th Euromicro Conference, pp. 25–32 (2003)

28. Buse, R.P., Zimmermann, T.: Information needs for software development analytics. In:
Proceedings of the 34th International Conference on Software Engineering, pp. 987–996.
IEEE Press, Zurich (2012)

150 S. Karus

http://dx.doi.org/10.1007/978-3-642-17857-3_40

FLOSS Education and Training

Does FLOSS in Software Engineering
Education Narrow the Theory-Practice
Gap? A Study Grounded on Students’

Perception

Debora Maria Coelho Nascimento1 ,
Christina von Flach Garcia Chavez2(B) , and Roberto Almeida Bittencourt3

1 Federal University of Sergipe, São Cristovão, Brazil
deboramcn@dcomp.ufs.br

2 Federal University of Bahia, Salvador, Brazil
flach@ufba.br

3 State University of Feira de Santana, Feira de Santana, Brazil
roberto@uefs.br

Abstract. Software engineering education is challenged by the need to
convey practical experience in the context of a rich and large body of
theoretical knowledge. This study investigates whether the use of open
source projects can reduce the gap between theory and practice in under-
graduate software engineering courses. Two qualitative case studies were
conducted with students performing activities in an open source project,
each one in a different course: software testing and software require-
ments. Results point out that the use of open source projects provides a
concrete experience similar to industry experience, allows high cognitive
engagement when performing tasks, favors understanding and content
retention, and leads to the recognition of the usefulness of software engi-
neering principles, techniques and methods.

Keywords: Education · Theory-practice gap · Qualitative studies

1 Introduction

Free/Libre/Open Source Software has not only been instrumental for education
and research in the academia, but also provides a real world object of study
(software and its development) for software engineering (SE) researchers. Their
use in SE education is becoming more popular, since it provides an opportunity
for learning SE principles, techniques and methods and, thus, for narrowing the
theory-practice gap usually present in undergraduate courses on the subject.

Software Engineering reference curricula [23] emphasize the need for pro-
fessional practice and student participation in real projects. Several countries
provide guidelines for Computer Science courses that recommend that curric-
ula must leverage the coexistence between theory and practice, so that students
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
F. Bordeleau et al. (Eds.): OSS 2019, IFIP AICT 556, pp. 153–164, 2019.
https://doi.org/10.1007/978-3-030-20883-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20883-7_14&domain=pdf
http://orcid.org/0000-0002-0326-5261
http://orcid.org/0000-0001-5172-9641
http://orcid.org/0000-0002-8854-8956
https://doi.org/10.1007/978-3-030-20883-7_14

154 D. M. C. Nascimento et al.

can adapt to new situations of their training area in the future. Nonetheless,
examples and exercises presented either in SE courses or in textbooks are usu-
ally simple and easier to understand than real world problems. Such limitations
sometimes make students remain unaware whether they really need to apply
theory from the SE discipline.

On the other hand, the adoption of open source projects (OSP) to perform
practical activities in the formal education of SE allows students to live practi-
cal experience environments close to the ones they will find in industry [2,19].
Nandigam et al. [17] argue that students learning with OSP acquire a view that
allows them to understand the basic principles of SE, not as merely academic
knowledge, but as something useful and necessary for practice.

This work investigates whether the adoption of OSP allows students to make
connections between theoretical knowledge with practical knowledge and skills.
This investigation is relevant to address the lack of motivation that arises when
students do not perceive the real usefulness of theoretical knowledge, which may
lead students to ignore SE principles, practices and methods. We conducted two
case studies in different courses of SE, in which students used an OSP to perform
activities related to software testing and software requirements.

The results show that students perceived that the use of OSP: (i) provides a
concrete experience equivalent to the situations that they will experience in the
labor market; (ii) allows high cognitive engagement with active participation;
(iii) favors understanding and retention of content; and (iv) reduces abstraction
and allows the object of study to be more concrete and meaningful. Consequently,
within the case studies and according to their own perceptions, students were
able to connect the theory provided in an academic environment with real-world
practice, recognizing the importance of SE knowledge, and therefore, narrowing
the theory-practice gap in SE education.

2 Experience, Engagement and Content Significance

Boud et al. [1] emphasize that experience is the basis and the stimulus for learn-
ing. Watching a lecture, reading a textbook, discussing certain content, perform-
ing practical activities, visiting a museum are examples of experience. Moon [15]
distinguishes between external experience (what is experienced by the learner,
whether an object, a concept, an image, etc.) and internal experience (what the
learner recovers from his/her cognitive structure to the current learning situa-
tion; the set of previous experiences that are important for the present situation).
Therefore, learning occurs by comparing external experience with current inter-
nal experience, and is the result of variations between them [15]. Jarvis [12]
emphasizes that internal/previous experience is what guides how the apprentice
responds to present experience. However, the teacher/educator can have influ-
ence on learning by specifying external experiences for the learner [15]. Finally,
not every experience brings good results for learning [6,8,15]. Experience must
be vivid, lively, interesting and must be connected with future experience, espe-
cially with out-of-school situations [6].

Does FLOSS in SE Education Narrow the Theory-Practice Gap? 155

Cognitive engagement refers to the quality of the student’s psychological
engagement in academic tasks [5]. It comprises the need for the learner to pro-
cess the content of the lesson, so that this engagement may be superficial or
deep [24]. Learning is a function of the student’s cognitive engagement, that is,
it increases as a result of increased quality of cognitive engagement [24]. Attend-
ing a lecture, attending a demonstration, describing certain content in their own
words, giving examples, solving exercises, discussing ideas on the subject, pre-
senting their opinion using argumentation, solving real problems are examples of
gradual forms of engagement. Engagement strategies should promote the manip-
ulation of information, rather than memorization [9]. Uden and Beaumont [24]
emphasize that engaging in complex cognitive activities generates useful and
authentic learning. Moreover, engagement through practical activities allows the
occurrence of errors and mistakes, which are also important for learning.

Significant content is an element that participates early in the learning pro-
cess, with the perception or selection of the information to be processed. Only
what is significant or meaningful to the learner is captured. Information needs to
be perceived or selected so that learning takes place [24]. Lefrançois [13] argues
that the more meaningful the content is, the more easily it will be remembered.
This would be the explanation for the vulnerability of episodic memory, whereas
an event with related meaning is more difficult to be forgotten. Learning is
effective when the learner is able to organize information by identifying logi-
cal relationships in the content [24]. We highlight two issues with respect to
the construction of meaning. First, concrete experiences are critical to meaning-
ful learning [15,20]. They enable the learner to better understand, analyze the
importance of the studied content and evaluate consequences. Second, although
the construction of meaning is individual, experience takes place within a social
context and therefore, each person is strongly influenced by the social and cul-
tural context of the learning environment [15]. Beliefs and values of the individ-
uals are generated from the social and cultural context in which they live, and
influence the interpretation of the facts and, consequently, the construction of
meaning.

3 Related Work

Systematic mapping studies identified various initiatives to software engineering
education with OSP [2,19]. Most of the primary studies presented solution pro-
posals or experience reports; other studies presented a more general view of how
the approach could be incorporated into the curriculum, or how to bridge the
training gaps pointed out by industry.

