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Abstract. Most state-of-the-art semi-supervised video object segmen-
tation methods rely on a pixel-accurate mask of a target object provided
for the first frame of a video. However, obtaining a detailed segmenta-
tion mask is expensive and time-consuming. In this work we explore an
alternative way of identifying a target object, namely by employing lan-
guage referring expressions. Besides being a more practical and natural
way of pointing out a target object, using language specifications can
help to avoid drift as well as make the system more robust to complex
dynamics and appearance variations. Leveraging recent advances of lan-
guage grounding models designed for images, we propose an approach to
extend them to video data, ensuring temporally coherent predictions. To
evaluate our approach we augment the popular video object segmenta-
tion benchmarks, DAVIS16 and DAVIS17 with language descriptions of
target objects. We show that our language-supervised approach performs
on par with the methods which have access to a pixel-level mask of the
target object on DAVIS16 and is competitive to methods using scribbles
on the challenging DAVIS17 dataset.

Fig. 1. Examples of the proposed approach. Classical semi-supervised video object
segmentation relies on an expensive pixel-level mask annotation of a target object in
the first frame of a video. We explore a more natural and more practical way of pointing
out a target object by providing a language referring expression.
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1 Introduction

Video object segmentation has recently witnessed growing interest [3,6,15,37].
Segmenting objects at pixel level provides a finer understanding of video and is
relevant for many applications, e.g. augmented reality, video editing, and roto-
scoping.

Ideally, one would like to obtain a pixel-accurate segmentation of objects in
video with no human input during test time. However, the current state-of-the-
art unsupervised video object segmentation methods [17,40,47] have troubles
segmenting the target objects in videos containing multiple objects and clut-
tered backgrounds without any guidance from the user. Hence, many recent
works [3,15,43] employ a semi-supervised approach, where a pixel-level mask of
the target object is manually annotated in the first frame and the task is to
accurately segment the object in successive frames. Although this setting has
proven to be successful, it can be prohibitive for many applications. It is tedious
and time-consuming for the user to provide a pixel-accurate segmentation and
usually takes more than a minute to annotate a single instance ([24] reports 79s
for polygon annotations, precisely delineating an object would take even more).
To make video object segmentation more applicable in practice, instead of costly
pixel-level masks [2,29,37] propose to employ point clicks or scribbles to specify
the target object in the first frame. This is much faster and takes an annotator
on average 7.5s to label an object with point clicks [29] and 10s with scribbles
[23]. However, on small touchscreen devices, such as tablets or phones, provid-
ing precise clicks or drawing scribbles using fingers could be cumbersome and
inconvenient for the user.

To overcome these limitations we propose a new task - segmenting objects
in video using language referring expressions - which is a more natural way of
human-computer interaction. It is much easier for a user to say: “Segment the
man in a red sweatshirt performing breakdance” (see Fig. 1), than to provide a
tedious pixel-level segmentation mask or struggle with drawing a scribble which
does not straddle the object boundary. Moreover, employing language specifi-
cations can make the system more robust to background clutter, help to avoid
drift and better adapt to the complex dynamics inherent to videos, while not
over-fitting to a particular view in the first frame (see Table 4).

We aim to investigate the capabilities and limitations of existing techniques
on the proposed task and explore how far one can go while leveraging the
advances in image-level language grounding and pixel-level segmentation in
videos. We start by analyzing the performance of the state-of-the-art language
grounding models [49,51] for localization of objects in videos via bounding boxes.
We discover that they suffer from a number of issues, predicting temporally
inconsistent and jittery boxes, and show a way to enhance their predictions
by enforcing temporal coherency (see Fig. 3). Next we propose a convnet-based
framework that utilizes referring expressions for video object segmentation task,
where the output of the grounding model (bounding box) is used as a guidance
for pixel-wise segmentation of the object. We also show that video object seg-
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mentation using the mask annotation on the first frame can be further improved
by using language supervision, highlighting the complementarity of both modal-
ities.

To evaluate the proposed approach we extend the popular benchmarks for
segmenting single and multiple objects in videos, DAVIS16 [34] and DAVIS17

[38], with language descriptions of the target objects. We collect the annotations
using two different settings, asking the annotators to provide a description of the
target object based on the first frame only as well as on the full video. Future
work may choose which setting they prefer to use. On average each video has
been annotated with 7.5 referring expressions and it takes the annotator around
5s to provide a referring expression for a target object.

Our language-supervised approach performs on par with semi-supervised
methods which have access to the pixel-accurate object mask on DAVIS16 and
shows comparable results to the techniques that employ scribbles on the chal-
lenging DAVIS17 dataset.

