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Abstract. In recent years, the learned local descriptors have outper-
formed handcrafted ones by a large margin, due to the powerful deep
convolutional neural network architectures such as L2-Net [1] and triplet
based metric learning [2]. However, there are two problems in the current
methods, which hinders the overall performance. Firstly, the widely-used
margin loss is sensitive to incorrect correspondences, which are prevalent
in the existing local descriptor learning datasets. Second, the L2 distance
ignores the fact that the feature vectors have been normalized to unit
norm. To tackle these two problems and further boost the performance,
we propose a robust angular loss which (1) uses cosine similarity instead
of L2 distance to compare descriptors and (2) relies on a robust loss
function that gives smaller penalty to triplets with negative relative sim-
ilarity. The resulting descriptor shows robustness on different datasets,
reaching the state-of-the-art result on Brown dataset, as well as demon-
strating excellent generalization ability on the Hpatches dataset and a
Wide Baseline Stereo dataset.

Keywords: Local descriptor · CNNs · Robust loss

1 Introduction

Finding correspondences between local patches across images is an important
component in many computer vision tasks, such as image matching [3], image
retrieval [4] and object recognition [5]. Since the seminal paper introducing SIFT
[6], local patches have been encoded into representative vectors, called descrip-
tors, which are designed to be invariant/robust to various geometric and photo-
metric changes such as scale change, viewpoint change, and illumination change.
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Given the success of deep learning, hand-crafted descriptors such as SIFT
have been outperformed by learned ones [7–9]. Different from the hand-crafted
descriptors which extract low-level features such as gradients, the learned
descriptors learn a convolutional neural network (CNN) from raw patches with
ground-truth correspondences. These descriptor learning networks are trained by
metric learning losses and can be divided into two cat-egories by whether there
are learnable distance comparison layers in the network. The networks with dis-
tance comparison layers output distances directly without explicit descriptors
[9–11]. This type of networks showed promising performance in patch verifica-
tion but cannot be combined with nearest neighbor search. Recently, networks
without similarity comparison layers achieved better performances due to more
advanced network architectures such as L2Net [1] and training techniques such
as triplet loss with hard negative mining [2]. These networks output descriptors
which can be compared using simple L2 distance and be matched using fast
approximate nearest neighbor search algorithms like Kd-tree [12].

Fig. 1. Examples of false labeled patches, the patches sharing same label of 3D view
point are marked by same color box, and different color boxes come from different 3D
view point. (Color figure online)

In the descriptor learning networks, the metric learning loss function and the
distance/similarity measure between descriptors are two essential components.
State-of-the-art methods usually adopt margin-based losses such as the hinge
loss [2] to train the descriptor learning networks. Because the number of neg-
ative pairs is huge, batch hard negative mining is usually applied to stabilize
the training process as well as reduce the computational load [2,13]. However,
the current triplet losses are not robust to the incorrect correspondences (out-
liers) in the training data, as shown in Fig. 1. The patches at different locations
(negative pairs) can exhibit strong similarities and the patches at the same loca-
tion (positive pairs) can be very different due to local distortion or corruptions.
Additionally, since the local descriptors are normalized to unit norm before com-
parison, L2 distance is no longer an appropriate distance measure to compare
descriptors.

To target the these two problems, we propose a robust angular loss to train
the descriptor learning networks which is called RAL-Net. Instead of using the
hinge loss as done in [2], we propose a robust loss function which gives bounded
penalty to the triplets with incorrect correspondences. In addition, we propose to
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utilize cosine similarity to compare two descriptors, which is more appropriate
to compare unit-norm vectors. We train our descriptor on the Brown dataset
[14] and obtain state-of-the-art results using the same training strategy as [2].
Moreover, our descriptor performs much better than [2] when the sample size
and batch size is small, which further verifies the effectiveness of the proposed
method. Our codes is released in github1.

2 Related Works

Recent work on local descriptor designing has gone through a huge change
from conventional hand-crafted descriptors to learning-based approaches, which
ranges from SIFT [6] and DAISY [15] to latest methods such as DeepCompare,
MatchNet, and HardNet [2,7–9]. As for deep learning-based descriptors, there
are two study trends including CNN structure designing and negative sampling
for embedding learning.

