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Abstract. While several methods have been proposed for modeling and
recognizing image sets, the success of these methods relies heavily on how
well the image data follows the assumptions of the underlying models.
Among the models that have been utilized by many image set classifica-
tion methods, the physically inspired subspace model assumes that the
images of an object lie on a union of low-dimensional subspaces. Despite
their successful performance in controlled environments, the performance
of such subspace-based classifiers suffers in practical unconstrained set-
tings, where the data may not strictly follow the assumptions necessary
for the subspace model to hold. In this paper, we propose Nonlinear
Subspace Feature Enhancement (NSFE), an approach for nonlinearly
embedding image sets into a space where they adhere to a more dis-
criminative subspace structure. In turn, this improves the performance
of subspace-based classifiers such as sparse representation-based classi-
fication. We describe how the structured loss function of NSFE can be
optimized in a batch-by-batch fashion by a two-step alternating algo-
rithm. The algorithm makes very few assumptions about the form of
the embedding to be learned and is compatible with stochastic gradient
descent and back-propagation. This makes NSFE usable with deep, feed-
forward embeddings and trainable in an end-to-end fashion. We experi-
ment with two different types of features and nonlinear embeddings over
three image set datasets and we show that our method compares favor-
ably to state-of-the-art image set classification methods.

1 Introduction

Image set classification aims to compute a single label for a set of images that
are assumed to belong to the same class. The interest in the use of image sets
for visual recognition tasks, such as face recognition, has grown in line with
the increasing prevalence of video-capable consumer devices and surveillance
cameras [1–19]. A video is typically believed to have richer information (i.e.
more frames) than in a still image and so can lead to improved classification
performance. However, the improvement in performance is sometimes limited in
practice due to the challenges videos share with still images (e.g . variations in
pose, illumination, motion-induced artifacts and occlusion) in addition to the
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low resolution at which videos are sometimes captured to reduce bandwidth and
storage requirements.

As reviewed in Sect. 2, several methods for modeling and classifying image
sets have been proposed. Many of these have utilized the subspace assumption
which (informally) states that the instances from a particular class lie on (or
close to) a union of low-dimensional linear subspaces (the property is illustrated
in Fig. 1). The assumption is theoretically founded on the work of [20] which
shows that the images of a static convex Lambertian object, taken under varying
Lambertian illumination from a fixed viewpoint, approximately lie on a low-
dimensional subspace [20].

Fig. 1. An illustration of the discriminative subspace structure that is naturally exhib-
ited by the controlled images of a visual object (e.g. a person’s face) [20,21]. The
example illustrates the property for the face images of two different subjects, taken
under two different poses and varying illumination. The images in which the visual
object (i.e. face) has the same pose and identity lead to raw intensity vectors that lie
close to a low-dimensional subspace regardless of the variations in Lambertian illumi-
nation. Our goal is to learn a nonlinear embedding that improves the discriminative
subspace layout of image sets and consequently enhance the performance of subspace-
based image set classifiers.

Despite the theoretical foundations of the subspace model, the success of
the associated algorithms relies on how well these assumptions are satisfied in
practice (i.e. the convexity of the imaged object, the fixing of viewpoint, the
Lambertian illumination, and the use of raw intensities to represent images). In
practical unconstrained settings, these requirements may not be met and so the
data may not strictly follow the subspace model in such scenarios (e.g . varying
pose and/or use of image features nonlinearly derived from intensities).