In summary, our contributions are the following. We present a new task
of segmenting objects in video using natural language referring expressions for
which we augment two well-known video segmentation benchmarks with textual
descriptions of target objects. We conduct an extensive analysis of the perfor-
mance of the state-of-the-art language grounding models on video data and pro-
pose a way to improve their temporal coherency. To the best of our knowledge we
are the first to perform an analysis of transferability of image-based grounding
models to video. We show that high quality video object segmentation results can
be obtained by employing language referring expressions, allowing a more natu-
ral and practical human-computer interaction. Moreover, we show that language
descriptions are complementary to visual forms of supervision, such as masks,
and can be exploited as an additional source of guidance for object segmenta-
tion. Thus, while proposing the new task and accompanying dataset, our work
contributes the necessary benchmark analysis, a very competitive baseline and
valuable insights for future work. We hope our findings would further promote
the research in the field of video object segmentation via language expressions
and help to discover better techniques that can be used in realistic scenarios.

2 Related Work

2.1 Grounding Natural Language Expressions

There has been an increasing interest in the task of grounding natural language
expressions over the last few years [21,25,50]. We group the existing works by
the type of visual domain: images and video.

Image Domain. Grounding natural language expressions is a task of localizing
a given expression in an image with a bounding box [31,51] or a segmentation
mask [21,25]. Referring expression comprehension is a closely related task, where
the goal is to localize the non-ambiguous referring expression. Most existing
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approaches rely on external bounding box proposals which are scored to deter-
mine the top scoring box as the correct region [28,49]. A few recent works explore
methods of inferring object regions by proposal generation network [4] or efficient
subwindow search [48]. Multiple existing approaches model relationships between
objects present in the scene [14,32]. In this work we choose two state-of-the-art
grounding models for experimentation and analysis [49,51]. DBNet [51] frames
grounding as a classification task, where an expression and an image region serve
as input and a binary classification decision is an output. A key component of
this approach is utilization of negative expressions and image regions to ensure
discriminative training. DBNet currently leads on Visual Genome [20]. MattNet
[49] is a modular network which “softly” decomposes referring expressions in
three parts: subject, location, and relationship, each of which is processed by a
different visual module. This allows MattNet to process referring expressions of
general forms, as each module can be “enabled” or “disabled” depending on the
expression. MattNet achieves top performance on RefCOCO(g/+) [31,50] both
in terms of bounding box localization and pixel-wise segmentation accuracy.

Video Domain. The progress made in image-level natural language grounding
leads to an increasing interest in application to video. The recent work of [22]
studies object tracking in video using language expressions. They introduce a
dynamic convolutional layer, where a language query is used to predict visual
convolutional filters. [1] addresses object tracking in video with the language
descriptions and human gaze as input. Our work falls in the same line of research,
as we are exploring natural language as input for video object segmentation.
To the best of our knowledge, this is the first work to apply natural language
to this task. A concurrent work by [10] has addressed a task of actor/action
segmentation in video based on sentence input. Their work focuses on seven
classes of actors (adult, baby, etc.) and mostly action-oriented descriptions. In
contrast, we consider arbitrary objects and unconstrained referring expressions.

2.2 Video Object Segmentation

Video object segmentation has witnessed considerable progress [3,19,33,40,41,
43]. In the following, we group the related work into unsupervised and semi-
supervised.

Unsupervised Methods. Unsupervised methods assume no human input on
the video during test time. They aim to group pixels consistent in both appear-
ance and motion and extract the most salient spatio-temporal object tube. Sev-
eral techniques exploit object proposals [19,47], saliency [9] and optical flow [33].
Convnet-based approaches [6,17,40] cast video object segmentation as a fore-
ground/background classification problem and feed to the network both appear-
ance and motion cues. Because these methods do not have any knowledge of the
target object, they have difficulties in videos with multiple moving and dominant
objects and cluttered backgrounds.

Semi-supervised Methods. Semi-supervised methods assume human input
for the first frame, either by providing a pixel-accurate mask [3,41], clicks [29]
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Fig. 2. System overview. We first localize the target object via grounding model using
the given referring expression and enforce temporal consistency of bounding boxes
across frames. Next we apply a segmentation convnet to recover detailed object masks.

or scribbles [37], and then propagate the information to the successive frames.
Existing approaches focus on leveraging superpixels [46], constructing graphi-
cal models [41], utilizing object proposals [36] or employing optical flow and
long-term trajectories [45]. Lately, convnets have been considered for the task
[3,35,43]. These methods usually build the architecture upon the semantic seg-
mentation networks [27] and process each frame of the video individually. [3]
proposes to fine-tune a pre-trained generic object segmentation network on the
first frame mask of the test video to make it sensitive to the target object. [35]
employs a similar strategy, but also provides a temporal context by feeding the
previous frame mask to the network. Several methods extend the work of [3]
by incorporating the semantic information [30] or by integrating online adapta-
tion [43]. [15] proposes to employ a recurrent network to exploit the long-term
temporal information.

The above methods employ a pixel-level mask on the first frame. However,
for many applications, particularly on small touchscreen devices, it can be pro-
hibitive to provide a pixel-accurate segmentation. Hence, there has been a grow-
ing interest to integrate cheaper forms of supervision, such as point clicks [2,29]
or scribbles [37], into convnet-based techniques. In spirit with these approaches,
we aim to reduce the annotation effort on the first frame by using language refer-
ring expressions to specify the object. Our approach also builds upon convnets
and exploits both linguistic and visual modalities.

