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Abstract. In this work, we propose fast single shot instance segmen-
tation framework (FSSI), which aims at jointly object detection, seg-
menting and distinguishing every individual instance (instance segmen-
tation) in a flexible and fast way. In the pipeline of FSSI, the instance
segmentation task is divided into three parallel sub-tasks: object detec-
tion, semantic segmentation, and direction prediction. The instance seg-
mentation result is then generated from these three sub-tasks’ results
by the post-process in parallel. In order to accelerate the process, the
SSD-like detection structure and two-path architecture which can gen-
erate more accurate segmentation prediction without heavy calculation
burden are adopted. Our experiments on the PASCAL VOC and the
MSCOCO datasets demonstrate the benefits of our approach, which
accelerate the instance segmentation process with competitive result
compared to MaskRCNN. Code is public available (https://github.com/
lzx1413/FSSI).

Keywords: Instance segmentation · Multi-task learning ·
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1 Introduction

Benefited from the Deep Convolutional Neural Networks (CNNs) [16], the field of
category-level semantic segmentation and object detection has a rapid progress
over a short period of time [3,23–25,29]. However, instance segmentation is
more complex since it requires segmenting each instance in an image. To tackle
this challenging task, several approaches have been proposed, such as MaskR-
CNN [12] and FCIS [17]. Those methods can achieve state-of-the-art performance
on the instance segmentation task but usually require a complicated pipeline and
a huge amount of computations. Our goal in this work is to build a system which
can split the instance segmentation task into several lightweight, parallel and
computing sharing tasks. Hence they can run at a faster speed while retaining
the competitive results with other methods.

There are mainly two kinds of methods to solve the instance segmentation
problem. The first one is developing a system which focuses on bounding box
detection first and then refining the prediction to obtain mask segmentation.
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The state-of-the-art instance segmentation model MaskRCNN [12], generates the
instance masks from the features cropped and resized by ROIAlign. The operator
of ROIAlign is very heavy when there are numerous proposals. Besides, reducing
the resolution of input images will decrease the performance markedly accord-
ing to our experiments. Another type is to assign pixel predictions to instances
in a bottom-up way. The prior work of [31] produces three predictions: seman-
tic segmentation, instance direction (predicting the pixel’s direction towards its
corresponding instance center) and depth estimation. However, the complicate
template matching which is used to decode the instance mask slows the speed
of the pipeline.

In this work, we propose a fast single shot instance segmentation method
(FSSI) which is a fast and flexible approach to tackle instance segmentation
task. The instance segmentation task is decomposed into three parallel tasks:
object detection, semantic segmentation, and direction prediction. In order to
reduce the computational cost, the fusion feature generated from the base model
is shared among the three tasks. We adopt the SSD-like head structure for object
detection rather than crop-and-resize method introduced in [12,17]. Then the
instance mask is produced by clustering the patch of masks from segmentation
tasks according to the detected boxes, which is simpler and faster than template
matching in the work [31]. As shown in Fig. 1, FSSI is designed in a multi-
task way using one full convolutional network (FCN). Therefore, FSSI can be
trained in an end-to-end way and the performance of instance segmentation can
be further improved while better results can be produced by the three sub-tasks.
Our main contributions can be summarized as follows:

(1) We decompose instance segmentation task into three sub-tasks: object detec-
tion, semantic segmentation, and direction prediction. We propose a novel
and lightweight multi-task framework (FSSI) which shares the fusion feature
and generates the outputs of the three sub-tasks.

(2) Our proposed FSSI adopts SSD-like object detection structure and two-path
segmentation architecture to reduce the computational cost, which let FSSI
perform about 4 times faster than MaskRCNN while having the competitive
performance.

(3) We propose a simple and parallel post-process algorithm to generate instance
segmentation masks from the three sub-task results.

2 Related Work

In this section, we summarize current instance segmentation algorithms based
on deep neural networks and categorize them into two types, depending on the
framework of the pipeline: Top-down or Bottom-up.

