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Abstract. We study weakly supervised learning for object detectors,
where training images have image-level class labels only. This problem
is often addressed by multiple instance learning, where pseudo-labels of
proposals are constructed from image-level weak labels and detectors are
learned from the potentially noisy labels. Since existing methods train
models in a discriminative manner, they typically suffer from collapsing
into salient parts and also fail in localizing multiple instances within an
image. To alleviate such limitations, we propose simple yet effective regu-
larization techniques, weight reinitialization and labeling perturbations,
which prevent overfitting to noisy labels by forgetting biased weights. We
also introduce a graph-based mode-seeking technique that identifies mul-
tiple object instances in a principled way. The combination of the two
proposed techniques reduces overfitting observed frequently in weakly
supervised setting, and greatly improves object localization performance
in standard benchmarks.

Keywords: Weakly supervised learning · Object detection ·
Regularization

1 Introduction

Object detection algorithms recently demonstrate remarkable performance
thanks to advances of deep neural network technologies [5,12,13,24,27,28,30]
and well-established datasets provided with bounding box annotations [11,20,
23]. Despite their great success, many object detection algorithms still suffer from
a critical limitation caused by lack of training examples with proper annotations.
In particular, due to substantial cost for bounding box labeling and inherent
skewness of training data distributions, existing datasets for object detection
are often insufficient in their quantity and diversity for majority of classes. This
fact incurs overfitting to datasets and damages generalization performance of
models.
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Weakly supervised object detection (WSOD) has been studied as a solu-
tion to the above issues [1,2,4,21,22,39]. The primary goal of this task is to
train object detectors using image-level class labels only. The limitations of
the standard object detection algorithms can be alleviated by weakly super-
vised approaches because image-level class labels are readily available in several
existing large-scale datasets for image classification, e.g. ImageNet [6], or easily
obtainable due to their low annotation cost. However, learning object detectors
based only on image-level class labels is challenging because the labels indi-
cate presence or absence of each object class without localization information of
objects.

Many recent weakly supervised object detection algorithms rely heavily on
weakly supervised deep detection network (WSDDN) [2]. This approach iden-
tifies relevant bounding boxes to individual classes by applying softmax opera-
tions to score matrices across object proposals and candidate class labels. The
performance of this method has been improved by adding a few refinement lay-
ers [39]. However, WSDDN and its extensions have the following critical limi-
tations. First, as in many other weakly supervised object detection techniques,
noisy annotations estimated by object detectors based on weak labels may make
models converge to bad local optima in training. Second, due to characteristics
of softmax functions, the method is prone to identify only a single target class
and object instance in an input image. Consequently, they are not effective to
handle images with multiple objects corresponding to diverse class labels.

To alleviate the limitations, we propose simple yet effective multi-round reg-
ularization techniques for handling noisy labels, and introduce a graph-based
labeling method for mining multiple instances in the same class. Specifically, we
integrate refinement layers into the WSDDN architecture and perform multiple
rounds of training with randomly reinitialized weights of the refinement layers.
This regularization technique prevents the deep neural network from overfitting
by forgetting biased weights. Also, a mode-seeking algorithm is performed on a
graph of object proposals to identify multiple target instances in a principled
way, where the graph is constructed to diversify pseudo-labels by perturbing a
threshold to connect vertices corresponding to proposals. The combination of the
multi-round regularization and the graph-based labeling improves object detec-
tion accuracy substantially in the standard weakly supervised setting for object
detection. Our main contributions are summarized as follows:

• We introduce simple multi-round regularization techniques for weakly super-
vised object detection, which are based on refinement layer reinitializations
and labeling perturbations, to tackle overfitting issues caused by falling into
bad local optima.

• We propose a mode-seeking technique for labeling candidate bounding boxes,
where a graph structure of object proposals is constructed based on their class
scores and spatial proximities. This method is helpful to identify multiple
object instances of a class in a principled way.
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• We demonstrate that our approach improves performance significantly with
respect to the state-of-the-art methods in weakly supervised object detection
on the standard benchmarks such as PASCAL VOC 2007 and 2012.

This paper has the following organization. Section 2 discusses related work
and Sect. 3 presents technical background of our problem. We describe the pro-
posed regularization and label generation techniques in Sect. 4. Experimental
results with internal and external comparative study are presented in Sect. 5,
and we conclude this paper in Sect. 6.

2 Related Work

This section describes existing approaches about weakly supervised object detec-
tion and regularization of deep neural networks.