3 Method

In this section we provide an overview of the proposed approach. Given a video
V = {f1, . . . , fN} with N frames and a textual query of the target object Q, our
aim is to obtain a pixel-level segmentation mask of the target object in every
frame that it appears.

We leverage recent advances in grounding referring expressions in images
[49,51] and pixel-level segmentation in videos [17,35]. Our method consists of two
main steps (see Fig. 2). Using as input the textual query Q provided by the user,
we first generate target object bounding box proposals for every frame of the
video by exploiting referring expression grounding models, designed for images
only. Applying these models off-the-shelf results in temporally inconsistent and
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jittery box predictions (see Fig. 3). Therefore, to mitigate this issue and make
them more applicable for video data, we next employ temporal consistency, which
enforces bounding boxes to be coherent across frames. As a second step, using
as guidance the obtained box predictions of the target object on every frame of
the video we apply a convnet-based pixel-wise segmentation model to recover
detailed object masks in each frame.

3.1 Grounding Objects in Video by Referring Expressions

As discussed in Sect. 2, the task of natural language grounding is to automati-
cally localize a region described by a given language expression. It is typically
formulated as measuring the compatibility between a set of object proposals
O = {oi}M

i=1 and a given textual query Q. The grounding model provides as out-
put a set of matching scores S = {si}M

i=1 between a box proposal and a textual
query Q. The box proposal with the highest matching score is selected as the
predicted region.

We employ two state-of-the-art referring expression grounding models –
DBNet [51] and MattNet [49], to localize the object in each frame. Mask R-CNN
[12] bounding box proposals are exploited as an initial set of proposals for both
models, although originally DBNet has been designed to utilize EdgeBox pro-
posals [8]. However, using the grounding models designed for images and picking
the highest scoring proposal for each video frame lead to temporally incoherent
results. Even with simple textual queries for adjacent frames that from a human
perspective look very much alike, the referring model often outputs inconsistent
predictions (see Fig. 3). This indicates the inherent instability of the grounding
models trained on the image domain. To resolve this problem we propose to
re-rank the object proposals by exploiting temporal structure along with the
original matching scores given by a grounding model.

Temporal Consistency. The goal of the temporal smoothing step is to improve
temporal consistency and to reduce id-switches for target object predictions
across frames. Since objects tend to move smoothly through space and in time,
there should be little changes from frame to frame and the box proposals should
have high overlap between neighboring frames. By finding temporally coherent
tracks of an object that are spread-out in time, we can focus on the predictions
that consistently appear throughout the video and give less emphasis to objects
that appear for only a short period of time.

The grounding model provides the likeliness of each box proposal to be
the target object by outputting a matching score si. Then each box pro-
posal is re-ranked based on its overlap with the proposals in other frames,
the original objectness score given by [12] and its matching score from the
grounding model. Specifically, for each proposal we compute a new score:
ŝi = si ∗ (

∑M
j=1,j �=i rij ∗ dj ∗ sj/tij), where rij measures an intersection-over-

union ratio between box proposals i and j, tij denotes the temporal distance
between two proposals (tij = |fi − fj |) and dj is the original objectness score.
Then, in each frame we select the proposals with the highest new score. The new
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scoring rewards temporally coherent predictions which likely belong to the target
object and form a spatio-temporal tube. This step allows to improve temporal
coherence boosting grounding and video segmentation performance (see Table 1
in Sect. 5 and Table 5 in Sect. 6) while being computational efficient (takes only
a fraction of second).

3.2 Pixel-Level Video Object Segmentation

We next show how to output pixel-level object masks, exploiting the bounding
boxes from grounding as a guidance for the segmentation network. The boxes are
used as the input to the network to guide the network towards the target object,
providing its rough location and extent. The task of the network is to obtain
a pixel-level foreground/background segmentation mask using appearance and
motion cues.

Approach. We model pixel-level segmentation as a box refinement task. The
bounding box is transformed into a binary image (255 for the interior of the box,
0 for the background) and concatenated with the RGB channels of the input
image and optical flow magnitude, forming a 5-channel input for the network.
Thus we ask the network to learn to refine the provided boxes into accurate
masks. Fusing appearance and motion cues allows to better exploit video data
and handle better both static and moving objects.

We make one single pass over the video, applying the model per-frame. The
network does not keep a notion of the specific appearance of the object in con-
trast to [3,35], where the model is fine-tuned during the test time to learn the
appearance of the target object. Neither do we do an online adaptation as in
[43], where the model is updated on its previous predictions while processing
video frames. This makes the system more efficient during the inference time,
which is more suitable for real-world applications.