Top-Down Based Methods. Top-down based methods generate instance segmen-
tation by producing the bounding box of objects firstly. Then the regions of
features in the bounding boxes are cropped and resized to be used to either
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classify mask regions or refine boxes to obtain instance masks. There have been
several methods proposed to tackle the instance segmentation task. MCG [1],
SharpMask [28] and instance-sensitive FCNs [4] are proposed to generate mask
proposals. MNC [5] decomposes the instance segmentation into three cascade
problems including box localization, mask refinement, and instance classifica-
tion. The former result is used as the input of the following tasks. Hayeret al.
[9] suggest reducing the mask boundary error to improve MNC. Higher-order
Conditional Random Fields (CRFs) are used in [2] to refine the instance mask.
FCIS [17] is the first Fully Convolutional Network (FCN) for instance segmenta-
tion. It adopts position-sensitive score maps from InstanceFCN [4] and considers
inside/outside score maps further to produce instance masks. Recently, Mask-
RCNN [12], which is built on the top of FPN [20], adopts another small FCN
branch to obtain refined mask results from box predictions.

Bottom-Up Based Methods. Bottom-up based methods generally adopt the fol-
lowing two stages, including segmentation and clustering. The segmentation
module predicts the pixel-level labels, and the clustering process is used to group
the per-pixel predictions together for each object instance. PFN [19] adopts
spectral clustering to group the semantic segmentation results from DeepLab [3]
depending on the prediction of object number and the bounding box every pixel
belongs to. Zhang et al. [34] apply depth order to distinguish different instances.
Uhrig et al. [31] train an FCN to predict the direction to the object center of
each pixel, semantic mask, and depth information to generate instance segmenta-
tions. Liu et al. [22] segment objects from patches of images with multi-scales and
aggregate them together. However, existing methods seldom pay attention to the
efficiency of instance segmentation and they are hard to be deployed to platforms
which have limited computational capability. For instance, MaskRCNN based on
ResNet-50 [13] can only run at 5 FPS on the advanced GPUs. To tackle this prob-
lem, our proposed FSSI model combines the advantages from both top-down and
bottom-up advantages and aims at supplying a fast and lightweight approach to
generate instance masks. Our proposed method divides the instance segmenta-
tion task into three parallel sub-tasks: object detection, semantic segmentation,
and direction segmentation. Different from FCIS or MaskRCNN, which are built
on the two-stage object directors and refine the mask from the features w.r.t the
detected boxes, our FSSI adopts SSD-like head for object detection and the
results of instance segmentation initialized by the boxes are generated from the
semantic segmentation and direction prediction directly. Benefited from the two-
path architecture described in Sect. 3, the computational cost for segmentation
tasks is reduced observably.

3 Fast Single Shot Instance Segmentation

In this section, we first introduce the sub-tasks designed to accomplish the final
instance segmentation task. Then we demonstrate the global view of our FSSI
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pipeline and the architecture of each sub-task. Finally, we explain how to aggre-
gate results from the sub-tasks to generate the instance segmentation result and
the loss functions which are used to optimize our FSSI.

3.1 Multi-task Design for Instance Segmentation

In our FSSI framework, instance segmentation can be decomposed into three
parallel tasks including object detection, semantic segmentation and auxiliary
information for distinguishing individual instances which belong to the same
category. The object detection result can supply the category label and bounding
box information which can be regarded as the initial region of interest to generate
a refined instance mask. Semantic segmentation logits are designed to predict the
pixel-wise semantic logits, which have the ability to separate instances of different
semantic labels. However, semantic labels are not sufficient to make a distinction
between instance objects which belong to the same class and are connected to
each other. Auxiliary information for distinguishing them is necessary at this
time. There are several ways to tackle this task, such as direction, boundary,
and depth prediction. In this work, we adopt the direction prediction proposed
by [31] as the auxiliary information. The direction prediction logits can be used to
predict each pixel’s direction towards of the center of its corresponding instance.
However, our direction target is different from [31], which will be discussed in
Sect. 3.6. The instance segmentation results can be obtained by a simple post-
processing method which will be described in Sect. 3.7 in details.

3.2 Global View of the Pipeline

As presented in Fig. 1, we design one fully convolutional network, which performs
object detection, semantic segmentation, and direction prediction synchronously.
Our motivation is as follows: Firstly, we consider generating a comprehensive
representation of the input image. Then the general feature will be regarded as
the input feature for three subnets which are corresponding to the three sub-
tasks. Finally, outputs of the three sub-tasks will be aggregated together to
generate the instance segmentation results with a post-process module.

