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Caricature is a popular artistic drawing style in social media. One caricature is a
facial sketch beyond realism, attempting to portray a facial essence by exagger-
ating some prominent characteristics and oversimplifying the rest. Interestingly,
it can be recognized lightly by human at a glance. Moreover, since caricature
contains abundant non-verbal information, it is widely used in news and social
media. The retrieval between photograph and caricature will be a high demand.

A Joint Local and Global Deep Metric
Learning Method for Caricature
Recognition

Wenbin Li', Jing Huo!, Yinghuan Shi', Yang Gao'®™), Lei Wang?,
and Jiebo Luo?

! National Key Laboratory for Novel Software Technology, Nanjing University,

Nanjing, China
liwenbin.nju@gmail.com, {huojing,syh,gaoy}@nju.edu.cn

2 School of Computing and Information Technology, University of Wollongong,

Wollongong, Australia
leiw@uow.edu.au

3 Department of Computer Science, University of Rochester, Rochester, USA

jluo@cs.rochester.edu

Abstract. Caricature recognition is a novel, interesting, yet challenging
problem. Due to the exaggeration and distortion, there is a large cross-
modal gap between photographs and caricatures, making it nontrivial
to match the features of photographs and caricatures. To address the
problem, a joint local and global metric learning method (LGDML) is
proposed. First, joint local and global feature representation is learnt
with convolutional neural networks to find both discriminant features of
local facial parts and global distinctive features of the whole face. Next, in
order to fuse the local and global similarities of features, a unified feature
representation and similarity measure learning framework is proposed.
Various methods are evaluated on the caricature recognition task. We
have verified that both local and global features are crucial for caricature
recognition. Moreover, experimental results show that, compared with
the state-of-the-art methods, LGDML can obtain superior performance
in terms of Rank-1 and Rank-10.
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However, there are only a few studies on caricature recognition [1,19,29],
which mainly focus on designing and learning mid-level facial attribute features.
Moreover, these attributes usually need to be ad-hoc designed and laboriously
labeled. Considering the prominent representation ability of deep convolutional
neural networks (CNNs), we adopt CNN to learn the features automatically in
this paper.

(d) Similar Mouths (e) Similar Chins

Fig. 1. Local and global similarities between photographs and caricatures.

It is observed, when human verify whether a pair of photograph and car-
icature belongs to the same person or not, we can first easily connect the
special characteristic of photograph with the artistic exaggeration of carica-
ture [26]. For example, the small eyes of Ban Ki moon (Fig.1(a)), the wing
nose of George W. Bush (Fig. 1(b)), the plump lips of Angelina Jolie (Fig. 1(d)),
and the pointed chin of Bingbing Fan (Fig. 1(e)). Then, the overall appearance
similarity between photograph and caricature from global perspective is taken
into consideration [35]. For instance, the long face of Benedict Cumberbatch
(Fig. 1(c)).

The above observations imply that the fusion of local and global similari-
ties will benefit measuring the similarity between photograph and caricature. To
obtain the fusion of local and global similarities, we present a novel deep metric
learning to jointly train a global sub-network and four local part sub-networks.
In this method, feature representation and similarity measure are learnt simul-
taneously, which is end-to-end. Specifically, the global sub-network is used to
extract the global features from the whole face for global similarity measure,
and the four local part sub-networks are employed to capture the local features
from four local parts (i.e., eye, nose, mouth and chin parts) for local similarity
measure. By integrating the local and global similarities, we can obtain better
similarity measure for photograph and caricature. Thus, the proposed method
is termed as Local and Global Deep Metric Learning (LGDML).

In summary, our major contributions include:

e Joint local and global feature representation: As a new strategy, joint
local and global feature representation learning, is developed for the caricature
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recognition task. Based on this strategy, discriminative local and global fea-
tures of photograph and caricature are learnt, leading to better recognition
performance.

e Unified feature representation and similarity measure learning: To
learn the local and global feature representation and similarity measure (or
measure fusion) in a unified framework, we design a novel deep metric learning
(DML) method and apply it to the caricature recognition task for the first
time. The framework allows us to learn feature representation and similarity
measure in a consistent fashion. Under the constraint of metric loss, five single
siamese networks are trained, where four are for learning local features and
one is for learning global features.

e Promising results: Through various experiments, the proposed DML
method and the strategy of fusing local and global features prove the most
effective for the caricature recognition task. Compared with various network
structures, the five single siamese network structures prove the best.

e Interesting insights: We verify that an intermediate domain indeed can
help reduce the huge semantic gap between two domains when performing a
cross-modal recognition task. Moreover, learning feature and metrics simul-
taneously is more effective for deriving better feature and better metrics than
the two-stage process in shallow metric learning.

