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Abstract. Video-based person re-identification (ReID) is a challenging
problem, where some video tracks of people across non-overlapping cam-
eras are available for matching. Feature aggregation from a video track
is a key step for video-based person ReID. Many existing methods tackle
this problem by average/maximum temporal pooling or RNNs with
attention. However, these methods cannot deal with temporal depen-
dency and spatial misalignment problems at the same time. We are
inspired by video action recognition that involves the identification of
different actions from video tracks. Firstly, we use 3D convolutions on
video volume, instead of using 2D convolutions across frames, to extract
spatial and temporal features simultaneously. Secondly, we use a non-
local block to tackle the misalignment problem and capture spatial-
temporal long-range dependencies. As a result, the network can learn
useful spatial-temporal information as a weighted sum of the features
in all space and temporal positions in the input feature map. Experi-
mental results on three datasets show that our framework outperforms
state-of-the-art approaches by a large margin on multiple metrics.

1 Introduction

Person re-identification (ReID) aims to match people in the different places
(time) using another non-overlapping camera, which has become increasingly
popular in recent years due to the wide range of applications, such as public
security, criminal investigation, and surveillance. Most deep learning approaches
have been shown to be more effective than traditional methods. But there
still remains many challenging problems because of human pose, lighting, back-
ground, occluded body region and camera viewpoints.
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Video-based person ReID approaches consist of feature representation and
feature aggregation. And feature aggregation attracts more attention in recent
works. Although most of methods [24] (see Fig. 1(A)) propose to use average or
maximum temporal pooling to aggregate features, they do not take full advan-
tage of the temporal dependency information. To this end, RNN based methods
[17] (see Fig. 1(B)) are proposed to aggregate the temporal information among
video frames. However, the most discriminative frames cannot be learned by
RNN based methods while treating all frames equally. Moreover, temporal atten-
tion methods [16] as shown in Fig. 1(C) are proposed to extract the discriminative
frames. In conclusion, these methods mentioned above cannot tackle temporal
dependency, attention and spatial misalignment simultaneously. Although there
are a few methods [27] using the jointly attentive spatial-temporal scheme, it is
hard to optimize the networks under severe occlusion.

Fig. 1. Three temporal modeling methods (A: temporal pooling, B: RNN, C: temporal
attention) based on an image-level feature extractor (typically a 2D CNN). For tem-
poral pooling, average or maximum pooling is used. For RNN, hidden state is used as
the aggregated feature. For attention, spatial conv + FC is shown.

In this paper, we propose a method to aggregate temporal-dependency fea-
tures and tackle spatial misalignment problems using attention simultaneously
as illustrated in Fig. 2. Inspired by the recent success of 3D convolutional neural
networks on video action recognition [2,9], we directly use it to extract spatial-
temporal features in a sequence of video frames. It can integrate feature extrac-
tion and temporal modeling into one step. In order to capture long-range depen-
dency, we embed the non-local block [25] into the model to obtain an aggregate
spatial-temporal representation.
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Fig. 2. The overall architecture of the proposed method. 3D convolutions are used for
track-level feature extractor. Non-local blocks are embedded into aggregate spatial-
temporal features.

We summarize the contributions of this work in three-folds.

1. We first propose to use 3D convolutional neural network to extract the aggre-
gate representation of spatial-temporal features, which is capable of discov-
ering pixel-level information and relevance among video tracks.

2. Non-local block, as a spatial-temporal attention strategy, explicitly solves the
misalignment problem of deformed images. Simultaneously, the aggregative
feature can be learned from video tracks by the temporal attentive scheme.

3. Spatial attention and temporal attention are incorporated into an end-to-
end 3D convolution model, which achieves significant performance compared
to the existing state-of-the-art approaches on three challenging video-based
ReID datasets.

The rest of this paper is organized as follows. In Sect. 2, we discuss some
related works. Section 3 introduces the details of the proposed approach. Exper-
imental results on three public datasets will be given in Sect. 4. At last, we
conclude this paper in Sect. 5.

2 Related Work

In this section, we first review some related works in person ReID, especially
those video-based methods. Then we will discuss some related works about 3D
convolution neural networks and non-local methods.