3.3 Fusion Feature

Inspired by HyperNet [15] and FSSD [18], we produce the fusion feature by
fusing the multi-level feature maps generated by the base model. Considering
the trade-off between the performance and speed in image classification task, we
choose ResNet-50 [13] as the base model. The fusion feature is the comprehensive
representation of the input image. Following FSSD [18], we choose the feature
maps with feature stride 8, 16, 32 to generate the fusion feature, whose feature
stride is 8. In order to reduce the time consumed in the fusion feature extraction,
we resize the input image to 300 × 300 before feeding it into the base model.
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Fig. 1. The FSSI architecture. The size of the input image is 384× 384. FSSI consists
of three branches for object detection, semantic segmentation, and direction
prediction. We adopt ResNet50 [13] as the BaseModel to extract the fusion fea-
ture(orange). The green part is the single shot object detection sub-net which takes
the fusion feature as the input. As for the segmentation tasks, the original large
input image is used to generate low level feature by a shallow FCN (shares weights
with part of the base model). Then one pyramid pooling module (PPM) is appended
after the fusion feature to generate high-level semantic feature map. Next, the low-level
and high-level feature maps are concatenated together to generate the semantic seg-
mentation results, which will be concatenated with the feature maps from the direction
segmentation sub-net to produce the direction prediction outputs. Finally, the instance
segmentation results can be generated by a post-process.

3.4 SSD Head for Object Detection

SSD [23] is an excellent object detector architecture which can achieve outstand-
ing performance while running at a very fast speed. Inspired by FSSD [18], we
generate new feature pyramid from the fusion feature with a cascade of convo-
lutional layers whose stride is 2. Then the feature pyramid will be adopted to
generate classification and coordinate correction for a set of default bounding
boxes. At test time, non-maximum suppression (NMS) will be used to filter the
final object detection results. Since we only use the image with 300 × 300 to
process object detection, the object detection process is very efficient.

3.5 Segmentation Sub-networks

As shown in Fig. 1, we append two sub-nets after the fusion feature to generate
prediction map for the semantic mask and direction mask. Since the spatial size
of the fusion feature is 38 × 38, it is insufficient to generate the mask with high
quality, especially for the direction map whose spatial size is much smaller than
the semantic mask (semantic masks are divided into direction masks). Therefore,



262 Z. Li et al.

we adopt the two-path structure, which means that we also extract the low-
level feature maps from the original input image (384× 384) using a sequence of
convolutional layers which share the weights with the first stage of ResNet-50 to
refine the mask prediction results.

Semantic Segmentation Branch. As the feature stride of the fusion feature is 8,
we firstly up-sample the feature map by the nearest interpolation layer with up-
scale factor 2 followed by one convolutional layer. We also leverage the pyramid
pooling module (PPM) which is proposed by PSPnet [35] to enhance the capacity
of the semantic segmentation branch. The high-level feature maps generated from
the fusion feature will be concatenated to the low-level feature maps to generate
the ultimate semantic segmentation results. The output semantic prediction map
will be up-sampled by bilinear interpolation to match the size of the input image.

Direction Segmentation Branch. The target of direction segmentation is
described in Sec. 3.6. Compared with semantic segmentation target, the direc-
tion segmentation target has a smaller area. Therefore, we discard the PPM
and only up-sample the fusion feature by a nearest up-sample layer with scale
factor 2 and a convolutional layer. Since the direction segmentation only needs
to be conducted on the region of objects, the output of the semantic segmenta-
tion is concatenated with the up-sampled fusion feature to serve as a reference
for the objects’ spatial distribution. However, the gradient of the direction seg-
mentation branch does not be back-propagated to the semantic segmentation
branch. Different from the FCIS [17], our proposed direction results are class-
agnostic instead of having the logits for each category to yield more compact
models. Hence the outputs of direction segmentation are only 9 channels (8 for
8 directions and 1 for the background.)