Similar to [35], we train the network on static images, employing the saliency
segmentation dataset [7] which contains a diverse set of objects. The bounding
box is obtained from the ground truth masks. To make the system robust during
test time to sloppy boxes from the grounding model, we augment the ground
truth box by randomly jittering its coordinates (uniformly, ±20% of the original
box width and height). We synthesize optical flow from static images by applying
affine transformations for both background and foreground object to simulate
the camera and object motion in the neighboring frames, as in [18]. This simple
strategy allows us to train on diverse set of static images, while exploiting motion
information during test time. We train the network on many triplets of RGB
images, synthesized flow magnitude images and loose boxes in order for the model
generalize well to different localization quality of boxes given by the grounding
model and different dynamics of the object.

During inference we use the state-of-the-art optical flow estimation method
Flow-Net2.0 [16]. We compute the optical flow magnitude by subtracting the
median motion for each frame and averaging the magnitude of the forward and
backward flow. The obtained image is further scaled to [0; 255] to maintain the
same range as RGB channels.
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Fig. 3. Qualitative results of language grounding with and w/o temporal consistency
on DAVIS17. The results are obtained using MattNet [49] trained on RefCOCO [50].

Network. As our network architecture we use ResNet-101 [13]. We adapt the
network to the segmentation task following the procedure of [27] and employing
atrous convolutions [5] with hybrid rates [44] within the last two blocks of ResNet
to enlarge the receptive field as well as to alleviate the “gridding” issue. After
the last block, we apply spatial pyramid pooling [5], which aggregates features at
multiple scales by applying atrous convolutions with different rates, and augment
it with the image-level features [26] to exploit better global context. The network
is trained using a standard cross-entropy loss (all pixels are equally weighted).
The final logits are upsampled to the ground truth resolution to preserve finer
details for back-propagation.

For network initialization we use a model pre-trained on ImageNet [13]. The
new layers are initialized using the “Xavier” strategy [11]. The network is trained
on MSRA [7] for segmentation. To avoid the domain shift we fine-tune the model
on the training sets of DAVIS16 [34] and DAVIS17 [38] respectively. We employ
SGD with a polynomial learning policy with initial learning rate of 0.001, crop
size of 513×513, random scale data augmentation (from 0.5 to 2.0) and left-right
flipping during training. The network is trained for 20k iterations on MSRA and
20k iterations on the training set of DAVIS16/DAVIS17. During inference we
employ test time augmentation as in [5].

Other Sources of Supervision. Additionally we consider variants of the pro-
posed model using different sources of supervision. Our approach is flexible and
can take advantage of the first frame mask annotation as well as language. We
describe how language can be used on top of the mask supervision, improving
the robustness of the system against occlusions and dynamic backgrounds (see
Sect. 6 for results).

Mask. Here we discuss a variant that uses only the first frame mask supervision
during test time. The network is initialized with the bounding box obtained from
the object mask in the 1st frame and for successive frames uses the prediction
from the preceding frame warped with the optical flow (as in [35]) to get the
input box for the next frame. Following [3,35] we fine-tune the model for 1k
iterations on an augmented set obtained from the first frame image and mask,
to learn the specific properties of the object.
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Fig. 4. Example of annotations provided for the 1st frame vs. the full video. Full video
annotations include descriptions of activities and overall are more complex.

Mask + Language. We show that using language supervision is complementary
to the first frame mask. Instead of relying on the preceding frame prediction as in
the previous paragraph, we use the bounding boxes obtained from the grounding
model after the temporal consistency step. We initialize with the ground truth
box in the first frame and fine-tune the network on the 1st frame.

4 Collecting Referring Expressions for Video

Our task is to localize and provide a pixel-level mask of an object on all video
frames given a language referring expression obtained either by looking at the
first frame only or the full video. To validate our approach we employ two popular
video object segmentation datasets, DAVIS16 [34] and DAVIS17 [38]. These two
datasets introduce various challenges, containing videos with single or multiple
salient objects, crowded scenes, similar looking instances, occlusions, camera
view changes, fast motion, etc.

DAVIS16 [34] consists of 30 training and 20 test videos of diverse object
categories with all frames annotated with pixel-level accuracy. Note that in this
dataset only a single object is annotated per video. For the multiple object video
segmentation task we consider DAVIS17. Compared to DAVIS16, this is a more
challenging dataset, with multiple objects annotated per video and more complex
scenes with more distractors, occlusions, smaller objects, and fine structures.
Overall, DAVIS17 consists of a training set with 60 videos, and a validation/test-
dev/test-challenge set with 30 sequences each.

As our goal is to segment objects in videos using language specifications, we
augment all objects annotated with mask labels in DAVIS16 and DAVIS17 with
non-ambigu-ous referring expressions. We follow the work of [31] and ask the
annotator to provide a language description of the object, which has a mask
annotation, by looking only at the first frame of the video. Then another anno-
tator is given the first frame and the corresponding description, and asked to
identify the referred object. If the annotator is unable to correctly identify the
object, the description is corrected to remove ambiguity and to specify the object
uniquely. We have collected two referring expressions per target object annotated
by non-computer vision experts (Annotator 1, 2).

