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2Theories of Intelligence

Matthew J. Euler and Ty L. McKinney

�Introduction

A prominent definition of intelligence describes 
the construct as follows:

Intelligence is a very general mental capacity 
that, among other things, involves the ability to 
reason, plan, solve problems, think abstractly, 
comprehend complex ideas, learn quickly, and 
learn from experience. It is not merely book learn-
ing, a narrow academic skill, or test-taking smarts. 
Rather, it reflects a broader and deeper capability 
for comprehending our surroundings—“catching 
on,” “making sense” of things, or “figuring out” 
what to do (Gottfredson, 1997a, p. 13).

This working definition has been broadly 
endorsed and repeated by numerous scholars in 
the field (Haier, 2016; Nisbett et  al., 2012; 
Protzko, 2017) and captures many of the traits 
and capabilities that scientists and lay people 
alike would consider important parts of intelli-
gence. Notably though, while it does a good job 
of describing various things that intelligent peo-
ple tend to do, and distinguishes the construct 
from others (e.g., book knowledge), it also reca-
pitulates a key tension at the heart of the intelli-
gence literature. Namely, how is it that 
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intelligence is on the one hand a very general 
capacity and yet attempts to define it very often 
invoke a host of apparently discrete behaviors 
and tendencies? For intelligence theorists, this 
question can be translated into the issue of 
whether intelligence truly represents a singular 
or unitary capacity, as much of the psychometric 
literature has suggested, or whether the appear-
ance of a unitary structure is merely a statistical 
or measurement artifact, such that intelligence 
actually represents an aggregate of many 
capacities.

As detailed below, the issue of whether intel-
ligence is a unitary capacity arguably represents 
the most important issue concerning theories of 
intelligence and can serve as an organizing theme 
for the models discussed in this chapter. Beyond 
that, any theory of intelligence can then be 
grouped according to (1) whether it is better con-
strued as a historical or a contemporary theory; 
(2) whether its evidence base is primarily psycho-
metric (based on statistical modeling of the cor-
relations among various types of mental tasks), 
experimental (derived from analyses of 
laboratory-based measures, rather than norm-
referenced standardized tests), conceptual 
(derived from literature reviews and rational con-
siderations), or even physiological (arrived at 
through correlations of intelligence task perfor-
mance with EEG or neuroimaging data); and 
finally (3) whether it emphasizes the importance 
of more basic (i.e., sensory perceptual) or more 
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complex tasks in measuring and defining intelli-
gence. Upon exhausting those dimensions, each 
theory of intelligence can ultimately be charac-
terized in terms of its more distinguishing fea-
tures and contributions to the literature. Given 
that psychometric research forms the bulk of the 
evidence base for these theories in general, the 
next sections outline the history of psychometric 
models of intelligence (also termed “structural” 
models), from Charles Spearman’s discovery of 
psychometric g up through the development of 
multifactor and hierarchical models in the middle 
and later part of the last century.

�Early Psychometric Theories 
of Intelligence

�Spearman, the Birth of Factor 
Analysis, and Psychometric g

The most important historical figure in psycho-
metric intelligence research is undoubtedly 
Charles Spearman, whose key ideas are still rel-
evant today. As reviewed in his 1904 monograph, 
prior research in early psychology had produced 
conflicting findings about the nature of intelli-
gence. On the one hand, Francis Galton (dis-
cussed below) and others had advocated for a 
view of intelligence as a single mental capacity 
that had its basis in relatively primitive functions 
such as sensory discrimination (e.g., discriminat-
ing fine differences between the weights of 
objects or the pitches of auditory tones). However, 
other scholars had either failed to find evidence 
for this claim or had at times contradicted it 
showing that more complex mental abilities bet-
ter reflected the nature of intelligence (Spearman, 
1904). Having reviewed the literature on both 
sides and found it wanting, Spearman sought out 
to more rigorously investigate the relation 
between sensory discrimination and intelligence, 
in an effort to improve the theoretical and empiri-
cal foundations on which the debate rested.

For that purpose, Spearman collected measures 
of sensory discrimination in samples of school 
children and related them to various tentative esti-
mates of intellectual ability, such as class rankings 

in various subjects (Classics, English, French, 
Mathematics, and Music) and teachers’ and oth-
ers’ general impressions of the students’ abilities. 
Notably, Spearman also included a precursor to 
the contemporary IQ score in the form of a mental 
age measure, where he distinguished between a 
form of intelligence he called “present efficiency” 
(absolute academic performance) and “native 
capacity” (a student’s performance in a given sub-
ject divided by their age). Overall, these studies 
produced several important contributions.

First, Spearman recognized the need to control 
for the unreliability of measurements, which, if 
achieved, would allow one to obtain a better esti-
mate of the true relationship between two vari-
ables (Jensen, 1998a, p.  23). Second, Spearman 
also identified that by examining the variance that 
is shared across different types of tasks (e.g., 
visual and auditory discrimination, proficiency in 
Greek vs. piano-playing; Spearman, 1904, 
p. 259), one could determine the extent to which 
they involve one or more underlying dimensions 
or faculties. This marked the beginning of factor 
analysis (Bartholomew, 2004, p.  18), wherein 
Spearman laid the mathematical foundations to be 
able to ask whether, for example, auditory and 
visual discrimination reflect wholly distinct 
capacities, owing to their basis in different sen-
sory modalities, or whether the variance between 
people on each reflects a more general sensory 
discrimination ability. That is, factor analysis 
allows one to assess how many dimensions con-
tribute to variance in performance on a group of 
psychological tasks. For that reason, it has come 
to be the primary tool in psychometric intelli-
gence research, including many of the following 
models discussed in this chapter. It also brings us 
to Spearman’s third and most important contribu-
tion, where he showed that, indeed, there was evi-
dence for “general discrimination” and “general 
intelligence” factors that were common to all of 
the respective measures and, further, that the two 
factors were related to such a large degree that 
they seemed to both draw on a single mental 
capacity (Spearman, 1904, p. 272).

While contemporary estimates of the correla-
tion between intellectual ability and sensory dis-
crimination suggest that the relationship is 
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considerably smaller than Spearman’s initial 
claim (Acton & Schroeder, 2001), the basic find-
ing has nevertheless proved reliable (Sheppard & 
Vernon, 2008) and provides meaningful support 
for the reductive program in intelligence research, 
as outlined further below. More importantly, 
however, Spearman’s broader suggestion that a 
single capacity might be common to all cognitive 
tasks has proved to be even more central.

In particular, it has now been shown that across 
hundreds of datasets (Carroll, 1993), whenever a 
sufficiently diverse set of mental tasks is adminis-
tered to a sufficiently large and representative 
group of people, the tasks will invariably posi-
tively intercorrelate, producing the so-called posi-
tive manifold phenomenon. Crucially, this is an 
empirical phenomenon and not a logical neces-
sity, in the sense that there is nothing inherent to 
the statistical procedures that require that grades 
in Mathematics, Classics, and French must be 
positively correlated. Rather, their correlation 
reflects an empirical truth. Not only did Spearman 
observe the now-ubiquitous positive manifold 
among the academic and sensory measures, but 
he further saw that the correlations between the 
various subjects exhibited a clear hierarchy, such 
that grades in English and French related more 
strongly to grades in Classics than either did to 
Math. He then showed that upon extracting what 
he called the common “general intelligence” fac-
tor, all of the measures—sensory and academic 
alike—seemed to derive their variance from only 
this general factor and a second, idiosyncratic 
test-specific factor (see Fig.  2.1). This in turn 
made it possible to determine how “saturated” 
each task was with the general factor (i.e., its 
“g-loading” in contemporary parlance) and could 
ultimately allow for identifying which tasks 
would provide the best of measures of overall 
intelligence (Spearman, 1904, p. 277).

Altogether, these results provided the basis 
for  Spearman’s “two-factor” theory1 of mental 

1 The name “two-factor” theory can be somewhat confus-
ing, in the sense that it strongly emphasizes the impor-
tance of the single g factor. Nevertheless, the name refers 
to the assertion that any task involves contributions from 
two factors: g, which is common to all tasks, and s, which 
is unique to particular tests.

ability, which argues that the variance between 
people on any given task appears to be a function 
of only two factors: that which is specific to each 
task (termed “s”) and that which is general or 
shared, now known as psychometric g (Spearman, 
1927).

In the time since Spearman’s initial observa-
tions, it has become essentially universally 
accepted that a general factor can often account 
for much of the variance among cognitive tests 
(typically approaching 50%; Deary, 2012). Yet, 
as will be seen, the status and significance of this 
factor remain an important area of debate. On 
that note, it is appropriate to turn to a discussion 
of Spearman’s primary interlocutors and the 
alternative models they favored.

�Thurstone and Multifactor Theories

Spearman’s two-factor theory of intelligence is 
most often and readily distinguished from Louis 
L. Thurstone’s model of Primary Mental Abilities 
(Thurstone, 1938). The latter exemplifies an 
alternative class of models that advocated a 
multifactor rather than unitary structure for men-
tal abilities (Sattler, 2008, p. 224). As the name 
implies, Thurstone’s model emphasized the idea 

g

s s s s s

Fig. 2.1  Spearman’s two-factor theory. Spearman’s two-
factor theory of intelligence asserts that the variation 
between people on all cognitive tasks is a function of two 
factors: general intelligence (g) and test-specific variance 
(s). A hypothetical battery of five tests is shown, where the 
variance in each test reflects only the contributions of g 
and test-specific variance. Following typical conventions 
for depicting structural equation models, latent factors are 
depicted as circles, and manifest variables (obtained test 
scores) are depicted as squares
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that, rather than invoking just a single general 
factor along with test-specific factors in explain-
ing cognitive performance, a group of indepen-
dent, lower-order processes, with a clearer 
psychological meaning (e.g., memory, verbal 
skills, spatial skills, etc.), might better explain the 
patterns of correlations among cognitive tests. 
Indeed, a form of this idea can be seen in 
Spearman’s very own hierarchy, where he 
observed that grades in certain subjects (e.g., 
Classics, French, and English—all notably lin-
guistic) correlated more highly with one another 
than they did with other measures.