2 Related Work

2.1 Caricature Recognition

Although many works are proposed for caricature generation [3-5,36,40], there
are only few works about caricature recognition [1,19,29]. Klare et al. [19] pro-
posed a semi-automatic caricature recognition method by utilizing crowdsourc-
ing. Through crowdsourcing, they define and collect a set of qualitative facial
attributes. However, these facial attributes need to be annotated manually, which
is difficult and subjective in practical use. On the contrary, Ouyang et al. [29]
employed attribute learning methodology to automatically estimate the facial
attributes. Similar to the aforementioned two works, Abaci et al. [1] defined a
set of slightly different facial attributes. They adopted a genetic algorithm to
evaluate the importance of each attribute and matched the caricature and pho-
tograph. Recently, Huo et al. [16,17] collected a large caricature dataset and
offered four evaluation protocols.

The above methods mainly focus on extracting mid-level facial attributes
and conducting experiments on small-scale datasets (i.e., the total number of
pairs is less than 200). Our contribution is to design a novel DML-based method
on a much larger dataset (i.e., the total number of pairs is more than 1.5 x 10°).

2.2 Deep Metric Learning

Compared with conventional shallow metric learning [8,24,32,39], which mainly
focuses on learning linear metrics (e.g., Mahalanobis distance based metrics),
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DML can learn better non-linear metrics by using deep networks. Several DML
methods have been proposed, which can be roughly classified into three cat-
egories: (1) CNN combined with metric loss [7,15,28,38,41]; (2) CNN com-
bined with fully connected (FC) layers [11]; (3) Deep structure metric learn-
ing [9,13,14].

In the first kind of DML methods, the network structure usually contains two
(three) sub-networks, trained by pairwise loss (triplet loss) which is usually used
in metric learning. For example, Yi et al. [41] adopted a binomial deviance loss
to train a siamese neural network for person re-identification task. Cui et al. [7]
employed a triplet-based DML method to solve the fine-grained visual catego-
rization problem. Huang et al. [15] introduced a position dependent deep metric
unit, aiming to learn a similarity metric adaptive to local feature structure. In
the second kind of DML methods, the FC layers are taken as the metric learning
part, while the loss is still cross-entropy loss. A typical representative is Match-
Net proposed by Han et al. [11]. In the third kind of DML methods, the struc-
ture of metric learning is modelled on deep structure (i.e., multilayer perceptron
(MLP)) to learn a set of hierarchical nonlinear transformations. However, the
inputs of these methods are still hand-crafted features or pre-extracted deep
features. Representative works are series of works of Hu and Lu et al. [9,13,14].

Our proposed LGDML method belongs to the first category, but the differ-
ences include (1) LGDML is a joint local and global multi-view metric method,
(2) LGDML focuses on cross-modal verification based on single siamese network
and much more sub-networks (i.e., five single siamese networks) are learnt at
the same time.
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Fig. 2. The framework of the proposed LGDML, containing five single siamese sub-
networks.
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3 Joint Local and Global Deep Metric Learning

3.1 Network Structure

The framework of LGDML is illustrated in Fig.2. For each input photograph
(caricature), four key parts, i.e., eye, nose, mouth and chin parts, which have
abundant local information for recognition (see Fig. 1), are picked and cropped.
Combined with the original whole face, these parts are fed into five single sub-
networks. In the loss layer, all features of the last FC layers (i.e., Fc8) in these five
sub-networks are concatenated. Typically, pairwise loss is adopted to calculate
the loss between photograph and caricature. When performing back propagation,
the gradients are used for parameter updating of all the sub-networks.

