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Preface

The Trauma Hemostasis and Oxygenation Research (THOR) Network, formed in 
2010, is an international, multidisciplinary group of clinicians and investigators, 
with equal representation from both military and civilian experts. The overarching 
goal of the THOR Network is to improve outcomes for patients with traumatic 
injury through education, training, and research. While THOR has a focus on pre-
hospital resuscitation, it also includes in-hospital resuscitation all the way through 
to completion of acute care. Damage control resuscitation (DCR) is a term coined 
by John Holcomb in 2007 that describes a bundle of care intended to improve out-
comes for patients with severe traumatic bleeding. The individual principles of 
DCR have been practiced in one form or another for the last 100 years, with a hand-
ful of principles having fell out of favor for decades. Now, with a more modern 
understanding of pathophysiology, improvement in the safety of blood products, 
and reexamination of some previously well-established principles, there have been 
renewed interest and rapid adoption of DCR worldwide in well-resourced trauma 
centers.

This first edition of Damage Control Resuscitation is a significant accomplish-
ment for the THOR Network, as it falls in line with the goal of education regarding 
the principles of DCR. This textbook covers both DCR and remote DCR (RDCR), 
where RDCR is the application of these same DCR principles in the prehospital 
phase of care or in austere environments. This distinction is important as treatment 
capabilities and therapeutic options can be radically different in prehospital/austere 
settings compared to robust trauma centers. This textbook and its future editions 
will serve as one of the main methods of disseminating knowledge and educating 
health-care providers on current concepts for resuscitation of patients with severe 
traumatic bleeding.

This textbook encompasses multiple aspects of DCR, including past, present, 
and future iterations. Some chapters are dedicated to the history of when and why 
individual aspects of DCR were developed, while other chapters cover the epidemi-
ology of severe traumatic injuries. We also highlight the pathophysiology of “blood 
failure,” which is a new term THOR Network has been promoting to describe the 
adverse consequences of traumatic injury and reduced oxygen delivery on hemo-
static, endothelial, and immune function. Additional chapters are included that pro-
vide an in-depth detail on hemostatic resuscitation principles, which is a blood-based 
strategy for treating hemorrhagic shock, as well as chapters on dried plasma, dried 
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platelet surrogates, and recent developments in frozen red blood cells and oxygen 
carriers. We include how DCR principles are essential for emergency preparedness 
in scenarios where there are large numbers of patients with hemorrhagic lesions and 
how DCR principles might be appropriate in distinct populations, such as children, 
and for etiologies other than trauma. In addition, a handful of chapters are dedicated 
to patient management concepts, including respiratory and circulatory support, as 
well as learning health-care systems and how DCR can be applied to improve out-
comes for patients with traumatic injuries. Lastly, a unique aspect of this textbook 
is a focus on training and education methods for implementation of both DCR and 
remote DCR principles.

In summary, the THOR Network is very proud of this first edition of the Damage 
Control Resuscitation textbook. As a network, we are passionately dedicated to the 
care of patients with traumatic injury in both military and civilian populations. We 
hope that this textbook serves as an educational basis for practitioners who strive to 
improve outcomes for their patients, that it motivates investigators to continue to 
explore innovative methods of DCR, and that it provokes all trauma care specialists 
to aspire to be the best clinicians, educators, and investigators that they can be.

St. Louis, MO, USA Philip C. Spinella, MD, FCCM

Preface



ix

Contents

Part I  DCR Clinical Concepts

 1  The History of Fluid Resuscitation for Bleeding . . . . . . . . . . . . . . . . . .   3
Patrick Thompson and Geir Strandenes

 2  Epidemiology of Prehospital and Hospital Traumatic Deaths  
from Life- Threatening Hemorrhage . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31
Stacy Shackelford and Brian J. Eastridge

 3  Blood Failure: Pathophysiology and Diagnosis  . . . . . . . . . . . . . . . . . . .  41
Nathan J. White and Kevin R. Ward

 4  Prediction of Life-Threatening Hemorrhage . . . . . . . . . . . . . . . . . . . . .  67
Dominick A. Vitale, Marc Maegele, and Matthew A. Borgman

 5  Remote Damage Control Resuscitation  . . . . . . . . . . . . . . . . . . . . . . . . .  85
Jacob R. Peschman, Elon Glassberg, and Donald H. Jenkins

 6  Permissive Hypotension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Allan Pang, Ravi Chauhan, and Tom Woolley

 7  Hemostatic Resuscitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Andrew P. Cap, Jennifer M. Gurney, and Michael A. Meledeo

 8  Dried Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Mouayyad Zaza, Kyle J. Kalkwarf, and John B. Holcomb

 9  Platelets: Frozen and Freeze-Dried Current Products in  
Development and Regulatory Licensing Challenges . . . . . . . . . . . . . . . 163
Heather Pidcoke, Kathleen Kelly, G. Michael Fitzpatrick,  
and Larry J. Dumont

 10  Frozen Red Blood Cells  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Yuxuan Wang and Martin A. Schreiber

 11  Oxygen Carriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Anirban Sen Gupta and Allan Doctor

 12  Intravenous Haemostatic Adjuncts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Jez Fabes and Simon Stanworth



x

 13  Colloids and Crystalloids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Arvin C. Gee and Martin A. Schreiber

 14  Airway Management of Patients with Life Threatening  
Haemorrhage: Principles of Safe and Effective Care . . . . . . . . . . . . . . 259
Tony Hudson

 15  Damage Control Resuscitation for Severe Traumatic  
Brain Injury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Aaron M. Williams, Geoffrey Ling, and Hasan B. Alam

 16  Emergency Preparedness Aspects of DCR for Civilian  
Mass Casualty Scenarios  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
David W. Callaway, Reed Smith, and Sean M. Fox

 17  DCR for Non-trauma Patients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Ryan P. Dumas and Jeremy W. Cannon

Part II  Education and Training Methods for DCR

 18  Optimal Methods of Teaching and Training DCR/RDCR  . . . . . . . . . . 339
Ethan A. Miles and John C. Maitha

 19  Learning Healthcare System Principles to Facilitate  
Spread of DCR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
Kara McElvaine, Joe C. McCannon, and C. William Schwab

 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

Contents



xi

Contributors

Hasan B. Alam, MD Department of Surgery, University of Michigan, Ann Arbor, 
MI, USA

Matthew  A.  Borgman, MD, FCCM Department of Pediatrics, Brooke Army 
Medical Center, Fort Sam Houston, TX, USA

David W. Callaway, MD, MPA Department of Emergency Medicine, Operational 
and Disaster Medicine, Carolinas Medical Center, Atrium Health System, Charlotte, 
NC, USA

Jeremy  W.  Cannon, MD Department of Surgery, Division of Traumatology, 
Surgical Critical Care and Emergency Surgery, Perelman School of Medicine at the 
University of Pennsylvania, Philadelphia, PA, USA

Department of Surgery, Uniformed Services University of the Health Sciences, 
Bethesda, MD, USA

Andrew P. Cap, MS, MD, PhD Medical Corps, U.S. Army, U.S. Army Institute 
of Surgical Research, JBSA-FT Sam Houston, TX, USA

Ravi Chauhan, MBChB, FRCA, FCAI Department of Anaesthesia, University 
Hospital Birmingham, Birmingham, UK

Academic Department of Military Anaesthesia and Critical Care, Royal Centre for 
Defence Medicine, Birmingham, UK

Allan Doctor, MD Departments of Pediatrics, Biochemistry and Bioengineering, 
University of Maryland School of Medicine, Baltimore, MD, USA

Ryan P. Dumas, MD Division of General and Acute Care Surgery, UT Southwestern 
Medical Center, Dallas, TX, USA

Department of Surgery, Division of Traumatology, Surgical Critical Care and 
Emergency Surgery, Perelman School of Medicine at the University of Pennsylvania, 
Philadelphia, PA, USA

Larry  J.  Dumont, MBA, PhD The Geisel School of Medicine at Dartmouth, 
Lebanon, NH, USA

University of Colorado School of Medicine, Denver, CO, USA

Vitalant Research Institute (VRI), Denver, CO, USA



xii

Brian J. Eastridge, MD Department of Surgery, UTHealth Science Center San 
Antonio, San Antonio, TX, USA

Jez Fabes, MA BM BCh PhD FRCA Department of Anaesthesia, The Royal Free 
Hospital, London, UK

G.  Michael  Fitzpatrick, PhD Clinical Research and Development, Cellphire, 
Inc., Rockville, MD, USA

Sean M. Fox, MD, FACEP, FAAP Department of Emergency Medicine, Carolinas 
Medical Center, Atrium Health System, Charlotte, NC, USA

Arvin  C.  Gee, MD, PhD, FACS Division of Trauma, Critical Care, and Acute 
Care Surgery, Oregon Health and Science University, Portland, OR, USA

Elon Glassberg, MD MHA Medical Corps, Israel Defense Forces, Ramat Gan, Israel

Jennifer M. Gurney, MD Joint Trauma System, US Army Institute of Surgical 
Research, JBSA – FT. Sam Houston, TX, USA

John B. Holcomb, MD Department of Surgery, Division of Acute Care Surgery, 
University of Texas Health Science Center at Houston, Memorial Hermann Hospital, 
Houston, TX, USA

Tony  Hudson, MA, MBBS, FRCP, FRCEM Emergency Department, Royal 
Devon and Exeter NHS Foundation Trust Hospital, Devon, UK

Donald H. Jenkins, MD, FACS, DMCC Department of Surgery, UT Health San 
Antonio, San Antonio, TX, USA

Kyle J. Kalkwarf, MD Department of Surgery, Division of Acute Care Surgery, 
University of Texas Health Science Center at Houston, Memorial Hermann Hospital, 
Houston, TX, USA

Kathleen Kelly, PhD Vitalant Research Institute (VRI), Denver, CO, USA

Geoffrey  Ling, MD, PhD Department of Neurology, Johns Hopkins Hospital, 
Baltimore, MD, USA

Marc  Maegele, MD Department of Traumatology and Orthopedic Surgery, 
Institute for Research in Operative Medicine (IFOM), Cologne-Merheim Medical 
Center (CMMC), University Witten-Herdecke (UW/H), Cologne, Germany

John  C.  Maitha, APA-C 75th Ranger Regiment, US Army Special operations 
Command, Savannah, GA, USA

Joe C. McCannon, AB Billions Institute, Cambridge, MA, USA

Kara McElvaine, BA Oregon State University, Corvallis, OR, USA

Michael A. Meledeo, MS, PhD Coagulation and Blood Research, United States 
Army Institute of Surgical Research, JBSA-Fort Sam Houston, TX, USA

Contributors



xiii

Ethan  A.  Miles, MD 75th Ranger Regiment, US Army Special Operations 
Command, Columbus, GA, USA

Uniformed Services University of the Health Sciences, Bethesda, MD, USA

Allan  Pang, MBChB Department of Anaesthesia, James Cook University 
Hospital, Middlesbrough, UK

Academic Department of Military Anaesthesia and Critical Care, Royal Centre for 
Defence Medicine, Birmingham, UK

Jacob R. Peschman, MD Department of Surgery, Medical College of Wisconsin, 
Milwaukee, WI, USA

Heather  Pidcoke, MD, MSCI, PhD Department of Clinical Affairs, Cellphire, 
Inc., Rockville, MD, USA

Martin A. Schreiber, MD, FACS Division of Trauma, Critical Care, and Acute 
Care Surgery, Oregon Health and Science University, Portland, OR, USA

C. William Schwab, MD Traumatology, Surgical Critical Care and Emergency 
Surgery, Penn Presbyterian Medical Center, Philadelphia, PA, USA

Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Anirban Sen Gupta, PhD Department of Biomedical Engineering, Case Western 
Reserve University, Cleveland, OH, USA

Stacy Shackelford, MD Combat Support Agency, Defense Health Agency, San 
Antonio, TX, USA

Reed  Smith, MD Department of Emergency Medicine, George Washington 
University, Washington, DC, USA

Arlington County Fire Department, Arlington, VA, USA

Simon  Stanworth, DPhil, FRCP, FRCPathHaematology NHS Blood and 
Transplant, Oxford University Hospitals NHS Trust, University of Oxford, Oxford, UK

Geir  Strandenes, MD Department of Immunology and Transfusion Medicine, 
Haukeland University Hospital, Bergen, Norway

Patrick Thompson Paramedic, Cape Town, South Africa

Dominick  A.  Vitale, MD Trauma/Critical Care, Brooke Army Medical Center,  
Fort Sam Houston, TX, USA

Yuxuan Wang, MD Division of Trauma, Critical Care, and Acute Care Surgery, 
Oregon Health and Sciences University, Portland, OR, USA

Kevin  R.  Ward, MD Departments of Emergency Medicine and Biomedical 
Engineering, Michigan Center for Integrative Research in Critical Care, University 
of Michigan, Ann Arbor, MI, USA

Contributors



xiv

Nathan J. White, MD, MS Department of Emergency Medicine, University of 
Washington, Seattle, WA, USA

Aaron M. Williams, MD Department of Surgery, University of Michigan, Ann 
Arbor, MI, USA

Tom Woolley, MD, FRCA, MBBS Academic Department of Military Anaesthesia 
and Critical Care, Royal Centre for Defence Medicine, Birmingham, UK

Mouayyad Zaza, MD Department of Surgery, Division of Acute Care Surgery, 
University of Texas Health Science Center at Houston, Memorial Hermann Hospital, 
Houston, TX, USA

Contributors



Part I

DCR Clinical Concepts



3© Springer Nature Switzerland AG 2020
P. C. Spinella (ed.), Damage Control Resuscitation, 
https://doi.org/10.1007/978-3-030-20820-2_1

P. Thompson (*) 
Paramedic, Cape Town, South Africa 

G. Strandenes 
Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 
Bergen, Norway

1The History of Fluid Resuscitation 
for Bleeding

Patrick Thompson and Geir Strandenes

 Introduction

Damage control resuscitation (DCR) is a bundle of care first described by Holcomb 
et al. that is aimed at reducing death from hemorrhage for patients with severe trau-
matic bleeding. DCR principles include compressible hemorrhage control; hypo-
tensive resuscitation; rapid surgical control of bleeding; avoidance of the overuse of 
crystalloids and colloids, prevention or correction of acidosis, hypothermia, and 
hypocalcaemia; and hemostatic resuscitation (blood-based resuscitation) [1]. RDCR 
is defined as the prehospital application of DCR concepts. The term RDCR was first 
published by Gerhardt and has been disseminated by the THOR Network [2, 3].

The number and severity of wounded in the wars in Afghanistan and Iraq cou-
pled with the collection of clinical data inspired renewed thinking regarding the 
optimal methods to improve outcomes for casualties with traumatic hemorrhagic 
shock. Motivation for reassessment of the standard resuscitative approach for severe 
bleeding was a result of retrospective studies supporting the earlier use of blood 
products to include whole blood [4–7] and data by Eastridge that indicated the 
majority of casualties succumb to their wounds before reaching any medical facility 
with an advanced resuscitation capability, and the overwhelming majority of these 
patients (>90%) died from hemorrhage [8]. Advanced life-saving interventions per-
formed in this pre-medical treatment facility (MTF) phase of care can improve out-
comes by delivering a casualty to the surgeon with survivable injuries [9, 10].

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20820-2_1&domain=pdf
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The history of DCR and RDCR starts well before the inception of the terms. The 
concepts behind the principles of DCR and RDCR stretch far back into the past. 
This chapter provides an outline of this history, but it is limited to the fluid resuscita-
tion aspect of DCR/RDCR.

 1600s

The history of fluid resuscitation starts with the discovery of the circulatory system. 
Until this point in time there was no intervention to the circulatory system as no one 
had yet conceived of the blood to be in “circulation”; it was incorrectly assumed that 
the blood was produced in the liver and consumed in the peripheries.

In 1628, William Harvey, an English physician educated in Italy at the University 
of Padua as a student of Hieronymus Fabricius and later at the University of 
Cambridge, publishes Exercitatio Anatomica de Motu Cordis et Sanguinis in 
Animalibus translated as “An Anatomical Exercise on the Motion of the Heart and 
Blood in Living Beings” commonly called De Motu Cordis (On The Motion of 
Heart and Blood). This was the first complete, well-researched, description of the 
circulatory system including the pulmonary and the systemic circulation. The con-
cept was in contradiction to Galen and the accepted understanding of the age. 
Harvey calculated cardiac output and demonstrated that it was impossible that the 
liver could possibly produce the volume of blood required as had been previously 
thought. This bold insight set the stage for new ideas surrounding treatment for 
hemorrhage.

Harvey’s description of the circulatory system was rapidly accepted and it 
was not long until the idea of interventions via the circulatory system was envi-
sioned. The first intravenous injections (IV) were administered by Christopher 
Wren and Robert Boyle in 1656 in Oxford. An animal bladder was attached to a 
Goose quill and wine, ale and opiates were injected into dogs. A mixture of 
opium and alcohol produced the first IV anesthesia with full recovery; this con-
cept was not implemented into clinical practice and an early chance for pain-
free surgery was lost.

Richard Lower conducted research in the cardiopulmonary system and was the 
first to describe the difference in blood after exposure to air via the lungs. In 1666, 
Lower reported the first blood transfusion. More specifically, Lower revealed that 
transfusion could be used as a life-saving treatment for exsanguination. Lower bled 
a dog to the point of death and then saved the animal with a whole blood transfusion 
from another larger dog. In 1667, blood was first transfused from animal to man by 
Jean Baptiste Denis and Lower. It must be noted that the transfusion of blood from 
a lamb into man was not as a treatment for hemorrhage but instead for “madness.” 
After much medical and theological debate, the practice of transfusion was banned 
by the French and later the Pope. While transfusion fell into disrepute, the practice 
faded although the theory was passed on.

P. Thompson and G. Strandenes
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 1700s

Just as it was important to identify and describe the circulatory system, it was 
equally important to identify and describe the condition of hemorrhagic shock; this 
has proven particularly difficult due to the complexity of the pathology. In 1731, 
French surgeon Henri Francois Le Dran in a publication titled, Observation de 
Chirurgie, describes the collapse of vital functions which ended in death after 
being hit by a missile. He called it secousse which translates from the French to 
Shock [11].

 1800s

In 1817, Dr John Henry Leacock showed that blood was species-specific in cat and 
dog transfusions and argued for human-to-human transfusion.

The consequences of haemorrhages where the functions are not dangerously affected, do 
not of course, require transfusion, since other remedies will suffice. But when the danger is 
imminent, and the common means are ineffectual, as when a parturient women trembles on 
the brink of the grave from uterine haemorrhage, or when a soldier is at the point of death 
from loss of blood, what reason can be alleged for not having recourse to this last hope, and 
for not attempting the recruit the exhausted frame and turn the ebbing tide of life.

This quote carries a clear message of the urgency of resuscitation after severe 
hemorrhage.

In 1818, James Blundell performed the first human-to-human transfusion. 
Blundell had postulated that transfusion could be used to treat postpartum hemor-
rhage and researched transfusion with animals. In 1829, Blundell published the first 
successful resuscitation of a woman from postpartum hemorrhage in The Lancet. 
He performed ten transfusions in the next 10 years. Blundell also improved the 
technique and equipment for transfusion using a syringe to conduct vein-to-vein 
transfusions.

Blundell noted that vein-to-vein transfusions were impractical due to clotting, 
and removal of air was essential. Attaching the donor’s artery to the recipient’s vein 
had however proven successful in Lower’s experiments but required skill and time. 
To resolve this problem, the use of defibrillated blood was suggested by Prevost and 
Dumas in 1821, which allowed blood to clot, usually by stirring, and then the clots 
were removed and the remaining fluid now “defibrillated” could be used. Others 
sought an anticoagulant; J Neudorfer recommended sodium bicarbonate as an anti-
coagulant in 1860. Dr Braxton Hicks attempted a solution of sodium phosphate but 
was unsuccessful [12].

In 1849, C.H.F. Routh reviewed all the published blood transfusions to that date, 
in an article entitled “Remarks, statistical and general on transfusion of blood,” 
which was published in the Medical Times. He reported that he was only able to find 

1 The History of Fluid Resuscitation for Bleeding
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48 recorded cases of transfusion, of which 18 had a fatal outcome. This gave a mor-
tality of approximately 1 in 3, which was reported as being “rather less than that of 
hernia, or about the same as the average amputation” [12].