Before CNN models being broadly applied, descriptors learning methods were
limited to specific machine learning descriptors. Therefore, there were various
kinds of methods inspired by different aspects. Principal Components Analysis
(PCA) based SIFT (PCA-SIFT) [16] leads to normalized gradient patch com-
pared to SIFT histograms of gradients. [14] proposed a filter with learned pooling
and dimension reduction. Simonyan et al. [11] studied convex sparse learning to
learn pooling fields for descriptors. Aside from these descriptors, [17] raised an
online search method from a subset of tests which can increase inter-class vari-
ance and decrease intra-class variance. One thing these methods have in common
is that they all rely on shallow learning architectures.

In the past few years, models based on CNN try to get better performance
by designing various convolutional neural network architectures, e.g. [9,10]. [9]
choose a two-branched network, a typical Siamese structure for feature extraction
and three full connected layers for deep metric learning. [10] explored further on
Siamese network with two branches sharing no parameters and proposed a two-
channel input structure which is stacked by center cropped patches and plain
patches.

Recently methods focused more on loss function design because improving
network structure can not give birth to significant improvement of descriptors as
before. These works on learning embedding can be summarized as classification
loss, contrastive loss, and triplet loss. [18,19] proved the validity classification
loss for face recognition ans scene recognition. As the most common pairwise loss,
contrastive loss [20,21] aims at increase all of the similarity of positive pairs and
push away the negative pairs until bigger than a variant margin. [22] proposed
a restricting two sides margin for contrastive learning and this method not only
requires distance between positive pairs above the margin but also limits distance
between positive pairs under the second margin. Compared to contrastive loss,
triplet loss cares about relative similarity between positive pairs and negative
pairs rather than absolute value which consists of anchor positive (a, p) and
1 https://github.com/xuyanwu/RAL-Net.

https://github.com/xuyanwu/RAL-Net
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anchor negative (a, n) with a shared point anchor a. This method can meet with
most of tasks involving large scale embedding learning [23]. However, there is still
a great challenge in choosing hinge margin for triplet loss, as well as searching
proper negative pairs fed into triplet loss. Distinguished from this embedding
learning methods, Histogram loss [24] uses a quadruplet based sampling strategy
by estimating distribution of similarity between positive pairs and negative pairs.

From previous studies, the loss functions have their advantages and disadvan-
tages in different learning tasks. A indispensable component of these methods
is the negative sampling strategy. In this paper, our main aim is to improve the
loss function to further improve the performance of local descriptor learning. Our
method can possibly be applied to other related tasks such as face recognition
and person re-identification.

3 Proposed Method

In this section, we will discuss the form of our robust triplet loss which similar
to [25] and simply introduction to network structure which is based on [1]. In
order to explain our loss function, we first review the general forms of triplet
loss and contrastive loss then present our difference.

3.1 Loss Function

3.2 The Triplet Loss

Triplet loss has been successfully applied to many tasks, such as image match-
ing, image retrieval, and face identification. The idea is to make positive pairs
closer and keep relative negative pairs away from the positive. The very common
expression of triplet loss is formulated as follows:

Ltriplet =
1
N

∑

i,j,k

[s(ai, nk) − s(ai, pj) + m]+ (1)

where a, p and n represent anchor, positive and, negative of triplet tuple and
operator [l]+ means max(l, 0) and function s(x, y) represent similarity score
between two features. Due to the large amounts of combination among a, p and
n, the back propagation of loss is very time-consuming. Thus, an indispensable
component is to sample hard negatives for both performance improvement and
computation reduction. In the context of descriptor learning, the recent HarNet
[2] method searches for the most difficult negative pair with reference to each
achor positive pair. However, the hard negative sampling strategy in [2] is unable
to fully explore the negative pairs because only negative pairs that share an
element with the anchor positive pairs are considered. Due to the margin m, if
the similarity between positive pairs and negative pairs is bigger than margin
and then the derivation of triplet item will be 0. This will cause information loss,
but triplet can help learn a better distribution of descriptors.
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(a) Derivative colormap (b) Triplet loss

(c) Contrastive loss (d) Robust loss

Fig. 2. This figure depicts the derivation of three different loss function, (b) triplet
loss, (c) contrastive loss, (d) robust loss. The cosine similarity of positive pairs and
negative pairs represent x axis and y axis, where z axis denotes the absolute derivative
values with respect to the change of x and y. The derivative value becomes larger when
approaching red, vice versa when approaching blue. (Color figure online)

3.3 The Contrastive Loss

The difference between the contrastive loss and the triplet loss is that triplet
loss aims at comparing relative similarity between positive pairs and negative
pairs, while contrastive loss only compares negative pairs with margin and pull
positive pairs as close as possible. The general form of contrastive loss is formed
as follows:

Lcontrastive =
1
N

∑

i,j,k,l

([m + s(ak, nl)]+ − s(ai, pj)) (2)

In contrastive loss, the number of training data pairs grows quadratic with
respect to training sample size. Therefore, it is much easier to sample the data
pairs than triplet loss, and random sampling is often employed for contrastive
loss-based learning. However, as shown in previous works, contrastive loss showed
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inferior performance to triplet loss in certain tasks. But [26] argues that the infe-
rior performance of contrastive learning is due to the inappropriateness of the
random sampling strategy. When combined with the proposed negative sampling
strategy, contrastive loss performs as well as triplet loss in the descriptor learn-
ing task. The common difficulty for triplet and contrastive loss is that margin
cause a great impact in result.
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Fig. 3. Proposed descriptor learning model, the negative mining strategy is same as
[2]. The features extracted from patches are located in embedding space and cosine
similarity between positive pairs is cos θp and negative pairs are cos θn1 and cos θn2 .
The curves in the right side represent triplet margin function (solid line), contrastive
margin function (dash line) and our robust function (dash-doted line).

As for triplet loss or contrastive loss, these methods all consist of positive
pairs, negative pairs and a discriminative margin. The keypoint is the negative
search strategy and margin choosing, the later one of which is tricky for metric
learning. Thus we propose a robust loss without margin confusion which can keep
more relative embedding information as well as applying cosine similarity for our
metric learning which is similar to cosine face [27], cause the angle distance is
closer to original embedding distribution as a hypersohere. As shown in Fig. 2,
assuming margin values for triplet loss and contrastive loss are 1 and 0 separately
which are common margin choice. Due to the margin strategy, there is always a
part of selected triplet or contrastive items with no derivation, also the selected
negative pairs are too sparse, resulting in a large selection bias in the sampling
process. Explained in [25], robust regression and classification problem often
requires non-convex loss function which can prevent scalable and global training
where a natural approach to implement it is cutting out loss vales that exceed
threshold, which is similar to triplet and contrastive loss. However, a relaxation
of this kind of ‘clipping loss’ can improve robustness. As for our embedding
metric learning problem, we can adopt this intuition.

Thus, we propose a robust version of triplet loss which can offset bias problem
to some extent. We consider that selected positive pairs (ai, pi) and negative
pairs (ai, ni) should be more important when their similarity are high and vice
versa given less weight rather than set their derivation to be 0. However, we
observed that a considerable amount false negative labels exiting which should
be positive pairs but marked as negative which is shown in Fig. 3, therefore, we
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put less weight to triplet items when the cosine distance between negative pairs
(ai, ni) is much more bigger than positive pairs (ai, pi), the derivation of which
should be similar to symmetrical arch bridges as shown in Fig. 2(d). Our method
performs obviously better when training data by small batch where the effect
of bias influences more and reach the best for bigger batch size, which will be
discussed later.

We apply the same positive pairs and negative pairs sampling strategy as
[2] and the features generated by networks are 128-D and euclidean normalized
with length 1. We define a search procedure Si starting with anchors (ai) and
we search for all of the positive and negative items related to ai. With regard
to a batch which consists of N pairs of matched patches a and p from different
given 3D point of view of descriptors, the size of descriptors matrices A and P
are N × 128, N × N cosine similarity matrix D = A × PT , so there is only one
positive item posi = d(ai, pi) in the diagonal of D for each search Si. The goal
is to find the closest negative item with respect to ai and pi. As we know, the
bigger the gap between two features, the smaller the cosine similarity is. Please
refer to [2] for more sampling details, the formula is organized as follow:

D(i, j) = cos θi,j = ai · pj ,

posi = D(i, i),
negi = D(ri, ci),
(ri, ci) = argmaxk,lD(k, l),

s.t. k, l = 1...n,

{k = i ∨ l = i} = True,

k �= l. (3)

Finally, the triplet items are fed into loss function formed as follow, and our goal
is to minimize this loss for each batch. Also, the derivation of Li with respect
to (posi − negi) is even function as explained above in Fig. 2, and as for better
description, Fig. 2 demonstrate the absolute value of derivation.

