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Abstract. This paper proposes an algebraic solution for the problem
of camera pose estimation using the minimal configurations of 2D/3D
point and line correspondences, including three point correspondences,
two point and one line correspondences, one point and two line corre-
spondences, and three line correspondences. In contrast to the previous
works that address these problems in specific geometric ways, this paper
shows that the above four cases can be solved in a generic algebraic
framework. Specifically, the orientation of the camera is computed from a
polynomial equation system of four quadrics, then the translation can be
solved from a linear equation system. To make our algorithm stable, the
key is the polynomial solver. We significantly improve the numerical sta-
bility of the efficient three quadratic equation system solver, E3Q3 [17],
with a slight computational cost. The simulation results show that the
numerical stability of our algorithm is comparable to the state-of-the-art
Perspective-3-Point (P3P) algorithm [14], and outperforms the state-
of-the-art algorithms of the other three cases. The numerical stability of
our algorithm can be further improved by a rough estimation of the rota-
tion matrix, which is generally available in the Localization and Mapping
(SLAM) or Visual Odometry (VO) system (such as the pose from the last
frame). Besides, this algorithm is applicable to real-time applications.
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1 Introduction

Estimating the pose of a camera from a set of 2D/3D point and correspon-
dences has many applications in computer vision and robotics, such as robot
autonomous navigation, Augmented Reality (AR) [35], SLAM [23,29,30] and
VO [13,20]. Recent studies [25,26,34] show that jointly using point and line fea-
tures for pose estimation give improved results. As there may exist false match-
ings in the real scenarios, RANSAC algorithm [5] is generally used to point out
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these outliers. The solution of the minimal problem is an essential part of the
RANSAC algorithm. This paper focuses on solving the minimal configurations
of the 2D/3D point and line correspondences.

There are four minimal configurations for the 2D/3D point and line cor-
respondences. Existing works generally focus on finding a specific solution for
each of these minimal configurations. The similarity between the 2D/3D line
correspondence and the 2D/3D point correspondence has been used in the lit-
erature. In [31], they apply such similarity to solve the least-squares problem
of 2D/3D line and point correspondences. Kuang et al. [16] propose a minimal
solution to estimate the pose of a camera with unknown focal length by points,
directions and lines. Direct algebraic solution is generally adopted for pose esti-
mation when the camera intrinsic parameters are unknown, because it is hard to
get the 3D information of points and lines in the image plane without the intrin-
sic parameters. However, it is not clear whether the direct algebraic solution
using the basic constraints is comparable to the methods based on well-designed
geometric transformations when the intrinsic parameters are known. The spe-
cific geometric transformation can eliminate the unknown or even get lower order
equation. Such simplification is thought to probably result in a more stable algo-
rithm. This paper shows that directly solving the basic constraints can result in
more stable or comparable results. We significantly improve the stability of the
efficient three quadrics solver, E3Q3 [17], by selecting a proper unknown elim-
ination order. This can benefit the vision tasks that resort to a three quadrics
solver. We compare our algorithm with the previous algorithms by simulations.
The results show that our algebraic algorithm is comparable to the state-of-the-
art P3P algorithm [14], and is superior to the state-of-the-art algorithms of the
other three cases in terms of stability. In addition, our algorithm is efficient and
can be applied in real-time applications.

2 Related Work

The four minimal problems mentioned above have been solved case by case in
the literature.

