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Maceió, AL, Brazil

2 Department of Applied Mathematics, University of Campinas,
Campinas, SP, Brazil
valle@ime.unicamp.br

Abstract. Mathematical morphology (MM) is a powerful theory widely
used for image processing and analysis. Distance-based morphological
operators are parametrized by a reference value so that a dilation enlarges
regions of an image similar to the reference while an erosion shrinks them.
In this paper, we first characterize distance-based erosions, dilations, and
gradients as a function of the reference. Then, assuming the reference is
a sample from a random variable, we use a descriptive statistic to obtain
relevant information on a certain distance-based morphological operator.
We validate our approach by presenting a successful application of some
statistics of distance-based morphological operators for edge detection in
color images.
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1 Introduction

Mathematical morphology (MM) is a powerful non-linear theory widely used for
image processing and analysis [11,22]. The first morphological operators have
been conceived by Matheron and Serra in the early 1960s for binary images [11].
Although binary MM has been effectively extended to gray-scale images using
level-sets, umbra, and fuzzy set theory [24], the extension of MM to multival-
ued images is not general because there is no natural ordering for vectors [2].
Indeed, much research on multivalued MM focused on finding an appropriate
ordering for a given image processing task [2,7,9,15,25,28]. A detailed account
on multivalued MM can be found in [2,3,28].

In this paper, we focus on a distance-based approach which have been inves-
tigated and generalized by many researchers including [1,2,8,14,20,26–28]. Pre-
cisely, we focus on the distance-based approach to multivalued MM obtained by
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first comparing the distance between the value of a pixel and a reference value
r followed by a lexicographical cascade to resolve ambiguities [2]. Although it
has been extended using support-vector machines, krigging, and fuzzy set the-
ory [20,27], we shall focus our attention in the simplest distance-based approach
because it depends on a single meaningful parameter – the reference r. Precisely,
we first characterize the outcome of an elementary distance-based morphological
operator as a function of the reference. Then, we address the case in which we
are uncertain about the appropriate reference value r. Using probability theory,
we assume that the reference is modeled by a random variable. Furthermore, to
obtain relevant information on the distance-based morphological operators, we
use descriptive statistics such as the expectation, the mode, or some measures of
dispersion. For illustrative purpose, we apply some statistics of distance-based
morphological operators for edge detection in color image and, despite the lack
of interpretation, we obtain some promising results.

The paper is organized as follows: Next section reviews the distance-based
approach and presents a characterization of distance-based erosions, dilations,
and gradients. Statistics of the distance-based morphological operators are
addressed in Sect. 4 while the computational experiment for edge detection is
provided in Sect. 5. The paper finishes with some concluding remarks in Sect. 6.

2 Distance-Based Elementary Morphological Operators

A multivalued image can be modeled as a mapping f : D → V, from a point set
D into a vector-valued space V. In this paper, we assume that the point set is
D ⊆ Z

2. Also, let us assume that the value set V ⊂ R
n. Additional requirements

on V will be included accordingly throughout the paper.
Although MM can be defined in more general mathematical structures such

as sponges [10] and inf-lattices [12], in this paper we focus on a particular but
very useful approach to multivalued MM based on complete lattices [11,19].
Recall that a partially ordered set (L,≤) is a complete lattice if every subset
X ⊆ L has an infimum and a supremum on L, denoted respectively by

∧
X and∨

X [4].
Like the classical approaches to MM, erosions and dilations of a lattice-

valued image f : D → V can be defined in terms of a structuring element B.
The structuring element B is used to extract relevant information about the
shape and form of objects in the probed image f [23]. The two elementary non-
linear, translation invariant morphological operators for lattice-valued images
can defined as follows using a structuring element: Let the value set V, equipped
with a partial order “≤”, be a complete lattice. The erosion and the dilation of a
lattice-valued image f : D → V by a structuring element B, denoted respectively
by εB(f) and δB(f), are the lattice-valued images given by

