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Abstract. Temporal action detection is a challenging task for detect-
ing various action instances in untrimmed videos. Existing detection
approaches are unable to localize the start and end time of action
instances precisely. To address this issue, we propose a novel Temporal
Deconvolutional Pyramid Network (TDPN), in which a Temporal Decon-
volution Fusion (TDF) module in each pyramidal hierarchy is developed
to construct strong semantic features of multiple temporal scales for
detecting action instances with various durations. In the TDF module,
the temporal resolution of high-level feature is expanded by a tempo-
ral deconvolution. The expanded high-level features and low-level fea-
tures are fused by a fusion strategy to form strong semantic features.
The fused semantic features with multiple temporal scales are used to
predict action categories and boundary offsets simultaneously, which sig-
nificantly improves the detection performance. Besides, a strict strategy
for assigning label is proposed during training to improve the precision
of temporal boundaries learned by model. We evaluate our detection
approach on two public datasets, i.e., THUMOS14 and MEXaction2.
The experimental results have demonstrated that our TDPN model can
achieve competitive performance on THUMOS14 and best performance
on MEXaction2 compared with the other approaches.
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1 Introduction

Temporal action detection has numerous potential applications in video surveil-
lance, video content analysis and intelligent home care. This task is to detect
action instances in untrimmed videos, which needs to output the action cat-
egories and the precise start and end time. Since there is high variability in

Y. Zhu—This work was supported in part by the Shenzhen Municipal Development
and Reform Commission (Disciplinary Development Program for Data Science and
Intelligent Computing); and by Shenzhen International cooperative research projects
GJHZ20170313150021171.

c© Springer Nature Switzerland AG 2019
C. V. Jawahar et al. (Eds.): ACCV 2018, LNCS 11364, pp. 696–711, 2019.
https://doi.org/10.1007/978-3-030-20870-7_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20870-7_43&domain=pdf
https://doi.org/10.1007/978-3-030-20870-7_43


A Temporal Deconvolutional Pyramid Network for Action Detection 697

the duration of action from arbitrarily long video, temporal action detection is
substantially challenging.

In recent years, some progress has been made in temporal action detec-
tion [3,16,22,31,33,34]. Many works regard this task as a classification prob-
lem, which contains candidate generation stage and classification stage. Earlier
attempts [4,33] in temporal action detection adopt sliding windows as candidates
and design hand-crafted features for classification, which is computationally
expensive. Inspired by progress in image object detection [20], many approaches
[22,31,34] adopt the “Proposal + Classification” framework, where a classifier is
used to classify action instances generated by proposal methods [6,9]. However,
there are some major drawbacks in these approaches. First, the process of pro-
posal generation requires additional time and space costs. Second, deep convolu-
tional features with fixed temporal resolution are used to detect action instances
with various temporal scales, which limits the detection performance of these
methods. Inspired by unified models [19,29] in object detection, SSAD network
[16] and SS-TAD [12] network completely eliminate action proposal generation
stage and predict temporal boundaries and specific action categories simultane-
ously. Although these approaches have a fast speed for detecting actions, the
accuracy of detected temporal boundaries is still unsatisfied. For the SS-TAD
[12] network, the used recurrent memory modules have a limit span of temporal
attention leading to imprecise temporal boundaries. For the SSAD network [16],
multiscale features are extracted by temporal convolution to detect actions, yet
these features are temporally coarser, so that it cannot localize the start and
end of action instances precisely. Besides, the detection performance of SSAD
network is dependent heavily on feature extractor since final action classes are
obtained by fusing predicted class scores and snippet-level action scores from
feature extractor.

To address these issues, we propose a new Temporal Deconvolutional Pyra-
mid Network (TDPN), which adopts Temporal Deconvolution Fusion (TDF)
modules in various pyramidal hierarchies to integrate strong semantic infor-
mation into feature maps with multiple temporal scales. Inspired by FPN [15]
network in object detection, we introduce a top-down pathway with lateral con-
nection into SSAD [16] network to extract temporal feature pyramid. Note that
it is non-trivial to adapt the top-down architecture from object detection to
temporal action detection, which needs to be designed to efficiently deal with
temporal features. Different from FPN [15] network, our TDF module in top-
down pathway adopts temporal deconvolution to expand temporal resolution of
feature maps. To further improve detection performance, we investigate differ-
ent fusion strategies for features from different pyramid hierarchies in the top-
down pathway. Compared to SSAD [16] network, the fused feature sequences
with same temporal resolution contains stronger semantics and more context
information, which can significantly improve detection performance. The fused
semantic features with multiple temporal scales are used to predict action class
scores and boundary offsets simultaneously. The post-processing step of TDPN
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model is simple and only Non-Maximum Suppression (NMS) is used to remove
repeatable detection results.

