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Abstract. There has been a rapid development of custom hardware
for accelerating the inference speed of deep neural networks (DNNs),
by explicitly incorporating hardware metrics (e.g., area and energy) as
additional constraints, in addition to application accuracy. Recent efforts
mainly focused on linear functions (matrix multiplication) in convolu-
tional (Conv) or fully connected (FC) layers, while there is no publicly
available study on optimizing the inference of non-linear functions in
DNNs, with hardware constraints.

In this paper, we address the problem of cost-efficient inference
for Softmax, a popular non-linear function in DNNs. We introduce a
hardware-aware linear approximation framework by algorithm and
hardware co-optimization, with the goal of minimizing the cost in terms
of area and energy, without incurring significant loss in application accu-
racy. This is achieved by simultaneously reducing the operand bit-width
and approximating cost-intensive operations in Softmax (e.g. exponen-
tial and division) with cost-effective operations (e.g. addition and bit
shifts). We designed and synthesized a hardware unit for our approxima-
tion approach, to estimate the area and energy consumption. In addition,
we introduce a training method to further save area and energy cost, by
reduced precision. Our approach reduces area cost by 13× and energy
consumption by 2× with 11-bit operand width, compared to baseline at
19-bit for VOC2007 dataset in Faster R-CNN.
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1 Introduction

Modern deep neural networks (DNNs) have achieved remarkable success in
a broad of computer vision applications including image classification, object
detection and instance segmentation, at the cost of huge amount of weights and
activations. For instance, AlexNet-7 [19] has about 60M parameters, VGG-16 [27]
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138M and ResNet-101 [14] 45M. There has been a rapid development of cus-
tom hardware for accelerating inference of DNNs at scale, such as Application-
Specific Integrated Circuits (ASICs) - EIE [11], Eyeriss [5] and Google Tensor
Processing Unit (TPU) [18]. On the other hand, plenty of work has been pro-
posed to save hardware resources in terms of chip area and power, by reducing
precision of operands (e.g., DoReFa-Net [30], BinaryNet [6], XNOR-Net [25] and
ternary quantization [31]), or reducing number of matrix multiplication opera-
tions (e.g., compact networks like SqueezeNet [17] and MobileNet [16], or net-
work pruning [12,15]). This in turn enables higher inference throughput, given
limited hardware resources. For example, TPU [18] performs 8-bit integer mul-
tiplication for Conv and FC layers, enabling order of magnitude reduction in
energy consumption. EIE [11] supports higher inference rate by pruning weights
in FC layers, with lower energy and area cost.

However, these work mainly focused on linear matrix operations in Conv and
FC layers which account for over 99% of total operations in modern DNNs [29].
To the best of our knowledge, no public study is available on optimizing the
inference of non-linear blocks (e.g., Softmax and Sigmoid) in DNNs with hard-
ware constraints. Compared to linear operations in Conv and FC, nonlinear
blocks pose unique challenges for hardware implementation. First, a Conv oper-
ation using a multiplier and an adder, is much cheaper than nonlinear functions
like exponential, which usually requires either a complex hardware unit or an
iterative routine in programmable hardware. Second, in current hardware accel-
erators, the compute ratio per unit area for nonlinear blocks is order of magni-
tude lower than that for Conv and FC layers, resulting in inefficient use of the
chip area (e.g., 20% of the total area allocated for compute operations is used
by nonlinear unit, which only account for less than 1% of total operations in
DNNs).

In this paper, we aim to address the problem of cost-efficient inference for
Softmax, a popular non-linear function in a wide range of network architectures.
We make the following contributions.

– We propose a framework of hardware-aware linear approximation for
Softmax, with the goal of minimizing the design cost in terms of area
and energy consumption, without incurring significant loss in application
accuracy. The framework simultaneously reduces the operand bit-width and
approximates cost-intensive operations in Softmax (e.g. exponential and divi-
sion) with cost-effective operations (e.g., addition and bit shifts).

