
Efficient 3D Erosion Dilation Analysis
by Sub-Pixel EDT

Michael Godehardt1(B), Dennis Mosbach1,2, Diego Roldan1,3,
and Katja Schladitz1

1 Fraunhofer-Institut für Techno- und Wirtschaftsmathematik, Fraunhofer-Platz 1,
67663 Kaiserslautern, Germany

michael.godehardt@itwm.fraunhofer.de
2 Computer Graphics and HCI Group, Technische Universität Kaiserslautern,

67663 Kaiserslautern, Germany
3 Department of Mathematics, Technische Universität Kaiserslautern,

67663 Kaiserslautern, Germany
http://www.itwm.fraunhofer.de/en/departments/image-processing/

Abstract. The micro-structure of materials or natural substrates con-
tributes significantly to macroscopic properties like mechanical strength
or filtration performance. The intrinsic volumes or their densities are
versatile geometric characteristics of micro-structures and can be esti-
mated efficiently from 3D binary images whose foreground represents
the structure of interest. A recent algorithm generalizes this approach
to gray value images. That is, the intrinsic volumes are derived for each
possible global gray value threshold in the image in a single pass through
the image. Here, it is combined with a sub-pixel precise Euclidean dis-
tance transform enabling efficient so-called erosion dilation analysis.
That means, the densities of the intrinsic volumes are simultaneously
computed not only for the structure itself but also for all erosions and
dilations by spherical structuring elements of this structure. That way,
the algorithm reveals additional information on the local size of criti-
cal features of the structure or its complement. The algorithm’s power
is demonstrated by means of computed tomography image data of rigid
foams and stacks of scanning electron microscopies of nano-porous mem-
brane layers sliced by a focused ion beam.

Keywords: Intrinsic volumes · Gray value images ·
Minkowski function · Connectivity function · Spatial analysis

1 Introduction

The possibilities and the demand to spatially image materials micro-structures
have grown tremendously during the last decade. Image sizes, complexity of the
imaged structures, and detail of the analysis tasks grow at even higher speed,
increasing the demand for time and memory efficient algorithms yielding quan-
titative structural information.
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One very general image analysis tool are the intrinsic volumes. The intrinsic
volumes, also known as Minkowski functionals or quermass integrals [1], are in
some sense a basic set of geometric structural characteristics [2]. In 3D, they
yield information about the volume, surface, mean and Gaussian curvatures of
analyzed structures. Various other characteristics describing for instance shape
[3] or structure specific features e. g. for open cell foams [4] can be derived. The
densities of the intrinsic volumes, combined with erosions and dilations of the
structure under consideration have been studied, e. g. to quantify connectivity
[5]. Mecke [6] called them Minkowski functions.

For a given segmentation of the gray value image into the component of
interest (foreground) and its complement (background), the intrinsic volumes
can be efficiently derived from the resulting binary image by Ohser’s algorithm
[7,8]. In [9], we generalized Ohser’s approach to gray value images enabling fast
simultaneous calculation of the intrinsic volumes for all possible threshold values
in an integer gray value image.

2 Intrinsic Volumes, Euclidean Distance Transform,
and Erosion Dilation Analysis

In this section, we summarize the previous work that is combined in the following
Sect. 3 to yield a finer erosion dilation analysis than before as demonstrated by
the examples in Sect. 4.

2.1 Intrinsic Volumes Estimated Based on 3D Binary Images

The intrinsic volumes (or their densities) are a widely used system of basic
geometric characteristics for micro-structures, see e.g. [10–14]. In 3D, the four
intrinsic volumes are volume V , surface area S, integral of mean curvature M ,
and Euler number χ. For macroscopically homogeneous structures, the densities
of the respective characteristics are used – volume fraction VV , specific surface
area SV , and the densities of the integrals of mean curvature MV and of the
Euler number χV . From these basic characteristics, further descriptors can be
derived. Here, we consider in addition to the densities of the intrinsic volumes
the structure model index SMI = 12VV MV /S2

V that can be interpreted as a
shape factor for a macroscopically homogeneous structure [3,15].