Our main contribution is the proposal of a new Temporal Deconvolutional
Pyramid Network for temporal action detection that is eminent in the following
aspects: (1) The TDPN model constructs strong semantic features with mul-
tiple temporal resolution by using TDF modules in various pyramidal hierar-
chies to detect action instances, which significantly improves detection perfor-
mance. (2) Our TDPN model can learn precise temporal boundaries of action
instances by using a fusion strategy for features from different pyramid hierar-
chies and a strict strategy for assigning label during training. (3) Our TDPN
model achieves competitive performance (mAP@tIoU = 0.5 of 40.7%) on THU-
MOS14 dataset and outperforms other approaches on MEXaction2 dataset by
increasing mAP@tIoU = 0.5 from 11.0% to 22.1%.

2 Related Work

Action Recognition. Over the past several years, great progress has been
made in action recognition task. Earlier work mainly focuses on hand-crafted
features, such as space-time interest points (STIP) [14] and Improved Dense
Trajectory (iDT) [26]. With the remarkable performance obtained from deep
neural network in image analysis, many methods adopt features extracted from
deep neural networks [23,24]. Two-stream architecture [23] is proposed, which
adopts two convolutional neural networks (CNNs) to extract appearance and
motion features from single frame and stacked optical flow field respectively. 3D-
CNN [24] learns appearance and motion features directly from frame volumes
using 3D convolutional filters, which is more efficient than two-stream network.
As a upgraded task, temporal action detection usually adopts action recognition
models to extract spatiotemporal features. In our TDPN model, a deep two-
steam network is used as feature extractor.

Object Detection. According to the used detection framework, object detec-
tion methods can be broadly divided into two categories. One is “detect by
classifying object region proposals” framework, including region proposal gen-
eration stage and classification stage, such as Faster R-CNN [20] and Feature
Pyramid Network (FPN) [15]. The region proposals are generated by some meth-
ods, such as SelectiveSearch [25] and RPN [20], and then classification network
predicts object categories and location offsets of region proposals. The other one
is unified detection framework, which skips proposal generation step and encap-
sulates all computation in a single network. Typical networks of this framework
are YOLO [19] and SSD [29]. Object detection focuses on regions of interest in
images, yet temporal action detection requires to combine temporal information
to detect actions of interest in videos. Different from the FPN [15] network, our
TDPN network adopts temporal deconvolution to deal with multiscale temporal
features.
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Fig. 1. Framework of our approach: the whole framework includes feature extractor,
the TDPN network and the post-processing. Our TDPN network consists of modified
SSAD basic layers, Temporal Deconvolution Fusion (TDF) modules, anchor layers and
prediction layers. NMS is used to filter out duplicate detection results

Temporal Action Detection. Affected by the object detection methods,
temporal action detection approaches are also broadly divided into “proposals
by classification” framework and unified framework. For the previous frame-
work, many methods for generating action proposals have been proposed, such
as Sparse-prop [9] and TURN [6]. In the classification process, earlier works
[11,17,33] mainly use hand-crafted features to classify action proposals. Recently,
many approaches extract appearance and motion features using deep neural
network [31,34,35] to detect action instances, which improves detection perfor-
mance. Segment-CNN [35] proposes three segment-based 3D ConNets for detect-
ing action: proposal network, classification network and localization network.
Structured segment network (SSN) [34] models temporal structure of action
instances via a structured temporal pyramid and a decomposed discriminative
model. Based on Faster R-CNN framework, recently proposed TAL-Net [3] net-
work improves receptive field alignment by a multi-tower network and exploits
temporal context by extending receptive fields. Different from TAL-Net net-
work, our TDPN model constructs temporal feature pyramid by using temporal
convolution and deconvolution for detecting action instances directly without
proposal generation process. UntrimmedNet [27] is a weakly supervised architec-
ture, in which classification module and selection module are developed to learn
action models and detect action instances respectively. Recurrent neural net-
works (RNNs) are also used to learn temporal information in many action detec-
tion methods [32,33]. The unified framework eliminates the proposal generation
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Fig. 2. Unit-level feature extraction. A untrimmed video is divided into units which
consists of frame volume and stacked optical flow and unit-level feature sequences are
extracted by two-steam network as the input of our TDPN model

stage and predict action categories and location offsets simultaneously, such as
SSAD [16] and SS-TAD [12]. Our TDPN model also adopts the unified frame-
work to detect action instances in untrimmed videos.

