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Abstract. The goal of multi-modal learning is to use complementary
information on the relevant task provided by the multiple modalities
to achieve reliable and robust performance. Recently, deep learning has
led significant improvement in multi-modal learning by allowing for fus-
ing high level features obtained at intermediate layers of the deep neural
network. This paper addresses a problem of designing robust deep multi-
modal learning architecture in the presence of the modalities degraded
in quality. We introduce deep fusion architecture for object detection
which processes each modality using the separate convolutional neural
network (CNN) and constructs the joint feature maps by combining the
intermediate features obtained by the CNNs. In order to facilitate the
robustness to the degraded modalities, we employ the gated information
fusion (GIF) network which weights the contribution from each modality
according to the input feature maps to be fused. The combining weights
are determined by applying the convolutional layers followed by the sig-
moid function to the concatenated intermediate feature maps. The whole
network including the CNN backbone and GIF is trained in an end-to-
end fashion. Our experiments show that the proposed GIF network offers
the additional architectural flexibility to achieve the robust performance
in handling some degraded modalities.
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1 Introduction

Multi-modal learning refers to a machine learning problem aiming to improve
learning performance using the experience acquired from the different types of
data sources. Basically, such multi-modal data delivers rich and diverse informa-
tion on the phenomenon relevant to the given task. Human is naturally born to
be a good multi-modal learner in that it effectively learns from various modalities
including audio, video, smell, touch, and so on. On the contrary, multi-modal
fusion has been one of the most challenging problems in machine learning field
due to the difficulty of combining the high level semantic information delivered
by the different sources. Basically, multi-modal fusion concerns in which data
processing stage the information fusion is conducted, which leads to the cate-
gorization into early fusion and late fusion [19]. While the early fusion aims to
extract the joint representation directly from the raw or preprocessed data, the
late fusion aggregates the decisions separately made by the machine learning
models for each modality. The late fusion is considered to be easy to imple-
ment but its performance is limited in that the correlation structure underly-
ing in multi-modal sources is not fully utilized. Early fusion is also difficult to
find a good joint representation due to significantly different data structures
between modalities. Recent emergence of deep neural network (DNN) technique
(called deep learning) [18] has enabled the extraction of the hierarchical seman-
tic features from the raw data and consequently led to better and flexible use
of feature-level data fusion. The common practice for such feature-level fusion
is to construct the shared representation by merging the intermediate features
obtained by separate machine learning models. In this sense, this fusion app-
roach is referred to as intermediate fusion. Leveraging the high level representa-
tion found by DNN, the deep multi-modal learning (DML) technique was shown
to achieve remarkable performance for a variety of multi-modal learning prob-
lems including audio-visual speech recognition [21,23], multi-modal activity and
emotion recognition [16,24,25], image analysis from RGBD data [7,10,11], and
camera and Lidar sensor fusion [6,35].

The ultimate goal of the multi-modal learning is to achieve the highest level of
reliability and robustness in performing the given task using the redundant infor-
mation provided by multi-modal data. This implies that when the information
provided by a single modality is not sufficiently good enough, the multi-modal
learning uses the complementary information delivered by the different modali-
ties and compensates for the performance degradation. The robustness against
the degraded data quality can also be readily offered by the conventional late
fusion approaches which aggregate the decisions in proportion to their credibil-
ity. On the contrary, it is not obvious how the intermediate fusion for DML can
enjoy such selective information combining since it is difficult for the machine
learning models to judge the reliability of the intermediate features. One con-
ceivable approach is to train the fusion network with the data set containing
various types of degradation, hoping that the architecture learns to use only
reliable features from the multi-modal sources. However, our empirical evalu-
ation reveals that the existing fusion architectures are not flexible enough to
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adapt their fusion strategy to the variation in data quality. This quests the new
DML architecture which can take the information as needed from each modality
to achieve the robust performance.