P3P Problem. Calculating the camera pose from three 2D/3D point corre-
spondences is known as the P3P problem, which have been extensively studied
in the literature. The first solution for the P3P problem dates back to 1841
presented by Grunert [7]. This algorithm applies the law of cosines to generate
three quadratic equations about the lengths between the three 3D points and the
camera origin. This is a specific quadratic polynomial system without first order
monomials, which can result in a quartic equation with a closed-form solution.
Several works [4,18,22] follow this formulation with difference in the specific vari-
able elimination approach used to get the quartic equation. Haralick et al. [9]
present a detailed comparison about these algorithms. More general approaches
are also used to explore this specific quadric system. Quan et al. [27] apply
the Sylvester resultant [19] to solve the quadric system. Gao et al. [6] employ
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Wu-Ritt’s zero decomposition algorithm [32] to systematically study this equa-
tion system, and provide a complete analytical solution. They also give criteria to
determine the number of solutions and the number of real physical solutions. The
drawback of this series of algorithms is that they need to solve a 3D/3D point
alignment problem [1] to get the pose. This increases the computational time.
Additionally, due to the finite representation of a digital number, the numer-
ical error accumulated in the extra step may degrade the accuracy. Kneip et
al. [15] and Masselli et al. [21] address this problem by introducing the inter-
mediate coordinate frame to eliminate the variable. Most recently, Ke et al. [14]
give an algebraic solution to directly compute the camera pose. Due to avoiding
extra transformations, this algorithm is efficient and accurate. These approaches
make use of the specific property of the P3P problem. Therefore, they can not
be generalized to the other three minimal problems.

Two Point and One Line, and One Point and Two Line Corre-
spondences. These two cases have not been studied thoroughly in the liter-
ature. Ramalingam et al. [28] give a solution to both problems. They apply
the collinearity of the 2D/3D point correspondence, and the coplanarity of
the 2D/3D line correspondence to construct constraints on the camera pose.
They design two intermediate coordinate systems for each problems to eliminate
the variables. Their transformations involve tangent function. This may cause
numerical problem. Our algorithm also uses the collinearity and coplanarity con-
straints. But our algorithm does not require any transformation. This can avoid
numerical error propagation, thus can increase accuracy. Besides, their algorithm
needs to calculate the Singular-Value Decomposition (SVD) of a relative large
matrix. This reduces the speed of the algorithm.

P3L Problem. Determining the camera pose by three line correspondences is
known as the Perspective-3-Line (P3L) problem. Several solutions [2,3,33] have
been proposed for this problem. Chen [2] analyzes the degenerate condition of
the P3L problem. Xu et al. [33] study the number of potential solutions of the
P3L problem. These methods adopt the similar methodology. They introduce
intermediate coordinate systems to make one of the constraints on the rotation
matrix automatically satisfied. Two transformations are required by [3], and
one transformation is needed by [2,33]. The simplified problem then can be
solved by using the elementary linear algebra and the trigonometric identity.
Our algorithm does not need such transformation, thus reduces the numerical
error accumulation.

3 Notation and Geometrical Constraints

In this paper, we use italic, boldfaced lowercase and boldfaced uppercase letters
to represent scalars, vectors and matrices, respectively. The aim of this paper is to
calculate the rotation R and translation t between a world frame OwXwY wZw

and a camera frame OcXcY cZc from the minimal configurations of 2D/3D point
and line correspondences, including three point correspondences, two point and
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Fig. 1. Geometric constraints from one 2D/3D point correspondence and one 2D/3D
line correspondence.

one line correspondences, one point and two line correspondences, and tree line
correspondences. As mentioned above, determining the camera pose from three
2D/3D point correspondences and three 2D/3D line correspondences are known
as the P3P and P3L problem, respectively. To simplify the notation, we call
determining the camera pose from two point and one line correspondences as
the Perspective-2-Point-and-1-Line (P2P1L) problem, and determining the pose
from one point and two line correspondences as the Perspective-1-Point-and-
2-Line (P1P2L) problem. This section describes the notation and geometrical
constraints yielded by one 2D/3D point correspondence and one 2D/3D line
correspondence, illustrated in Fig. 1.