εB(f)(x) =
∧

f(Bx) and δB(f)(x) =
∨

f(Bx), ∀x ∈ D, (1)

where
f(Bx) = {f(x + b) : b ∈ B, x + b ∈ D}, (2)
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is the set of the values of the image f in the pixels selected by the structuring
element B translated by x ∈ D. We would like to recall that the elementary
morphological operators given by (1) satisfies the following fundamental rela-
tionship from algebraic mathematical morphology called adjunction [11]: Given
two images f and g, we have δB(f) ≤ g if and only if f ≤ εB̌(g), where
B̌ = {−b : b ∈ B} is the reflected structuring element.

The fundamental requirement in (1) is a partial order with well defined
extreme operations. It turns out, however, that there is no natural ordering
for vectors. Therefore, much research on multivalued MM have been focused on
determining appropriate vector ordering schemes [2,7,9,15,25,28]. A detailed
account on the various approaches to multivalued MM can be found in [2,3]. In
the following, we focus on the distance-based approach examined by Angulo [2].

Briefly, a distance-based order is a reduced order in which the elements are
ranked by comparing the distance to a certain reference value r ∈ V. In order
to avoid ambiguities, the usual lexicographical cascade is used in the subsequent
comparisons. Formally, suppose that V ⊆ R is equipped with a metric d : V×V →
[0,+∞). Given a reference value r ∈ V, a distance-based order is defined as
follows for any u = (u1, . . . , un) ∈ V and v = (v1, . . . , vn) ∈ V:

u �r v ⇔
{

d (v, r) <R d (u, r) ,
d (u, r) = d (v, r) and u ≤lex v,

(3)

where the symbol “≤lex” denotes the usual lexicographical ordering, that is,
u ≤lex v if and only if there exists � ∈ {1, . . . , n} such that uj = vj for all j < �
and u� ≤R v�. Note that, using the distance-based order “�r”, an element v is
larger than or equal to another element u if v is closer to the reference r than
u. Furthermore, for any u,v ∈ V either u �r v or v �r u hold true. Hence, the
relation “�r” given by (3) is a total order. Although a total order circumvent the
false color problem [21], they are usually not regular with respect to a metric [6].

Suppose that V ⊆ R
n is a complete lattice with the distance-based order

given by (3). Accordingly, we define the distance-based erosion and dilation of a
multivalued image f : D → V by a structuring element B, denoted respectively
by εr

B(f) and δr
B(f), using (1) and (3). The dilation δr

B(f)(x) yields the element
of f(Bx) closest to the reference r. On the downside, the erosion εr

B(f) does not
have a simple interpretation [28]. Nevertheless, the distance-based morphological
operators and their compositions have been effectively applied for image filtering,
enhancement, and analysis [2]. In these applications, the reference r ∈ V must
be defined a priori by the user.

Apart from the two elementary operators, we define the distance-based gra-
dient as the distance between dilation and erosion. The morphological gradient
is given by

�r
B(f)(x) = d

(
δr

B(f)(x), εr
B(f)(x)

)
, ∀x ∈ D, (4)

where d denotes a metric on V. The morphological gradient can be used for
image segmentation or edge detection. Since an effective application of the
distance-based morphological operators depends on an appropriate choice of the
reference r ∈ V, let us characterize them as a function of r.
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3 Characterization of Distance-Based Morphological
Operators

The elementary distance-based morphological operators depend on the reference
r. The effect of the reference on elementary distance-based morphological oper-
ators is related to the Voronoi diagram and its variation. Precisely, the distance-
based dilation is directly related to the Voronoi diagram while the distance-based
erosion is directly related to the farthest neighbor diagram. Using Voronoi’s dia-
gram and its variation, we can characterize the distance-based morphological
operators as follows:

Theorem 1. Let V ⊆ R
n, equipped with a metric d : V × V → [0,+∞), be

a complete lattice with the distance-based order “�r” given by (3). Consider a
multivalued image f : D → V and a flat and finite structuring element B. Since
B is finite, we can write f(Bx) = {f1(x), . . . ,fk(x)(x)}, where k(x) ≤ Card(B),
for any x ∈ D. Furthermore, let

RV�(x) = {v ∈ V : d(f �(x),v) <R d(f i(x),v),∀i 
= �}, (5)

and
RF�(x) = {v ∈ V : d(f j(x),v) <R d(f �(x),v),∀j 
= �}, (6)

denote respectively the interior of the Voronoi region and the interior of the
Voronoi region of the farthest neighbor which contains the value f �(x) ∈ f(Bx).
The distance-based erosion, dilation, and gradient, given by (1) and (4), as a
function of the reference r ∈ V, satisfy the following equations for x ∈ D:

εr
B(f)(x) = f i(x), if r ∈ RFi(x), (7)

δr
B(f)(x) = f j(x), if r ∈ RVj(x), (8)

�r
B(f)(x) = d(f i(x),f j(x)), if r ∈ RFi(x) ∩ RVj(x). (9)

Proof. Due to page constrain, let us only show (7). The identity (8) can be
derived in a similar fashion while (9) follows from (7) and (8). Let f : D → V be
a multivalued image and B a flat and finite structuring element. Given x ∈ D,
let us assume r ∈ RFi(x). From (6) we have d(f j(x), r) < d(f i(x), r) for all
j 
= i. Furthermore, from (3), we have f i(x) �r f j(x) for all j. Thus, from
(1), the following identities hold true where “�r” denotes the infimum obtained
using the distance-based ordering “�r”:

εr
B(f)(x) =

�

r

f(Bx) = f1(x) �r f2(x) �r . . . �r fk(x)(x) = f i(x).

We would like to point out that, for any x ∈ D, εr
B(f)(x) and δr

B(f)(x)
assumes k(x) ≤ Card

(
f(Bx)

)
distinct values. In contrast, the gradient �r

B(f)(x)
admits at most k(x)(k(x) − 1)/2 values. The following example illustrates the
distance-based morphological operators εr

B , δr
B , and �r

B as a function of r.



366 A. A. Nascimento and M. E. Valle

a) Voronoi diagram b) Fartherst neighbor diagram

Fig. 1. Voronoi diagram and the diagram of the farthest neighbor of f (Bx).

Example 1. Consider V = [0, 1]2 and let f(Bx) = {f1(x),f2(x),f3(x)}, where
f1(x) = (0.6, 0.9), f2(x) = (0.9, 0.9), and f3(x) = (0.9, 0.4), be the set of values
of a multivalued image f : D → V selected by a finite structuring element B
centered at x ∈ D. The Voronoi regions RV1(x), RV2(x), and RV3(x) as well as
the farthest neighbor regions RF1(x), RF2(x), and RF3(x) are shown in Fig. 1.
Accordingly, the distance-based dilation and erosion satisfy respectively

δr
B(f)(x) =

⎧
⎪⎨

⎪⎩

(0.6, 0.9), r ∈ RV1,

(0.9, 0.4), r ∈ RV2,

(0.9, 0.9), r ∈ RV3,

and εr
B(f)(x) =

⎧
⎪⎨

⎪⎩

(0.6, 0.9), r ∈ RF1,

(0.9, 0.4), r ∈ RF2.

(0.9, 0.9), r ∈ RF3,

Furthermore, using the Euclidean distance, we obtain

�r
B(f)(x) =

⎧
⎪⎨

⎪⎩

0.3, r ∈ (RV1 ∩ RF3) ∪ (RV3 ∩ RF1) ,

0.5, r ∈ (RV2 ∩ RF3) ∪ (RV3 ∩ RF2) ,

0.583, r ∈ (RV1 ∩ RF2) ∪ (RV2 ∩ RF1) .