However, by looking only at the 1st frame, the obtained referring expres-
sions may potentially be invalid for an entire video. (We actually quantified that
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Fig. 5. Video object segmentation qualitative results using only referring expressions
as supervision on DAVIS16 and DAVIS17, val sets. Frames sampled along the video.

only ∼15% of the collected descriptions become invalid over time and it does
not affect strongly segmentation results as temporal consistency step helps to
disambiguate some of such cases, see the supp. material for details.) Besides,
in many applications, such as video editing or video-based advertisement, the
user has access to a full video. Providing a language query which is valid for all
frames might decrease the editing time and result in more coherent predictions.
Thus, on DAVIS17 we asked the workers to provide a description of the object
by looking at the full video. We have collected one expression of the full video
type per target object. Future work may choose to use either setting.

The average length for the first frame/full video expressions is 5.5/6.3 words.
For DAVIS17 first frame annotations we notice that descriptions given by Anno-
tator 1 are longer than the ones by Annotator 2 (6.4 vs. 4.6 words). We evaluate
the effect of description length on the grounding performance in Sect. 5. Besides,
the expressions relevant to a full video mention verbs more often than the first
frame descriptions (44% vs. 25%). This is intuitive, as referring to an object
which changes its appearance and position over time may require mentioning
its actions. Adjectives are present in over 50% for all annotations. Most of them
refer to colors (over 70%), shapes and sizes (7%) and spatial/ordering words (6%
first frame vs. 13% full video expressions). The full video expressions also have a
higher number of adverbs and prepositions, and overall are more complex than
the ones provided for the first frame, see Fig. 4 for examples.

Overall augmented DAVIS16/17 contains ∼1.2k referring expressions for more
than 400 objects on 150 videos with ∼10k frames. We believe the collected data
will be of interest to segmentation as well as vision and language communi-
ties, providing an opportunity to explore language as alternative input for video
object segmentation.

5 Evaluation of Natural Language Grounding in Video

In this section we discuss the performance of natural language grounding models
on video data. We experiment with DBNet [51] and MattNet [50]. DBNet is
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Table 1. Comparison of the DBNet [51] and MattNet [49] models on DAVIS16 training
set and DAVIS17 val set. Δ(A1,A2) denotes the difference between Annotator 1 and 2.

Method Object

proposals

Train. data Temp.

cons.

DAVIS16 DAVIS17

1st frame 1st frame Full video

mIoU Δ(A1,A2) mIoU Δ(A1,A2) mIoU

DBNet EdgeBox Vis.Gen. - 54.1 1.0 - - -

Mask R-CNN - 64.9 2.1 48.4 1.3 49.6

MattNet Mask R-CNN RefCOCO - 67.1 2.2 51.6 1.6 50.3

RefCOCO+ - 69.1 3.2 50.8 1.2 50.1

DBNet Mask R-CNN Vis.Gen � 68.8 0.6 49.6 1.6 50.2

MattNet Mask R-CNN RefCOCO � 71.4 0.2 52.8 0.5 51.3

RefCOCO+ � 72.5 0.3 52.3 0.0 51.2

trained on Visual Genome [20] which contains images from MS COCO [24] and
YFCC100M [39], and spans thousands of object categories. MattNet is trained
on referring expressions for MS COCO images [24], specifically RefCOCO and
RefCOCO+ [50]. Unlike RefCOCO which has no restrictions on the expressions,
RefCOCO+ contains no spatial words and rather focuses on object appearance.
Both aforementioned models rely on external bounding box proposals, such as
EdgeBox [8] or Mask R-CNN [12].

We carry out most of our evaluation on DAVIS16 and DAVIS17 with the
referring expressions introduced in Sect. 4. To evaluate the localization quality we
employ the intersection-over-union overlap (IoU) of the top scored box proposal
with the ground truth bounding box, averaged across all queries.

5.1 DAVIS16/DAVIS17 Referring Expression Grounding

Table 1 reports performance of the grounding models on DAVIS16 and DAVIS17

referring expressions. In the following we summarize our key observations.
(1) We see the effect of replacing EdgeBox with Mask R-CNN object pro-

posals for DBNet model (54.1 to 64.9). Employing better proposals significantly
improves the quality of this grounding method, thus we rely on Mask R-CNN
proposals in all the following experiments. (2) We note the stability of grounding
performance across two annotations (see Δ(A1,A2)), showing that the grounding
methods are quite robust to variations in language expressions. (3) The ground-
ing models trained on images are not stable across frames, even when small
changes in appearance occur (e.g. see Fig. 3). We see that our proposed tempo-
ral consistency technique benefits both methods (e.g. DBNet: 64.9 vs. 68.8 on
DAVIS16, MattNet 51.6 vs. 52.8 on DAVIS17). (4) On both datasets MattNet
performs better than DBNet. The gap is particularly large on DAVIS16 (72.5
vs. 68.8), as DAVIS16 contains videos of a single foreground moving object,
while DBNet is trained on a densely labeled Visual Genome dataset with many
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foreground and background objects. (5) On DAVIS16 MattNet trained on Ref-
COCO+ outperforms MattNet trained on RefCOCO (72.5 vs. 71.4), while both
perform similar on DAVIS17. As RefCOCO+ contains no spatial words, MattNet
trained on this dataset is more accurate in localizing queries mentioning object
appearance. (6) Compared to DAVIS16, DAVIS17 is significantly more challeng-
ing, as it contains cluttered scenes with multiple moving objects (e.g. for MattNet
71.4 vs. 52.8). (7) When comparing results on expressions provided for the first
frame versus expressions provided for the full video, we observe diverging trends.
While DBNet is able to improve its performance (48.4 vs. 49.6), MattNet per-
formance decreases (52.8 vs. 51.3). We attribute this to the fact that DBNet is
trained on the more diverse Visual Genome descriptions.