3.1 2D/3D Point Correspondence

In this paper, we use a quaternion q = [w, x, y, z]T [12] to represent the rotation
matrix R as:

R =

⎡
⎣

w2 + x2 − y2 − z2 2xy − 2wz 2wy + 2xz
2wz + 2xy w2 − x2 + y2 − z2 2yz − 2wx
2xz − 2wy 2wx + 2yz w2 − x2 − y2 + z2

⎤
⎦ (1)

Let PPi denote a 3D point and pi the back-projection ray of its image. To
avoid extra transformation, we do not adopt the law of cosines widely used in
the P3P problem [9]. As pi is collinear with PPi , we have:

pi ×
(
RPP

i + t
)

= 0 (2)

where × represents the cross product, which can be calculated as:

[pi]×
(
RPP

i + t
)

= 0 (3)
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where [pi]× is a skew-symmetric matrix having the form:

[pi]× =

⎡
⎢⎣

pi1

pi2

pi3

⎤
⎥⎦

×

=

⎡
⎣

0 −pi3 pi2
pi3 0 −pi1

−pi2 pi1 0

⎤
⎦ (4)

Substituting (1) and (4) into (3), we have the following three quadric equations:

cpi

j,1x
2 + cpi

j,2y
2 + cpi

j,3z
2 + cpi

j,4w
2 + cpi

j,5xy + cpi

j,6xz

+ cpi

j,7xw + cpi

j,8yz + cpi

j,9yw + cpi

j,10zw − pi3t2 + pi2t3 = 0, j = 1, 2, 3
(5)

where tk (k = 1, 2, 3) are the three components of t. Define

r =
[
x2, y2, z2, w2, xy, xz, xw, yz, yw, zw

]T
(6)

We can simplify the j -th equation of the i -th point correspondences in (5) as

cpi

j · r + npi

j · t = 0, j = 1, 2, 3 (7)

where · represents the dot product, cpi

j is a 10 × 1 vector and npi

j is a 3 × 1
vector. As [pi]× is a rank-2 matrix, this equation system only provides 2 linear
independent constraints.

3.2 2D/3D Line Correspondence

Let Li and li represent a 3D line and its corresponding 2D line. Denote the
direction of Li as vLi and a 3D point on Li as PLi . The back-projection of li
is a plane πi that passes through the origin of the camera frame. Denote the
normal of πi as nli . Since Li should be on πi, we get the following constraints:

nli · RvLi = 0,
nli · (

RPLi + t
)

= 0 (8)

Substituting (1) into (8) and using the definition of (6), we obtain two quadrics:

cli1 · r = 0,

cli2 · r + nli · t = 0
(9)

4 Minimal Solution

4.1 P3P

We give a new approach for the P3P problem. As we seek to give a generic
framework for all the minimal configurations of 2D/3D point and line corre-
spondences, we avoid adopting the specific property of the P3P problem used
by the previous works [9,14]. As mentioned above, each 2D/3D correspondence
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provides two constraints. Without loss of generality, we pick up the first two
equations of (3) from the first two correspondences, and the first and the last
equations from the third correspondence. According to (7), we have the following
quadratic equation system:

cp1
1 · r + np1

1 · t = cp2
1 · r + np2

1 · t = cp3
1 · r + np3

1 · t = 0
cp1
2 · r + np1

2 · t = cp2
2 · r + np2

2 · t = cp3
3 · r + np3

3 · t = 0 (10)

Divide this equation system into two parts, so that the first part contains the
first 3 equations and the second part contains the remaining ones. Then we have:

C1r + N1t = 0, C2r + N2t = 0
C1 = [cp1

1 , cp2
1 , cp3

1 ]T , N1 = [np1
1 ,np2

1 ,np3
1 ]T

C2 = [cp1
2 , cp2

2 , cp3
3 ]T , N2 = [np1

2 ,np2
2 ,np3

3 ]T
(11)

where C1 and C2 are 3 × 10 matrices, N1 and N2 are 3 × 3 matrices. Using
C2r + N2t = 0 in (11), we get a closed-form solution for t as

t = −(N2)
−1C2r (12)

Other choices are also valid, if the coefficient matrix of t is invertible. Replace t
in C1r + N1t = 0 in (11). Together with the norm one constraint of q, we get
four quadratic equations for the four elements in q as:

Ar = 0
w2 + x2 + y2 + z2 = 1 (13)

where
A = C1 − N1(N2)

−1C2 (14)

We will show that the other three minimal cases also have the same quadric
forms of q. Therefore, we will give the solution to it at the end of this section.