To mitigate this, we propose an algorithm to learn a nonlinear embed-
ding that enhances the low-dimensional discriminative subspace structure of the
image sets. Under such an embedding, an instance from one class is more likely
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to be closer to the subspace spanned by the samples of the same class than to
the subspaces spanned by the samples from other classes. This can enhance the
performance of subspace-based classifiers, such as Sparse-Representation-based
Classification (SRC) [21], which essentially finds a low-dimensional subspace
that is closest to the test sample and uses the labels in that subspace to decide
a label for the particular test sample. Given a batch of samples, we formulate a
novel structured loss function that encourages the distance between each sam-
ple and the subspace spanned by the same-class samples (within the batch)
to be lower than the distances between the sample and the subspaces spanned
by other classes (present in the batch). We then present a two-step alternating
optimization algorithm to minimize the loss function in a way that is compatible
with back-propagation. This allows the function to be minimized with Stochas-
tic Gradient Descent (SGD)-based algorithms that are typically used to train
deep networks [22,23]. At the end of training, the learned embedding is used to
project the image sets and the Mean-Sequence SRC (MS-SRC) [10] is used to
classify the test image sets.

The rest of this paper is organized as follows. A brief review of related work is
presented in Sect. 2. We then describe in Sect. 3 the structured loss function and
the optimization procedure of the NSFE algorithm. We experimentally evaluate
NSFE in Sect. 4 where the results show the superiority of NSFE compared to sev-
eral existing image set classification methods. We conclude the paper in Sect. 5.

2 Related Work

The image set classification problem has been formulated in various ways. One
popular formulation is to compute the distance, either over a vector space or
a manifold, between the probe set and each gallery set and then associate the
probe with the class of its nearest gallery set. These include discriminative [2,5,8,
16,18,19,24,25] and non-discriminative methods [1,3,4,7,11,12]. There are also
other formulations that do not rely on nearest neighbor-based classification such
as the binary SVM reverse-training approach of [15], the neural network-based
methods [14,17], linear representation/coding methods [10,26] and clustering
methods [6,13]. In what follows, we give a brief description of these methods.

Vector Space Methods: Several methods treat the whole image set as a sub-
space and measure the distance between subspaces by finding the pair of closest
points inside them. Such methods include Affine (or Convex) Hull Image Set Dis-
tance (AHISD/CHISD) [3], Sparse-Approximated Nearest Points (SANP) [4],
and Dual Linear Regression-based Classification (DLRC) [12]. The Sparse-
Approximated Nearest Subspaces (SANS) [11] applies sparse coding to subspace-
cluster each gallery image set and measures the distance from the gallery set to
the probe set by finding the average distance of each cluster in the gallery set to
its nearest subspace approximation from the probe set. Dictionary-based Face
Recognition from Videos (DFRV) [7] learns a dictionary consisting of K sub-
dictionaries for each gallery image set after clustering its images by appearance
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into K groups. The probe set is associated with the class whose gallery dictio-
naries result in the lowest reconstruction error for the majority of the images in
the probe set. Simultaneous Feature and Dictionary Learning (SFDL) [16] dis-
criminatively learns dictionaries for the different classes in addition to learning a
linear projection W to improve the separation between the instances of the dif-
ferent classes. The classification algorithm is identical to DFRV except that the
probe images are first transformed using W. Hierarchical subspace clustering of
the combined set of faces of the gallery and the probe has been proposed using
either sparse codes [6] or Grassmann manifolds [13]. The probe set is associated
with the class with the most similar distribution of elements over the clusters to
the distribution of the probe elements.