In 1865, Louis Pasteur recognized that bacterial and fungal contamination causes 
putrefaction, and in 1867, Joseph Lister discovered antiseptics to cure the dangers 
of infection. As a result of these discoveries, infection in transfusions moved toward 
a potential solution with the sterilization of instruments and antiseptic methods 
beginning to be introduced.

 Crystalloids and Colloids
Another important development in fluid resuscitation started in 1831. William 
Brooke O'Shaughnessy examined cholera patients in Edinburgh and postulated that 
the disease resulted in hypovolemia and electrolyte loss; O'Shaughnessy experi-
mented on dogs with Saline. In 1832, Thomas A Latta administered salt solution to 
cholera victims and published details in The Lancet: “The very remarkable effects 
of this remedy require to be witnessed to be believed. Shortly after the commence-
ment of the injection the pulse, which was not perceptible, gradually returns, … the 
whole countenance assumes a natural healthy appearance” [13].

In 1885, Sydney Ringer strived to achieve optimum electrolyte concentrations 
for organs making Ringer’s solution. In 1896, Ernest Starling described colloid 
osmotic pressure (Starling’s principle) and the importance of colloids plasma pro-
teins; this paved the way for the development of colloids.

 American Civil War 1861–1865

In 1850, Samuel D. Gross makes one of the first descriptions of wound shock: “the 
rude unhinging of the machinery of life” [14, 15].

Two whole blood transfusion attempts were made on active duty wounded sol-
diers by Union surgeons and reported in the War Department’s Medical and Surgical 
History of the War of the Rebellion. Surgeon E. Bentley reported a successful trans-
fusion given to Private G.  P. Cross at Grosvenor Branch Hospital, Arlington, 
Virginia, on August 15, 1864, and another by Assistant Surgeon B.  E. Fryer at 
Brown Hospital in Louisville, Kentucky, operated on a Private J. Mott in August 
1864 [16, 17].

 Franco-Prussian War 1870–1871

 Battlefield Transfusions

In 1865, Dr J. Roussel of Geneva first conducted a whole blood transfusion using 
direct arm-to-arm transfusion with a device he had developed called the “transfu-
seur,” for treatment of a patient suffering from hemorrhage. The apparatus he used 
was described in the Gazette des hopitaux in 1867. Roussel stated later that it was 

P. Thompson and G. Strandenes
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unfortunate that the device and procedure was not more widely utilized during the 
Franco-Prussian war, although it was used.

In 1867, Roussel claimed 16 successful whole blood transfusions out of 35 per-
formed for the treatment of a variety of conditions. In 1882, in Paris, he reported 
on a total of 60 whole blood transfusions performed since 1865  in Switzerland, 
Austria, Russia, Belgium, England, and France. Roussel’s transfuseur apparatus 
was subsequently officially adopted for use by the French Army and apparently 
used in times of war.

Developments were made on the equipment needed to conduct whole blood 
transfusions. Blundell used syringes made for him specially for the vein-to-vein 
transfusion process; he later developed two new devices: the “impellor” and later 
the “gravitator.” Many other devices were invented and attempted. In 1873, Dr. 
J.H. Aveling used a device he invented for vein-to-vein whole blood transfusion 
which consisted of two cannulas joined by a bulb pump and one-way valve to ensure 
the correct direction of flow; he described the device as small enough to be carried 
around in a pocket. In 1872, Aveling attended to a lady, aged 21 years, “in extremis” 
from postpartum hemorrhage. She received 60 drachms of blood from her coach-
man and apparently soon recovered, certainly enough to reportedly be able to 
remark that she was dying! Dr. Aveling added in his report that: “the mental improve-
ment of the patient was not as marked and rapid as I anticipated, but this was per-
haps due to the quantity of brandy she had taken” [12].

In the United States, between 1873 and 1880, an attempt at a blood substitute 
was attempted with the milk of cows and goats. T.G. Thomas and J. S. Prout sup-
ported this treatment due to the problems with blood transfusion because of its 
“tendency to coagulation.” By 1878, J.H. Britton, writing in the New York Medical 
Record, predicted that transfusion using milk would entirely supersede transfusions 
of blood [12].

 The Spanish-American War 1898

The first descriptions of wound shock which was thought of as something separate 
from the injury came from the American Civil War, and it was during the Spanish- 
American War of 1898 that wound shock was first associated with sepsis; however, 
wound shock was seen as distinctive from hemorrhage [18].

 The Anglo-Boer War 1899–1902

In 1900, during the Anglo-Boer War, British surgeons use strychnine and saline to 
treat shock. Porter describes treatment, “I wanted to pump in strychnine as before, 
but Cheyne was playing about with 3 or 4 drop doses. The man was very bad and 
looked like dying so I got 10 drops and gave it. Cheyne was astonished and said it 
was a very big dose, but I said the patient wanted it. Then Cheyne thought he would 
try transfusion, and put one and half pints of salt water into a vein” [19].

1 The History of Fluid Resuscitation for Bleeding
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In 1900, the US Surgeon General recommended that patients in a state of shock 
were given normal salt solution rectally and subcutaneously and 1/60 grain of 
strychnine, covered with blankets and kept warm [20].

 1900s

 Physiology: Blood Groups
In 1900, Karl Landsteiner, while experimenting with the mixing of whole blood 
from different people, found some blood agglutinates and some lyse, and some are 
unaffected. In 1901, he found that this effect was due to the red blood cells coming 
into contact with incompatible blood serum antibodies. He labeled the blood groups 
according to agglutination A, B, and C, which was later changed to O. Landsteiner 
also found out that whole blood transfusion between persons with the same blood 
group did not lead to the destruction of blood cells, whereas this occurred between 
persons of different blood groups [21]. A fourth main blood type, AB, was found by 
A. Decastrello and A. Sturli.

 Transfusion: Avoiding Transfusion Reactions
In 1907, Ludvig Hektoen recommends blood cross matching, the mixing of donor 
and recipient blood to determine compatibility. Ruben Ottenberg performs first 
“cross matched” and typed whole blood transfusion, and Ruben also recognized 
blood type O as the universal donor.

In 1908, French surgeon Alexis Carrel devised a way to prevent blood clotting. 
His method involved joining an artery in the donor directly to a vein in the recipient 
with surgical sutures; this was a highly skilled and complex process available only 
to skilled surgeons.

In 1913, Dr. Edward Lindeman revolutionized blood transfusion by using 
syringes and cannulas to transfuse whole blood instead of directly connecting the 
donors’ and recipients’ blood vessels at the Bellevue Hospital in New York [22]. In 
1914, the first transfusion using citrated whole blood was performed by Professor 
L. Agote. In 1915, Richard Lewisohn uses sodium citrate as an anticoagulant to 
transform the transfusion procedure from direct to indirect with the capability of 
storage. Richard Weil demonstrates the feasibility of refrigerated storage of such 
anticoagulated blood. In 1916, Peyton Rous and J.R. Turner Jr. found that adding 
dextrose to the citrate extended the storage time to 4 weeks.

In 1916, W.  Bayliss a professor of general physiology at University College 
London contributed a lecture to the Physiological Society; his abstract was pub-
lished in the Journal of Physiology The abstract detailed animal models after bleed-
ing that received salt solutions had only a transitory recovery; however, the effect 
was sustained when 5% gelatin of gum acacia was added. Interestingly, gum acacia 
contains a moderate amount of calcium and magnesium salts, which are cofactors in 
hemostasis [23].
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 WWI 1914–1918

In 1915, Oswald Hope Robertson travels to Europe as a medical student and per-
forms first whole blood transfusion of the war at a volunteer hospital in Paris. After 
his graduation later that year, he works with P. Rous at the Rockefeller Institute. In 
1917, Robertson joins the Harvard Medical Unit with Roger Lee at the Base Hospital 
No. 5 from Boston. Lee had sent Robertson to work with Rous at the Rockefeller 
Institute. Robertson is tasked with investigation of the treatment of shock; he initi-
ated direct transfusions and wrote to Rous with an idea of larger-scale collection 
and storage. In 1917, he tested donors and used only type “O” universal donors as 
suggested by Lee; the donors were tested for disease. He collected blood via veni-
puncture into glass bottles with anticoagulant. He cooled the blood in ice chests and 
stored it for up to 28 days. Robertson moved the blood to where it would be needed. 
He personally administered blood to the wounded under fire and was awarded the 
Distinguished Service Order for bravery. Robertson also taught the techniques to 
other instructors responsible for transfusion and resuscitation training. In 1918, 
O.H. Robertson published his findings in the British Medical Journal [24].

In 1915–1916, Captain Ernest Cowell and Captain John Fraser began measuring 
soldiers’ blood pressures and recorded that in wounded men with classic symptoms 
of shock, the average SBP was 90mmHg, and they labeled this primary shock. In the 
group which showed no signs of shock initially but later the BP dropped to 70–90 
mmHg, this was called secondary shock. If the BP continued to decline and if it fell 
to 50–60, or below, the men died.

In 1916, Captain L. Bruce Robertson from Toronto, who had recently trained 
with Lindemann in New York, used direct whole blood transfusions with no blood 
typing or cross matching in the field. He published in the British Medical Journal, 
The transfusion of whole blood: “a suggestion for its more frequent employment in 
war surgery,” where he states: “the additional blood often carries the patients over a 
critical period and assists his forces to rally to withstand further surgical proce-
dures.” Robertson publishes his experiences of resuscitation transfusions in 1917 in 
the British Medical Journal, and in 1918, in the Annals of Surgery, he describes 36 
cases of transfusion including 3 fatal hemolytic transfusion reactions [24].

In 1917, after the Medical Research Council Shock Committee meeting, Bayliss 
recommends 5% gum acacia in a 3% sodium bicarbonate solution; this proved dif-
ficult to manufacture, and after further testing, it was agreed to place the 6% gum 
acacia in a 0.9% saline solution. Reports were circulated that gum acacia and 
Ringer’s solution were capable of saving lives on the front. In 1918, Colonel Elliott 
and Captain Walker reported that gum-saline succeeded if infused on arrival at the 
Casualty Clearing Station, but if treatment was delayed for more than 8 hours, a 
blood transfusion was better.

In 1917, the Investigation Committee on Surgical Shock and Allied Conditions 
of the Medical Research Council was formed with Starling as first chair then 
Bayliss. The committee was established to examine treatment of shock. The 

1 The History of Fluid Resuscitation for Bleeding



10

committee requests an update on the use of whole blood from Captain Oswald Hope 
Robertson. Both cold-stored and warm whole blood were transfused to casualties in 
WWI.

In 1917, Bayliss travels to France and meets Captain Fraser and Captain Walter 
B. Cannon of the USAMC and the Higginson Professor of Physiology at the Harvard 
Medical School. Cannon conducted autopsies to test the theory that wound shock 
was caused by blood pooling in the great veins of the abdomen and found this to be 
untrue. He began investigations with a Van Slyke blood gas analyzer on blood 
plasma and was able to show a correlation between wound shock BP and acidosis; 
the lower the BP, the greater the acidity of the plasma.

On August 17, 1917, at the first MRC Special Investigation Committee on 
Surgical Shock and Allied Conditions meeting, they publish the first definition of 
wound shock “a condition of circulatory failure due to deficient entry of blood into 
the heart.”

The Medical Research Council Shock Committee urgently tried to discover the 
cause of shock and potential treatment. Cannon is convinced that high acid levels in 
the blood are causing the wound shock and an alkali treatment is needed. H.H Dale 
disagrees and suggests a more complex pathology: “namely, that substances with 
similar activity (to histamine) absorbed from wounds involving injury to tissues, in 
conjunction with hemorrhage, exposure to cold, and so forth, could well determine 
the onset of shock.” Dale argues that the treatment of shock should include whole 
blood transfusion [25].

In 1918, Cannon is named the Director of Surgical Research at the Medical 
Laboratory at Dijon; there he trains resuscitation teams in the physiology of shock 
and resuscitation of shock with a strong emphasis on hypothermia management, 
which he learned from working on the front line with Cowell and Fraser. Cannon 
requests and receives the assistance of O.H. Robertson in his research. In 1918, the 
US Army Medical Department adopts whole blood transfusion with citrated blood 
to combat shock for American Expeditionary Forces.

Geoffrey Keynes developed “field durable” equipment that enabled whole blood 
transfusions to be carried out in the field outside of established medical facilities. In 
the field, the only way to transfuse casualties was from another soldier to the casu-
alty. Keynes’ equipment enabled regulating the flow of blood between the donor 
and the patient.

 Post-WW1

In November of 1918, the Royal Army Medical Core convened a conference in 
Boulogne of surgeons and pathologists to evaluate treatments for shock and hem-
orrhage. The final conclusion was that whole blood was probably superior, but 
colloids warranted further investigation, and reactions to gum acacia were reported.

After the war, the MRC Shock Committee also independently reviews the evi-
dence from the war and declares “that in all cases of hemorrhage with shock, trans-
fusion of unaltered whole blood or citrated blood is the best treatment yet available” 
[26, 27]
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Major W. Richard Ohler states after the war, “hemorrhage is the important single 
factor in shock and the amount of hemorrhage defines the amount of shock, when, 
therefore, the need is for oxygen carrying corpuses, no other intravenous solution 
will serve the purpose.”

In 1921, Percy Lane Oliver, Secretary of the Camberwell Division of the British 
Red Cross, establishes the first emergency donor panel with some 20 strong donors 
to donate blood at short notice in London hospitals. Oliver calls it British Red Cross 
Blood Transfusion Service. In 1922, it is used 13 times; word spread and by 1925, 
the service is used 428 times. Sir Geoffrey Keynes is appointed as medical adviser 
to the organization. Similar systems are adopted in other countries; France, Germany, 
Austria, Belgium, Australia, and Japan being among the first. At the first Congress 
of the International Society of Blood Transfusion held in Rome in 1935, “It is to the 
Red Cross in London that the honor is due to having been the first, in 1921, to solve 
the problem of blood donation by organizing a transfusion service available at all 
hours, and able to send to any place a donor of guaranteed health, whose blood has 
been duly verified.” In 1937, Bernard Fantus of the Cook County Hospital in 
Chicago establishes the first US civilian blood bank, in which whole blood was col-
lected in bottles and stored in a refrigerator for up to 10 days [28].

In 1932, Alexis F. Hartmann and M.J.C. Senn suggest a 1/6 molar sodium-lactate 
solution to replace the sodium chloride in Ringer’s solution; they showed that the 
lactate was metabolized in the liver, making sodium available to combine with 
available anions. The use of the solution meant the amount of chloride to be reduced, 
limiting hyperchloremic acidosis [29].

In 1929, Professor Vladimir Shamov of Kharkiv, USSR, reports experimental 
use of cadaveric blood transfusion and absence of toxicity. In 1930, Russian surgeon 
Sergei Yudin familiar with the work of Shamov transfuses his first patient, and he 
states, “My first experience was with the case of a young engineer who slashed both 
of his wrists in a suicidal attempt. He was brought to our hospital pulseless and with 
slow, jerky respiration. Transfusion with 420 cc. of blood taken from the cadaver of 
a man, aged 60, who had been killed in an automobile accident just six hours before, 
promptly revived him” [30]. Later that year, Yudin reports at the fourth Congress of 
Ukrainian Surgeons at Kharkiv in September on his first seven transfusions from 
cadavers. By 1932, Yudin reports 100 transfusions with blood kept for 3 weeks from 
cadavers, and in 1937, Yudin reports over 1,000 uses of cadaveric blood in The 
Lancet [28].

 Spanish Civil War 1936–1939

By 1936, Frederic Duran-Jorda had created a transfusion service in Barcelona to 
meet the growing demand for blood transfusions; later that year, Norman Bethune 
visited the facility and then sets up a similar service based out of Madrid called the 
Servicio canadiense de transfusión de sangre. In 1914, Bethune suspended his med-
ical studies and joined the Canadian Army’s No. 2 Field Ambulance to serve as a 
stretcher-bearer in France. He was wounded by shrapnel, and after recovering, he 
returned to Toronto to complete his medical degree. Based on his experience in 
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WWI, he organized a mobile transfusion service stating: “Why bring the bleeding 
men back to the hospital when the blood should travel forward to them?” During the 
Spanish Civil War, 28,900 donors donated 9000 liters of whole blood. Donors are 
X-rayed for TB and their blood is tested for syphilis and malaria. Six donations of 
whole blood were mixed and filtered and then placed in 300 ml glass jars and stored 
at 2 °C for up to 15 days. With the advent of blood fractionation, plasma could be 
separated from whole blood and was used for the first time in this war to treat the 
battle wounded. In 1938, Duran-Jorda fleed to the United Kingdom and worked 
with Dr. Janet Vaughan at the Royal Postgraduate Medical School at Hammersmith 
Hospital to create a system of national blood banks in London.

 Pre-WWII

In 1934, Alfred Blalock proposed four categories of shock: hypovolemic, vasogenic 
(septic), cardiogenic, and neurogenic. Hypovolemic shock, the most common type, 
results from loss of circulating blood volume due to loss of whole blood (hemor-
rhagic shock), plasma, interstitial fluid, or a combination [31].

In 1938, the Medical Research Council establishes four blood depots in London. 
Later, in the autumn, the War Office also created the British Army Blood Transfusion 
Service and the initial Army Blood Service Depot (ABSD) in Bristol under the 
control of Dr Lionel Whitby. The service also sets up a plasma-drying facility that 
produced 1200–1400 units a week.

 WWII 1939–1945

 Transfusion: UK Army Blood Transfusion Service

In 1938, Brigadier Lionel Whitby was appointed Director of an autonomous UK 
Army Blood Transfusion Service (ABTS). Unlike WWI where the blood was obtained 
from fellow soldiers, the plan changed to central civilian collection and then to a dis-
tribution network. The service was organized on three levels: (1) the Army Blood 
Service Depot (ABSD), producing all wet and dried products, crystalloids, grouping 
sera, blood collecting, and administering equipment and training; (2) Base Transfusion 
Units, which were chiefly concerned with distribution in each theater of operations; 
and (3) Field Transfusion Units, which worked in forward areas.

 Plasma for Britain

In 1940, Dr Charles R. Drew, surgeon and researcher who had developed techniques 
for preserving liquid plasma, supervised the “Blood for Britain” program which 
delivered blood to treat those wounded during the Blitz. To encourage donation, 
Drew first used vehicles with refrigerators serving as donation centers.
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 Research

In 1940, on May 31, US Surgeon General Magee appoints Professor Walter 
B. Cannon of Harvard University as Chairman of the US National Research Council 
Committee on Shock and Transfusion. On November 3, 1941, this committee 
agreed “that it had been the consensus of the group that [US] Armed Forces should 
use whole blood in the treatment of shock wherever possible”; the results of that 
discussion were not made official until 2 years later, on November 17, 1943 [32].

Cannon also introduced the term “homeostasis” to describe the equilibrium 
maintained in the internal environment and is credited for the first proposal to cause 
deliberate hypotension in order to reduce internal hemorrhage until surgical control 
could be established [33].

 Plasma: Fractionation

In 1940, Edwin Cohn, a professor of biological chemistry at Harvard Medical 
School, develops cold ethanol fractionation, the process of breaking down plasma 
into components and products. Albumin, gamma globulin, and fibrinogen are iso-
lated and become available for clinical use. John Elliott develops the first blood 
container, a vacuum bottle extensively used by the Red Cross [34]. In 1941, Isodor 
Ravdin treats victims of the Pearl Harbor attack with Cohn’s albumin for blood loss 
and shock [34].

 Transfusion: The United States’ Need for Whole Blood

In 1941, as US troops arrive in the United Kingdom, the United States reports that 
they are not able or prepared to supply US donated blood to Europe or Africa.

On June 28, 1941, the first Conference on Shock was conducted by the 
Subcommittee on Shock, 6 months before the United States entered the war. 
Treatment recommendations included control of hemorrhage with early application 
of a tourniquet, the application of heat to reverse hypothermia and analgesia. 
Regarding fluid therapy, when shock is imminent or present, blood, plasma, or albu-
min should be injected as promptly as possible. In massive hemorrhage, whole 
blood is preferable to blood substitutes.

In 1943, pressure grows on the United States to supply whole blood during 
D-Day Planning: “The Allied planning group were shocked to be told that the U.S. 
would not sanction the transport of any whole blood from the United States to Great 
Britain; logistical problems and the efficacy of human plasma were cited as the 
reasons for the U.S. obduracy” [35].