4.2 P2P1L

For the two 2D/3D point correspondences, we chose the first two equations of
(7). Together with constraints in (9) from the line correspondence, we can obtain
the following equation system:

cl11 · r = cp1
1 · r + np1

1 · t = cp2
1 · r + np2

1 · t = 0
cl12 · r + nl1 · t = cp1

2 · r + np1
2 · t = cp2

2 · r + np2
2 · t = 0

(15)

There are 5 equations in t. Without loss of generality, we choose one equation
involving t from each correspondence to solve t. To simplify the notation, we
use the same notation as (11). Rearranging (15), we have

cl11 · r = 0, C1r + N1t = 0, C2r + N2t = 0
C1 = [cp1

1 , cp2
1 ]T , N1 = [np1

1 ,np2
1 ]T

C2 =
[
cl12 , cp1

2 , cp2
2

]T
, N2 =

[
nl1 ,np1

2 ,np2
2

]T (16)
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where C1 is a 2 × 10 matrix, and N1 is a 2 × 3 matrix. Using C2r + N2t = 0,
we can obtain a closed-form solution for t as (12). Substituting the expression
of t into C1r + N1t = 0, we get a quadric equation system as (13), with

A =
[
cl11 ,

(
C1 − N1(N2)

−1C2

)T
]T

(17)

4.3 P1P2L

Given one 2D/3D point and two 2D/3D line correspondences, according to (7)
and (9), we can have the following equations:

cl11 · r = cl21 · r = cp1
1 · r + np1

1 · t = 0
cl12 · r + nl1 · t = cl22 · r + nl2 · t = cp1

2 · r + np1
2 · t = 0

(18)

Here we use the first two equations of (7). Other choices are also valid. Each line
correspondence provides one constraint on t. Together with another constraint
from the point correspondence, we can obtain three linear equations with respect
to t. Rearranging the equations, we can have:

cl11 · r = cl21 · r = cp1
1 · r + np1

1 · t = 0
C2r + N2t = 0

C2 =
[
cl12 , cl22 , cp1

2

]T
, N2 =

[
nl1 ,nl2 ,np1

2

]T (19)

Using (12), we can get t. Substituting (12) into cp1
1 · r + np1

1 · t = 0, we can get
a quadratic equation system the same as (13) with

A =
[
cl11 , cl21 , cp1

1 −
(
(N2)

−1C2

)T

np1
1

]T

(20)

4.4 P3L

Given three line correspondences, we can have the following quadratic equation
system according to (9):

cl11 · r = cl21 · r = cl31 · r = 0
cl12 · r + nl1 · t = cl22 · r + nl2 · t = cl32 · r + nl3 · t = 0

(21)

It is clear that the first three quadrics only involving the quaternion q. Com-
bining with the norm one constraint of q, we have a form the same as (13)
with

A =
[
cl11 , cl21 , cl31

]T
(22)

Besides, t can be computed from the last three equations of (21) using (12) with

C2 =
[
cl12 , cl22 , cl32

]T
, N2 =

[
nl1 ,nl2 ,nl3

]T (23)
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4.5 Solve the Rotation Matrix

As mentioned above, in all of the four minimal configurations, R can be obtained
by solving a quadratic equation system with the form (13). It seems that there
are 16 solutions according to the Bézout’s Theorem [19]. However, as (1) only
includes degree 2 monomials, signs of unknowns do not impact on the value of
R. Thus, there are at most 8 real solutions for R. In this section, we show how
to solve this quadratic equation system. Assume w is not 0. Let us define

x = aw, y = bw, z = cw (24)

Divide both side of Ar = 0 in (13) by w. We can have

ai
[
a2, b2, c2, ab, ac, bc, a, b, c, 1

]T
= 0, i = 1, 2, 3 (25)

where ai is the i-th row of A. It is easy to find that [a, b, c]T is the intersection
of three quadrics. This can be solved by the E3Q3 algorithm [17].