2.1 Weakly Supervised Object Detection

Weakly supervised object detection algorithms typically rely only on image-level
class labels in text to find all the bounding boxes corresponding to objects in
target classes. There have been a large volume of research in this interesting
topic [1,2,4,18,21,22,26,39,46]. Most approaches in this line of research follow
the idea of Multiple Instance Learning (MIL) [8]; a set of proposals from an
image constructs a bag, and its label is determined by its image-level weak
labels. During training, the approaches alternate selecting the most representa-
tive proposals in positive images and learning object detectors using tentatively
estimated positive and negative instances. Since a list of true positive instances
per image is latent, the optimization is inherently sensitive to initializations of
individual examples and prone to fall into bad local optima consequently.

Most MIL-based approaches attempt to improve initialization [7,22,36,37,45]
and enhance classifiers through optimization [1,2,4,33,35,39,41]. Li et al. [22]
collect class specific object proposals and optimize the network progressively
using confident object candidates. Self-taught learning approach [17] has been
proposed to obtain high-quality proposals progressively. Diba et al. [7] intro-
duce cascaded networks with multiple learning stages, which incorporate class
specific proposal generation and MIL in an end-to-end pipeline. Multi-fold MIL
method [4] splits training data into multiple subsets and learn models to escape
from local optima and avoid overfitting. Wan et al. [41] perform clustering of
object proposals based on their scores and overlap ratios, and minimize entropy
of proposal scores in the same cluster, by which it improves localization accuracy
and reduces localization randomness.

WSDDN [2] is probably the most popular MIL based end-to-end deep frame-
work, where image-level classification loss is computed by a sum of proposal
scores. This framework has been investigated further and a variety of exten-
sions have been proposed recently [4,18,33,39,41,44,45]. Kantorov et al. [18]
integrates semantic context information to identify tight bounding boxes corre-
sponding objects of interest. Tang et al. [39] diffuses labels estimated by WSDDN
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Fig. 1. The network architecture of the proposed approach. A feature of each proposal
is extracted from a spatial pyramid pooling layer followed by two fc layers and then
fed to WSDDN and multiple classifier refinements for training. Supervision for each
refinement step is given by the predictions of the preceding step. Our graph-based
labeling generates pseudo ground-truth labels for the proposals that are used to learn
refinement layers.

to highly-overlapped bounding boxes and learns object detectors end-to-end.
Saliency-guided proposal selection has been proposed in [21] to generate reliable
positive examples by drawing boxes enclosing areas with heavy class-specific
attention, where classification and saliency losses of the proposals are jointly
optimized to localize objects. Zhang et al. [45] generate diverse and reliable pos-
itive examples by merging boxes with detection scores from [39]. Zhang et al. [44]
train a detector by feeding training examples in an increasing order of difficulty.
Shen et al. [33] present a generative adversarial learning method to train a detec-
tor, which emulates a surrogate detector similar to WSDDN, using image-level
annotations only.

2.2 Regularization of Deep Neural Networks

Regularization on deep neural networks is a crucial technique to avoid overfit-
ting that results from overparametrized nature of networks. Even simple heuris-
tics including early stopping, weight decay, and data augmentation turn out to
be effective in practice. A class of well-known techniques is regularization by
noise injection, where random noises are added to input images [29], ground-
truth labels [43], or network weights [19,42] during training for better general-
ization. In particular, dropout [38] and dropconnect [42] employ binary ran-
dom noise to hidden units or connections of neural networks, and learning
with stochastic depth [14,15] can be interpreted as a regularization method
by noise injection into model architecture. Recently, [25] discusses theoretical
aspect of regularization-by-noise techniques, and [31] proposes a confidence cal-
ibration technique based on stochastic regularization. Unlike existing methods,
the proposed multi-round regularization technique is specialized to the scenario
of weakly supervised object detection.
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3 Preliminaries

Our approach builds on WSDDN [2] and its refinement [39]. Figure 1 illustrates
the network architecture and label generation algorithm of our approach. Given
an image I and its binary label vector with C classes y = [y1, . . . , yC ], WSDDN
learns objectness score sc,r for class c of proposal r through elementwise multi-
plication of classification confidence, ψcls ∈ R

C×|R| and localization confidence,
ψloc ∈ R

C×|R|. The value of an element corresponding to an (r, c) pair in the
resulting matrix is given by

sc,r = ψcls(c; r) · ψloc(r; c)

=
fcls(c; r)

∑C
i=1 exp(fcls(i; r))