Inspired by that premise, Thurstone devised a 
large set of cognitive tasks that were designed to 
be maximally pure in their reliance on what were 
presumed to be independent capacities. Using an 
alternative factor-analytic technique that forces 
the extraction of maximally independent factors 
(Jensen, 1998a, pp. 75–76), he was then able to 
derive a model that consisted in seven, seemingly 
independent, primary abilities (see Fig.  2.2). 
Among these were capacities like memory, per-
ceptual speed, and spatial visualization (Sattler, 
2008), which exhibit an intuitive degree of con-
ceptual separation, as well as others like verbal 
comprehension and word fluency that might be 
expected to have more variance in common. As it 

happens, this turns out to be the case, as Thurstone 
himself later recognized. That is, although it is 
possible to achieve maximally independent fac-
tors by (1) carefully selecting tests on that basis 
and then (2) mathematically constraining the 
relations between resulting factors, in truth, when 
the latter constraints are relaxed, the primary fac-
tors will positively intercorrelate. As explained 
by Jensen (Jensen, 1998a, Chapter 4), this is due 
to the fact that although some tests may load only 
on one primary ability, they all will still invari-
ably load on g.2 Moreover, the latter will often 
account for considerably more variance in perfor-
mance than do the primary abilities. In turn, the g 
factor can then be modeled at a level above the 
primary abilities, or even alongside them, to 
account for their intercorrelations, as in the con-
temporary hierarchical and bi-factor models 
described below. As will be seen, these latter 
models provide something of a compromise posi-
tion (Deary, 2000, Chapter 1).

�Sampling Theory and Thomson’s 
“Bonds” Model

While it is instructive to distinguish between the 
extremes represented by Spearman’s two-factor 
theory and Thurstone’s initial model based on 
Primary Mental Abilities, in recent years, a third 
alternative outlined by their contemporary, 
Godfrey Thomson, has been rediscovered. As 
recently described by Bartholomew and col-
leagues, Thomson’s work is unique, in that it 
does not necessarily dispute the mathematical 
adequacy of two-factor theory, but somewhat like 
Thurstone’s early model, it objects on conceptual 
grounds (Bartholomew, Deary, & Lawn, 2009). 
Specifically, whereas Thurstone emphasized the 
need for psychological and conceptual coherence 
in psychometric models of intelligence, Thomson 
was concerned with biological plausibility in 
terms of neural organization.

2 It should be noted that Thurstone himself came to recog-
nize these issues and acknowledged the possibility of a 
high-order g (Carroll 1993, p.  56; Major et  al. 2012, 
p. 544).

F1

s s s s s s

F2

Fig. 2.2  Schematic factor model depicting two orthogonal 
primary abilities. A simplified version of Thurstone’s pri-
mary ability model is shown here with only two factors, 
derived from three tests each. The key distinguishing fea-
tures of Thurstone’s initial model are the presence of uncor-
related (mathematically “orthogonal”) primary abilities and 
the absence of a general factor. F1 and F2 designate hypo-
thetical primary abilities (e.g., verbal and spatial skills)
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As an intuitive, if high-level example, con-
sider the well-known neurological findings that 
specific, higher-order faculties (e.g., language 
comprehension) can be disrupted by focal lesions, 
while leaving other cognitive skills intact. This of 
course suggests that cognitive functions are sub-
served by at least partly dissociable neural sys-
tems and that individual differences therein might 
not be the result of a single underlying factor. Yet, 
unlike Thurstone, Thomson did not argue that the 
underlying neural processes should be wholly 
independent, in the sense that they would never 
interact. Rather, just as we now know that lan-
guage production and comprehension are both 
largely housed in the dominant hemisphere 
(Lezak, Howieson, Bigler, & Tranel, 2012) and 
even interact (Papathanassiou et  al., 2000), one 
might expect these abilities to positively correlate 
based on their overlapping substrates.

In essence, Thomson extended this basic logic 
to develop a broader account of how diverse neu-
ral processes could give rise to the appearance of 
a single underlying factor in mental abilities. He 
reasoned that this could occur any time the items 
or tests in a given battery each “sampled” the 
same set of discrete but connected neural pro-
cesses (which he termed “bonds”). In turn, as the 
number of bonds shared among tasks increases, 
so too should the correlation between them. Thus, 
Thomson argued, and more recent work has con-
firmed (Bartholomew, Allerhand, & Deary, 2013) 
that it is possible to develop a statistical model 
that replicates the g factor, despite actually being 
comprised of numerous underlying processes. 
Further, although not recognized at the time, 
Thomson’s proposal makes even more sense 
when one considers the finding that the tasks with 
the highest g-loadings are nearly always the most 
complex. Given that complexity has been explic-
itly defined as the number of processes involved 
in a task (Guttman, 1954; Marshalek, Lohman, & 
Snow, 1983; Stankov & Raykov, 1995), it is quite 
suggestive that the most complex (and hence 
most g-loaded) tasks might in fact involve the 
most overlapping processes. Interestingly, like 
much of this literature, this idea, presented here 
in a psychometric context, would come to be 
echoed later on in more conceptual theories.

�Cattell’s Legacy: Fluid 
and Crystallized Intelligence 
and Investment Theory

Working in the middle and later part of the twen-
tieth century, Raymond B. Cattell made a major 
contribution to this literature in developing the 
concepts of fluid and crystallized intelligence 
(respectively, denoted as Gf and Gc). In a seminal 
paper, Cattell (1963) described his effort to syn-
thesize factor-analytic methods with develop-
mental considerations as they pertain to the 
growth of intelligence. One of his key assertions 
was that “there is not one “general ability” 
second-order factor…but more,” with each hav-
ing a semi-independent basis and developmental 
trajectory (Cattell, 1963; emphasis in original). 
Specifically, he argued that it is possible to sepa-
rate the g factor into Gf and Gc, where the former 
represents the capacity to respond adaptively in 
novel situations, while the latter is drawn upon by 
tasks that require learned skills and knowledge. 
Concretely, Gf would be expected to play more 
of a role in solving tasks involving unfamiliar 
relationships or components, such as in the well-
known Raven’s matrices (Raven & Court, 1998). 
These tasks are broadly nonlinguistic and require 
examines to identify the shared features among 
abstract figures arranged in a matrix. Gc, on the 
other hand, loads heavily on linguistic, academic, 
and other skill-based knowledge and should be 
more important for tasks involving things like 
verbal reasoning and one’s general fund of 
information.

In line with these distinctions, Gf was hypoth-
esized to more closely reflect one’s inborn, 
momentary cognitive processing capacity, which 
is then invested in developing crystallized skills 
(thereby forming the crux of “investment the-
ory”; Cattell, 1987). In addition, the trajectory of 
Gf and Gc should follow a particular develop-
mental course, with Gf increasing as children 
reach adulthood but declining in middle and 
older age, whereas Gc would in principle con-
tinue expanding as individuals accrue further 
experience. Indeed, this general trajectory has 
been roundly confirmed (Salthouse & Davis, 
2006) and represents a key consideration in 
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developing norms for cognitive tests. Notably, 
although the Gc-Gf model may sound very simi-
lar to that of Primary Mental Abilities, it is distin-
guished from this and other “multifactor” models 
in that its components are allowed to intercorre-
late (a so-called oblique model; Kovacs & 
Conway, 2016). Last, although the original Gf-
Gc model contained only two factors (see 
Fig.  2.3), Cattell and his coworker John Horn 
later extended it to include ten broad abilities 
(McGrew, 2009).

Ultimately, while the Gf-Gc distinction has 
been retained in some more recent psychometric 
models (notably CHC theory, see below), it is not 
without its challenges. Most significantly, it is 
now well-established that although it is possible 
to separate Gf and Gc statistically, if one allows 
for a g factor at a third level in a higher-order 
model (see next section), Gf and g then correlate 
at or close to unity (Kan, Kievit, Dolan, & van der 
Maas, 2011; and Lichtenberger & Kaufman, 
2013, p.  32–33). This of course makes them 
statistically and potentially substantively indistin-
guishable. Second, as noted by Cattell (1963), the 
theoretical distinction between Gf and Gc has 
important implications for determining which 

sorts of tests would be the most likely to show 
bias due to educational or cultural factors. Yet, 
although it is clearly the case that tests which pre-
sume certain linguistic and cultural information 
are not appropriate for some examinees, it unfor-
tunately does not follow that the so-called “non-
verbal” measures are in fact culture fair or “culture 
free.” To the contrary, recent work examining age 
differences in performance on the Raven’s pro-
gressive matrices suggests that such tasks are in 
fact highly sensitive to broader cultural knowl-
edge, such as that which changes over successive 
generations (Fox & Mitchum, 2012).

Other aspects of the Gf-Gc model have received 
mixed support as well. On the one hand, there is 
meaningful support for investment theory’s claim 
that investing in developing a certain type of skill 
may limit the growth of others (e.g., resulting in 
strong verbal and weaker math skills or vice versa; 
Coyle, Purcell, Snyder, & Kochunov, 2013; Coyle, 
Snyder, Richmond, & Little, 2015). However, at 
the same time, other research has undermined 
some of its other claims (e.g., Kievit et al., 2017). 
Thus, while the Gf-Gc distinction still finds sup-
port in facets of the literature, the overall chal-
lenges faced by the model have given sufficient 
reason to consider alternatives.

�Carroll and Vernon’s Hierarchical 
Models

The last group of notable historical models is the 
hierarchical models developed by Phillip Vernon 
(2014) and John Carroll (1993).3 Like Spearman, 
these theorists posited a g factor that was common 
to all cognitive tasks, but like Thurstone and 
Cattell, they also acknowledged and incorporated 
other factors that had a clearer psychological 
meaning. They accomplished this through the 
process of successive factorization (developed by 

3 Although many authors have considered Carroll’s model 
to be a quintessential example of a hierarchical model 
(Deary 2000; Lubinski 2004), it has also been argued that 
Carroll’s view was in fact closer to the bi-factor model 
discussed in the next section (Beaujean 2015).