2.1 Person Re-ID

Image-based person ReID mainly focuses on feature fusion and alignment
with some external information such as mask, pose, and skeleton, etc. Zhao et al.
[29] proposed a novel Spindle Net based on human body region guided multi-
stage feature decomposition and tree-structured competitive feature fusion. Song
et al. [18] introduced the binary segmentation masks to construct synthetic
RGB-Mask pairs as inputs, as well as a mask-guided contrastive attention model
(MGCAM) to learn features separately from body and background regions. Suh
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et al. [20] proposed a two-stream network that consists of appearance map extrac-
tion stream and body part map extraction stream, additionally a part-aligned
feature map is obtained by a bilinear mapping of the corresponding local appear-
ance and body part descriptors. These models all actually solve the person mis-
alignment problem.

Video-based person ReID is an extension of image-based methods. Instead
of pairs of images, the learning algorithm is given pairs of video sequences. The
most important part is how to fuse temporal features from video tracks. Wang
et al. [24] aimed at selecting discriminative spatial-temporal feature represen-
tations. They firstly choosed the frames with the maximum or minimum flow
energy, which is computed by optical flow fields. In order to take full use of
temporal information, McLaughlin et al. [17] built a CNN to extract features of
each frame and then used RNN to integrate the temporal information between
frames, the average of RNN cell outputs are adapted to summarize the output
feature. Similar to [17], Yan et al. [28] also used RNNs to encode video tracks
into sequence features, the final hidden state is used as video representation.
RNN based methods treat all frames equally, which cannot focus on more dis-
criminative frames. Liu et al. [16] designed a Quality Aware Network (QAN),
which is essentially an attention weighted average, to aggregate temporal fea-
tures; the attention scores are generated from frame-level feature maps. In 2016,
Zheng et al. [19] built a new dataset MARS for video-based person ReID, which
becomes the standard benchmark for this task.

2.2 3D ConvNets

3D CNNs are well-suited for spatial-temporal feature learning. Ji et al. [9] first
proposed a 3D CNN model for action recognition. Tran et al. [22] proposed a
C3D network to be applied into various video analysis tasks. Despite 3D CNNs’
ability to capture the appearance and motion information encoded in multiple
adjacent frames effectively, it is difficult to be trained with more parameters.
More recently, Carreira et al. [2] proposed the Inflated 3D (I3D) architecture
which initializes the model weights by inflating the pre-trained weights from
ImageNet over temporal dimension which significantly improves the performance
of 3D CNNs and it is the current state-of-the-art on the Kinetics dataset [10].

2.3 Self-attention and Non-local

Non-local technique [1] is a classical digital image denoising algorithm that com-
putes a weighted average of all pixels in an image. As attention models grow
in popularity, Vaswani et al. [23] proposed a self-attention method for machine
translation that computes the response at a position in a sequence (e.g., a sen-
tence) by attending to all positions and taking their weighted average in an
embedding space. Moreover, Wang et al. [25] proposed a non-local architecture
to bridge self-attention in machine translation to the more general class of non-
local filtering operations. Inspired by these works, We embed non-local blocks
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into I3D model to capture long-range dependencies on space and time for video-
based ReID. Our method demonstrates better performance by aggregating the
discriminative spatial-temporal features.

3 The Proposed Approach

In this section, we introduce the overall system pipeline and detailed config-
urations of the spatial-temporal modeling methods. The whole system could
be divided into two important parts: extracting spatial-temporal features from
video tracks through 3D ResNet, and integrating spatial-temporal features by
the non-local blocks.
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Fig. 3. Illustration of networks we propose in this paper; (a) illustrates the overall archi-
tecture that is consist of 3D convolutions, 3D pooling, 3D residual blocks, bottleneck
and non-local blocks; (b) shows bottelneck; (c) illustrates residual blocks; Seperable
convolutions are shown in (d).

A video tracet is first divided into consecutive non-overlap tracks {ck}, and
each track contains N frames. Supposing each track is represented as

ck = {xt|xt ∈ R
H×W , t = 1, · · · , N}, (1)

where N is the length of ck, and H, W are the height, width of the images
respectively. As shown in Fig. 3(a), the proposed method directly accepts a whole
video track as the inputs and outputs a d-dimensional feature vector fck . At the
same time, non-local blocks are embedded into 3D residual block (Fig. 3(c)) to
integrate spatial and temporal features, which can effectively learn the pixel-level
relevance of each frame and learn hierarchical feature representation.