Attribute-Based Analysis. Next we perform a more detailed analysis of the
grounding models on DAVIS17. We split the textual queries/videos into sub-
sets where a certain attribute is present and report the averaged results for the
subsets. Table 2 presents attribute-based grounding performance on first-frame
based expressions averaged across annotators. To estimate the upper bound per-
formance and the impact of imperfect bounding box proposals we add an Oracle
comparison, where performance is reported on the ground-truth object boxes.
We summarize our findings in the following.

(1) As MattNet is trained on MS COCO images and both models rely on
MS COCO-based Mask R-CNN proposals, we compare performance for expres-
sions which include COCO versus non-COCO objects. Both models drop in
performance on non-COCO expressions, showing the impact of the domain shift
to DAVIS17 (e.g. for MattNet 59.6 vs. 36.9). Even DBNet which is trained on a
larger training corpus suffers from the same effect (55.5 vs. 37.3). (2) We label
the DAVIS17 expressions as “spatial” if they include some of the spatial words
(e.g. left, right). Such queries are significantly harder for all models (e.g. for
MattNet 33.8 vs. 58.5). (3) Verbs are important as they allow to disambiguate
an object in a video based on its actions. Presence of verbs in expressions is a
challenging factor for DBNet trained on Visual Genome, while MattNet does
significantly better (37.4 vs. 55.8). (4) Expression length is also an important
factor. We quantize our expressions into Short (<4 words), Medium (4–6 words)
and Long (>6 words). All models demonstrate similar drop in performance as
expression length increases (e.g. for MattNet 63.9 → 50.2 → 49.1). (5) Videos
with more objects are more difficult, as these objects also tend to be very similar,
such as e.g. fish in a tank (e.g. for MattNet 86.1 → 51.2 → 16.1). (6) From the
Oracle performance on COCO versus non-COCO expressions, we see that all
models are able to significantly improve their performance even for non-COCO
objects (e.g. for DBNet 37.3 to 59.0). DBNet benefits more than MattNet from
Oracle boxes, showing its higher potential to generalize to a new domain given
better proposals.
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Table 2. Grounding performance breakdown for different attributes on DAVIS17, val
set. Results obtained after the temporal consistency, using average between two annota-
tors (1st frame based). Attributes: COCO/non-COCO, Spatial/non-Spatial, Verbs/no
Verbs, Expression length (Short, Medium, Long) and Number of objects.

Method Train. Obj. mIoU

data prop. CO. ∼CO. Sp. ∼Sp. Ve. ∼Ve. Expr. length Num. obj.

S M L 1 2–3 >3

DBNet Vis.Gen. Mask 55.5 37.3 36.5 55.7 37.4 52.0 61.8 49.2 33.6 79.5 49.3 22.6

MattNet RefCOCO R-CNN 59.6 36.9 33.8 58.5 55.8 51.7 63.9 50.2 49.1 86.1 51.2 16.1

DBNet Vis.Gen. Oracle 79.3 59.0 47.7 81.7 70.3 77.6 84.8 69.9 67.9 100 73.8 37.2

MattNet RefCOCO 73.2 46.6 42.2 72.5 74.7 62.9 79.0 61.1 59.0 100 64.5 23.2

6 Video Object Segmentation Results

In this section we present single and multiple video object segmentation results
using natural language referring expressions on two datasets: DAVIS16 [34] and
DAVIS17 [38]. In addition, we experiment with fusing two complementary sources
of information, employing both the pixel-level mask and language supervision on
the first frame. All results here are obtained using the bounding boxes given by
the MattNet model [49] trained on RefCOCO [50] after the temporal consistency
step (see Sect. 3.1).

For evaluation we use the IoU measure (also called Jaccard index - J) between
the ground truth and the predicted segmentation, averaged across all video
sequences and all frames. For DAVIS17 we also employ the J&F measure pro-
posed in [38].

6.1 DAVIS16 Single Object Segmentation

Table 3 compares our results to previous work on DAVIS16 [34]. As we employ
MattNet [49], which exploits Mask R-CNN [12] box proposals, we also would like
to compare to its segments. We report the oracle Mask R-CNN results, where
on each frame the segment with the highest ground truth overlap was chosen.
Even with the oracle assignment of segments, [12] under-performs compared to
our segmentation model (71.5 vs. 83.1). This shows that for very detailed mask
annotations (as in DAVIS16/17) a more complex segmentation module than the
Mask R-CNN segmentation head is required (which itself is a shallow FCN with
reduced output resolution, resulting in coarse masks).