In fact, there should be a total of ten separate sub-networks in this structure
for there are ten inputs (i.e., five parts of photograph and five parts of carica-
ture), but it is too difficult and bloated to train this network (e.g., memory limit
issue). In order to train this network efficiently, we employ five single siamese
sub-networks instead of ten separate sub-networks. Specifically, photograph and
caricature share one single sub-network in the same part (e.g., eye part). In
other words, two inputs are entered into a single sub-network simultaneously
instead of two separate sub-networks which share the same parameters. In addi-
tion, compared with traditional siamese network with two identical separate
sub-networks or two-tower network with two different separate sub-networks,
the single siamese network with only one sub-network can learn better modality
invariant features, because data of two modalities are both used to update the
same sub-network.

Hence, the advantages of the proposed network structure are that, on one
hand, it can leverage the local and global similarities between photograph and
caricature simultaneously; on the other hand it can learn good modality invariant
features.

3.2 Pairwise Loss Function

For each pair of photograph and caricature, four local metrics and one global
metric are learnt together, which can be seen as a multi-view metric. To learn a
joint, overall metric, a uniform pairwise loss is used to train all the sub-networks.
The goal is to make the fused distance metric between the same-class (i.e., same-
individual) pair small and the different-class pair large. From the perspective of
different types of metric function, two typical loss functions: Binomial deviance
loss [10,41] which focuses on similarity measure and Generalized logistic loss [13,
27] which focuses on distance measure are employed. We describe them in detail
as follows:

Binomial deviance loss: Inspired by Yi et al. [41], we use cosine similarity to
calculate the similarity between two samples, and then adopt binomial deviance
to train the network. Given a pair of samples x;, x; € R?, and the corresponding
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similarity label l;; € {1,—1} (i.e., l;; =1 if x; and «; belong to the same class,
and [;; =—1 otherwise), the formulation can be denoted as follow,

Liew =1n [exp ( - 2cos(wi,wj)lij> + 1} , (1)

where cos(x;, ;) denotes the cosine similarity between two vectors x; and ;. If
x; and x; are from the same class, and the cosine similarity is small, then there
will be a large loss of Eq. (1). Otherwise, there will be a small loss of Eq. (1). In
this way, the similarity between same-class pair is increased, and the similarity
between different-class pair is decreased.

Generalized logistic loss: In metric learning, the major goal is to learn a fea-
ture transformation to make the distance between x; and x; in the transformed
space smaller than 7—1 when «; and «; belong to the same class (i.e., l;; =1),
and larger than 7+1 otherwise (i.e., [;; =—1). The constraints can be formulated
as follow,
dQ(ZBi,.’I}j) S T — 1alij =1
dz(a:i,:cj) >7+1,1l; =1,

(2)

where d*(z;, ;)= |lz; — z;||3, and 7> 1. For simplicity, the constraints can be
written as l;; (dez (x4, a:])) >1. With the generalized logistic loss function, the
loss function is given by

i = (1= 157 = s - 2318) ). 0

where g(z)= % log (1+exp(ﬂz)) is the generalized logistic loss function and 3 is
the sharpness parameter.

3.3 Implementation

As AlexNet [21] is a popular and effective network, we take it as the base network
in our LGDML. Another reason is that the number of caricature data is still too
limited to train deeper networks well, such as VGG-VD [33], GoogLeNet [34] and
ResNet [12] ete. Usually, the pre-trained AlexNet, which has been trained on the
ImageNet dataset, shall be employed. Nevertheless, we observed that directly
fine-tuning the pre-trained AlexNet does not produce desirable recognition per-
formance. The reason is that there is a significant semantic gap between the
source data (i.e., natural image) and target data (i.e., caricature). To this end,
we first adopt other available face image dataset (e.g., PubFig [22]) to fine-tune
this pre-trained AlexNet. Afterwards, the fine-tuned AlexNet will be fine-tuned
again by caricature data.

During training, we minimize the pairwise loss by performing mini-batch
stochastic gradient descent (SGD) over a training set of n photograph-caricature
pairs with a batch size of 256 (i.e., 128 pairs). Specifically, we maintain a dropout
layer after each FC layer except Fc8 layer, and set the values of momentum and
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weight decay to 0.9 and 5 x 10~* respectively. The filter size of the last FC
layer is set to 1 x 1 x 4096 x 4096, the weights are randomly initialized from
a zero-mean Gaussian distribution with 1072 standard deviation, and the biases
are initialized to zero. We generate a set of N = 40 (i.e., the number of epoches)
logarithmically equally spaced points between 10727 and 10~* as the learning
rates.