Recent studies have focused on capturing students’ perceptions on the use
of OSP in formal education [18,22]. Nascimento et al. [18] investigated whether
undergraduate students regarded the activities performed in open source projects
as a real-world experience. The results provided evidence based on students’
perceptions that OSP have a set of features similar to industrial software. They
recognized the closeness of the activities to be carried out in industry and, con-
sequently, of the typical difficulties in working with real projects, and the skills

156 D. M. C. Nascimento et al.

they need to develop. Pinto et al. [22] conducted an exploratory investigation
on students’ perceptions about the need to contribute to an OSP as a manda-
tory activity in a software engineering course. The authors highlighted students’
recognition of improving their technical skills and increasing their self-confidence.
The study also highlighted the complexity and diversity of students’ engagement
in carrying out the activities. While these studies [18,22] present evidence of stu-
dents’ perception on the ‘cognitive engagement’ and ‘vivid and real experience’
provided by the adoption of OSP in formal education, our study aims to provide
evidence grounded on students’ perception on the ‘significance’ of the contents
studied with the support of OSP.

Nandigam et al. [17] adopted a practical approach to teach a subset of basic
software engineering principles by using OSP with the belief that students would
perceive how such principles could be used in practice. The authors provided a
detailed report on the activities performed and concluded that the expected
results were achieved. However, they collected such perceptions based on stu-
dents’ oral presentations and follow-up discussions [17]. Our study provides evi-
dence based on students’ own perceptions about the connection between theory
and practice when performing activities with the OSP.

4 Methodology

We conducted two case studies in the academic setting to explore students’
perceptions on the use of OSP and whether it provides a connection between
theory and practice. The first case study (CS1) was executed in a software testing
course, while the second one (CS2) was executed in a course on software require-
ments. In both CS1 and CS2 students used JabRef1, a software for managing
bibliographic references in the Bibtex format, to perform practical activities.
The research team was responsible for defining the activities to be carried out
and supporting students with JabRef issues.

In CS1, students could choose to either perform or not the requested activ-
ities with JabRef. The instructor used classical lectures followed by exercises,
with theory presented independent from the OSP. We added an optional activity
to implement automated tests for JabRef that consisted of two steps. First, each
team of students was responsible for building automated unit and integration
tests for some assigned feature module. Within the team, students discussed
and decided which features should be tested and who should write the tests.
In the second step, they should build automated functional tests based on the
application interface, analyze coverage of the implemented tests, and develop
and run at least one regression test plan. In CS2, the use of JabRef to per-
form activities was compulsory. Students split into teams performed two prac-
tical assignments. In the second assignment, they should reverse-engineer the
requirements of a legacy software, JabRef. Students identified functional and
non-functional requirements, created a requirements traceability matrix, devel-
oped system sequence diagrams for use cases, identifying classes and methods
1 http://www.jabref.org/.

http://www.jabref.org/

Does FLOSS in SE Education Narrow the Theory-Practice Gap? 157

involved; and proposed improvements to the built-in help function of the use
cases.

We used interviews and questionnaires as instruments of data collection. The
research team had no relation to the students or their grading. Questionnaires
were used in the first contact with the students, before and after the intervention
using the OSP. In the first one, the goal was to identify their previous experience
with real software projects. In the second, the goal was to gather students’ per-
ceptions about the knowledge and skills regarding the subject, before applying
the OSP approach. In the third questionnaire, the goals were twofold: to capture
students’ perceptions on the knowledge and skills acquired during intervention,
and to identify whether they perceived the interaction with the OSP as a means
to bridge the gap between theory and practice. We used semi-structured inter-
views after the intervention. In each case study, we invited at least one member
from each team with different levels of previous experience with real projects.
The interviews were recorded, transcribed and reviewed. A total number of 30
students participated in the case studies and answered the questionnaires pro-
vided by the research team. The characterization of the participants in each case
study and other supplementary material are available at [21].

For data analysis, we used descriptive statistics for the quantitative data, and
the inductive-deductive process described by Merriam [14] for the qualitative
data. We used open coding to discover information that might be relevant to the
research. After we reached a certain number of codes, we performed axial coding
simultaneously with open coding, grouping the interrelated codes and creating a
hierarchy of themes. As coding proceeded, we verified existing codes that could
be used or we created new codes whenever needed. After completing coding
of all data, we reviewed the resulting codes, refined the hierarchy of themes,
and generate memos for the key themes. Throughout the process, we sought
to identify relationships between codes and themes created. In the following,
the term “categories” also refers to the created codes. After performing data
analysis and interpretation for each study, we triangulated the results to identify
intersections between studies and the particularities of each study.

5 Results

We identified two key themes related to students’ perceptions on the connection
between theory and practice with the use of OSP: ‘the importance of prac-
tice for learning the theory’ (Sect. 5.1) and ‘the importance of theory to prac-
tice’ (Sect. 5.2).

5.1 Importance of Practice for Learning the Theory

Practice Provides Concrete Examples. In the two case studies, students
pointed out that practice with the OSP provided a ‘concrete example’ of appli-
cation of the theory so that the object of study was no longer just an account of
the instructor, and reduced the abstraction level by reifying the theory.

158 D. M. C. Nascimento et al.

“You only catch a glimpse in class, you ... grasp the subject, study and imag-
ine, right? ... but when you examine it in practice ... it strengthens more” (ST1).

“As I had already said, it was not just in the ... knowledge was not just in
theory. It ... let’s say it got out of the mind and actually happened” (SR5).

“Because what has been done (...) it moved from abstract to real” (SR2).

Practice Helps the Student to Understand Theory. Possibly by providing
a concrete example, we found evidence in both CS1 and CS2 studies that practice
with OSP helped students to ‘understand the concepts’ studied, a situation also
reported by Hepting et al. [10].

“(..) practice helped a lot to understand the test types, white box, black box,
interface tests, so ... you take a closer look at the tests ... integration ... ” (ST1).

“The tests clarify further, when you look at what you did and see how it fits
into that (..) when you have a range of tests to differentiate a group of tests from
another group, such as integration and unit tests. (..) When you just have an
explanation, you don’t ... oh, that’s it, and it’s a very similar thing, that has a
different question. ’ (..) when you start writing a test, you already ... ’oh, okay, I
need to do this, so this is an integration test’ (..) You are already differentiating
by groups ... It kind of enriches your ... theoretical knowledge” (ST2).

“It was something that greatly improved my understanding, and I think of my
friends’ too, at least in my team” (SR2).

“(..) JabRef ... I think we could apply a lot of topics (..) and put into practice
(...) as I said, there were unclear things, topics of the course that were not so
clear. And there with the project, (...) trying to do ... to carry the work out,
things got clear” (SR4).

“(...) several theoretical topics that I believed I had understood, then when I
went to practice and used that understanding, I realized it was not quite that ...
That eases theory understanding ” (SR7).

Practice Consolidate Contents. In CS2, students emphasized that the use
of the OSP in practical activities enabled them to ‘consolidate knowledge’.

“(..) we study a lot of topics, and we understand, but ... with the project, I
think it further consolidates the knowledge” (SR3).

“(..) I was able to ... connect the dots and ... fill in the gaps, let’s say ... to
consolidate the knowledge (..) I think it became more ... let’s say so ... concrete.
I could actually ... consolidate this kind of information” (SR8).

“And with practice ... it’s as if it [the project] creates a box and keep it
into the person’s knowledge, into the mind, which ... turns it into ... something
already known, it is no longer something new for you, and ... [with respect to]
the knowledge of the course contents ... it has enriched a lot” (SR5).