Finally, average pooling followed by a bottleneck block (Fig. 3(b)) to speed
up training and improve performance. A fully-connected layer is added on top
to learn the identity features. A Softmax cross-entropy with label smoothing,
proposed by Szegedy et al. [21], is built on top of the fully connected layer to
supervise the training of the whole network in an end-to-end fashion. At the
same time, Batch Hard triplet loss [7] is employed in the metric learning step.
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During the testing, the final similarity between ci and cj can be measured by L2
distance or any other distance function.

In the next parts, we will explain each important component in more detail.

3.1 Temporally Separable Inflated 3D Convolution

In 2D CNNs, convolutions are applied on the 2D feature maps to compute fea-
tures from the spatial dimensions only. When applied to the video-based prob-
lem, it is desirable to capture the temporal information encoded in multiple
contiguous frames. The 3D convolutions are achieved by convolving 3D kernel
on the cube formed by stacking multiple consecutive frames together. In other
words, 3D convolutions can directly extract a whole representation for a video
track, while 2D convolutions first extract a sequence of image-level features and
then features are aggregated into a single vector feature. Formally, the value at
position (x, y, z) on the j-th feature map in the ith layer V xyz

ij is given by

V xyz
ij = bij +

∑

m

Pi−1∑

p=0

Qi−1∑

q=0

Ri−1∑

r=0

W pqr
ijmV

(x+p)(y+q)(z+r)
(i−1)m , (2)

where Pi and Qi are the height and width of the kernel, Ri is the size of the 3D
kernel along with the temporal dimension, W pqr

ijm is the (p, q, r)th value of the
kernel connected to the m-th feature map in the previous layer Vi−1, and bij is
the bias.

We adopt 3D ResNet-50 [5] that uses 3D convolution kernels with ResNet
architecture to extract spatial-temporal features. However, C3D-like 3D Con-
vNet is hard to optimize because of a large number of parameters. In order to
address this problem, we inflate all the 2D ResNet-50 convolution filters with an
additional temporal dimension. For example, a 2D k × k kernel can be inflated
as a 3D t × k × k kernel that spans t frames. We initialize all 3D kernels with
2D kernels (pre-trained on ImageNet): each of the t planes in the t × k × k ker-
nel is initialized by the pre-trained k × k weights, rescaled by 1/t. According
to Xie et al. [26] experiments, temporally separable convolution is a simple way
to boost performance on variety of video understanding tasks. We replace 3D
convolution with two consecutive convolution layers: one 1D convolution layer
purely on the temporal axis, followed by a 2D convolution layer to learn spa-
tial features in Residual Block as shown in Fig. 3(d). Meanwhile, we pre-train
the 3D ResNet-50 on Kinetics [10] to enhance the generalization performance of
the model. We replace the final classification layer with person identity outputs.
The model takes T consecutive frames (i.e. a video track) as the input, and the
layer outputs before final classification layer is used as the video track identity
representation.

3.2 Non-local Attention Block

A non-local attention block is used to capture long-range dependency in space
and time dealing with occlusion and misalignment. We first give a general defi-
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nition of non-local operations and then provide the 3D non-local block instanti-
ations embedded into the I3D model.

Following the non-local methods [1] and [25], the generic non-local operation
in deep neural networks can be given by

yi =
1

C(x)

∑

∀j

f(xi, xj)g(xj). (3)

Here xi can be the position in input signal (image, sequence, video; often their
features) and yi is the position in output signal of the same size as x, whose
response is to be computed by all possible input positions xj . A pairwise func-
tion f computes a scalar between i and all j, which represents attention scores
between position i in output feature and all position j in the input signal. The
unary function g computes a representation in an embedded space of the input
signal at the position j. At last, the response is normalized by a factor C(x).

Because of the fact that all positions (∀j) are considered in the opera-
tion in Eq. (2), this is so-called non-local. Compared with this, a standard 1D
convolutional operation sums up the weighted input in a local neighborhood
(e.g., i − 1 ≤ j ≤ i + 1 with kernel size 3, and recurrent operation at time i is
often based only on the current and the latest time step (e.g., j = i or i − 1).