Manifold Methods: Another approach is to represent the image sets as man-
ifolds (or points on a manifold) and use the distance d(P,G) between the probe
P and each gallery set G to label P. Methods based on this general idea differ
on how they represent an image set as/on a manifold and the way the dis-
tance between the sets is measured. Examples of methods that represent each
image set as a separate manifold include the Manifold-Manifold Distance (MMD)
method [1] and the Manifold Discriminant Analysis (MDA) method [2]. Other
manifold methods have represented the subspace approximately spanning an
image set as a point on a Grassmann manifold (as opposed to representing each
set as a separate manifold). Kernels for Grassmann manifolds are then utilized to
perform Discriminant Analysis (DA) [24] or graph-based DA [5] and the distances
in the embedded space are used for classification. Kernel dictionary learning and
sparse coding on Grassmann manifold have also been considered for image set
classification [9]. Instead of using kernels, Projection Metric Learning (PML) [25]
discriminatively learns a mapping into another, lower dimensional Grassmann
manifold where the projection distance between a pair of points is used for near-
est neighbor classification. Covariance Discriminant Learning (CDL) [8] treats
the covariance of the image set as a point on a Riemannian manifold that is
mapped to a Euclidean space via the logarithmic map. Partial Least Squares
(PLS) is then used to learn the mapping from the gallery points to their labels
and the resulting mapping is used to classify the probe point. Another related
method learns a discriminative, geometry-preserving Mahalanobis metric over
the logarithm of the mean-modified covariance matrices and is shown to out-
perform CDL in [18]. Discriminant Analysis on the Riemannian manifold of
Gaussian distributions (DARG) models each image set as a Mixture of Gaus-
sians (MoG) and then runs kernel discriminant analysis based on a combined
kernel for Gaussians [19]. Kernel Density Estimation (KDE) has also been used
to model image sets as probability density functions in [27] where kernel Fisher
discriminant analysis is subsequently applied on the statistical manifold.

Neural Network Methods: With recent successes of deep networks in many
vision tasks, different neural network architectures have been recently proposed
for image set classification. Two such examples are the generative, per-class five-
layer model proposed in [28] and the discriminative, per-class two-layer model
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Fig. 2. An illustration of images and class-specific subspaces before and after the
embedding. NSFE aims to improve the discriminative subspace arrangement of the
data such that the images of a particular class c lie closer to the subspace Xc = f(Ac)
spanned by that class than any subspace Xs = f(As) spanned by any other class s.

proposed in [17]. As we describe in Sects. 3.3 and 4, the two example embeddings
we train with NSFE in this work are also based on neural networks.

Linear Representation (Coding) Methods: An effective approach, proposed
in [21], for utilizing the subspace assumption for recognizing a given feature
vector is to first compute its linear representation with respect to the gallery
samples (i.e. project it on the gallery) then associate it with the class contributing
the most to the representation. SRC [21], proposed for recognition of still face
images, adopts this idea and casts the recognition problem as that of solving
a convex Lasso optimization for the representation of the probe instance with
respect to the gallery. It was then shown that replacing the l1 regularization term
with an l2 term can yield similar performance with less processing time [29],
resulting in the CRC method. Methods utilizing SRC and CRC for image set
classification such as the Mean Sequence SRC (MS-SRC) [10] and Image Set
CRC (ISCRC) [30] have also been developed.

Our goal in this paper is to learn nonlinear (or deep) features that can
improve the performance of subspace-based classifiers like SRC. While some
methods have been proposed previously with similar goals [16,31–33], they have
been restricted to learning linear embeddings. In contrast, the proposed learning
algorithm can be used with any embedding x = f(a|Θ), including deep ones, as
long as the parameter subgradients ∂f/∂Θ are defined.

3 Nonlinear Subspace Feature Enhancement (NSFE)

We assume that there is a mapping f : A → R
m that maps every input image a

from the vector space A (i.e. the space of raw intensity images) to x = f(a) in
some feature space R

m. We further assume that the mapping f is parameterized
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by a real tensor Θ and that the parameter subgradients of f : ∂f/∂Θ are
defined. For example, the mapping f could be a neural network and Θ could be
the network weights. Assuming that during training labeled samples arrive in
batches, our goal is to learn a value of the parameter tensor Θ that would make
an embedded sample x from a particular class c closer to the subspace spanned
by batch samples from c than to any subspaces spanned by batch samples from
any other class s �= c.