In these last two extracts, students mention that, with the OSP, they were
able to ‘connect the dots and fill in the gaps’ (SR8) or that the execution of the
project allowed ‘to create a box and keep it into the person’s knowledge, into the
mind’ (SR5). Without realizing it, students illustrated the process of knowledge
assimilation and accommodation in their cognitive structure, according to the
constructivist understanding of the learning process [13].

Does FLOSS in SE Education Narrow the Theory-Practice Gap? 159

Practice Helps Content Retention. Students recognized the relevance of
practice with the OSP for content retention. For CS1 participants, practical
activities with JabRef were more meaningful than simply studying for an exam,
and possibly forgetting the content soon afterwards: “let’s say ... it’s better for
retaining knowledge. Because if you give something more concrete to keep what
was taught in class, it is not just for passing the exams, for example” (ST5).

“Because if you only focus on theory (..), in a month, you will forget it, but
not with practice, when you need it, it will be there” (ST3).

A student explained that retention happens because it is necessary to under-
stand the content to be able to do the practical activity: “It was good to remember
because ... you see a thousand concepts (..) and you stay there with no atten-
tion sometimes ... then you have to remember what is an unit test, what is a
regression test ... I’ll have to write one (..) how do you write it, you have to
understand ... doing helped me remember it all” (ST4).

Practice Promotes Student’s Active Participation. In CS2, two students
indicated as a relevant factor for content retention, the need for ‘active partic-
ipation’: “(..) when you go to class to watch ... just slides (..) that knowledge
will vanish at a certain point in time. There will come a time that you will no
longer remember ... what you’ve seen, what you’ve heard, if you do not consoli-
date through practice ... you take ... from theory and put into practice what you
see, what you hear, what you’re learning, and I think that contributed a lot to
knowledge” (SR5).

“This project was very important because we could do, with our own hands,
what we learned in class or with third parties, you know? It’s much better for
you to learn by doing than by listening ... Because one thing is for you to use
slides and to be there speaking, blah, blah, blah ... But it’s neither our fault nor
the instructor’s fault. It’s because the model applied in class is totally different
from what you do. You learn much more by doing than by seeing” (SR2).

In traditional classroom, the student only ‘receives’ information and the
knowledge ‘will vanish at a certain point in time’ (SR5). Active participation
is distinct from such passive attitude and ‘you learn a lot more by doing than by
listening’ (SR2). Budd [3] adds that active participation in any OSP will require
that students become self-taught because they will be continuously challenged
to learn some tool or develop some skill.

Practice Confirms the Applicability of Theory. In CS2, students were able
to perceive that the concepts and principles studied were actually applied in
practice, that is, to confirm the ‘applicability of theory’: “It contributed because
we really did practice. We set out to practice and realized that they really are
applied ... the whole concept, the whole theory that was presented in class” (SR1).

“At least I did not have that skill. (...) we had to run after stuff we didn’t
know and put into practice in the project” (SR2).

“Practice helped a lot to figure out how the diagrams and stuff works” (SR7).

Practice is Essential to Learning Some Subjects. In CS1, students
recognized that ‘lack of practice leads to partial learning’. Lectures enabled
understanding about tests, but doubts emerged with practical activities: “You

160 D. M. C. Nascimento et al.

understand visually, but when you put into practice what was presented in class,
then the doubts begin to arise” (ST7).

To ‘learn how to do’, one needs to exercise the testing techniques: “I think
a unit testing without practice for me would be ... wouldn’t be good, I think ... I
would learn half of it ...” (ST1). The learner will only be sure if he or she knows
or does not know, after experiencing [8].

Practice Helps Students to Grasp the Problem. By working with projects
that are close to reality, students could ‘see how the problem really is’ and con-
firm that things are not as simple as they seem, when they consider only the-
ory. According to Morelli et al. [16], students witness that challenging problems
rarely yield to solutions presented in textbooks. Students who do not have expe-
rience with real projects have unrealistic expectations regarding the quality of
the source code and are surprised when they do not find an elegant code like
those presented in textbooks.

“(..) you only see the problem when you have the problem at hand. Knowing
the theory on how to do the tests, what is needed, is nice, but you will only really
know what is needed, when you are there in the situation (..). So, I think theory
is good, but practice makes it worthwhile” (ST2).

“(..) because in theory everything is simpler ... The examples we get are
always simple ... it’s an integer, then a number between zero and ten. Now this
is not a number [commenting on the project], it’s a string, there’s a database
that, with an input, with something else as input, so it stays ... it was difficult
to know ... what exactly to use from theory” (ST6).

“(..) we see how complicated it is (..) eliciting requirements ... knowing the
use cases and everything ... knowing a little bit of what the guy who developed
had to know ... It’s pretty cool, because sometimes we see the theory, but with
practice, it’s when you see that, it’s more difficult than in theory ... it’s something
that we get the content and think we know, but when you see it in practice, there
the doubt arises ... it helped a lot” (SR3).

Practice Enables Discussion. Concrete examples, a more realistic view of
problems to be faced, judgments of which techniques should be applied, and
the experience with a common project ‘enable discussion’. From the practical
project, students have their own experience and elaborate their point of view. In
addition, all students experience a little of the project, different perspectives can
be exposed, favoring discussions that take place on concrete examples. In CS1
and CS2, specific classes were devoted to discuss the activities carried out in the
project, and students reported their satisfaction with the learning in the light of
such discussions: “I think it contributed a lot, the issue of different perspectives
regarding the project ...” (ST8).

“... you do, implement things, see results and have your opinion. When you
see that from another person as well, you increase ... you see more things too,
that you have not seen and that other person has” (ST1).

A student reported that discussions in class allowed him to compare his
solution with those of his classmates: “And we can also check whether what
we’ve done is right (..) With discussion, listening to other people’s opinions is

Does FLOSS in SE Education Narrow the Theory-Practice Gap? 161

also interesting because sometimes they point out things that we haven’t perceived,
and that should be there ... I found it quite interesting” (SR3).

5.2 Importance of Theory to Practice

Theory Is Necessary for Practice. In CS1 and CS2, this category emerged
from several excerpts: “You can’t do testing without knowing the theory ... Even
if you haven’t learned it previously in the course, you come back, because you
have to see the strategies, study and implement them (..) practice without theory
does not exist ... for me, it’s important” (ST1).

“When I actually moved to practice, that demanded me to come back to theory
to get more knowledge about that subject ...” (ST3).

“Things I’ve seen in class ... a few, I managed to put them in the project.
Other stuff, I had to get from third parties, in websites and articles, so I could be
able to do them in the project. I had to complement [my knowledge] about this,
so I could implement it in the project” (SR2).

Theory Enables Planning the Things to be Performed. Theory is impor-
tant to practice because it allows ‘planning practice’ (CS1) and defines ‘what’
and ‘how’: “I had to come back to what I’ve seen in class, to know what had to
be done: oh, I have to do such thing with such a JabRef class ... How does that
class access that method? How do I test it?” (ST4).

“(..) when you write the tests ... sometimes you don’t know exactly what
you’re doing there ... When you have the theoretical background ... you need to
plan to do the tests and then you already have a sense of what you’re doing, so
it helps a lot, you get an idea of how you’re testing” (ST2).

In this last extract, the student emphasized that without theory, he tests
with no clear purpose. But when he knows the theory, he knows how to plan
what should be tested and how.