We would like to conclude this section remarking that Theorem 1 do not char-
acterize the distance-based operators in the boundary ∂RV� of a Voronoi region
and the boundary ∂RF� of a farthest neighbor region. According to (3), the val-
ues of εr

B(f)(x), δr
B(f)(x), and �r

B(f)(x) are determined by the lexicographical
ordering if r ∈ ∂RV� or r ∈ ∂RF�. Nevertheless, since the unions ∪k(x)

�=1 ∂RV� and
∪k(x)

�=1 ∂RF� of all the boundaries have both Lebesgue measure zero, the values of
the reference r not covered by Theorem 1 are irrelevant in practical situations.

4 Statistics of Distance-Based Morphological Operators

In the last decades, different approaches to distance-based color MM have been
proposed by prominent researchers including [1,2,8,14,20,26]. Despite successful
applications, these approaches often face the difficult task of choosing a suitable
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reference for sorting vector values. In this section, we assume we are uncertain
about the reference value r ∈ V. Precisely, using probability theory, the uncer-
tainty about the reference is expressed using a vector-valued random variable R.
Most importantly, we can use a descriptive statistic S, such as a measure of cen-
tral tendency or dispersion, to obtain relevant information on the distance-based
morphological operators εr

B(f)(x), δr
B(f)(x), and �r

B(f)(x). Let us formalize
this reasoning.

Let f : D → V be a multivalued image and consider a multivariate ran-
dom variable R on V ⊂ R

n. From Theorem 1, for each x ∈ D, the distance-
based operators εr

B and δr
B map a sample r ∈ V from R to an element of

f(Bx) = {f1(x), . . . ,fk(x)(x)}. Hence, given an image f : D → V, a structur-
ing element B, and x ∈ D, we can interpret εr

B(f)(x) and δr
B(f)(x) as map-

pings from V to f(Bx). Precisely, we can define H : V → {f1(x), . . . ,fk(x)}
by setting either H(r) = εr

B(f)(x) or H(r) = δr
B(f)(x) for all r ∈ V. Fur-

thermore, let H(R) denote the random variable obtained by applying H on
R and let Pr [H(R) = f �(x)] denote the probability of H(R) = f �(x), for
� ∈ {1, . . . , k(x)}. Using a descriptive statistic S, we define new operators as
follows in a point-wise manner where r ∈ V is interpreted as a sample from the
random variable R:

SεB(f)(x) = S (εr
B(f)(x)) and SδB(f)(x) = S (δr

B(f)(x)) , ∀x ∈ D.
(10)

In the sequel, we review some vector-valued statistics used as measures of central
tendency and dispersion of a (function of a) random variable [13,17].

The expectation of H(R), which is a measure of central tendency, is given by

E(H(R)) =
k(x)∑

j=1

f j(x)Pr
[
H(R) = f j(x)

]
. (11)

As another measure of central tendency, the mode of H(R) is a value f �(x) such
that Pr[H(R) = f �(x)] is maximum.

The scatter matrix of H(R), denoted by Σ, is determined by means of the
equation

Σ = E
(
(H(R) − E(H(R))) (H(R) − E(H(R))T

)
, (12)

where XT denotes the transpose of the column-vector X. The scatter matrix Σ
is used to define two measures of dispersion which generalize the notion of stan-
dard deviation. First, since Σ is a symmetric and semidefinite positive matrix,
its determinant as well as its trace are non-negative real numbers. The square-
root of the determinant of Σ, denoted by stdg

(
H(R)

)
, is called generalized

standard deviation of H(R). The total standard deviation of H(R), denoted by
stdt(H(R)), corresponds to the square-root of the trace of the scatter matrix Σ.
Both generalized and total standard deviation generalize the notion of standard
deviation to multivalued random variables. Another measure of dispersion of the
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random variable H(R) is the Gini’s mean difference, denoted by gini
(
H(R)

)

and defined by

gini
(
H(R)

)
=

k∑

i,j=1

d
(
f i(x),f j(x)

)
Pr [H(R) = f i(x)] Pr

[
H(R) = f j(x)