Gf

s s s s s s

Gc

Fig. 2.3  Oblique fluid and crystallized intelligence 
model. Oblique factor structure depicting a schematic ver-
sion of the initial Gc-Gf model. Unlike Thurstone’s 
Primary Mental Abilities model, the two factors are 
allowed to intercorrelate
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Thurstone, 1947; cited in Carroll, 1993, p. 637), 
where, after extracting first-order factors that cor-
responded to broad abilities, the remaining corre-
lations between those factors were then factor 
analyzed themselves, giving rise to a single 
higher-order g factor and thereby creating a 
hierarchy.

Vernon’s model (depicted schematically in 
Fig. 2.4) posited two major group factors below 
the level of g. These are v:ed, which refers to 
verbal or educational skills, and k:m, or kines-
thetic and mechanical skills (Johnson & 
Bouchard, 2005b). Below those two major fac-
tors, the model then contained the six minor fac-
tors of creative abilities, numerical skills, and 
verbal fluency, which loaded on v:ed, and spa-
tial, psychomotor, and mechanical ability factors 
which loaded on k:m (Sattler, 2008, p.  227). 
Although Vernon’s verbal-educational and 
kinesthetic-mechanical factors share some simi-
larities with Gf and Gc, in contrast to Cattell, he 
argued that v:ed and k:m were both susceptible 
to cultural influences (educational and nonedu-
cational, respectively). Further, he chose to omit 
Gf, due to its considerable statistical overlap 
with g (Johnson & Bouchard, 2005b).

As recounted by many authors (Beaujean, 
2015), Carroll’s work and the resulting model 
are among the most celebrated achievements in 
psychometric intelligence research. He arrived at 
his framework through a meticulous reanalysis 
of over 450 previous datasets, from which he 
synthesized the then-extant literature to arrive at 
his “three-stratum” theory of cognitive ability. In 
the model, the strata, or level, at which a given 
ability was placed partly reflected the number of 
successive factorizations that were performed in 
deriving it but more directly corresponded to the 
factor’s generality in terms of the types of lower-
order factors that loaded on it (Carroll, 1993, 
p. 577). At the lowest level were narrow (Stratum 
I) abilities, or those that are specific to particular 
tasks (e.g., visualization and sequential reason-
ing in matrices tasks). Broad (Stratum II) factors 
then constituted group factors, like those 
employed by Thurstone and Cattell and Horn, 
that were common to a given class of tasks. 
Finally, g formed the single Stratum III factor 
representing general cognitive ability (Carroll, 
1993, Chapter 16).

In summarizing his results, Carroll derived four 
primary conclusions: (1) that there was “abundant” 
evidence for a general factor of intelligence that 
would emerge at the highest order of factorization 
in any given dataset, (2) that eight broad abilities 
could be distinguished at Stratum II (fluid intelli-
gence, crystallized intelligence, general memory 
and learning, broad auditory perception, broad 
retrieval ability, broad cognitive speediness, and 
processing speed or reaction time decision speed), 
(3) that additional second-order factors could fur-
ther be identified in domains such as learning and 
memory and language (among others), and (4) that 
the general program of analyzing abilities into 
strata provided valid insights into the structure of 
human cognitive ability and could form the basis 
for such a theory.

Aside from the significance of Carroll’s over-
all achievement, his model was also noteworthy 
in that, in addition to providing a relatively 
definitive account of the broad ability factors 
known at that time, he also arranged them accord-
ing to their approximate g-loadings (Fig.  2.5). 

g

v:ed k:m

Fig. 2.4  Vernon’s hierarchical model. Schematic depic-
tion of Vernon’s hierarchical model with a second-order g 
factor that explains the correlations between the verbal-
educational and kinesthetic-mechanical group factors. 
Test-specific factors and manifest variables are omitted 
for simplicity
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Fig. 2.5  Carroll’s three-stratum model of cognitive abili-
ties. Adaptation of Carroll’s (1993) hierarchical model, 
with g at Stratum III and broad abilities ordered by their 
approximate g-loadings from left to right. Stratum II fac-
tors use contemporary abbreviations, following McGrew 
(2009). Gf fluid intelligence, Gc crystallized intelligence, 

Gy general memory and learning, Gv broad visual percep-
tion, Ga broad auditory perception, Gr broad retrieval 
ability, Gs broad cognitive speediness, Gt reaction time 
decision speed. Ovals containing ellipses depict narrow 
Stratum I variables, which varied in number across 
Stratum II factors

This is useful, because in principle, such an 
ordering should help to clarify which sorts of 
measures best predict overall intelligence and 
hence might inform the “true” nature of construct 
(e.g., does intelligence have more to do with on-
the-spot reasoning or with one’s depth and 
breadth of general knowledge?). Carroll’s model 
is also remarkable for the fact that it truly repre-
sented a comprehensive synthesis of the available 
literature (Johnson & Bouchard, 2005b, p. 395). 
For example, although he included Gf and Gc in 
his model, the proximity of the former to g also 
acknowledges the debate (both then and since; 
Gustafsson, 1984; Colom, Rebollo, Palacios, 
Juan-Espinosa, & Kyllonen, 2004; Oberauer, 
Schulze, Wilhelm, & Süß, 2005) about whether 
Gf or other lower-order factors best define the 
limits on intelligence. Thus, it is perhaps due to 
the success of this synthesis that Carroll’s model 
forms one half of the prominent, contemporary 
Cattell-Horn-Carroll integrated model, or simply 
CHC (McGrew, 2009).

�Contemporary Psychometric 
Theories of Intelligence

Having incorporated the lessons of the prior cen-
tury, the current phase of psychometric intelli-
gence research is generally characterized by a 

clearer acknowledgment of the statistical validity 
of the g factor and a move toward discussing how 
best to represent it in model structures, what its 
substantive implications might be, and on deter-
mining the number and status of the broad ability 
factors. At present, there are arguably four major 
models under discussion.

�Cattell-Horn-Carroll (CHC) Theory

The CHC model is likely the most prominent 
contemporary psychometric theory. Its elements 
have long been incorporated into the Woodcock-
Johnson Cognitive Assessment Battery (initially 
as Gf-Gc theory; Woodcock, 1990; and later as 
CHC itself; Woodcock, McGrew, & Mather, 
2001), it has received prominent treatments both 
in the scholarly literature and in practical assess-
ment guides (Lichtenberger & Kaufman, 2013; 
Newton & McGrew, 2010), and at the time of this 
writing, a major review of CHC (McGrew, 2009) 
lists more than 700 citations in the Google 
Scholar database.

According to a recent chapter detailing the 
tenets of CHC, the theory consists in two primary 
components. First, it provides a “taxonomy” or 
classification of human cognitive abilities, and 
second, it provides “a set of theoretical explana-
tions for how and why people differ” in those 
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respects (Schneider & McGrew, 2012). As the 
name indicates, CHC represents a synthesis of 
the Cattell-Horn extended theory and John 
Carroll’s three-stratum model. Although g is 
included, owing to the disagreement between its 
namesakes regarding its status (McGrew, 2009, 
p. 4), the substantive emphasis of CHC is decid-
edly on the broad and narrow factors. Not only is 
the casual status of g left undetermined, but prac-
titioners who adopt CHC are explicitly encour-
aged to ignore it if they question its theoretical 
value and particularly for practical aspects of 
assessment (Schneider & McGrew, 2012, p. 111). 
A schematic depiction of CHC would thus be 
similar to Fig.  2.5 above but lacking a causal 
arrow from g to the broad factors or the emphasis 
on g-loadings.

Although the most well-known treatment of 
CHC lists ten broad (Stratum II) abilities along 
with six tentative factors, McGrew and colleagues 
have since reorganized aspects of the framework 
to clarify the conceptual groupings among the 
factors at that level (Schneider & McGrew, 2012). 
The present section draws heavily from their 
excellent exposition, which interested readers 
should consult for a deeper treatment, as well as 
practice guidelines. The first conceptual grouping 
corresponds to Domain-Free General Capacities 
and includes Fluid Reasoning (Gf), two memory 
factors (Short-Term Memory, Gsm, and Long-
Term Storage and Retrieval, Glr), and three cogni-
tive speed factors (Processing Speed, Gs; Reaction 
and Decision Speed, Gt; and Psychomotor Speed, 
Gps). These factors group together because they 
all emphasize more process-related aspects of cog-
nition (e.g., how fluently can one perform a task, 
how readily can one recall information) as opposed 
to particular content.

Next, CHC emphasizes four broad, content-
related factors under the heading of Acquired 
Knowledge. These are Comprehension-
Knowledge (Gc), Domain-Specific Knowledge 
(Gkn), Reading and Writing (Grw), and 
Quantitative Knowledge (Gq). Naturally, these 
factors depend at least in part on educational and 
cultural exposure, and on that basis Schneider 
and McGrew (2012) emphasize their conceptual 
alignment with Cattell’s crystallized intelligence 

factor. While the expression of these skills clearly 
depends on specific content and hence cultural 
exposure, it remains the case that many narrow 
capacities in this domain nevertheless have pro-
cess aspects as well. For example, while this 
domain includes the narrow capacities of General 
Verbal Information and Lexical Knowledge 
(loading on Gc), it also includes skills such as 
Reading Comprehension and Writing Speed 
(including under Grw). As an interesting side 
note related to this domain, despite its seemingly 
straightforward character, Gc arguably represents 
one of the more controversial factors in intelli-
gence research, both in the CHC model and in the 
field as a whole. For example, in contrast to early 
theory which predicted stronger genetic influ-
ences on fluid rather than crystallized skills 
(Cattell, 1963), there is now evidence that more 
culture-loaded factors may actually be the most 
heritable abilities (Kan, Wicherts, Dolan, & van 
der Maas, 2013). Indeed, even the status of Gc as 
a true cognitive capacity is currently under debate 
(for further reading, see Kan et al., 2011).