· floc(r; c)
∑|R|

i=1 exp(floc(i; c))
, (1)

where fcls(c; r) denotes an activation of a class c given a proposal r in the network
while floc(r; c) is an activation of a proposal r given a class c. Image-level class
score vector, φ = {φ1, . . . , φC}, is computed by a global sum pooling over all
proposals, which is given by

φc =
|R|∑

r=1

sc,r, (2)

and the score is employed to compute a multi-class cross entropy loss Lwsddn as
follows:

Lwsddn = −
C∑

c=1

yc log φc + (1 − yc) log (1 − φc). (3)

To avoid converging discriminating parts of an object, additional refinement
layers are added to WSDDN. The refinement layers are trained using pseudo
ground-truth labels determined by proposal scores from preceding steps as illus-
trated with red dashed arrows in Fig. 1. The loss function for the kth refinement
step, where k ∈ {1, 2, . . . ,K}, is given by

Lk
refine = − 1

|R|
|R|∑

r=1

C+1∑

c=1

wk
r zkc,r log skc,r, (4)

where skc,r and zkc,r denote the output score and the pseudo-label of a proposal
r in the kth refinement for a class c, respectively, while wk

r is the weight of the
proposal, which is used to manage noisy supervision in the refinement layers and
avoid unstable solution. Note that each class has a class index c ∈ {1, 2, . . . , C+1}
in a fixed order and the last index C + 1 corresponds to background. The total
loss of our overall network is obtained by combining those two losses as follows:

L = Lwsddn +
K∑

k=1

Lk
refine. (5)
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Algorithm 1. Learning our WSOD network with multi-round regularization
1: Input: Number of training rounds T , number of refinement steps K.
2: for i = 1 to T do
3: Initialize parameters of refinement layers randomly. (Sect. 4.1)
4: Update θIoU for labeling perturbation. (Sect. 4.1)
5: for each iteration do
6: Build a proposal graph with θIoU in each refinement step of each image.
7: Generate labels of individual labels. (Sect. 4.2)
8: Train the network with K refinement steps using the loss function in Eq. (5).
9: end for

10: end for

During inference, a final detection score for each proposal is computed by aver-
aging softmax scores over all refinement classifiers.

4 Our Approach

The architecture introduced in Sect. 3 has two inherent issues. First, as the archi-
tecture is trained using pseudo-labels in refinement steps, the learning procedure
is prone to fall in bad local optima. Second, due to the limitation of the labeling
scheme during refinement steps, it identifies only a single object instance in an
image even in the case multiple instances exist in the image.

To tackle these challenges, we propose multi-round regularization and graph-
based labeling techniques in our weakly supervised object detection framework.
Both components are useful to improve object detection performance. The over-
all learning procedure is outlined in Algorithm1, and we discuss the details of
each component in the rest of this section.

4.1 Multi-round Regularization of Refinement

Our weakly supervised object detection algorithm relies on MIL, where we obtain
pseudo ground-truth labels for individual bounding boxes based on their predic-
tion scores for training object detector. However, as expected, this strategy may
incur a lot of label noises, which leads to increase of modeling bias and pre-
diction error. To mitigate this limitation, we present multi-round regularization
techniques that improve target object representation and avoid overfitting of our
weakly supervised object detection network. Note that the multi-round regular-
ization is specialized to weakly supervised learning because labels of all examples
are dynamically determined in each stage depending on network parameters. We
claim that multi-round regularization is useful to consider potential label noise
and reduce training bias in weakly supervised setting.

Our multi-round regularization has two components, refinement layer reini-
tialization and label perturbation. The second component is related to graph-
based label generation method. The multiple rounds of training with reinitializa-
tion and perturbation reduce the bias of the learned models affected by a fixed
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but potentially erroneous labels and prevent the models from being converged
to bad local optima.

Reinitialization of Refinement Layers. Our refinement network is composed
of a single fc layer in each stage, and we simply reinitialize the parameters in
the refinement layers of all three stages in each round of training. Since the last
fc layers in the classifier refinements are trained using the labels predicted by
the preceding stages, these layers may be biased by noisy labels. However, if the
fc layers are reinitialized before starting the next round, we can diversify labels
and avoid overfitting problem while feature extraction parts of the network learn
better representations for target classes.