3 Approach

In this section, we introduce our Temporal Deconvolution Pyramid Network
(TDPN) and the training procedure. As shown in Fig. 1, the whole architecture of
system consists of feature extractor, the TDPN network and the post-processing.
Initial feature pyramid is obtained by temporal convolution in modified SSAD
basic layers, and a new Temporal Deconvolution Fusion (TDF) module is devel-
oped to extract strong semantic features with multiple temporal resolution. In
the post-processing, NMS is used to remove repeatable results to obtain final
detection results. We will describe each component and training procedure in
details.

3.1 Video Unit Feature Extraction

We adopt deep two-stream network [30] to extract feature sequences as the
input of TDPN model, where spatial CNN network uses ResNet [8] model and
temporal CNN network adopts BN-Inception model [10]. A untrimmed video
V is divided into Tv/mu consecutive units where mu is the number of frames
in a unit and Tv is the number of frames in V . We pad the video in tail with
last frame so that each unit has the same length mu. Note that units are not
overlapped with each other. As shown in Fig. 2, a frame volume with 8 frames is
sampled uniformly from a unit, which is fed into the spatial network to extract
features of “Flatten 673” layer. We compute the mean of these 8 feature vectors
as unit-level appearance feature. Stacked optical flow field is calculated from 6
consecutive frames at the center of a unit, which is fed into the temporal network
to extract motion feature of “global pool” layer. The appearance feature vector
and the motion feature vector are concatenated as the feature vector of a unit.
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Given a untrimmed video V , we can extract a unit-level feature sequence.
Since the length of video is various, we use a sliding window with fixed length
to divide the feature sequence into segments as the input of the TDPN model.

3.2 TDPN Network

We propose the TDPN model, which consists of modified SSAD basic layers,
Temporal Deconvolution Fusion (TDF) modules, anchor layers and prediction
layers. A key innovation is to strengthen semantics of multiscale features by using
TDF modules in the top-down pathway, which improves significantly detection
performance. The post-processing step of TDPN model is simple and only NMS
is used to filter out duplicate detection results.

Modified SSAD Basic Layers. In the bottom-up pathway of our TDPN
model, the modified SSAD basic layers is used, which consists of base layers and
three temporal convolutional layers, as shown in Fig. 1.

The original base layers of SSAD [16] network contains two temporal convo-
lutional layers for increasing the size of receptive fields and two temporal max
pooling layers for shortening feature maps. Note that the max pooling layers
are removed in the base layers of TDPN model since the temporal length of
input features needs to remain unchanged in these layers. Then three temporal
convolutional layers are stacked to extract initial feature maps with multiple
temporal resolution. We denote the feature map of l-th temporal convolutional
layer in the bottom-up pathway as F l

E ∈ RLl×Tl . The output feature maps of
these convolutional layers are F 1

E , F 2
E and F 3

E with size Lw/2× 512, Lw/4× 512
and Lw/8 × 512 respectively.

Temporal Deconvolution Fusion Module. As shown in Fig. 3, Temporal
Deconvolution Fusion (TDF) module in each pyramid hierarchy of the top-down
pathway is comprised of temporal deconvolutional layers, fusion sub-module,
temporal convolutional layers and batch normalization layers, which is used to
fuse semantically strong, temporally coarser features from top-down pathway
and temporally fine features from bottom-up pathway.