During forward propagation, a pair of photograph and caricature images are
cropped into four pairs of local patches. Then the five pairs of patches (combined
with the pair of original images) subtracted their corresponding mean RGB val-
ues respectively are fed into five single siamese networks. For each modality, one
global feature and four local features can be extracted from the last FC layer.
In the final loss layer, the global and local features of each modality are con-
catenated together to calculate the loss according to the designed cost function.
Note that a fo normalization layer is added before the loss layer. During back
propagation, the parameters of the network are fine-tuned by freezing the first
m layers. The reason is that the first several layers mainly learn generic features
of images which are transferable between these two modalities [42].

4 Experiments

In this section, we implement various deep networks by changing the struc-
ture and loss function. Then, we compare the performance of these methods by
conducting caricature recognition task on the WebCaricature dataset [17]. Our
implementations are based on the publicly available MATLAB toolbox MatCon-
vNet [37] on one NVIDIA K80 GPU.

4.1 Dataset

PubFig Dataset: To reduce the semantic gap between natural images and car-
icature images, we choose the PubFig [22] dataset to fine-tune the pre-trained
AlexNet. PubFig dataset is a large, real-world face dataset, consisting of a devel-
opment set and an evaluation set. In our setting, these two subsets are integrated
together (36604 images of 200 individuals). After data augmentation, all images
(i.e., 512456 images) of the 200 individuals are used to fine-tune a 200-class clas-
sification network (i.e., the pre-trained AlexNet). The fine-tuned AlexNet model
is named as AlexNet-PubFig.

Caricature Dataset: Our experiments are mainly developed on the WebCar-
icature dataset, which contains 6042 caricatures and 5974 photographs of 252
individuals. In our experiments, the dataset is divided into two parts, one for
training (i.e., 126 individuals) and the other for testing (i.e., the rest 126 indi-
viduals). These two parts are disjoint by individual, that is, no individual will
appear in both the training and testing sets. Because there are 51 overlapped
individuals between PubFig dataset and WebCaricature dataset, the overlapped
individuals are only divided into the training set. Besides, in the training set,
30% images of each individual are randomly picked for validation and the rest
is used for training.
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Fig. 3. Illustration of data preprocessing. (a) shows the 17 facial landmarks; (b)
exhibits the cropped face images after alignment and rotating; (c) illustrates the
cropped local parts.

4.2 Data Preprocessing

Preprocessing: As for each image, 17 landmarks have been provided
(Fig.3(a)) [17]. According to the landmarks, the following face alignment pro-
cess are employed which includes three major steps: First, each image is aligned
by image rotation to make two eyes in a horizontal line. Second, the image
is resized to guarantee the distance between two eyes of 75 pixels. Third, the
image is cropped by enlarging the bounding box encircled by the face landmarks
{# 1, 2, 3, 4} with a scale of 1.2 in both width and height. Finally, the image is
eventually resized to 256 x 320. All the processes are illustrated in Fig. 3.

Augmentation: To better fine-tune our LGDML, we augment the caricature
dataset by image flipping in horizontal direction. In this way, we can construct
a large-scale image pairs with a magnitude greater than 1.5 x 10°. Before using
the pre-trained AlexNet, we need to fine-tune this network by utilizing other
natural face dataset. In this setting, we also need data augmentation. This time,
besides image flipping we also perform random translation inspired by [2]. For
each image, we crop a central region 227 x 227 and randomly sample another
5 images around the image center. Moreover, every image is also horizontally
flipped. Thus, 14 images including the resized original image can be obtained
after augmentation.

Cropping: To capture the local features of a face, we pick four key parts on
the face, i.e., eye part (just left eye), nose part, mouth part and chin part. For
the left eye part, landmarks {# 5, 6, 9, 10} (see Fig.3(a)) are considered, and
a rectangle patch is cropped which covers the whole left eye and eyebrow. For
the nose part, landmarks {# 9, 10, 11, 12, 13, 14} are taken into account. As for
the mouth part, a rectangle patch is cropped according to landmarks {# 13, 14,
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15, 16, 17}. So as to the chin part, landmarks {# 3, 15, 16, 17} are considered.
Then, all the local patches are resized to 227 x 227 (see Fig. 3(c)).