Labeling Perturbation for Refinements. The pseudo ground-truth labels of
individual bounding boxes are determined by a graph-based labeling algorithm,
which will be discussed in Sect. 4.2. Another regularization scheme for our weakly
supervised object detection is to perturb the instance labels during our training
procedure. This regularization method is based on a similar motivation to the
reinitialization technique discussed above, where we aim to reduce bias of learned
models originated from noisy labels. Instead of random perturbation, we adjust
a parameter, which directly affects label assignment for each bounding box, the
graph construction in each round of training and decide the label of each proposal
using the graph-based labeling algorithm with the perturbed parameters. This
label perturbation strategy increases diversity in the number of detected objects,
and make our models optimized towards a new objective given by a different label
set in each round.

4.2 Graph-Based Label Generation

Since images often include multiple instances of a class, the label generation
method should be able to handle an arbitrary number of object instances con-
ceptually. Hence, we propose a new labeling method based on mode-seeking on
a graph structure, which is illustrated inside the red dashed box of Fig. 1. Our
graph-based labeling technique facilitates to identify diverse positive proposals
by building a graph structure of proposals based on their overlap relations and
finding multiple modes with high classification scores. This graph-based label-
ing allows us to obtain accurate labels by diversifying annotations and improve
quality of trained models. Note that Tang et al. [39] regard proposals that have
large overlap (≥0.5 in terms of IOU) with the top-scoring bounding box as posi-
tive instances while making the remaining ones negative; selecting only positive
examples from a single mode inherently limits capability to handle multiple
objects in an images.

Our graph-based label generation method first constructs a neighborhood
graph of proposals for each object class in each image. In the graph of class c at
refinement step k, denoted by Gk

c = (Vk
c , Ek

c ), a vertex corresponds to a proposal
with a sufficiently large classification score given by the preceding step, and an
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Algorithm 2. Graph-based mode-seeking algorithm
1: Input: Graph G = (V, E) and weight vector w ∈ R

|V |

2: Output: A detected mode set M
3: h ← [1, 2, . . . , |V |] ∈ R

|V | /* h is a cluster indicator vector */
4: while until h converges do
5: for u ∈ V do
6: h(u) ← argmaxv∈Nh(u)

w(v) /* medoid-shift */

7: end for
8: end while
9: M ← a set of unique elements of h

edge connects two of vertices if the proposals for the vertices have sufficiently
large overlap to each other. Formally, the sets of vertices and edges are defined
by

Vk
c = {v|sk−1

c,v > θs, v ∈ R}
Ek
c = {(u, v)| IoU(u, v) > θIoU, u, v ∈ R}, (6)

where u and v denote object proposals, sk−1
c,v is a proposal score predicted in the

preceding step, θs is a threshold for the score, IoU(u, v) is intersection-over-union
measure between proposals, and θIoU is an IoU threshold.

Then we perform a mode-seeking algorithm, medoid-shift [3,32], on this
graph. The algorithm is useful in practice because it finds multiple reliable modes
of data distribution and requires no manual initialization and terminating con-
ditions. Specifically, we first compute the weight of each node u ∈ V of G by

wc(u) =
∑

v∈V
sc,vδ(u, v). (7)

where δ(·, ·) = 1 if there exists an edge (u, v) ∈ E , and 0 otherwise. Then,
medoid-shift algorithm is applied to the graph and identifies a set of modes,
where each vertex is associated with one of the modes after convergence. Since
such a mode-seeking algorithm often finds spurious modes, we adopt a mode
filtering technique, which maintains only salient modes based on topological
persistence of a graph [9]. The proposals corresponding to the modes obtained
from mode-seeking and mode filtering procedures receive positive labels. The
entire procedure of the proposed method is summarized in Algorithm2.

After finding the modes, the rest of proposals r for a class c are given a
pseudo-label zc,r as follows:

zc,r =

{
1 if IoU(m, r) > 0.5, m ∈ Mc and yc = 1
0 otherwise

, (8)

where Mc is a set of detected modes for class c and yc denotes image-level binary
class label for class c. In other words, proposals sufficiently overlapped with any
of detected modes are labeled to be positive and the rest are given negative labels
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in a similar way to OICR [39]. This labeling method is employed to compute a
loss in Eq. (4) for all refinement steps.

5 Experiments

This section presents performance of our regularization algorithm with graph-
based labeling. We also compare the proposed approach with the state-of-the-art
methods and show results from ablation study of our technique.