For completeness, we briefly introduce the E3Q3 algorithm. By regarding a
as a constant, we get three equations about b and c. Dividing the six monomials
of b and c into two parts, i.e.,

{
b2, c2, bc

}
and {b, c, 1}, we can obtain:

H

⎡
⎣

b2

c2

bc

⎤
⎦ =

⎡
⎣

p11(x), p12(x), p13(x)
p21(x), p22(x), p23(x)
p31(x), p32(x), p33(x)

⎤
⎦

⎡
⎣

b
c
1

⎤
⎦ (26)

Assume H is invertible. Multiplying H−1 to both side of (26), we get the relation-
ship between

{
b2, c2, bc

}
and {b, c, 1}. Using this relationship and the identities

(b2)c = (bc)b, (bc)c = (c2)b, and (bc)(bc) = (b2)(c2), we can get a homogeneous
linear system whose coefficients M(a) are polynomials in a. According to the
linear algebra, the homogeneous linear system has a non-trivial solution, if and
only if the determinant of M(a) is zero. This results in a degree 8 polynomial in
a. Solve this for a, then back-substitute a into the linear system to get b and c.

Given a, b and c, w2 can be obtained from the norm one constraint of the
quaternion by w2 = 1/

(
a2 + b2 + c2 + 1

)
. Substituting (24) into (1) and using

w2, we can easily obtain R. There are two assumptions for computing R. The
first is H is invertible, and the second is w is not zero. Therefore, singularity
occurs when the assumptions do not satisfy. We address both singularities in the
following two sections.

Robust E3Q3 (RE3Q3). Kukelova et al. [17] find that there are 8 degen-
erate configurations when H is rank deficient, and they give the solution for
each of them. However, this method is hard to handle the situation when H
approximates singularity, which will significantly degrade the performance of
the algorithm as shown in Fig. 2a.

As we can treat any of a, b and c as a constant, and the other two as
unknowns in (25), there actually exist three choices for H. Let Ha, Hb and Hc

represent the coefficient matrices obtained by choosing a, b and c as a constant,



Minimal Solution of 2D/3D Point and Line Correspondences 281

respectively. If the coefficient matrix of the second order monomials in (25) is
nondegenerate, it is probable that when Ha is ill-conditioned, but Hb or Hc

is still in good condition. We try to find the one with the best condition. As
the condition number of a matrix describes to what extent a matrix approaches
singularity. The larger the condition number is, the closer the matrix approaches
singularity. We calculate the condition number of Ha, Hb and Hc, and choose the
one with the minimal condition number to replace H in (25). This just needs
to interchange the coefficient of (25), and do not need to implement different
algorithm for different choice. Thus, it is efficient. We call this approach Robust
E3Q3 (RE3Q3). Figure 2a shows that RE3Q3 is much more stable than the
original E3Q3 algorithm [17] in the degenerate configuration. Besides, in the
general situation, RE3Q3 still improves the stability of E3Q3, as shown in Fig. 2b.

(a) Degenerate situation (b) General situation

Fig. 2. Compare RE3Q3 with E3Q3 in degenerate situation (a) and in general situation
(b). We randomly generate the coefficients of (25) except for the constants. Then we
randomly generate a solution, and substitute it into (25) to calculate the constants. For
the degenerate cases, we get H in (26) and randomly set the smallest singular value
within

(
0, 10−6

)
. We run the algorithm 50,000 times.

Reference Rotation. When w in q is small, according to (24), a, b and c
are probably greater than 1. Thus, they may amplify the estimation error of w
when we compute x, y and z. This effect increases, when w gets smaller. The
performance of our algorithm will degrade if w is a very tiny value, as shown
in Fig. 3, where w ∈ (0, 10−6). If we have a reference rotation represented as a
quaternion qref , which gives a rough estimation of the rotation, we can easily
solve this problem. Given a qref , we can exchange w with the element that has
the maximum absolute value in qref to get q′. This makes a, b and c all smaller
than 1. Exchanging the element of q′ equals to permute the coefficients in (25),
and the computational cost is negligible. When q′ is calculated, we can get the
original q by applying the exchange again.