In March 1943, US Army Colonel Edward D. Churchill arrives for duty as Chief 
Surgical Consultant to the North African and Mediterranean operational theater. 
Churchill conducts a study on the resuscitation of shock and releases a report that 
states plasma is a first aid measure in support of whole blood which is the first-line 
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treatment for resuscitation of battlefield casualties. Whole blood is the only agent 
that prepares casualties for surgery and decreases mortality by reducing infection. 
Inadequate resuscitation with whole blood resulted in organ damage. There was a 
widespread misconception by US military medical leadership that plasma was as 
effective as whole blood [36]. Churchill, incensed by the US Surgeon Generals’ 
position on blood products, briefed a New York Times reporter with the aim of pub-
licizing the need for military blood banks [37]. In 1943, Colonel Elliott C. Cutler’s 
memorandum to Brigadier General Paul R.  Hawley, Chief Surgeon, European 
Theatre of Operations, stated that “Brigadier Whitby tells me that the use of wet 
plasma has practically been given up, and transfusion (of whole blood) used in its 
stead in the British Army” [38].

Colonel Frank S Gillespie (Liaison Officer for the United Kingdom in Washington 
DC)

I have often wondered at the physiological differences between the British and American 
soldier. The former, when badly shocked, needs plenty of whole blood, but the American 
soldier, until recently, has got by with plasma. However, I seemed to observe a change of 
heart when I was in Normandy recently and found American surgical units borrowing 200–
300 pints of blood daily from British Transfusion Units, and I'm sure they were temporarily 
and perhaps even permanently benefited by having some good British blood in their veins.

In December 1943, the second Conference on Shock was held. Dr E. I. Evans 
comments on the therapeutic effects of whole blood and blood substitutes in shock, 
“One of the chief problems is concerned with supplying whole blood in forward 
areas. Somewhere along the planning line somebody seems to have forgotten that 
plasma lacks oxygen-carrying power.” Evans stated that this led to the wounded not 
surviving surgery.

 Crystalloids: WWII

In WWII, crystalloids were mainly used for dehydration and electrolyte imbalance 
or if plasma or whole blood were not available.

 Colloids: WWII

In WWI, use of gum acacia had resulted in toxic reactions and edema. During 
WWII, other colloids were researched for effectiveness, namely, gelatin, pectin, fish 
gelatin, amino acids, and oxidized cotton.

In the 1940s, dextran was being investigated by the United Kingdom, the United 
States, and Sweden. In 1942, A. Grönwall and Swedish biochemist B.  Ingelman 
suggested using hydrolyzed dextran as a plasma substitute. A Swedish pharmaceuti-
cal company adopted the project in 1943. In 1944, under the direction of surgeon 
G. Bohmansson extensive clinical trials were initiated at the Regional Hospital in 
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Örebro. By 1947, about 4 years after the innovation, a 6% solution of dextran frac-
tion had been approved for clinical use in Sweden and, shortly thereafter, in the 
United Kingdom.

 Transfusion Transmissible Disease

In 1942, batches of yellow fever vaccine and plasma contaminated with hepatitis 
virus were linked to cases of viral hepatitis. Between 1942 and 1945, around 
200,000 cases were reported. This identified the disease as a matter of prime impor-
tance to the Armed Forces during World War II and it became evident during these 
conflicts that effective methods of screening, treating, and preventing hepatitis in 
soldiers were urgently required.

 Post-WWII

 Review

In 1945, the Conference on Shock and Transfusion drew the following conclusions: 
Plasma was best used far forward. Whole blood was essential and rendered the 
casualty fit for surgery. Large wounds required large transfusions. Speed in admin-
istration was essential. Reduced volume of resuscitation was advocated for the cen-
tral nervous system and chest injuries.

In 1949, W. Rankin, who had served in the US Army in both world wars, reviewed 
his experience as an Army General and Director of the Surgery Division of the US 
Army in World War II and cited four factors as being most important in the reduction 
of mortality and morbidity rates for battle injuries in World War II: (1) the availability 
of excellently trained young surgeons who could perform surgery in combat areas; (2) 
improved methods of resuscitation, including the ready availability of whole blood 
and plasma; (3) the availability of antibiotics and chemotherapeutic agents used as 
adjuncts to surgery; and (4) improved evacuation along the chain of care.

As a result of those improvements in care, the percentage of combat casualties 
dying of wounds was reduced to 3.3% from the World War I percentage of 8.1%. 
Furthermore, the mortality rates of patients with life-threatening wounds of the 
head, chest, and abdomen were reduced to approximately one-third of the rates in 
World War I [39].

 Korean War 1950–1953

In 1950, 5 years after WWII, the US military blood program had been discontinued. 
There had however been a review regarding this state of affairs, and a new policy 
had been drawn up but not implemented. On July 3, 1950, within days of the onset 
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of hostilities, responsibility for collecting and distributing blood in the Far East 
Command was assigned to the 406th Medical General Laboratory in Tokyo, and on 
July 7, blood was delivered to the first hospital unit arriving in Korea. Military per-
sonnel in Japan and many Japanese civilians donated blood. Only low-titer (Anti A 
and B <256) group “O” whole blood was collected to reduce the logistical burden 
of typing and cross matching recipients. 39,000 units were collected; however, this 
was insufficient to meet the needs of the casualties.

As in WWII, the American Red Cross was asked to become the collecting agency 
for the US military again. The agency had a blood collecting program in operation, 
to supply blood to civilian hospitals in the United States and could build upon it; this 
too proved insufficient.

The Armed Forces Blood Program and a National Blood Program were set up 
and remained in operation until the end of active fighting in Korea. Some 400,000 
units of whole blood were transfused by the end of the war.

 Massive Transfusion of Group “O” Problems

Massive transfusions of low-titer group O whole blood to other blood groups 
resulted in the virtual replacement of the recipient’s cells with cells of the O group. 
The recipient’s plasma sometimes contained antibodies against red cells of their 
own hereditary blood group. Gradual hemolysis of native red cells by transfused 
antibodies was observed. The presence of anti-A and B antibodies from type O 
whole blood, however, sometimes made it impossible to crossmatch the patient. 
Severe reactions sometimes occurred when type-specific whole blood was given 
after large transfusions of low-titer O whole blood. In the light of this new observa-
tion, it was recommended that after transfusions of low-titer group O whole blood, 
no change should be made to blood of another group until at least 2 weeks had 
elapsed from the last group O whole blood transfusion [40].

 Plastic Collection Bags

In 1950, Carl Walter and W.P. Murphy Jr. introduced plastic bags for whole blood 
collection; this important development made transport of blood easier and more 
efficient during war time.

 Need for Whole Blood

In 1951, at a meeting of the Subcommittee on Shock, Committee on Surgery, NRC 
(National Research Council), Dr Walter L.  Bloom stated: “It is interesting, and 
somewhat depressing, to note in various reports of conferences concerning the 
blood and blood-derivatives program in the Korean War how quickly the World War 
II experience seemed to have been forgotten and how the tendency was again 
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evident to concentrate on agents other than whole blood in the management of com-
bat and other casualties.” He went to add “that the entire philosophy of plasma 
expanders was questionable. The limitations of these substitutes should be defined, 
and they should be considered as suitable for emergency use only. The first need of 
combat casualties was for whole blood.” A review of use showed that an average of 
two-and-a-half pints were used for every casualty wounded in action [41].

 Transfusion Risks

In 1952, only 4 major hemolytic reactions resulting in acute renal failure were 
reported out of the 50,000 whole blood transfusions administered [42].

 Plasma Problems

The Army, in need of a fluid therapy agent to stabilize casualties during evacuation 
to a medical treatment facility, faced a difficult decision because using plasma 
risked hepatitis. The risk had increased from WWII. In 1951, the incidence of hepa-
titis after plasma transfusion was 21%. Sterilization techniques had proved unsuc-
cessful. On August 20, 1953, Circular No. 73, Department of the Army directed that 
because of the risk of serum hepatitis, the higher cost, and the need to use it for the 
production of specific globulins, plasma would not be used “to support blood vol-
ume” unless dextran was not available [40].

 Serum Albumin

In 1951, with the increased need for volume expanders, 50,000 units of outdated 
serum albumin were obtained from the Navy and transferred to the San Francisco 
medical depot for shipment to Korea. Technically, outdated serum albumin proved 
satisfactory. One of its advantages was that the small size of the units made it pos-
sible for corpsmen to load their pockets with it. Also, serum albumin did not freeze, 
as reconstituted plasma did. Albumin heated for 10 hours at 60 °C carried no risk of 
hepatitis. Albumin could be made from contaminated plasma, which meant that a 
large quantity could be obtained from the available plasma no longer considered fit 
for use because of the risk of transmission of hepatitis [40].

 Dextran

By 1950, the Swedish experience with dextran had reached 200,000 cases. In the 
10 years of its use, there had been no postmortem evidence of tissue damage, and 
reactions were fewer than with the use of either blood or plasma. A compilation 
of articles from the literature by Pharmacia showed an impressive use of dextran 
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by reliable investigators in Denmark, Finland, Holland, as well as in Sweden. 
There was some evidence obtained from use of Swedish and British dextran that 
showed local and systemic allergic reactions; this was thought to be worse with 
the higher molecular weight dextran and the US-produced dextran of lower 
molecular weights. On October 1, 1952 at the meeting of Subcommittee on Shock, 
it was reported that 125 units of dextran had been used in Korea, with good clini-
cal results and no significant reactions. A 6-month study had been started in Air 
Force installations in the United States. Dextran was used in increasing amounts 
until the end of the Korean War. In September 1953, a hitherto undescribed con-
sequence of dextran injections was reported, a prolongation of the bleeding time, 
and the change in the bleeding time occurred within 3–9 hours after dextran had 
been given [40].

 Vietnam War 1955–1975

In 1965, no formal military blood program existed in Vietnam. Transfusion require-
ments were met with shipments of 10 units of group O blood from Japan approxi-
mately every 10 days. Blood supply was provided by the 406th Mobile Medical 
Laboratory, Camp Zama, Japan. The decision was made to ship only low-titer group 
O whole blood. Later Group A was added and by 1966 all types of whole blood 
were utilized to meet demand. In Vietnam only low-titer group O whole blood was 
used far forward. From 1967 to 1969, around 230,323 units of whole blood were 
transfused; 24 hemolytic transfusions reactions were reported [43]. The Vietnam 
War was the first major wartime engagement for the Armed Services Blood Program 
(ASBP). Over the course of the conflict, the program collected nearly 1.8 million 
units of blood in support of troops in Vietnam. It was the first time that every unit of 
whole blood used to support the war was voluntarily donated by military personnel, 
their dependents, and civilians employed at military installations and not through 
civilian organizations.

Aggressive fluid resuscitation during the Vietnam War with red blood cells, 
plasma, and crystalloid solutions allowed patients who previously would have suc-
cumbed to hemorrhagic shock to survive. Renal failure became a less frequent clini-
cal problem, vital organ function was better sustained, but fulminant pulmonary 
failure termed “DaNang lung” or “acute respiratory distress syndrome (ARDS)” 
appeared as an early cause of death after severe hemorrhage.

 Acute Coagulopathy in Trauma

Miller et al. published data in 1971 from the War in Vietnam that showed coagula-
tion defects in massive transfusion; this was treated unsuccessfully with FFP and 
then whole blood which was successful in limiting the bleeding tendencies [44].

P. Thompson and G. Strandenes



19

 Post-Vietnam War

 Crystalloids

In the 1970s, additional studies by Shires et al. demonstrated that a prolonged period 
of hemorrhagic hypotension was associated with the development of microvascular 
injury with marked ECF deficit which could be corrected only by the administration 
of isotonic crystalloids in volumes two to three times the estimated blood loss due 
to loss of interstitial fluid from the extravascular space. This was the basis of the 
well-known “3 to 1” dogma for the treatment of hemorrhagic shock, which was 
adopted by the ATLS for the treatment of trauma casualties. It was recommended 
that the early treatment of hemorrhagic shock includes primarily the control of 
external bleeding and early intravenous administration of 2000 ml of crystalloids 
through a large bore catheter [45].

Their philosophy for resuscitation in patients with traumatic bleeding was mis-
applied and led to the overuse of crystalloids, to the detriment of patients with 
severe bleeding who commonly received 5–10 L of crystalloids before any blood 
product administration [46].

These outcomes were actually predicted by Shoemaker in 1976, when he chal-
lenged the notion that the interstitial compartment required resuscitation and instead 
emphasized the need for whole blood to treat significant bleeding when the hemato-
crit fell below 30%. The overuse of crystalloids occurred despite a call for modera-
tion by Moore and Shires as early as 1967. In their editorial, Moore and Shires state, 
“Blood should still be replaced during major operative surgery as it is lost. The use 
of balanced salt solutions appears to be a physiological adjunct to surgical trauma, 
not a substitute for blood.” Subsequent research has demonstrated that a crystalloid- 
based resuscitation strategy leads to increased inflammation and vascular permea-
bility compared to WB [46].

 Rise of Blood Components

By the 1980s and 1990s, the accepted ATLS treatment for hemorrhagic shock was 
aggressive use of crystalloids and colloids and component therapy. RBCs were to be 
used for patients who continued to actively bleed after 2L of fluids were given. 
Plasma and platelets were indicated if the patient was still bleeding after the RBCs 
were given and there was a laboratory abnormality indicating poor coagulation or 
platelet count, respectively.

From the 1990s onward, the evidence started to mount that this strategy may not 
be optimal. In 1990, Kaweski et al. published “The effect of prehospital fluids on 
survival in trauma patients.” In 1992, Krausz et al. published “Scoop and run” or 
stabilize hemorrhagic shock with normal saline or small-volume hypertonic saline.” 
In 1994, Bickell et al. published “Immediate versus delayed fluid resuscitation for 
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hypotensive patients with penetrating torso injuries.” In 2004, Blumenfeld et  al. 
published “Prehospital fluid resuscitation in trauma: the IDF-MC Consensus Panel 
Summary”; these and other papers started to question the strategy of aggressive 
crystalloid use.

Somalia Use of Fresh Whole Blood in Mogadishu Experience and How It Affected 
Iraq/Afghanistan Wars

In 1993, the US forces in Mogadishu Somalia were faced with a shark attack 
victim from the tenth Mountain Division who required bilateral lower extremity 
amputations and massive transfusion. With limited plasma and infrequent resupply 
of packed red blood cells, Colonel Denver Perkins initiated an emergency donor 
panel whole blood collection. The immediate resolution of clinical coagulopathy 
and improved physiology was apparent to all. This highlighted the efficacy of whole 
blood and led to around 120 units of whole blood collected and more than 80 units 
being transfused during the Black Hawk Down crisis. This event led to the inclusion 
of whole blood training for deploying forward surgical teams at the joint trauma 
training center starting in 1999 with a section on whole blood in the 2003 version of 
Emergency War Surgery handbook (personal communication, JB Holcomb).

 Tactical Combat Casualty Care

In 1996, Butler et al. published “Tactical combat casualty care in special opera-
tions” which led to the establishment of TCCC guidelines; this initial guideline 
recommended 1000  ml of Hespan for a casualty in shock with bleeding con-
trolled [47].

 2000 To Present

 2000

 RDCR and DCR
After 9/11 and the commencement of the “War on Terror,” coalition forces faced 
conflict in Afghanistan and Iraq. The initial resuscitation strategies were similar to 
those from the 1990s with the United Kingdom and the United States using clear 
fluids with a hypotensive resuscitation strategy based on maintaining a radial pulse, 
forward and during evacuation and blood components in medical treatment 
facilities.

During the conflicts and as casualty number and severity of injuries increased, 
mainly due to a rise in IED use, the concept of damage control resuscitation was 
resurrected from the shock wards of WWII and synthesized with emerging resusci-
tation strategies. This concept can be envisioned as the resuscitation of a patient to 
increase the chance of survival to, and survival of, damage control surgery [47]. 
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Remote damage control resuscitation is the use of DCR concepts in prehospital and 
as early as possible in the evacuation chain [2]. Aspects of RDCR began with the 
prehospital use of RBCs to be effectively practiced by the UK MERT platform in 
Afghanistan after 2006 and by the US forces as part of their “Vampire Missions” 
that transfused patients upon transport starting in 2012.

 Lethal Triad
Increasingly resuscitation strategies target the lethal triad of hypothermia, acidosis, 
and coagulopathy. The realization that this combined pathology has an impact on 
mortality has its roots in WWI. The modern concept was coined in 1982 by the 
American Trauma Society which proposed the “bloody vicious cycle,” which 
included acidosis, hypothermia, and coagulopathy as an important cause of death in 
patients with coagulopathy in the early stage of trauma. This term was gradually 
replaced by other terms, such as “lethal triad” and “iatrogenic trauma coagulopa-
thy,” and is also the theoretical basis for damage control resuscitation [48].

 2003

 Acute Traumatic Coagulopathy
In 2003, Brohi et al., in a retrospective study of over 1800 patients, showed that just 
over 24% had significant coagulopathy, and this group had a threefold higher mor-
tality. Brohi called the pathology acute traumatic coagulopathy. Later in 2007, 
Brohi identified that studies had shown that this coagulopathy exists on admission 
to hospital and is independent of severity score. He argued that the driver of this 
pathology is hypoperfusion causing activation of the protein C pathway and fibrino-
lysis. Resuscitation strategies started to target this coagulopathy [49].

 2004

 Resurgence of Whole Blood
In 2004, the 31st Combat Support Hospital in Baghdad began using ABO type spe-
cific whole blood as a salvage therapy when patients were near death. With experi-
ential data that whole blood was more effectively reversing shock and coagulopathy 
than with RBCs of advanced storage age and plasma, this encouraged earlier use of 
whole blood [50]. In October of 2004, a massive transfusion guideline was devel-
oped that incorporated the early use of warm fresh whole blood (ABO specific) and 
blood components in a 1:1:1 ratio until whole blood was available [50].During 2004 
at the 31st CSH, there was the incorporation of rapid screening tests for HIV, HCV, 
and HBV for ABO-specific whole blood that was collected from donors. Results of 
these rapid tests were available within 5 minutes and resulted prior to completion of 
the collection of the unit of whole blood [51].

ABO-specific whole blood was used instead of low-titer group O whole blood 
because at this time the AABB standards for whole blood stated that it must be 
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ABO-specific when transfused. The lessons learned from WWII to the Korean and 
Vietnam Wars regarding the efficacy and safety of low-titer group O whole blood 
were lost in the 1980s to the 2000 timeframe and the concern regarding the mild-to- 
moderate risk of incompatible plasma led the blood banking community to write 
standards that required whole blood to be ABO specific [50].

 2005

 Platelets
In 2005, the US Army for the first time makes apheresis platelets stored at 22 °C for 
5 days available in Baghdad and soon thereafter expands the availability to all other 
combat support hospitals [52].

 2007

 Component Therapy
The optimal use and ratios of components in resuscitation of hemorrhagic shock 
was questioned with a trend toward increased use of plasma. In 2007, Borgman 
et al. publish “The ratio of blood products transfused affects mortality in patients 
receiving massive transfusions at a combat support hospital.” Borgman recom-
mended early and increased use of red blood cells and plasma in a 1:1 ratio. This 
retrospective study evaluated 246 patients, with massive transfusion, and reported 
an independent association between higher ratio of plasma to RBCs and survival. 
There was also lower risk of death from hemorrhage in patients transfused with 
higher plasma to RBC ratios [4].

 2008

 ATLS
The 8th edition of the ATLS manual was changed to reflect developing strategies in 
resuscitation “Balancing the goal of organ perfusion with the risks of re-bleeding by 
accepting a lower than normal blood pressure has been called ‘Controlled resuscitation’, 
‘Balanced Resuscitation’, ‘Hypotensive Resuscitation’ and ‘Permissive Hypotension’. 
The goal is the balance, not the hypotension. Such a resuscitation strategy may be a 
bridge to but is also not a substitute for definitive surgical control of bleeding” [53].

 2009

 Data on WFWB
Spinella et al. published data indicating that ABO-specific warm fresh whole blood 
is independently associated with improved survival for patients with combat-related 
traumatic injuries and may improve 30-day survival [7].
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 Emergency Donation of WB
In 2009, Steve Williams of the Royal Caribbean Cruises implemented a fresh whole 
blood transfusion protocol using onboard guests and crew as volunteer donors [54].