Lrobust =
1
N

N∑

i=1

(1 − tanh(posi − negi)),

Li = 1 − tanh(posi − negi),
∂Li

∂(posi − negi)
= tanh2((posi − negi)) − 1. (4)

3.4 Network Structure

Following [2], we adopt the L2Net [1] architecture as our main network. The
network consists of two parts, the main feature extraction network and the linear
decision layer which reduces the feature dimension. For fair comparison, we also
make slight modifications by adding 0.3 dropout layer above the bottom layer of
network as [2]. For an 32 × 32 normalized single-channel patch, the output is a



Robust Angular Local Descriptor Learning 427

L2 normalized 128-dimensional feature vector. It is worth noting that the whole
feature extraction network is built by full convolutional layers, downsampling by
two-stride convolutional net. Also, and there is a BN layer and a Relu activation
layer in every layer except the last layer, except the bottom layer with no Relu
layer. And the whole network is trained with the proposed negative sampling
procedure and corresponding loss functions.

4 Experimental Results

We train and test our RAL-Net descriptor on the Brown dataset and test the
patch verification performance on Brown dataset. In addition, we use the models
trained on the Brown dataset to test its generalization abilities in patch verifica-
tion, patch matching, and patch retreival on the Hpatches dataset. Finally, we
apply our RAL-Net descriptor on the Wide Baseline Stereo dataset to test its
invariance properties.

4.1 Brown Dataset

The Brown dataset is the most popular local descriptor learning dataset, which
contains three subsets of images taken from different places, including Liberty,
Notredame and Yosemite. Keypoints are firstly detected by Difference of Gaus-
sians (DOG) [6] and then vefified with ground truth 3-D view. The patches are
extracted around the keypoint locations and are normalized by scale and ori-
entation calculated during keypoint detection. There are about 400k classes of
patch pairs with 64×64 size, extracted from different sequences. In practice, the
size of 64 × 64 is unnecessary, and we resized the patches to 32 × 32 by linear
cubic interpolation (Fig. 4).

(a) Liberty (b) Notredame (b) Yosemite

Fig. 4. Subsets of brown

Training Setting. On the three Brown subsets, we trained our RAL-Net descrip-
tor in different setting with different training sample size and batch size. In the
first setting, we only extracted 200K pairs in total for each subsect respectively.
In this setting, we compared the performance of our descriptor with the state-
of-the-art HardNet trained with a small batchsize 128. The performance with
a small batch size can desmonstrate the effectiveness of the negative sampling
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strategies. We applied the training strategy different from [2] and [1], which
trains data for 50 epochs with learning rate linearly decreasing to 0 in the end.
We choose Stochastic Gradient Descent (SGD) as our optimizer and we set the
initial learning rate to be 10, and the rest momentum to be 0.9 and weight decay
to be 0.0001. In addition, we have tried Adam optimizer and it converge faster
than SGD, however SGD can achieve a better result with well chosen training
parameters.

In the second setting, which is the standard setting, we extracted 5000K pairs
and trained descriptor with batch size 512. As for HardNet, we trained it using
batch sizes 512 and 1024, as the performance of HardNet is more sensitive to
batch size. In this setting, due to big amount of data, the training is done within
10 epoch which is much less than strategy one but the other training aspects are
the same as strategy one. In order to compare our RAL-Net descriptors, we also
apply the same training strategy on HardNet and cite several result of recent
works. Following previous works, we also applied data augmentation by random
filpping and 90◦ rotation in both training settings.

(a) Training strategy 1 (b) Training strategy 2

Fig. 5. The curves describe the result of FPR95 of Hardnet and our RAL-Net tested
in Brown dataset. X axis is training epochs and Y is the percent value of FPR95.

Overall Evaluation. The descriptors are trained on one subset and tested on the
rest two subsets. As for evaluation, tested subset contains 100k pairs of patches
for each subset with 50K matched and 50K unmatched labels. We follow the
evaluation protocol [14] and give the results of false positive rate FPR at the
recall of 95% true positive rate TPR (FPR95). The training precision alone
training epoch is demonstrated in Fig. 5 and the results are shown in Table 1,
the best results are shown in bold.

Obviously, our RAL-Net generate the overall best results among all of the
representative descriptors as well as the best among the testing subsets. Deep
model-based descriptors have surpassed far more than hand-crafted ones, and
focus on comparison between our descriptor and the HardNet descriptor.
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Table 1. Descriptor performance on Brown dataset for patch verification. False positive
rate at 95% true positive rate is displayed. Results of the best are in bold and “+”
suffix represent training implemented by data augmentation of random flipping and
90◦ rotating.