– We develop a training approach to further save the chip area and energy
cost with aggressively reduced bit-width of Softmax operands, by clipping
Softmax input in a small range.

– We design and synthesize a hardware unit for our approximation approach to
estimate area and energy costs. We present a comprehensive analysis of the
impact of operand bit-width and operations on performance accuracy and
hardware metrics. With comparable object detection and instance segmenta-
tion accuracy, our approach reduces area cost by 13× and energy cost by 2×
with 11-bit operand width, compared to baseline at 19-bit.
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We argue that our approach is not explicit to Softmax function. Many other
nonlinear blocks in DNNs such as Tanh, Sigmoid can leverage our linear approx-
imation approach. For instance, several of these nonlinear functions include expo-
nential operation, rendering our approach a natural fit for approximating them
at lower hardware cost.

Fig. 1. The overall architecture for hardware-aware Softmax approximation. PLF -
Piecewise Linear Function. FP - Fixed-point. Numbers in point bracket represent sign
bit, integer bits and fractional bits respectively.

The paper is organized as follows. Section 2 describes background, motivation
and overview of our approach. In Sect. 3, we explore the search space of operand
bit-widths. Section 4 introduces several cost-effective operations for approximat-
ing Softmax. Section 5 presents a training approach for further reduction of hard-
ware cost. We evaluate the performance in Sect. 6. Sections 7 and 8 are related
work, conclusions and future work.

2 Background and Motivation

Softmax is a common building block for many DNN-based computer vision appli-
cations [8,13,26],

σ(xc) =
exc

∑C
j=1 exj

, (1)

where C represents the number of classes and x is a C-dimensional input vector
with arbitrary real-values. For image classification task, Softmax normalizes the
C-dimensional input vector, so that all the entries add up to 1. For region-
based object detection (e.g., Faster R-CNN [26] and R-FCN [8]) and instance
segmentation (e.g., MNC [7] and Mask R-CNN [13]), Softmax generates a C-
dimensional normalized confidence scores for each region proposal independently.
Subsequently, for each class, the proposals are sorted by their scores, followed
by non-maximum suppression (NMS) to filter overlapped ones.
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Different from linear operations (e.g. matrix-matrix (matrix-vector) multi-
plication in Conv and FC layers), it is costly to implement nonlinear Softmax
function in hardware. A single Conv operation is actually cheaper than Soft-
max or exponential. Conv uses a multiplier and an adder, while exponential
requires either a complex hardware unit or an iterative routine in programmable
hardware. As a result, more multipliers and adders can be placed in the same
area to sustain the required CONV operations, compared to units that perform
Softmax. Integrating numerous nonlinear operations, which may be required to
improve the application runtime, consumes considerable hardware resources.

Take Google TPU [18] as an example, 20% of the total area allocated for com-
puting resources is for non-linear functions – the remaining 80% is for CONV
and FC operations. On the other hand, Conv (FC) layers account for over 99%
of total operations in modern DNNs, versus less than 1% for nonlinear opera-
tions. One can see that the Compute Ratio Per Unit Area for nonlinear unit is
25× smaller than matrix multiply for CONV (FC). Thus, reducing the area of
nonlinear unit by 10× leads to more efficient use of chip area, e.g.,

– faster nonlinear operation by integrating many such modules (i.e., fostering
parallel execution); or

– higher convolution rate by reclaiming the saved area to add more CONV
hardware resources.

This motivates us to develop cost-efficient approximation method for Softmax
in DNNs, from both algorithm and hardware perspectives. Towards lower area
and energy cost, the key is to approximate Softmax with simple yet efficient
linear operations - (1) approximate cost-intensive arithmetic operations (e.g.,
exponential, division in Eq. 1.) with cost-effective operations (e.g. addition, log-
ical operations) and (2) minimize the bit-width of operands in the operations.
Figure 1 shows the overall flow for computing Softmax in simplified hardware
architecture. This architecture contains several modules including the piecewise
function (PLF), accumulation (Adder) and division (Division) with respective
memory registers for storing intermediate operands.