This paper proposes the DML architecture that can offer robust performance
for missing or degraded modalities. Towards this end, we introduce a feature-level
gated information fusion (GIF) network which combines the features obtained for
each modality in a way that only information relevant to the task is aggregated.
The GIF network controls the amount of information flow incoming from each
modality through gating mechanism. Specifically, the GIF network selectively
gates the contribution of the features by weighting each element of features by
the factor between 0 and 1. These weights are independently calculated through
the separate network called weight generation (WG) network. The WG network
takes all concatenated features for all modalities as an input and produces the
weights by applying the convolution layers followed by the sigmoid function.
In fact, this operation resembles the gating operations used in long short term
memory (LSTM) [13] in that it controls the operation of information gating in
a data-dependent manner. We build the deep 2D object detection architecture
based on the proposed multi-modal fusion method. The proposed method first
applies the multiple convolutional neural network (CNN) networks (e.g. VGG
[31], ResNet [12], etc.) to generate the intermediate feature maps for the different
modalities. Then, we combine these feature maps across the modalities through
the proposed GIF network. The rest of the procedure to perform the object
detection based on the joint feature maps found by the GIF network follows
that of the single shot detector (SSD) [20].

The prior work most closely related to our work is [1], in which the similar
gated fusion was used to extract the joint features from the text and image data.
While the work in [1] focuses on the role of gating function for modality selection,
we aim to highlight the different aspect of the gated fusion for improving the
robustness of deep multi-modal fusion in the context of object detection. The
key contributions of our work are highlighted below.

– We demonstrate that our gated fusion network can effectively improve the
robustness of multi-modal learning. Note that developing a robust perception
system using redundant sensors is a crucial problem in various safety-critical
applications such as autonomous driving and mobile robot.

– We present the robust 2D object detector built upon the proposed multi-
modal fusion scheme. The idea of our weighted information fusion is not
limited to the object detection and can readily extended to other learning
models utilizing multi-modal data.

– In order to promote the robustness of our scheme, we train our model using the
special data augmentation strategy. We generate the additional examples by
corrupting some of modalities in various ways (e.g. blanking, noise addition,
occlusion, severe change in illumination) and guide our model to learn the
way to fuse the different modalities with the proper weights.

– The experiments conducted with the SUN-RGBD dataset [32] and KITTI
camera and Lidar dataset [8] show that the proposed architecture achieves
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better detection accuracy than the baseline object detectors even when the
subset of modalities are severely corrupted.

The rest of the paper is organized as follows. In Sect. 2, we review the previous
literature on the DML. In Sect. 3, we present the details on the proposed GIF
network and the robust 2D object detector based on multi-modal fusion. The
experimental results are provided in Sect. 4 and the paper is concluded in Sect. 5.

2 Related Works

In this section, we briefly review the existing works on the DML methods.

2.1 Deep Multi-modal Learning

The earliest research on DML goes back to the works in [22] and [33] first show-
ing that the effective joint data representation can be found using deep models
such as deep autoencoder and deep Boltzman machine (DBM). Since then, the
DML has been shown to work for a variety of learning tasks including repre-
sentation learning, data fusion, translation, and alignment. (See [2] and [26] for
comprehensive review on DML.) Among them, we specifically review the multi-
modal data fusion due to the relevance to our work. The multi-modal fusion aims
to extract as much relevant information on the task as possible from the data
having heterogeneous characteristics. Since the emerging DNN is good at finding
high-level semantic features through the hierarchical pipelined data processing,
the intermediate fusion, which combines the features found at the middle layers
of the DNN, has given rise to an effective means for multi-modal fusion.

Thus far, various DML techniques have been proposed for different types of
modalities. In [22], the speech recognition was enhanced by using the joint data
representation learned from the voice record and the video of lip movement. In
[16], the audio feature from CNN and the visual features from the deep belief
network were aggregated into single video descriptor for emotion recognition. In
[21] and [24], the feature-level multi-modal fusion was shown to achieve good
performance in the application to speech recognition and sentiment analysis,
respectively. The DML architecture was also designed to generate the effective
features for RGB-D (RGB-depth) and multi-view images. In [7], the feature
vectors obtained from the fully connected (FC) layer of two separate CNNs
were combined to generate the joint features for RGB-D images. In [10], the
performance of the RGB-D fusion was improved by finding the effective encoding
scheme for depth image. In [19], multi-level fusion architecture was proposed to
learn multi-modal features for semantic segmentation.