3.6 Direction Map of Objects

As shown in Fig. 2(b), semantic segmentation will only predict the category
results of the pixels rather than instance results. In order to discriminate the
different object instances which belong to the same category and are connected
together in the image, we adopt the direction map (Fig. 2(c)) which is inspired by
[31]. [31] splits the instance mask into 8 different directions with the angle interval
of 45 degrees. Different from the [31], we use the diagonal and the lines between
the midpoints on the sides of the bounding boxes to split the instance mask into 8
regions (We do not adopt 4 or 16 regions because they do not perfrom as well as 8
regions in our experiments.). We propose this method according to fact that the
input image will be resized before being processed by the network. Our approach
can preserve the constant direction label with image-ratio varieties. Besides, this
strategy can also make the direction logits become easier to collaborate with the
object detection results, which will be described in Sect. 3.7. Besides, since the
area of each individual direction segmentation mask is smaller than the original
category mask and only the regions where objects exist need to generate direction
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Fig. 2. Segmentation targets. (a) input image. (b) semantic segmentation target. (c)
original direction segmentation target. (d) direction segmentation target after ignoring
the background regions (in white color).

predictions, we ignore the region (Fig. 2(d)) which is outside of the expanded
bounding boxes from the ground truths to reduce the jamming effect from the
background.

3.7 Post-process for Generating Instance Mask

The multi-task network called FSSI can generate the object detection, semantic
segmentation and direction segmentation of the input image. The post-process
will take these three parts of information as the inputs and generate the instance
segmentation results. For the objects in one image, we process them with groups
which are clustered by their category labels from the object detection results.
Different groups of objects can be processed in parallel to accelerate the process.
For each group of objects, as shown in Fig. 3, there are two stages for post-
process.

1. Find and match the bounding boxes (det-box) with the individual semantic
masks, which means that the masks are not connected with other objects
in the same group. First, connected components of the semantic masks are
extracted and the bounding box of these connected components (mask-box)
can be calculated. Then the intersection over union (IoU) between each det-
box and mask-box can be obtained. One det-box and one mask-box are
matched successfully if the IoU between them is higher than a threshold tbs
which is 0.7 in our experiments. Therefore, we can confirm one object with
both it’s bounding box and mask. In order to avoid the problem that the
det-box is not large enough to surround the object (last row in Fig. 4), which
leads to failure to produce the full mask of the object, we set the union set
of mask-box and det-box to be the final object box in this stage.

2. Discriminate the instance masks which are connected together with the guide
of direction predictions. First, given one predicted bounding box and category
label, we crop the regions in the semantic segmentation map and direction
map w.r.t the predicted bounding box. The semantic patch is transformed
into a binary mask according to the category label and used to perform as
the mask to filter the direction patches. Regions in the direction map which
are not in the semantic mask will turn to be background. Then the direction
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Fig. 3. Pipeline of the post-process for instance results. Details can be found in
Sect. 3.7.

patch can be used to determine the mask of center objects according to their
location distribution as follows: First, we define a direction template w.r.t
the predicted box as shown in Fig. 3. The regions of 8 different directions
are separated. The direction template is with the same size as the det-box.
Then the mask patches of 8 directions are processed in parallel. For each
direction, the mask patches which belong to this direction will be extracted by
finding their connected components. For each mask patch, the occupancy rate
(Or) will be calculated to confirm whether this patch is in the corresponding
direction to the center object. The occupancy rate is defined as follows:

Or =
Maskd ∩ Maskt

Maskd
(1)

where Maskd is the binary mask of the direction patch and Maskt is the mask
of the corresponding direction in the direction template. If Or is higher than a
threshold Ot(0.2 in our experiments), the direction patch is regarded as part of
the center object’s mask. This method can tolerate det-box’s error within limits.
After the direction patches of 8 directions which belong to the center obje ct are
collected, we can get a coarse mask of the object by piecing them together. In
order to fill the small holes in the mask, we apply a close morphology operation
on the coarse mask to refine the mask.

To illustrate the mechanism of how to use direction map to reject the mask
patches which are not part of the center object more clearly, we supply an
example. As shown in stage 2 of Fig. 3, the rightmost person’s det-box contains
the masks of both its center object and another person near him. Take the
direction in red as an instance, two mask patches which are in the region of the
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direction are predicted as other directions. Therefore, it is apparent that those
two mask patches are not from the center objects. The final instance mask does
not contain these mask patches.

