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Abstract. One significant problem of deep-learning based human action
recognition is that it can be easily misled by the presence of irrelevant
objects or backgrounds. Existing methods commonly address this prob-
lem by employing bounding boxes on the target humans as part of the
input, in both training and testing stages. This requirement of bounding
boxes as part of the input is needed to enable the methods to ignore irrele-
vant contexts and extract only human features. However, we consider this
solution is inefficient, since the bounding boxes might not be available.
Hence, instead of using a person bounding box as an input, we introduce
a human-mask loss to automatically guide the activations of the feature
maps to the target human who is performing the action, and hence sup-
press the activations of misleading contexts. We propose a multi-task
deep learning method that jointly predicts the human action class and
human location heatmap. Extensive experiments demonstrate our app-
roach is more robust compared to the baseline methods under the pres-
ence of irrelevant misleading contexts. Our method achieves 94.06% and
40.65% (in terms of mAP) on Stanford40 and MPII dataset respectively,
which are 3.14% and 12.6% relative improvements over the best results
reported in the literature, and thus set new state-of-the-art results. Addi-
tionally, unlike some existing methods, we eliminate the requirement of
using a person bounding box as an input during testing.

Keywords: Image action recognition · Loss guided activation ·
Human-mask loss

1 Introduction

Action recognition from a single image is generally still challenging. An input
image can contain multiple objects and humans, with occlusions, cluttered
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Fig. 1. Examples of irrelevant objects that mislead human action predictions. The
wrong predictions using previous holistic method [13] are marked in red. Our proposed
method implicitly suppresses the activations of misleading contexts and therefore can
correctly identify the actions (marked in black). (Color figure online)

backgrounds, viewpoint variations, and articulated human poses, making the
task of action recognition much more challenging than standard image clas-
sification task. Existing methods have exploited cues such as human body
pose [3,4,22], interactive objects [8,14], body part appearances [7,12,25], and
multiple instance learning [13] to handle the aforementioned problems.

Particularly for deep-learning based methods, human action recognition can
be misled by irrelevant objects or backgrounds in the input image. Mining
contextual object cues can be helpful to recognize human actions that involve
objects, but can also be unreliable under the presence of misleading contexts.
An input image may contain multiple objects, some of which are relevant and
discriminative to recognize the action, but some are irrelevant and misleading to
recognize the action. Some examples of misleading objects and action-relevant
objects are shown in Fig. 1. These irrelevant cues can be salient (e.g. the dog
in Fig. 1(a)(e)) and interactive with human (e.g. the dog, guitar, bike, camera
in Fig. 1(a-d)), making them even harder to be ignored by recognition algo-
rithms. Intuitively, human action prediction should focus on the target humans
with priority. However, most of the existing methods are significantly driven
by training data, which can be biased for non-human objects and backgrounds.
Consequently, instead of focusing on humans, the attention of the algorithms
can be shifted to irrelevant contextual cues, leading to a wrong prediction.

To address the misleading contexts problem, existing approaches usually use
person bounding boxes as input [8,9,11–14,17,21,25] in both training and test-
ing stages. This is needed to extract features of the target human and then to
combine them with contextual features from the whole image. However, we con-
sider that using a person bounding box as an additional input is not effective
to exclude irrelevant cues in the image. This form of hard attention does not
tackle the underlying problem, because the extracted features of the mislead-
ing contexts can have higher response than action-related contexts, due to some
probable bias in the dataset for object manipulation type of actions, leading to
a wrong prediction.
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Additionally, the appearance of objects have much fewer variations and thus
higher consistency than the appearance of human body in the training data.
As a result, deep neural networks learn richer representations of objects and
other contexts than the human body. The unbalanced feature activations among
objects and humans make the existing methods sensitive to the irrelevant mis-
leading contexts, and hence these methods perform poorly under their presence.
For example, in Fig. 1(a), the presence of a dog makes the action to be misclas-
sified as “walking the dog” by previous holistic methods [4,13].