4.3 Results of Different Deep Network Structures

We report the comparison with different deep methods, which have different
network structures. All the methods are evaluated on the caricature recognition
task, which is a cross-modal face identification task. Given a caricature (photo-
graph), the goal is to search the corresponding photographs (caricatures) from
a photograph (caricature) gallery. For the “Caricature to Photograph” setting,
all the caricatures in the testing set (126 individuals) will be used as probes
(i.e., 2961 images) and photographs will be used as gallery. Specifically, only one
photograph of each individual is selected to the gallery (i.e., 126 images). The
setting of “Photograph to Caricature” is similar to the one of “Caricature to
Photograph”. As these two settings are similar, we only focus on the setting of
“Caricature to Photograph”. Rank-1 and Rank-10 are chosen as the evaluation
criteria.

Table 1. Rank-1 (%) and Rank-10 (%) of deep methods with different network struc-
tures. Columns 3-4 show the results of raw features. The last two columns exhibit the
results after dimensionality reduction by t-SNE.

Structure | Loss Rank-1 | Rank-10 | Rank-1 t-SNE | Rank-10 t-SNE
Single Cross-entropy | 24.28 | 60.79 26.56 54.58
Triplet Triplet 24.42 1 61.63 28.57 54.91
Two-tower | Binomial 24.65 |62.45 20.63 50.19
Two-tower | Logistic 24.89 62.41 20.42 51.08
Siamese Binomial 26.21 |65.21 30.23 61.06
Siamese Logistic 27.09 | 66.60 34.04 62.51
LGDML | Binomial 28.40 | 67.65 36.14 65.96
LGDML | Logistic 29.42 |67.00 36.27 64.37

According to the network structure, these deep methods can be divided into
five categories as follows:

e Single Network Methods: These methods consisting of single network are
usually used for classification task. The pre-trained AlexNet-PubFig will be
taken as the baseline method without any postprocessing.

e Siamese Network Methods: These networks contain two parameter shar-
ing sub-networks which are based on AlexNet-PubFig model. Here, we adopt
the single siamese network structure like LGDML. Two loss functions, i.e.,
binomial deviance loss and generalized logistic loss, would be employed to
fine-tune these networks. The depth of back propagation is 11, i.e., updating
to convb layer.
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e Two-tower Network Methods: Different from the siamese network, the
two sub-networks of two-tower network don’t share parameters completely.
The binomial deviance loss or generalized logistic loss is used to fine-tune
these networks by freezing first several layers (i.e., top 12 layers) which keep
the pre-trained parameters unchanged.

e Triplet Network Methods: There are three sub-networks with parameter
sharing in these networks. Like above networks, these networks also take
AlexNet-PubFig as the base network. Moreover, we design a new triplet loss
by adding an extra pairwise loss to maximize the use of the provided triplet.
Given a triplet (x;, x;, i), the new triplet loss can be formalized as Liriprer =
pllaei — |3+ (1= p) 1+ |2 —2; |13~ |lzi —2x[3)+, where @; and z; belong to
the same class, while x; and x; belong to different classes. p is the hyper-
parameter and (z); =max(0, z) indicates the hinge loss.

e Our LGDML: This is the proposed method, containing five single siamese
networks. According to the different losses chosen, the proposed method can
be named as LGDML-Binomial or LGDML-Logistic.
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Fig. 4. Feature visualization of six representative methods using t-SNE. Different col-
ors denote different individuals (i.e., 11 individuals), big/small dot indicates the pho-
tograph/caricature modality, respectively. (Color figure online)

It is worth noting that although we do not explicitly compare the proposed
LGDML with other existing cross-modal methods, the competitive network
structures implicitly represent some existing methods. For example, in [30], a
two-tower network combined with the contrastive loss was employed to solve the
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near-infrared heterogeneous face recognition problem. In addition, [31] adopted
a triplet loss to train a face recognition network, which is equivalent to the triplet
network in our experiments. All these deep methods aim to learn a good feature
representation. Hence, for the first four deep methods, a 4096-dimensional fea-
ture is extracted from the first FC layer (i.e., Fc6 layer), which is proved to be
more expressive than Fc7 and Fc8 in feature representation. LGDML extracts a
20480-dimensional feature by integrating all the features of the four local parts
and the whole image. A popular dimensionality reduction method t-SNE [25]
is also employed to make all features into a same dimensionality (i.e., 300).
Table 1 reports the results of all the methods. LGDML achieves the best rank-1
and rank-10 performance with 29.42% and 67.65%. When performing dimen-
sionality reduction, the results are 36.27% and 65.95%. From the results, we can
observe that:

Influence of loss function: Binomial deviance loss (denoted as Binomial)
performs similar with generalized logistic loss (denoted as Logistic). While the
triplet loss (denoted as Triplet) does not achieve promising results, the reason
may be that three separate sub-networks are employed in the triplet network,
which cannot learn good modality invariant features.