In the application, we can generally have a qref . For example, in the SLAM
system, camera pose is sequentially estimated. Therefore, the last rotation can
be used as the reference rotation. In addition, the minimal solution is generally
used in the RANSAC algorithm [5], the current optimal rotation estimation
can be a reference rotation. One question is that whether our algorithm can
generate a valid reference matrix in the degenerate configuration. To verify this,
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(a) P3L rotation error (b) P3P rotation error

Fig. 3. Rotation error for P3L and P3P when w ∈ (0, 10−6), which is degenerate for
the baseline algorithm. We generate 3 extra points to find the most accurate rotation
Rself . Then we use Rself as a reference rotation to calculate the rotation again (labeled
as Self Reference R). We run the algorithm 50,000 times. This method gives almost
the same result as using the ground truth as the reference matrix. It is clear that our
algorithm can provide valid reference rotation even in the degenerate situation.

we run our P3L and P3P algorithm on 50,000 randomly generated degenerate
configurations where w ∈ (0, 10−6). Three additional points are generated to
select the most accurate rotation, denoted as Rself . Rself is then used as the
reference rotation. We also use the ground truth rotation Rgt as the reference
rotation. The experimental results in Fig. 3 show that Rself and Rgt gives almost
the small results. As we only use the relative order of qref , qref can be rather
rough. This makes our algorithm stable even in the degenerate case.

4.6 Algorithm Summary

As mentioned above, the rotation matrix R of all the four minimal configurations
can be obtained by solving a quadric equation system having the form of (13).
Given R, the translation t can be calculated from a linear system (12). One
2D/3D point correspondence gives three equations in (3). We use one of them
for R estimation. Given R, we use the remaining 2 equations for the estimation
of t. Our algorithm is summarized in Algorithm 1.

Algorithm 1. Solve the minimal problems of 2D/3D point and line correspon-
dences

1. Calculate the coefficient matrix A of the quadric equations, i.e., using (14)
for P3P, (17) for P2P1L, (20) for P1P2L, (22) for P3L.

2. If qref is available, find the max absolute element in qref . Exchange it with
w, and rearrange the coefficients accordingly.

3. Solve (25) by the RE3Q3 algorithm. If qref is used, rearrange the solution
accordingly.

4. Use the norm one constraint of the quaternion and the definition (1) to get
R.

5. Solve t from the linear system including all the remaining constraints on t.
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5 Simulation Results

As the previous works [2,3,6,9,14,15,28], we compare our algorithm with the
state-of-the-art algorithms by simulations. We can evaluate the algorithms by a
large number of configurations in the simulation. As the same input will generate
the same result, the simulation results will unfold the performance of different
algorithms in real applications.

Given the estimation (R̂, t̂) and the ground truth (Rgt, tgt), the estimation
error of R̂ is measured by the absolute angle of the axis-angle representation of
R̂R

−1

gt as [17], and the estimation error of t̂ is measured by
∥∥t̂ − tgt

∥∥
2
/‖tgt‖2 .

We randomly generate the rotation matrix by Euler angle. The position of the
camera is within a cube [−5, 5]3. The camera has resolution 640 × 480 and
focal length 800. A line is generated by two random points. The depth of the
3D point is within [2, 8]. We also study the behavior of our algorithm with or
without a reference rotation. As shown in Fig. 3, the rotation matrix calculated
by our algorithm is as valid as the ground truth. Thus, we use the ground truth
rotation matrix as the reference. Our algorithm without a reference rotation is
labeled as the baseline. The following results are obtained from 50,000 trials.
Table 1 lists the mean, standard deviation, median, and maximal estimation
errors. It shows that our baseline algorithm is comparable to the state-of-the-art
P3P algorithm [14], and outperforms the previous algorithms of the other three
problems. Besides, a reference rotation can further increase the performance.