5.1 Implementation Details

We use VGG M and VGG16 [34] networks pretrained on ImageNet [6] classifica-
tion task to obtain image representation. To compute feature descriptors of all
proposals at once, the last max-pooling layer is replaced by a spatial pyramid
pooling (SPP) layer as in Fast-RCNN [12]. For training, we employ the stan-
dard stochastic gradient descent (SGD) method with batch size 2. The model
is trained with 50K iterations in each round, where the learning rate of the
first 40K iterations is set to 0.001 and then decreased to 0.0001 for the last
10K iterations. Initial momentum and weight decay are set to 0.9 and 0.0005,
respectively. Every image is rescaled to the sizes that the length of the shorter
side becomes one of {480, 576, 688, 864, 1200} while we preserve aspect ratios.
Approximately 2,000 object proposals are generated for each image by applying
selective search algorithm [40] in fast mode. We set the score threshold θs to
the half of the maximum proposal scores for each class c. Our algorithm runs 4
rounds of iterative training procedure with parameter reinitialization while the
number of refinement steps is set to 3, i.e., K = 3. Our experiments run on a
NVIDIA GTX Titan Xp GPU and the implementation is based on the Caffe [16]
framework.

5.2 Datasets and Evaluation Metrics

We evaluate our method on PASCAL VOC 2007 [11] and 2012 [10] datasets,
which consist of a total of 9,963 and 22,531 images from 20 object classes. We
train our model on train+validation splits of PASCAL VOC 2007 and 2012
datasets, consisting of 5,011 and 11,540 images, respectively. Since our approach
lies on weakly supervised setting, only image-level annotations for class labels
are used for training. For testing, we utilize 4,952 and 10,991 test images from
PASCAL VOC 2007 and 2012 datasets, respectively. All ablation studies are
performed on PASCAL VOC 2007 dataset.

Our quantitative evaluation metric is the mean of Average Precisions (APs)
over classes. The number of true positives is the count of object proposals that
have more than 0.5 IoU overlap with ground-truths. We also measure Correct
localization (CorLoc) to evaluate localization accuracy of our model on the train-
ing set. The final inference is given by averaging scores from all the refinement
steps. Before evaluating and measuring AP and CorLoc scores, non-maximum
suppression is applied to positive examples with 0.3 IoU threshold.
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Table 1. Comparison between network refinement with and without layer reinitializa-
tion. We test VGG M and VGG16 networks with several different numbers of refine-
ment layers on VOC 2007 test set. We report accuracy in terms of mAP (%). RL means
refinement layer in the table.

Methods (round/iterations) (a) With layer reinitialization (b) Without layer reinitialization

(R1/50k) (R2/50k) (–/50k) (–/100k)

Ours-1RL-VGG M 35.6 36.2 35.6 35.6

Ours-2RL-VGG M 36.3 37.6 36.3 34.8

Ours-3RL-VGG M 38.0 39.2 38.0 38.7

Ours-1RL-VGG16 36.2 40.2 36.2 37.4

Ours-2RL-VGG16 41.6 43.9 41.6 42.1

Ours-3RL-VGG16 42.6 44.6 42.6 42.2

Table 2. Comparison of two labeling methods after training for 50k iterations on VOC
2007 test set: (a) labeling example by propagating positive labels based on overlaps
from the bounding box with the maximum classification score, and (b) labeling with
multi-modal score distribution given by mode-seeking technique on a graph structure
of proposals.

Methods Base network RL mAP

(a) Maximum GT VGG M 1 33.5

2 36.0

3 36.4

VGG16 1 35.8

2 39.1

3 41.8

(b) Graph-based GT (ours) VGG M 1 35.6

2 36.3

3 38.0

VGG16 1 36.2

2 41.6

3 42.6

5.3 Ablation Study

Impact of Refinement Layer Reinitialization. We first validate the effec-
tiveness of our refinement layer reinitialization scheme on PASCAL VOC 2007
test set. For the purpose, we compare mAPs of two models—with and with-
out reinitialization of the fc layers for refinement—after training for the same
number of iterations altogether in both cases, 50k and 100k. Both VGG M and
VGG16 networks are employed as backbone CNNs for this experiment. Table 1
summarizes the results. The performance of the models with reinitialization is
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Table 3. Results with different IoU thresholds in Eq. (6) for graph construction. Note
that the labels obtained from the graph are integrated into the refinement layer reini-
tialization. Evaluation is performed with VGG16 network on VOC 2007 test set. We
report accuracy in terms of mAP (%).