In the last conceptual grouping, CHC empha-
sizes a set of more modality-specific capacities, in 
the form of Sensory-/Motor-Linked Abilities. 
Each of these factors is tied to its respective sen-
sory modality, where the list includes Visual 
Processing (Gv), Auditory Processing (Ga), 
Olfactory Abilities (Go), Tactile Abilities (Gh), 
Kinesthetic Abilities (Gk), and Psychomotor 
Abilities (Gp). Note that these factors are not 
thought to be mere perceptual capacities but more 
complex mental operations that depend upon a 
given modality. For example, Gv entails visualiza-
tion skills such as those required for mental rota-
tion tasks or for imagining obscured portions of 
objects, while Ga includes phonemic decoding 
(implicated in some forms of dyslexia; Coslett, 
2003) and memory for sound patterns. However, 
these examples notwithstanding, it remains the 
case that assessing some of these skills often 
entails mere acuity tests (e.g., olfaction, tactile 
skills; Schneider & McGrew, 2012). Overall, 
while this grouping undoubtedly includes valid 
dimensions of individual differences, it neverthe-
less also seems clear that additional research in 
this area is needed (Stankov, 2017).
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Finally, with regard to CHC’s theoretical 
implications, the current framework is perhaps 
closest to Cattell and Horn’s views which empha-
sized the diversity of abilities, as opposed to the 
relative primacy of any given factor in defining 
intelligence. This is perhaps also consistent with 
CHC’s very practical emphasis, in that it aims to 
bridge the “theory-to-practice gap” in cognitive 
and educational assessment (McGrew, 2009, 
p. 4). That is, because CHC emphasizes broad and 
narrow abilities, it provides a very practical 
framework from which to guide assessment of 
individual people, with their unique and diverse 
needs. Thus, whereas the ambiguous status of g, 
or some of the less-well established Sensory-/
Motor-Linked Abilities, is somewhat unsatisfying 
from a theoretical perspective, CHC nevertheless 
has the unique virtue of eschewing those some-
time esoteric debates in favor of very explicitly 
seeking to inform practical considerations.

�Verbal-Perceptual-Image Rotation 
(VPR)

An equally valid, but somewhat underappreci-
ated, model is the VPR theory, which was first 
articulated by Johnson and Bouchard (Johnson & 
Bouchard, 2005b). Using a dataset comprised of 
42 cognitive ability tests that had been adminis-
tered to 436 adults, those authors set out to exam-
ine whether the Cattell-Horn two-factor Gf-Gc 
model, Vernon’s v:ed-k:m model, or Carroll’s 
three-stratum model best  fit the data. Although 
they concluded that each model fit reasonably 
well, they also noted a number of issues. For 
example, the Gf-Gc model demonstrated a high 
correlation between those two factors, suggesting 
the presence of a g at a third stratum. In addition, 
the same model contained two lower-order abili-
ties below the primary level that reflected fluid 
and crystallized skills, but these proved to be 
statistically indistinguishable from their respec-
tive higher-order factors. The Vernon model per-
formed well, but did not meet the authors’ a priori 
criteria for model fit, failed to represent memory, 
and also showed a very high correlation between 
its lower-order verbal factor and v:ed. In the 

three-stratum model, the fluid intelligence factor 
was indistinguishable from g.

On that basis, the authors sought to evaluate a 
new model, using Vernon’s model as a guide but 
adding another factor to better account for the 
data. Ultimately, they arrived at what they termed 
the VPR model (Fig.  2.6), which, as the name 
indicates, identifies three broad factors below the 
level of g: verbal ability, which includes things 
like linguistic and scholastic skills (e.g., memori-
zation); perceptual ability, which includes skills 
like the ability and speed with which one detects 
patterns; and image rotation, which more 
uniquely captures perceptual tasks that empha-
size rotation per se (note that some tests load on 
multiple factors; Johnson & Bouchard, 2005b).

In discussing the advantages of the VPR 
model, the authors noted that whereas Gf-Gc 
includes both verbal and perceptual content as 
part of crystallized intelligence (e.g., mechani-
cal ability is both learned and spatial), both 
Vernon’s model and the VPR model distinguish 
these as loading on factors that reflect their 
respective content. Indeed, such a division of 
verbal and spatial skills has been repeatedly 
borne out in replications of VPR, where it has 
been shown that various tests which should the-
oretically reflect crystallized intelligence (e.g., 
naming pictures, identifying tools) have actu-
ally had negative loadings on the crystallized 
factor (Johnson & Bouchard, 2005a; Johnson, te 
Nijenhuis, & Bouchard, 2007). Over the course 

g

V P R

Fig. 2.6  Verbal-perceptual-image rotation model. 
Schematic depiction of the VPR model. Dashed arrows 
reflect the fact that first-order factors are unspecified (see 
text). V verbal, P perceptual, R image rotation
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of those and subsequent studies, Johnson and 
colleagues have now consistently demonstrated 
the relative superiority Vernon’s model over that 
of Gf-Gc, for both statistical and substantive 
reasons, as well as the superiority of VPR in 
turn (Johnson et al., 2007; Johnson & Bouchard, 
2005a). VPR has since been shown to fit better 
than either the extended Gf-Gc model or a three-
stratum version of CHC (Major, Johnson, & 
Deary, 2012).

From a theoretical standpoint, VPR is unique 
in emphasizing a dimensional view of intelli-
gence, such that verbal and rotational skills are 
thought to represent two poles on a continuum 
(Major, Johnson, & Deary, 2012). Notably, this 
may conceptually align it with the well-known 
(relative) specializations of each cerebral hemi-
sphere (i.e., the left hemisphere is typically dom-
inant for language and sequential processing; the 
right hemisphere is typically dominant for spa-
tial and configural processing; Lezak et  al., 
2012), giving it a strong degree of neurological 
plausibility (Johnson & Bouchard, 2005b). 
Relatedly, the VPR model also explicitly avoids 
pre-specifying the number and content of lower-
order factors (Major et al., 2012, p. 544), arguing 
that these instead will depend on the test batter-
ies at hand. Thus, when constructing a model 
based on a given sample and battery, the obtained 
perceptual factor may correlate more highly with 
verbal ability, depending on the exact tests from 
which it is derived (e.g., if the stimuli tend to 
induce verbalization), while in another battery 
with a greater proportion of highly spatial tasks, 
the perceptual factor might relate more strongly 
to image rotation.

Overall then, VPR represents a departure from 
the tradition of precisely specifying models down 
to all of their constituents. Rather, it aims for a 
more parsimonious view of intelligence, wherein 
a g factor influences task performance by virtue 
of its relation to just a few higher-order factors, 
which are aligned on a single verbal-spatial 
dimension. While it may be possible to enumer-
ate all of the lower-order capacities in the manner 
of CHC, VPR instead prioritizes parsimony in its 
account of intelligence. Although its practical 
applications are less-developed than that of CHC, 

its strong base of empirical and substantive sup-
port nonetheless makes it a viable alternative to 
its more prominent counterpart.

�Bi-factor Models of Intelligence

Another important class of models to briefly con-
sider is the bi-factor models, which are unique in 
the way that they represent the relationship 
between g and the group factors. In all of the 
hierarchical models discussed up to this point, g 
influences individual test scores solely by virtue 
of its relation to the group factors (Cucina & 
Byle, 2017). This means that the latter account 
for all the shared variance among the tests that 
load on them (e.g., the shared variance among a 
group of working memory tasks would be fully 
explained by a working memory factor), with g 
then being modeled at a higher level to account 
for the correlations between the group factors. 
Under this scenario, any change in an individu-
al’s level of g can only impact their test perfor-
mance through the resulting impact on the 
relevant group factor(s) (Beaujean, 2015).

In contrast, bi-factor models also allow one to 
represent g, but they instead place it in a nonhier-
archical relation. Here, rather than first extracting 
primary factors and then modeling g based on 
their relations, g is extracted first, and primary 
factors are extracted separately from the remain-
ing shared variance among the tests (Jensen, 
1998a, p. 78). This means that the resulting fac-
tors are independent of variance due to g, with all 
the latent factors existing at the same level of 
the model (Gignac, 2016b; Morgan, Hodge, 
Wells, & Watkins, 2015; and see Fig. 2.7). The 
result is that variation in test performance across 
individuals can reflect either variance due to g 
or that due to the primary factors, with the two 
being completely independent (Beaujean, 2015; 
Morgan et al., 2015).

Following from the previous example, in a 
bi-factor model, one’s score on a given working 
memory test would be a function of both one’s 
level of “general intelligence” and their indepen-
dent, more specific working memory ability. 
Setting aside the various technical considerations 
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g

F1 F2 F3

Fig. 2.7  Example bi-factor model. Schematic bi-factor 
model with three group factors. Boxes represent measured 
variables (specific tests), and circles represent latent fac-
tors as above. Each arrow going from a latent factor to a 
measured variable reflects the former’s unique contribu-
tion to variance in the latter

related to the challenges and virtues of the bi-factor 
model (see Gignac, 2016b; Morgan et  al., 2015; 
Murray & Johnson, 2013), these models are of 
substantive interest because they provide an alter-
native way to think about g. Namely, because both 
the general and group factors independently 
account for test performance in these models, they 
seem to allow a greater reconciliation between the 
empirical evidence for g, on the one hand, and the 
notion that more specialized skills might have 
additional explanatory utility on the other (e.g., 
Benson, Hulac, & Kranzler, 2010).

�The Mutualism Model

The final psychometric model is somewhat akin 
to Thomson’s sampling theory in also offering a 
very different perspective on psychometric g. 
Specifically, whereas sampling theory argues that 
the positive manifold arises from a situation 
where cognitive tests recruit overlapping sets of 
neural connections, the mutualism model holds 
that initially uncorrelated processes, such as 
group factors like memory and perceptual ability, 
come to be correlated through reciprocal positive 
interactions that occur during development (van 
der Maas et al., 2006). In essence, what are ini-
tially independent processes come to support the 
growth of one another, thereby increasing their 

interrelations. Some related examples from the 
empirical literature come from the work of 
Demetriou and colleagues, who have shown that 
various lower-order factors appear to play differ-
ent roles in intelligence at different developmen-
tal phases (Demetriou et  al., 2013; Makris, 
Tachmatzidis, Demetriou, & Spanoudis, 2017).