Our method, while only exploiting language, shows competitive performance,
on par with techniques which use a pixel-level mask on the first frame (82.8 vs.
81.7 for OnAVOS [43]). This shows that high quality results can be obtained
via a more natural way of human-computer interaction – referring to an object
via language, making video segmentation techniques more applicable in practice.
Compared to mask supervision employing language results in a runtime speed
up: it is ∼15 times faster to specify the object with language (79s [24] vs. 5s)
plus online tuning is not needed for good performance ([30] reports 10min for
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Table 4. Attribute-based results with different forms of supervision on DAVIS16, val
set. AC: appearance change, LR: low resolution, SV: scale variation, SC: shape com-
plexity, CS: camera shake, DB: dynamic background, BC: background clutter, FM: fast
motion, MB: motion blur, DEF: deformation, OCC: occlusions. See Sect. 6.1 for more
details.

Supervision AC LR SV SC CS DB BC FM MB DEF OCC

Language 80.1 79.0 74.4 77.6 85.7 66.4 85.0 77.7 78.1 84.3 80.1

Mask 81.2 78.1 75.9 79.0 85.6 68.0 82.8 79.0 79.9 85.6 80.5

Mask + Lang. 81.0 79.0 76.8 80.4 86.8 72.2 84.4 79.5 80.4 85.9 82.3

online tuning with 80.2 vs. our 82.8). Note that [30,43] show superior results to
our approach (∼86 mIoU). However, they employ additional cues by incorporat-
ing semantic information [30] or doing online adaptation [43]. Potentially, these
techniques can also be applied to our method, though it is out of scope of this
paper.

Table 3. Comparison of video object segmenta-
tion results on DAVIS16, val set.

Supervision Method mIoU

Oracle Mask R-CNN [12] 71.5

Unsupervised FusionSeg [17] 70.7

LVO [40] 75.9

ARP [19] 76.2

Semi- 1st frame SegFlow [6] 76.1

supervised mask MaskTrack [35] 79.7

OSVOSa [30] 80.2

MaskRNN [15] 80.4

OnAVOSb [43] 81.7

Our 83.1

Clicks iVOS [2] 80.6

DEXTR [29] 80.9

Language Our 82.8

Mask + Lang. Our 84.5
aOSVOSS reports 86.0 mIoU by employing semantic

segmentation as additional supervision.
bOnAVOS reports 64.5 mIoU by performing online

adaptation on successive frames.

Compared to the approaches
which use point click supervi-
sion [2,29], our method shows
superior performance (82.8 vs.
80.6 and 80.9). This indicates
that language can be success-
fully utilized as an alternative
and cheaper form of supervision
for video object segmentation, on
par with clicks and scribbles.

Maks and Language. In Table 3
we also report the results for vari-
ants using only mask supervi-
sion on the first frame or com-
bining both mask and language
(see Sect. 3.2 for details). Notice
that employing either mask or
language results in comparable
performance (82.8 vs. 83.1), while fusing both modalities leads to a further
improvement (82.8 vs. 84.5). This shows that referring expressions are com-
plementary to visual forms of supervision and can be exploited as an additional
source of guidance for segmentation, on top of not only pixel-level masks, but
potentially scribbles and point clicks.

Table 4 presents a more detailed evaluation using video attributes. We report
the averaged results on a subset of sequences where a certain challenging
attribute is present. Note that using language alone leads to more robust per-
formance for videos with low resolution, camera shake and background clutter
without the need for an expensive pixel-level mask. When utilizing both mask
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and language we observe that the system becomes consistently more robust to
various video challenges (e.g. fast motion, occlusions, motion blur, etc.) and
compares favorably to mask only on all attributes, except appearance change.
Overall, employing language can help the model to better handle occlusions,
avoid drift and better adapt to complex dynamics inherent to video.

Table 5. Ablation study on DAVIS16.
Variant mIoU Δ

Full system 82.5 -

No box jittering 80.6 −1.9

No optical flow magnitude 75.9 −4.7

No temporal consistency 72.5 −3.4

Backbone architecture of [35] 72.2 −3.7

Ablation Study. We validate the con-
tributions of the components in our
method (see Sect. 3) by presenting an
ablation study in Table 5 on DAVIS16,
training set. Augmenting the ground
truth boxes by random jittering makes
the system more robust to sloppy boxes
at test time (82.5 vs. 80.6), while employ-
ing motion cues allows to better handle moving objects (80.6 vs. 75.9). Tempo-
ral consistency step helps to provide more temporally coherent boxes (4.3 mIoU
point boost for grounding, see Table 1) and hence improve the final segmenta-
tion quality (75.9 vs. 72.5). Exploiting the proposed network architecture versus
using the network proposed in [35] results in 3.7 point boost (75.9 vs. 72.2), pro-
viding more detailed object masks. Overall, all components introduced in our
approach lead to the state-of-the-art results on DAVIS16.