 Dried Plasma
French medical personnel in medical treatment facilities begin using dried, patho-
gen reduced, pooled plasma which was first reported in 2009 [55].

 2011

 Data on WFWB
Nessen et al. publish data indicating that warm fresh whole blood (WFWB) is asso-
ciated with improved survival at two facilities, and it is the first manuscript from the 
Afghanistan/Iraq Wars to provide some data that the use of group O whole blood in 
non-group O patients is safe and effective [42].

In 2011, the THOR Network is established by Strandenes and Spinella. It is an 
international multidisciplinary network of providers ranging from medics to basic 
scientists with a goal to improve outcomes for patients with life-threatening trau-
matic bleeding. It initially focuses on whole blood but rapidly expands to include all 
aspects of resuscitation for patients with traumatic hemorrhagic shock [56].

 2012

 Dried Plasma
In 2012, US Special Forces medics begin to use freeze-dried plasma provided by the 
French Military (personal communication with Andre Cap).

 2013

 Whole Blood Storage
Pidcoke et al. publish that cold storage of whole blood at 4 °C maintains adequate 
hemostasis for at least 14  days. These findings are confirmed by Strandenes in 
Norway in 2015 [57, 58].

The Norwegian Naval Special Operations Commando starts bringing cold-stored 
whole blood on mission in the Gulf of Aden [58].

 Dried Plasma
The Israeli Defense Forces implements the use of freeze-dried plasma (FDP) at the 
point of injury (POI) [59].

 2014

TCCC Guidelines Change ranks resuscitation fluids and places whole blood as the 
optimum for hemorrhagic shock [60].
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The THOR Network advocates for the resurrection of cold-stored LTOWB to 
improve its availability and safety compared to the use of warm fresh whole 
blood [61].

 Field Transfusion
Strandenes et al. publish “Emergency Whole-Blood use in the field: a simplified 
protocol for collection and transfusion” in which he presents the Norwegian Naval 
Special Operation Commando unit specific RDCR protocol, which includes field 
collection and transfusion of warm fresh whole blood [62].

 Dried Plasma
The Norwegian Helicopter Emergency Medical Service began using a German 
freeze-dried plasma product for civilian casualties [63].

 Platelets
In 2014, the US Army Blood Research Program, led by Dr. Andre Cap, begins 
extensive in vitro studies convincingly demonstrating that apheresis platelets stored 
at 4 °C have superior hemostatic function and are not irreversibly activated as previ-
ously presumed compared to platelets stored at 22 °C [64].

 2015

The Norwegian Helicopter Emergency Medical Service located in Bergen started 
transporting low-titer group O whole blood on every mission for civilian casual-
ties [65].

The University of Pittsburgh becomes the first civilian trauma center to bring 
low-titer group O whole blood back after its disappearance in the 1970s after the 
Vietnam War ended [66].

The Norwegian Armed Forces transported cold-stored LTOWB to military facili-
ties in Afghanistan (Personal communication with CDR Geir Strandenes).

 ROLO Program
In 2015, the 75th Ranger Regiment’s Ranger Group O Low Titer (ROLO) 
Whole Blood Program was developed and initiated in concert with international 
multidisciplinary civilian and military providers of the Trauma Hemostasis and 
Oxygenation Research (THOR) Network to bring emergency blood transfusion 
from the hospital environment to the battlefield. Thanks in large part to LTC 
Andre Cap, Chief of Blood Research at the Army Institute of Surgical Research, 
LTC Ethan Miles Command Surgeon, 75th Ranger Regiment, and LTC Jason 
Corley, Deputy Director of the Army Blood Program, the ROLO Whole Blood 
Program went from concept to implementation at the unit level in only 
18 months [67].
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 2017

 Cold Platelets
In 2017, the US Army began transfusing apheresis platelet units stored at 4 °C based 
on its superior hemostatic function compared to platelets stored at 22 °C [68, 69]. 
The storage duration for the 4 °C platelets started at 3 days with the plan to extend 
it over time after collecting data.

 Blood Failure
Bjerkvig et al. publish on the concept of “blood failure,” and the link between oxygen 
debt and traditional organ failure has long been recognized. Bjerkvig argues for the 
consideration of failure in two additional linked and very dynamic organ systems, the 
endothelium and blood, both very sensitive to oxygen debt. The degree of damage to 
the endothelium is largely modulated by the degree of oxygen debt. Hypoperfusion 
causes oxygen debt and is believed to begin a cascade of events leading to acute 
traumatic coagulopathy (ATC). This combination of oxygen debt- driven endothelial 
damage and ATC might be considered collectively as “blood failure.” The article 
presents the implications of oxygen debt remote damage control resuscitation strate-
gies, such as permissive hypotension and hemostatic resuscitation [70, 71].

 2018

 AABB Standards for Low-Titer Group O Whole Blood
The THOR Network petitions the AABB for acceptance of the use of low-titer 
group O whole blood for patients with severe bleeding of any etiology. A few 
months later, Standard 5.15.1 in the 31st edition of the AABB standards are changed 
allowing the use of low-titer group O whole blood. After this change in standards, 
many civilian trauma centers internationally begin to adopt the use of cold-stored 
LTOWB for patients with life-threatening bleeding [72].

 Whole Blood Transfusions
From 2003 to 2018, there have been over 10,000 units of ABO-specific warm fresh 
whole blood transfused. Between 2017 and 2018, there have been over 300 units of 
cold-stored LTOWB stored at 2–6 °C transfused by the US military.

 Conclusion

DCR and RDCR will continue to evolve as new evidence, research on the patho-
physiology of hemorrhagic shock, technological advances, and drug development 
emerge. It is in looking back that we understand the path that has led us to where we 
are now. It is essential that the hard lessons learned from lives lost do not have to be 
learned again, as has so often been the case in the past.
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and Hospital Traumatic Deaths  
from Life- Threatening Hemorrhage
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Death from injury was described as the neglected epidemic of modern medicine by 
the Institutes of Medicine in 1966 [1]. Despite dramatic advances in acute trauma 
care over the last several decades, including resuscitation of massive hemorrhage, 
damage control surgery, and technological advances in critical care, the health bur-
den of injury on our society, in both peacetime and wartime, remains substantial. 
From a public health perspective, injury remains the leading cause of death account-
ing for 59% of all deaths among individuals up to the age of 45 and is responsible 
for a domestic cost of more than $406 billion in medical care and lost productivity 
each year [2]. Medical treatment and loss of work productivity costs for civilian 
fatal and non-fatal injuries in the United States totaled more than $671 billion [3]. 
Since injury is disproportionately represented in a relatively young population, it 
stands as the single largest cause of years of life lost and productivity lost in the 
United States. In 2015, 214,000 persons in the United States suffered fatal injury; 
more than 2,800,000 persons were hospitalized and 27,600,000 persons were treated 
in emergency departments for non-fatal injuries. The majority of injury mortality 
occurs in the field with or without access to medical care [4–6]. According to a 
Centers for Disease Control and Prevention report in 2008, 62% of all people who 
died from injuries and 75% of people who died from gunshot wounds were pro-
nounced dead outside of a hospital [7].

Understanding the epidemiology of death after trauma is vital to improving the 
outcomes of the injured patient. The concept of the distribution of mortality after 
injury along a chronological axis was initially characterized by Trunkey based upon 
his experience and research in his seminal work describing the trimodal distribution 
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of trauma death. This distribution of death after traumatic injury is classically 
described with death occurring during immediate, early, and late timeframes after 
injury [8] (Fig. 2.1).

In an associated review of 425 consecutive trauma autopsies, he found the most 
substantial etiology of mortality across the spectrum of injury was hemorrhage, 
which was responsible for 35.2% of deaths [9]. From this early work evolved con-
cepts of injury prevention, expedited evacuation, and optimized acute healthcare 
delivery which formed the nascent architecture of regionalized trauma care and 
were the precursor to our current trauma systems across the United States. As ini-
tially described by Dr. Trunkey, “immediate” deaths occur within 1 hour of injury 
and were considered unpreventable through available medical interventions. 
Immediate deaths are most frequently caused by catastrophic whole body, central 
nervous system (CNS), heart, or great vessel injury. From a trauma system perspec-
tive, such immediate deaths are best addressed through an inclusive trauma system 
integrating injury prevention and safety interventions. “Early” deaths after trauma, 
usually occur within the time realm of prehospital or acute medical care occurring 
later than immediate but still within the first few hours after injury. Most early 
deaths are attributable to major CNS injuries or hemorrhage [10, 11]. As little can 
be done to ameliorate the effects of primary CNS injury, clinical efforts are directed 
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toward optimization of brain perfusion and minimizing secondary brain injury. 
Assuming these tenets, the mortality of injured patients who succumb to CNS injury 
is largely not preventable. On the other hand, some of the deaths secondary to hem-
orrhage during this interval are potentially preventable and highlight opportunities 
to advance medical interventions and trauma systems. The interval between injury 
and definitive control of the focus of bleeding is most critical for this group of 
injured patients. The third “peak” in trauma deaths corresponds to trauma patients 
who die days or weeks after injury, usually due to infection, multiple organ failure, 
or the latent effects of devastating brain injury. Optimal care in the early hours after 
injury may prevent the progression of such sequelae. Improvements in critical care 
have improved injury outcomes and minimized the mortality from these clinical 
entities as evidenced by recent publications have documented a diminution in the 
significance of this late third peak [12, 13]. It is especially notable that death after 
trauma is largely an acute phenomenon with approximately 40–64% of deaths 
occurring at the scene [4, 9, 11]. For those patients that make it to a trauma center 
and ultimately die, 34–52% succumb to their injuries within the first 24 hours, and 
the remainder distributed over the subsequent days to weeks [12, 14, 15].

Reducing the time between injury and life-saving interventions is a critical factor 
in optimizing injury survival. While the exact length of time that an individual 
patient can survive depends on their specific injuries, 1 hour has been frequently 
cited as a goal to deliver an injured patient to a facility capable of surgical manage-
ment of bleeding in both the civilian sector and on the battlefield [16–18]. Although 
objective data to support the targeted 1 hour prehospital time have been elusive, few 
question the fact that earlier interventions save lives. On heels of Korean War, the 
US Army awarded Dr. R Adams Cowley, a cardiothoracic surgeon, a grant for 
$100,000 to study shock in humans. Most patients presented to his facility physio-
logically moribund, earning his four-bed unit the moniker of the “death lab.” Owing 
to lessons learned from the Vietnam War, in 1968, he negotiated to have patients 
brought in to his facility by military helicopter to minimize prehospital time after 
injury. Based upon subsequent clinical experience with injury, in 1975, he published 
his perspective on the development of a comprehensive emergency medical system 
in the Maryland State Medical Journal. His quote that “the first hour after injury 
will largely determine a critically injured person’s chances for survival” developed 
into the concept of the “golden hour” which has remained as one of the core guiding 
tenets of trauma care for emergency medical services for over the last four decades. 
Dr. Cowley coined the legendary term to promote the urgency between injury and 
care, recognizing that trauma patients who reached definitive care sooner had a bet-
ter chance of survival [19]. He subsequently established Baltimore Shock Trauma 
Center and a statewide system of care served by Maryland state police helicopters 
piloted by Vietnam veterans.

Advances in both military and civilian trauma systems have focused attention on 
those deaths determined to be potentially preventable through medical means. 
Although numerous methods of defining “preventable death” have been established, 
there is no standard definition that has proved universally acceptable, highlighting 
the challenges of developing such metrics. Regardless of the definition of 
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preventable, hemorrhage consistently emerges as the most substantive pathophysi-
ology associated with potentially preventable trauma mortality. In a large contem-
porary autopsy study of combat deaths from 2001 to 2011, 87% of the 4574 deaths 
occurred prior to arrival at a medical treatment facility (MTF), and of the prehospi-
tal deaths, 24% were considered potentially survivable based on a process of expert 
review of anatomic criteria established in the study [20] (Fig. 2.2a, b).

Of the pre-hospital casualties with potentially survivable injuries, 91% of the 
deaths were associated with a source of hemorrhage. Further stratification noted 
the site of lethal bleeding as follows: torso 67%, junctional 19%, and extremity 
14%. The focus of bleeding in the torso hemorrhage death casualties was predomi-
nantly thoracic in 36% and abdominopelvic in 64%. Similar classification of the 
junctional hemorrhage deaths demonstrated 61% were associated with axilla and 
groin injuries, whereas 39% were associated with cervical injuries [20]. Another 
study utilizing the same methodology analyzed 558 combat casualties who suc-
cumbed to their injuries after reaching a military treatment facility. These died of 
wounds (DOW) casualties occurred at a rate of 4.6% over the study period, which 
is strikingly similar to the average civilian trauma center case fatality rate of 4.1%. 
Of the 287 (51.4%) DOW casualties deemed potentially survivable, 80% of the 
mortality was directly associated with a source of acute hemorrhage early in the 
hospital course [21].

By comparison, analyses of civilian trauma deaths, where blunt mechanism of 
injury is more prevalent, clinical studies also demonstrate that hemorrhage is the 
most substantial contributor to early trauma deaths. A 1998 analysis of trauma cen-
ter mortality demonstrated that nearly all of the traumatic mortality directly attribut-
able to hemorrhage occurred within 24 hours from injury [22]. A comparable review 
of in-hospital deaths classified as preventable or potentially preventable demon-
strated that 40% were caused by hemorrhage [15]. Similarly, another metropolitan 
trauma center performed a review of 753 consecutive trauma deaths in their hospi-
tal. Of these deaths, 53% occurred within 12 hours and 74% within 48 hours. Of this 
population, 37% of the mortality was attributable to acute hemorrhage [14]. A study 
of civilian prehospital deaths in a large urban county designated 29% of the 

a b

Fig. 2.2 (a) Battlefield mortality location (n  =  4596). (b) Injury/physiologic focus potentially 
survivable acute mortality (n  =  976). (From The Journal of Trauma and Acute Care Surgery, 
Eastridge et al. [20] Figure 4, with permission of Wolters Kluwer Health, Inc.)
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mortality as potentially preventable, with 64% of those deaths deemed potentially 
survivable attributed entirely or partially to hemorrhage [23].

The prevalence of prehospital deaths in recent conflicts in the southwest Asia 
remained essentially unchanged compared to previous US wars. The lack of effec-
tive management strategies to mitigate life-threatening hemorrhage secondary to 
trauma has long been recognized as a knowledge and capability gap requiring reme-
diation. In a classic military manuscript, Dr. Bellamy reviewed the nature of ground 
combat deaths in a hypothetical model which incorporated data from World War II, 
the Korean War, and the Vietnam War into a prediction of the causes of death in 
combat [24]. Approximately 44% of deaths were associated with limb hemorrhage, 
thereby highlighting extremity bleeding as one of the most substantive causes of 
potentially preventable death on the battlefield (Fig. 2.3).

A turning point in military prehospital trauma care came in 1996 when a review 
of battlefield deaths and the medical requirements to support special operations 
forces led to the development of a new paradigm for combat casualty care on the 
battlefield [25]. The core principles of Tactical Combat Casualty Care (TCCC) were 
based upon the premise of eliminating preventable deaths and combining good 
medicine with good tactics. Phased care in the tactical environment included Care 
under Fire, Tactical Field Care, and Tactical Evacuation (TACEVAC) Care. Casualty 
and medic actions during the care under fire phase were directed toward tactical 
advantage and mission completion. Simple life-saving interventions targeting hem-
orrhage control are emphasized in this primary phase of TCCC, with only tourni-
quets and hemostatic dressings recommended as standard medical care in this 
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phase. These early iterations of Tactical Combat Casualty Care (TCCC) guidelines 
recommended immediate application of limb tourniquets as the first-line treatment 
of extremity hemorrhage. Over the ensuing decade, the US military gradually 
adopted widespread implementation of extremity tourniquets for all deployed 
forces, ultimately resulting in an 85% decrease in deaths attributed to limb hemor-
rhage [20]. This battlefield lesson was subsequently translated to the civilian popu-
lation, fostered by the strong advocacy of the Hartford Consensus [26, 27] and by 
the evolution of community bleeding control courses, “Stop the Bleed” [28, 29].

While efforts to control isolated extremity hemorrhage after injury have been 
uniquely successful within the last decade, mitigation of junctional and torso hem-
orrhage in the prehospital environment remains elusive. A contemporary study to 
characterize the impact of prehospital time and junctional injury severity on survival 
utilizing the National Trauma Data Bank (NTDB) Research Data Set found that in 
patients sustaining junctional injury, increasing severity of anatomic disruption was 
associated with more significant hemorrhage and mortality. In this study, a mortality 
rate of 45% was exhibited in high grade junctional injury groups at prehospital 
times <30  minutes and remained substantial throughout subsequent prehospital 
time intervals [30]. In a parallel study, the investigators sought to illustrate the 
impact of prehospital time and torso injury severity on survival. This analysis dem-
onstrated that significant torso injury was associated with higher rates of death, 
particularly in penetrating injury. In fact, the observed mortality rate for high grade 
torso injury with hemorrhage was >40% in as little as 15 minutes after injury [31]. 
Both of these studies underscore the critical nature of prehospital time in patients 
with junctional and torso hemorrhage. Understanding that evacuation times 
<30 minutes may not be realistic or attainable, particularly in tactical or austere 
environments, efforts should be directed toward the development and evolution of 
novel strategies to mitigate hemorrhage from junctional sources in the prehospital 
environment and temporize the window of survival.

Based upon the understanding that hemorrhage represents the most substantial 
etiology of potentially preventable deaths after trauma, efforts to develop mitigation 
strategies have evolved markedly in the last decade. The principle of damage con-
trol resuscitation was developed through an observation that combat casualties with 
massive hemorrhage that received more aggressive correction of shock and coagu-
lopathy immediately after injury had improved survival [32]. Increasing plasma:RBC 
ratio from 1:8 to 1:1.4 was associated with a threefold decrease in mortality from 
60% to 19% [32]. Notably, casualties resuscitated with low ratio were significantly 
more likely to die from ongoing hemorrhage than those managed with balanced 
plasma: RBC ratios. The concept of damage control resuscitation has subsequently 
been refined predicated upon optimizing physiology and preventing of the lethal 
elements contributing to post-injury hemorrhagic mortality: hypothermia, acidosis, 
and coagulopathy. Incumbent in the damage control resuscitation strategy are the 
techniques of hypotensive resuscitation (permissive hypotension) and hemostatic 
resuscitation (amelioration of the shock and coagulopathy of trauma) [33, 34].

While the concept of damage control resuscitation evolved across the battle-
fields of Iraq and Afghanistan, research to substantiate the observed successes of 
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fresh whole blood and balanced ratio transfusion practices drew additional atten-
tion to the timing of hemorrhagic deaths. Consistently, studies supported the fact 
that for patients who arrive at a trauma center, death from hemorrhage occurs 
within about 2 hours of hospital arrival [35–37]. Prospective trauma resuscitation 
studies in hemorrhaging patients showed that the median time to hemorrhagic 
death was 2.0 to 2.6 hours, with at least 50% of all deaths occurring within 3 hours 
of hospital arrival [38].

In contrast to the well-characterized outcome of injury mortality after reaching 
the hospital, there is a paucity of evidence that substantively defines injury- 
associated death in the prehospital environment or across the continuum of care. 
One important analysis that included both prehospital and in-hospital traffic injury 
mortality demonstrated an overall 35% decrease in motor vehicle crash-related 
deaths over a period of 36 years [19]. For those patients who died prehospital, the 
rate of death occurred at a logarithmically defined rate that was greatest in the early 
minutes after injury. Although total traffic deaths decreased over the period of the 
study, there was an increase in prehospital fatalities relative to hospital fatalities 
demonstrated [39] (Fig. 2.4).

This data is consistent with military studies and supports the need to focus on 
prehospital deaths with respect to hemorrhage control, resuscitation, and trauma 
system design.