]
,

(13)
where d denotes a metric on V ⊂ R

n.
We would like to point out that a measure of central tendency of a distance-

based morphological operator yields a vector-valued image. In contrast, a mea-
sure of dispersion of a distance-based morphological operator results a gray-scale
image. In particular, note that the expectation of either a distance-based dilation
or a distance-based erosion corresponds to a weighted average of the elements
of f(Bx). For example, the expectation of εr

B is given by the following spa-
tially varying linear filter where w(x, y) = Pr

[
εr

B(f)(x) = f(y)
]

if y ∈ Bx and
w(x, y) = 0 otherwise:

EεB(f)(x) =
∑

y∈D
w(x, y)f(y), ∀x ∈ D.

In a similar way, we can compute statistics of the distance-based gradient
�r

B(f)(x) by interpreting the reference r ∈ V as a sample from the random
variable R. In mathematical terms, given a descriptive statistic S, we define

S�B(f)(x) = S (�r
B(f)(x)) , ∀x ∈ D. (14)

Example 2. The aim of this example is to illustrate some statistics of distance-
based morphological operators. Due to page constraints, let us focus on the
distance-based dilation characterized in Example 1. Furthermore, let us assume
that the random variable R is uniformly distributed on V = [0, 1]2, that is,
R ∼ U(V). From the maximum entropy principle, R ∼ U(V) means that
we are totally ignorant about the choice of the reference used to define the
distance-based morphological operators. Furthermore, when R ∼ U(V), we
have Pr[δr

B(f)(x) = f �(x)] = μL(RV�), where μL(RV�) denotes the Lebesgue
measure (area, volume or hyper-volume) of the Voronoi region RV�. In this
example, Pr[δr

B(f)(x) = f1(x)] = 0.43, Pr[δr
B(f)(x) = f2(x)] = 0.09, and

Pr[δr
B(f)(x) = f3(x)] = 0.48. Thus, we have

EδB(f)(x) = 0.43f1(x) + 0.09f2(x) + 0.48f3(x) = (0.77, 0.66),

and
modeδB(f)(x) = f3(x) = (0.9, 0.4).

Note that EδB(f)(x) is a weighted average of f1(x), f2(x), and f3(x). More-
over, we have modeδB(f)(x) = f3(x), which means that modeδB(f) has no false
colors. Similarly, we have

stdgδB(f)(x) = 0, stdtδB(f)(x) = 0.29, and giniδB(f)(x) = 0.15.

Accordingly, note that EδB(f)(x) and modeδB(f)(x) are vectors while
stdgδB(f)(x), stdtδB(f)(x), and giniδB(f)(x) are scalars.
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a) Image f b) 1− giniεB(f) c) 1− giniδB(f)

d) EεB(f) e) EδB(f) f) 1− E�B(f)

g) modeεB(f) h) modeδB(f) i) 1− mode�B(f)

j) 1− stdtεB(f) l) 1− stdtδB(f) k) 1− std�B(f)

Fig. 2. Color image f and the corresponding statistics of distance-based morphological
operators. (Color figure online)

Example 3. In this example, we provide a visual interpretation of some statis-
tics of the distance-based morphological operators εr

B , δr
B , and �r

B . To this end,
consider the color image f depicted in Fig. 2(a). By considering the Euclidean
distance and assuming R ∼ U(VRGB), which means we have no a priori informa-
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tion about the appropriate reference, we obtain the images shown in Fig. 2 using
a 3 × 3 square structuring element. For a better visual interpretation, instead
of showing a gradient-like image g : D → [0,+∞), we depicted the complement
of its re-scaled version given by (1 − g)(x) = 1 − g(x)∨{g(y):y∈D} , ∀x ∈ D. Note
that the statistics of the gradient as well as the measures of dispersion of εr

B(f)
and δr

B(f) resemble a gradient image. Like the morphological gradient, we can
use these operators for edge detection and image segmentation. The following
section confirms this claim.