The temporal deconvolution is actually the transpose of temporal convolution
rather than an actual deconvolution, which is a convolutional form of sparse
coding. Filters of the temporal deconvolutional layers can be parameterized by
weights Wl ∈ RTl×d×Tl−1 and biases bl ∈ RTl , where d is the duration of filters,
Tl and Tl−1 respectively indicate the number of filters in the l-th and (l − 1)-th
deconvolutional layer. The output vector Et of the l-th deconvolutional layer at
time step t is

El
t = f(

d∑

t′=1

〈
W l

t′ , El−1
t+d−t′

〉
+ bl) , (1)

Where f(•) is the activation function, El−1
t+d−t′ is the activation vector of the

(l − 1)-th deconvolutional layer at the time step (t + d − t′).
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Fig. 3. TDF module. Temporal deconvolution is used to expand temporal dimension
of high-level, strong semantic feature maps from top-down pathway. Low-level feature
maps with high temporal resolution come from the bottom-up pathway. Fusion sub-
module is adopted to fuse high-level features and low-level features

Then a temporal convolutional layer is added to further expand the temporal
receptive field and a batch normalization layer is adopted to speed up training
and further improve detection accuracy. With these layers, the temporal dimen-
sion of high-level feature map from top-down pathway is doubled. We adopt
1 × 1 convolution to match the number of channels in low-level features from
bottom-up pathway. The fusion sub-module is used to fuse the high-level fea-
ture maps with expanded temporal dimension and low-level feature maps from
the bottom-up pathway. To further improve detection performance, we explore
different fusion methods, including element-wise sum, element-wise mean and
channel concatenation.

Two TDF modules are stacked in the top-down pathway, which output fea-
ture maps F 1

D and F 2
D with size Lw/2×512 and Lw/4×512 respectively. Together

with the output of the last layer F 3
E ∈ RLw/8×512 in the bottom-up pathway, the

fused feature maps are used to predict action class scores and boundary offsets
simultaneously.

Anchor and Prediction Layers. We use three anchor layers composed of
temporal convolution to process the fused feature maps with multiple temporal
scales from the top-down pathway. In each feature map of anchor layers, each
temporal location is associated with K anchor instances with different scales.
The scale ratios of anchors are the same as the ones used in SSAD [16] network,
as shown in Table 1. When the length of video unit mu is 16, the strides of these
feature sequences are 32, 64, 128 frames respectively. The temporal scale ranges
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Table 1. The anchor settings for feature sequences with different temporal resolutions
in the proposed TDPN model.

Feature maps Strides Anchor scale ratios Temporal scale ranges

F 1
D 32 (1, 1.5, 2) 32–64

F 2
D 64 (0.5, 0.75, 1, 1.5, 2) 32–128

F 3
D 128 (0.5, 0.75, 1, 1.5, 2) 64–256

of these anchor instances are 32–64, 32–128 and 64–256 frames, respectively. An
important reason why the performance of our TDPN model is better than SSAD
model is that the anchor instances with same temporal scales contains context
information and strong semantics.

In the prediction layer, temporal convolution is adopted to predict action
categories probabilities, boundaries offsets and overlap scores simultaneously.
Each level of the temporal feature pyramid corresponds to a prediction layer
and parameters are not shared in these layers. Similar to SSAD [16], classifica-
tion scores are obtained by softmax layer and overlap scores are normalized by
sigmoid function. Finally, we use NMS to remove duplicate results to obtain final
detection results. The threshold in NMS is set to 0.1 by empirical validation.

3.3 Training

Label Assignment. We propose a new strategy for assigning action label to
the detected action instances during training. Given a window wi, gi is the
corresponding ground truth instances, including action categories, the starting
and ending frames of action instances. Based on the time intersection-over-union
(tIoU), we assign an activity label to a predicted anchor instance (1) if the highest
one among the tIoUs with all ground truth instances gi is higher than a threshold
σ; (2) if it has the highest tIoU for a given ground truth instance. Note that the
priority of the first case is higher than the second to avoid a predicted anchor
instance being assigned multiple activity labels. When these conditions are not
satisfied, it will be assigned a background label. The threshold σ is set to 0.7 by
empirical validation. Our TDPN model can learn precise temporal boundaries of
action instances by using this strict strategy for assigning label during training.