There are several versions of f and g, such as gaussian, embedded gaussian,
dot product, etc. According to experiments in [25], the non-local operation is
not sensitive to these choices. We just choose embedded gaussian as f function
that is given by

f(xi, xj) = eθ(xi)
T φ(xj) (4)

Here xi and xj are given in Eq. (3), θ(xi) = Wθxi and φ(xj) = Wφxj are two
embeddings. We can set C(x) as a softmax operation, so we have a self-attention
form that is given by

y =
∑

∀j

eθ(xi)
T φ(xj)

∑
∀i eθ(xi)T φ(xj)

g(xj) (5)

A non-local operation is very flexible, which can be easily incorporated into
any existing architecture. The non-local operation can be wrapped into a non-
local block that can be embedded into the earlier or later part of the deep neural
network. We define a non-local block as:

zi = Wzyi + xi (6)

where yi is given in Eq. (3) and “+xi” means a residual connection [5]. We
can plug a new non-local block into any pre-trained model, without breaking
its initial behavior (e.g., if Wz is initialized as zero) which can build a richer
hierarchy architecture combining both global and local information.

In ResNet3D-50, we use a 3D spacetime non-local block illustrated in Fig. 4.
The pairwise computation in Eq. (4) can be simply done by matrix multipli-
cation. We will talk about detailed implementation of non-local blocks in next
part.
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Fig. 4. The 3D spacetime non-local block. The feature maps are shown as the shape of
their tensors, e.g., 1024×T ×H×W for 1024 channels (it can be different depending on
networks). “⊗” denotes matrix multiplication, and “⊕” denotes element-wise sum. The
softmax operation is performed on each row. The blue boxes denote 1 × 1 × 1 convo-
lutions. We show the Embedded Gaussian version, with a bottleneck of 512 channels.
(Color figure online)

3.3 Loss Functions

We use triplet loss function with hard mining [7] and a Softmax cross-entropy
loss function with label smoothing regularization [21].

The triplet loss function we use was originally proposed in [7], and named
as Batch Hard triplet loss function. To form a batch, we randomly sample P
identities and randomly sample K tracks for each identity (each track contains
T frames); totally there are P × K clips in a batch. For each sample a in the
batch, the hardest positive and the hardest negative samples within the batch
are selected when forming the triplets for computing the loss Ltriplet.

Ltriplet =

all anchors︷ ︸︸ ︷
P∑

i=1

K∑

a=1

[m +

hardest positive︷ ︸︸ ︷
max

p=1···K
D(f i

a, f i
p)

− min
j=1···P
n=1···K

j �=i

D(f i
a, f j

n)

︸ ︷︷ ︸
hardest negative

]+
(7)

The original Softmax cross-entropy loss function is given by:

Lsoftmax = − 1
P × K

P∑

i=1

K∑

a=1

pi,a log qi,a (8)
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where pi,a is the ground truth identity and qi,a is prediction of sample {i, a}.
The label-smoothing regularization is proposed to regularize the model and make
it more adaptable with:

L
′
softmax = − 1

P × K

P∑

i=1

K∑

a=1

pi,a log((1 − ε)qi,a +
ε

N
) (9)

where N is the number of classes. This can be considered as a mixture of the
original ground-truth distribution qi,a and the uniform distribution u(x) = 1

N .
The total loss L is the combination of these two losses.

L = L
′
softmax + Ltriplet (10)

4 Experiments

We evaluate our proposed method on three public video datasets, including
iLIDS-VID [24], PRID-2011 [8] and MARS [19]. We compare our method with
the state-of-the-art methods, and the experimental results demonstrate that our
proposed method can enhance the performance of both feature learning and
metric learning and outperforms previous methods.

4.1 Datasets

The basic information of three dataset is listed in Table 1 and some samples are
displayed in Fig. 3.

Table 1. The basic information of three datasets to be used in our experiments.

Datasets iLIDS-VID PRID2011 MARS

#identities 300 200 1,261

#track-lets 600 400 21K

#boxes 44K 40K 1M

#distractors 0 0 3K

#cameras 2 2 6

#resolution 64 × 128 64 × 128 128 × 256

#detection Hand Hand Algorithm

#evaluation CMC CMC CMC & mAP

iLIDS-VID dataset consists of 600 video sequences of 300 persons. Each
image sequence has a variable length ranging from 23 to 192 frames, with aver-
aged number of 73. This dataset is challenging due to clothing similarities among
people and random occlusions. PRID-2011 dataset contains 385 persons in
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camera A and 749 in camera B. 200 identities appear in both cameras, consti-
tuting of 400 image sequences. The length of each image sequence varies from
5 to 675. Following [19], sequences with more 21 frames are selected, leading to
178 identities. MARS dataset is a newly released dataset consisting of 1,261
pedestrians captured by at least 2 cameras. The bounding boxes are generated
by classic detection and tracking algorithms (DPM detector), yielding 20,715
person sequences. Among them, 3,248 sequences are of quite poor quality due
to the failure of detection or tracking, significantly increasing the difficulty of
person ReID.