5 Computational Experiment

Edge detection is an important task in many applications including image seg-
mentation and object recognition. Broadly speaking, an edge is the boundary
between two regions whose predominated values are significantly different. A
gradient, combined with other techniques, can be used for edge detection [5].
In Example 3, we observed that the measures of dispersion of the distance-
based morphological operators as well as the measures of central tendency of
the distance-based gradient emphasize variations in intensity of a pixel in a
neighborhood determined by the structuring element. Thus, we shall apply them
empirically for edge detection.

In order to evaluate the performance of edge detectors based on a statistic
of a distance-based operator, we used the Berkeley segmentation dataset and
benchmark, University of California, Berkeley [16]. Briefly, this dataset has 300
natural color images and 1633 binary images that were manually segmented by a
group of individuals. Like Canny’s edge detector [5], given a natural color image
f : D → VRGB, we obtained a binary image β ∈ D by applying the non-maximum
suppression (NMS) method and a hysteresis threshold on the gradient-like image
g obtained from an appropriate statistics of a distance-based morphological oper-
ator. In our experiments, both NMS and hysteresis have been computed using
the command NonMaxSupHyst from GNU Octave using the threshold parameters
T1 = 0.01 and T2 = 0.2. Also, the Euclidean distance have been used to define
the distance-based operators as well as to compute the Gini’s mean difference.
Furthermore, we used a 3 × 3 square structuring element S and we assumed
R ∼ U(VRGB), which means we have no a priori information on the reference.

Apart from the statistics of distance-based morphological operators, we also
considered some other edge detectors from the literature. Namely, the gray-scale
edge detectors of Sobel and Canny obtained using the GNU Octave commands
edge and rgb2gray. We also considered the edge detectors obtained by applying
non-maximum suppression and hysteresis on the following gradients: The usual
Beucher gradient applied on the gray-scale image obtained using the command
rgb2gray, the gradients �

Marg
B and �Lex

B obtained using respectively the marginal
and lexicographical RGB orderings [3], and the distance-based gradients �black

B

and �white
B given by (4) with the reference fixed on black and white, respectively

[2]. At this point, we would like to recall that some computational experiments
using distance-based operators revealed that an achromatic color, such as black
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or white, has been recommended for an edge detection task if no information on
the reference is available [26].

We quantitatively evaluated the performance of an edge detection technique
by computing a normalized version of Pratt’s figure of merit (FoM) as follows
[18]: Let βi ⊆ D be the binary image produced by the ith edge detector and
τ ⊆ D be an human segmented binary image, referred to as the ground truth,
both with respect to a given color image f . The FoM value and normalized FoM
value are given respectively by

FoM(βi, τ) =
1
M

∑

x∈τ

1
1 + αd2(x, β)

and F̂oM(βi, τ) =
FoM(βi, τ) − μ

σ
, (15)

where M = max{Card(β), Card(τ)}, α is a parameter, d(x, β) denotes the dis-
tance from x ∈ τ to β, and μ and σ are the average and standard deviation of
the FoM values produced by all edge detectors applied on the same image and
its corresponding ground truth. The greater the normalized FoM value, the bet-
ter the performance of the edge detector. In our experiments, we used α = 1/9
and the Euclidean distance. Figure 3 shows the boxplot of the normalized FoM
values produced by all the edge detectors on the entire dataset, resulting 1633
values for each method. Note that the edge detectors based on stdtεB, giniεB,
std�B , �

Marg
B , �Lex

B , �black
B , and �white

B yielded positive average normalized FoM
values while the edge detectors of Sobel, Canny, and Beucher resulted negative
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Fig. 3. Boxplot of the FoM values produced by edge detectors.
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average normalized FoM values. The largest average normalized FoM values has
been produced by the edge detectors based on the standard deviation of the
gradient (std�B), the total standard deviation and Gini’s mean difference of
the erosion (stdtεB and giniεB). In fact, paired Student’s hypothesis test with
confidence level at 99% confirmed that the edge detector based on the standard
deviation of the gradient outperformed all the other edge detectors considered
in this computational experiment.