These characteristics can be measured simultaneously and efficiently based
on observations restricted to a compact window. The algorithmic idea goes back
to [11] and was refined in [8,16]: The local 2 × 2 × 2 pixel configurations in a
binary 3D image are coded in an 8bit gray value image of the same size by an
appropriate convolution. The intrinsic volumes are then derived as scalar product
of a suitable weight vector and the gray value histogram h of this image.
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2.2 Intrinsic Volumes as Function of Gray Value Threshold
in 3D Images

In [9], Ohser’s algorithm was generalized: The local black-or-white pixel config-
urations induced by thresholding a gray value image are efficiently collected and
coded.

For the sake of self-containedness, we repeat the main idea of [9]: Consider the
matrix of frequency vectors h(t) for each gray value threshold t ∈ R. Observe that
the contribution of a local 2×2×2 pixel configuration p = (p1, . . . , p8) can change
not more than eight times – each time one of the pixels’ gray values coincides with
the threshold value. Write c(p, t) for the code of pixel configuration p after thresh-
olding with threshold t. Create h(c, t) for all c ∈ {0, . . . , 255}, t ∈ {0, . . . , M +1},
where M is the image’s maximal gray value, by bookkeeping of changing codes
for local pixel configurations, only. Thus h(·, t) is the configuration frequency
vector for the image thresholded at t.

2.3 Linear Time Euclidean Distance Transform

For a binary image representing a discretized realization of a random closed set
X intersected by a cuboidal observation window W as foreground, the Euclidean
distance transform (EDT) assigns each pixel x in the background XC ∩ W the
Euclidean distance to the foreground. Here, we use the signed version addition-
ally assigning each foreground pixel x ∈ X ∩ W the Euclidean distance to the
background.

Commonly used algorithms for calculating distance transforms measure the
distances w.r.t. the interface of foreground and background. That is, a surface
consisting of lattice points and defined by the chosen discrete adjacency.

Classical algorithms for calculating the exact EDT are based on propagating
distances observed locally through several passes through the image, separating
the coordinate directions. In 3D, this type of algorithm is due to [17]. Maurer
and Raghavan [18] were the first to suggest a dimension reduction Voronoi based
algorithm for exact Euclidean distances in 3D, linear in the number of image
pixels.

2.4 Sub-pixel Precise Euclidean Distance Transform

EDT algorithms using dimension reduction approaches like [18–20], allow to use
a boundary between lattice points as curve or surface of reference In these cases,
distances smaller than one lattice spacing can be observed. Lindblad and Sladoje
[21] derive this surface by linear interpolation of the neighbor pixel values and
applying a threshold.

The general idea behind [18] is to iteratively process sub-images of succes-
sively increasing dimensions, first computing shortest distances within individual
lines, then 2D slices, before finally obtaining total distances for the entire 3D
image. This algorithm assumes that every lattice point outside of the object of
interest counts as a Voronoi generator point to which distances get computed.
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Lindblad and Sladoje [21] compute the distance to an object’s surface using
sample points as generators that can deviate from lattice lines in one dimension.
If the object is implicitly given as an iso-surface of an image, they propose to
use linear interpolation between neighboring pixels to obtain the exact location
of the surface point.

2.5 Erosion Dilation Analysis

The Minkowski functions as used e.g. in [6] are the intrinsic volumes of the
parallel bodies X⊕Br and X�Br, respectively, of the structure X with respect to
a ball Br of radius r. That is, the intrinsic volumes of stepwise erosions/dilations
of X with a spherical structuring element are considered as functions of the
radius r. From these functions, 3D structural information can be directly derived.
In particular the specific Euler number as a function of successive erosions was
called connectivity function and used to evaluate bond sizes [5]. In [13], the Euler
number combined with successive erosions was used to study the connectivity of
firn from the B35 core, see also [8].

Morphological erosions and dilations with a spherical structuring element B
can be readily obtained by thresholding the EDT image. More precisely, thresh-
olding the EDT image using r is equivalent to an erosion or a dilation of the
foreground X by a ball of radius r ∈ R+: X ⊕ Br = {x : EDT (X,x) < r} and
X � Br = {x : EDT (X,x) < −r}. The algorithm from [9] efficiently yields the
intrinsic volumes of the parallel bodies X ⊕ Br and X � Br.