In this paper, our goal is to divert the activations/attentions of the network
towards the target human, and learn its rich deep representations, as well as
simultaneously learn compact representations of action-relevant objects and con-
texts. We propose a multi-task deep learning framework that jointly predicts the
human action class and human location heatmap (Fig. 3). Instead of adding the
person bounding boxes in the input [13,25] or modifying the extracted feature
maps by multiplying them with an saliency map [4], we use a novel human-mask
loss to automatically guide the activations of the feature maps to the human
who is performing the action, and hence suppress the influences of the mis-
leading objects or backgrounds. To our knowledge, it is the first time that we
explicitly show the class activation map can be influenced by a human-mask
loss. The practical benefit of this is that we do not need bounding boxes dur-
ing testing. Evaluations on two popular and challenging datasets: Stanford40
Action dataset [23] and MPII Human Pose dataset [1] show the effectiveness of
our method. To sum up, our main contributions are three-fold:

– We propose a new human-mask loss to automatically guide the activation
of the network into the human regions to learn rich deep representations of
humans. This eliminates the requirement of bounding boxes as part of the
input in testing stage.

– We propose a multi-task deep learning method that jointly predicts the action
class and human location heatmap.

– Our method achieves 94.06% and 40.65% (in terms of mean Average Preci-
sion, mAP) on Stanford40 and MPII dataset respectively, which are 3.14%
and 12.6% relative improvements over the best results reported in the litera-
ture, and thus set new state-of-the-art results.

The rest of the paper is organized as follows. Section 2 reviews the related
work of action recognition from still images. Section 3 describes our approach,
which is a multi-task learning framework. Section 4 shows experimental results
and our evaluations quantitatively and qualitatively. Finally, Sect. 5 provides a
brief summary of our method and some practical future works.

2 Related Work

Compared to action recognition from videos, which highly relies on motion,
action recognition from a single image depends on static cues, such as human



Loss Guided Activation for Action Recognition in Still Images 155

pose, body parts, and interactive objects. Existing methods can be grouped into
three categories: holistic methods, part-based methods, context-based methods.

Holistic Methods: Holistic methods extract features from the human in the
given bounding box and combine them with contextual features from the whole
image to predict human actions [3,13,22]. Early works [3,22] use a graphical
model on the human body pose to infer actions. Recently, Mallya and Lazeb-
nik [13] propose a simple fusion network that concatenates features extracted
from a bounding box with features from the whole image for action predic-
tion. Overall, holistic methods follow the most straightforward strategy and do
not involve many pre-processing steps. However, holistic methods can be eas-
ily misled by the presence of irrelevant objects or backgrounds. To resolve this
problem, our approach introduces a human-mask loss to guide the activations of
the network into human regions, and hence suppresses the response of irrelevant
contexts.

Part-Based Methods: Part-based approaches detect multiple bounding boxes
on various body parts and combine their features with global features to pre-
dict actions [7,12,25]. Gkioxari et al. [7] train body part detectors on ’pool5’
features in a sliding window manner and combine them with the ground-truth
box to train a CNN for action classification. Recently, Zhao et al. [25] incor-
porate mid-level body part actions (e.g. head: laughing) to infer body actions.
However, this method requires an external human pose estimation technique to
localize body keypoints and crop out part patches in both training and testing
stages. Moreover, the “hard-coded attention” limits the regions to be around the
human. Instead of using body parts’ patches as input, our approach learns rich
representations of humans by using our human-mask loss.

Context-Based Methods: Contextual algorithms exploit contextual cues,
such as interactive objects. CAI [27] utilizes language information of the con-
text (i.e. subject and object) labels, and encodes them into semantic space to
learn context-dependent classifier for visual relationship detection. R*CNN [8]
applies selective search [20] to generate object proposals to discover proper inter-
active objects. However, these proposals are required for both training and test-
ing stages, and the sampling over potential proposals might also be computa-
tionally expensive. Moreover, R*CNN uses two hyper-parameters to define the
overlap between the person bounding box and the proposal box. Our approach
achieves this overlapping by introducing a human-mask loss, which can automat-
ically divert the attention into the most discriminative image regions around the
human, in a soft and learnable way.