5.3 Discussion

Practice with an OSP lets one learn how to do something, which leads to the
development of technical skills such as testing or systematically changing soft-
ware. Dealing with a real problem can develop pro-activity and creativity in the
search for alternative solutions. The real-world context allows students to see
problems as they really are and enables them to perceive the applicability of the
theory, promoting reflection and development of critical thinking. Practice with
the OSP enables discussions about the project which allow students to express
their opinions and broaden their views from their classmates’ opinions. Thus,
several skills linked to professional practice can be developed. Students also rec-
ognize that theory is necessary for practice and enables planning things to be
performed.

Other studies corroborate our results. In the study by Chen et al. [4], one of
the students stated that participation in the project allowed putting into practice
the concepts learned in class. Hislop et al. [11] conclude that after practice with
OSP, students can see the reasons for applying the theory. Ellis et al. [7] com-
plement that principles of SE incorporated into the project become evident to

162 D. M. C. Nascimento et al.

students as the project is executed, that is, principles are learned by experience
and not by the instructor’s voice. For Nandigam et al. [17], activities with OSP
provide a solid background for the discipline of SE, and the lectures and discus-
sions on design metrics, code maintainability, documentation and concern with
design-code synchronization, with the articulation of their own points of view,
have become more significant for students after the activities in the project.

On the other hand, our results cannot be generalized to other contexts. Given
the methodological rigor suggested for qualitative research and followed in this
work, CS1 and CS2 results can only be extrapolated to similar conditions. We
believe, however, that even particular results may be useful to researchers and
practitioners. Finally, because of space constraints, we presented only a few
excerpts from interviews to give consistency to our findings.

6 Conclusions

This study investigated whether the adoption of open source projects in SE
education enables students to connect software engineering theory with prac-
tice, under students’ own perceptions. Three elements from learning theories
provided the background for our study: the experience lived by the student, the
depth of the student’s cognitive engagement throughout this experience, and the
significance of the contents studied.

We reported the results of two case studies conducted in two different SE
courses, in which students used JabRef to perform activities related to software
testing and reverse engineering of requirements. These studies brought grounded
evidence to support that the adoption of OSP in practical activities in formal
SE education (i) stands for a concrete experience equivalent to industry-like sit-
uations to be later experienced by graduates; (ii) allows high cognitive engage-
ment with active student participation while analyzing, testing, modifying, and
documenting the source code, among other activities that can be performed;
(iii) favors content understanding and retention; and, finally, (iv) leads to the
recognition of the importance of principles of software engineering, that is, the
construction of meanings that allow more effective learning.

In addition, our study revealed that the OSP approach allowed students to
experience that reality is more complex than how theory is usually presented;
it promoted the development of technical skills; it supported discussions based
on each student’s practical experience, and promoted the development of critical
thinking, broadening their view to other possibilities. It is worth highlighting the
evidence of a student describing the process of assimilation and accommodation
of knowledge supported by constructivist theories for the learning process.

From the point of view of our initial research question, we conclude that
within the two case studies that used JabRef, the object of study became less
dependent on instructors’ accounts and less abstract, and became something
real, concrete and meaningful. Therefore, in that context, the use of OSP through
practice, supported students to make connections between theory and practice,
narrowing the gap between them.

Does FLOSS in SE Education Narrow the Theory-Practice Gap? 163

References

1. Boud, D., Cohen, R., Walker, D.: Understanding learning from experience. In:
Boud, D., Cohen, R., Walker, D. (eds.) Using Experience for Learning, pp. 1–18.
Open University Press (1993)

2. Brito, M.S., Silva, F.G., Nascimento, D.M.C., Chavez, C.F.G., Bittencourt, R.A.:
FLOSS in software engineering education: an update of a systematic mapping
study. In: Proceedings of the 32nd Brazilian Symposium on Software Engineering,
SBES, Sao Carlos, Brasil, pp. 250–259 (2018)

3. Budd, T.A.: A course in open source development. In: Integrating FOSS into the
Undergraduate Computing Curriculum, Free and Open Source Software (FOSS)
Symposium, Chattanooga (2009). http://www.cs.trincoll.edu/∼ram/hfoss/Budd-
FOSS-Course.pdf

4. Chen, Y., Roytman, A., Fong, P., Hong, J., Garcia, D., Poll, D.: 200 students can’t
be wrong! GamesCrafters, a computational game theory undergraduate research
and development group. In: AAAI Spring Symposium, Technical report (2008)

5. Davis, H.A., Summers, J.J., Miller, L.M.: An Interpersonal Approach to Classroom
Management: Strategies for Improving Student Engagement. Corwin, Thousand
Oaks (2012)

6. Dewey, J.: Experience and Education. Macmillan, London (1938). http://ruby.
fgcu.edu/courses/ndemers/colloquium/experienceducationdewey.pdf

7. Ellis, H.J., Morelli, R.A., de Lanerolle, T.R., Hislop, G.W.: Holistic software engi-
neering education based on a humanitarian open source project. In: 20th Confer-
ence on Software Engineering Education & Training, CSEET 2007, pp. 327–335.
IEEE, Dublin, July 2007. https://doi.org/10.1109/CSEET.2007.26

8. Gentry, J.W.: What is experiential learning?, Chap. 2. In: Guide to Business Gam-
ing and Experiential Learning, p. 370. Nichols Pub Co (1990)

9. Hannafin, M.J.: Instructional strategies and emerging instructional technologies:
psychological perspectives. Can. J. Educ. Commun. 18, 167–179 (1989)

10. Hepting, D.H., Peng, L., Maciag, T.J., Gerhard, D., Maguire, B.: Creating synergy
between usability courses and open source software projects. ACM SIGCSE Bull.
40(2), 120–123 (2008). https://doi.org/10.1145/1383602.1383649

11. Hislop, G.W., Ellis, H.J., Morelli, R.A.: Evaluating student experiences in devel-
oping software for humanity. ACM SIGCSE Bull. 41(3), 263–267 (2009). https://
doi.org/10.1145/1595496.1562959

12. Jarvis, P.: The Paradoxes of Learning. Jossey-Bass, San Francisco (1992)
13. Lefrançois, G.R.: Teorias da Aprendizagem, 5th edn. Cengage Learning, São Paulo

(2012)
14. Merriam, S.B.: Qualitative Research: A Guide to Design and Implementation.