Using simulation studies,4 van der Maas et al. 
(2006) demonstrated that given a model contain-
ing no relationships among limiting resources but 
with positive correlations between otherwise 
independent processes, factor analyses of the 
simulated data are nonetheless consistent with a 
single major latent factor such as psychometric g. 
As a result, because the model is comprised of 
multiple, separate but correlated processes, the 
resulting statistical pattern cannot be said to 
result from a single underlying cause. Thus, 
although fully hypothetical, the mutualism model 
suggests an alternative route by which g could 
statistically arise, but without a unitary cognitive 
or neurological basis. In turn, van der Maas and 
colleagues further demonstrated that the mutual-
ism model could also explain several other 
important phenomena in the intelligence litera-
ture. These include the more complex cognitive 
hierarchies like the models described above, as 
well as patterns of intellectual development, 
intra-subject variability, and cohort effects on IQ 
test performance (see discussion and details in 
van der Maas et al., 2006).

In the time since mutualism was first pro-
posed, the theory has received mixed support. For 
example, although mutualism suggests that g 
should account for more variance in test perfor-
mance as children grow older, a study that exam-
ined this in a cross-sectional sample ranging from 
2 to 90 years old failed to support this (Gignac, 
2014). A second study also argued against mutu-
alism when it failed to find expected patterns in 
factor-analytic results (Gignac, 2016a). However, 
proponents of mutualism debated the prior 

4 Primary simulations were based on 16 hypothetical neu-
rocognitive processes, which were each independently 
sampled from pre-specified distributions to define 1000 
simulated subjects. Different models specified various 
constraints and relationships among model parameters.
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study’s premise (van der Maas & Kan, 2016). 
These issues notwithstanding, in the most recent 
and direct test of mutualism to date, a longitudi-
nal study did find evidence for reciprocal positive 
interactions between two broad abilities over the 
span of almost 2 years (Kievit et al., 2017).

Finally, the mutualism model provides a good 
venue to raise an additional point related to mod-
ern conceptions of psychometric ability models. 
Specifically, while most of the models considered 
here are said to be reflective in nature, mutualism 
(along with sampling theory and possibly VPR; 
Deary, Cox, & Ritchie, 2016; Major et al., 2012, 
p. 544) instead represents what is known as a for-
mative model (van der Maas, Kan, & Borsboom, 
2014). In a reflective model, the latent factors are 
understood to be the cause of the observed varia-
tion in the individuals’ test scores, in the sense 
that factors are taken to represent real entities 
(Borsboom, Mellenbergh, & Van Heerden, 2003; 
Kievit et al., 2011), without which the observed 
results would not be obtained. As an example, 
whenever one attributes a global quality to an 
individual, e.g., he or she broke the law because 
they are simply a “bad person,” one is implicitly 
making a reflective explanation—an underlying 
attribute of the person was the cause of their 
behavior. Under this scenario, because of the 
specified causal direction, changing the subtests 
that are used to measure the variable (intelligence 
in this case) would change the accuracy of the 
measurement, but could not logically affect the 
variable itself (Kievit et al., 2011).

In contrast, although formative models also 
relate latent factors to observed data, here, the fac-
tors are merely understood to be weighted com-
posite scores, such that the data are responsible 
for the composition of the factor, as opposed to 
vice versa (van der Maas et al,. 2014). Common 
examples of formative variables include con-
structs like socioeconomic status and “overall 
health,” where it can be readily seen that many 
diverse factors come together to define them. 
Researchers might disagree about whether cardio-
vascular efficiency or strength and flexibility are 
more important aspects of health, but they likely 
would not argue that an underlying “health factor” 
was the cause of variation in both. The two are of 

course often related in healthy people, but it is 
possible to have one without the other. In turn, to 
the extent that one chose to measure one dimen-
sion at the exclusion of the other, these choices 
could produce very different pictures of a person’s 
overall health. In this instance, the choice of indi-
cators determines the attributes of the factor, 
rather than the reverse (see Fig. 2.8). Finally then, 
returning back to intelligence, it can be seen how 
the formative/reflective distinction provides a use-
ful way for thinking about g. Although reflective 
models imply a unitary cause for variation in 
intelligence, the mutualism model (along with 
sampling theory) shows that this is not necessar-
ily the case. Rather, g could in fact be legitimately 
unitary in a statistical sense, while still ultimately 
resulting from many underlying processes 
(Deary et al., 2016).

�Summary of Psychometric Theories

To summarize this section, psychometric theories 
of intelligence have addressed the “structure” of 
the construct, considering the role of various spe-
cific and broad factors (e.g., Gf and Gc) and of 
course the role of g. While early historical 
accounts debated whether intelligence is better 
reflected by a single general factor (g) or a series 
of independent skills, more recent theories have 
generally endorsed a hybrid of the two. That is, 
intelligence likely has a hierarchical structure, 

R
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Fig. 2.8  Reflective vs. formative models. In a reflective 
model (left), including most models of intelligence, the 
latent factors are to understood as causing the variation in 
the obtained scores (V1–V3). In a formative model (right), 
the casual direction is reversed such that the composition, 
and thus the nature, of the latent factor entirely depends 
on the variables used to measure it. Error and residual 
terms and other parameters are omitted for simplicity.
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with g at the top, and broad factors operating 
between g and performance on particular types of 
tests. Practically, this suggests that a single gen-
eral capacity influences all tasks, regardless of 
their content, although more specific abilities 
govern the relation between g and specific tasks. 
More recent theories have also debated the nature 
of these broad factors, with CHC perhaps being 
the most comprehensive, though VPR offers a 
conceptually simpler account centered around a 
verbal-spatial continuum. These two theories 
emphasize continuity with different theoretical 
traditions, but they differ in their emphasis on 
practical utility vs. theoretical consistency. Still 
other psychometric theories acknowledge the 
empirical phenomenon of g but propose alterna-
tive ways that it might come about, in terms of 
the interrelations between lower-level cognitive 
and neural processes. Overall, while psychomet-
ric theories are useful for thinking about the 
structure of intelligence (i.e., is it a single capac-
ity or many?), they say less about its “nature.” 
These latter issues, such as whether intelligence 
relates to more basic or complex processes, and 
its more-detailed information processing basis, 
are better addressed by conceptual theories of 
intelligence, as reviewed in the next section.

�Conceptual Theories of Intelligence

Because psychometric theories involve a high 
degree of mathematical rigor, they have perhaps 
justifiably dominated discussions about intelli-
gence. Nevertheless, a number of more conceptu-
ally oriented theories still have their place in 
filling out the scope of these debates. These mod-
els run the gamut from being primarily theoretical 
and rationally derived, to those that are backed by 
a substantial body of empirical results. In the lat-
ter category, some models (especially those that 
emphasize working memory and processing 
speed) could also claim substantial psychomet-
ric support. Yet, insofar as they advocate for 
particular processes in defining intelligence and 
also bring experimental methods to bear on their 
views, they are somewhat more similar to concep-

tual models than the primarily statistical frame-
works outlined above. In every case, though, the 
models and theorists highlighted below have been 
selected for review because of the ways in which 
they exemplify other key or controversial ideas in 
theories of intelligence.

�Francis Galton: The Reductive 
Tradition in Intelligence Research

Sir Francis Galton is generally regarded as the 
most important early figure in the modern era of 
intelligence research.5 His work took place in the 
context of Victorian England with evolutionary 
theory in the intellectual milieu (Jensen, 1998a), 
including its emphasis on the role of genes in 
determining the traits of organisms. Whereas 
many at the time held that intelligence could “act 
independently of natural laws,” Galton held the 
contrary, evolutionary view that genes and the 
biological processes they govern should be impor-
tant determinants of intellectual ability (Galton, 
1883). In turn, by examining the implications of 
just that single assertion, one can derive what are 
perhaps Galton’s three most important intellectual 
contributions.

First, if mental capacities are akin to physical 
traits in being subject to biological principles, 
this means that, like other phenomena in the nat-
ural sciences, intellectual capacity should be 
amenable to objective quantification. Thus, it 
should be possible to develop reliable measures 
of intellectual ability that can quantify differ-
ences among individuals. Second, if mental abil-
ity is largely determined by genetic variation, 
then more fundamental attributes of individuals 
(those which are more closely tied to their genes) 
might place constraints on higher-order mental 
skills. For Galton, this meant that the basic effi-
ciency of lower-order, sensory-motor capacities 
(those that should be more directly tied to basic 
nervous system functions, like nerve conduction 

5 Though see Deary’s (2000, Chap. 2, and p. 68) account 
of several authors who espoused similar views but pre-
dated Galton
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speed) should limit “the field upon which our 
judgment and intelligence can act” (Galton, 
1907; cited in Wasserman, 2012). Thus, while 
Galton did not necessarily hold that intelligence 
could be fully reduced to lower-order capacities, 
the primacy he placed on them nevertheless 
exemplifies the reductive tradition. Third, Galton 
also made a number of statistical contributions, 
being the first to develop a measure of the rela-
tion between two variables (the forerunner to 
Pearson’s correlation coefficient) and to use the 
normal distribution to rank individuals on an 
interval scale (Jensen, 1998a, pp. 10–11). Thus, 
he provided a foundation not only for differential 
psychology but also for normative principles that 
are still used today.