Definitions and Notations: In the following discussion, we use B to denote
the current batch of samples and |B| to denote the number of samples in the
batch. Furthermore, we use nc to denote the number of samples from class c
present in batch B while Xc =

[
x1, . . . ,xnc

] ∈ R
m×nc is the matrix (dictionary)

containing these samples along its columns. We use C(B) to denote the set of
class indices present in B. In all our experiments, we sample each batch to contain
nearly the same number of samples nc from each class (the maximum difference
between nc and ns is 1 for c, s ∈ C(B)). The sampling procedure ignores the
boundaries between sets belonging to the same class and thus the subset drawn
from a given class can contain samples from different sets within that class. In
subsequent derivations, we assume nc > 1 for all c ∈ C(B) although in our
experiments we have 6 ≤ nc ≤ 20. We also assume that the ith coordinate of a
vector z is given by z(i), the (i, j)th entry of a matrix J is given by J(i,j), and
the ith column is given by coli(J).

3.1 Structured Loss Function

Before describing the loss function to be minimized, we need to formulate some
measures of distance between a sample and different subspaces. Assuming the
ith sample xi is associated with class c (i.e. c(i) = c), we let zi,c denote the
linear representation of xi with respect to the dictionary Xc (which is formed
by the batch samples of class c present in B). The representation zi,c is obtained
by solving the optimization problem

zi,c = argmin
z∈Rnc

‖xi − Xcz‖22 + λ ‖z‖22 , s.t. z(i) = 0 (1)

where we use l2-norm instead of the sparsity inducing l1-norm for efficiency
purposes and also because nc is typically small. It can be shown that

zi,c = ui,c − wicoli(J−1
c ) (2)

where Jc = XT
c Xc + λI, ui,c = J−1

c XT
c zi,c, and wi = u

(i)
i,c/J

−1(i,i)
c . Similarly,

we define the linear representation zi,s of the sample xi with respect to the
dictionary Xs formed by the batch samples of a different class s �= c = c(i) as a
solution to the following optimization problem

zi,s = argmin
z∈Rns

‖xi − Xsz‖22 + λ ‖z‖22 (3)
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which has the closed form
zi,s = J−1

s XT
s xi (4)

Our goal is to learn the embedding f such that we have

‖xi − Xczi,c‖22 < ‖xi − Xszi,s‖22 (5)

for all valid choices i , c, and s (Fig. 2). If such a discriminative subspace prop-
erty is achieved for all choices of c, s,Xc, and Xs, a test sample f(q) can be
reconstructed using the samples of the true class more accurately compared to
the samples of other classes. Applying a subspace classifier (like SRC) is thus
more likely to associate f(q) with its true class.

The proposed structured loss function, which we call Large-Margin Subspace
Loss (LMSL), considers for every valid sample-to-subspaces-based triplet within
the batch how well (5) is met. More specifically, LMSL is defined as

L =
1
T

∑

c∈C(B)

|B|∑

i=1,
c(i)=c

∑

s∈C(B),
s �=c

[
‖xi − Xczi,c‖22 + m

− ‖xi − Xszi,s‖22
]
+ (6)

where m is the margin and the above sum is normalized by the number of
terms/triplets T included the sum, which is T = |B| (|C(B)| − 1). It should be
noted that the actual objective function being minimized is the sum of L and
any other parameter regularization on Θ. LMSL can be thought of a kind of
sample-to-subspace triplet loss [34,35]. The loss function treats as an anchor
every sample xi in the batch B. For each anchor xi, LMSL considers as its
corresponding positive point the class projection Xczi,c and as a negative point
its projection on one of the other-class subspaces Xszi,s. Thus, we have a total
of |C(B)| − 1 triplets that have the sample xi as the anchor.