Training Notredame Yosemite Liberty Yosemite Liberty Notredame Mean

Test Liberty Notredame Yosemite FPR

SIFT [6] 29.84 22.53 27.29 26.55

MatchNet [9] 7.04 11.47 3.82 5.65 11.6 8.7 8.05

L2Net [1] 3.64 5.29 1.15 1.62 4.43 3.30 3.23

L2Net+ [1] 2.36 4.70 0.72 1.29 2.57 1.71 2.22

CS L2Net [1] 2.55 4.24 0.87 1.39 3.81 2.84 2.61

CS L2Net+ [1] 1.71 3.87 0.56 1.09 2.07 1.3 1.76

HardNetNIPS [2] 3.06 4.27 0.96 1.4 3.04 2.53 2.54

HardNet+NIPS [2] 2.28 3.25 0.57 0.96 2.13 2.22 1.9

Training strategy 1: 200K training pairs for each subset, batch size 128

HardNet128 2.07 3.70 0.77 1.22 3.79 3.33 2.48

HardNet128+ 2.46 3.55 0.73 1.67 3.54 3.40 2.56

RAL-Net128(ours) 1.46 2.63 0.51 0.91 1.95 1.40 1.48

RAL-Net128+(ours) 1.81 3.80 0.55 1.01 1.96 2.18 1.89

Training strategy 2: 5000k training pairs for each subset, batch size 512

HardNet512 1.54 2.56 0.63 0.92 2.65 2.05 1.73

HardNet512+ 2.53 2.69 0.54 0.83 2.49 1.70 1.80

HardNet1024 1.47 2.67 0.62 0.88 2.14 1.65 1.57

HardNet1024+ 1.49 2.51 0.53 0.78 1.96 1.84 1.51

RAL-Net512(ours) 1.44 2.60 0.48 0.77 1.77 1.43 1.42

RAL-Net512+(ours) 1.30 2.39 0.37 0.67 1.52 1.31 1.26

In the first training setting, it is interesting that RAL-Net descriptor achieves
better results than the HardNet descriptor when both of them are trained with
200K pairs with batch size of 128. Furthermore, our descriptor trained with less
data achieves comparable results as Hardnet trained on 5000K data pairs with
512 batch size. We can also notice that data augmentation shows no better effect
for small training sample size and even slightly worsen the performance due to
the increasing difficulties of negative sampling and less training data with bigger
bias. However, the results on the small training dataset and small batchsize
verifies the effectiveness of our proposed robust loss training.

In the second setting, we obtain the best results on 5000K data pairs with
a batch size of 512. Even in the training without data augmentation, RAL-Net
exceeds Hardnet with batch size 512 as well as 1024. It is worth noting that
Hardnet descriptor gets improved when enlarging batch size from 512 to 1024,
while increasing batchsize from 512 to 1024 leads to almost no enhancement
for our descriptor. Thus, we only report the results of our Ral-Net trained with
batch size of 512. The experimental results confirm the efficiency and validity
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of our RAL-Net descriptor. For the rest of experiments, we test HardNet and
our descriptor on other datasets by training them on 5000K data pairs with 512
batch size on the Liberty subset.

Ablation Studies. Proving the effectiveness of angular and robust form sepa-
rately with respect to our RAL loss. We set four variants based on our training
strategy 1 without augmentation due to limited time, which are HardNet with
angular embedding, HardNet with robust form, original HardNet and our RAL-
Net respectively. The result is shown in Table 2. The results indicate that both
the angular distance and the robust loss function contribute to the overall per-
formance and the combination of them achieves state-of-the-art performance.

Table 2. Comparision between different combinations.

Training Notredame Yosemite Liberty Yosemite Liberty Notredame Mean

Test Liberty Notredame Yosemite FPR

Training strategy 1: 200K training pairs for each subset

RAL-Net 1.46 2.63 0.51 0.91 1.95 1.40 1.48

HardNet/angular embedding 1.63 3.26 0.56 1.24 2.87 2.02 1.93

HardNet/robust form 1.67 3.27 0.57 1.06 2.51 2.15 1.87

HardNet 2.07 3.70 0.77 1.22 3.79 3.33 2.48

L2Net/contrastive 3.52 7.83 1.63 2.75 7.36 6.68 4.96

4.2 Descriptor Generalization Ability on Hpatches Dataset

Recently, Hpatches, a new local descriptor evaluation benchmark, provides a
huge dataset and an evaluation criterion for modern descriptors. This dataset
consists of 65 × 65 pixel size of patches extracted from 116 sequences which
originate from 6 images. Different from the widely used Brown dataset, Hpatches
contains more diversity and noisy changes. The keypoints of this dataset are
detected by DOG, Hessian, and Harris detectors from reference images which
are then applied to reproject the three different geometric noisy image sequences
of easy, hard and tough. A small fraction of the dataset is shown in Fig. 6.