Jossey-Bass, San Francisco (2009)
15. Moon, J.: A Handbook of Reflective and Experiential Learning: Theory and Prac-

tice. RoutledgeFalmer, London (2004)
16. Morelli, R., et al.: Revitalizing computing education through free and open source

software for humanity. Commun. ACM 52(8), 67–75 (2009). https://doi.org/10.
1145/1536616.1536635

17. Nandigam, J., Gudivada, V.N., Hamou-Lhadj, A.: Learning software engineering
principles using open source software. In: Proceedings of the 38th Annual Frontiers
in Education Conference (FIE), pp. 18–23. IEEE, October 2008. https://doi.org/
10.1109/FIE.2008.4720643

http://www.cs.trincoll.edu/~ram/hfoss/Budd-FOSS-Course.pdf
http://www.cs.trincoll.edu/~ram/hfoss/Budd-FOSS-Course.pdf
http://ruby.fgcu.edu/courses/ndemers/colloquium/experienceducationdewey.pdf
http://ruby.fgcu.edu/courses/ndemers/colloquium/experienceducationdewey.pdf
https://doi.org/10.1109/CSEET.2007.26
https://doi.org/10.1145/1383602.1383649
https://doi.org/10.1145/1595496.1562959
https://doi.org/10.1145/1595496.1562959
https://doi.org/10.1145/1536616.1536635
https://doi.org/10.1145/1536616.1536635
https://doi.org/10.1109/FIE.2008.4720643
https://doi.org/10.1109/FIE.2008.4720643

164 D. M. C. Nascimento et al.

18. Nascimento, D.M.C., Chavez, C.F., Bittencourt, R.A.: The adoption of open source
projects in engineering education: a real software development experience. In: Pro-
ceedings of the 48th Annual Frontiers In Education Conference (FIE), San Jose,
pp. 1091–1100 (2018)

19. Nascimento, D.M.C., Bittencourt, R.A., Chavez, C.F.: Open source projects in
software engineering education: a mapping study. Comput. Sci. Educ. 25, 67–114
(2015)

20. Northern Illinois University, Faculty Development and Instructional Design Center:
Experiential Learning (2012). http://www.niu.edu/facdev/resources/guide

21. Nascimento, D.M.C., Chavez, C.F., Bittencourt, R.A.: Does FLOSS in SEE nar-
row the Theory-Practice Gap? Supplementary Material (2019). http://sites.google.
com/site/oss2019osp/

22. Pinto, G., Ferreira, C., Souza, C., Steinmacher, I., Meirelles, P.: Training software
engineers using open-source software: the students’ perspective. In: Proceedings
of the International Conference on Software Engineering, Software Engineering
Education and Training (SEET), Montreal, Canada (2019)

23. IEEE/ACM Joint Task Force on Computing Curricula: Software Engineering 2014:
Curriculum Guidelines for Undergraduate Degree Programs in Software Engineer-
ing (2015)

24. Uden, L., Beaumont, C.: Technology and Problem-Based Learning. Information
Science Publishing, London (2006)

http://www.niu.edu/facdev/resources/guide
http://sites.google.com/site/oss2019osp/
http://sites.google.com/site/oss2019osp/

Faculty Development for FLOSS Education

Becka Morgan1(&), Gregory W. Hislop2, and Heidi J. C. Ellis3

1 Western Oregon University, Monmouth, OR, USA
morganb@wou.edu

2 Drexel University, Philadelphia, PA, USA
hislop@drexel.edu

3 Western New England University, Springfield, MA, USA
ellis@wne.edu

Abstract. With the recent upsurge in the development, use, and adoption of
free/libre open source software (FLOSS) across all sectors of business, it is
critical that graduates of computing degree programs gain an understanding of
FLOSS development tools, processes, and culture. However, many faculty
members are not fluent in FLOSS development and have little experience in
teaching FLOSS. This paper reports on a faculty development program designed
to bring instructors up to speed on how to support student learning within
FLOSS projects. The paper discusses the challenges to FLOSS education from
the instructor’s perspective, describes the Professors’ Open Source Software
Experience (POSSE) workshop, and presents the results of a study into the
impact of POSSE on instructors based on semi-structured interviews. This work
is part of a larger study into instructor experiences when incorporating
Humanitarian Free Open Source Software (HFOSS) into their curriculum.

Keywords: Faculty development � FLOSS education

1 Introduction

Free/libre open source software (FLOSS) is rapidly becoming mainstream in industry
today as evidenced by Microsoft’s acquisition of GitHub, IBM’s purchase of Red Hat,
and the wide adoption of FLOSS by the majority of enterprise, mid-market, and small
businesses [1]. Results of recent surveys indicate that 92% of respondents identified
that their company’s applications contain open source libraries [2] and over 50% of
respondents belong to an organization that has an open source software program or has
plans to establish one [3].

One reason for the increase in adoption of FLOSS is that it is the source of
significant innovation for businesses. Many emerging technologies and approaches that
are modernizing computing including cloud computing, containerization, and server-
less computing originated with FLOSS. Examples include tools such as Docker and
Kubernetes, and FLOSS frameworks such as node.js and JUnit. Indeed processes such
as continuous integration and DevOps are heavily based on FLOSS concepts.

This increasing use and development of FLOSS creates a clear need for more
software professionals who can develop open source software, as well as providing a
strong motivation for students to gain an understanding of FLOSS tools and practices

© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
F. Bordeleau et al. (Eds.): OSS 2019, IFIP AICT 556, pp. 165–171, 2019.
https://doi.org/10.1007/978-3-030-20883-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20883-7_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20883-7_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20883-7_15&domain=pdf
https://doi.org/10.1007/978-3-030-20883-7_15

as a part of their undergraduate degree programs. Indeed, FLOSS experience can give
students an edge in the hiring process [4]. However, many instructors are not fluent in
FLOSS. This paper discusses an assessment of a professional development program for
instructors intended to bring them up to speed in FLOSS culture and tools.

2 Challenges

FLOSS practices and tools are not included in typical computing undergraduate degree
requirements. In the ACM Curriculum Guidelines, the term “open source” is mentioned
only twice in the CS2013 Computer Science Curricula [5] and twice in the IT2017
Information Technology Curricula [6]. The SE2014 Software Engineering Curricula
[7] identifies the need for student understanding of FLOSS, yet does not require
coverage of FLOSS in the guidelines. This lack of emphasis on FLOSS in professional
computing curricula creates a barrier to including FLOSS in the classroom.

Instructors who desire to educate students in FLOSS projects face several addi-
tional hurdles. First, many instructors are not familiar with FLOSS culture or tools and
face steep learning curves for these, as well as for the FLOSS project domain
knowledge. Instructors face an additional learning curve related to how to support
student participation in FLOSS projects. Assignment creation, assessment, and
development of rubrics are all challenges in the environment of an active FLOSS
project and must be undertaken within the constraints of student privacy and intel-
lectual property issues.

Instructors need to learn how to support student learning in the non-traditional
environment of a FLOSS project including helping students adjust to a less-structured
learning environment and one that has significant size and complexity. Instructors also
need to help students with the potentially steep learning curves of FLOSS culture and
technologies. Student expectations about the role of the faculty member as a “guide by
the side” rather than the “sage on the stage” must be set early and frequently reinforced.
Instructors may also need to serve as a liaison between their students and the FLOSS
community, which may take additional time.

Another challenge faced by instructors is the selection of an appropriate FLOSS
project for use in a course [13]. Ideal FLOSS projects are open to student contributions,
welcoming, and have clear communication channels, all while also fulfilling course
learning objectives. Several efforts are investigating this problem [8–11].

The FLOSS project environment presents additional challenges. The FLOSS pro-
ject schedule and instructor’s academic calendar may not align well. The ability of a
FLOSS project to quickly make major changes in direction may also impact student
participation. In addition, instructors must plan for contributions over the limited
timespan of a term, typically 10 or 15 weeks, once or twice a year.

Results of a research effort [12] that surveyed faculty members as to the challenges
faced when involving students in FLOSS projects indicated that lack of time to prepare
course materials was the largest hurdle to student involvement, with lack of time in the
course for FLOSS as a close second. Additional hurdles included lack of an appropriate
course, difficulty in installing the FLOSS environment, and lack of comfort with the
FLOSS learning materials.