It is worthy noting that we do not consider the complex polynomial approxi-
mation methods such as Taylor series [24] for exponential function, which would
introduce many multiplication operations in order to preserve high accuracy.
As compared to simple arithmetic operations like addition, multiplication leads
to much higher energy and area cost, especially when the operand bit-width is
large. For instance, 32-bit fixed-point addition can be 30× less energy and 25×
less area than 32-bit fixed-point multiplication [9].

3 Exploring the Search Space of Operand Bit-Width

Representing operands in fixed-point precision with short bit-width would reduce
energy consumption and area cost ref. Figure 1. Figure 2(b) shows an example of
fixed-point representations for Softmax input xc, output σ(xc) and intermediate
values (i.e. the numerator exc and the denominator

∑C
j=1 exj ). Once the number
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Fig. 2. (a) Distribution of Softmax input x. (b) Example of fixed-point representations
for Softmax input xc, output σ(xc) and intermediate values (i.e. the numerator exc

and the denominator
∑C

j=1 exj ). (c) Flow of binary search for the minimal operand
bit-width that does not cause loss in application accuracy.

of integer bits of operand exi is fixed as N , the integer bits for input x can be
derived as follows.

N I
x = �log2(ln 2N )� (2)

As we know, the negative part of xi will decide the fractional part of exi1. It
is an asymmetric boundary. It is noteworthy that theoretically the bit-width
for denominator is decided by the number of additions and bit-width of exi . To
shorten its bit-width, a data-driven manner is deployed to explore the minimum
value. The range of σ(xc) is in (0, 1), thus it only requires a small number of
fractional bits truncated from the number computed by the division operation.

There is a trade-off between operand bit-width and application accuracy.
We introduce an accuracy-aware approach to explore the minimal operand bit-
width in Softmax. Figure 2(c) shows the flow of the minimal operand bit-width
searching. It starts from an initialized integer bit N for exi . With an input
network model, each loop consists of reducing the integer bits for exi , xc and∑C

j=1 exj , quantizing Softmax with derived precision, followed by inference with
the quantized Softmax.

4 Approximating Softmax Operation

The computation of Softmax can be roughly decomposed into 3 steps: the expo-
nential function, the accumulation in the denominator and division. In this
section, we introduce various cost-efficient strategies to approximate the expo-
nential function and division respectively (see Fig. 3(a)). Finally, we integrate
different operations for approximating Softmax.

Lookup Table of ex (LUT-EXP). To approximate exi , a straight-forward
approach is to create a lookup table (LUT) which stores the fixed-point number
of exi over a discrete subset of xi (see Fig. 3(b)). As analyzed in Sect. 3, once
1 The fractional bits of exi and x are fixed at small numbers (less than 2) as they

contribute less to the precision, as compared to the integer bits.
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Fig. 3. (a) Approximate the exponential function and the division operation in Soft-
max function, respectively. (b) Lookup Table of ex (LUT-EXP). (c) Piecewise Linear
Function (LUT-PLF) for approximating exi . Note that the entries in LUT are stored
with fixed-point representations.

the integer bits of fixed-point operand exi is fixed, we can derive the number
of integer bits for the fixed-point input xi as well as its range x ∈ [xl, xr] that
precise to a quantum of 1 (Fig. 2(a)–(b)). This would also determine the size of
LUT-EXP, i.e. 2Nx entries computed by exi , where xi is uniformly sampled in
[xl, xr] with a fixed step size.