In pursuit of these various ideas, Galton estab-
lished his “anthropometric laboratory” in 
London, where, for a small fee, members of the 
public could be measured on mostly low-level 
traits and capacities, such as height, grip strength, 
breathing capacity, and visual and auditory acuity 
(Sattler, 2008; Wasserman, 2012). Although he 
amassed data on more than 9000 individuals, 
likely owing in part to methodological limita-
tions, his measures proved only weakly related to 
indices of intelligence (e.g., occupational attain-
ment; Jensen, 1998a, Chapter 11). As recounted 
by Deary (2000, Chapter 2), subsequent promi-
nent but likely overemphasized failures to apply 
Galton’s measures to practical assessment may 
in part account for the waning of interest in 
Galton’s approach and the following stagnation 
in reductive research. In the time since, the 
approach has rebounded, and a more balanced 
view has emerged. On the one hand, many recent 
studies, including meta-analyses and population-
based research, clearly support Galton’s conten-
tion that lower-order processes should relate to 
intelligence (e.g., Acton & Schroeder, 2001; 
Deary, Der, & Ford, 2001; Euler, McKinney, 
Schryver, & Okabe, 2017; Melnick, Harrison, 
Park, Bennetto, & Tadin, 2013). Nevertheless, to 
the extent that effect sizes are modest (typically 
correlating near r = −0.30; Sheppard & Vernon, 
2008), their conceptual significance remains 
open to debate.

�Alfred Binet and David Wechsler: 
Theoretical Insights Gleaned 
from Practical Assessors

In contrast to Galton’s decidedly theoretical 
aims, the work of Alfred Binet and David 
Wechsler, who respectively developed the Binet-
Simon and Wechsler Intelligence Scales, illustrate 
a number of insights that were gleaned through 
more practical endeavors. Specifically, while it 
would be difficult to discount the predominant 
role of theory and basic research in advancing 
this field, the systematic research through which 
these measures were developed nevertheless 
yielded important principles that have stood the 
test of time. Indeed, even if there were no princi-
ples guiding their development (untrue in either 
case; Binet & Simon, 1916; Wechsler & Edwards, 
1974), the immense practical success of these 
instruments (and the tests they inspired) would 
seem to speak to their construct validity. To wit, 
if an instrument is near-universally accepted as a 
valid measure of intelligence, then it stands to 
reason that the principles that govern it may help 
elucidate the construct.

In the case of Binet, he and his colleague 
Theodore Simon developed what is now gener-
ally recognized as the first useful test of intelli-
gence in the Binet-Simon scale, with the goal of 
better identifying children with intellectual dis-
abilities (Sattler, 2008). In the course of their 
studies, Binet articulated what has proved to be a 
fundamental principle not only of intelligence 
testing but of intelligence itself. Specifically, he 
identified that more complex measures involving 
multiple dimensions are far superior to simple 
tasks as measures of intelligence—for the reason 
that complex tasks elicit more variability across 
individuals (Wasserman, 2012, p. 14). Here then, 
is a clear contrast between the lessons suggested 
by Galton and Binet’s work. As Binet acknowl-
edged, simpler measures can be more precisely 
controlled with respect to stimulus characteris-
tics and the like. Yet, because simple measures 
elicit little variability across individuals, this 
mitigates their advantage over less precise but 
more sensitive tasks that involve more complex 
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mental operations (Binet & Henri, 1894; quoted 
in Wasserman, 2012). Thus, although narrow 
psychophysical capacities may meaningfully 
relate to, and even constrain, overall intelligence, 
the construct itself seems to inherently represent 
a higher-order capacity. In addition, Binet also 
emphasized the necessity of using multiple tasks 
to arrive at a composite intelligence measure 
(Binet & Simon, 1916), and he considered indi-
vidual tasks to be of questionable value (Boake, 
2002). Not only has this become a foundational 
principle of most intelligence tests, but it also 
reflects the core theoretical notion that intelli-
gence represents a fundamentally general capac-
ity (Gottfredson, 1997a).

Although David Wechsler was more theoreti-
cally inclined than Binet (and produced a number 
of theoretical papers; Wechsler & Edwards, 
1974), he was also largely concerned with practi-
cal assessment. Here again though, it can be seen 
how his practical considerations served to clarify 
a key feature of intelligence. In particular, while 
serving in the army, Wechsler was tasked with 
individually examining unschooled recruits or 
those with limited English proficiency, who had 
been deemed intellectually disabled based on 
their performance on the very verbally dependent 
Stanford-Binet (Boake, 2002). Yet, in many cases 
it was evident to Wechsler that these recruits had 
previously held significant social and profes-
sional responsibilities, attesting to their average 
if not higher intelligence. Based on these experi-
ences, Wechsler came to believe that intelligence 
could be expressed equally well through verbal 
and “performance-based” measures (i.e., percep-
tual and visuospatial tasks) and strove to include 
diverse measures spanning both dimensions in 
developing his own scales (Matarazzo, 1972, 
Chapter 8).

On the one hand, this represents a practical 
and clinical necessity. For certain examinees, 
such as those with various neurological syn-
dromes or with limited English proficiency, one 
might indeed expect their intelligence to be better 
expressed through a particular route. Yet, like 
Binet, Wechsler’s clinical insight around this 
reflected a deeper fact about intelligence itself. 
Namely, that although most healthy individuals 

will not demonstrate such discrepancies, intelli-
gence itself is broader than any single dimension 
and thus can be expressed through multiple 
routes. Not only is this evident in the ubiquity of 
g but also in the somewhat lesser-known phenom-
enon of the “indifference of the indicator.” As dis-
covered by Spearman (1927), this refers to the 
finding that highly diverse measures with no 
content in common (e.g., vocabulary vs. visuo-
spatial reasoning) can in some instances predict 
intelligence equally well (see: Wechsler, 2008; 
Table  5.1). Thus, as in Binet’s case, although 
practical considerations drove Wechsler’s 
approach, the insights he derived reflected 
important aspects of intelligence.

�Arthur Jensen and Lazar Stankov: 
Contemporary Debates 
Around Reductive Approaches

On the spectrum of unitary-non-unitary perspec-
tives of intelligence, Arthur Jensen is a strong sup-
porter of an overall g factor. Where Jensen differs 
from psychometric approaches, however, is in his 
extensive use of mental chronometry (reaction 
time-based tasks; RT) as a means to assess infor-
mation processing accounts of intelligence. As a 
g-theorist, Jensen believed that intelligence could 
be reduced down to one fundamental process, 
which he tried to capture through patterns of RT 
performance (Jensen, 1981). He proposed that 
speed of information processing (SOP; Jensen, 
1993) was this fundamental process and tried to 
link IQ scores to mathematical models of RT task 
performance (Hick’s Law; Hick, 1952). These 
studies argue that intelligence is about how long it 
takes one to process a “bit” of information 
(Jensen, 1981, 1982, 1998a, 1998b), with varia-
tion in other processes (e.g., working memory—
one’s ability to hold and manipulate information 
held in mind) being the result of variability in 
SOP (Jensen, 1993). While a correlation between 
RT and IQ scores is a well-replicated finding 
(Sheppard & Vernon, 2008), there is much debate 
about the nature of this relationship (Stankov & 
Roberts, 1997) and what it means for understand-
ing intelligence.
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In an attempt to resolve these questions about 
RT-IQ correlations, mental chronometry has 
explored how discrete processes typically exam-
ined in cognitive psychology (working memory, 
etc.) could be related to intelligence. For example, 
while overall RT correlates with IQ scores, so does 
the variability of one’s RT within a given task (RT 
standard deviation; RTSD; Doebler & Scheffler, 
2016; Jensen, 1992). Likewise, one’s slowest indi-
vidual RT trial often correlates better with intelli-
gence than their fastest RT (Rammsayer & Troche, 
2016; Ratcliff, Schmiedek, & McKoon, 2008). 
This led to theories that higher-ability people may 
experience less “neural noise” (Jensen, 1993) or 
have better “evidence accumulation” during 
decision-making (Schmiedek, Oberauer, Wilhelm, 
Süß, & Wittmann, 2007). Finally, since chrono-
metric tasks lend themselves well to neuroscience 
methods, the two approaches have begun to merge. 
Indeed, Jensen argued that explanations for chro-
nometric effects would only be valid insofar as 
they were biologically plausible (Jensen, 1993). 
In a way, many contemporary neuroscience-based 
theories of intelligence (such as Process Overlap 
Theory, discussed below) could be considered 
intellectual descendants of Jensen’s initial linkage 
of experimental and differential psychology.

An interesting contrast with Arthur Jensen’s 
reductive approach can be found in the work of 
Lazar Stankov and colleagues. While Jensen tried 
to link chronometric performance to a unitary g, 
Stankov instead used experimental approaches to 
consider how the coordination of several pro-
cesses, as opposed to a particular one, might define 
intelligence. Specifically, he argues that intelli-
gence reflects the capacity to engage multiple pro-
cesses simultaneously to accomplish a task. 
Indeed, Stankov has provided experimental evi-
dence demonstrating that tasks with increasing 
numbers of components (i.e., more complex tasks) 
correlate better with intelligence (Stankov & 
Crawford, 1993; Stankov & ,Raykov 1995). While 
Stankov acknowledges g, he argues that it is gen-
erally overemphasized and that second-stratum 
factors are more important to understanding intel-
ligence (Stankov, 2017). In line with his emphasis 
on higher-order coordination of discrete processes, 
Stankov has also advocated for the integration of 

non-cognitive process into models of cognitive 
ability (e.g., emotional intelligence and meta-cog-
nition; Stankov, 2017). Thus, in contrast to Jensen 
who emphasized the primacy of g, and speed of 
processing as its ultimate basis, Stankov’s work 
illustrates an alternative experimental approach 
that eschews strong reductionism and emphasizes 
a more holistic perspective.