166 B. Morgan et al.

3 Professors’ Open Source Software Experience Workshops

The faculty development program used in the study is the Professors’ Open Source
Software Experience (POSSE) workshop. POSSE was originated by Red Hat in 2009,
with the goal to help instructors learn about FLOSS so that they can incorporate it into
their courses.

In 2013, a team of instructors received National Science Foundation funding to
update POSSE contents to include information on pedagogical and curricular consid-
erations, and to provide funding for faculty attendance. In addition, the focus of POSSE
was shifted to Humanitarian Free and Open Source Software (HFOSS) projects as there
is some evidence that humanitarian projects are more attractive to women and other
under-represented groups. A typical POSSE involves 15–25 instructors new to FLOSS
and 3–6 workshop facilitators. POSSE workshops are held in three stages. Stage 1
consists of 8 weeks of online learning activities and three IRC meetings are held to
answer questions. Stage 2 is a 2.5 day face-to-face meeting held after stage1 where
instructors learn more about FLOSS culture and gain further understanding of how to
assess HFOSS projects and incorporate them into their classes. Stage 3 of POSSE occurs
after stage 2 and involves instructors working collaboratively on either common projects
or common courses to support student involvement in HFOSS. POSSE is supported by
over 100 learning materials that instructors may use, located on foss2serve.org. Further
information on POSSE is contained in [14] and the foss2serve.org website.

4 The Study

POSSE workshops are showing promise for expanding the number of instructors able
to support student learning within HFOSS projects and several publications have
resulted from POSSE alumni teaching efforts [15–18]. As of early 2019, over 150
instructors from over 120 different academic institutions have completed the work-
shop. These instructors served as the population for a study that involved an online
survey followed by a semi-structured interview with the goal of determining the impact
of supporting student participation in HFOSS projects on instructors. In this paper, we
discuss the impact of POSSE on instructors as observed in interview results.

The participants in the study were selected from instructors who had participated in
a POSSE workshop at least one year prior to the study start in order to focus on
instructors who had had time to incorporate HFOSS into their classroom. Out of 77
eligible participants, the group was reduced to 41 by selecting only one instructor per
academic institution and focusing on participants who were less experienced in FLOSS
education at the time of POSSE attendance. The group included instructors who had
been successful and unsuccessful in supporting student participation in HFOSS.

Twenty-six instructors completed the survey and 24 of these agreed to participate in
the study. Participants were relatively gender balanced, consisting of 11 women and 13
men and participants came from both 2 and 4-year institutions located in 16 different
U.S. states. Further details on the study design may be found in [12].

The semi-structured interview included questions such as “What was the biggest
hurdle that you encountered and how did you overcome it?” and “What have you

Faculty Development for FLOSS Education 167

http://foss2serve.org/
http://foss2serve.org/

learned from working with a FLOSS community?” The study resulted in a considerable
volume of data, which is still being analyzed. The focus of this paper is on the impact
of POSSE workshops on instructors.

4.1 Results

The corpus of the 24 semi-structured instructor interviews was searched for all
occurrences of the terms “POSSE”, “workshop*”, “roundup” and “meet*”. The
occurrences of these terms within their context were analyzed by two authors who
coded the answers and organized them into categories. The coding process was per-
formed independently to avoid bias and a conflict resolution meeting was used to come
to agreement on the categories. Five main themes, described below, emerged.

Helpfulness. Ten of the respondents identified the POSSE workshop has being helpful
using phrases such as “learning activities were immensely helpful”, “very valuable”,
and “eye-opening”. One participant stated, “POSSE experience forever changed my
perception of what it means to be open source…” An additional three respondents
indicated that they had gained a better understanding of FLOSS tools. This feedback
clearly indicates that instructors feel that they gain useful knowledge and skills from
the POSSE workshop and that the workshop is helpful in supporting student partici-
pation in HFOSS projects.

Materials. Nine respondents indicated that they used the POSSE workshop materials
in their courses, either directly or with modification. One participant indicated that
POSSE was “…quite helpful with learning activities, I got good ideas for activities…”
These responses support the observation that POSSE workshops are fulfilling their goal
of providing instructors with the skills and materials they need to support student
learning within HFOSS projects.

Enhancements. Another major theme that emerged was possible enhancements to the
POSSE workshop. Ten participants identified augmentations to POSSE that they
thought would help them support student participation in HFOSS. These included:

• Longer workshop meeting with additional hands-on experience with projects
• Tutorials that instructors and students could use to learn tools
• List of approachable HFOSS projects including current community contacts
• Repository of exemplars of student participation in HFOSS
• Curriculum in a box where a project and set of tools are packaged in a VM
• More advanced workshop that builds on current POSSE.

Community. One recurrent theme throughout most of the interviews was the value
provided by the POSSE community and the need for it to be an ongoing and healthy
community. The use of POSSE “Roundups” and sprints where instructors meet face-to-
face to share ideas and work on activities was clearly valued. One respondent indicated
“… round ups for me are very beneficial… so I can touch base with other people and
hear what other people are doing and exchange ideas.” In addition, some respondents
indicated that attending a second POSSE workshop was or would be helpful.
Clearly POSSE participants value the community established by the workshops and

168 B. Morgan et al.

desire to see that community continue and grow. POSSE appears to work well as an
introduction to the topic and the community, but there needs to be ongoing support for
the community.

Shortcomings. Another important theme that emerged from the analysis was identi-
fication of the shortcomings of the POSSE experience. Several respondents indicated
frustration with not being able to get the HFOSS project development environment
installed. One respondent who tried to get an HFOSS project installed while attending
POSSE stated, “We spend all of our working time trying to set up the system and never
got it set up. That was a kind of negative experience on my part.” Another respondent
indicated that the activities in stage 1 and stage 2 needed to be more tightly related
stating, “We had a series of HWs prior to workshop, then we didn’t even really discuss
them at the workshop…” Another respondent indicated that providing each participant
with a concrete take-away appropriate for their class would have been helpful.

Overall, the observations about POSSE indicate that participants are gaining
knowledge and skills from the workshops. The majority of participants indicated that
they found the workshop helpful and that they used workshop materials in their
teaching. The need for continuing community was also a resonant thread throughout
the interviews. One respondent noted, “most important takeaway for me is the desire
for <the> POSSE organism to remain alive and vibrant moving forward”. Feedback on
the shortcomings of the workshop focuses on identification of appropriate course
materials and the availability of approachable and tractable HFOSS projects. Instructors
involved in carrying out POSSE are currently working to address the shortcomings.

4.2 Limitations

The biggest limitation of the study is that the participants in the study self-selected to
participate in the POSSE workshop. A second limitation is the independent coding of
the responses. Lastly, the number of professors involved is relatively low, which may
limit the generalization of the results.

5 Conclusion and Future Work

The work presented in this paper is a part of a larger study into the impact of student
participation in HFOSS on instructors. Results of this study will provide insight into
how to increase the number of instructors in the FLOSS education community to fulfill
the larger goal of increasing the number of students who graduate ready to contribute to
FLOSS projects. Overall, results of analyzing instructor comments on the POSSE
workshop experience are positive and appear to indicate that instructors are better able
to support student participation in the classroom. The POSSE team is working to
address the identified shortcomings of difficulty in project installation and identification
of appropriate assignments for those instructors first learning to support FLOSS edu-
cation. Future areas of study include analysis of instructor expectation, analysis of
instructor factors that lead to student success, and how FLOSS education impacts
instructor self-perception as a teacher.