2.2 Object Detection Using Multi-modal Data

Recently, the CNN led to remarkable performance improvement for the recog-
nition of 2D image. Thus far, various CNN-based object detectors have been
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proposed. Basically, these object detectors calculate the score for the bounding
box candidate and the object class based on the feature map produced by the
CNN. The state-of-the-art object detectors include the faster R-CNN [29], SSD
[20], YOLO [27], and YOLOv2 [28]. The object detection can be extended for
the multi-modal setup. In [36], object detection based on RGB-D data was per-
formed using the cross-modality feature found by three CNN architectures. In
[14], the deep fusion scheme based on RGB-D image was proposed using the hal-
lucination network which learns a new RGB image representation by mimicking
the depth network. In [6], the multi-view images are constructed from raw Lidar
measurement data and used to perform 3D object detection along with RGB
image in the context of automated driving. In [35], the authors proposed the
point-fusion network which predicts the corner location of the 3D bounding box
based on the Lidar 3D point data.

Fig. 1. Overall structure of the proposed R-DML. The R-DML takes the intermediate
feature maps from both modality 1 and modality 2 using separate CNNs and combines
them through the proposed GIF network. The joint feature maps produced by the GIF
network are used to compute the score for object detection following the procedure of
SSD.

3 Robust Deep Multi-modal Learning (R-DML)

In this section, we present our robust deep multi-modal learning (R-DML) archi-
tecture in details.
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3.1 R-DML Architecture

Overall Architecture. The structure of the proposed R-DML is described in
Fig. 1. Though our idea can be applied to the case of more than two modalities,
we consider the example of two modalities. First, two separate CNN pipelines
are used to extract the intermediate features to be fused. Each CNN consists
of the CNN backbone network (e.g. VGG-16) followed by 8 extra convolutional
layers. This configuration is similar to that of SSD. We combine the feature
maps at the layers of conv4 3, conv7 (FC7), conv8 2, conv9 2, conv10 2, and
conv11 2 layers.1 These joint feature maps are used to perform object detection
in different scales. As shown in Fig. 1, the GIF network is employed for feature-
level information fusion. The GIF adjusts the contribution of the feature maps
from each modality adaptively, whose detailed operation will be described next.
In order to validate the benefit of the GIF, we compare our method with the
baseline object detector referred to as the baseline DML (B-DML), which has
the same structure as R-DML except that the combining weights in the GIF
network are fixed to one.

Fig. 2. The structure of the proposed GIF network. The GIF network produces the
weight maps w1 and w2 by applying the convolutional layer and sigmoid function to
the input features. Then, w1 and w2 are multiplied to the feature maps F1 and F2 for
weighted information fusion.

Gated Information Fusion (GIF) Network. Figure 2 depicts the structure
of the GIF network. The GIF network takes the intermediate feature maps from
each CNN as an input and combines them with the weights calculated by the
WG network. Let F1 and F2 be the M × N × K feature maps obtained by two
CNNs corresponding to two input modalities. The actual values of M,N and K
for each layer are provided in Fig. 2. The GIF network consists of two parts: (1)

1 We follow the notations of the SSD in [20].
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the information fusion network and (2) the WG network. The information fusion
network multiplies the M × N weight maps w1 and w2 to the feature maps F1

and F2, respectively. Such multiplication is done in element-wise for each feature
map. Then, the weighted feature maps are concatenated across all modalities and
1 × 1 × 2K convolution is applied to fuse the feature maps. These operations
result in the joint feature maps FJ . Meanwhile, the WG network calculates the
weights based on the input features as shown in Fig. 2. After concatenating the
feature maps over all modalities, two separate 3×3×1 CNN kernels C1 and C2

are applied in parallel to increase the depth in generate the high level features,
which are used to calculate the combining weights2. Then, the sigmoid function
is applied to produce the weight maps w1 and w2. We summarize the operation
of the GIF network in the following equations.

FG = F1 � F2 (1)
w1 = σ(C1 ∗ FG + b1) (2)
w2 = σ(C2 ∗ FG + b2) (3)

FF (i) = (F1(i) � w1) � (F2(i) � w2), i = 1, ...,K, (4)
FJ = ReLU(CJ ∗ FF + bF ) (5)

where

– σ(x) � 1
1+e−x : sigmoid function(element-wise)

– x ∗ y: convolutional layer
– x � y: element-wise product
– x � y: concatenation
– F(i): ith feature map of F
– bF ,b1,b2: biases of the convolution layers.