Shorter prehospital time has been associated with improved survival in both mili-
tary [16] and civilian trauma patients [30, 31]. In addition, recognizing that more 
rapid transport to surgical hospitals is not always possible, recent trauma system 
advances have also focused on bringing additional resuscitation capabilities (remote 
damage control resuscitation) to the seriously injured in the form of prehospital 
blood transfusion, advanced hemostatic interventions, and light, maneuverable sur-
gical teams [16, 40]. Prehospital transfusion in particular has been associated with 
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improved survival in combat casualties [41]. Not all studies of prehospital transfu-
sion have demonstrated a survival benefit. However, an analysis of the time to trans-
fusion amongst evacuated US military combat causalities in Afghanistan 
demonstrated that blood product transfusion within 36 minutes of injury was associ-
ated with improved survival. Beyond this interval, mortality benefits from prehospi-
tal transfusion were not significant [42]. More recent efforts in battlefield 
resuscitation have focused on delivering whole blood to severely injured casualties 
within minutes of injury by combat medics equipped with cold-stored universal 
donor low-titer type O whole blood as well as the capability to collect fresh whole 
blood from pre-identified donors [43]. These and other evolving efforts hold much 
promise for the future of remote damage control resuscitation.

 Conclusion

The majority of potentially preventable deaths after trauma are related to hemor-
rhage and occur early after injury, with the largest number of deaths occurring 
before hospital arrival. About one-fourth of trauma deaths may be potentially pre-
ventable through early medical and surgical interventions. Interventions dedicated 
to bleeding control and hemostatic resuscitation have demonstrated merit in decreas-
ing hemorrhagic injury mortality. Advancing these novel strategies to the casualty 
in the field, particularly in tactical or austere environments, may prove beneficial for 
hemorrhage mitigation in order to temporize the window of survival to definitive 
care. Future studies of resuscitation and survival after traumatic injury must include 
analysis of prehospital deaths in order to fully understand the outcomes of early 
interventions.
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3Blood Failure: Pathophysiology 
and Diagnosis

Nathan J. White and Kevin R. Ward

 Introduction

Hemorrhage is the leading cause of preventable death from trauma in both civilian 
and military environments [1, 2]. It is estimated that hemorrhage may account for 
up to 90% of all potentially salvageable combat-related deaths in the US Military. 
Traumatic shock is a unique condition combining mechanical tissue injury with 
hemorrhage so that even organs that are not primarily affected by direct mechanical 
injury can be primarily and secondarily impacted by hemorrhage wherein these 
organs can fail in their primary function and in turn further impact other organ sys-
tems [3].

A convergence of military conflicts and science over the last 15 years, much of it 
coming from lessons learned from combat surgery combined with fundamental 
principles of forgotten physiology, has begun to transform our understanding of 
traumatic shock and our approach to its treatment. Among these is the recognition 
that impaired coagulation in the setting of traumatic shock that increases hemor-
rhage has been identified in 20–30% of trauma victims shortly after injury and when 
present can increase the incidence of organ failure, intensive care utilization, and 
even death [4]. This Trauma Induced Coagulopathy (TIC) has resulted in new treat-
ment strategies such as Damage Control Resuscitation (DCR) which rely heavily on 
transfusion medicine therapies [5–7].

These insights have led to a new and growing concept that blood should be 
considered an organ system and that like other organ systems, when injured suffi-
ciently it can fail and its failure, can in turn cause injury to other organs [8, 9]. 
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Body organs are composed of distinct populations of cells integrated in a manner 
allowing them to perform certain critical functions. Blood consist of distinct cell 
types (red blood cells, white blood cells, platelets) and noncellular components 
(plasma). However, it is also intimately and inextricably integrated with the vascu-
lar endothelium which it constantly bathes and communicates with, each regulat-
ing many of the functions of the other. Thus, the blood-endothelial unit can be 
viewed an as organ system and is unique in that it connects all other organ 
system.

We will define hemorrhagic blood failure as an emergent state of blood leading 
to hemostatic dysfunction and a bleeding phenotype resulting from the physiologic 
and biochemical exhaustion of the blood-endothelium interface caused by a combi-
nation of hemorrhage-driven shock and tissue hypoxia, tissue injury, and blood 
cellular and plasma component loss.

This chapter will define the critical elements and pathophysiology of trauma- 
induced hemorrhagic blood failure and its diagnosis. Figure 3.1 will serve as a gen-
eral framework for the mechanisms behind the initiation, evolution, and sustainment 
of blood failure. This framework not only helps to understand the process but also 
offers a means to work to develop new prevention, diagnostic, and treatment 
strategies.

These concepts will assist in understanding the basis for DCR and remote dam-
age control resuscitation (RDCR) including the practice of hemostatic resuscitation. 
In the setting of traumatic hemorrhage, while there is no substitute for definitive 
surgical hemostasis, therapy provided prior to this time can greatly impact out-
comes, including how rapid hemostasis can be achieved once surgery starts. This 
pre-surgical resuscitation phase or RDCR and DCR are designed to limit ongoing 
hemorrhage and to produce or preserve an adequate level of physiologic reserve to 
deliver a casualty to the hospital that can be salvaged with the follow-on strategy of 
DCR and Damage Control Surgery (DCS).

Injury
+

Blood loss

Shock

Endotheliopathy

Coagulopathy

Blood Failure

Fig. 3.1 Considering 
Blood as an organ: 
Framework for 
understanding the 
initiation, evolution, and 
sustainment of blood 
failure. (From White et al. 
[9], with permission of 
Wolters Kluwer Health, 
Inc.)
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 The Primary Role of Shock and Oxygen Debt

Victims of severe trauma who develop trauma-induced coagulopathy (TIC) prior to 
fluid resuscitation or the development of hypothermia show significant evidence of 
hypoperfusion as a function of elevated base deficits and lactate levels [5, 10, 11]. 
This is not surprising since severe shock resulting in tissue hypoperfusion mani-
fested by elevated base deficits and lactate levels on admission have been known to 
be an independent predictor of morbidity and mortality after trauma. Hypoperfusion 
does not necessarily equate with the severity of injury as reflected in Injury Severity 
Scores although concomitant severe injury exacerbates the coagulopathy [12–15]. 
TIC can be exacerbated by plasma dilution with crystalloid resuscitation, hypother-
mia, and acidosis, which can be iatrogencially produced [5]. Certain traumatic tis-
sue injuries such as those produced by blast and high velocity mechanisms as well 
as brain injuries may cause and/or exacerbate coagulopathy [16–18]. Many times it 
is difficult to distinguish their independent contributions to TIC.

Shock is traditionally defined as tissue oxygen delivery below tissue oxygen 
metabolic needs or demands. While conceptually easy to appreciate, it is important 
to have a deeper qualitative and quantitative understanding of shock which will 
impact resuscitative strategies and outcomes as they relate to blood failure. Shock 
caused by hemorrhage as well as other insults leading to tissue hypoperfusion and 
hypoxia results in tissues accumulating oxygen debt [19–22].

To date, oxygen debt is the only physiologic indicator that has clearly been linked 
to both morbidity and mortality in the form of multiple organ failure after shock 
[19–24]. The degree (depth and length) of oxygen debt have clear consequences as 
oxygen debt has been linked to the degree of reperfusion injury, inflammation, and 
acidosis. Oxygen debt can be viewed as a quantitate measure of whole body isch-
emia. A simple corollary at an individual organ level would be stroke or acute myo-
cardial infarction where the greater the ischemic burden over time, the greater the 
final tissue damage and function during and after reperfusion.

Oxygen debt is the accumulation of oxygen deficit over time. Oxygen deficit is 
the difference between the amount of oxygen needed to meet metabolic demand and 
the amount of oxygen that is being delivered. An oxygen deficit occurs when less 
oxygen is being delivered relative to the required aerobic metabolic demand (shock) 
[19]. Figure 3.2 demonstrates the biphasic relationship of oxygen delivery (DO2) 
and oxygen consumption (VO2). As DO2 decreases, VO2 can remain constant due 
to an increasing ratio of oxygen that is extracted at the level of the tissue (OER) 
which is mirrored by a decrease in hemoglobin oxygen saturation (SvO2). However, 
as DO2 continues to decrease, there will eventually come a point where the OER 
cannot meet tissue VO2 demands resulting in a state of DO2-dependent VO2. At 
this point, metabolism transitions largely from aerobic to anaerobic metabolism. It 
is at this point that an oxygen deficit begins to accumulate as signaled by increased 
levels of anaerobically produced lactate levels and correlating increases in base 
deficit. Because oxygen deficit is the change in VO2 from baseline, oxygen deficit 
is, therefore, equal to the difference between baseline VO2 and the VO2 at a particu-
lar time point. This quantified deficit over time is oxygen debt (Fig. 3.3).
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As oxygen becomes limited and can no longer serve as the terminal electron 
acceptor (oxidant), ATP production significantly decreases. An increase in mito-
chondrial electron burden occurs destabilizing mitochondrial membrane electro-
chemical potentials which in turn allow electrons to leak from the membrane 
(Fig. 3.4) [25]. What little oxygen remains becomes available for pathologic reduc-
tion to form reactive oxygen species such as the superoxide radical which can react 
with nitric oxide when colocalized in the vascular space to form peroxynitrite. 
Peroxynitrite is highly toxic and capable of altering protein function by nitrosylat-
ing tyrosine moieties. Other highly damaging reactive oxygen species such as 
hydroxyl radicals form via hydrogen peroxide when antioxidant systems based on 
catalase and glutathione peroxidase are overwhelmed [26, 27]. Ongoing production 
of these oxidants which become exacerbated upon initial reperfusion (as more oxy-
gen is available to react with previously increased pool of electrons) may cause 
irreversible cellular damage in the form of lipid peroxidation, protein nitrosylation, 
and DNA damage [26, 28, 29].

Adrenergic activation and catecholamine release induced by pain, neurovascular 
compensation, and tissue injury exacerbates tissue hypoxia secondary to vasocon-
striction and endothelial injury during hemorrhage thus increasing oxygen debt 
[29]. Tissue injury with activation of pain and adrenergic pathways increase oxygen 
debt in the setting of hemorrhage over hemorrhage alone [30]. Adrenergic activation 
and catecholamine release also stimulate lactate production by activation of the 
Na+-K+-ATPase so that blood lactate levels are elevated and may be used as a sup-
plementary tissue fuel source for vital organs [31].
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VO2
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Fig. 3.2 The biphasic relationship of oxygen delivery (DO2) and oxygen consumption (VO2). As 
DO2 decreases, VO2 may remain constant due to an increase in the ratio of extracted oxygen 
(OER) at the tissue level. This is mirrored by a decrease in the venous hemoglobin oxygen satura-
tion (SvO2). However, at some point, OER will not meet VO2 demands of the tissues resulting in 
a state of DO2-dependent VO2, whereby aerobic VO2 transitions largely to anaerobic VO2. At this 
point of critical DO2, an oxygen deficit occurs and an oxygen debt begins to accumulate reflected 
by an increase in byproducts of anaerobiosis such as lactate. While this biphasic relationship exists 
for the body as a whole, it also exists for each individual organ system. (From Ward [33], with 
permission of John Wiley and Sons)
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Since it is well-known that reperfusion injury drives subsequent inflammatory 
and immune dysfunction, it is important to underscore the strong relationship that 
exists between the degree/depth of oxygen debt and ensuing inflammation during 
the subsequent reperfusion injury. However, instead of being limited to a single 
organ, the insult affects multiple organs directly and indirectly via the reperfusion 
injury cascade [22, 32]. This will include the blood via damage to the endothelium 
as well as circulating coagulation proteins such as fibrinogen [33].

A common but very overlooked and misunderstood physiologic principle relat-
ing to oxygen debt is the need for timely repayment of a critical portion of oxygen 
debt [19–21, 24]. Similar to sleep and other physiologic debts, it is not possible to 
incur a significant oxygen debt with no consequences if it is not repaid. Halting the 
oxygen deficit by simply returning to a DO2- independent VO2 state, while essen-
tial is not sufficient in and of itself to achieve homeostasis (Fig. 3.3). In addition to 
meeting the basal metabolic demands of the body to restore aerobic metabolism and 
halt additional oxygen deficit accumulation, additional consumption is required to 
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Fig. 3.3 Relationship 
between oxygen deficit and 
oxygen debt. Oxygen 
deficit is the difference 
between VO2 (indicated by 
the dashed line) and VO2 
measured at a given time 
point (indicated by 
numbered arrows) during 
the shock period. The 
magnitude of the deficit is 
indicated by the length of 
the arrow. Oxygen debt is 
the accumulated sum of all 
oxygen deficits incurred 
and is represented by the 
area under the curve. It 
should be noted that 
halting the accumulation of 
the deficit does not repay 
back the accumulated debt. 
(From Barbee et al. [19], 
with permission of Wolters 
Kluwer Health, Inc.)
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replenish critical cellular energetic processes including the phosphogen and 
glycogen- lactic acid system which can be significantly depleted during shock [34]. 
The ability to repay these systems in a timely manner decreases significantly with 
increasing levels of debt and time.

It is important to note that while lactate clearance during resuscitation signals the 
halt of anaerobic metabolism and return of a DO2-independent VO2 state, it is not 
in and of itself a marker of debt repayment. This is because lactate production can 
be halted just above critical DO2, accompanied by lactate metabolism by organs 
such as the liver and kidney. However, debt has not been repaid. Just how much debt 
can be forgiven versus repaid and over what period of time is not entirely known 
(Fig.  3.5) [19, 20, 24]. Unfortunately, there are no current monitoring tools that 
allow care takers to know when oxygen debt has been repaid. Rapidly normalizing 
lactate and the body’s OER makes the most sense physiologically to maximize 
chances of timely oxygen debt repayment [33, 35].

The principles of oxygen debt and its contribution to blood failure can serve as a 
basis for judging the limitations of various resuscitation strategies such as permissive 
hypotension in developing new resuscitation solutions or protocols. Their effects on 
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Fig. 3.5 Relationship between various oxygen debt repayment profiles and the likelihood of sig-
nificant organ damage and/or death. Oxygen debt is represented by the area of the basal VO2 
dashed line; oxygen debt repayment is the area above the basal VO2 dashed line. Resuscitation is 
marked by the dotted vertical line. The more rapid that critical portions of debt can be repaid (a), 
the better chance of survival and survival without organ failure. Delayed repayment (b and c) can 
result in varying levels of organ failure and ultimately death. The exact proportion of debt and the 
kinetics of repayment to avoid death and organ failure are not clearly known and there are chal-
lenges due to lack of technology in knowing both how much debt is accumulated and how much is 
repaid. (From Barbee et al. [19], with permission of Wolters Kluwer Health, Inc.)
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limiting oxygen debt and in promoting repayment of critical portions to prevent or 
reverse blood failure are critical to consider. An understanding of oxygen debt also 
invites the opportunity to consider modulating oxygen consumption such as decreas-
ing consumption through reducing metabolism as a means for reducing oxygen debt 
accumulation or in repaying debt more quickly.

 The Microcirculation and Endothelium

The linkage between oxygen debt and traditional organ failure (hepatic, renal, 
lung, etc.) has been long recognized. It is therefore intuitive that the endothelial 
portion of the blood-endothelial unit is also affected by oxygen debt. The micro-
circulation with its endothelial lining is estimated to cover an area of up to 
7000 m2 and thus represents what might represent the body’s largest organ sys-
tem [36, 37]. The individual microcirculatory unit composed of the arteriole, 
capillary bed, and postcapillary venule is designed to ensure the delivery of oxy-
gen and other nutrients to tissues in excess of their needs as well as to remove 
products of metabolism. With an estimated 1013 endothelial cells in an adult, the 
endothelium is constantly exposed to blood [36]. It is, therefore, logical that it 
would be prone to significant cellular injury resulting in dysfunction from trauma, 
hemorrhage, hypoperfusion, reperfusion injury, and inflammation [38, 39]. 
Complicating our understanding is the fact that there is no universal phenotype 
for the endothelium and that this phenotypic heterogeneity and the role it plays 
is likely to simply be a core property as it is with the parenchymal cells of other 
organ systems [38, 39]. For example, arteriole endothelium plays a major role in 
regulating vascular tone through signal transduction via shear stress to the vascu-
lar smooth muscle, while postcapillary venule endothelium is involved in leuko-
cyte trafficking in response to injury [40]. Thus, injury to and dysfunction or 
failure of the endothelium can be termed “endotheliopathy” and thought of simi-
larly to how we view injury to and impaired function of other organs (cardiomyo-
papthy, etc.). This endotheliopathy can be characterized by three main 
components: (1) paracellular permeability, (2) dysfunctional hemostasis, and (3) 
inflammation [41–43].

The endothelium regulates the integrity of the blood-organ barrier and clot for-
mation including both anticoagulant and procoagulant functions. Endotheliopathy 
secondary to hypoxia results in endothelial cell surface activation by inflammatory 
mediators, in addition to adhesion of platelets, red blood cells, and leukocytes to 
activated endothelial cells. Endothelial cell activation also increases the production 
of coagulation pathway intermediates [9].

Under normal physiologic conditions, the endothelial cell surface maintains 
blood fluidity and regulates flow by multiple anticoagulant mechanisms. The 
surface- linked protein thrombomodulin binds thrombin converting it from a potent 
procoagulant to an anticoagulant by increasing its affinity for protein C above that 
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of fibrinogen [44, 45]. Activation of protein C can further reduce Factor V and VII 
levels. Once activated, protein C is also capable of interacting with endothelial cells 
to activate cell survival responses and maintain the endothelial barrier [46]. Synthesis 
of local prostacyclin (PGI2) and ADP metabolism to adenine nucleotides also 
inhibit platelet activation, adhesion, and aggregation. Vascular patency is impacted 
and regulated by the endothelium synthesizing nitric oxide which causes vasodila-
tion to keep the microcirculation open. Nitric oxide also inhibits platelet function 
and tPA, which activates plasminogen to plasmin, the primary proteolytic enzyme 
of fibrin [41, 46]. As a result, nitric oxide formation secondary to hypoperfusion has 
competing effects on hemostasis.

Paracellular permeability leading to organ edema and failure is caused by 
hypoxia-induced breakdown of endothelial cell-cell tight and adherent junctions 
that regulate the endothelial blood-organ barrier in various tissues. While tissue 
specific, these barriers are, in general, maintained by structural components (i.e., 
adherens junctions), cellular components (i.e., smooth muscle cells and pericytes), 
and extracellular matrix proteins, all working to maintain the endothelium barrier 
[9]. This is important as the stress of hypoperfusion secondary to traumatic hemor-
rhage leads to antagonistic signaling of angioproteins 1 and 2 signal via the Tie-2 
receptor to tighten (Ang-1) or loosen (Ang-2) the barrier that separates the strong 
procoagulant subendothelial tissues from blood [47]. An additional layer of protec-
tion is afforded by a thick surface matrix made up of membrane-bound glycopro-
teins and proteoglycans having heparin-like activity called the glycocalyx. The 
glycocalyx is a protective border on endothelial cells that regulates endothelial cell 
permeability and shear stress, meant to limit the interactions of the endothelium 
with circulating blood cells which in turn inhibits local thrombin activity [48]. 
However, with traumatic injury and severe shock, the injured endothelium initially 
promotes coagulation due to barrier disruption when activated by releasing Ang-2, 
tissue factor, von Willebrand factor, platelet activating factor, and PAI-I [48]. Thus, 
the balance of the state of quiescent anticoagulant or activate procoagulant pheno-
types of the state of the endothelium is dependent on the degree of local and system 
injury.

Traumatic hemorrhage leading to tissue hypoxia and oxygen deficits will affect 
the microcirculation and its endothelium as described above by activating both pro- 
and anticoagulant responses to various degrees. Local acidosis and its severity can 
induce a decrease in nitric oxide and PIG2 production promoting vasoconstriction 
and platelet adhesion [49]. Shedding of the glycocalyx is among the first events. 
This shedding releases syndecans with their antithrombotic properties into the cir-
culation [50–52]. Circulating catecholamines including epinephrine and high circu-
lating syndecan-1 (a marker of endothelial glycocalyx degradation) have been 
positively correlated with the degree of glycocalyx shedding and mortality after 
trauma as evidenced by the degree of hyperfibrinolysis and coagulopathy under-
scoring the involvement of all components of the blood-endothelial unit leading to 
blood failure (Fig. 3.6) [53].
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Glycocalyx shedding enables direct interactions between inflammatory blood 
cells and their mediators with the direct surface of the endothelium. This exposure 
is also capable of activating platelets as evidenced by increases in the platelet- 
derived inflammatory mediator soluble CD40 ligand that is also associated with 
sympathoadrenal and immune system activation and increased mortality [54]. 
Activated neutrophils migrate to the endothelial surface and contribute to oxidative 
damage of the surface through the release of neutrophil extracellular traps [55]. 
Endothelial cell surface oxidation may also promote direct red cell adhesion induc-
ing local thrombosis and further microcirculatory hypoperfusion [56]. Lastly, oxi-
dative stress from neutrophils is believed to directly impact circulating coagulation 
factors. For example, oxidation of a single key methionine in the Aα-C domain of 
fibrinogen to methionine sulfoxide by hypochlorous acid, produced by activated 
neutrophils can disrupt fibrin polymerization [57, 58]. Elucidation of the complex 
but integrated components of the blood-endothelial unit continue to argue for the 
concept and critical understanding of blood failure.