Faculty Development for FLOSS Education 169

References

1. 10th Anniversary of the Open Source Survey (2016). www.northbridge.com/2016-future-
open-source-survey-results. Accessed 11 Jan 2019

2. How to make open source work better for everyone, 9 key insights from the 2018 Tidelift
professional open source survey, July 2018. https://tidelift.com/about/2018-Tidelift-
professional-open-source-survey-results. Accessed 20 Dec 2018

3. Hecht, L., Clark, L.: Survey: open source programs are a best practice among large
companies, 30 August 2018. https://thenewstack.io/survey-open-source-programs-are-a-
best-practice-among-large-companies/. Accessed 11 Jan 2019

4. Hansson, D.H.: Reduce the risk, hire from open source. https://dhh.dk//arc/2005_09.html.
Accessed 13 Jan 2019

5. Computer Science Curricula 2013 Curriculum Guidelines for Undergraduate Degree
Programs in Computer Science, 20 December 2013. https://www.acm.org/binaries/content/
assets/education/cs2013_web_final.pdf. Accessed 11 Jan 2019

6. Information Technology Curricula 2017 IT2017 Curriculum Guidelines for Baccalaureate
Degree Programs in Information Technology, 10 December 2017. https://www.acm.org/bin
aries/content/assets/education/curricula-recommendations/it2017.pdf. Accessed 11 Jan 2019

7. Software Engineering 2014 Curriculum Guidelines for Undergraduate Degree Programs in
Software Engineering, 23 February 2015. https://www.acm.org/binaries/content/assets/
education/se2014.pdf. Accessed 11 Jan 2019

8. Gokhale, S.D., Smith, T.M., McCartney, R.: Integrating open source software into software
engineering curriculum: challenges in selecting projects. In: Proceedings of the First
International Workshop on Software Engineering Education Based on Real-World
Experiences (EduRex 2012), pp. 9–12. IEEE Press, Piscataway (2012)

9. Smith, T.M., McCartney, R., Gokhale, S.S., Kaczmarczyk, L.C.: Selecting open source
software projects to teach software engineering. In: Proceedings of the 45th ACM Technical
Symposium on Computer Science Education (SIGCSE 2014), pp. 397–402. ACM, New
York (2014). https://doi.org/10.1145/2538862.2538932

10. Ellis, H.J.C., Hislop, G.W., Burdge, D.: Courseware: HFOSS project evaluation. In:
Proceedings of the 2017 ACM Conference on Innovation and Technology in Computer
Science Education (ITiCSE 2017), pp. 90–91. ACM, New York (2017). https://doi.org/10.
1145/3059009.3072975

11. Ellis, H.J.C., Hislop, G.W., Purcell, M.: Project selection for student involvement in
humanitarian FOSS. In: 26th International Conference on Software Engineering Education
and Training (CSEE&T), San Francisco, CA, pp. 359–361 (2013). https://doi.org/10.1109/
cseet.2013.6595279

12. Postner, L., Ellis, H.J.C., Hislop, G.W.: A survey of instructors’ experiences supporting
student learning using HFOSS projects, In: Proceedings of the 49th ACM Technical
Symposium on Computer Science Education (SIGCSE 2018), pp. 203–208. ACM, New
York (2018). https://doi.org/10.1145/3159450.3159524

13. Pinto, G.H.L., Filho, F.F., Steinmacher, I., Gerosa, M.A.: Training software engineers using
open-source software: the professors’ perspective. In: 2017 IEEE 30th Conference on
Software Engineering Education and Training (CSEET), pp. 117–121 (2017). https://doi.org/
10.1109/cseet.2017.27

14. Ellis, H.J.C., Chua, M., Hislop, G.W., Purcell, M., Dziallas, S.: Towards a model of faculty
development for FOSS in education. In: 2013 26th International Conference on Software
Engineering Education and Training (CSEE&T), May 2013, pp. 269–273 (2013)

170 B. Morgan et al.

http://www.northbridge.com/2016-future-open-source-survey-results
http://www.northbridge.com/2016-future-open-source-survey-results
https://tidelift.com/about/2018-Tidelift-professional-open-source-survey-results
https://tidelift.com/about/2018-Tidelift-professional-open-source-survey-results
https://thenewstack.io/survey-open-source-programs-are-a-best-practice-among-large-companies/
https://thenewstack.io/survey-open-source-programs-are-a-best-practice-among-large-companies/
https://dhh.dk//arc/2005_09.html
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/it2017.pdf
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/it2017.pdf
https://www.acm.org/binaries/content/assets/education/se2014.pdf
https://www.acm.org/binaries/content/assets/education/se2014.pdf
http://dx.doi.org/10.1145/2538862.2538932
http://dx.doi.org/10.1145/3059009.3072975
http://dx.doi.org/10.1145/3059009.3072975
http://dx.doi.org/10.1109/cseet.2013.6595279
http://dx.doi.org/10.1109/cseet.2013.6595279
http://dx.doi.org/10.1145/3159450.3159524
http://dx.doi.org/10.1109/cseet.2017.27
http://dx.doi.org/10.1109/cseet.2017.27

15. Braught, G., et al.: A multi-institutional perspective on H/FOSS projects in the computing
curriculum. ACM Trans. Comput. Educ. 18(2), Article no. 7, pp. 7:1–7:31 (2018). https://
doi.org/10.1145/3145476

16. Crain, S.P.: Open source security assessment as a class project. J. Comput. Sci. Coll. 32(6),
41–53 (2017)

17. Murphy, C., Buffardi, K., Dehlinger, J., Lambert, L., Veilleux, N.: Community engagement
with free and open source software. In: Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education (SIGCSE 2017), pp. 669–670. ACM, New
York (2017). https://doi.org/10.1145/3017680.3017682

18. Buffardi, K.: Localized open source collaboration in software engineering education. In:
2015 IEEE Frontiers in Education Conference (FIE), El Paso, TX, pp. 1–5 (2015). https://
doi.org/10.1109/fie.2015.7344142

Faculty Development for FLOSS Education 171

http://dx.doi.org/10.1145/3145476
http://dx.doi.org/10.1145/3145476
http://dx.doi.org/10.1145/3017680.3017682
http://dx.doi.org/10.1109/fie.2015.7344142
http://dx.doi.org/10.1109/fie.2015.7344142

Author Index

Bittencourt, Roberto Almeida 153
Bordeleau, Francis 61
Brandon, William 68

Carlson, Brandon 12

Ellis, Heidi J. C. 165

Fendt, Oliver 133
Fronchetti, Felipe 91

Hislop, Gregory W. 165

Ihara, Akinori 44

Jaeger, Michael C. 133

Karpat, Kubilay 80
Karus, Siim 139
Kashiwa, Yutaro 44
Kästner, Christian 116
Kicin, Sébastien 3

Lavazza, Luigi 104
Leach, Kevin 12
Lenarduzzi, Valentina 104

Marinov, Darko 12
Meirelles, Paulo 61
Mendes, Fábio Macêdo 27
Miller, Courtney 116
Morasca, Sandro 104
Moreira, Bruna 27

Morgan, Becka 165
Müller, Matthias 38

Nagappan, Meiyappan 12
Nascimento, Debora Maria Coelho 153

Ohira, Masao 44

Parra, Henrique 27
Pinto, Gustavo 91
Poppi, Ricardo 27
Pradhan, Dipesh 3
Prakash, Atul 12