Optimization. Temporal action detection is a multi-task problem, including
regression and classification tasks. To train the TDPN model, we need to opti-
mize both regression and classification tasks jointly. The objective loss function
is a weighted sum of the softmax loss and the smooth L1 loss, which is given by:

Loss = Lsoftmax + λLreg + L2(Θ) , (2)

where Lsoftmax is a standard multi-class softmax loss function; Lreg is smooth
L1 loss; L2(Θ) is the L2 regularization loss; Θ represents the parameters of the
TDPN model; λ is a loss trade-off parameter and is set to 2.
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Lreg is defined as

Lreg =
1
N

N∑

i=1

C∑

z=1

lzi [R(Δĉzi − Δczi ) + R(Δŵz
i − Δwz

i )], (3)

where Δc and Δw are location transformations of ground truth instances; Δĉ
and Δŵ are the same for predicted action instances; N is the number of training
samples in the mini-batch; C denotes the number of classes; R is the L1 distance;
lzi = 1 when the true class label of the i-th instance is z, otherwise, lzi = 0.

4 Experiments

In this section, the experiments are conducted to evaluate the performance of
our proposed TDPN model on two detection benchmark datasets: THUMOS14
[13] and MEXaction2 [1].

4.1 Evaluation Datasets

THUMOS14 [13]. The whole dataset contains 1010 untrimmed videos for vali-
dation and 1574 untrimmed videos for testing. In the temporal action detection
task, 200 validation set videos and 213 test set videos have temporal annota-
tions in 20 action categories. This dataset is particularly challenging as many
action instances have very short duration in pretty long videos. This dataset
dose not provide the training set by itself, so the UCF-101 dataset including
13320 trimmed videos is appointed as the official training set. Following the
practices, we only use its validation set for training and the test set for eval-
uating the TDPN network. Note that we remove two falsely annotated videos
(“270”, “1496”) in the test set.

MEXaction2 [1]. This dataset contains three subsets: INA videos, YouTube
clips and UCF101 Horse Riding clips. In the Mexaction2 dataset, only two action
classes are annotated temporally: “BullChargeCape” and “HorseRiding”. INA
videos consist of 117 untrimmed videos with approximately 77 h in total, which
are divided into three parts: training, parameter validation and testing. YouTube
clips and UCF101 Horse Riding clips are trimmed and each clip contains one
action instance, which are only used for training. Although this dataset only con-
tains two action categories, it is particularly challenging in temporal action detec-
tion task. There are high imbalance between background and action instance of
interest and high variability in point of view, image quality and action duration
for “HorseRiding” in the MEXaction2 dataset.

Evaluation Metrics. We follow the convention metrics used in the THU-
MOS14, which use mean Average Precision (mAP) at different tIoU thresholds
for evaluation and calculate Average Precision (AP) for each activity categories.
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Table 2. Ablation study of TDF module in the proposed TDPN model. “SP” denotes
that the network has single pathway and “TP” denotes that the network has two
contrary pathway.

tIoU 0.1 0.2 0.3 0.4 0.5

SSAD [16] 50.1 47.8 43.0 35.0 24.6

re-trained SSAD (SP) 54.6 52.1 47.7 41.1 31.1

Our TDPN (TP) 58.6 56.3 51.8 44.4 35.0

On THUMOS14, the mAP with tIoU thresholds {0.1, 0.2, 0.3, 0.4, 0.5} is used
for comparing the performance of different methods and the AP at 0.5 tIoU is
used for each activity category. On the MEXaction2 dataset, the mAP at 0.5
tIoU is used to compare performance of different approaches.

4.2 Implementation Details

During training, the length of sliding window is Lw and the stride size is 1
4Lw.

Note that the stride size is 3
4Lw during prediction. The windows of training

data should contain at least one ground truth instance and the windows without
ground truth instances will be held out from training. Lw is set to 32 by empirical
validation. The batch size is 32 and each mini-batch is constructed from one
window. To make the TDPN model converge fast, we randomly shuffle the order
of training data. Similar to SSAD [16], the hard negative mining strategy is
adopted to balance the proportion of positive and negative samples. Since there
is no suitable pre-trained temporal deconvolutional network, the parameters of
whole TDPN model are randomly initialized by the Xavier method [7]. The
learning rate is initially set to 10−4 and then reduced by a factor of 10 after
every 30 epochs. Training is terminated after a maximum of 60 epochs. We
implement our system using Tensorflow [2], with training executed on a machine
with 32G memory, NVIDIA Titan Xp GPU and Intel i7-6700K processor.