Methods θIoU Round1 Round2 Round3 Round4 Round5

Ours-1RL 0.1 36.2 40.2 40.8 41.4 41.6

Ours-2RL 41.6 43.9 43.6 43.8 43.1

Ours-3RL 42.6 44.6 44.4 43.4 43.1

Ours-1RL 0.5 36.0 39.5 40.2 40.8 40.5

Ours-2RL 38.0 40.5 41.9 42.5 41.9

Ours-3RL 40.3 41.5 41.6 41.2 41.2

Ours-1RL 0.1 (Round 1, 2)

0.5 (Round 3, 4, 5)

36.2 40.2 40.4 41.1 40.1

Ours-2RL 41.6 43.9 44.5 44.5 43.7

Ours-3RL 42.6 44.6 45.5 45.4 44.0

improved significantly in the second round while the ones without layer reinitial-
ization generally have marginal gains in the second half of the 100k iterations.

Impact of Graph-Based Label Generation. Table 2 illustrates results from
two different methods for generation of pseudo ground-truths. The one iden-
tifies positive examples from only a single mode corresponding to the bound-
ing box with a maximum score (maximum GT) and the other extract them
from multi-modal score distribution over bounding boxes given by the mode-
seeking algorithm via medoid-shift on a graph structure (graph-based GT). For
this experiment, IoU threshold θIoU for graph construction is set to 0.1. After
one round of training, our graph-based mode-seeking technique outperforms the
näıve single GT method on both VGG M and VGG16 networks consistently.

Impact of Labeling Perturbations. We also investigate influence of label
perturbation by varying IoU threshold for edge connectivity of proposal graph.
As mentioned in Sect. 4.1, definition of spatial adjacency between vertices affects
pseudo ground-truth construction and final label estimation. We test with two
IoU thresholds, 0.1 and 0.5. Table 3 presents the results with VGG16 network
for the several tested options. The proposed labeling perturbation method works
well in general, especially with more refinement steps. Also, when we use a small
threshold value at the early stage of training and then increase its value later,
detection accuracies are improved compared to the cases with fixed thresholds.
It is probably because this strategy is effective to reject noisy examples quickly
in the early stages and maintain multiple positive instances in the later ones.
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Table 4. AP (%) of all compared algorithms on VOC 2007 test set. Asterisk (*)
denotes the method that uses an external detector such as Fast-RCNN or SSD within
its framework.

Method aero bike bird boat bottle bus car cat chair cow

WSDDN-VGG16 [2] 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7

WSDDN+context [18] 57.1 52.0 31.5 7.6 11.5 55.0 53.1 34.1 1.7 33.1

OICR-VGG16 [39] 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7

SelfTaught-VGG16 [17] 52.2 47.1 35.0 26.7 15.4 61.3 66.0 54.3 3.0 53.6

WCCN-VGG16 [7] 49.5 60.6 38.6 29.2 16.2 70.8 56.9 42.5 10.9 44.1

SGWSOD-VGG16 [21] 48.4 61.5 33.3 30.0 15.3 72.4 62.4 59.1 10.9 42.3

OICR-Ens [39] 58.5 63.0 35.1 16.9 17.4 63.2 60.8 34.4 8.2 49.7

OICR-Ens+FRCNN [39] 65.5 67.2 47.2 21.6 22.1 68.0 68.5 35.9 5.7 63.1

GAL300-VGG16+SSD∗ [33] 52.0 60.5 44.6 26.1 20.6 63.1 66.2 65.3 15.0 50.1

ZLDN-VGG16+FRCNN∗ [44] 55.4 68.5 50.1 16.8 20.8 62.7 66.8 56.5 2.1 57.8

OICR-VGG16+FRCNN [39] 60.9 62.9 50.5 28.9 17.1 70.3 68.1 27.0 25.7 58.8

Ours-3RL-VGG16 62.1 55.7 42.0 31.1 17.2 67.6 65.2 50.8 20.4 51.5

Ours-3RL-VGG16+FRCNN 59.8 62.8 45.6 33.2 21.8 70.2 68.6 56.6 22.8 55.9

Method table dog horse mbike person plant sheep sofa train tv Avg.