Sahin, Sefa Eren 80
Schindler, Christian 38
Schork, Sebastian 3
Schwichtenberg, Antonia 3
Sillitti, Alberto 61
Singh, Vandana 68
Slany, Wolfgang 38
Steinmacher, Igor 91

Tosi, Davide 104
Tosun, Ayse 80

Vasilescu, Bogdan 116
von Flach Garcia Chavez, Christina 153

Widder, David Gray 116
Wiese, Igor 91

Zahid, Feroz 3

	Preface
	Organization
	Contents
	Mining OSS Data
	Building an Open-Source Cross-Cloud DevOps Stack for a CRM Enterprise Application: A Case Study
	1 Introduction
	2 The SmartWe CRM
	3 OSS Selection and Integration
	3.1 Related Work
	3.2 Available OSS and Integration
	3.3 Licensing Compatibility

	4 A Cross-Cloud DevOps Stack
	5 Evaluation
	6 Conclusion
	References

	Open Source Vulnerability Notification
	1 Introduction
	2 Motivating Experience
	3 Project Selection and Data Collection
	4 Evaluation
	4.1 RQ1: Prevalence of Known Vulnerable Dependencies
	4.2 RQ2: How Common Are Security Notification Policies?
	4.3 RQ3: Is Contact Information Available for Open Source Projects?

	5 Recommendations and Discussion
	5.1 SECURITY.md Mechanism for Vulnerability Notification
	5.2 Adapting Hosts to Facilitate Security Disclosures

	6 Related Work
	7 Limitations
	8 Conclusion
	References

	Organizational Aspects of FLOSS Projects
	EJ: A Free Software Platform for Social Participation
	1 Introduction
	2 Platforms for Social Participation
	2.1 Crowdsourcing
	2.2 Social Networks
	2.3 The Role of the State in Participation Platforms

	3 Conception and Architecture
	3.1 User Experience
	3.2 Machine Learning
	3.3 Web Platform
	3.4 Technology Stack

	4 Development and Results
	4.1 Team
	4.2 Continuous Delivery and Deployment

	5 Conclusions
	References

	Introducing Agile Product Owners in a FLOSS Project
	1 Introduction
	2 Motivation to Introduce Product Owners
	3 Product Owner Within Catrobat
	3.1 The Role ``Product Owner''
	3.2 Development Workflow
	3.3 Communication

	4 Discussion
	5 Conclusion
	References

	What Are the Perception Gaps Between FLOSS Developers and SE Researchers?
	1 Introduction
	2 High Impact Bugs
	3 Study Design
	3.1 Overview
	3.2 Participant Selection
	3.3 Questionnaire
	3.4 Categorization of Bug Symptoms

	4 Interview and Classification Results
	4.1 Developer Demography (Q1)
	4.2 RQ1: What Kinds of High Impact Bugs Are Mainly Considered High Impact by FLOSS Developers?
	4.3 RQ2: What Kinds of High Impact Bugs Do FLOSS Developers Encounter Most Frequently?
	4.4 RQ3: What Kinds of High Impact Bugs Should Be Studied Newly by the SE Community in Order to Support FLOSS Developers?

	5 Discussions
	5.1 Is the Current Support for High Impact Bugs Enough? How Can We Help FLOSS Developers Fix Bugs?
	5.2 Threats to Validity

	6 Conclusion and Future Work
	References

	FLOSS Adoption
	Fifteen Years of Open Source Software Evolution
	1 Introduction
	2 Open Source Software Evolution
	2.1 The Research Perspective
	2.2 The Technological Perspective
	2.3 The Business Perspective

	3 Current Trends
	4 Conclusions and Future Work
	References

	Open Source Software Community Inclusion Initiatives to Support Women Participation
	Abstract
	1 Introduction
	2 Literature Review
	3 Research Methods
	3.1 Data Collection and Analysis

	4 Results
	4.1 Women Only Spaces in Open Source Software Communities
	4.2 Purposes of Women Only Spaces on OSS Communities
	4.3 Codes of Conduct
	4.4 Key Elements of the Community Rules
	4.5 Main Themes for Each Key Element of Community Rules

	5 Discussions and Future Research
	References

	Predicting Popularity of Open Source Projects Using Recurrent Neural Networks
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Dataset
	3.2 Algorithm
	3.3 Model Construction
	3.4 Performance Evaluation

	4 Results
	5 Threats to Validity
	6 Conclusion
	References

	What Attracts Newcomers to Onboard on OSS Projects? TL;DR: Popularity
	1 Introduction
	2 Methodology
	2.1 Curating the Corpus of OSS Projects
	2.2 Identifying Growth Patterns
	2.3 Identifying Explanations to the Growth Patterns

	3 RQ1. On the Newcomer Joining Rates in OSS Projects
	4 RQ2: On the Factors that May Influence the Joining Rate
	5 Related Work
	6 Limitations
	7 Conclusion
	References

	Why Do Developers Adopt Open Source Software? Past, Present and Future
	Abstract
	1 Introduction
	2 Related Work
	3 The Replicated Study
	4 Results
	4.1 Motivations for Adopting FLOSS (RQ1)
	4.2 Motivations: Trend Over 6 Years (RQ2)
	4.3 Discussion

	5 Threats to Validity
	6 Conclusions
	References

	Why Do People Give Up FLOSSing? A Study of Contributor Disengagement in Open Source
	1 Introduction
	2 Related Work
	3 Overview: Mixed-Method Research
	4 Self-reported Reasons for Disengagement (Survey)
	4.1 Survey Methodology
	4.2 Results from Survey

	5 Modeling Disengagement Factors (Survival Analysis)
	5.1 Survival Model Methodology
	5.2 Results from Survival Modeling

	6 Discussion and Conclusions
	References

	FLOSS Cost and Licences
	Open Source for Open Source License Compliance
	Abstract
	1 Elements for an OSS Management Process
	2 OSS Software Projects and Tools
	3 Related Work
	4 Summary and Future Work
	References

	Opportunity Costs in Free Open-Source Software
	Abstract
	1 Introduction
	2 Measures of Cost
	2.1 Monetary Value
	2.2 Effort (Person-Hours)
	2.3 Time (Calendar)
	2.4 Size
	2.5 Code Churn
	2.6 Other Cost Measures

	3 Opportunity Cost in FOSS
	4 Opportunity Cost in Decision Making
	4.1 Choosing a Product
	4.2 Refactoring Options
	4.3 Commercial Applications

	5 Limitations of Cost Estimation
	6 Conclusions and Future Perspectives
	Acknowledgement
	References

	FLOSS Education and Training
	Does FLOSS in Software Engineering Education Narrow the Theory-Practice Gap? A Study Grounded on Students' Perception
	1 Introduction
	2 Experience, Engagement and Content Significance
	3 Related Work
	4 Methodology
	5 Results
	5.1 Importance of Practice for Learning the Theory
	5.2 Importance of Theory to Practice
	5.3 Discussion

	6 Conclusions
	References

	Faculty Development for FLOSS Education
	Abstract
	1 Introduction
	2 Challenges
	3 Professors’ Open Source Software Experience Workshops
	4 The Study
	4.1 Results
	4.2 Limitations

	5 Conclusion and Future Work
	References

	Author Index