3.2 Learning Algorithm

The LMSL function L can be difficult to optimize jointly with respect to both
the sparse codes and Θ. Accordingly, we follow an alternating optimization app-
roach. In this approach, we evaluate the sparse codes of all batch anchors using
Eqs. (2, 4). Then, we treat the sparse codes as constants and use the chain rule
and back-propagation to compute the parameter gradients of the loss function
∂L
∂θk

, which are necessary for updating Θ (see Fig. 3):

∂L

∂θk
=

|B|∑

b=1

(
∂L

∂xb
)T ∂xb

∂θk
(7)

If we assume xb is associated with class s, b is its index within the batch, and r
is its column index within Xs, the left factor ∂L

∂xb
in the above inner product is

given by:
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LMSL
Loss

Least-Squares 
Coding

(Nonlinear) 
Embedding f

Fig. 3. An illustration of the alternating learning algorithm. After embedding the sam-
ples in the forward pass, the sparse codes zb,c are computed ∀(b, c) and substituted
into the loss function. The sparse codes are held constant, the loss function is evalu-
ated, and the derivatives of loss function with respect to xb, ∀b are back-propagated.
The chain rule (7) is then applied to evaluate the parameter subgradients ∂L/∂θk of
the loss function, which can then be used to update the parameters by an SGD-like
algorithm.

∂L

∂xb
=

2
T

∑

c∈C(B),c �=s

{Δb,c (xb − Xszb,s)

− Δj,c

|B|∑

j=1,c(j)=s,j �=b

z
(r)
j,s (xj − Xszj,s)}

+
2
T

|B|∑

i=1,c(i) �=s

Δi,sz
(r)
i,s (xi − Xszi,s) (8)

where Δi,s is a binary variable that is 1 iff the loss term corresponding to anchor
sample i and negative class s is non-zero. The loss gradient in (8) is computed
for each sample xb in the batch and back-propagated for computing parameter
updates. A summary of the learning algorithm of NSFE is given in Algorithm 1.

Input: A batch of samples
[
a1, ..., a|B|

]
and their labels.

1 Group batch samples by class.

2 Embed and l2-normalize each sample in the batch: xb = f(ab|Θt).

3 For each class c ∈ C(B), use Cholesky-Factorization to invert Jc = XT
c Xc + λI.

4 For each class c ∈ C(B), use Eq. (2) to compute the code vector of its batch samples
with respect to Xc.

5 For each class c ∈ C(B), use Eq. (4) to compute the code vector of other-class samples
in the batch with respect to Xc.

6 Compute the LMSL loss L using Eq. (6). Compute and back-propagate the LMSL

gradient ∂ L
∂ x b

, for b = 1, . . . , |B|.
7 Use the chain rule and Eq. (7) to compute the loss gradients ∂ L

∂ θk
of the parameters

which can then be used to update these parameters.

Algorithm 1. NSFE Learning Algorithm Summary
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3.3 Concrete Embeddings

Our method can work with any vector-space inputs and can easily utilize any
nonlinear embeddings for which the parameter subgradients of f : ∂f/∂Θ are
defined, including feed-forward neural networks. We test the proposed method
with two types of vector-space inputs: raw intensity images and the hand-crafted
Log-Euclidean Grid of Region Covariance Matrices (LE-GRCM) features pro-
posed in [33]. With intensity images as inputs, we use the 32-layer deep fully
convolutional residual network proposed in [36] for the CIFAR-10 dataset. The
network has the following configuration:

(a) An initial 3 × 3 × 16 convolutional layer. The notation specifies 16 filters,
each has a weight kernel of dimensions 3 × 3. The stride is always 1 in both
directions.

(b) A first block of ten 3×3×16 convolutional layers, with residual connections
made every two layers. The last layer is followed by a 2 × 2 average pooling
with a stride of 2 in both directions.

(c) A second block of ten 3 × 3 × 32 convolutional layers. Residual connections
and a final average pooling are defined for this block.

(d) A third block of ten 3 × 3 × 64 convolutional layers. It uses residual connec-
tions in a similar fashion but does not have a subsequent pooling layer.

(e) A final 1×1×10 convolutional layer that is not followed by any nonlinearities
or batch normalization [37]. The output of that layer is reshaped as a vector
and l2-normalized to produce the final embedded feature vector.