6.2 DAVIS17 Multiple Object Segmentation

Table 6 presents results on DAVIS17 [38]. The lower numbers in comparison
with Table 3 indicate that DAVIS17 is significantly more difficult than DAVIS16.
Even when employing mask supervision on the first frame the dataset presents a
challenging task and there is much room for improvement. The semi-supervised
methods perform well on foreground-background segmentation, but have prob-
lems separating multiple foreground objects, handling small objects and preserv-
ing the correct object identities [38].

Compared to mask supervision using language descriptions significantly
under-performs. We believe that one of the main problems is a relatively unstable
behavior of the underlying grounding model. There are a lot of identity switches,
that are heavily penalized by the evaluation metric as every pixel should be
assigned to one instance. We conducted an oracle experiment assigning Mask R-
CNN box proposals to the correct object ids and then performing segmentation
(denoted “Oracle - Grounding”). We observe a significant increase in perfor-
mance (37.3 to 54.9), making the results competitive to mask supervision. If we
utilize Mask R-CNN segment proposals for oracle case, the result is 2.1 points
lower than using our segmentation model on top. The underlying choice of pro-
posals for the grounding model could also have its effect. If the object is not
detected by Mask R-CNN, the grounding model has no chances to recover the
correct instance. To evaluate the influence of proposals we conduct an oracle
experiment where the ground truth boxes are exploited in the grounding model
(denoted “Oracle - Box proposals”). With oracle boxes we observe an increase in
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performance (37.3 to 42.1), however, recovering the correct identities still poses
a problem for grounding.

Another factor influencing the results is the domain shift between the training
and test data. Both Mask R-CNN and MattNet are trained on MS COCO [24],
and have troubles recovering instances not belonging to 80 COCO categories. We
split the DAVIS17 validation set into COCO and non-COCO objects/language
queries (43 vs. 18) and evaluate separately on two subsets. As in Sect. 5, we
observe much higher results for COCO queries (45 to 27.5), indicating the prob-
lem of generalization from training to test data.

The method which exploits scribble supervision [37] performs on par with
our approach. Note that even for scribble supervision the task remains difficult.

Table 6. Comparison of semi-supervised video
object segmentation methods on DAVIS17, val
set. Numbers in italic are reported on subsets
of DAVIS17 containing/non-containing COCO
objects.

Supervision Method mIoU J&F

Oracle Mask R-CNN [12] 52.8 53.3

Grounding 54.9 57.4

Box proposals 42.1 45.3

1st frame mask OSVOS [3] 52.1 57.0

OnAVOSa [42] 57.0 59.4

MaskRNN [15] 60.5 -

Our 58.0 60.8

Scribbles CNN lin. class. [37] - 39.3

Scribble-OSVOS [37] - 39.9

Language Our 37.3 39.3

Our, COCO 45.0 47.5

Our, non-C. 27.5 29.4

Mask+Lang Our 59.0 62.2
aOnAVOS reports 64.5 mIoU by performing online

adaptation on successive frames.

Mask and Language. In Table 6
we also report the results for vari-
ants of our approach using only
mask supervision or combining
mask and language. Employing
language on top of mask leads to
an increase in performance over
using mask only (58 to 59), again
showing complementarity of both
sources of supervision.

Figure 5 provides qualitative
results of our method using
only language as supervision.
We observe successful handling
of similar looking objects, fast
motion, deformations and partial
occlusions.

Discussion. Our results indicate
that language alone can be suc-
cessfully used as an alternative and a more natural form of supervision. Par-
ticularly, high quality results can be achieved for videos with the salient target
object. Videos with multiple similar looking objects pose a challenge for ground-
ing models, as they have problems preserving object identities across frames.
Experimentally we show that better proposals, grounding and proximity of train-
ing and test data can further boost the performance for videos with multiple
objects. Language is complementary to mask supervision and can be exploited
as an additional source of guidance for segmentation.

7 Conclusion

In this work we propose the task of video object segmentation using language
referring expressions. We propose an approach to address this new task as well
as extend two well-known video object segmentation benchmarks with textual
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descriptions of target objects. Our experiments indicate that language alone
can be successfully exploited to obtain high quality segmentations of objects in
videos. While allowing a more natural human-computer interaction, using guid-
ance from language descriptions can also make video segmentation more robust
to occlusions, complex dynamics and cluttered backgrounds. We show that clas-
sical semi-supervised video object segmentation which uses the mask annotation
on the first frame can be further improved by the use of language descriptions.
We believe there is a lot of potential in fusing lingual (referring expressions) and
visual (clicks, scribbles or masks) forms of supervision for object segmentation
in video. We hope that our results encourage more research on video object
segmentation with referring expressions and foster discovery of new techniques
applicable in realistic settings, which discard tedious pixel-level annotations.
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