3.8 Training and Loss Functions

Given the dataset which is annotated with instance masks, the bounding
box, semantic segmentation targets and direction segmentation targets can be
extracted from the instance annotations. The loss function used to optimize
the model is the sum of three sub-task loss functions including object detection
(Ldet), semantic segmentation (Ls), and direction segmentation (Ld). The loss
is defined as follows:

L = Ldet + αLs + βLd (2)

where α and β are the scale factors to reweight the three loss functions and in
our experiments, the α and β are set to 100.

As for the object detection loss, we adopt the same loss proposed in SSD [23].
We adopt the same data augmentation and matching strategy suggested in the
conventional SSD framework.

For both of the two segmentation tasks, the loss is the cross-entropy between
the predicted and target class distribution for each pixel. To boost the segmen-
tation performance on the hard cases in images, we adopt the bootstrapping
cross-entropy proposed by Wu et al. [33]. Supposing C is the number of cate-
gories, and y1, ..., yN ∈ {1, ..., c} are the target labels for the pixels 1, ..., N , and
pi,j is the posterior class probability for pixel i and class j, the bootstrapping
cross-entropy loss can be defined as follows:

Ls = − 1
K

K∑

1

log(pk) log(pk) ∈ TopK(log(pi,j)), yi = j (3)

The misclassified pixels or pixels where we predict the correct label with a small
probability will be selected to be optimized in the first place depending on the
number of pixels K (16384 in our experiments) that we consider.

4 Experiments

In this section, we show that our FSSI can achieve competitive performance in
terms of object detection, semantic segmentation and instance segmentation with
a fast speed. We implement FSSI with PyTorch1 throughout all the experiments.
We conduct experiments on PASCAL VOC [7] and MSCOCO [21] for which both
bounding box annotations and segmentation maps or instance annotations are
available.

1 https://github.com/pytorch/pytorch.

https://github.com/pytorch/pytorch
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4.1 Experiments on PASCAL VOC

PASCAL VOC includes 20 object categories for detection, semantic segmenta-
tion, and instance segmentation. All images in PASCAL VOC have bounding
box annotations but there are only 1464 fully labeled images in the train set and
another 1449 in the validation set for segmentation. We evaluate the semantic
segmentation performance on the VOC2012 segmentation test set. We also aug-
ment the train set with extra annotations from the semantic boundaries dataset
(SBD) [8]. Therefore, there are 10582 images in the train set (we call this set
VOC12-sem-seg-aug-train). Besides, VOC07 trainval set (VOC07-trainval) has
5011 images, and VOC07 test set (VOC07-test) has 4952 images for object detec-
tion.

As for the instance segmentation task on PASCAL VOC dataset, we use
the annotations in SBD [8] and follow the common protocols used in several
recent works [10,17]. There are 5623 images in the train set (SBD-train) and
5732 images in the validation set (SBD-val) according to the PASCAL VOC
2012 splits. We train the models with the train set and evaluate them with the
validation set as there is no annotation for the test set.

The performance of semantic segmentation and direction segmentation on
PASCAL VOC dataset is mainly measured with mean intersection over union
(mIoU). mAP@0.5 is used to measure the object detection quality. mAP@0.5
and mAP@0.7 are used to evaluate the performance of instance segmentation
task.

While training models on the PASCAL VOC dataset, we train the FSSI on
two Nvidia 1080Ti GPUs with batch size 32 for 60 epochs with initial learning
rate 0.01. We decay the learning rate with cosine annealing which is proposed
by [26] for each epoch.

Table 1. Ablation study results for FSSI. The performance is evaluated on the SBD-
val set. DP: Initialize FSSI with detection model pre-trained on VOC07-trainval and
VOC07-test. BTL: Replace the conventional cross-entropy loss with bootstrapping
cross-entropy loss. MR: The outputs of semantic segmentation are used to generate
the direction predictions. TP: Adopt two-path architecture to produce segmentation
results. MT: Double the epoches in the training phase. DET: Object detection. SEM:
Semantic segmentation. DRT: Direction segmentation. INS: Instance segmentation.