The final layer replaces the global average pooling operation used in [36] in an
attempt to retain spatial information in the computed features. Unless other-
wise stated, we add batch normalization and ReLU nonlinearities according to
the architecture in [36]. The total number of parameters in this architecture is
463,856, which is less than 0.5 million.

Since an LE-GRCM vector input is not a 2D image, we cannot use a conven-
tional CNN for the embedding to process such hand-crafted features. Instead,
we use a very basic, fully-connected 2-layer network with the following architec-
ture: FC-3600 → ReLU → FC-406 → l2-normalization, where FC-k is a linear
fully-connected layer with k units.

3.4 Classification

After training, the learned embedding f is used to map the training data then
we use the Online Dictionary Learning (ODL) algorithm described in [38] to
compute a dictionary Dc for each class c. Given a test set, we use the learned
embedding f to map it and we follow the MS-SRC approach [10] by computing
the mean vector ȳ of the embedded test set and then using SRC to find a label
for ȳ. The details of ODL and MS-SRC algorithms can be found in [38] and [10],
respectively.
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It is worth noting that ODL is an unsupervised algorithm and enhanced
performance can be further achieved by using any of the discriminative dictio-
nary learning algorithms instead of ODL. However, we only use ODL in the
next section to objectively and more precisely evaluate the effect of NSFE on
accuracy.

4 Experiments

We experimentally compare the performance of NSFE against several existing
algorithms for image-set classification. The compared methods include Affine
Hull-based Image Set Distance (AHISD) [3], its convex variant (CHISD) [3],
Sparse-Approximated Nearest Points (SANP) [4], Dictionary-based Face Recog-
nition from Videos (DFRV) [7], Mean Sequence Sparse Representation-based
Classification (MS-SRC) [10], Set to Set Distance Metric Learning (SSDML) [26],
Deep Reconstruction Models (DRM) [14], Covariance Discriminative Learning
(CDL) [8], Log-Euclidean Metric Learning (LEML) [18], and the shallow sub-
space Feature Learning+SRC (FL+SRC) approach of [33] both with intensity
images as inputs (FL+SRC) as well as LE-GRCM features (LE-FL+SRC). We
show the results of our method with both intensity features as inputs (NSFE)
and LE-GRCM features (LE-NSFE). For comparability, the results of other Log-
Euclidean methods (i.e. CDL and LEML) are obtained using LE-GRCM features.

In all experiments, each method is given a set of labeled image sets for train-
ing and is required to classify (or more specifically identify) a number of test
image sets. For performance comparison, we use the classification accuracy (i.e.
recognition rate) as a metric by measuring the percentage of test image sets that
are correctly classified.

For existing methods, we have used the source code provided by the original
authors and set the parameters according to the recommendations made in their
respective papers.

NSFE Parameter Settings: In all experiments, we use SGD with momentum
to update the weights of the embedding network in each iteration for a total of
50 K iterations. The momentum is set to 0.9 and we use a learning rate schedule
of 0.1 for the first 20 K iterations then we divide it by 10 for each subsequent 10 K
iterations. For the 2-layer fully-connected network, we train for 20 K iterations
with a learning rate of 0.01 that we decrease to 0.001 after 10 K iterations. We
use a batch of size 128. We also set the representation regularization parameter
λ of NSFE to 0.01, the margin m = 0.5, and the desired number of atoms in
each class-specific dictionary computed by ODL to 50.

To guarantee a fair comparison with other methods and to accurately mea-
sure the ability of our method to learn effective features, we do not perform any
pre-training on any external data and we initialize the weights of our embeddings
randomly.
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YTC YTF MobFaces

Fig. 4. Sample face pairs from YTC, YTF and MobFaces. Each pair of faces in each
column belong to the same subject. YTC and YTF photos reveal large intra-class
appearance variations and low resolution. MobFaces photos are relatively frontal but
they reveal some challenges such as blur and intra-class variations in illumination and
context due to the change in sessions.

The datasets used in our experiments are described below. Figure 4 shows
examples from each dataset.