Given this, it is not surprising that the degree of endothelial damage is largely 
modulated by the degree of hypoperfusion or oxygen debt incurred which in turn 
ignites and feeds a spectrum of endothelial-driven coagulation responses that rap-
idly transitions to anticoagulation seen as the acute coagulopathy of trauma, as oxy-
gen debt accumulates and shock worsens. These responses are coordinated at the 
blood-endothelial interface and are further modulated by circulating catechol-
amines, anaerobic metabolites, inflammation, oxidations, proteolysis, and cellular 
dysfunction. The end result of this unchecked process leads to what can be consid-
ered blood failure making it the first organ to fail as a result of traumatic shock 
(Fig. 3.7). Mitigation of oxygen debt accumulation and rapid repayment of oxygen 
debt should be viewed as essential and primary goals of trauma care at the earliest 
possible times.

Fig. 3.6 Effect of hemorrhagic shock on the endothelial glycocalyx. Absence of the endothelial 
glycocalyx following hemorrhagic shock in a rat (left). Endothelial glycocalyx of experimental 
sham rat (right). (From Kozar and Pati [51], fig. 1, with permission of Wolters Kluwer Health, Inc.)
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 Blood Failure and Coagulopathy

Clinical observation strongly supports that coagulopathy as a manifestation of 
hemorrhagic blood failure is a serious evolving condition composed of many 
local and systemic responses to injury and shock. Primary among these responses 
in the release of tPA to activate fibrinolysis [59]. In addition, soluble thrombo-
modulin and activated protein C levels are increased. However, activated protein 
C levels are not sufficient in and of itself to anticoagulate normal plasma [60]. 
Platelets are also capable of activating sufficient FV to support hemostasis and 
overcome supraphysiologic levels of activated protein C [61]. While the proco-
agulant activity of thrombin generation is generally accepted to be elevated in 
trauma patients (even in the setting of coagulopathy) above those of healthy 
controls, the blood of trauma patients having prolonged prothrombin time/inter-
national normalized ratio (PT/INR) may not be truly reflective of reduced 
thrombin formation [62–64]. Abnormalities in plasma-based clotting assays like 
PT/INR may instead reflect complex interactions of fibrinogen depletion, fibrin 
degradation product interference with fibrin mesh formation, dysregulated 
thrombin generation, and excess plasmin activity manifested most obviously in 
fibrinolysis [9].

Perhaps most devastating in the evolution of hemorrhagic blood failure is 
increased proteolytic activity within blood. Multiple circulating proteolytic enzymes 
are increased after trauma including neutrophil elastase and plasmin [65]. Plasmin 
is a serine protease having proteolytic activity against a wide range of coagulation 
proteins, membrane proteins, and integrins. Plasmin proteolysis can activate FV, 
FVIII, and FXIIIa and can activate FXII, thus linking its activation to complement, 
inflammation, and immunity by direct generation of bradykinin from high molecu-
lar weight kininogen [66–68]. However, the most direct effect of plasmin on coagu-
lation is its activity against both fibrinogen and fibrin, which contributes to rapid 
fibrinogen consumption and fibrinolysis after traumatic shock [69, 70]. The degree 
of fibrinolysis is positively associated with mortality and it appears to be propor-
tional to the degree of shock [71].
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Fig. 3.7 Endotheliopathy of traumatic shock (see text for details). (With permission, Johansson 
et al. [121])
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Overall, severe trauma accompanied by shock appears to increase both thrombin 
generation and plasmin activation. While there may be some benefit to physiologic 
fibrinolysis after trauma, both an early increase in fibrinolysis and a later resistance 
to fibrinolysis are associated with increases mortality during traumatic shock [72]. 
Thus, while some degree of fibrinolysis may support vascular patency and tissue 
oxygen delivery during low flow states, it also exacerbates blood loss prior to surgi-
cal hemostasis. Studies such as the CRASH-2 trial demonstrate a mortality benefit 
in the setting of hemorrhage when tranexamic acid (an antifibrinolytic) is adminis-
tered early after hemorrhage strongly suggesting that shock-induced blood prote-
olysis is an important component of coagulopathy and driver of blood failure [73]. 
Underscoring the integrated nature of the blood and endothelium as an organ system 
is that inhibition of plasmin activation with tranexamic acid in traumatic shock also 
appears to improve endothelial barrier function, reducing tissue edema and injury 
due in part to decreased bradykinin generation [74].

Another critical contributor to traumatic hemorrhage-induced blood failure is 
platelet dysfunction. Circulating platelets act to initiate clot formation at wounds by 
adhesion and aggregation during primary hemostasis. In addition, they provide a 
local environment that supports thrombin generation where they forcefully contract 
fibrin to stabilize evolving clots. When measured by impedance aggregation and vis-
coelastic methods, hemorrhage-induced platelet dysfunction has been strongly 
linked to mortality [75, 76]. The discreet mechanisms by which platelet dysfunction 
occurs is unclear given that the surface of dysfunctional platelets also seem to be 
paradoxically activated [77]. Since platelet-induced clot contraction is critical to clot 
strength after injury and hemorrhage, it explains the variability in clotting strength 
profiles encountered in the early time periods after trauma and resuscitation [78].

In summary, traumatic shock induces a spectrum of endothelial-driven coagula-
tion responses that initially promote a procoagulant phenotype that is capable of 
rapidly devolving to an anticoagulation phenotype as oxygen debt accumulates and 
shock worsens. These responses are integrated at the blood-endothelial interface 
and are modulated by circulating catecholamines, anaerobic metabolites and acido-
sis, inflammation, oxidation, proteolysis, and cellular dysfunction (Fig. 3.8).
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Fig. 3.8 Schematic of key linkages between oxygen debt, cellular dysfunction, and coagulopathy 
during hemorrhagic-induced blood failure. (From White et  al. [9], with permission of Wolters 
Kluwer Health, Inc.)
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 Diagnosis and Monitoring of Blood Failure

Traumatic blood failure is defined as a cascading series of events within the blood 
compartment induced by injury and blood loss that culminate in the loss of the vital 
functions of the blood. Hemostasis is one vital blood function that can become dys-
functional contributing to increased mortality after severe injury. As explained ear-
lier, the pathophysiology of altered hemostasis is complex and linked to a series of 
events initiated by traumatic shock.

It should be emphasized that the major factor initiating blood failure and its 
severity is the magnitude of traumatic shock. Rapid halting of oxygen-deficit accu-
mulation and repayment of oxygen debt are essential in limiting the degree of blood 
failure. The ability to monitor for each aspect of blood failure would enhance the 
rapid application of therapies to prevent or treat it. Unfortunately, there are few 
readily available monitoring methods that have been demonstrated to be effective in 
accurately and rapidly detecting shock, hemostatic, immune and endothelial 
dysfunction.

Perhaps the most well-known tool that is beginning to move beyond the trauma 
center into the field is the use of point of care (POC) or near POC monitoring of 
whole blood lactate. As discussed earlier, lactate is capable of tracking the accumu-
lation and degree of oxygen debt during injury, but it requires serial measurements 
[22, 79–81]. The quantitative and temporal ranges and limits of lactate to predict 
blood failure in humans have not been well defined. In addition, given the biphasic 
nature of the relationship between oxygen delivery and consumption, clearance of 
lactate does not ensure repayment of oxygen debt [19]. Experimentally, it appears 
that the faster lactate clearance is, the better chance there is of repaying debt or at 
least of critical portion of debt that improves survival [24, 82]. Thus, trajectory of 
clearance is important. Elevations of lactate should prompt aggressive efforts to halt 
hemorrhage and to provide a level or resuscitation that limits further lactate accu-
mulation and begins to clear lactate. Use of permissive hypotension in the RDCR or 
DCR setting pose challenges to this strategy and must be balanced with the need to 
limit ongoing hemorrhage as well as the availability of blood products to use in 
resuscitation.

Other potential useful tools include tissue hemoglobin oxygen saturation (StO2) 
and compensatory reserve index (CRI) monitoring. Based on the relationship 
between oxygen delivery, oxygen consumption, and oxygen extraction, the use of 
StO2 monitoring is attractive. Spectroscopy techniques including near infrared 
spectroscopy (NIRS) and resonance Raman spectroscopy (RRS) attempt to exploit 
the fact that the majority of blood volume within a tissue is 70–80% venous [83]. 
The ability to monitor aggregate StO2 of a tissue is thus representative of the postex-
traction portion of the tissue compartment similar to monitoring of central or mixed 
venous oxygen saturation (Fig.  3.2). Thus, the potential exist for StO2 to detect 
reductions in tissue oxygenation prior to reaching critical DO2 as well as to ensure 
that during resuscitation that oxygen extraction ratios is increased into normal 
ranges helping to ensure that oxygen debt is being rapidly repaid as lactate levels 
fall [33, 84]. Certain caveats to the use of this strategy exist including choosing a 

3 Blood Failure: Pathophysiology and Diagnosis



54

target tissue to monitor that is sensitive to reductions in blood flow and responsive 
to resuscitation. For NIRS, the use of skeletal muscle beds such as the deltoid or 
thenar eminence has been used. However, when used in this manner, NIRS will also 
capture myoglobin oxygenation spectra which cannot be differentiated from hemo-
globin. This is important since the p50 of hemoglobin is 5 mmHg versus 26 mmHg 
for hemoglobin [84]. This fact may prevent NIRS from acting as a sensitive early 
warning monitoring modality. Its use in trauma to guide treatment has been met 
with mixed results with wide variability in baseline readings [85, 86]. While RRS 
using the buccal mucosa appears to overcome these issues, its use is still experimen-
tal and has only been tested in preclinical models [87]. If NIRS is used, attempts to 
normalized StO2 to values above 70% should be made with concomitant tracking of 
lactate levels. This same strategy should be utilized if monitoring of central venous 
hemoglobin oxygen saturation (ScvO2) is available in the in-hospital setting. 
Experimental models indicate that changes in clot strength during hemorrhage are 
impacted by changes in ScvO2 changes indicating, again, the sensitivity of hemo-
stasis to tissue hypoxia [88].

CRI is a newly developed technique utilizing artificial intelligence to identify 
and track changes in the photoplethysmograph (PPG) of a pulse oximeter to detect 
vascular changes associated with cardiovascular decompensation due to central 
hypovolemia [89, 90]. Preliminary clinical data suggest CRI may be of value in 
identifying patients who are actively decompensating before changes in traditional 
vital signs such as systolic blood pressure occur [89]. In one study, abnormal CRI 
values were found to equal the ability to identify hemorrhage and correlated well 
with lactate levels themselves [91]. While promising, the ability of CRI to robustly 
detect and track the accumulation of lactate and its clearance require further study.

In summary, serial whole blood lactate and surrogates such as base deficit are 
currently the most rapid and efficient means to estimate and monitor the degree of 
oxygen debt and its resolution associated with traumatic shock and its resuscitation 
and should be used in conjunction with the coagulation-based laboratory methods 
described below. Laboratory methods have been used to identify and characterize 
these components of blood failure with variable success. In this section, we review 
the use of laboratory methods used to identify blood failure with an emphasis on 
identification of coagulopathy after injury.

 Plasma-Based Laboratory Methods

The prothrombin time (PT) assay is a widely used and standard laboratory coagula-
tion assay measuring the extrinsic coagulation pathway activation state. The test is 
primarily used to manage anticoagulation therapy using vitamin K antagonists. The 
PT has been used to identify the presence of a distinct “acute coagulopathy of 
trauma” present in approximately 25% of severely injured trauma patients [4]. A 
prothrombin time test (PT) of >18 seconds was used as the definition of coagulopa-
thy and was associated with an approximately four- to sixfold increased mortality 
[4]. Since these initial reports, PT and the PT-based standardized International 
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Normalized Ratio (INR) have continued to be used as a primary laboratory method 
for identification of coagulopathy. A large multicenter study of PT ratio found that 
any increase beyond 1.2 represented an increased mortality for trauma patients, 
increasing from 7% to 22% [92]. However, increased INR may overestimate the 
presence of coagulopathy in stable trauma and surgical patients [93]. Further 
increasing the INR cutoff to >1.5 found increased specificity for both hemorrhagic 
and thrombotic complications in trauma patients [94].

The activated partial thromboplastin time (aPTT) is another standard plasma- 
based coagulation assay that measures the intrinsic pathway of clot formation. It 
was developed and is most widely used to manage anticoagulation therapy using 
unfractionated heparin. Prolongation of aPTT is predictive of mortality in trauma 
patients where it was found to be less sensitive but more specific [4]. While the 
aPTT is a part of most standard coagulation panels measured in trauma patients, its 
use for traumatic coagulopathy and blood failure has been limited. The PT/INR and 
aPTT are often measured together and are useful as screening tools when one or 
both are prolonged in trauma patients. However, since procoagulant activity is typi-
cally increased in the early stages of traumatic coagulopathy and blood failure, their 
usefulness to guide specific therapies are limited [62, 63]. This limitation likely 
stems from the fact that multiple coagulation abnormalities ranging from decreased 
activity of specific coagulation factors such as Factor V and VIII, endogenous hepa-
rinization, and loss of fibrinogen are present in trauma patients and can induce pro-
longation of one or both of these assays [52, 95, 96]. Thus, they are most useful as 
screening tools capable of identifying the risk of coagulopathy and should be used 
to initiate more specific laboratory investigation.

Of particular importance to the detection and treatment of blood failure is the con-
centration of the hemostatic protein fibrinogen which is negatively associated with 
mortality after trauma [96]. A popular method for measuring fibrinogen concentration 
in plasma is based upon the method of Von Clauss, where functional fibrinogen con-
centration in plasma is measured by its time to fibrin formation after activation by an 
excess of thrombin after sample dilution [97]. Fibrinogen is rapidly lost from the blood 
during hemorrhage requiring blood component transfusion, being the first coagulation 
protein to reach critically low functional levels in experimental models and during sur-
gery with significant blood loss [98]. Trauma patients with decreased fibrinogen con-
centrations in the emergency department require more blood product transfusions and 
are more likely to die [96]. Standard cutoff values for fibrinogen replacement have 
increased steadily as more evidence of its importance has accumulated. Historical cut-
off values of 100 mg/dl have increased to a recommended maintenance of 150–200 mg/
dl by European guidelines [99]. A more recent large multicenter study of fibrinogen 
concentration in trauma patients found that mortality doubled when fibrinogen was less 
than 228 mg/dl, suggesting that replacement thresholds are likely to increase even fur-
ther [100]. Despite strong associations with clinical outcomes in trauma, fibrinogen 
concentration is not measured directly in many trauma centers. However, clinically 
relevant hypofibrinogenemia is common and shows a strong correlation with other 
standard laboratory parameters such as hemoglobin concentration and base excess, 
which may indirectly suggest the need for early fibrinogen replacement [101].
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Another important contributor to coagulopathy after trauma is increased proteo-
lytic activation in the blood by generation of plasmin from plasminogen. Plasmin is 
a fairly nonspecific protease that has particular affinity for enzymatic degradation of 
fibrin. Plasmin’s degradation of fibrin increases the fibrin-specific cleave product 
D-dimer in blood. D-dimer is commonly used clinically as a screening tool to iden-
tify venous thromboembolism in emergency department patients [102]. There is 
ample evidence supporting significant elevations of D-dimer in blood during blood 
failure with coagulopathy [71, 103, 104]. However, D-dimer tends to be elevated in 
most trauma patients, and thresholds for sensitive detection of coagulopathy and 
blood failure have not yet been reported.

 Whole-Blood Laboratory Methods

Common plasma-based laboratory methods used for detection of coagulopathy 
after trauma cannot consider the cellular contributions to blood failure. This is 
important because cellular dysfunction, especially of blood platelets, is strongly 
associated with mortality after trauma [77]. Kutcher et al. used multiple electrode 
aggregometry to find that decreased platelet aggregation responses to any agonist in 
emergency department trauma patients was associated with a tenfold mortality 
increase [75]. Platelet contraction is also a primary contributor to changes in clot 
formation in emergency department trauma patients [18]. In addition, changes in 
hematocrit, mostly determined by red blood cell mass, can also directly affect clot 
formation and hemostasis [105, 106].

The whole-blood-based laboratory method that has gained significant traction in 
trauma medicine and transfusion practice is the viscoelastic hemostatic assay 
(VHA). The measurement is achieved using a cylindrical cup filled with whole 
blood into which a central pin is inserted and acts as a sensor. Either the cup or pin 
is rotated through a small angle at low frequency around the vertical axis. Blood 
contained within the cup is activated to clot, which couples the motion of the cup to 
the pin via fibrin causing a change in amplitude of rotation of the sensor (measured 
in mm) in either direction (Fig. 3.9). The resulting extremes in amplitude are plotted 
over time and are used to detect the elastic parameters of clot initiation, propaga-
tion, and durability over time. Originally developed by Hartert, this assay monitors 
the elastic properties of whole blood clots over time, reporting clot onset time, clot 
formation kinetics, clot firmness or amplitude, and clot degradation or fibrinolysis 
(Fig. 3.10) [107].

This method is advantageous because it includes contributions of all blood compo-
nents to coagulopathy and offers a simplified functional view of coagulation to the 
clinician. The two major devices in clinical use are thrombelastography (TEG) and 
rotational thromboelastometry (ROTEM). These devices make similar measurements 
but differ enough so that they should not be used interchangeably [108]. Alternative 
methods using resonance frequency and ultrasound to measure viscoelastic properties 
of blood clots are available, but have not yet gained wide acceptance [109, 110]. 
However, caution should be taken when interpreting platelet function using whole 
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Fig. 3.9 Hartert’s thrombelastograph device (H-TEG). The cylindrical container (cup) is rotated 
through a total angle of 4.75 around the vertical axis. Light from a slit lamp is reflected onto photo-
graphic film that moves at a rate of 2 mm/min to record rotation of the rod (the film roll is 15 m long 
and 100 mm wide). In practice, lines between the dots on the film are not visible because the intensity 
of the light and photosensitivity of the film are configured so that the film is blackened only when the 
light is stationary, that is, at the point of maximum rotation of the cup when there is a 1-second pause 
in the oscillatory movement. (From Hochleitner et al. [122], with permission of SAGE Journals)
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blood VHAs. Activators such as tissue factor and kaolin used in these assays generate 
adequate thrombin to activate platelets fully, even if alternative platelet activation 
pathways, including arachidonic acid and ADP, are extrinsically blocked or internally 
deranged. The result is a lack of sensitivity to exogenous platelet inhibitors such as 
aspirin and clopidogrel. Alternative platelet-specific activators have been developed to 
overcome these limitations (e.g., platelet mapping assays) and have shown significant 
platelet dysfunction in trauma patients [76]. However, their accuracy and utility has 
not yet been defined in the trauma population.

Blood failure induces progressive impairments of clot formation over time that 
can be detected using VHAs. Davenport et al. found that the first ROTEM abnor-
mality during traumatic coagulopathy was an absolute decrease of clot amplitude 
[111]. As coagulopathy develops, VHA parameters continue to evolve in predict-
able ways. Progressive prolongation of clot activation or onset times appear in addi-
tion to decreased clot amplitude reflecting decrease clot strength. Increasing 
fibrinolytic intensity induces further decreases of clot amplitude with increased ter-
minal clot breakdown representing fibrinolysis [112]. Terminal coagulopathy repre-
senting a likely nonsurvivable injury is represented by a VHA curve assuming a 
diamond shape (death diamond) with prolonged clot onset time, low amplitude, and 
rapid terminal clot breakdown (Fig. 3.11) [113].