Piecewise Linear Function (LUT-PLF). One drawback of LUT-EXP is the
number of entries in the table increases exponentially with the bit-width of fixed-
point input x. The larger the table size, the higher energy cost for memory access
and bigger area cost for storage. To alleviate this issue, an alternate approach is
Piecewise Linear Function (PLF), which typically approximates nonlinear func-
tion with a small number of line pieces [1,23]. In geometry, PLF approximates
ex with S continuous pieces uniformly defined over a finite range of x ∈ [x1

l , x
S
r ],

each of those pieces is an affine function with slope αs

fs(x) = αs ∗ (x − xs
l ) + ys

l = αs ∗ x + (ys
l − αs ∗ xs

l )

x ∈ [xs
l , x

s
r], ys

l = exs
l , s ∈ [1, S]

(3)

A LUT of affine functions is built to store the value of xs
l , αs and the pre-

computed ys
l − αs ∗ xs

l (see Fig. 3(c)). The number of bits for xs
l and αs is the

same as input x, while ys
l −αs ∗xs

l is the same as exi . Given x, the entry nearest
to x is chosen for computing the approximate value fs(x) in Eq. 3. The cost
of computing fs(x) contains 1 multiply (αs ∗ x) and 1 addition. At last, the
minimal number of pieces S is determined in a similar way to the data-driven
binary search of minimal operand bit-width introduced in Sect. 3.

Implement Multiplication and Division by Bit Shifts. The multiply term
αs ∗ x in Eq. 3 can be simply implemented by bit shifts, via approximating αs

with the closet 2b where b is an integer constant. Similarly, bit shifts is able to
approximate the division operation in Eq. 1 by replacing the denominator with
2b. Bit shifts can largely reduce energy/ares cost induced by multiplication and
division, especially when the operand bit-width is large.

Approximate Softmax as a Whole. By assembling the 3 steps together, there
are 6 possible combinations for Softmax approximation in total show in Table 1.
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Table 1. Method naming and definitions.

Method names Definition

Approx A Exponential function is implemented by the look-up table

Approx B Exponential function is implemented by the look-up table,
while Division operation is implemented by bit shifting

Approx C Exponential function is implemented by piecewise linear
function

Approx D Exponential function is implemented by piecewise linear
function, in which the coefficients are power of two

Approx E Exponential function is implemented by piecewise linear
function, while Division operation is implemented by bit
shifting

Approx F Exponential function is implemented by piecewise linear
function, in which the coefficients are power of two; While
Division operation is implemented by bit shifting

And all method names appeared in text would refer to this table. In Sect. 6, we
evaluate the performance (accuracy, energy/area cost) of Softmax approximation
variants with varied operand bit-widths, on a wide range of network architectures
as well as benchmarks. We observe that method Approx D achieves the optimal
tradeoff between accuracy and energy/area cost, especially at low operand bit-
width.

5 Training with Softmax Approximation

The integration of LUT-PLF operation with the minimal operand bit-width
trades off energy/area cost against application accuracy. If further reducing the
operand bit-width, the energy/area cost is even lower, but there is a significant
drop in accuracy. In this section, we propose a hybrid training method to simulate
Softmax approximation error in the forward pass during training, which is able
to adapt the network to the approximation method and retain accuracy even
aggressively reducing operand bit-width.

Clipped Input for Aggressive Bit-Width Reduction. One can see from
Eq. 3 that the range of ys

l depends on the range of xs
l . For instance, to avoid

the loss of range and precision when comparing with floating point number
representations, the minimal number of integer bits for eys

l is 18-bit for xs
l ∈

[−12, 12]. This number dramatically drops to 10-bit when xs
l ∈ [−6, 6]. To reduce

bit-width for lower energy/area cost, a clipping operation is operated on input
x, which is bounded in an asymmetric range [−γ̂, γ]

h(x) = min(max(x,−γ̂), γ), (4)

where γ̂ and γ are pre-defined positive thresholds. Note that γ̂ is usually smaller
than γ due to the asymmetric distribution of input x (see Fig. 2(a)).
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Algorithm 1. Training with Softmax Approximation through STE
1 Initialization: DNN model weights M , input range (−γ̂, γ) and number of

pieces S.
2 foreach s in S pieces do
3 Derive xs

l ,x
s
r,

4 ys
l = ex

s
l , ys

r = ex
s
r ,

5 αs =
ys
r−ys

l
xs
r−xs

l
.