�The Role of Executive Abilities: 
Working Memory Capacity 
and Process Overlap Theory

The negative correlation between intraindividual 
variability in RT and IQ scores (meta-analysis: 
Doebler & Scheffler, 2016) suggests that atten-
tion may be an important component of intelli-
gence, for the reason that higher variability may 
reflect attentional lapses. The execution of the 
top-down attention (commonly called executive 
functioning; EF) is thought to reduce RT variabil-
ity and promote higher Working Memory 
Capacity (WMC; Bellgrove, Hester, & Garavan, 
2004; Miyake, Friedman, Rettinger, Shah, & 
Hegarty, 2001). Given these findings, it is per-
haps not surprising that structural models often 
find strong relationships between intelligence 
and WMC. Research examining the known neu-
rophysiological correlates of these constructs has 
highlighted the importance of the prefrontal cor-
tex (Kane & Engle, 2002, 2003) as a common 
neural substrate of both EF and Gf (a robust cor-
relate of g). These authors argue that fluid reason-
ing is achieved through the manipulation of 
information held in working memory and that 
WMC (and thus EF as well) acts like a “bottle-
neck” on reasoning and the expression of intelli-
gence (Kane & Engle, 2002). In the time since, 
process overlap theory (POT; Kovacs & Conway, 
2016) has been developed from this original 
WMC model. POT integrates experimental (e.g., 
RT variability, complexity effects) and psycho-
metric (e.g., IQ-WMC correlation) findings to 
propose frontal-parietal networks as the ultimate 
neural basis of the aforementioned bottleneck, 
consistent with the known neuroimaging corre-
lates of intelligence (Basten, Hilger, & Fiebach, 
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2015; Jung & Haier, 2007). While POT is a rela-
tively new theory, it integrates a number of find-
ings in the intelligence literature and, unlike 
many theories, proposes fairly concrete neuro-
logical correlates. While POT strongly empha-
sizes WMC, the latter’s relation to intelligence is 
perhaps best thought of as a necessary, but not 
sufficient explanation (Redick et al., 2013), with 
intelligence being a broader construct and WMC 
acting as a limiting factor.

�The Planning, Attention, 
Simultaneous, and Successive Model

The Planning, Attention, Simultaneous, and 
Successive (PASS) model of intelligence was 
developed by Naglieri and Das (1990) and was 
heavily influenced by the work of the esteemed 
neuropsychologist Alexander Luria. Like POT, 
PASS also emphasizes the role of EF but also con-
siders lower-level cognitive operations in its con-
ceptualization of intelligence. PASS theory 
outlines how any complex task involves three dif-
ferent functional units that are differentially 
involved depending on the task demands. The first 
unit corresponds to basic attention processes, the 
second unit corresponds to perceptual processing 
and multimodal sensory integration, and the third 
unit corresponds to the planning, maintenance, 
and correction of behavior. Das and Naglieri 
argue that these three units are involved in all 
tasks, whose effective coordination and integra-
tion with prior knowledge constitute intelligence. 
That is, intelligence is the capacity to (1) effec-
tively engage with the environment (2), process 
information from the environment (3), and plan/
execute effective behavior in the environment 
based on that information. The authors argue that 
the structured nature of current IQ tests do not 
adequately capture the first and third functional 
units (specifically basic attention and planning 
processes), thus limiting their capacity to make 
more sophisticated claims about an individual’s 
real-world achievement.

In support of the PASS model, studies have 
found that neuropsychological tests of executive 
functioning (corresponding to the third unit) are 
more predictive of daily functioning (Barkley & 

Fischer, 2011) and achievement (Clark, Prior, & 
Kinsella, 2002) than IQ tests alone. A handful of 
studies suggest that PASS-based measures are at 
least as sensitive to dysfunction in ADHD and 
academic achievement as traditional IQ tests 
(Naglieri & Bornstein, 2003; Naglieri, Goldstein, 
Delauder, & Schwebach, 2005; Naglieri, 
Goldstein, Iseman, & Schwebach, 2003), though 
some argue that PASS is merely a recapitulation 
of certain CHC factors (Keith, Kranzler, & 
Flanagan, 2001). While the evidence for PASS is 
somewhat limited, it highlights the synergistic 
importance of processes at all levels of the cogni-
tive hierarchy, from basic attention to complex 
planning and reasoning, when considering real-
world success.

�Detterman’s System Theory 
of Intelligence

Finally, Detterman’s (1987) system theory of 
intelligence is noteworthy here because in addi-
tion to trying to explain the nature of intelligence, 
it explicitly addresses intellectual disability. As 
outlined above, a major debate in intelligence 
research concerns whether intelligence is funda-
mentally unitary, as at least superficially implied 
by psychometric g, or whether various correlated 
but ultimately independent factors better repre-
sent the construct’s true structure. For individuals 
with cognitive disabilities, this could (hypotheti-
cally) translate into either (1) a deficit in overall 
ability (g) or, possibly, (2) a deficit in some but 
not all cognitive abilities. Detterman’s model 
provides an innovative, partial synthesis of these 
two ideas, in that it recognizes and explains g but 
in a way that also acknowledges the multiple fac-
tors that make up intelligence.

Specifically, Detterman takes a systems view, 
in arguing that intelligence arises through the 
interactions of “independent but interrelated 
parts” (Detterman, 1987). In explaining this con-
cept, he likens IQ scores (which aggregate per-
formance over multiple tests) to the ways in 
which one might rank universities. For example, 
one might evaluate various different aspects of a 
university, like the quality of the faculty and the 
facilities, the size of the endowment, its physical 
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location and layout, etc., and sum them together 
to derive an overall score. As just described, each 
aspect could in principle be fully independent, 
with the resulting score reflecting an aggregate 
index of the university’s overall quality. Note 
however, that in practice, such factors will likely 
not only be correlated, but any central factors, 
like the size of the endowment, will set a limit on 
the level of the others (Detterman, 1987). Thus, 
in the case of intelligence, various group factors 
(or still lower-level processes) might seem inde-
pendent in principle, yet if some are more central 
than others, they will place limits on the rest. 
Indeed, the working memory and process overlap 
theories of intelligence make exactly this case.

Detterman’s theory also has specific implica-
tions for intellectual disability. He argues that if 
intelligence reflects the operation of an intercon-
nected neural system, where some parts are more 
central than others, this implies that inefficiencies 
in central resources should cause scores among 
cognitive tests to be more interrelated at lower 
levels of ability (Detterman, 2002). Conversely, 
individuals with highly efficient central process-
ing resources will have fewer constraints on the 
development of their more specific capacities, and 
hence cognitive test scores should be less highly 
related at higher ability levels. Indeed, Detterman 
and Daniel (1989) found evidence for this exact 
phenomenon (also known as cognitive differenti-
ation), which has been replicated in numerous 
other studies (Blum & Holling, 2017; Tucker-
Drob, 2009). In the case of intellectual disability, 
Detterman predicted that it “would be shown to be 
a deficit in one or more basic abilities…with a 
moderate to high degree of centrality (Detterman, 
1987, p. 8).” Notably though, as discussed further 
on, he was also careful to note that this does not 
mean that all intellectual disabilities result from a 
single cause.

�Other Prominent Theories

Finally, there are two other prominent theories of 
intelligence that also deserve brief mention. Both 
Howard Gardner’s theory of multiple intelli-
gences and Robert Sternberg’s Triarchic Theory 
of Successful Intelligence are widely cited 

accounts, which remain prominent in some fields. 
Although these theories do not have strong sup-
port among most contemporary intelligence 
researchers (Warne, Astle, & Hill, 2018), their 
popularity in applied settings warrants a brief 
review.

�Gardner’s Theory of Multiple 
Intelligences

On the spectrum of intelligence theories which 
include few to many factors, multiple intelli-
gences (MI) is perhaps only less expansive than 
that of CHC.  Published in the book Frames of 
Mind (Gardner, 2006), MI outlines the view that 
there are eight conceptually distinct intelligences, 
which are all of equal importance, with no hierar-
chical structure. Gardner arrived at these ideas 
through extensive readings in a variety of differ-
ent fields, but did not generate any data to empiri-
cally test his theory. To date, experimental studies 
trying to validate MI theory have yielded limited 
empirical support (Almeida et al., 2010; Visser, 
Ashton, & Vernon, 2006).

Overall, while the notion that there can be mul-
tiple distinct forms of intelligence, which are not 
all cognitive in nature, is appealing in some 
respects, this idea is better supported by other 
theories, with a larger empirical base. For exam-
ple, Stankov (2017) has argued that emotional 
intelligence should be considered as a second-
order factor in CHC, thereby presenting a more 
empirically grounded alternative to Gardner’s 
interpersonal and intrapersonal intelligences. 
Likewise, Carroll convincingly argued that capac-
ities such as musical and mathematical ability, 
which are included in MI in various forms, actu-
ally express themselves via different contents at 
different levels of ability and also involve numer-
ous lower-order skills (e.g., visualization, induc-
tion, sequential reasoning, in the case of 
mathematical ability). Thus, Carroll argued that 
such constructs should be regarded as “inexact…
popular concepts[s]” rather than distinct, sci-
entifically supported cognitive capacities 
(Carroll, 1993, pp. 626–627). Finally, insofar 
as there is essentially overwhelming evidence 
for the psychometric reality of g (as distinct 

2  Theories of Intelligence



36

from its potential neural basis, which remains 
undetermined), the literature provides little support 
for the view that all aspects of intelligences are 
equally influential, with no hierarchical features.

�Sternberg’s Triarchic Theory 
of Successful Intelligence

Finally, Robert J. Sternberg’s prominent theory of 
successful intelligence also deserves a mention 
here. Overall, Sternberg emphasizes the ecologi-
cal aspects of intelligence, contrasting between 
intelligence as typically discussed, and successful 
intelligence, which is argued to be a more com-
prehensive construct that considers one’s socio-
cultural context and idiographic patterns of 
strengths, weaknesses, and experience (Sternberg, 
1999). His conceptualization of intelligence 
strongly emphasizes the interactive, transactional 
nature of an individual within their environment 
(i.e., the adaption, selection, and shaping of one’s 
environment), focusing on how factors like spe-
cific goals, prior experience, and contextual infor-
mation can change the expression of intelligence 
(Sternberg, 2012). As such, he argues that the 
measurement of intelligence should depend on 
the goals and the environmental context of the 
individual, as opposed to traditional IQ tests. 
Sternberg’s triarchic theory emphasizes the role 
of not only analytical skills (his term for what 
most IQ tests measure) but also creative (i.e., idea 
generation) and practical skills (i.e., implementa-
tion of ideas in real-world settings), so that an 
individual can be successful as they define it 
within their environment (Sternberg, 2012). 
Collectively, these skills are referred to as process 
skills, which together with meta-components 
(somewhat like executive functions as described 
by Suchy, 2015) and knowledge acquisition skills 
(i.e., learning) are argued to better capture the 
notion of success in a culturally neutral way. 
Overall, Sternberg’s notion of successful intelli-
gence integrates many often-disparate approaches 
to studying intelligence (i.e., factor-analytic, 
experimental, culturally relative, application-
based approaches, etc.), and has both some 
strengths and weaknesses.