3.2 Training

Data Augmentation. In order to guide our network to learn to fuse the fea-
tures appropriately in adverse environments, we design the data augmentation
method. We generate the new training examples by applying various types of
degradation to the subset of modalities. With such diverse training examples,
our model would learn the robust multi-modal fusion. In our work, various type
of modifications can be applied for data augmentation, including

– Blank Data (Type 1): we feed all pixel value to zero.
– Random occlusion (Type 2): we occlude the object using the black box whose

size and location are randomly chosen.
– Severe illumination change (Type 3): we brighten the image in the rounded

local region where the center and radius of the region and the brightness are
randomly chosen.

2 Our extensive experiments show that additional depth over single convolutional layer
does not help improving the effectiveness of the gating operation.
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– Additive random noise (Type 4): we add the random Gaussian noise where
noise variance is randomly chosen within the certain range.

– No action.

The type of modification and which modalily will be degraded are chosen ran-
domly with equal probability. Note that this data augmentation strategy is crit-
ical for our method to achieve the robust performance for the scenarios where
some of modalities are corrupted.

Training Setup. Except for our data augmentation strategy, we use the same
training setup used in SSD (e.g., matching strategy, hard negative mining, and
multi-task loss function). We use VGG-16 pretrained model on ImageNet in
two parallel CNN pipelines. The stochastic gradient descent (SGD) are used
with the mini-batch size of 2 and the momentum parameter of 0.9. We set the
initial learning rate to 0.0005. We set the weight decay parameter applied to L2
regularization term to 0.0005.

4 Experimental Results

In this section, we evaluate the performance of the proposed R-DML scheme
using two public datasets: KITTI dataset [8] and SUN-RGBD dataset [32]. We
first investigate the behavior of the gating operation to verify the effectiveness of
the GIF network. Then, we compare the performance of our scheme with that of
other multi-modal fusion schemes. Note that for fair comparison, we re-trained
other algorithms using the same augmentation method as that used to train the
R-DML. A total of 130 epochs and 200 epochs are executed with the KITTI
dataset and SUN-RGBD dataset, respectively.

4.1 Datasets

KITTI Dataset. The KITTI dataset is collected by driving the car equipped
with Pointgrey cameras and a Velodyne HDL-64E Lidar in various driving sce-
narios. The training set and test set contain 7,481 images and 7,518 images,
respectively. Since the labels of the test images are not publicly available, we
split the labeled training dataset into the training set and validation set by half
as done in [5]. We evaluate the 2D detection performance with three object
categories, i.e., car, pedestrian, and cyclist and three difficult levels, i.e., easy,
moderate, hard as proposed in the KITTI Benchmark.

We consider the multi-modal fusion task which performs object detection
using both RGB image and 3D lidar data. In order to preprocess the data for our
object detector, we convert the 3D point cloud data into the 2D image in camera
plane. The 3D point data in KITTI dataset contains the 3D coordinate (X,Y,Z)
and the reflectivity R measured for each reflected laser pulse. Specifically, we
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map the 3D coordinate (X,Y,Z) of Lidar data into the 2D coordinate (x, y) on
camera plane using

[
x
y

]
= calib matrix ·

⎡
⎣X

Y
Z

⎤
⎦ . (6)

where calib matrix is the matrix for coordinate transformation. Note that we
quantize (x, y) to the nearest integer and limit the maximum range of (x, y) by
that of camera plane. For the given 2D coordinate (x, y), we create three channel
image by encoding the values of X, Z, and R to the pixel values. This creates
the image with the depth, height, and intensity (DHI) channels. The pixel values
for the DHI channels are obtained by

vald = 255 · (1 − min[X/max X, 1]) (7)
valh = 255 · (1 − min[Z/max Z, 1]) (8)
vali = 255 · (1 − min[R/max R, 1]). (9)

Note that X ∈ [0,max X], Z ∈ [0,max Z], and R ∈ [0,max R] are mapped to
the pixel values between [0, 255] in a linear scale. For example, we set max X,
max Z, and max R to 80 m, 6 m, and 0.7. Note that the DHI Lidar image and
the RGB camera image of the size 1242×375 are used as the multi-modal inputs
for the proposed object detector. We apply data augmentation to these images.
Since it is hard to introduce noise and illumination change to the Lidar image,
we apply them only for RGB image.