6 end
7 foreach batch do
8 foreach xi in input vector x do
9 Find relevant piece in LUT-PLF s∗ = argmin

s
(xi − xs

l ). s.t., xi > xs
l .

exi ← ys∗
(xi) = αs∗ ∗ (xj − xs∗

l ) + ys∗
l

10 end

11 Calculate Softmax σ(xi) = ys∗
(xi)∑

j ys∗
(xj)

.

12 Compute gradients of Softmax layer using STE.
13 Update parameters M .

14 end
15 return M

Hybrid Training. One approach to compensate the loss in accuracy induced
by Softmax approximation is to train the network by taking the approxima-
tion error into account. This can be accomplished by simulating the Softmax
approximation in the forward pass, while the backward pass remains as usual.
More specifically, the forward pass computes Softmax using the approximation
method Approx D with the clipped x as input. The hybrid training is described
in Algorithm 1. As Eqs. 4 and 3 are non-differentiable functions, we use Straight
Through Estimator (STE) [2] to enable the back-propagation. Note that the
hybrid training method can be used to study the effect of aggressively reducing
the minimal number of pieces S in LUT-PLF.

6 Experiments

We evaluate the performance on two challenging tasks: object detection and
instance segmentation. First, we study the impact of operand bit-width on appli-
cation performance, without approximating Softmax operation. Second, we eval-
uate the 6 Softmax approximation variants with floating point precision. Third,
we perform the ASIC RTL simulation to measure the energy/area cost, as a
function of operand bit-width and approximation operations. Finally, we per-
form extensive experiments on various benchmarks to verify the advantages of
the training with aggressive bit-width reduction via clipped input x using Caffe
on a NVIDIA Tesla V100 GPU.
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Fig. 4. (a) Object detection accuracy for Faster R-CNN (VGG16) and R-FCN (ResNet-
50) on VOC2007, with varied bitwidths for operand exi , including sign bit, integer bits
and fractional bits. (b) Object detection accuracy for Faster R-CNN (VGG16) and
R-FCN (ResNet-101) on COCO2014, with varied bit-widths for operand exi . The num-
ber of fractional bits of exi is varied from [1,2,3].

Datasets. For object detection, we evaluate our method on 2 standard bench-
mark datasets - PASCAL VOC2007 [10] and MS COCO2014 [20]. The VOC2007
dataset consists of about 5k train-val images and 5k test images over 20 object
categories, while the MS COCO2014 dataset contains 80 foreground object
classes and one background class. The training set has about 80 K images, and
5 K images for mini validation set. For instance segmentation, the models are
trained on the PASCAL VOC 2012 training set, and evaluated on validation set.

Models and Metrics. For object detection, we integrate the Softmax approxi-
mation into Faster R-CNN [26] and R-FCN [8]. Following the standard protocol,
we report results on VOC2007 test set using mean Average Precision (mAP)
with IoU thresholds at 0.5 (denoted as mAP@0.5) and MS COCO2014 minival
set using mAP averaged for IoU ∈ [0.5 : 0.05 : 0.95] (denoted as mAP@[.5,
.95]). For instance segmentation, the model MNC [7] is selection. The results are
reported on VOC 2012 validation set using mAP with thresholds at 0.5 and 0.7
(denoted as mAP@0.5 and mAP@0.7).

6.1 Impact of Operand Bit-Width

Figures 4a and b evaluate the impact of operand bit-width (for exi) on object
detection, in terms of mAP@0.5 and mAP@[.5, .95] for VOC2007 and COCO2014
respectively. Besides, we also study the effect of the fractional bits for the fixed
point of exi . For clarity, we do not approximate Softmax operation when evalu-
ating operand bit-width. We make the following observations - (1) the detection
accuracy increases with the number of operand bit-width. (2) when the bit-width
is at low range (e.g., 15), the model with less fractional bits performs better. (3)
when the bit-width is at large range (e.g., 23), the model with more fractional
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bits performs slightly better. (4) for Faster-RCNN (VGG16), the bit-widths with
comparable accuracy on VOC2007 and COCO2014 are different (the latter is
larger). The possible reason is when the dataset becomes more challenging (e.g.,
the number of targeted classes increases), the model would require more bits to
preserve the application accuracy. (5) to maintain the detection accuracy, Faster-
RCNN (VGG16) requires 19 bits (18 bits for integer part and 1 bit for fractional
part), while R-FCN (ResNet-50) 22 bits, due to the fact that the distribution of
input x from ResNet-50 is wider than that from VGG16.