To comprehensively test the generalization abilities of descriptors, Hpatches
also propose three different tasks, including patch verification, image matching,
and patch retrieval. First, patch verification is used to verify whether two patches
match or not by confidence scores. As for a patches pair set P = {(xi, x

′
i), yi), i =

1, ..., N)}, consisting of positive pairs and negative pairs (xi, x
′
i) with labels (yi =

1,−1), we calculate the average precision by the ranked confidence scores. The
mean average precision (mAP) for all of the rank is finally used as the evaluation
criterion. Second, image matching is similar to patch verification, in which we
are given patches collection Lk = (xk,i, i = 1, ..., N), where Lr is from the
reference image and Lt is from the target image. With respect to xr,i from Lr,
we aim to find the maximum matching xt,j from Lt and get the related index
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Fig. 6. Hpatches patches image. For each reference patch, there are 5 random geometric
changing patches for three different changing range, which can be classified to e(easy),
h(hard) and t(tough).

{σi, i = 1, ..., N} of finding xt,j . After finding all of the matching, we consider
if the found xt,j corresponds to xr,i with a ground truth label, and we get the

matching set M = {yi = 2[σi
?= i] − 1} by whether the found patch is matched

with the label. Similar to the first task, we calculate the mAP for AP of set M
for all ranks. The final task is patch retrieval, which considers these retrieved
patches from the matched images of reference images with a large proportion
of distraction, and returns AP of the collection of labels ranked by confidence
scores. For more protocol details, please refer to [28]. The result is shown in
Fig. 7.
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Fig. 7. Descriptors performance on three tasks
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Hpatches evaluation protocol considers many different aspects of patches
from different view points and different illumination as well as patches of
intra-class and inter-class, which are implemented from three degree of diffi-
cult sequences separately. In order to make a clearer demonstration, we just
give the average performance of all different factors. Actually, these descriptors
which obtain better average result shown in Fig. 7 also perform better on these
different child factors respectively. In terms of the result, RAL-Net generates
the best results on the image matching task and the patch retrieval task, and a
little behind HardNet in patch verification task. We can also observe that for the
hardest image matching task, our descriptor with data augmentation shows an
obvious improvement over the competitors. Overall, our descriptor gives almost
the same results as L2Net and HardNet. This might be due to the different dis-
tributions between the Hpatches data and the Brown data, which needs further
consideration and new learning algorithms such as transfer learning.

4.3 WxBS Testing

In order to test the performance of our RAL-Net descriptor in a hard environ-
ment with various changing factors, we apply our descriptor on Wide Baseline
Stereo [29]. The dataset consists of three different tasks, which are Appear-
ance (A) by environment change, Geometry (G) with different view point, scale
variance, etc., Illumination (L) influenced by brightness or image intensity, and
Sensor (S) consisting of different type of data. With local feature detected by
maximally stable extremal regions (MSER), Hessian-Affine and FOCI, each local
patch is matched perfectly with the reference image. In addition, the evaluation
metric is the same as the image matching task as Hpatches. The image example
is shown as Fig. 8 and the result is shown in Fig. 9.

RAL-Net performs the best on average and shows a distinguished perfor-
mance on Appearance and Illumination distraction matching task. For the
Geometry task, all of the task performs almost at the same level. It is also
worth noticing that SIFT and RootSIFT do not fall behind these learning-based
descriptors and even perform better on the task Geometry due to their scale-
invariant characteristics. But, as we can observe in Fig. 8, all of the descriptor
reach a quite bad performance in S and Map2ph task due to this kind of data
not exiting in Brown dataset.

G A L Map2ph S

Fig. 8. Examples of WxBS dataset
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Fig. 9. Descriptors performance on three tasks

5 Conclusions

In this paper, we suggest a robust angular training loss named RAL-Net for
deep embedding learning without sensitive parameters to further improve the
performance of local descriptor learning, where the similarity between descrip-
tors is defined as cosine distance, it is based on the idea of smooth the margin of
triplet by giving different importance to triplet items with regard to the differ-
ence between the similarity of positive pairs and the similarity between chosen
negative pairs. The loss can learn more information from limited data and per-
forms better if with larger training data and relax the effect that false labels
exits in training dataset. We test DigNet on typical Brown dataset, Hpathches
dataset and W1BS dataset for diverse tasks verification and our RAL-Net have
shown a superiority over existing local descriptors.
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