4.1 YouTube Celebrities (YTC)

The YTC dataset contains 1,910 YouTube-downloaded videos of 47 subjects [39].
For a given subject, the videos are short segments clipped from three longer, par-
ent videos downloaded from YouTube. YTC has been built to be very challenging
for face tracking and recognition by choosing very low resolution videos with wild
variations in pose, scale, hair style, make-up, illumination, motion and number
of people per frame.

We perform ten-fold cross-validation experiment. Each fold contains nine
distinct videos for each subject: three for training and six for testing, randomly
drawn in the same manner of previous works [28,33]. The 9 × 47 = 423 videos
in each fold are randomly selected from the complete dataset while minimizing
the overlap between different folds as much as possible.

Feature Extraction: We use the Viola-Jones (VJ) detector [40] as in prior
works [18,33] to locate the faces in each video. Then we use the eye locations
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detected using the method of [41] to align the subject’s face to a standard, 30×36
pixel frame. The intensities of each frame are histogram equalized and we use
the faces detected in each video to define the corresponding image set. To test
the robustness of the compared methods to outliers, we have not cleaned any of
the bad detections or misaligned faces.

4.2 YouTube Faces (YTF)

The YTF dataset contains 3,425 videos of 1,595 subjects with diverse ethnici-
ties [42]. Similar to YTC, YTF videos are downloaded from YouTube and are
very challenging for face recognition. Since our method is used for identification
rather verification, we adopt the experimental protocol of [33] which is more suit-
able for testing identification: We use those subjects with four or more videos
available. This results in 226 subjects. After randomly dropping one subject, we
randomly split the remaining 225 subjects into five mutually exclusive groups,
with 45 subjects each. We run the experiment on each group where we use the
first three videos of each subject as gallery sets and the remaining videos for test-
ing. Since the dataset provides aligned face images, we extract intensity features
from each image by cropping the central 100 × 100 box, resizing it to 30 × 36,
and histogram-equalizing it.

4.3 Mobile Faces (MobFaces)

The MobFaces dataset has 750 videos of 50 subjects recorded by a smart-
phone’s front camera during usage [43]. Each subject provides 3 sessions × 5
videos/session (one enrollment + four tasks) where each session is taken under
a different illumination and/or in a different place. The dataset includes some
mobile camera-specific such as wild variations in illumination and context due
to the mobility of the device. We compute the features as for the YTC dataset.
We adopt the two evaluation protocols suggested by [43] by dividing the task
videos into ten-second long clips and treating each clip as a separate query set.
In the first protocol (MobFaces-I), training is done using only the 50 enrollment
videos from one session and testing is performed on the ten-second long task
video clips from the two other sessions. In the second protocol (MobFaces-II),
training is done on the 100 enrollment videos of two sessions and testing is done
on the task video clips of the remaining session. Results are reported for each
of the six scenarios possible with these protocols. The clipping of the 600 task
videos results in 1065 ten-second clips for the first session, 587 the second, and
666 for the third. Note that training sets under these protocols contain relatively
very few images with limited appearance (e.g . some classes have a single image
set with nine almost-identical images only available for training) which makes it
challenging.
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Table 1. The mean recognition rates obtained with the compared methods on YTC
and YTF.