WSDDN-VGG16 [2] 24.9 38.2 34.4 55.6 9.4 14.7 30.2 40.7 54.7 46.9 34.8

WSDDN+context [18] 49.2 42.0 47.3 56.6 15.3 12.8 24.8 48.9 44.4 47.8 36.3

OICR-VGG16 [39] 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2

SelfTaught-VGG16 [17] 24.7 43.6 48.4 65.8 6.6 18.8 51.9 43.6 53.6 62.4 41.7

WCCN-VGG16 [7] 29.9 42.2 47.9 64.1 13.8 23.5 45.9 54.1 60.8 54.5 42.8

SGWSOD-VGG16 [21] 34.3 53.1 48.4 65.0 20.5 16.6 40.6 46.5 54.6 55.1 43.5

OICR-Ens [39] 41.0 31.3 51.9 64.8 13.6 23.1 41.6 48.4 58.9 58.7 42.0

OICR-Ens+FRCNN [39] 49.5 30.3 64.7 66.1 13.0 25.6 50.0 57.1 60.2 59.0 47.0

GAL300-VGG16+SSD∗ [33] 52.8 56.7 21.3 63.4 36.8 22.7 47.9 51.7 68.9 54.1 47.0

ZLDN-VGG16+FRCNN∗ [44] 47.5 40.1 69.7 68.2 21.6 27.2 53.4 56.1 52.5 58.2 47.6

OICR-VGG16+FRCNN [39] 41.9 20.7 42.4 65.5 7.1 24.6 51.5 61.9 62.7 56.5 45.3

Ours-3RL-VGG16 36.3 34.1 46.2 65.8 12.3 21.9 48.8 55.4 60.2 65.7 45.4

Ours-3RL-VGG16+FRCNN 47.5 40.8 59.0 65.0 9.1 22.4 49.5 64.6 57.8 57.3 48.8

5.4 Results on PASCAL VOC Datasets

We compare the proposed algorithm with existing state-of-the art meth-
ods for weakly supervised object detection including WSDDN [2], WSDDN+
context [18], OICR [39], SelfTaught [17], WCCN [7], SGWSOD [21], ZLDN [44],
GAL300 [33]. Tables 4 and 5 present performance of all compared algorithms
on PASCAL VOC 2007 dataset in terms of mean of APs and CorLoc, respec-
tively. We also present the performances on PASCAL VOC 2012 dataset in
Table 6. Best performance of each measure is marked with bold and second best
is marked with underline.

To obtain the final results, we use the models trained for four rounds with
refinement layer reinitialization. Our model with 3 refinement layers based on
VGG16, which is denoted by Ours-3RL-VGG16 in the table, achieves signifi-
cantly improved accuracy compared to OICR-VGG16 [39]. This result suggests
that our training method is very effective because the two models have the
exactly same network architecture. We also train a Fast-RCNN [12] (FRCNN)
detector based on the labels of the proposals with the highest scores given by
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Table 5. CorLoc (%) of all compared algorithms on VOC 2007 trainval set. Asterisk
(*) denotes the method that uses an external detector such as Fast-RCNN or SSD
within its framework.

Method aero bike bird boat bottle bus car cat chair cow

WSDDN-VGG16 [2] 65.1 58.8 58.5 33.1 39.8 68.3 60.2 59.6 34.8 64.5

WSDDN+context [18] 83.3 68.6 54.7 23.4 18.3 73.6 74.1 54.1 8.6 65.1

OICR-VGG16 [39] 81.7 80.4 48.7 49.5 32.8 81.7 85.4 40.1 40.6 79.5

SelfTaught-VGG16 [17] 72.7 55.3 53.0 27.8 35.2 68.6 81.9 60.7 11.6 71.6

WCCN-VGG16 [7] 83.9 72.8 64.5 44.1 40.1 65.7 82.5 58.9 33.7 72.5

SGWSOD-VGG16 [21] 71.0 76.5 54.9 49.7 54.1 78.0 87.4 68.8 32.4 75.2

OICR-Ens [39] 85.4 78.0 61.6 40.4 38.2 82.2 84.2 46.5 15.2 80.1

OICR-Ens+FRCNN [39] 85.8 82.7 62.8 45.2 43.5 84.8 87.0 46.8 15.7 82.2

GAL300-VGG16+SSD∗ [33] 76.5 76.1 64.2 48.1 52.5 80.7 86.1 73.9 30.8 78.7

ZLDN-VGG16+FRCNN∗ [44] 74.0 77.8 65.2 37.0 46.7 75.8 83.7 58.8 17.5 73.1

OICR-VGG16+FRCNN [39] 86.7 81.2 64.0 50.5 30.9 83.2 85.3 38.7 45.1 80.1

Ours-3RL-VGG16 85.4 71.4 61.6 55.9 37.0 83.2 84.2 61.3 29.7 77.4

Ours-3RL-VGG16+FRCNN 86.3 77.6 65.5 55.9 41.6 82.7 86.7 61.6 39.7 80.8

Method table dog horse mbike person plant sheep sofa train tv Avg.