4.3 Ablation Study

Two Pathways vs Single Pathway. Our TDPN model contains two contrary
pathways by introducing a top-down pathway into SSAD [16] network. The main
strength of our TDPN model is that the features constructed by TDF modules in
the top-down pathway contain more context information and stronger semantics
than the ones with same temporal resolution in SSAD network. To compare
fairly with SSAD network, we re-train the SSAD network using the unit-level
feature sequences as our baseline model. The used strategy for label assignment
is same as the one proposed in SSAD [16]. The element-wise sum is chosen
as the fusion method in TDF module, which provides the best performance
(See Table 3 bottom sections). Table 2 lists the detection results of our baseline
model and TDPN model on THUMOS14, which shows that the mAP at 0.5
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Table 3. Ablation study of methods for fusing feature sequences.

Fusion methods mAP (θ = 0.5)

Eltw-mean 37.9

Channel concatenate 38.8

Eltw-sum 40.7

Table 4. Ablation study of strategy for label assignment. “LA1” denotes the strategy
for assigning label used in SSAD [16]. “LA2” denotes the strategy proposed in this
paper.

tIoU 0.1 0.2 0.3 0.4 0.5

TDPN (LA1) 58.6 56.3 51.8 44.4 35.0

TDPN (LA2) 63.1 61.1 56.7 49.9 40.7

tIoU of the re-trained SSAD model increases from 24.6% to 31.1%. Compared
to the SSAD model with single pathway, the mAP at 0.5 tIoU of our TDPN
model increases from 31.1% to 35.0% (about 3.9% improvement). From these
results, we can get two conclusions: (1) Strong semantic features with multiple
temporal resolution constructed by TDF modules in the top-down pathway can
significantly improve detection performance. (2) The unit-level feature sequences
are effective to represent the spatiotemporal characteristics of actions.

Methods for Fusing Feature Sequences. We explore the different fusion
methods in the TDF module of our TDPN model, including element-wise sum,
element-wise mean and channel concatenation. During training, we use the strat-
egy for label assignment proposed in Sect. 3.3 to train our TDPN model. The
mAP at 0.5 tIoU is adopted to compare different methods on THUMOS14.
As shown in Table 3, the element-wise sum method achieves best performance
among these methods (the 40.7% mAP at 0.5 tIoU). Therefore, element-wise
sum can effectively combine high-level feature maps with coarser temporal reso-
lution and low-level feature maps with fine temporal resolution, which improves
the performance of the TDPN detector.

Strategies for Label Assignment. Here, we evaluate that the impact of
label assignment on detection performance on THUMOS14. “LA1” denotes the
strategy for label assignment proposed in SSAD [16], where a predicted action
instance is assigned the corresponding activity label if its highest tIoU with all
ground truth instances is higher than 0.5. “LA2” denotes that the strategy for
label assignment discussed in the Sect. 3.3. We use these strategies to train our
TDPN model respectively. Action detection results are measured by mAP of
different tIoU thresholds. As shown in Table 4, the strategy proposed in this
paper achieves the best performance (about 5.7% improvement of the mAP at
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Table 5. Action detection results on THUMOS14 test dataset, measured by mAP at
different tIoU thresholds.

tIoU 0.1 0.2 0.3 0.4 0.5

Wang et al. [28] 18.2 17.0 14.0 11.7 8.3

Oneata et al. [18] 36.6 33.6 27.0 20.7 14.4

SLM [21] 39.7 35.7 30.0 23.2 15.2

FG [32] 48.9 44.0 36.0 26.4 17.1

PSDF [33] 51.4 42.6 33.6 26.1 18.8

S-CNN [35] 47.7 43.5 36.3 28.7 19.0

CDC [22] - - 40.1 29.4 23.3

SSAD [16] 50.1 47.8 43.0 35.0 24.6

TURN [6] 54.0 50.9 44.1 34.9 25.6

RC3D [31] 54.5 51.5 44.8 35.6 28.9

CBR [5] 60.1 56.7 50.1 41.3 31.0

TAL-Net [3] 59.8 57.1 53.2 48.5 42.8

SSAD (re-trained) 54.6 52.1 47.7 41.1 31.1

TDPN (ours) 63.1 61.1 56.7 49.9 40.7

0.5 tIoU) compared with the strategy used in SSAD [16]. Our proposed strategy
increases the number of positive samples with short duration that are detected
hard during training. These results demonstrate that our strict strategy for label
assignment can improve the precision of temporal boundaries learned by model.