Table 2. Object detection accuracy on VOC2007 and COCO2014 and instance seg-
mentation accuracy on VOC 2012, with the 6 Softmax approximation variants.

Methods Min.
table size

VOC2007
mAP@0.5

COCO2014
mAP@[.5-.95]

VOC2012
mAP@0.5

exi
∑

ex Faster
R-CNN

R-FCN
(ResNet50)

Faster
R-CNN

R-FCN
(ResNet101)

MNC
(VGG16)

LUT-PLF 2n 32 69.84 70.31 21.30 26.50 63.75

/ 32 72.30 71.69 24.10 28.10 64.65

LUT-PLF-B 2n 32 68.12 68.86 20.80 25.10 64.27

/ 32 72.06 71.37 23.70 27.90 62.96

LUT-EXP 2n 128 69.95 69.82 20.20 25.50 62.52

/ 128 72.68 71.64 24.10 27.40 64.40

exi / - 72.52 71.76 24.20 28.20 63.50

6.2 Evaluations on Softmax Approximation Variants

Table 2 reports object detection accuracy on VOC2007 and COCO2014, and
instance segmentation accuracy on VOC 2012, with the 6 Softmax approximation
variants. At inference stage, we replace the exponential function in Softmax layer
with either LUT-PLF or LUT-EXP, and the Division operation with bit shifts.
The minimal LUT size for each Softmax approximation is derived by using the
binary search algorithm described in Sect. 3. All experiments are performed in
floating point precision.

We observe that (a) all LUT based approaches perform comparable to Soft-
max (the last row) in terms of accuracy, across different datasets and tasks; (b)
bit shifts for approximating the division operation introduces considerable loss
in accuracy, while it works well for approximating the multiplication in LUT-
PLF (i.e. LUT-PLF-B). This might be because the bit shifts for division brings
in higher approximation error, and (c) the table size of 4 times smaller than
LUT-EXP, while with comparable accuracy.
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6.3 Tradeoff Between Energy/Area Cost and Accuracy

Hardware Evaluation Methodology. We design ASIC RTL to simulate the
Softmax approximation algorithms and measure the energy and area cost. All
approaches are written in Verilog and is kept consistent with the algorithm
model. We adopted logic gates to store LUT, because using memory to store
lookup table is not efficient for the silicon area if table size is less than 1k entries.
Registers are deployed for temporary storage of exponential value. The Cadence
RTL compiler is deployed for synthesis with UMC 65 nm standard cell library.
The power and area consumption are estimated with synthesis result under the
condition of 500 MHz clock Synthesizers.

Fig. 5. Comparisons of 6 Softmax approximation variants with 2 operand bit-widths
for Faster-RCNN (VGG16) model. (a) Trade-off between accuracy and power; and (b)
Trade-off between accuracy and area. Green color represents 11-bit width for operand
exi , Blue 19-bit. (Color figure online)

Energy and Area Cost. Figure 5 reports energy and area cost with 2 operand
bit-widths (11-bit and 19-bit) for exi , for Faster-RCNN (VGG16) on VOC2007.
We evaluate all the Softmax approximation variants. One can observe that
(a) the energy/area cost is reduced as bit-width increases, (b) in most cases,
the performance trend of area cost is consistent with energy cost, (c) among
the 6 Softmax approximation variants, Approx D achieves the optimal tradeoff
between accuracy and energy/area cost, compared to the rest, (d) Approx E and
Approx B performs the worst in terms of energy and area cost, as the search of
n that 2n is closet to the summation value in denominator costs considerable
power.