WSDDN-VGG16 [2] 30.5 43.0 56.8 82.4 25.5 41.6 61.5 55.9 65.9 63.7 53.5

WSDDN+context [18] 47.1 59.5 67.0 83.5 35.3 39.9 67.0 49.7 63.5 65.2 55.1

OICR-VGG16 [39] 35.7 33.7 60.5 88.8 21.8 57.9 76.3 59.9 75.3 81.4 60.6

SelfTaught-VGG16 [17] 29.7 54.3 64.3 88.2 22.2 53.7 72.2 52.67 68.9 75.5 56.1

WCCN-VGG16 [7] 25.6 53.7 67.4 77.4 26.8 49.1 68.1 27.9 64.5 55.7 56.7

SGWSOD-VGG16 [21] 29.5 58.0 67.3 84.5 41.5 49.0 78.1 60.3 62.8 78.9 62.9

OICR-Ens [39] 45.2 41.9 73.8 89.6 18.9 56.0 74.2 62.1 73.0 77.4 61.2

OICR-Ens+FRCNN [39] 51.0 45.6 83.7 91.2 22.2 59.7 75.3 65.1 76.8 78.1 64.3

GAL300-VGG16+SSD∗ [33] 62.0 71.5 46.7 86.1 60.7 47.8 82.3 74.7 83.1 79.3 68.1

ZLDN-VGG16+FRCNN∗ [44] 49.0 51.3 76.7 87.4 30.6 47.8 75.0 62.5 64.8 68.8 61.2

OICR-VGG16+FRCNN [39] 41.4 32.3 67.0 91.2 12.7 60.4 76.3 66.4 80.2 78.9 62.6

Ours-3RL-VGG16 28.1 46.3 66.0 88.0 16.6 51.3 70.1 59.7 73.8 79.2 61.3

Ours-3RL-VGG16+FRCNN 47.5 57.4 82.3 90.8 20.3 55.7 77.3 69.6 74.9 79.2 66.7

Table 6. Comparison between the proposed algorithm and the existing ones on PAS-
CAL VOC 2012 dataset in terms of mAP (%) and CorLoc (%).

Method mAP (%) CorLoc (%)

WSDDN+context [18] 34.9 56.1

OICR-VGG16 [39] 37.9 62.1

SelfTaught-VGG16 [17] 38.3 58.8

WCCN-VGG16 [7] 37.9 -

SGWSOD-VGG16 [21] 39.6 62.9

SGWSOD-Ens [21] 40.6 64.2

OICR-Ens [39] 38.2 63.5

OICR-Ens+FRCNN [39] 42.5 65.6

ZLDN-VGG16+FRCNN∗ [44] 42.9 61.5

GAL300-VGG16+SSD∗ [33] 43.1 67.2

Ours-3RL-VGG16 41.2 64.1

Ours-3RL-VGG16+FRCNN 44.1 68.5
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our method in individual images. Our final model (Ours-3RL-VGG16+FRCNN)
shows higher mAP score than the state-of-the-art methods in both datasets. It is
also noticeable that even our method without using FRCNN (Our-3RL-VGG16)
outperforms even the ensemble OICR model (OICR-Ens) and the OICR-VGG16-
FRCNN method. In terms of CorLoc, we achieve the second best score among
the comparison methods on PASCAL VOC 2007 dataset and the top score on
2012 dataset.

Figures 2 and 3 illustrate qualitative examples and failure cases, respectively.
Our method is effective in finding more accurate bounding boxes of the objects
compared to OICR, but still confused with the objects that have similar appear-
ance and background. Also, detecting highly non-rigid objects (e.g. person) is
still challenging and limited to finding discriminative parts such as human faces.

Fig. 2. Qualitative examples on PASCAL VOC 2007 test set. Red boxes indicate detec-
tion results from OICR [39] and green ones present our results. (Color figure online)

Fig. 3. Examples of failure cases. Our method is often confused with the objects with
similar appearances.

6 Conclusion

We presented simple but effective regularization techniques with a graph-based
labeling method for weakly supervised object detection. The proposed regulariza-
tion algorithms—refinement layer reinitialization and labeling perturbation dur-
ing iterative training procedure—are helpful to avoid overfitting to local optima
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by forgetting biased weights and diversifying pseudo-labels. A mode-seeking algo-
rithm on a graph of object proposals contributes to identifying multiple target
instances and improving detection accuracy. Our method illustrates outstanding
performances on PASCAL VOC 2007 and 2012 datasets compared to existing
state-of-the-art weakly supervised object detection techniques.
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