Influence of network structure: Under the same loss function setting, two-
tower structure performs worse than the single siamese structure. The reason
is that single siamese structure is more tend to learn modality invariant fea-
ture (see Fig.4(d), (e)). From Fig. 4(f), we can see that the features learnt from
LGDML are blended together in the modality, but are distinguishable between
different individuals. LGDML can learn both modality invariant and discrimi-
nant features, which makes LGDML achieve the state-of-the-art result.

Probe Caricature | Top-5 relevant photographs identified by LGDML-Logistic ~ Top-5 relevant photographs identified by LGDML-L-Logistic

$OSBO [NJ$S200NG

@l

Fig. 5. Success cases of caricature recognition results by LGDML and LGDML-Local.
For each probe caricature, top 5 relevant photographs are exhibited, where the pho-
tographs annotated with red rectangular boxes are the ground-truth. (Color figure
online)
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4.4 Local and Global Methods

LGDML can learn local and global features simultaneously. To illustrate the
effectiveness of fusion of the local and global features, we reduce LGDML to
a simpler variant by only learning local features namely LGDML-Local. It can
be seen that if we only learn local features (see Table2), the result becomes
worse due to the lack of global information. We also reduce LGDML to another
simpler variant by only learning global features namely LGDML-Global. In fact,
LGDML-Global is same as AlexNet-PubFig-Siamese in Table 1. The results in
Table 2 show that it is beneficial to integrate local and global features. A clear
effect of this integration can also be seen in Fig.5. We can see that LGDML is
obviously superior to LGDML-Local.

Table 2. Local and global methods.

Method Loss Type Rank-1 (%) | Rank-10 (%)
t-SNE t-SNE
LGDML-Local | Binomial | Local 23.57 50.35
LGDML-Local | Logistic | Local 21.65 45.80
LGDMIL-Global | Binomial | Global 30.23 61.06
LGDML-Global | Logistic | Global 34.04 62.51
LGDML Binomial | Local4+Global | 36.14 65.96
LGDML Logistic | Local4+Global | 36.27 64.37

4.5 Indirect and Direct Fine-Tuning

From Table 3, we can see that if we directly perform fine-tuning on the AlexNet
which is pre-trained on the ImageNet, the rank-1 performance can only reach
18.34% (i.e., the result of AlexNet-Siamese-Logistic). However, if we perform
fine-tuning on the AlexNet-PubFig, which is fine-tuned based on the pre-trained
AlexNet, the rank-1 performance can reach 34.04% (AlexNet-PubFig-Siamese-
Logistic). This inspires us that when we perform fine-tuning on two domains
that have huge semantic gap (i.e., natural image and caricature), we can resort
to an intermediate domain (i.e., natural face image) between these two domains
first.

4.6 Deep and Hand-Crafted Features

In addition to deep features, we also compare deep methods with hand-crafted
feature extraction methods. Three hand-crafted features will be extracted for
each image respectively, that is, LBP, Gabor and SIFT [1,19,29]. For LBP fea-
ture, the original image (256 x 320) is partitioned into 4 x 5 patches of 64 x 64.
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Table 3. Indirect and direct fine-tuning.

Base network | Architecture | Loss Rank-1 t-SNE | Rank-10 t-SNE
AlexNet Siamese Binomial | 17.76 39.28
AlexNet Siamese Logistic |18.34 40.19
AlexNet-Pubfig | Siamese Binomial | 30.23 61.06
AlexNet-Pubfig | Siamese Logistic | 34.04 62.51

Table 4. Deep and hand-crafted features.