VHAs have demonstrated increased ability to predict transfusion needs, includ-
ing massive transfusion, compared to plasma-based laboratory methods when mea-
sured in trauma patients at hospital admission [114]. A single center randomized 

Fig. 3.11 Characteristic viscoelastic hemostatic assay profiles depicting normal clot formation 
and those associated with early and late blood failure including the “death diamond” of late blood 
failure characteristic of hyperfibrinolysis
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controlled trial of goal-directed massive transfusion using VHA parameters vs. con-
ventional coagulation tests also demonstrated improved survival with less blood 
products used [115]. VHAs can also be useful because their characteristics and 
behavior under different activating and inhibitory conditions can be used to diag-
nose sources of coagulopathy and guide hemostatic therapies. An increasing num-
ber of trauma centers use goal-directed transfusion algorithms based upon VHA 
measurements. They include transfusion of plasma or prothrombin concentrates for 
prolongation of clot onset times, transfusion of platelets and cryoprecipitate or 
fibrinogen concentrates for decreased clot amplitude, and the use of the antifibrino-
lytic drug tranexamic acid for clot lysis (Fig. 3.12) [116, 117].

While VHAs are increasingly being used to diagnose and guide therapy for the 
coagulopathy of blood failure after trauma, questions still surround their utility for this 
use. Perhaps the least clear application of VHAs for treatment of blood failure is their 
ability to identify clinically relevant fibrinolysis and guide subsequent antifibrinolytic 
therapy. Raza et al. reported that over 50% of trauma patients had clinically relevant 

Algorithm for treating bleeding in patients with TIC 

Run ROTEM (EXTEM, INTEM, FIBTEM, APTEM)
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Temperature >34°C 
pH > 7.2 
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Haematocrit > 24% 

TXA 15—20 mg/kg BW
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FIBTEM 0-3mm:→ 6g
FIBTEM 4-6mm:→ 3-4g

Treat coagulation factor deficiency
PCC:
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Platelet concentrate

CT: 81s-100s:  500 - 600U
CT: 1011s-120s:           1000 - 1200U
CT: > 120s:  1500 - 1800U
and/or FFP:  15-30mL/kg BW

Treat (hyper)fibrinolysis

Reassess after treatment

Reassess after treatment

Reassess after treatment

Reassess after treatment

FIBTEM CA10 < 7 mm

EXTEM CT > 80 sec

EXTEM CA10 < 40 mm 
(while FIBTEM CA

10
 > 12 mm 

and platelet count < 50,000/µl)*  
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EXTEM CA10 < 30 mm

Treat heparin effect 
Protamine 1000–2000 U 

TXA 15-20 mg/kg BW
Fibrinogen concentrate 6–8 g 

PCC 20-30 U/kg BW 
or FFP 30 mL/kg BW 

Platelet concentrate 2 U

Consider 
Factor XIII 1250 UU 

2. focus on:
thrombin

generation deficit

3. focus on:
platelet deficit

Severe clot
deficiency

potential heparin
exposure

(e.g. cell-saver blood)

clot instability
nonrelated to

hyperfibrinolysis

HEPTEM CT < INTEM CT

ROTEM may also identify:

both EXTEM ML > 15%
and APTEM ML >15%

Temperature
BGA

Electrolytes
Haematocrit

Severe trauma (ISS
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shock

Fig. 3.12 Example of goal-directed transfusion therapy for treatment of trauma-induced coagula-
tion (TIC) using viscoelastic hemostatic assays such as rotational thromboelastography. (From 
Schochl et al. [116], fig. 2, with permission of Wolters Kluwer Health)
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fibrinolytic activation measured by plasmin-antiplasmin complex level, while only 
5% of these patients demonstrated appreciable clot lysis on ROTEM [71]. In addition, 
there appears to be significant variation of the lysis parameters reported by TEG that 
suggesting that fibrinolysis is inhibited, when underlying significant fibrinolytic acti-
vation is likely present [103]. Systematic reviews of VHAs for diagnosis of coagu-
lopathy and therapeutic guidance during blood failure offer some evidence that these 
tests can be useful, but lack of overall evidence, including lack of large multicenter 
prospective randomized trials, continues to limit their use [118, 119].

 Conclusion

The blood-endothelial unit (Blood) is a complex organ and like other organs is 
prone to failure when severely injured. The link between the degree of traumatic 
shock and blood failure makes blood the primary target organ for treatment using 
the principles of DCR and RDCR. A more robust understanding of the tightly linked 
physiologic and biochemical elements responsible for blood failure and its resolu-
tion will hopefully create a new generation of diagnostic and therapeutic approaches 
to hemostatic resuscitation strategies for DCR and RDCR that improve outcomes.

References

 1. Murray CJ, Lopez AD. Mortality by cause for eight regions of the world: Global Burden of 
Disease Study. Lancet. 1997;349(9061):1269–76.

 2. Shackford SR, et al. Epidemiology and pathology of traumatic deaths occurring at a Level I 
Trauma Center in a regionalized system: the importance of secondary brain injury. J Trauma. 
1989;29(10):1392–7.

 3. Eastridge BJ, et al. Death on the battlefield (2001–2011): implications for the future of com-
bat casualty care. J Trauma Acute Care Surg. 2012;73(6 Suppl 5):S431–7.

 4. Brohi K, et  al. Acute traumatic coagulopathy. J Trauma Inj Infect Crit Care. 
2003;54(6):1127–30.

 5. Hess JR, et al. The coagulopathy of trauma: a review of mechanisms. J Trauma Inj Infect Crit 
Care. 2008;65(4):748–54.

 6. Holcomb JB. Damage control resuscitation. J Trauma. 2007;62(6 Suppl):S36–7.
 7. Holcomb JB, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 

ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. 
JAMA. 2015;313(5):471–82.

 8. Bjerkvig CK, et  al. “Blood failure” time to view blood as an organ: how oxygen debt 
contributes to blood failure and its implications for remote damage control resuscitation. 
Transfusion. 2016;56(Suppl 2):S182–9.

 9. White NJ, et al. Hemorrhagic blood failure: oxygen debt, coagulopathy, and endothelial dam-
age. J Trauma Acute Care Surg. 2017;82(6S Suppl 1):S41–9.

 10. Brohi K, et al. Acute traumatic coagulopathy: initiated by hypoperfusion: modulated through 
the protein C pathway? Ann Surg. 2007;245(5):812–8.

 11. Maegele M, et al. Early coagulopathy in multiple injury: an analysis from the German Trauma 
Registry on 8724 patients. Injury. 2007;38(3):298–304.

 12. Manikis P, et al. Correlation of serial blood lactate levels to organ failure and mortality after 
trauma. Am J Emerg Med. 1995;13(6):619–22.

N. J. White and K. R. Ward



61

 13. Nast-Kolb D, et al. Indicators of the posttraumatic inflammatory response correlate with organ 
failure in patients with multiple injuries. J Trauma. 1997;42(3):446–54; discussion 454–5.

 14. Davis JW, et al. Admission base deficit predicts transfusion requirements and risk of compli-
cations. J Trauma. 1996;41(5):769–74.

 15. Rutherford EJ, et  al. Base deficit stratifies mortality and determines therapy. J Trauma. 
1992;33(3):417–23.

 16. Morrison JJ, et al. Military application of tranexamic acid in trauma emergency resuscitation 
(MATTERs) study. Arch Surg. 2012;147(2):113–9.

 17. Zhao Z, et al. Cardiolipin-mediated procoagulant activity of mitochondria contributes to trau-
matic brain injury-associated coagulopathy in mice. Blood. 2016;127(22):2763–72.

 18. White NJ, et al. Early hemostatic responses to trauma identified with hierarchical clustering 
analysis. J Thromb Haemost. 2015;13(6):978–88.

 19. Barbee RW, Reynolds PS, Ward KR. Assessing shock resuscitation strategies by oxygen debt 
repayment. Shock. 2010;33(2):113–22.

 20. Shoemaker WC, Appel PL, Kram HB. Tissue oxygen debt as a determinant of lethal and 
nonlethal postoperative organ failure. Crit Care Med. 1988;16(11):1117–20.

 21. Rixen D, et  al. A pig hemorrhagic shock model: oxygen debt and metabolic acidemia as 
indicators of severity. Shock. 2001;16(3):239–44.

 22. Rixen D, Siegel JH.  Bench-to-bedside review: oxygen debt and its metabolic corre-
lates as quantifiers of the severity of hemorrhagic and post-traumatic shock. Crit Care. 
2005;9(5):441–53.

 23. Dunham CM, et  al. Oxygen debt and metabolic acidemia as quantitative predictors of 
mortality and the severity of the ischemic insult in hemorrhagic-shock. Crit Care Med. 
1991;19(2):231–43.

 24. Siegel JH, et al. Oxygen debt criteria quantify the effectiveness of early partial resuscitation 
after hypovolemic hemorrhagic shock. J Trauma Inj Infect Crit Care. 2003;54(5):862–80.

 25. Chaudry IH, et al. Alterations in electron transport and cellular metabolism with shock and 
trauma. Prog Clin Biol Res. 1983;111:67–88.

 26. Szabo C, Modis K. Pathophysiological roles of peroxynitrite in circulatory shock. Shock. 
2010;34(Suppl 1):4–14.

 27. Weidinger A, Kozlov AV.  Biological activities of reactive oxygen and nitrogen species: 
oxidative stress versus signal transduction. Biomol Ther. 2015;5(2):472–84. https://doi.
org/10.3390/biom5020472.

 28. Valko M, et al. Free radicals and antioxidants in normal physiological functions and human 
disease. Int J Biochem Cell Biol. 2007;39(1):44–84.

 29. Chaudry IH, Clemens MG, Baue AE. Alterations in cell function with ischemia and shock 
and their correction. Arch Surg. 1981;116(10):1309–17.

 30. Rady MY, et  al. A comparison of the effects of skeletal muscle injury and somatic affer-
ent nerve stimulation on the response to hemorrhage in anesthetized pigs. J Trauma. 
1993;35(5):756–61.

 31. James JH, et al. Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet. 
1999;354(9177):505–8.

 32. Siegel JH. Physiologic, metabolic and mediator responses in posttrauma ARDS and sepsis: is 
oxygen debt a critical initiating factor? J Physiol Pharmacol. 1997;48(4):559–85.

 33. Ward KR.  The microcirculation: linking trauma and coagulopathy. Transfusion. 
2013;53(Suppl 1):38S–47S.

 34. Guyton AC. Textbook of medical physiology. 11th ed. Philadelphia: Elsevier Saunders; 2011.
 35. Ward KR, Ivatury RR, Barbee RW. Endpoints of resuscitation for the victim of trauma. J 

Intensive Care Med. 2001;16(2):55–75.
 36. Aird WC. Endothelium as an organ system. Crit Care Med. 2004;32(5 Suppl):S271–9.
 37. Trzeciak S, et al. Resuscitating the microcirculation in sepsis: the central role of nitric oxide, 

emerging concepts for novel therapies, and challenges for clinical trials. Acad Emerg Med. 
2008;15(5):399–413.

3 Blood Failure: Pathophysiology and Diagnosis

https://doi.org/10.3390/biom5020472
https://doi.org/10.3390/biom5020472


62

 38. Aird WC.  Phenotypic heterogeneity of the endothelium: II.  Representative vascular beds. 
Circ Res. 2007;100(2):174–90.

 39. Aird WC. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mecha-
nisms. Circ Res. 2007;100(2):158–73.

 40. Aird WC. Endothelium in health and disease. Pharmacol Rep. 2008;60(1):139–43.
 41. Aird WC. Endothelium and haemostasis. Hamostaseologie. 2015;35(1):11–6.
 42. Holcomb JB, Pati S. Optimal trauma resuscitation with plasma as the primary resuscitative fluid: 

the surgeon’s perspective. Hematology Am Soc Hematol Educ Program. 2013;2013:656–9.
 43. Watson JJ, Pati S, Schreiber MA. Plasma transfusion: history, current realities, and novel 

improvements. Shock. 2016;46(5):468–79.
 44. Buchele GL, Ospina-Tascon GA, De Backer D. How microcirculation data have changed my 

clinical practice. Curr Opin Crit Care. 2007;13(3):324–31.
 45. Spronk HM, Borissoff JI, ten Cate H. New insights into modulation of thrombin formation. 

Curr Atheroscler Rep. 2013;15(11):363.
 46. Esmon CT. Inflammation and the activated protein C anticoagulant pathway. Semin Thromb 

Hemost. 2006;32(Suppl 1):49–60.
 47. Thurston G, et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat 

Med. 2000;6(4):460–3.
 48. Tuma M, et  al. Trauma and endothelial glycocalyx: the microcirculation helmet? Shock. 

2016;46(4):352–7.
 49. Crimi E, et al. Effects of intracellular acidosis on endothelial function: an overview. J Crit 

Care. 2012;27(2):108–18.
 50. Haywood-Watson RJ, et al. Modulation of syndecan-1 shedding after hemorrhagic shock and 

resuscitation. PLoS One. 2011;6(8):e23530.
 51. Kozar RA, Pati S. Syndecan-1 restitution by plasma after hemorrhagic shock. J Trauma Acute 

Care Surg. 2015;78(6):S83–6 Suppl 1.
 52. Ostrowski SR, Johansson PI. Endothelial glycocalyx degradation induces endogenous hepa-

rinization in patients with severe injury and early traumatic coagulopathy. J Trauma Acute 
Care Surg. 2012;73(1):60–6.

 53. Johansson PI, et  al. Traumatic endotheliopathy: a prospective observational study of 424 
severely injured patients. Ann Surg. 2017;265(3):597–603.

 54. Johansson PI, et  al. High sCD40L levels early after trauma are associated with enhanced 
shock, sympathoadrenal activation, tissue and endothelial damage, coagulopathy and mortal-
ity. J Thromb Haemost. 2012;10(2):207–16.

 55. Itagaki K, et  al. Mitochondrial DNA released by trauma induces neutrophil extracellular 
traps. PLoS One. 2015;10(3):e0120549.

 56. Barr JD, et al. Red blood cells mediate the onset of thrombosis in the ferric chloride murine 
model. Blood. 2013;121(18):3733–41.

 57. Weigandt KM, et al. Fibrin clot structure and mechanics associated with specific oxidation of 
methionine residues in fibrinogen. Biophys J. 2012;103(11):2399–407.

 58. White NJ, et  al. Post-translational oxidative modification of fibrinogen is associated with 
coagulopathy after traumatic injury. Free Radic Biol Med. 2016;96:181–9.

 59. van Helmond N, et al. Coagulation changes during lower body negative pressure and blood 
loss in humans. Am J Physiol Heart Circ Physiol. 2015;309(9):H1591–7.

 60. Cohen MJ, et al. Critical role of activated protein C in early coagulopathy and later organ 
failure, infection and death in trauma patients. Ann Surg. 2012;255(2):379–85.

 61. Campbell JE, Meledeo MA, Cap AP. Comparative response of platelet fV and plasma fV to 
activated protein C and relevance to a model of acute traumatic coagulopathy. PLoS One. 
2014;9(6):e99181.

 62. Chandler WL. Procoagulant activity in trauma patients. Am J Clin Pathol. 2010;134(1):90–6.
 63. Dunbar NM, Chandler WL.  Thrombin generation in trauma patients. Transfusion. 

2009;49(12):2652–60.
 64. Cardenas JC, et  al. Measuring thrombin generation as a tool for predicting hemostatic 

potential and transfusion requirements following trauma. J Trauma Acute Care Surg. 
2014;77(6):839–45.

N. J. White and K. R. Ward



63

 65. Hayakawa M, et al. Disseminated intravascular coagulation at an early phase of trauma is 
associated with consumption coagulopathy and excessive fibrinolysis both by plasmin and 
neutrophil elastase. Surgery. 2011;149(2):221–30.

 66. Kaplan AP, Ghebrehiwet B. The plasma bradykinin-forming pathways and its interrelation-
ships with complement. Mol Immunol. 2010;47(13):2161–9.

 67. Marcos-Contreras OA, et al. Hyperfibrinolysis increases blood-brain barrier permeability by 
a plasmin- and bradykinin-dependent mechanism. Blood. 2016;128(20):2423–34.

 68. Omar MN, Mann KG. Inactivation of factor Va by plasmin. J Biol Chem. 1987;262(20):9750–5.
 69. Chapman MP, et  al. Overwhelming tPA release, not PAI-1 degradation, is responsible 

for hyperfibrinolysis in severely injured trauma patients. J Trauma Acute Care Surg. 
2016;80(1):16–23; discussion 23–5.

 70. Cardenas JC, et al. Elevated tissue plasminogen activator and reduced plasminogen activator 
inhibitor promote hyperfibrinolysis in trauma patients. Shock. 2014;41(6):514–21.

 71. Raza I, et  al. The incidence and magnitude of fibrinolytic activation in trauma patients. J 
Thromb Haemost. 2013;11(2):307–14.

 72. Moore HB, et al. Acute fibrinolysis shutdown after injury occurs frequently and increases 
mortality: a multicenter evaluation of 2,540 severely injured patients. J Am Coll Surg. 
2016;222(4):347–55.

 73. CRASH-2 Trial Collaborators. Effects of tranexamic acid on death, vascular occlusive 
events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a 
randomised, placebo-controlled trial. Lancet. 2010;376(9734):23–32.

 74. Cap AP. Plasmin: a driver of hemovascular dysfunction. Blood. 2016;128(20):2375–6.
 75. Kutcher ME, et al. Characterization of platelet dysfunction after trauma. J Trauma Acute Care 

Surg. 2012;73(1):13–9.
 76. Wohlauer MV, et al. Early platelet dysfunction: an unrecognized role in the acute coagulopa-

thy of trauma. J Am Coll Surg. 2012;214(5):739–46.
 77. Jacoby RC, et al. Platelet activation and function after trauma. J Trauma. 2001;51(4):639–47.
 78. White NJ, et al. Clot formation is associated with fibrinogen and platelet forces in a cohort of 

severely injured Emergency Department trauma patients. Shock. 2015;44(Suppl 1):39–44.
 79. Guyette F, et al. Prehospital serum lactate as a predictor of outcomes in trauma patients: a 

retrospective observational study. J Trauma. 2011;70(4):782–6.
 80. Guyette FX, et al. A comparison of prehospital lactate and systolic blood pressure for pre-

dicting the need for resuscitative care in trauma transported by ground. J Trauma Acute Care 
Surg. 2015;78(3):600–6.

 81. Tobias AZ, et  al. Pre-resuscitation lactate and hospital mortality in prehospital patients. 
Prehosp Emerg Care. 2014;18(3):321–7.

 82. Abramson D, et al. Lactate clearance and survival following injury. J Trauma. 1993;35(4):584–
8; discussion 588–9.

 83. Shepherd JT. Circulation to skeletal muscle. In: Shepherd JT, Abboud FM, Geiger SR, edi-
tors. Handbook of physiology. Bethesda: American Physiology Society; 1983. p. 319–70.

 84. Ward KR, et al. Near infrared spectroscopy for evaluation of the trauma patient: a technology 
review. Resuscitation. 2006;68(1):27–44.

 85. Cohn SM, et al. Tissue oxygen saturation predicts the development of organ dysfunction dur-
ing traumatic shock resuscitation. J Trauma Inj Infect Crit Care. 2007;62(1):44–54.

 86. Crookes BA, et al. Can near-infrared spectroscopy identify the severity of shock in trauma 
patients? J Trauma. 2005;58(4):806–13; discussion 813–6.

 87. Tiba MH, et al. Tissue oxygenation monitoring using resonance Raman spectroscopy during 
hemorrhage. J Trauma Acute Care Surg. 2014;76(2):402–8.

 88. White NJ, et al. Systemic central venous oxygen saturation is associated with clot strength 
during traumatic hemorrhagic shock: a preclinical observational model. Scand J Trauma 
Resusc Emerg Med. 2010;18:64.

 89. Johnson MC, et al. Compensatory reserve index: performance of a novel monitoring technol-
ogy to identify the bleeding trauma patient. Shock. 2018;49(3):295–300.

 90. Moulton SL, et  al. Running on empty? The compensatory reserve index. J Trauma Acute 
Care Surg. 2013;75(6):1053–9.

3 Blood Failure: Pathophysiology and Diagnosis



64

 91. Johnson MC, et al. Comparison of compensatory reserve and arterial lactate as markers of 
shock and resuscitation. J Trauma Acute Care Surg. 2017;83(4):603–8.