Weakly-Supervised Localization: All the aforementioned methods require
the prior knowledge of the ground-truth bounding boxes in both training and
testing stages, making them difficult to scale to real-world applications. There
have been a number of recent works exploring weakly-supervised object local-
ization or soft attention [4,14,24]. Oquab et al. [14] transfer mid-level image
representations obtained from image classification to action recognition. Zhang
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et al. [24] generate a foreground action mask using a five-step iterative optimiza-
tion method, then extract features from the action mask for recognition purpose.
However, this method suffers from high optimization complexity. Recently, Gird-
har and Ramanan [4] propose a pooling method that scales the score map with
a saliency map. This method potentially assumes that the salient objects are
the most useful cues for identifying actions. However, there could be salient but
irrelevant objects (see Fig. 1) that can lead to wrong predictions. Our approach
implicitly models attention via a number of feature activation maps. We show
that it is unnecessary to explicitly model the attention map, but by training the
network to predict the human location heatmap. Doing this, we implicitly divert
the attention from the misleading contexts to the human regions.

Multi-task Learning: Some prior works have shown that jointly learning mul-
tiple tasks that relate to each other boosts the individual performances of all the
tasks. To name a few, HyperFace [16] jointly learns face detection, landmarks
localization, pose estimation and gender recognition tasks, and improves indi-
vidual performances. Simonyan and Zisserman [18] use multi-task learning to
decrease over-fitting by jointly training two video datasets. We observe a similar
performance boost, where a multi-task learning approach detecting human, as
a by-product, improves action classification performance. By jointly predicting
the location of the human, the network learns rich representations of the human
who is performing the action, and thus achieves better action prediction results.

3 Our Approach

The presence of misleading objects or backgrounds can pose a major problem for
human action recognition. To address this, existing methods attempt to turn the
focus more on the target human. Their strategies to turn the focus on the target
human can be categorized into: Input modification and feature modification. An
example of input modification is Zhao et al.’s method [25], which crops the region
of the given person bounding box to extract the features of the human. Another
example is an approach by [8,13], which uses box coordinates and a Regions Of
Interest (ROI) pooling layer [5] on top of the last convolutional feature maps
to extract features on the human. One example of feature modification is to
reweight the extracted image feature maps by scaling them with either a human
pose heatmap or with a saliency map [4].

However, neither input modification nor feature modification can resolve
the problem. Since, for input modification, a person bounding box may still
include irrelevant contexts due to the viewpoint, and the close spatial relation-
ship between the human and these contexts. For feature modification, a saliency
map produced by a data-driven deep learning model can magnify the effect of
misleading contexts rather than suppress them, and hence, can lead to incorrect
action predictions.
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Fig. 2. An illustration of a classification network trained without and with our human-
mask loss. The multi-task learning framework achieves balanced activations between
humans and non-human contexts, which is more robust under the presence of irrelevant
misleading contexts.

3.1 Key Idea: Human-Mask Loss

Our key idea is to use a novel human-mask loss to automatically divert the
activation of the network into the human regions to learn rich representations
of humans, as illustrated in Fig. 2. Under the guidance of human-mask loss, the
network is forced to learn more features of humans in order to produce the final
human location heatmap, and hence enhance the influence of humans in the final
decision. After all, human action recognition must be firstly about human, not
the surrounding objects or backgrounds.

As illustrated in Fig. 2, by visualizing the Sum of Activation Maps (SAM)
of the network trained with only an action classification loss (Fig. 2(b)), we
observe that the final feature maps have much higher activations on salient
objects (see the dog), but much lower activations on the human body. This
unbalanced activation could probably be the reason why the existing deep learn-
ing methods [4,8,13,14] are fragile to misleading contexts.