5.1 Results of P3P Problem

We compare our algorithm with Ke’s algorithm [14], Kneip’s algorithm [15] and
Gao’s algorithm [6]. For fairness, we do not apply root polishing for Ke’s algo-
rithm. As all of these algorithms have publicly available c++ implementation, we
also implement our algorithm in c++. We use Hartley’s Sturm sequences [10]
implementation to solve the eighth degree polynomial equation. The relative
error is set to 10−14 as [17].

The histograms of rotation and translation errors are shown in Fig. 4. Table 1
lists the quantitative results of different algorithms. It is clear that the reference
rotation can increase the stability of our algorithm. Ke’s algorithm is better
than our algorithm in rotation. Our algorithm gives better results in transla-
tion, as we use more equations for the translation estimation, and solve it in
the least-squares manner. Our algorithm outperforms other P3P algorithms.
This is because both Ke’s algorithm and our algorithm avoid the unnecessary
intermediate transformation, therefore reduce the numerical error accumulation.

5.2 Results of P2P1L and P1P2L Problem

We compare our algorithm with Ramalingam’s algorithm [28] for the P2P1L
and P1P2L problems. The error histograms are shown in Figs. 5 and 6. Table 1
gives the statistics of the estimation error. It is obvious that our algorithm
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Fig. 4. Histograms of rotation R (left) and t (right) errors for P3P algorithms.

Fig. 5. Histograms of R (left) and t (right) errors for different P2P1L algorithms.

Fig. 6. Histograms of R (left) and t (right) errors for P1P2L algorithms.

outperforms Ramalingam’s algorithm in terms of accuracy. Ramalingam’s algo-
rithm requires two intermediate transformations. Numerical errors accumulated
in these transformations potentially decrease the accuracy. Besides, their trans-
formations involve tangent function, which may case numerical issue.

5.3 Results of P3L Problem

As mentioned in the Sect. 2, The P3L algorithms [2,3,33] are similar. We compare
our algorithm with the latest P3L algorithm [33]. Figure 7 shows the results of
different algorithms. In the area of very small rotation error (the first two bins in
Fig. 7a), Xu’s algorithm has a higher probability than our algorithm. However, as
shown by the sub-windows in Fig. 7, Xu’s algorithm has a very long tail. Besides,
the statistics listed in Table 1 also verify that our algorithm is more stable than
Xu’s algorithm. The maximal rotation and translation errors of Xu’s algorithm
approximate 0.1 rad and 0.8, respectively. Our maximal rotation and translation
errors are much smaller than theirs.
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Fig. 7. Histograms of R (left) and t (right) errors for P3L algorithms.

Table 1. Mean, standard deviation (STD), median, and max of the pose errors. The
best result is highlighted by the boldface.

Algorithm Rotation Translation

Mean STD Median Max Mean STD Median Max

P3P Our baseline 1.2e−09 2.1e−07 5.4e−15 4.6e−05 1.2e−09 2.0e−07 7.4e−15 4.4e−05

Baseline+ref. R 6.6e−10 6.9e−08 3.2e−15 1.3e−05 1.2e−09 1.6e−07 4.5e−15 3.4e−05

Kneip 1.6e−08 3.2e−06 6.3e−15 7.1e−04 2.2e−08 4.3e−06 8.3e−15 9.5e−04

Ke 1.4e−10 2.0e−08 2.5e−15 4.4e−06 7.9e−09 1.1e−06 5.5e−15 1.7e−04

Gao 1.9e−04 1.8e−02 7.7e−12 2.7 4.1e−04 3.4e−02 1.5e−11 5.4

P2P1L Our baseline 2.2e−08 4.3e−06 5.5e−15 9.5e−04 3.0e−08 6.0e−06 9.0e−15 1.3e−03

Baseline+ref. R 7.9e−09 1.2e−06 3.3e−15 2.6e−04 9.0e−09 1.4e−06 5.6e−15 3.1e−04

Ramalingam 1.6e−07 3.4e−05 7.8e−15 7.6e−03 8.7e−08 1.9e−05 1.1e−14 4.2e−03

P1P2L Our baseline 9.1e−10 1.2e−07 5.6e−15 2.6e−05 1.2e−09 1.3e−07 1.0e−14 2.6e−05