Perhaps the most controversial aspect of the 
triarchic theory relates to the distinctiveness of 
analytical and practical intelligence and to the 
extent to which the latter is more predictive of 
real-world success. Psychometric evaluation of 
an intelligence test designed specifically to assess 
the triarchic theory found that a modified g model 
was the best fit for the data (Chooi, Long, & 
Thompson, 2014). A separate study highlighted 
that many of Sternberg’s findings could poten-
tially be explained by measurement error (Brody, 
2003). Additionally, Gottfredson (2003) criti-
cally reviewed the studies supporting the triar-
chic theory and concluded that practical 
intelligence and traditional IQ scores are statisti-
cally related (as opposed to distinct entities), 
especially when methodological aspects of the 
studies are considered (e.g., size and diversity of 
the samples). She further asserted that there is no 
evidence supporting the idea that a “practical g” 
exists as a separate factor apart from the conven-
tional g (an argument supplemented by a separate 
paper; McDaniel & Whetzel, 2005). In summary, 
although both the triarchic and MI theories have 
conceptual merits, relative to the other theories 
discussed in this chapter, they each have more 
limited empirical support.

�Overall Summary

The preceding sections aimed to give an over-
view of the historical development of theories of 
intelligence, with an eye toward articulating the 
key principles and debates and clarifying current 
thinking in the area. The overall consensus from 
psychometric approaches suggests that intelli-
gence consists in an individual’s general cogni-
tive capacity, which influences every mental task 
they might undertake, irrespective of its nature. 
Although lower-order abilities have a clear and 
legitimate place in the cognitive hierarchy—con-
sisting in more domain-general, content-related, 
and modality-specific skills (to borrow from 
CHC)—their unique significance in determining 
one’s overall intelligence remains a matter of 
debate. Unlike most contemporary models, 
which are largely hierarchical, sampling theory 
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(Bartholomew et al., 2009) and mutualism (van 
der Maas et al., 2006) both highlight how g can 
arise from a non-unitary basis, giving psycho-
metric credence to the idea that intelligence may 
result from a collection of interacting processes 
rather than a single fundamental one.

While psychometric approaches clarify the 
relationships between cognitive abilities in a 
detailed way, they are somewhat agnostic as to 
what g and various broad factors reflect in a 
more functional sense. This is where conceptual 
theories can help fill in the gap. This latter work 
has clarified that while lower-order processes 
play a role in intelligence, it is clearly best char-
acterized as a higher-order capacity and one that 
is particularly implicated in managing cognitive 
complexity (Gottfredson, 1997b). Thus, intelli-

gence appears to relate not only to the level of 
one or more discrete abilities but also to their 
efficient coordination in support of adaptive 
behavior. Finally, insofar as the most recent era 
of experimental and theoretical studies has sup-
ported the centrality of particular processes, it 
appears likely that capacities like WMC and 
other executive skills (Kovacs & Conway, 2016) 
or possibly speed of processing (Jensen, 1993; 
Schubert, Hagemann, & Frischkorn, 2017) may 
constrain overall intelligence. These constraints 
are apt to be strongest at lower levels of ability, 
whereas at higher ability levels, profiles should 
be more differentiated (Detterman, Petersen, & 
Frey, 2016). Tables 2.1 and 2.2 summarize the 
major features of the models discussed in this 
chapter.

Table 2.1  Overview of historical theories of intelligence

Theory Major theme Status of g
Emphasizes basic  
vs. complex processes Evidence base

Galton Reductionism Unitary Basic Psychometric, 
experimental

Spearman Discoverer of g Unitary Complex Psychometric, 
experimental

Binet Complex tasks, practical assessment Ambiguous Complex Psychometric
Thurstone Primary abilities Non-unitary Complex Psychometric
Thomson Sampling mental bonds Non-unitary Basic Simulation, 

psychometric
Cattell Fluid vs. crystallized intelligence Non-unitary Complex Psychometric
Carroll Hierarchical factor structure Hierarchical Complex Psychometric
Wechsler Performance-based, practical 

assessment
Non-unitary Complex Psychometric

Table 2.2  Overview of contemporary theories of intelligence

Theory Major theme Status of g

Emphasizes  
basic vs. complex 
processes Evidence base

Jensen Speed of processing Hierarchical Basic Psychometric, experimental
Gardner Multiple intelligences Non-unitary N/A Conceptual
Sternberg Triarchic/successful 

intelligence
De-emphasized Complex Conceptual, experimental

PASS Planning, attention, 
simultaneously, 
successive

Non-unitary Complex Conceptual, psychometric

Detterman Systems Non-unitary Basic Psychometric, 
experimental, simulation

Stankov Role of complexity and 
group factors

De-emphasized Complex Psychometric, experimental

(continued)
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Theory Major theme Status of g

Emphasizes  
basic vs. complex 
processes Evidence base

VPR Verbal, perceptual, 
spatial rotation

Hierarchical Complex Psychometric

CHC ≥10 broad factors De-emphasized Complex Psychometric

Bi-factor Simultaneously models g 
and group factors

Unitary Complex Psychometric

Mutualism Developmental, g as 
epiphenomenal

Non-unitary Basic Simulation, psychometric

Working 
memory/process 
overlap theory

Executive attention Hierarchical/
hybrid

Complex Psychometric, 
experimental, physiological

Table 2.2  (continued)

�Implications for Intellectual 
Disability

In applying these concepts to intellectual disabil-
ity (ID), perhaps the biggest implication is that 
intelligence, as it manifests empirically through g 
and in turn through IQ scores, is indeed a very 
general capacity (and note that IQ scores share 
>80% of their variance with g; Kranzler, Benson, 
& Floyd, 2015). This is all the more so in ID, 
given that narrow abilities are more strongly 
interrelated at lower levels of IQ.  In turn, since 
intellectual functioning is of course one of the 
two central features in the diagnosis of ID (the 
other being adaptive functioning; American 
Psychiatric Association, 2013), the effect and 
hence the goal of the diagnosis should be to iden-
tify individuals whose cognitive challenges span 
diverse content and situations. Thus, unlike other 
cognitive disorders which are characterized by 
some degree of specificity (e.g., specific-learning 
disorders, ADHD), a diagnosis of ID indicates 
more pervasive cognitive difficulties.

Notably, the ID diagnosis also helps to clarify 
what intelligence is not. Because ID also requires 
adaptive impairments, which further establish 
diagnostic severity, it highlights the fact that cog-
nitive functioning does not wholly determine 
one’s functional capabilities. This same distinc-
tion holds within much of intelligence research, 
where although earlier theories did emphasize the 

role of non-cognitive factors (e.g., motivation; 
Wechsler, 1943), current theories (and particu-
larly psychometric models) tend to restrict them-
selves to purer cognitive measures. Importantly, 
this is not to deny the role of such variables in 
adaptive behavior (e.g., Duckworth, Quinn, 
Lynam, Loeber, & Stouthamer-Loeber, 2011) but 
merely to distinguish between cognition and intel-
ligence strictly construed and the other traits and 
capacities that people bring to bear on life’s 
challenges.

A second implication relevant to the concept 
of ID is the fact that while psychometric theories 
seem to make implicit claims about neural orga-
nization (i.e., they address the relatedness of one 
cognitive function to another), ID is of course a 
behavioral diagnosis the reflects a diverse group 
of underlying causes (Lee & Harris, 2006, 
Chapter 5). Thus, while the ID diagnosis clearly 
depends upon cognitive capacities that are medi-
ated by the brain, it encompasses a wide group of 
ultimate neural etiologies. This means that 
although the diagnosis should correctly identify 
persons who face broad cognitive challenges, 
because it does emphasize intelligence, it will 
tend to obscure more subtle, individual needs. 
Given that many of the syndromes responsible 
for ID are now known to be associated with more 
specific cognitive profiles (Edgin, 2013; Grigsby, 
2016), this calls for bringing the neuropsycho-
logical approach into individual assessment of ID 
(see Chap. 27, this volume).
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On a final more conceptual note, as Detterman 
observed (Detterman, 1987), different potential 
causes for psychometric g have different implica-
tions for the ways in which ID might arise. In the 
case of hierarchical theories or those that empha-
size one or more central factors in intelligence 
(e.g., POT, system theory), one might expect the 
functioning of various core networks to strongly 
determine one’s level of intelligence. 
Physiologically, this is perhaps most akin to 
parieto-frontal integration theory (P-FIT; Jung & 
Haier, 2007) and similar accounts (Duncan, 2010) 
that emphasize the centrality of those specific 
regions to overall intelligence. In contrast, mutu-
alism makes a developmental case that initially 
independent factors become increasingly inte-
grated through time. Finally, as recently pointed 
out by Deary, Cox, and Ritchie (Deary et  al., 
2016; citing Burt, 1940), g might also arise though 
a shared adaptive property of the brain, as opposed 
to the features of one or more major structures. 
That is, while a single neuroanatomical network 
might account for the appearance of a unitary g, 
individual, lower-level modules (or even single 
neurons) could also give rise to g if they are all 
homogenous in terms of their lower-level attri-
butes (e.g., dendritic arborization, neural mem-
brane properties; Jensen, 1998a, p. 121). This too 
could give rise to a g factor but for a very different 
reason. Thus, although there is strong evidence 
for the effective unity of intelligence as it mani-
fests through testing, the ultimate causes of that 
cohesion could be numerous and multifaceted.
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