We input only the whole image into the network, by training the network
to predict the human location heatmap, we encourage the network to learn rich
representations about humans (see the highlighted face of the reading girl in
Fig. 2(e) compared to (b)). Thus, with the balanced activations on humans and
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Fig. 3. Network architecture of the proposed human-mask loss guided activation net-
work. During training, given an input image, the network is trained to predict an action
class guided by the ground-truth action label, and a human heatmap guided by the
binary human mask. The groundtruth human mask images for the training data are
generated using the person bounding box information given in the dataset. During
testing, given an input image, the network jointly predicts the action class and human
location heatmap.

contexts, the network gives the correct action prediction, and the final Pre-
dicting Activation Map (PAM) (i.e. the Class Activation Map (CAM [26]) of
the predicted class) shifts attention from the irrelevant objects or backgrounds
(e.g. the dog in Fig. 2(a)) to the human’s body parts (e.g. the holding hand
in Fig. 2(d)), as well as the action-related interactive objects (e.g. the book in
Fig. 2(d)) around that human.

3.2 Network Architecture

The architecture of our proposed network is shown in Fig. 3. There are two
branches in the network: Action classification branch that predicts the action
class, and human localization branch that produces the human location heatmap.
Given an input image, we first use a CNN (Inception-ResNet-v2 [19]) to extract
feature maps 1from the last convolutional layer. By jointly predicting the human
location heatmap, the network is forced to learn rich representations of humans,
and hence suppresses the influences of irrelevant misleading contexts.

Action Classification Branch: On top of the backbone features F , we use a
convolutional layer to further reduce the number of channels to extract compact
features Fcls for classification. Since this convoluational layer is only trained
using classification loss, it provides the classification task with more flexibility
and capacity. Then, we perform global average pooling (GAP) on the feature

1 This backbone feature is shared by both two branches.
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maps Fcls to obtain a feature vector V , and use it to train a softmax classifier to
predict the action class. We use only one fully-connected (FC) layer for predicting
action labels, so that the weights of the FC layer can be projected back on to the
convolutional feature maps Fcls, indicating image regions that have been used
by the network to recognize that action class.

Human Localization Branch: Our goal is to divert the activations of the
feature maps into the human regions to learn rich representations of the target
human and the surrounding interactive objects. To accomplish this, we add the
human localization branch to create a human heatmap guided by the binary
human mask Mgt (we use gt to denote ground-truth). In the mask, Mgt(i) = 1
means the pixel i is inside the person bounding box2, otherwise it belongs to the
background regions. Note that, we only generate this groundtruth human mask
for training data. Based on the backbone feature maps F , we further apply four
convolutional layers to generate a 2D human location heatmap M∗. To obtain
a mask with a proper spatial resolution, these convolutional layers preserve the
spatial dimension and only reduce the number of channels gradually. Finally, we
compute the L2-norm distance between the output map M∗ and the ground-
truth mask Mgt and back-propagate the error.

Loss Function: We use cross-entropy loss for action classification task, and the
L2-norm distance between the predicted human-mask M∗ and the ground-truth
human mask Mgt as the loss function for human localization task (Eq. 1). We
combine the two losses with equal weights L = Lcls + Lmask, where:

Lcls = − log(
exp(Scgt)∑
c exp(Sc)

); Lmask = ||Mgt − M∗||22, (1)

where Sc is the score before softmax of class c, and cgt is the ground-truth class.

3.3 Loss-Guided Activation

We summarize all channels of the final activation map Fcls to obtain a 2D map,
denoted as SAM (Sum of Activation Maps). By visualizing SAM, we are able
to evaluate the distribution of the feature kernels learnt by the network trained
with and without our human-mask loss. To investigate based on which image
regions that the CNN is making its decision, we further compute the weighted
sum of the activation maps at the predicted class c∗ (i.e. CAM at the predicted
class), denoted as PAM (Predicting Activation Map). Here are the definitions of
SAM and PAM, respectively:

SAM(i, j) =
∑

k

F k
cls(i, j); PAM(i, j) =

∑

k

wk
c∗F k

cls(i, j), (2)

where F k
cls is the kth channel of the final activation map Fcls, (i, j) is the spatial

location, c∗ is the predicted action class, and wk
c∗ is the learnt weight of the kth

feature for predicted class c∗.
2 The person bounding box coordinates are given by the dataset.
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4 Experiments