Methods YTC YTF

AHISD 57.27 17.18

CHISD 64.79 32.99

SANP 66.99 31.62

DFRV 66.70 36.77

SSDML 69.22 34.02

DRM 70.35 43.99

MS-SRC 74.68 45.02

FL+SRC 75.71 45.36

NSFE (ours) *78.23 54.91

Methods with LE-GRM input

CDL 67.62 41.92

LEML 73.26 48.45

LE-FL+SRC 76.28 53.26

LE-NSFE (ours) 76.42 *56.66

4.4 Results

Table 1 shows the mean recognition rate of the compared methods for the YTC
and YTF datasets where we group the methods by the type of input features
(raw images vs LE-GRCM). For each group, we highlight in bold the highest
performance under each setting and we place an asterisk ∗ next to the sin-
gle highest overall performance for that setting. For both datasets and types
of input features, the proposed method, NSFE/LE-NSFE, achieves the highest
mean recognition rate. Table 2 shows the recognition rates for the six different
splits for the MobFaces dataset where we use the same grouping and highlight-
ing adopted by Table 1. The training image sets of this dataset contain very
limited visual variations (namely once short video per subject for each setting in
MobFaces-I and two such videos in MobFaces-II) while the test image sets are
captured under ambient conditions different from those of training. Meanwhile,
our method (NSFE/LE-NSFE) ranks among the top two best performing meth-
ods under each individual setting and it is the best performing on average for
each of the two protocols, with a significant margin on MobFaces-II due to the
availability of more images and visual variations during training in that protocol.
This shows that our method achieves relatively higher gain in performance as
more deta and variations become available for training.
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Table 2. The recognition rates obtained on the MobFaces dataset under the different
protocols. The setting (1 → {2, 3}) involves training on session 1 (i.e. the lit session)
and testing on sessions 2 and 3 (i.e. the unlit and day-lit sessions). The other five
settings are defined in a similar manner. Each ‘avg’ column contains the average of the
rates obtained under the three settings to its left. Since each session has a different
number of test video clips, the average column weighs the rate of each setting by its
number of test sets.

Methods MobFaces-I

1 → {2, 3} 2 → {1, 3} 3 → {1, 2} Avg

AHISD 15.00 31.14 29.30 26.12

CHISD 10.61 26.57 25.73 21.96

SANP 9.34 27.09 26.15 21.96

DFRV 19.39 32.29 30.87 28.30

SSDML 10.53 28.89 26.15 22.95

DRM 33.28 38.94 37.95 37.06

MS-SRC 32.40 46.56 42.49 41.29

FL+SRC 32.88 46.97 42.25 41.48

NSFE (ours) 47.01 46.27 46.49 46.55

Methods with LE-GRM input

CDL 41.66 36.78 42.68 40.21

LEML 42.70 45.93 44.07 44.39

LE-FL+SRC 48.20 *56.21 54.90 53.58

LE-NSFE (ours) *49.08 49.68 *61.38 *53.69

Methods MobFaces-II

{2, 3} → 1 {1, 3} → 2 {1, 2} → 3 Avg

AHISD 24.41 51.28 52.85 39.39

CHISD 23.29 44.97 47.60 35.76

SANP 20.38 48.89 45.95 34.94

DFRV 32.11 50.60 52.40 42.62

SSDML 21.31 50.09 54.95 38.27

DRM 53.62 70.53 69.37 62.42

MS-SRC 43.29 71.89 75.53 59.79

FL+SRC 44.98 72.40 76.58 61.00

NSFE (ours) 52.11 *81.43 83.63 68.59

Methods with LE-GRM input

CDL 63.57 67.12 65.32 64.97

LEML 49.39 66.95 74.62 61.09

LE-FL+SRC 62.72 75.64 86.19 72.74

LE-NSFE (ours) *68.92 76.15 *87.84 *76.19
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5 Conclusion

We presented NSFE, an approach for discriminatively learning a nonlinear
embedding that can improve the subspace structured representation of image
sets, and thus improve the performance of subspace-based classifiers such as
MS-SRC. Since the proposed structured loss function LMSL is minimized in an
online fashion, the proposed approach can be used to train existing feed-forward
architectures via back-propagation. The minimization algorithm can also uti-
lize the capabilities of modern GPUs, which provide APIs for solving batches of
small linear systems of equations. In fact, all the linear systems solved in our
batch processing algorithm are small, ranging from 6 × 6 to 22 × 22 systems of
equations, depending on the number of samples from a certain class available
in the batch. Consequently, we were able to train and test many copies of our
model for the different experiments described above without facing any unusual
delays.
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