(a) RGB image (b) Illumination (c) Noise (d) Occlusion

Fig. 3. Examples of modifications applied to the camera image on SUN-RGBD dataset.

SUN-RGBD Dataset. The SUN-RGBD dataset is a large-scale RGB-D
dataset collected in indoor environments. It contains 10,335 RGB image and
depth image pairs including NYUDv2 depth [30], Berkeley B3DO [15], and
SUN3D [34]. The dataset consists of 5,285 training set and 5,250 testing set.
We evaluate the detection performance with 19 object categories as in [32]. Note
that we apply the same data augmentation strategy used for the KITTI dataset
and we set the size of the input image to 530× 400. The examples of the modifi-
cations applied to the RGB camera image in SUN-RGBD dataset are illustrated
in Fig. 3.
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Extended Test Dataset. To evaluate the robustness of the proposed R-DML,
we randomly generate the test dataset using the same types of data modifica-
tion applied for the data augmentation. Both KITTI and SUN-RGBD datasets
contain the RGB camera image while the modality 2 corresponds to the Lidar
image and depth image, respectively. In our experiments, we come up with the
following test cases:

– Total: Test with all normal and degraded examples together.
– RGB+modality2: Test with the normal test examples without any degrada-

tion.
– RGB (blank)+modality2: Test with the test examples with RGB image

blanked.
– RGB+modality2 (blank): Test with the test examples with modality 2

blanked.
– RGB (occlusion)+modality2: Test with the test examples with RGB image

occluded.
– RGB+modality2 (occlusion): Test with the test examples with modality 2

occluded.
– RGB (noise)+modality2: Test with the test examples with the noise of the

RGB image changed.
– RGB (illumination)+modality2: Test with the test examples with the illumi-

nation of the RGB image changed.

Note that the performance evaluation is performed with the same number of test
examples for each case.

4.2 Experimental Results on KITTI Dataset

First, we evaluate the performance of the proposed method when tested on
KITTI dataset. As a baseline algorithm, the following multi-modal fusion meth-
ods are considered:

– B-DML: It has the same structure with R-DML except that both gating
weights applied to two modalities are fixed to one.

– Early fusion: We concatenate two modality inputs and feed them into a single
SSD.

– SSD-based fusion: We take the late fusion approach, which combines the
detection boxes generated by two SSDs. Both SSDs are trained with the
camera and Lidar images, separately. We combine the detection boxes found
by two SSDs using non-maximum suppression.

– AVOD [17]: This is the state-of-the-art multi-modal object detection algo-
rithm using both camera and Lidar data. Though the AVOD is capable of 3D
object detection, we transform the 3D box information into the front view to
compare it with our method.

Table 1 provides the average precision (AP) achieved by the algorithms of
interest for Car category. The proposed data augmentation strategy is used for
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Table 1. Detection performance (AP) for car category on the extended KITTI test
dataset

Test

input

Our R-DML B-DML Early fusion SSD-based fusion [20] AVOD [17]

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Total 93.95 86.70 78.05 89.86 82.21 72.21 91.10 85.65 75.83 89.69 82.03 72.96 - - -

RGB +

Lidar

98.69 90.31 82.16 93.61 87.01 77.52 95.84 89.94 79.67 91.72 87.93 78.46 89.85 87.99 80.27

RGB

(blank)

+ Lidar

88.86 78.12 69.68 86.56 74.30 64.71 89.94 78.99 69.56 87.92 77.83 69.11 86.42 69.82 69.77

RGB +

Lidar

(blank)

97.39 90.29 81.84 91.88 88.10 78.68 90.48 88.56 77.92 93.31 89.27 80.03 - - -

RGB

(occl.) +

Lidar

89.88 88.12 79.03 88.12 78.52 68.85 90.22 84.15 73.93 91.78 88.22 78.80 87.94 78.75 78.53

RGB +

Lidar

(occl.)