We use two challenging action datasets: (1) Stanford40 Action Dataset [23] con-
sisting of 9532 images of people performing 40 actions. The dataset is split into
training and test sets with 4000 and 5532 images each. (2) MPII Human Pose
Dataset [1] containing 20,916 images classified into one of the 393 action classes.
It is split into training, validation (from authors of [8]) and test sets, with 8219,
6988 and 5709 images each. The final test mAP results are obtained by email-
ing our results to authors of [1]. The annotations do not include a ground-truth
bounding box explicitly, but provide the location of 16 human body keypoints.
This information is used to generate human-mask images for the training data.
Among all coordinates of body joints, the min and max coordinates are picked to
composite a tight box covering the human body joints. Then we expand the box
by 50% to cover the whole body, and generate human-mask images for training.

To obtain the final activation maps of resolution 14× 14, the test images are
resized to 448×448 and inputted to the network. We train two backbone CNNs:
ResNet [10] and Inception-ResNet-v2 [19] initialized with ImageNet [2] weights.
On top of the backbone feature maps, (i) In action classification branch, we use
one convolutional layer with 1024 kernels (3 × 3 kernel size, stride 1) and ReLu
nonlinearity to obtain the final feature maps Fcls (1024×14×14). This Fcls is then
global average pooled to a feature vector for training the softmax classifier; (ii)
In human localization branch, we apply four Conv-ReLu layers (all 3 × 3 kernel
size, stride 1) to gradually reduce the channel numbers (512 → 64 → 32 → 1) to
generate the final human location heatmap. The learning rate is set to be 10−5,
and batch size is 12. Three kinds of data augmentations are employed: horizontal
flipping, random rotation (range of 0–10◦), and random zoom (0.9–1.1).

4.1 Comparisons with Existing Methods

Stanford40 Action Dataset. Table 1 shows the results on Stanford40
dataset [23]. Using Inception-ResNet-v2 as backbone CNN, our method achieves
a mAP of 94.06% on Stanford40 test set, which is the state-of-the-art. Perfor-
mance varies from 76.7% for “waving hands” to 100% for “playing violin”. For all
the 40 categories, the improvement of using our human-mask loss comes from two
sources: (1) Test samples that contain irrelevant misleading objects and back-
grounds; (2) Confusing action pairs such as “waving hands” and “applauding”.
Figure 4 shows the AP performance per action on the test set. In comparison
with previous best approach PAN [25] (mAP of 91.2%), which uses bounding
boxes in the input image, our method’s performance is comparable (mAP of
91.1%). In fact, PAN uses body part bounding boxes (in addition to the person
bounding boxes) and additional body part action annotations, thus ours uses
less information. The benefit of our method compared to PAN is that we do
not need the bounding boxes in the testing, which in terms of practicality is a
significant improvement.



Loss Guided Activation for Action Recognition in Still Images 161

Table 1. mean Average Precision (mAP) on Stanford40 dataset

Methods mAP(%)

Action Mask [24] 82.64

ResNet50a [10] 87.23

Inception-ResNet-v2a [19] 90.38

VGG-16, R*CNN [8] 90.90

ResNet50, Part Action Network [25] 91.20

Ours - ResNet50, w/o human-mask loss 88.80

Ours - ResNet50, w human-mask loss 91.10

Ours - Inception-ResNet-v2, w/o human-mask loss 91.42

Ours - Inception-ResNet-v2, w human-mask loss 94.06
aA standard classification network, trained with the same experimen-
tal configurations as ours, but without adding one convolutional layer
on top of the backbone CNN.