3 Intrinsic Volumes on Sub-pixel EDT Images
for Refined Erosion Dilation Analysis

Here we combine the approach from [21] with the fast algorithm for the precise
EDT by [18] to achieve sub-pixel precision. For that, we modify the implementa-
tion of [18] by adding offsets to the intermediate distances computed during each
line scan. These offsets represent the distance between the interpolated surface
and the next lattice point. As long as they are smaller than the grid spacing,
the original algorithm still works as intended.

We apply the sub-pixel precise EDT on an image with a threshold t ∈ R,
denoted by EDT (X,x)t. Note, that t can take values which are in between
values of the gray value domain. E.g. for 8 bit gray value images, t lies in [0, 255).
For binary images, t lies in [0, 1). Applying EDT (X,x)t can be interpreted as
calculating the distance to the (implicitly given) iso-surface corresponding to t,
because the position of the distance generator is computed in each dimension via
linear interpolation of the gray values of the two neighboring pixels. Changing
this threshold results in virtually dilating/eroding the foreground.

In the following we apply this algorithm to binary images. We derive two
different distance maps that can be interpreted as a lower and an upper bound of
a central one. For the lower bound we have EDT (X,x)0 ≤ EDT (X,x)t for each
threshold value t ∈ [0, 1) and each background pixel x ∈ XC . The upper bound



Efficient 3D erosion dilation analysis by sub-pixel EDT 247

is obtained as EDT (X,x)1−ε with ε = 0.01. Note that we write EDT (X,x)1
for short in the following. Additionally, we use a distance map w.r.t. a “central”
boundary surface EDT (X, · )0.5. Note that EDT (X,x)0 coincides exactly with
the classical EDT (X,x).

Using this EDT algorithm with sub-pixel precision results in an erosion dila-
tion analysis with improved precision, in particular near the surface, where the
observed distance values are rather roughly discretized when applying classical
EDT. This is particularly nice when the structure is not very well resolved by
the image.

The densities of the intrinsic volumes and derived features for all distances
from both the distance map of X as well as the bounding maps EDT (X)0 and
EDT (X)1 can be used as an indicator of how reliable the analysis results are.
More precisely, we use all distances occurring in the distance map, filter them
such that consecutive distances differ by at least 1% of the pixel spacing, and
compute for each of those distances the intrinsic volumes.

Note that the structure model index should capture the “structure shape”
for both solid structure and pore space. Thus, we switch to the SMI of the
complement when eroding the solid structure. We have S(X ∩W ) = S(XC ∩W )
and M(X ∩ W ) = −M(XC ∩ W ). Thus, for r > 0, we use in the following

SMI∗(X ⊕ Br) = SMI(X ⊕ Br) and

SMI∗(X � Br) = −12
(V (W ) − V ((X � Br) ∩ W ))M((X � Br) ∩ W )

S2((X � Br) ∩ W )
.

4 Application Examples

In this section, we apply the algorithm described in the previous Sect. 3 to 3D
images of rigid foam samples and of samples from nano-porous membrane layers.
Note that the choice is purely motivated by trying to find examples featuring
several critical structure thicknesses like strut and wall thickness in the partially
closed foams. Although both the considered rigid foams as well as the nano-
porous membrane layers are made of ceramic materials, the algorithm is in no
way restricted to or tailor-made for ceramic samples.

4.1 Nano-Porous ZrO2 and Al2O3 Ceramics

We compare the structures of nano-porous ceramic samples generated by spin
coating. Samples 1 and 2 consist of ZrO2. In fact, sample 2 is the 1st layer of the
nano-porous membrane investigated in [22]. Our sample 3 is the 2nd layer of this
nano-porous membrane and consists of Al2O3. After spin coating, the samples
are sintered at 1 000 and 1 400 ◦C, respectively.

Grain sizes in the range 10–100 nm prevent imaging the structures by com-
puted tomography. Instead, sequential slicing by a focused ion beam (FIB) com-
bined with imaging by scanning electron microscopy (SEM) – so-called FIB-SEM
– is applied. Due to the slicing by the focused ion beam, images generated by
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FIB-SEM usually feature non-cubic voxels with the resolution in stack direc-
tion being considerably coarser than within the SEM images forming the stack.
Hence, the sub-pixel precision approach can yield valuable bounds for the true
values of characteristics.