4.2 Implementation Details and Evaluation Metrics

Training. We use ResNet3D-50 [4] as our backbone network. According to the
experiments in [25], five non-local blocks are inserted to right before the last
residual block of a stage. Three blocks are inserted into res4 and two blocks are
inserted into res3, to every other residual block. Our models are pre-trained on
Kinetics [10]; we also compare the models with different pre-trained weights, and
the details are described in the next section.

Our implementation is based on publicly available code of PyTorch. All per-
son ReID models in this paper are trained and tested on Linux with GTX TITAN
X GPU. In training term, eight-frame input tracks are randomly cropped out
from 64 consecutive frames every eight frames. The spatial size is 256 × 128
pixels, randomly cropped from a scaled videos whose size is randomly enlarged
by 1/8. The model is trained on an eight-GPU machine for about 8 h, and each
GPU have 16 tracks in a mini-batch (so in total with a mini-batch size of 128
tracks). In order to train hard mining triplet loss, 32 identities with 4 tracks
each person are taken in a mini-batch and iterate all identities as an epoch. Bot-
tleneck consists of fully connected layer, batch norm, leaky ReLU with α = 0.1
and dropout with 0.5 drop ratio. The model is trained for 300 epochs in total,
starting with a learning rate of 0.0003 and reducing it by exponential decay
with decay rate 0.001 at 150 epochs. Adaptive Moment Estimation (Adam) is
adopted with a weight decay of 0.0005 when training.

The method in [6] is adopted to initialize the weight layers introduced in
the non-local blocks. A BatchNorm layer is added right after the last 1 × 1 × 1
layer that represents Wz; we do not add BatchNorm to other layers in a non-
local block. The scale parameter of this BatchNorm layer is initialized as zeros.
This ensures that the initialize state of the entire non-local block is an identity
mapping, so it can be inserted into any pre-trained networks while maintaining
its initial behavior.

Testing. We follow the standard experimental protocols for testing on the
datasets. For iLIDS-VID, the 600 video sequences of 300 persons are randomly
split into 50% of persons for testing. For PRID2011, only 400 video sequences of
the first 200 persons, who appear in both cameras are used according to experi-
ment setup in previous methods [17] For MARS, the predefined 8,298 sequences
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Table 2. Component analysis of the proposed method: rank-1, rank-5, rank-10 accu-
racies and mAP are reported for MARS dataset. ResNet3D-50 is the ResNet3D-50
pre-trained on Kinectis, ResNet3D-50 NL is added with non-local blocks.

Methods CMC-1 CMC-5 CMC-10 mAP

Baseline 77.9 90.0 92.5 69.0

ResNet3D-50 80.0 92.2 94.5 72.6

ResNet3D-50 NL 84.3 94.6 96.2 77.0

of 625 persons are used for training, while the 12,180 sequences of 636 persons
are used for testing, including the 3,248 low quality sequences in the gallery set.

We employ Cumulated Matching Characteristics (CMC) curve and mean
average precision (mAP) to evaluate the performance for all the datasets. For
ease of comparison, we only report the cumulated re-identification accuracy at
selected ranks.

Fig. 5. Example of the behavior of a non-local block to tackle misalignment problems.
The starting point of arrows represents one xi, and the ending points represent xj .
This visualization shows how the model finds related part on different frames.

4.3 Component Analysis of the Proposed Model

In this part, we report the performance of different components in our models.

3D CNN and Non-local. Baseline method, ResNet3D-50 and ResNet3D-50
with non-local blocks on the MARS dataset are shown in Table 2. Baseline
corresponds to ResNet-50 trained with softmax cross-entropy loss and triplet
with hard mining on image-based person ReID. The representation of an image
sequence is obtained by using the average temporal pooling. ResNet3D-50 cor-
responds to ResNet3D-50 pre-trained on Kinetics discussed above. ResNet3D-
50 NL corresponds to ResNet3D-50 with non-local blocks pre-trained on Kinet-
ics. The gap between our results and baseline method is significant, and it is
noted that: (1) ResNet3D increases from 77.9% to 80.0% under single query,
which fully suggests ResNet3D-50 effectively aggregate the spatial-temporal fea-
tures; (2) ResNet3D with non-local increase from 80.0% to 84.3% compared with
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ResNet3D, which indicates that non-local blocks have the great performance on
integrating spatial-temporal features and tackling misalignment problem. The
results are shown in Fig. 5.