Effectiveness of Our Human-Mask Loss. We train action classification net-
work with/without our human-mask loss to compare the effectiveness of our
introduced human-mask loss. Our human-mask loss improves the mAP by 2.3%
and 2.64% for both ResNet50 and Inception-ResNet-v2 based network respec-
tively. Jointly predicting human location heatmap significantly boosts action
classification performance. Figure 4 shows the AP comparison between a net-
work trained with and without our human-mask loss. Our method significantly
improves mAP on the top confusing pair “waving hands” and “applauding” by
7.33% and 5.06% respectively. It also obtains large gains on object manipula-
tion type of actions, such as “texting message” (+11.09%), “brushing teeth”
(+7.31%), “pouring liquid” (+5.98%), “phoning” (+5.59%). There is an accu-
racy drop for “cutting vegetables”. The misclassification happens because the
knife is lying on the table and the hand is holding the vegetables.

MPII Dataset. Table 2 shows the comparison on MPII test and validation sets.
We use the validation set shared by the authors of [8] to compare with [4,8].
Performance on the test set is obtained by submitting our prediction scores to
authors of [1]. The previous best approach is Attn.Pool [4], which achieves a
mAP of 36.1% on test set. Using Inception-ResNet-v2 as backbone CNN with
our human-mask loss, our method achieves a mAP of 40.65% on MPII test set,
surpassing previous benchmark by 12.6% (relative improvement).

Effectiveness of Our Human-Mask Loss. Our human-mask loss improves
the mAP by 1.21% and 1.90% for both ResNet101 and Inception-ResNet-v2
based network respectively on validation set. For all 393 categories, we observe
that the top improved actions are those whose critical cues are about humans
rather than contexts, which may contain irrelevant objects and cluttered back-
grounds. For example, our human-mask loss significantly improves “sitting, in
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Table 2. mean Average Precision (mAP) on MPII dataset

Methods Val mAP(%) Test mAP(%)

Dense Trajectories+Pose [15] - 5.5

VGG-16, Scene-RCNN [8] 16.5 -

VGG-16, R*CNNa [8] 21.7 26.7

VGG-16, Fusion [13] - 32.3

Inception-v2, Attn.Pool [4] 24.3 -

ResNet101, Attn.Pool [4] 30.3 36.0

ResNet101, Attn.Pool+Pose [4] 30.6 36.1

Ours - ResNet101, w/o human-mask loss 30.77 -

Ours - ResNet101, w human-mask loss 31.98 -

Ours - Inception-ResNet-v2, w/o human-mask loss 32.38 -

Ours - Inception-ResNet-v2, w human-mask loss 34.28 40.65
aR*CNN reports the test AP of 1.1% for both “cooking or food preparation” and “video
exercise workout” actions, while our method achieves 25.64%, and 11.11% on the two
action classes respectively.

class, general, including note-taking or class discussion” by 40.1%, “woodwind,
sitting” by 36.4%, “laughing, sitting” by 25.58% on validation set.

4.2 Visualization of Activation Maps

We visualize the activation maps of the network (Inception-ResNet-v2 based)
trained with/without our human-mask loss. Figure 5 shows the shifted atten-
tion on SAM and PAM using our human-mask loss. Note for a fair comparison
between a classification network trained with and without a human-mask loss,
we use min-max normalization to normalize each channel of Fcls to [0,1] before
summation. Given an input image as shown in Fig. 5(a), the network jointly
predicts the action class and human location heatmap as shown in Fig. 5(f). By
comparing SAM trained with and without a human-mask loss in Fig. 5(b)(c), we

Fig. 4. AP (%) comparison between a network (Inception-ResNet-v2 based) trained
with and without our human-mask loss on Stanford40 dataset. The results of all actions
are shown in descending order of their absolute AP improvements. The mean AP
improvement across all actions is 2.64%.
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Fig. 5. Examples of the SAM and PAM obtained from the network trained
with/without human-mask loss. Wrong predictions are marked in red, and correct ones
(ours) are marked in white. Using our human-mask loss, the final predicting attention
shifts from the misleading objects (e.g. guitar, bike, camera, dog) or backgrounds (e.g.
garden) to the human regions. (Color figure online)

observe that our human-mask loss successfully drives more activations into the
human regions, such as the boy besides the dog, and the human carrying the
guitar. Therefore, the final PAM (Fig. 5(d)(e)) shifts the attention from the mis-
leading objects (e.g. guitar, bike, camera, dog) or backgrounds (e.g. garden) into
the human regions. Our proposed human-mask loss guides the network to focus
more into the discriminative image regions where humans and the non-human
contexts have balanced contributions for predicting actions.