Base network | Feature/loss | Rank-1 t-SNE | Rank-10 t-SNE
- LBP 1.65 12.23

Gabor 3.24 15.30

SIFT 9.56 29.08
AlexNet Cross-entropy | 14.39 36.68
AlexNet-Pubfig | Cross-entropy | 26.56 54.58

In each patch, a 30-dimensional uniform LBP feature is extracted. We can get
a 600-dimensional LBP feature after combining the features of all patches. To
extract Gabor feature, the original 256 x 320 image is resized to 256 x 256 and
40 filters are used. After filtering, the filtered image is down sampled to % of its
original size. Then, the vectorized images are concatenated to obtain a 10240-
dimensional Gabor feature. For SIFT feature, the original image is divided into
10 x 13 patches of 64 x 64 with a stride of 20 pixels. In each 64 x 64 patch, a
32-dimensional STFT feature is extracted. Then all the features are concatenated
to get a 4160-dimensional SIFT feature.

Hand-crafted features perform poorly on this task (see Table 4), which reflects
the difficulty of this task. Interestingly, the pre-trained AlexNet achieves better
performance than the best hand-crafted feature (i.e., SIFT), although the fea-
ture of AlexNet is just learnt from natural images. AlexNet-PubFig, which is
just fine-tuned by natural face images, achieves significant performance improve-
ment (more than 15% performance improvement in rank-1). This verifies again,
through the caricature recognition task, that, compared with hand-crafted meth-
ods, deep learning indeed has stronger ability of feature representation.

4.7 Deep and Shallow Metric Learning

We compare our DML method with traditional shallow metric learning meth-
ods. Several state-of-the-art shallow metric learning methods are picked, includ-
ing large margin nearest neighbor (LMNN) [39], information-theoretic metric
learning (ITML) [8], KISSME [20], logdet exact gradient online (LEGO) [18],
online algorithm for scalable image similarity (OASIS) [6] and OPML [23]. All
these methods learn from the deep features extracted from the AlexNet-PubFig



LGDML for Caricature Recognition 253

network. For fair comparison, all features are reduced to features with a suit-
able dimensions (i.e., 300) by PCA. We summarized the results in Table 5. From
the results, we can see that most shallow metric learning methods can hardly
improve the performance. Among them, ITML achieves the best result (just
about 2% performance improvement in rank-1). In contrast, DML methods can
further improve the performance.

The above results can be explained as follows. Traditional shallow metric
learning generally focuses on learning new feature representation based on the
given input feature representation. It is a two-stage process, in which feature
extraction and distance measure are usually separated. The given input feature
representation has limited the upper bound of the optimization of metric learn-
ing algorithms, and their quality directly affects the performance improvement
of metric learning. In other words, metric learning could make large performance
improvement on weak feature representation (e.g., hand-crafted features), but
can only make a small improvement on powerful feature representation (e.g.,
deep features). In contrast, DML integrates feature extraction and distance mea-
sure together. It can learn feature and metrics simultaneously, and makes them
to work best with each other. In this way, DML can achieve better feature and
better metrics. In addition, shallow metric learning methods usually learn a lin-
ear transformation, which cannot effectively capture the non-linear structure in
the data. On the contrary, the non-linear features learnt from DML, e.g., our
proposed LGDML, are more capable in this regard.

Table 5. Deep and shallow metric learning.

Method Rank-1 (%) PCA | Rank-10 (%) PCA
AlexNet-PugFig |23.74 60.15
KissMe 21.28 55.56
OASIS 21.61 64.00
OPML 23.98 61.03
LEGO 24.38 60.22
LMNN 25.60 62.60
ITML 26.02 63.07
Siamese-Logistic | 26.98 66.26
LGDML-Binomial | 28.06 66.57
LGDML-Logistic | 28.88 66.30

5 Conclusions

Caricature recognition is a challenging and interesting problem, but has not been
sufficiently studied. Furthermore, the existing methods mainly pay attention to
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mid-level facial attributes, which are expensive to annotate manually, and need
ad-hoc settings. In this paper, taking advantage of the strong representation
ability of deep learning and discriminative transformation of metric learning, we
propose LGDML to solve the caricature recognition task. In LGDML, local and
global features of caricature are jointly learnt. In addition, metric loss is chosen to
optimize the entire network, allowing feature representation and distance metric
to be learnt simultaneously. The experiments have been conducted extensively
to evaluate all the comparable methods, and our proposed LGDML outperform
all the other methods.
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