Energy Breakdown. Figure 6 further studies the energy breakdown into cost-
intensive operations including memory access, division and LUT-PLF (or LUT-
EXP), for the 6 Softmax approximation variants. We observe that (a) memory
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Fig. 6. Energy breakdown into cost-intensive operations on operand exi . (a) 11-bit
width; and (b) 19-bit width. There are 4 operations being evaluated, including division
(DIV), memory access (MEM), LUT-PLF and LUT-EXP.

access, LUT-PLF and division consume most of energy during inference; (b)
the energy consumption of all operations increases with bit-width, and memory
access is the one with the most significant increase; (c) the shift operation in
LUT-PLF-B saves some energy cost, compared to LUT-PLF and (d) DIV-B
costs more power as compared to original DIV. It is because that memory access
increases when it dynamically computes the closest value to the denominator.

Table 3. Performance of aggressive bit-width reduction with or without training, in
terms of accuracy and energy/area cost, for Faster R-CNN (VGG16) on VOC2007. ∗
denotes measurements of area/energy are performed on exi only.

Methods mAP

@0.5

Min.

table size

Bit-width Area∗

(µm2)

Power∗

(mW)
xi exi

∑C
j=1 exj σ(xi)

Clip (γ = 12) 71.98 6 (1,4,2) (0,18,1) (0,20,1) (0,0,8) 262 0.116

Clip (γ = 6) 54.18 2 (1,3,2) (0,10,1) (0,12,1) (0,0,8) 19 0.067

Clip + Train (γ = 6) 70.58 2 (1,3,2) (0,10,1) (0,12,1) (0,0,8) 19 0.067

6.4 Evaluations on Clipped Training

We evaluate the aggressive bit-width reduction with or without training using
the clipped input x (i.e. Bounded Approx D), and compare to the best Softmax
approximation (i.e. Approx D). Results are reported on 3 benchmarks for both
object detection and instance segmentation, with the minimal number of LUT
size as usual. The numbers in brackets represent the number of sign bit, integer
bits and fractional bits for fixed-point number representations, respectively. It is
worthy noting that the measurements of area and energy are performed on the
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approximation of exi only, in order to fairly evaluate the advantages of aggressive
bit-width reduction with clipped input (Clip) in Approx D.

Table 3 reports the detection accuracy and energy/area on VOC2007. We
observe that the Clip with training requires 2-3 times fewer LUT size to achieve
comparable accuracy with the best baseline. The benefits of training on clipped
input x is two-fold: (a) it leads to less area and energy (2× − 70×), and (b)
the accuracy is dramatically improved compared to the aggressive bit-width
reduction without training. These conclusions are consistent with the observa-
tions from Tables 4 and 5. The number of minimal LUT size is varied for different
benchmarks. For instance, VOC2007 requires 6 entries to preserve accuracy while
COCO2014 demands more. One may note that Clip + Train dropped about 5%
in mAP on COCO2014, suggesting that the distribution of exponential value
tends to be diverse with challenging datasets and complex tasks. Finally, results
from all 3 tables show that the Softmax approximation approach generalize well
in the wide range of tasks, datasets and models.

Table 4. Performance of aggressive bit-width reduction with or without training, in
terms of energy and area cost, for R-FCN (ResNet-101) on COCO2014. ∗ denotes
measurements of area/energy are performed on exi only.

Methods mAP
@[.5-.95]

Min. table
size

Bit-width Area∗
(µm2)

Power∗
(mW)

xi exi
∑C

j=1 exj σ(xi)

Clip (γ = 16) 27.50 8 (1,5,2) (0,24,1) (0,28,1) (0,0,8) 1020 0.598

Clip (γ = 6) 4.90 4 (1,3,2) (0,10,1) (0,14,1) (0,0,8) 38 0.086

Clip + Train (γ = 6) 22.60 4 (1,3,2) (0,10,1) (0,14,1) (0,0,8) 38 0.086

Table 5. Performance of aggressive bit-width reduction with or without training, in
terms of accuracy and energy and area cost, for MNC (VGG16) on VOC 2012.