97.72 90.23 81.94 92.75 87.10 77.67 90.53 88.91 79.07 84.80 74.88 66.33 - - -

RGB

(noise)

Lidar

89.33 80.15 71.12 86.75 75.13 65.71 90.18 81.29 72.04 88.67 76.12 67.18 88.88 79.79 79.46

RGB

(illum.)

+ Lidar

95.82 89.71 80.58 89.37 85.31 75.87 90.48 88.42 78.60 89.69 79.96 70.82 88.60 79.33 79.00

Table 2. Detection performance (AP) for car category on the extended KITTI test
dataset with unseen types of modification

Test input Our R-DML B-DML

Easy Mod. Hard Easy Mod. Hard

RGB + Lidar (Type1. blank) - - - - - -

RGB + Lidar (Type2. occl.) 83.31 82.23 74.41 80.50 77.37 68.89

RGB + Lidar (Type3. illum.) 90.62 89.06 80.04 89.70 87.22 78.59

RGB + Lidar (Type4. noise) 83.10 73.34 65.67 78.15 66.52 58.25

training all methods considered. The AP is evaluated using 3,740 test examples
for each scenario. We observe that the proposed R-DML shows better detection
accuracy than other algorithms in almost all cases. In particular, the R-DML
significantly outperforms the B-DML, which shows the benefit of the proposed
gated fusion method. We see that the performance gain of the R-DML over
B-DML can go up to 5% of AP for some test scenarios (e.g. occlusion case).
Interestingly, the proposed scheme outperforms the B-DML even when the nor-
mal KITTI data is used without any data corruption for test. Since this KITTI
dataset might contain some natural but somewhat benign level of real world
perturbation (e.g. camera noise and adverse illumination change), this could be
a part of evidence showing that the R-DML is robust to real world perturbation
as well as synthetic one. In essence, all these results show that the proposed GIF
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Table 3. Detection performance (AP) on KITTI validation set. (*: trained by us, red
text: ranked first, blue text: ranked second, green text: ranked third)

Method Data Easy Moderate Hard

SSD* [20] Mono 93.31 89.27 80.03

3DOP [5] Stereo 94.49 89.65 80.97

Mono3D [4] Mono 95.75 90.01 80.66

Deep Manta [3] Mono 97.58 90.89 82.72

MV3D [6] Lidar+Mono 95.01 87.59 79.90

SSD-based fusion* Lidar+Mono 91.72 87.93 78.46

B-DML* Lidar+Mono 93.61 87.01 77.52

Our R-DML* Lidar+Mono 98.69 90.31 82.16

network provides better model flexibility to improve the performance of multi-
modal fusion. We evaluate the detection performance on Pedestrian and Cyclist
categories as well. We obtain 70.59 (R-DML) versus 68.37 (B-DML) for moder-
ate level for the pedestrian category and 70.11 (R-DML) versus 68.90 (B-DML)
for the cyclist category. The whole results are provided in the supplemental
material.

In Table 1, we have tested the models using the same type of modification
used for training. However, the real world perturbation is hard to predict so
that it is impossible to synthesize it in the training phase. Thus, the additional
experiments are designed to evaluate how well the proposed method general-
izes to the unseen types of modification. We train the models using the data
augmented with the type 1 to (i − 1) modification and then test with the type
i modification. For example, the models trained with the dataset augmented
by the type 1 (blanking) and type 2 (occlusion) modification are tested with
the type 3 (illumination change) modification. Table 2 shows that the R-DML
achieves the performance gain over the B-DML when tested with each degrada-
tion type. This shows that the proposed method exhibits the robust behavior
when encountered with unseen types of degradation.

Next, we look into the behavior of the gating operation in details. Figure 4
shows the histogram of the GIF weights (averaged over the whole weight map
at the conv4 3 layer) for the case that the RGB image is completely blanked.
Note that the weights multiplied to the RGB features are close to zero in order
to reduce the contribution from the blanked data. On the contrary, we see that
the weights for the normal Lidar image are close to one. In Fig. 5, we visualize
the GIF weight maps learned by the GIF for the case where the RGB image is
locally occluded by the black box. We find that the GIF weights in the camera
side are small only within the locally occluded region while they are high for the
rest of area. Note that the GIF weights for the Lidar image are relatively high
for the whole region. This shows our gating mechanism controls the amount of
information combined depending on the quality of the features for each interested
region.
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Fig. 4. The histogram of the averaged GIF weights at conv4 3 layer. The weights for
the blanked data are close to zero. This demonstrates the operation for reducing the
contribution from unreliable data.