From the above comparisons, we adopt the unit-level feature sequences as the
input of our TDPN model, the fused features with multiple temporal resolutions
for detecting action instances and strict label assignment for training. Next, the
TDPN model will be compared with other state-of-the-art approaches.

4.4 Comparison with the State of the Art

On the THUMOS14 and MEXaction2 datasets, we compare our TDPN model
with existing state-of-the-art approaches, and using the matrix mentioned above
reports detection performance. In our experiments, we set the unit length and
window length to 16 and 32 respectively and use element-wise sum method to
fuse features in the TDF module.

THUMOS14. In the last row of Table 5, our TDPN model shows about 9.6%
improvement at the mAP@0.5 over our re-trained SSAD network, which indi-
cates the importance of exploiting the feature maps with the high temporal
resolution and strong semantics. Moreover, we compare the TDPN model with
state-of-the-art approaches and the results during challenge [18,28]. As shown in
Table 5, when the tIoU threshold is less than 0.5, our TDPN model outperforms
the prior state-of-the-art approaches, including Cascaded Boundary Regression
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Fig. 4. Per-class AP at 0.5 tIoU threshold on THUMOS14

Table 6. Average precision on MEXaction2 dataset. The tIoU threshold is set to 0.5.

Methods BullChargeCape HorseRiding mAP (%)

DTF [1] 0.3 3.1 1.7

S-CNN [35] 11.6 3.1 7.4

SSAD [16] 16.5 5.5 11.0

Our TDPN 35.2 9.1 22.1

(CBR) [5] and recently proposed TAL-Net [3] network. When the tIoU threshold
is 0.5, our TDPN model achieves competitive performance. These results indicate
that the TDPN model can detect the temporal boundaries in untrimmed video
precisely. Figure 4 shows the AP at 0.5 tIoU for each action category of different
methods including CBR [5], re-trained SSAD and our TDPN model. Our app-
roach performs the best for 12 action categories compared with other methods,
specially for “GolfSwing”, “HammerThrow” and “ThrowDiscus”. These results
clearly demonstrates the superiority of our method. Qualitative detection results
on THUMOS14 are shown in Fig. 5.

MEXaction2. We use all 38 untrimmed videos in MEXaction2 training dataset
to train our TDPN model. The anchor scale ratios are the same as ones used
in THUMOS14 dataset since the duration distribution of action instances on
MEXaction2 is similar to the THUMOS14 dataset.

We compare TDPN model with other existing methods, including typical
dense trajectory features (DTF) [1], Segment-CNN (SCNN) [35] and SSAD
[16]. All methods are evaluated using standard criteria mentioned in Sect. 4.1.
According to Table 6, our TDPN model outperforms other approaches for both
“BullChargeCape” action and “HorseRiding” action, and the mAP at 0.5 tIoU
threshold increases from 11.0% to 22.1% (about 11.1% improvement). The major
challenge of this dataset is high variability in point of view, action duration for
“HorseRiding” and image quality. These results indicate our TDPN model is
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Fig. 5. Qualitative visualization of the actions detected by the TDPN network. Figure
(a) and Figure (b) show detection results for two action classes on THUMOS14 dataset
and MEXaction2 dataset respectively

capable of handing such problems. Figure 5 displays the visualization of detec-
tion results for “BullChargeCape” and “HorseRiding” respectively.

5 Conclusions

In this paper, we propose the Temporal Deconvolutional Pyramid Network
(TDPN) for temporal action detection. The temporal convolutions are adopted
to construct a initial feature pyramid in the bottom-up pathway. With the strong
semantic features formed by Temporal Deconvolution Fusion (TDF) modules in
various pyramidal hierarchies, the detection performance can be improved sig-
nificantly. We explore different fusion strategies and the experiment results have
showed that element-wise sum can achieve the excellent performance. To further
improve detection accuracy, a strict strategy for label assignment is designed to
train the model. Finally, the proposed TDPN model achieves competitive per-
formance on THUMOS14 and outperforms other approaches on MEXaction2,
which demonstrates our method is capable of localizing temporal boundaries
precisely. For future work, we plan to explore end-to-end system that combines
feature extractor and TDPN model to detect action instances from raw videos.
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