Baseline+ref. R 3.0e−10 2.9e−08 3.3e−15 5.2e−06 4.3e−10 4.7e−08 6.1e−15 9.5e−06

Ramalingam 1.9e−09 1.9e−07 1.6e−14 3.6e−05 2.3e−09 2.1e−07 2.6e−14 3.1e−05

P3L Our baseline 2.0e−08 3.6e−06 4.6e−15 8.0e−04 6.6e−08 1.4e−05 1.3e−14 3.1e−03

Baseline+ref. R 6.6e−10 7.8e−08 2.5e−15 1.2e−05 3.0e−09 3.5e−07 6.9e−15 5.1e−05

Xu 1.1e−05 6.6e−04 3.4e−15 9.1e−02 3.9e−05 3.8e−03 1.2e−14 8.0e−01

5.4 Computational Time

Our algorithm is implemented in C++ using Eigen linear algebra library [8]
for the P3P problem. We use the OpenCV’s [24] implementation of Ke’s algo-
rithm [14]. For the other minimal problems, we compare the time using the
Matlab implementations. Here, we only list our running time with reference
rotation, as the running of our baseline algorithm is very similar to our algo-
rithm with reference rotation. As all the four minimal problems are solved in
a uniform framework, the computational time of the other three cases in c++
should be similar to the time of the P3P problem. In the application, we can use
the reference rotation to reduce the computational time of the translation. For
fairness, we compute all the eight solutions of translation here. All the results
are obtained by 50,000 trials on a laptop with a 2.9 GHZ intel core i7 CPU.

Table 2 gives the results. Compared to E3Q3, RE3Q3 slightly increases the
running time. It is not surprising that our algorithm is slower that Ke’s algo-
rithm [14], as we need to solve an eighth degree equation for the rotation and
eight linear equation systems for the translation, but they only need to solve
a quartic equation for the rotation and four linear systems for the translation.
For the P3L problem, Xu’s algorithm [33] is slightly faster than ours. This is
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Table 2. Computational time comparison. RE3Q3, E3Q3, and P3P algorithms are
tested by c++. Others are tested by Matlab.

Algorithm Time (µs)

Solver RE3Q3 11

E3Q3 8.3

P3P Our baseline + reference R 21

Ke’s algorithm 3.1

P2P1L Our baseline + reference R 290

Ramalingam’s algorithm 429

P1P2L Our baseline + reference R 279

Ramalingam’s algorithm 439

P3L Our baseline + reference R 261

Xu’s algorithm 202

because they use a transformation to directly eliminate one of the rotation vari-
able. Ramalingam’s algorithm [28] is slower than our algorithm. This is because
their algorithm needs to compute SVD of a 6× 8 matrix for the P2P1L problem,
and 6× 9 matrix for the P1P2L problem. The SVD is time-consuming. Although
our algorithm is slower than Ke’s algorithm, it is still efficient for a real-time
application. Minimal solution is generally used in the RANSAC algorithm [5].
Suppose the ratio of the outlier is 0.5. To ensure with a probability, such as 0.99,
that at least one of the random minimal samples is without outliers, we need at
least 35 trials [11]. This will be finished within 0.8 ms.

6 Conclusion

In this paper, we propose an algebraic algorithm for the four minimal configura-
tions of 2D/3D point and line correspondences. This is useful for many robotics
and computer vision applications. Our algorithm directly uses the collinearity
and coplanarity constraints to construct the equation system, and does not need
any intermediate transformation. This can avoid numerical error accumulation.
We increase the stability of our algorithm by a reference matrix which is gen-
erally available in real applications. We present the RE3Q3 algorithm which
significantly increases the stability of the E3Q3 algorithm [17]. The simulation
results show that our baseline algorithm is comparable to the state-of-the-art
P3P algorithm [14], and outperforms the stat-of-the-art algorithms of the other
three minimal cases. A reference rotation matrix, which is generally available
in the SLAM or VO system, can further increase the numerical stability of our
algorithm. Additionally, our algorithm is efficient for real-time applications.
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