For all three samples, the stacks of SEM images are aligned, desheared,
and transformed in order to remove distortions introduced by the alignment
as described in [22]. Interpolation onto an isotropic lattice results in sample 1
with 986×637×299 pixels and lattice spacing 3 nm, sample 2 with 980×980×382
pixels and lattice spacing 3 nm, and sample 3 with 205×205×165 pixels and lat-
tice spacing 20 nm. This interpolated version of sample 3 is called 3i with “i” for
“isotropic” from now on. Additionally, we examine a larger non-interpolated ver-
sion of sample 3, called sample 3a with “a” for “anisotropic”, with 716×168×225
pixels and lattice spacings 20 nm × 20 nm × 16 nm.

Sample 3 is then reconstructed solely based on the energy-selective backscat-
ter electron (EsB) image stack by global gray value thresholding. Samples 1 and
2 are reconstructed by the combination of the secondary electron (SE) and the
EsB image stacks by morphological reconstruction by dilation [23]: Both are
binarized by global gray value thresholding. Subsequently, the EsB pore image
is reconstructed by dilation with the pixelwise maximum of the two pore images
as mask image. See [22] for more details (Fig. 1).

(a) Sample 1 (b) Sample 2 (c) Sample 3

Fig. 1. Renderings of the nano-porous ceramic samples 1–3. Visualized are 986 × 637 ×
299 pixels corresponding to a volume of 2.96 µm× 1.91 µm× 0.90 µm for sample 1, 360×
360 × 190 pixels corresponding to a volume of 2.97 µm× 2.97 µm× 1.14 µm for sample
2, and 205 × 205 × 165 pixels corresponding to a volume of 4.1 µm× 4.1 µm× 3.3 µm
for sample 3.

First, we compare the results of the erosion dilation analysis on the
anisotropic versus the isotropized samples 3a and 3i to study the influence of
the interpolation step. Figure 2 shows the results together with the respective
bounds obtained from EDT (X)0 and EDT (X)1. The isotropized 3i is on the
one hand less well resolved than 3a and on the other hand smoothed by the
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interpolation. Both effects reduce the specific surface area slightly, which is vis-
ible in Fig. 2(b). Also due to the smoothing, both dilations and erosions yield
non-trivial results for a wider distance range. Apart from this, we do not observe
significant differences between the interpolated and the non-interpolated version
of the sample. Thus, we only report the results for the isotropic version in the
following analysis.

(a) VV (b) SV

(c) χV (d) SMI∗

Fig. 2. Erosion dilation analysis results for the nano-porous ceramic sample 3,
anisotropic and isotropic versions (3a and 3i) with bounds derived from EDT (X)0
and EDT (X)1.

Results of the erosion dilation analysis for the nano-porous ceramic samples
are reported in Fig. 3. The solid structure of sample 2 is clearly finer than the
one of samples 1 and 3 while the difference for the pores is not that pronounced,
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see Fig. 3. Note that the SMI* curves start to fluctuate strongly for larger ero-
sion and dilation radii since there only a few pixels are left to contribute, and
the strong erosion/dilation changes the structure of solid structure and pore
space, respectively, drastically. In general, the SMI should be trusted only in the
distance range where the volume fraction VV is between 2 and 98 %.

(a) VV (b) SV

(c) χV (d) SMI∗

Fig. 3. Erosion dilation analysis results for the nano-porous ceramic samples 1–3.

4.2 Ceramic Foams

We investigate ceramic foams used for filtering metal melts in casting. These
filters are produced in large numbers and discarded when loaded. The samples
considered here are produced by covering an open cell polymer foam with ceramic
slurry, drying, and finally burning. The resulting filters feature a majority of open
cells inherited from the polymer foam, some closed cell walls formed by the slurry,



Efficient 3D erosion dilation analysis by sub-pixel EDT 251

and hollow struts where the polymer foam was combusted. The micro-structure
of such ceramic foam samples and its relation to the filtration properties has
been studied in detail in [24,25]. Here, we consider three samples produced from
the same polymer foam but with varying deposition of the ceramic material
resulting in varying flow properties. More precisely, samples C01 and C14 weigh
the same but the water flow rate differs while it is equal for samples C14 and
C20 whose weight differs, see Table 1 (Fig. 4).