6 Concluding Remarks

In the last decades, several researchers have contributed with new approaches
to extend mathematical morphology to multivalued images such as color and
hyper-spectral images. In this paper, we focused on the distance-based approach
whose ordering scheme depends on a single parameter – the reference r ∈ V.
Precisely, we characterized the operators of erosion, dilation, and gradient as a
function of the reference using the diagrams of Voronoi and farthest neighbor.

In order to address uncertainties in the choice of the reference in the distance-
based approach, we assumed that the reference is described by a random vari-
able and used descriptive statistics such as measures of central tendency and
dispersion to extract useful information on the distance-based morphological
operators. For example, we can compute the expectation of distance-based ero-
sions, the mode of distance-based dilations, or the standard deviation of the
distance-based gradient, among others. Furthermore, we evaluated the perfor-
mance of edge detectors based on some statistics of distance-based morphological
operators using the image segmentation dataset of the University of California,
Berkeley. Using Pratt’s figure of merit (FoM) as a quantitative measure of the
performance, we concluded that the edge detector based on the standard devia-
tion of the gradient outperformed other approaches from the literature including
the edge detector of Sobel and Canny.

Despite the promising result obtained in edge detection experiment, the
statistics of distance-based morphological operators require further interpreta-
tion and theoretical background. Moreover, apart from descriptive statistics, we
can use other probabilistic measures such as Shannon entropy to extract fea-
tures or enhance our understanding of a multivalued image. Finally, we believe
that the same reasoning can be extended to more general parametrized reduced
ordering. Namely, we can assume that the parameters are samples from a ran-
dom variable and use descriptive statistics or other probabilistic measures to
obtain relevant information on the resulting morphological operators.
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3. Aptoula, E., Lefèvre, S.: A comparative study on multivariate mathematical mor-
phology. Pattern Recogn. 40(11), 2914–2929 (2007)

4. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, Providence
(1993)

5. Canny, J.: A computational approach to edge-detection. IEEE Trans. Pattern Anal.
Mach. Intell. 8, 679–700 (1986)

6. Chevallier, E., Angulo, J.: The irregularity issue of total orders on metric spaces
and its consequences for mathematical morphology. J. Math. Imaging Vis. 54(3),
344–357 (2016)

7. Comer, M.L., Delp, E.J.: Morphological operations for color image processing. J.
Electron. Imaging 8(3), 279–289 (1999)

8. Deborah, H., Richard, N., Hardeberg, J.Y.: Spectral ordering assessment using
spectral median filters. In: Benediktsson, J.A., Chanussot, J., Najman, L.,
Talbot, H. (eds.) ISMM 2015. LNCS, vol. 9082, pp. 387–397. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-18720-4 33

9. Goutsias, J., Heijmans, H.J.A.M., Sivakumar, K.: Morphological operators for
image sequences. Comput. Vis. Image Underst. 62, 326–346 (1995)

10. van de Gronde, J.J., Roerdink, J.B.T.M.: Generalized morphology using sponges.
Math. Morphol. Theory Appl. 1(1), 18–41 (2016)

11. Heijmans, H.J.A.M.: Mathematical morphology: a modern approach in image pro-
cessing based on algebra and geometry. SIAM Rev. 37(1), 1–36 (1995)

12. Heijmans, H.J.A.M., Keshet, R.: Inf-semilattice approach to self-dual morphology.
J. Math. Imaging Vis. 17(1), 55–80 (2002)

13. Johnson, R.A., Wichern, D.W.: Applied Multivariate Statistical Analysis, 6th edn.
Pearson Prentice Hall, Upper Saddle River (2007)

14. Ledoux, A., Richard, N., Capelle-Laizé, A.S., Fernandez-Maloigne, C.: Perceptual
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