(a) The locally occluded RGB image for test

(b) The weight map applied to RGB fea-
ture maps at conv4 3 layer

(c) The weight map applied to the Lidar
feature maps at conv4 3 layer

Fig. 5. The visualization of the GIF weight maps at conv4 3 layer. Note that the
weights for the RGB features are reduced significantly for the occluded region. This
shows that the gating operation conducts locally controlled information fusion.

In Table 3, we compare the performance of the proposed method with other
state of the art 2D object detectors when tested with the original KITTI dataset.
The candidate detectors include SSD [20], 3DOP [5], Mono3D [4], Deep Manta
[3], and MV3D [6]. For fair comparison, we use the same train/validation split
method used in [3–6]. Note that SSD-based fusion, B-DML and the proposed R-
DML are trained with the proposed data augmentation schemes. We observe that
the performance of the proposed object detector is better or on par with the other
algorithms for all difficulty levels. This shows that the proposed fusion method
exhibits competitive performance for the normal environment while promising
the robust performance in the adverse environment. Note that even though the
proposed R-DML is built upon the baseline SSD, significant performance gain is
achieved over the baseline SSD through the multi-modal fusion strategy proposed
in our work. It is interesting that the B-DML does not perform better than the
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SSD. This issue appears to be due to different data augmentation strategies used
for training the B-DML and SSD. Due to the limitation of the SSD taking only
single input modality, we could not train the SSD with our data augmentation
strategy. On the other hand, the B-DML is trained with the data augmentation.
We see that the B-DML does not achieve better performance than the SSD
with the normal KITTI data. On the contrary when both methods are trained
without data augmentation, the B-DML outperforms the SSD. Note that our
R-DML significantly outperforms the B-DML and the SSD for both normal and
extended KITTI datasets.

4.3 Experimental Results on SUN-RGBD Dataset

Table 4 provides the mean average precision (mAP) of the proposed object detec-
tion algorithm. Since there are not many recent 2D object detection algorithms
using SUN-RGBD dataset, we compare our method with only the B-DML and
supervision transfer (ST) methods [11]. The ST method is the fast-RCNN [9]
based object detector which combines the detection boxes obtained by two sep-
arate object detectors. For fair comparison, we trained the B-DML and ST with
the same augmentation method as that used for our R-DML. For each test case,
we use the 5,250 test examples. We see in Table 4 that the proposed R-DML
achieves better detection accuracy than the B-DML, which reveals the effective-
ness of our gated fusion algorithm for the task of the RGB and depth image
fusion as well. Note that the R-DML maintains the performance gain over the
B-DML even when the normal SUN-RGBD dataset are used for test without
any modification. The AP results per category are provided in the supplemental
material.

Table 4. Results for detection performance (mAP) on extended SUN-RGBD test
dataset

Test Input Our R-DML B-DML Supervision transfer [11]

Total 34.72 29.13 21.35

RGB + depth 40.43 36.31 26.68

RGB (blank) + depth 30.76 28.37 15.81

RGB + depth (blank) 32.69 12.03 22.25

RGB (occlusion) + depth 35.65 29.39 22.95

RGB + depth (occlusion) 35.04 33.12 22.75

RGB (noise) + depth 32.76 31.50 16.65

RGB (illumination) + depth 35.67 33.19 22.40
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5 Conclusions

In this paper, we proposed the robust multi-modal learning technique which
fuses the intermediate features produced by the CNN with appropriate contri-
butions. Inspired by the gating mechanism used in LSTM, we devised the gated
information fusion network, which combines the features from each modality
with the weights computed based on the input features to be fused. Such GIF
network was used to perform 2D object detection using multi-modal inputs and
the whole system is trained end-to-end. We used the special data augmentation
strategy for promoting the robustness of our system, which corrupts some of
modalities using various artificial operations. The experiments performed over
KITTI dataset and SUR-RGBD dataset shows the superiority of the proposed
method for the scenarios of missing or degraded modalities.
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