DP BTL MR TP MT DET mAP@0.5 SEM mIoU DRT mIoU INS mAP@0.5 INS mAP@0.7

� 67.39 68.28 54.29 50.12 34.95

� 74.00 69.02 55.82 53.99 37.77

� � 73.50 70.60 56.63 55.44 40.79

� � � 74.85 70.84 57.14 56.47 40.88

� � � � 74.07 69.56 57.33 56.70 41.01

� � � � 74.02 71.30 58.23 58.40 41.95



Fast Single Shot Instance Segmentation 267

Ablation on PASCAL VOC. We run a lot of ablation studies to analyze
FSSI on the structure design and training strategy. Results are shown in Table 1
and discussed as follows.

Extra Data for Detection from VOC07 Set: As illustrated in Fig. 1, our FSSI is
designed for multitasks. Therefore we want to figure out whether more data of
bounding box annotations is beneficial to the performance of FSSI. In Table 1, we
note that training model with VOC07-trainval and VOC07-test set can improve
the performance of FSSI effectively.

Bootstrapping Cross-Entropy vs. Cross-Entropy. As mentioned in [33], contin-
uing to learn from the pixels which are easy to be classified can not improve
the segmentation performance. The model should focus on the hard pixels (edge
of objects or complex surfaces) during training. In order to enhance the abil-
ity of the model to discriminate the edge of the center object, we adopt the
bootstrapping cross-entropy to mine the hard pixels during the training phase.
We compare the effect of conventional cross-entropy and bootstrapping cross-
entropy. As shown in Table 1, bootstrapping cross-entropy can improve the mIoU
of both semantic segmentation and direction segmentation, which contributes to
the progress of instance segmentation performance.

Direction Segmentation Takes Semantic Results as a Reference or Not: As shown
in Fig. 1, the output of semantic segmentation is used as part of feature maps
to generate the direction segmentation. In order to evaluate the effectiveness of
this design, we remove this link and compare their performance. As shown in
Table 1, approximate 1% improvement can be obtained while taking the output
of semantic segmentation as the reference of the direction segmentation.

Adopt Two Path Architecture or Not for Segmentations: In order to illustrate
the effectiveness of the two-path structure, we compare the one-path and two-
path structure. As shown in Table 1, we can observe the improvement with a
large margin while adopting the design of two-path architecture.

Effectiveness of the Three Sub-task Design. In this section, we evaluate gains
from the three sub-tasks. We evaluate the instance segmentation performance
in different ways as shown in Table 2. It is obvious that the direction segmen-
tation task can improve the performance effectively. Besides, if we replace the
predicted mask with the ground truth, the performance can be improved fur-
ther, which means that future advances in semantic segmentation methods can
further improve the performance of our approach.
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Table 2. The effectiveness of the three sub-tasks for instance segmentation. box: The
region of box is regarded as the instance mask. sem-mask: The semantic mask in
the box is regarded as the instance mask. direct-mask: The direction mask joins the
post-process. gt-sem: The semantic mask is replaced by the ground truth. gt-direct:
The direction mask is replaced by the ground truth.

box sem-mask direct-mask gt-sem gt-direct mAP@0.5 mAP@0.7

� 33.51 7.93

� � 53.20 36.25

� � � 56.70 41.00

� � � 65.77 54.11

� � � 62.28 51.63

Table 3. Object detection and semantic segmentation evaluation on PASCAL VOC
dataset.

method BaseModel input size mAP50

SSD300[23] VGG16 300 77.2
RSSD300[14] VGG16 300 78.5
DSSD300[30] Res101 321 78.6
Blitz300[6] Res50 300 79.1

FSSD300[18] VGG16 300 78.8
FSSI(ours) Res50 300 79.6

(a) Detection results of PASCAL VOC2007 test set.
Blitz300 and FSSI are trained with mask annotations.

method mAP50

FCN[25] 62.2
DeepLab[3] 71.6

DeconvNet[27] 72.5
Blitz300[6] 72.8
GCRF[32] 73.2
DPN[24] 74.1

FSSI(ours) 75.1

(b) Semantic seg-
mentation results of
PASCAL VOC2012
segmentation test
dataset.

Results on PASCAL VOC

Object Detection. We first evaluate our FSSI on the object detection task on
PASCAL VOC 2007 test. Our FSSI is trained with VOC2007 trainval and
VOC2012 trainval. Apart from the bounding box annotations, semantic seg-
mentation labels of VOC2012 are also used to optimize the FSSI model. As
shown in Table 3(a), our FSSI can achieve 79.6 mAP@0.5, and outperform the
BlitzNet which is also trained with extra semantic mask annotations.