(a) C01 (b) C14 (c) C20

Fig. 4. Renderings of the ceramic foam samples C01, C14, and C20.

Table 1. Ceramic foam samples and their macroscopic properties.

Sample Weight [g] Water flow rate [l/s]

C01 17.5 2.105

C14 17.4 1.971

C20 16.2 1.979

The samples of dimensions 50mm × 50mm × 20mm are imaged by micro-
computed tomography at pixel size 34µm. Here, we are interested in roughly
resolved image data. Thus the images are subsampled to a lattice with spac-
ing 102µm. The solid component is segmented by global gray value threshold-
ing using Otsu’s algorithm [26]. The struts are closed by connected component
labeling and morphological closure. Thus, the Euler number density χV yields
essentially the negative cell wall density as there is just one connected component
and there are no holes.

Results of the erosion dilation analysis for these three samples are reported in
Figs. 5, 6 and 7. As expected, we observe all significant local minima and maxima
at the same arguments. This is due to the underlying identical polymer foam
structure leaving the spatial distribution of the ceramic slurry as the differentiat-
ing feature. The solid volume fraction does not reveal significant differences, see
Fig. 5(a). The specific surface area of both the eroded and the dilated structures
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indicates for small radii of the sphere least surface area for C01 and most for C14,
see Fig. 6. This is more pronounced on the dilation side and becomes apparent
only when looking closer at the dilation range up to 0.6mm, see Fig. 6(b). The
Euler number density singles out C14 when being dilated: χV for the dilated C14
is significantly smaller than for the other two samples, see Fig. 7(b). Thus, the
dilated C14 contains more tunnels, that is open cell walls, than C01 and C20.
This in turn indicates that C01 and C20 include smaller cell walls being closed
by the dilation earlier than those in C14.

Nevertheless, none of the curves in Figs. 5, 6 and 7 seems to explain the
different weights and water flow rates reported in Table 1. The structure model
index reveals distance ranges, where a closer look seems worthwhile, see Fig. 5(b).
Indeed, as indicated by the first peak of the dilation curve, C01 has more really
large pores than the other two samples rendering a good explanation for the
increased water flow rate: Erosion of the pore space with a ball of radius r =
1.8mm, results in 117 connected components for C01, 20 for C14, and 51 for
C20. These large pores comprise 0.011% of the pore volume of C01, 0.002% of
the pore volume of C14, and 0.008% of the pore volume of C20. If these large
pores are reconstructed, they comprise 12% of the pore volume for C01, 2% for
C14, and 5.4% for C20.

(a) VV (b) SMI∗

Fig. 5. Erosion dilation analysis results for the ceramic foam samples: solid volume
fraction VV and structure model index.
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(a) SV (b) SV , close-up

Fig. 6. Erosion dilation analysis results for the ceramic foam samples: specific surface
area SV and close-up with envelopes derived from EDT0 and EDT1.

(a) χV (b) χV , close-up

Fig. 7. Erosion dilation analysis results for the ceramic foam samples: Euler number
density χV and close-up with envelopes derived from EDT0 and EDT1.

5 Discussion

In this paper, we combined the efficient algorithm for calculating the intrinsic
volumes for each possible gray value threshold in an integer valued image [9] with
the linear time exact Euclidean distance transform from [18] and the sub-pixel
precision approach of [21].

We applied it for efficient erosion dilation analysis of nano-porous ceramic
membrane layers imaged by FIB-SEM and of ceramic foams imaged by micro-
computed tomography. Both examples show, that interesting structural features
and differences can be revealed that way at low effort for both preprocessing and
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the algorithm itself. Thus, it is very well suited for a screening step indicating the
direction of further, more detailed analysis by methods dedicated to the specific
type of structure of interest. Moreover, the sub-pixel precise EDT can yield
bounds for the densities of the intrinsic volumes. This is helpful when studying
differences between similar structures. It is particularly valuable in cases, where
the resolution is close to being insufficient.

Furthermore, we see potential use in calculating the spherical contact distri-
bution [1] more precisely.
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