Methods mAP

@0.5

mAP

@0.7

Min.

table size

Bit-width Area∗

(µm2)

Power∗

(mW)
xi exi

∑C
j=1 exj σ(xi)

Clip (γ = 34) 63.51 43.93 8 (1,5,2) (0,23,1) (0,26,1) (0,0,8) 1049 0.641

Clip (γ = 6) 50.37 34.52 4 (1,3,2) (0,10,1) (0,13,1) (0,0,8) 43 0.102

Clip + Train (γ = 6) 62.96 42.18 4 (1,3,2) (0,10,1) (0,13,1) (0,0,8) 43 0.102

6.5 Discussion

In our experiments, we did not use the original softmax as a baseline as it
would cost more energy. To demonstrate this, we conduct a software-based
experiment. We measured the power consumption of softmax operation using
a C-based implementation on CPUs using the Intel performance counter moni-
tor toolset [28]. We find that such software-based softmax implementation con-
sumes more than 103× higher power (12.80 W on CPU vs. 3.78 mW with 19-bit
Approx A approximation in Table 1) than the baseline we consider in our work.
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7 Related Work

Rectified Linear Unit (ReLU). A noteworthy example of function approxi-
mation in modern DNNs is ReLU, which uses piecewise linear function to replace
saturated activation functions (e.g. sigmoid and tanh) [22]. ReLU is composed
of 2 discontinuous pieces, the first assigns 0 to negative part of input features
and the second retains the positive part. ReLU is to alleviate the vanishing gra-
dient problem and accelerate the convergence speed during training, while our
objective in this work is to design hardware-aware Softmax approximation that
minimizes energy/area cost required during inference.

Softmax Approximation. In natural language modeling (e.g. word embed-
ding), many Softmax approximation approaches [4] have been proposed to reduce
the high complexity of computing Softmax, as the number of Softmax compu-
tation is proportional to the vocabulary size with typically more than million
words. One group of work is to shortlist a subset of frequent words, thus avoid
computing the normalization term over all words in the denominator of Softmax
function (see Eq. 1). Examples include hierarchical tree structured Softmax [21]
and differentiated Softmax [4]. Another group is to skip the expensive computa-
tion of normalization term by directly approximating it with sampling techniques
like Monte-Carlo method [3].

Our work differs from these work in three-fold. (1) Objective - Most of these
Softmax approximations are designed to accelerate neural network training only.
Our approach is able to approximate Softmax for both inference and training. (2)
Methodology - These Softmax approximation methods still compute the nonlin-
ear Softmax function, while our method directly approximate the nonlinear func-
tion with cost-efficient linear operations in fixed-point precision, from a hardware
perspective. (3) Task - Instead of language modeling, we target computer vision
applications. Therefore, the design of approximation method requires different
domain knowledge, for instance, hierarchical Softmax [21] builds tree structure
based on word frequency in text, while our method is driven by the input and
output distribution from images.

8 Conclusions and Future Work

In this work, we explored hardware-software co-optimization mechanism to
approximate Softmax function in DNNs and performed extensive algorith-
mic and hardware synthesis experiments to demonstrate the trade-off between
area/energy costs and application accuracy.

Future work includes benchmarking the Softmax approximation approach
against other accelerators, extending the algorithm hardware co-optimization
to other nonlinear functions such as Sigmoid and Tanh, and evaluating the
hardware-aware approximation method in other application domains like lan-
guage modeling. We believe that having a light-weight area-and-energy-efficient
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implementation of nonlinear operations is an innovative key to boost the infer-
ence rate of different DNNs – for image classification, language modeling and
translation, etc. – particularly for resource constraints embedded devices.

Acknowledgement. This research is supported by the Agency for Science, Technol-
ogy and Research (A*STAR) under its Hardware-Software Co-optimization for Deep
Learning (Project No. A1892b0026).

References

1. Amin, H., Curtis, K.M., Hayes-Gill, B.R.: Piecewise linear approximation applied
to nonlinear function of a neural network. In: IEE Proceedings-Circuits, Devices
and Systems (1997)
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