Additionally, we observe some corrections using human-mask loss benefit
from learning better representations of humans. Figure 6 shows examples of two
confusing pairs of “applauding” vs. “waving hands”, and “reading” vs. “writing
on a book”. For instance, Surprisingly, by attending on humans, the network cap-
tures more discriminative body pose features, which helps distinguish between
“applauding” and “waving hands”. The key to distinguish between “applaud-
ing” and “waving hands” is the pose of the upper body. Usually, “waving hands”
requires one hand, while “applauding” requires two hands. Under the guidance
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Fig. 6. Examples of two confusing action pairs. Wrong predictions are marked in red,
and correct ones (ours) are marked in white. Surprisingly, by attending on humans,
the network captures more discriminative body pose features, which helps distinguish
between “applauding” and “waving hands”, as well as the specific way of interaction
(holding a pen or writing with a pen), which helps distinguish between “reading” and
“writing on a book”. (Color figure online)

of our human-mask loss, the network is able to capture the overall pose of the
human’s upper body rather than purely focusing on the local hand regions.

4.3 Comparison and Discussion

We show some predictions obtained by our method and existing methods in
Fig. 7. R*CNN [8] can misclassify an action when the misleading objects are
selected as its secondary box with highest response score (Fig. 7(a)). PAN [25]
focuses on local body parts and can misclassify when body parts are occluded
(Fig. 7(b-e)). Fusion [13] can make a wrong prediction when the misleading
objects are inside the person bounding box (Fig. 7(f)(g)). Attn.Pool [4] can mag-
nify the response of misleading contexts, leading to a wrong prediction (Fig. 7(h-
j)). Compared to the aforementioned methods, our method applies human-mask
loss and successfully diverts the activations of the network to human, and hence
gives correct action predictions, as shown in (Fig. 7(a-j)).

In the last row of Fig. 7(k-o), we show some misclassified samples by our
method. There are mainly three reasons: (1) Misleading objects are too dom-
inant (i.e. occupy a larger portion of the image than the human does) to be
ignored (see the big car in front of the applauding man in Fig. 7(k)). (2) Action-
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Fig. 7. Predictions obtained by our method and existing methods on Stanford40 test
set. The correct predictions are marked in black, and wrong ones are in red. Results
show that our method is more robust than existing methods under the presence of irrel-
evant misleading contexts (see first two rows). Our approach also has certain limita-
tions when misleading objects are too dominant, or action-relevant objects are largely
occluded, or have no direct interaction with the human in the presence of multiple
objects in the image (see third row). (Color figure online)

relevant objects are largely occluded (the brush and TV in Fig. 7(l)(m)). (3)
Indirect interaction between human and action-relevant objects in the presence
of multiple objects (Fig. 7(n)(o)). Our human-mask loss implicitly increases the
activations of the objects that are close to the target human. We believe that
by explicitly detecting the interactive objects using human-object interaction
models such as [6], our method can perform even better. We leave this for our
future work.

5 Conclusion

In this paper, we propose a multi-task learning method to solve the problem
of irrelevant misleading contexts for action recognition in still images. Our goal
is to divert the activations of the network to focus on humans, and hence the
activations of the misleading objects or backgrounds can be suppressed. We
introduce a novel human-mask loss to automatically guide the activations of the
feature maps to the target human. We propose a multi-task deep learning method
that jointly predicts the human action class and human location heatmap. Our
method achieves state-of-the-art results: 94.06% on Stanford40 and 40.65% on
MPII dataset, surpassing the previous benchmarks. Additionally, we eliminate
the requirement of using a person bounding box as an input in the testing stage.
Future work involves combining human-object interaction technique to better
exploit action-relevant contexts in the given images.
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