Table 3. Effect of different initialization methods: rank-1, rank-5, rank-10 accuracies
and mAP are reported for MARS dataset. ImageNet corresponds to model pre-trained
on ImageNet, Kinetics corresponds to model pre-trained on Kinetics and ReID cor-
responds to model pre-trained on ReID datasets.

Init Methods CMC-1 CMC-5 CMC-10 mAP

ImageNet 78.4 91.5 93.9 69.8

ReID 79.9 92.6 94.5 71.3

Kinetics 84.3 94.6 96.2 77.0

Table 4. Comparisons of our proposed approach to the state-of-the-art on PRID2011,
iLIDS-VID and MARS datasets. The rank1 accuracies are reported and for MARS we
provide mAP in brackets. The best and second best results are marked by red and blue
colors, respectively.

Methods PRID2011 iLIDS-VID MARS

AMOC+EpicFlow [15] 82.0 65.5 -

RNN [17] 40.6 58.0 -

IDE [30] + XQDA [13] - - 65.3 (47.3)

end AMOC+epicFlow [15] 83.7 68.7 68.3 (52.9)

Mars [19] 77.3 53.0 68.3 (49.3)

SeeForest [31] 79.4 55.2 70.6 (50.7)

QAN [16] 90.3 68.0 -

Spatialtemporal [11] 93.2 80.2 82.3 (65.8)

Ours 91.2 81.3 84.3 (77)

Different Initialization Methods. We also carry out experiments to investi-
gate the effect of different initialization methods in Table 3. ImageNet and
ReID corresponds to ResNet3D-50 with non-local block, whose weights are
inflated from the 2D ResNet50 pre-trained on ImageNet or on CUHK03 [12],
VIPeR [3] and DukeMTMC-reID [14] respectively. Kinetics corresponds to
ResNet3D-50 with non-local blocks pre-trained on Kinetics. The results show
that model pre-trained on Kinetics has the best performance than on other two
datasets. 3D model is hard to train because of the large number of parameters
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and it needs more datasets to pre-train. Besides, the model pre-trained on Kinet-
ics (a video action recognition dataset) is more suitable for video-based problem.

4.4 Comparision with State-of-the-Art Methods

Table 4 reports the performance of our approach with other state-of-the-art
techniques.

Results on MARS. MARS is the most challenging dataset (it contains dis-
tractor sequences and has a substantially larger gallery set) and our methodology
achieves a significant increase in mAP and rank1 accuracy. Our method improves
the state-of-the-art by 2.0% compared with the previous best reported results
82.3% from Li et al. [11] (which use spatialtemporal attention). SeeForest [31]
combines six spatial RNNs and temporal attention followed by a temporal RNN
to encode the input video to achieve 70.6%. In contrast, our network architec-
ture is straightforward to train for the video-based problem. This result suggests
our ResNet3D with non-local is very effective for video-based person ReID in
challenging scenarios.

Results on iLIDS-VID and PRID. The results on the iLIDS-VID and
PRID2011 are obtained by fine-tuning from the pre-trained model on the MARS.
Li et al. uses spatialtemporal attention to automatically discover a diverse set of
distinctive body parts which achieves 93.2% on PRID2011 and 80.2% on iLIDS-
VID. Our proposed method achieves the comparable results compared with it
by 91.2% on PRID2011 and 81.3% on iLIDS-VID. 3D model cannot achieve the
significant improvement because of the size of datasets. These two datasets are
small video person ReID datasets, which lead to overfitting on the training set.

5 Conclusion

In this paper, we have proposed an end-to-end 3D ConvNet with non-local archi-
tecture, which integrates a spatial-temporal attention to aggregate a discrimi-
native representation from a video track. We carefully design experiments to
demonstrate the effectiveness of each component of the proposed method. In
order to discover pixel-level information and relevance between each frames, we
employ a 3D ConvNets. This encourages the network to extract spatial-temporal
features. Then we insert non-local blocks into model to explicitly solves the mis-
alignment problem in space and time. The proposed method with ResNet3D and
non-blocks outperforms the state-of-the-art methods in many metrics.
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