Semantic Segmentation. Since semantic segmentation is one task of our FSSI,
we also evaluate the performance of FSSI with other semantic segmentation
algorithms. As shown in Table 3, even though the input image of FSSI is only
384 × 384 pixels, FSSI still can produce competitive results with other methods
(http://host.robots.ox.ac.uk:8080/anonymous/BHMCV1.html).

http://host.robots.ox.ac.uk:8080/anonymous/BHMCV1.html
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Fig. 4. Instance segmentation results. (a) Input image. (b) Semantic segmentation
results. (c) Direction prediction results. (d) Instance segmentation results of our FSSI.
(e) Instance segmentation results of MaskRCNN.

Instance Segmentation. We compare the results of our FSSI with the state-of-
the-art approaches on PASCAL VOC 2012 dataset. As shown in Table 4, note
that our approach can achieve better performance than MaskRCNN with the
approximate same size of input images, even though our FSSI cannot catch up
with other complex models such as MNC, FCIS, and BAIS which adopt input
images with higher resolution. There are some sample results on the VOC2012
validation set as shown in Fig. 4. It is evident that our model produces compet-
itive results with MaskRCNN2. Moreover, our FSSI can produce more refined
masks than MaskRCNN.

2 This result is produced by ourselves based on https://github.com/roytseng-tw/
Detectron.pytorch.

https://github.com/roytseng-tw/Detectron.pytorch
https://github.com/roytseng-tw/Detectron.pytorch
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Table 4. Evaluation of different methods on the PASCAL VOC2012 validation set.

Method Input size mAP@0.5 mAP@0.7 Time/img (ms)

SDS [10] - 49.7 25.3 48000

PFN [19] - 58.7 42.5 1000

InstanceFCN [4] - 61.5 43.0 1500

MNC [5] 600˜ 63.5 41.5 360

FCIS [17] 600˜ 66.0 51.9 230

BAIS [11] - 65.7 48.3 780

MaskRCNN [12] 300˜500 56.7 39.2 53

FSSI (ours) 384 × 384 58.4 42.0 17

4.2 Inference Time Comparison

As shown in Table 4, our FSSI only consumes 17 ms (network inference + post-
process) for each input image averagely on the Nvidia 1080Ti GPU, which is
about 4 times faster than Mask-RCNN with the approximate same size of input
images.

4.3 Microsoft COCO Dataset

We further evaluate FSSI on the MSCOCO dataset. MSCOCO dataset includes
80 categories for detection and instance segmentation. There are no official
semantic annotations for training and validation. In this work, we generate the
semantic segmentation targets by combining instances of one category. As shown
in Table 5(a), our FSSI can reach 53.8 mIoU with 384 × 384 input, which is bet-
ter than BlitzNet whose input size is 512 × 512. As for the instance segmenta-
tion, our FSSI can achieve 17.5 mAP@[0.5:0.95], which is competitive with the
MaskRCNN.

Table 5. Results of MSCOCO dataset. The mmAP denotes mAP@[0.5:0.95].

method Backend input mIoU
Blitznet[6] Res50 512 53.5
FSSI(ours) Res50 384 53.8

(a) Semantic segmentation re-
sults on COCO validation set.

method Backend input val mmAP test mmAP
MaskRCNN[12] Res50 300˜500 18.1 18.3

FSSI(ours) Res50 384 17.5 17.8

(b) Instance segmentation results on COCO vali-
dation and test-dev set.

5 Conclusions

In this work, we propose fast single shot instance segmentation (FSSI), a
lightweight and fast framework for instance segmentation. The paradigm repre-
sents the instance segmentation task by a combination of three sub-tasks: object
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detection, semantic segmentation and direction prediction. We have designed a
new FCN architecture that utilizes this paradigm. The three sub-tasks share
the fusion feature generated from the base model. Two path architecture is also
adopted to supply feature maps with low-level information to produce more accu-
rate masks. The proposed framework can run at 4 times faster than MaskRCNN
while having the competitive performance on PASCAL VOC and MSCOCO.
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