 92. Frith D, Davenport R, Brohi K.  Acute traumatic coagulopathy. Curr Opin Anaesthesiol. 
2012;25(2):229–34.

 93. McCully SP, et al. The international normalized ratio overestimates coagulopathy in stable 
trauma and surgical patients. J Trauma Acute Care Surg. 2013;75(6):947–53.

 94. Peltan ID, et al. An international normalized ratio-based definition of acute traumatic coagu-
lopathy is associated with mortality, venous thromboembolism, and multiple organ failure 
after injury. Crit Care Med. 2015;43(7):1429–38.

 95. Rizoli SB, et al. Clotting factor deficiency in early trauma-associated coagulopathy. J Trauma. 
2011;71(5 Suppl 1):S427–34.

 96. Rourke C, et al. Fibrinogen levels during trauma hemorrhage, response to replacement ther-
apy, and association with patient outcomes. J Thromb Haemost. 2012;10(7):1342–51.

 97. Clauss V.  Gerinnungsphysiologische Schnell methode zur Bestimmung des Fibrinogens. 
Acta Haematol. 1957;17:237–46.

 98. Hiippala ST, Myllyla GJ, Vahtera EM. Hemostatic factors and replacement of major blood 
loss with plasma-poor red cell concentrates. Anesth Analg. 1995;81(2):360–5.

 99. Rossaint R, et al. The European guideline on management of major bleeding and coagulopa-
thy following trauma: fourth edition. Crit Care. 2016;20:100.

 100. Hagemo JS, et al. Prevalence, predictors and outcome of hypofibrinogenaemia in trauma: a 
multicentre observational study. Crit Care. 2014;18(2):R52.

 101. Schlimp CJ, et al. Estimation of plasma fibrinogen levels based on hemoglobin, base excess 
and Injury Severity Score upon emergency room admission. Crit Care. 2013;17(4):R137.

 102. Lippi G, et  al. D-dimer testing for suspected venous thromboembolism in the emergency 
department. Consensus document of AcEMC, CISMEL, SIBioC, and SIMeL.  Clin Chem 
Lab Med. 2014;52(5):621–8.

 103. Cardenas JC, et al. Teg lysis shutdown represents coagulopathy in bleeding trauma patients: 
analysis of the PROPPR cohort. Shock. 2019;51:273–83.

 104. Gall LS, et al. The S100A10 pathway mediates an occult hyperfibrinolytic subtype in trauma 
patients. Ann Surg. 2019;269:1184–91.

 105. Spann AP, et al. The effect of hematocrit on platelet adhesion: experiments and simulations. 
Biophys J. 2016;111(3):577–88.

 106. Hellem AJ, Borchgrevink CF, Ames SB. The role of red cells in haemostasis: the relation 
between haematocrit, bleeding time and platelet adhesiveness. Br J Haematol. 1961;7:42–50.

 107. Hartert H, Schaeder J.  The physical and biological constants of thrombelastography. 
Biorheology. 1962;1:31–9.

 108. Sankarankutty A, et al. TEG(R) and ROTEM(R) in trauma: similar test but different results? 
World J Emerg Surg. 2012;7(Suppl 1):S3.

 109. Ferrante EA, et al. A novel device for the evaluation of hemostatic function in critical care 
settings. Anesth Analg. 2016;123(6):1372–9.

 110. Meledeo MA, et al. Functional stability of the TEG 6s hemostasis analyzer under stress. J 
Trauma Acute Care Surg. 2018;84(6S Suppl 1):S83–8.

 111. Davenport R, et al. Functional definition and characterization of acute traumatic coagulopa-
thy. Crit Care Med. 2011;39(12):2652–8.

 112. Schochl H, et al. Hyperfibrinolysis after major trauma: differential diagnosis of lysis patterns 
and prognostic value of thrombelastometry. J Trauma. 2009;67(1):125–31.

 113. Chapman MP, et al. The “death diamond”: rapid thrombelastography identifies lethal hyper-
fibrinolysis. J Trauma Acute Care Surg. 2015;79(6):925–9.

 114. Holcomb JB, et al. Admission rapid thrombelastography can replace conventional coagula-
tion tests in the emergency department: experience with 1974 consecutive trauma patients. 
Ann Surg. 2012;256(3):476–86.

 115. Gonzalez E, et al. Goal-directed hemostatic resuscitation of trauma-induced coagulopathy: a 
pragmatic randomized clinical trial comparing a viscoelastic assay to conventional coagula-
tion assays. Ann Surg. 2016;263(6):1051–9.

N. J. White and K. R. Ward



65

 116. Schochl H, Schlimp CJ, Voelckel W. Potential value of pharmacological protocols in trauma. 
Curr Opin Anaesthesiol. 2013;26(2):221–9.

 117. Gonzalez E, Moore EE, Moore HB.  Management of trauma-induced coagulopathy with 
thrombelastography. Crit Care Clin. 2017;33(1):119–34.

 118. Da Luz LT, et al. Effect of thromboelastography (TEG(R)) and rotational thromboelastometry 
(ROTEM(R)) on diagnosis of coagulopathy, transfusion guidance and mortality in trauma: 
descriptive systematic review. Crit Care. 2014;18(5):518.

 119. Hunt H, et al. Thromboelastography (TEG) and rotational thromboelastometry (ROTEM) for 
trauma induced coagulopathy in adult trauma patients with bleeding. Cochrane Database Syst 
Rev. 2015;(2):CD010438.

 120. Best, B. Mechanisms of aging. Available from: https://www.benbest.com/lifeext/aging.html.
 121. Johansson PI, Stensballe J, Ostrowski SR. Shock induced endotheliopathy (SHINE) in acute 

critical illness – a unifying pathophysiologic mechanism. Crit Care. 2017;21(1):25.
 122. Hochleitner G, et al. Revisiting Hartert’s 1962 calculation of the physical constants of throm-

belastography. Clin Appl Thromb Hemost. 2017;23(3):201–10. https://doi.org/10.3390/
biom5020472.

 123. Tanaka KA, et al. Rotational thromboelastometry (ROTEM)-based coagulation management 
in cardiac surgery and major trauma. J Cardiothorac Vasc Anesth. 2012;26(6):1083–93.

3 Blood Failure: Pathophysiology and Diagnosis

https://www.benbest.com/lifeext/aging.html
https://doi.org/10.3390/biom5020472
https://doi.org/10.3390/biom5020472


67© Springer Nature Switzerland AG 2020
P. C. Spinella (ed.), Damage Control Resuscitation, 
https://doi.org/10.1007/978-3-030-20820-2_4

D. A. Vitale 
Trauma/Critical Care, Brooke Army Medical Center, Fort Sam Houston, TX, USA 

M. Maegele 
Department of Traumatology and Orthopedic Surgery, Institute for Research in Operative 
Medicine (IFOM), Cologne-Merheim Medical Center (CMMC), University Witten-Herdecke 
(UW/H), Cologne, Germany 

M. A. Borgman (*) 
Department of Pediatrics, Brooke Army Medical Center, Fort Sam Houston, TX, USA

4Prediction of Life-Threatening 
Hemorrhage

Dominick A. Vitale, Marc Maegele, 
and Matthew A. Borgman

 Introduction

Trauma-related mortality is one of the top causes of overall mortality in a number of 
age groups including both the young and the elderly in industrialized countries [1, 
2]. This burden carries not only a toll on society but also a financial toll on the 
healthcare system as a whole. Of these trauma-related deaths, up to 50% can be 
attributed to uncontrolled hemorrhage [3]. Massive uncontrolled hemorrhage has 
been shown to lead to a lethal triad of coagulopathy, hypothermia, and acidosis that 
can be irreversible [4]. Historically, the early identification of patients with shock 
and or coagulopathy has been poor. An estimated 10–25% of all multiple injured 
trauma patients present with shock or acute traumatic coagulopathy upon arrival 
[5–7]. This shock and coagulopathy is not only related to acute surgical bleeding but 
also as a result of profound local release of inflammatory mediators due to tissue 
trauma [8]. In response to the recognition of massive and life-threatening bleeding 
leading to significant mortality in the trauma population, most patients deemed to be 
in shock related to surgical or coagulopathic bleeding receive blood transfusions 
during their early resuscitation phase. Over the last few decades, the transition to a 
balanced resuscitation of red blood cells (RBCs), fresh frozen plasma (FFP), and 
platelets emulating whole blood has improved mortality in traumatically injured 
patients [9–14]. Trauma patients requiring massive transfusion (MT) (>10 RBCs in 
24 hours) have also been reported to have a mortality of up to 40–60% and deplete 
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blood banks consuming over 70% of the blood products used for trauma purposes 
[15]. Meyer et al. showed that despite the American College of Surgeons Quality 
improvement guidelines recommendation of first cooler of blood product arrival by 
15 minutes, odds of mortality increased by 5% with every passing minute waiting 
for blood products to arrive [16]. It is because of this that at least 85% of major US 
trauma centers have a massive transfusion protocol (MTP) established for the rapid 
mobilization of blood products from blood banks and early administration of prod-
ucts in a predefined ratio [17]. Despite everything we know about MTP and the 
survival benefit of early administration of blood products, there still does not exist a 
specific set of criteria for early (pre-hospital or ED) activation of the MTP.

 Definition of Massive Transfusion

In order to understand the importance of MT with life-threatening hemorrhage 
(LTH) and its effect on outcomes, it’s necessary to settle on the definition of MT and 
of an outcome. This unfortunately is not straightforward.

Historically, the definition of MT has been the need of 10 or more units of RBCs 
over a 24-hour period [18–20]. This definition has been reported to have multiple 
flaws in appropriately describing the trauma patient with LTH and may either 
underestimate or overestimate the severity of bleeding and therefore the risk of 
death from hemorrhage. First, as stated by Cantle and Cotton [18], this definition 
fails to account for plasma and platelet transfusions that are often co-administered. 
Second, it may leave out those patients who were so severely injured and clearly in 
hemorrhagic shock that only received a few units of RBC prior to death [18]. The 
need for an MTP activation is primarily to direct the blood bank to rapidly deliver 
blood products to the bedside of a hemorrhaging patient. While this would be 
essential for a patient needing 10 units of RBC within the first 2 hours, it may not 
be necessary for 10 units required over a 24-hour period. Recent efforts have been 
made to improve on the definition by changing the timeframe in which 10 units or 
more of RBC were transfused to within 6 hours, but this still carries the same flaws 
as its predecessor and introduces survival bias [18]. In response to these potentially 
biased definitions of MT, numerous authors have developed their own definitions 
of MT to improve both the research and clinical definition which may have signifi-
cant downstream implications with regard to predictive models of need for MT in 
LTH [18, 21].

The Prospective Observational Multicenter Major Trauma Transfusion 
(PROMMTT) study, which will be discussed in further detail in a later section, 
introduced the concept of Resuscitation Intensity (RI) [22]. This concept incorpo-
rates all types of fluid used in the initial resuscitation of trauma patients, to include 
each liter of crystalloid, each 0.5 L of colloid, and each unit of plasma, RBC, or 
apheresis platelets being defined as a single unit of resuscitation fluid. Rahbar 
et  al. in 2013 showed that there was a threefold increase in mortality when a 
threshold of 3  units of resuscitation volume was administered over the initial 
30 minutes. This translated to a 6-hour mortality of 14.4% vs. 4.5%, respectively, 
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and a 24-hour relative increase in mortality of 76%. Given the RI is based on a 
fluid requirement per unit time, it accounts for the survival bias seen in the histori-
cal definition while also allowing for multiple methods of resuscitation not lim-
ited to colloid; however, it may be difficult to compare those patients who receive 
a predominantly crystalloid resuscitation to those who receive a colloid hemo-
static one [18, 22].

The Critical Administration Threshold (CAT), developed by Savage et al., is one 
of those models set out to redefine the concept of MT and remove the aforemen-
tioned survivor bias creating a more evidenced-based approach [23]. The CAT was 
defined as a threshold of 3 units of RBCs transfused over a 1-hour period. When 
compared to the traditional definition of MT as defined previously, CAT was more 
predictive of mortality (RR 3.6 vs. 1.8 for MT) [23]. Since CAT is a dynamic mea-
sure it can be followed throughout a patient’s resuscitation as opposed to one point 
in time. The number of episodes in which a patient met the CAT threshold within 
the first 24 hours was also predictive of the odds of death. The most significant 
improvement of CAT over MT was the ability of CAT to identify those patients who 
were equally as injured but who did not meet the MT threshold of transfusion in the 
first 24  hours. Of the 169 patients studied in the original article from 2012, 15 
patients were CAT positive but did not meet the MT threshold. The CAT ability to 
recognize these patients improves on the survivor bias of the old MT definition [3]. 
This model was prospectively validated by the same authors at a separate institution 
with similar results. CAT was shown to be a more sensitive tool for identifying those 
critically injured patients that would benefit from early activation of a MTP when 
compared to the traditional definition of MT [23]. Although this new approach 
improves survivor bias, the currently existing models for prediction of the need for 
MT in LTH all define MT in the historical sense.

 Evidence of Improved Outcomes

MTPs have evolved over the last few decades. The purpose of these protocols in 
general is to minimize any delay of the administration of blood products to a hemor-
rhaging patient by prescribing a predetermined “batch” of blood units to be empiri-
cally delivered from the blood bank to the bedside. An ideal protocol proactively 
sends batches of blood products to the bedside of a severely bleeding patient, as 
opposed to a reactive process that requires individual ordering of each blood prod-
uct, which inevitably results in delays. Any such delay has been associated with an 
increase in mortality [16].

Efficient MTPs require a coordinated effort between first responders, emer-
gency room, trauma team, and blood bank personnel. Various protocols exist and 
are site- and regional-specific. Riskin and colleagues in 2009 showed a drastic 
mortality reduction from 45% to 19% after implementing a MTP [24]. Dente and 
colleagues also found that there was a drastic reduction in early mortality from 
57% to 19% when patients were transfused in a standard <2:1 ratio RBC:FFP than 
when transfused >3:1 [25]. At many institutions, MTPs are initiated by ED staff or 
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trauma surgeons either prior to patient arrival from information reported by first 
responders or after primary survey in the trauma room immediately upon arrival. 
When an MTP is activated, blood banks immediately release uncross-matched 
RBCs, plasma, and platelets) often in a 1:1:1 unit ratio, typically 5–6  units of 
RBCs and plasma with 1 unit of apheresis platelets (equal to 5–6 units of whole 
blood derived platelets). Some centers provide different ratios of products and 
some even change the ratio delivered in each batch of blood products over time. 
After the initial MTP pack has been delivered, several blood tests (e.g., CBC, type 
and cross, comprehensive metabolic panel, standard coagulation assay, Ca2+, lac-
tate, blood gas) are often obtained in order to assess the resuscitation. Some centers 
use viscoelastic testing (rapid- TEG or ROTEM) to guide the use of specific blood 
products or hemostatic adjuncts. Several adjuncts to the MTP may also be listed in 
a protocoled resuscitation effort, including an antifibrinolytic (e.g., tranexamic 
acid (TXA)), cryoprecipitate, or in rare cases recombinant factors of coagulation 
including VII and VII, and 4-factor prothrombin complex concentrate (PCC) to aid 
warfarin reversal. In Europe, recent studies reported on the diversity of the guide-
lines for damage control resuscitation across a number of institutions [26]. 
Although some similarities existed among the trauma centers, there are numerous 
differences in the use of triggers, labs to guide resuscitation, adjuncts, and indica-
tions for cessation of MTPs. This only demonstrates the evolving nature of DCR 
and the complex environment of standardized algorithms in the setting of varied 
sources of evidence [26].

The debate over the most beneficial ratio of blood products during a massive 
resuscitation of a patient in hemorrhagic shock is ongoing. In the two largest studies 
to date, the results are mixed. In the prospective observational PROMMTT study, 
ratios of plasma: RBC and platelet: RBC were compared as both continuous and 
categorical values. Results indicate that increased ratios as a continuous variable 
were independently associated with an reduced 6-hour mortality [27]. When both 
ratios were analyzed as categorical values, a ratio of >1:1 was associated with 
reduced 6-hour mortality. This mortality benefit was lost, however, after 24 hours 
[27]. In the Pragmatic, Randomized Optimal Platelet and Plasma Ratios (PROPPR) 
trial a mortality difference at either 24 hours or 30 days was not reported between 
patients receiving a 1:1:1 ratio vs. a 1:1:2 ratio of plasma, platelets, and RBCs, 
respectively [28]. The authors of the trial were able to conclude that the patients 
who did receive a 1:1:1 ratio had achieved hemostasis and experienced less death 
from exsanguination in the first 24 hours [28]. Borgman et al. evaluated patients 
who were predicted to need a MT and found that ratios of FFP:RBC >1:2 during the 
first 5 hours of admission improved survival, highlighting the importance of utiliz-
ing a predictive score to a trauma patient in order to identify who would benefit 
from an aggressive resuscitation strategy [29]. As noted earlier, ongoing monitoring 
of the resuscitation is essential and may ideally be guided by viscoelastic monitor-
ing [30]. MTPs are generally stopped by the provider when it is determined that the 
patient is stabilized and there is no longer life-threatening bleeding; however, it is 
essential to continue to assess and monitor the patient for metabolic and coagulation 
derangements or potential new bleeding.
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 Predictive Models

Over 14 predictive models and scoring systems of life-threatening hemorrhage in order 
to improve timing to transfusion in trauma patients who present in shock or coagulopa-
thy secondary to traumatic injury have been developed to date [3, 8, 15, 17, 18, 31–36]. 
These studies did not use the same definition of MT. A summary of both civilian and 
military data derived scoring systems presented in this chapter are presented at the end 
of each section in Tables 4.1 and 4.2, respectively. Additionally, the data for which 
these models are based upon are mostly retrospective from one or more institutions 
with a variety of experience with trauma and MT. Therefore, the limitations of retro-
spective studies (missing data, lack of standard protocols of treatments, and laboratory 
draws) apply. In a published study by Trickey et al. evaluating data from nine MT 
predictive models, it was found out that anywhere between 41 and 88% of cases had 
sufficiently completed datasets for the variables being studied [37]. This missing data 
and difficult patient populations can lead to significant selection bias. Those patients 
with complete datasets may be those that survived their early resuscitation more fre-
quently or those patients in which the care team had the benefit of time and patient 
stability to gather all of the needed data points. Obtaining laboratory studies was not 
necessarily standardized and can be influenced by the patient presentation or the bias 
of the clinician. Despite these biases, the following models and scoring systems give 
the practitioner more objective data to assist with early activation of MTPs, which have 
been shown to improve survival in the critically injured. One major difference between 
some of the scoring systems is the patient population from which the data is collected, 
particularly between civilian and military trauma settings. In the civilian trauma centers 
with predominately blunt-injured patients, laboratory values, radiographic studies, and 
functioning blood banks are commonplace and resources tend to be abundant. In con-
trast, military patients have a higher incidence of blast and penetrating injury, and 
resources especially in more austere environments tend to be scarcer. Blood products 
may not be easily obtained and plasma and platelets are less available resulting in 
administration of whole blood in some circumstances [38]. Whole blood is also used in 
military facilities based on its potential superiority to blood components [39]. It is for 
these reasons the following major scoring systems have been presented in separate 
categories based on civilian and military databases from which they were derived and 
in no particular order of reliability or author preference.

With all of the available scoring systems, it can be difficult to determine which 
model works best or has the best fit for a specific trauma program in order to best com-
municate with blood banks and therefore improve outcomes. Clearly, if some labora-
tory or radiographic data is not available to the trauma team at the time of resuscitation, 
then some of the models will not be helpful. Each must be weighed against the indi-
vidual situation and resources available but should not be substituted for clinical judg-
ment. Clinical “gestalt” is not infallible as demonstrated by Pommerening et al. who 
showed that gestalt alone had a sensitivity of 66% and a 35% positive predictive value 
(PPV) making it a poor screening test, missing almost one-third of patients who would 
ultimately require MT [40]. This only serves to underscore the need for an objective 
measure to help supplement the decision- making process of activating MTPs.
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Table 4.1 Civilian database derived MT score/model summarization of characteristics

Score/
model

ABC
[6]

TASH
[4]

PWH
[29]

Vandromme
[31]

Baker
[24]

TBSS
[8]

Design Retrospective Retrospective Retrospective Retrospective Retrospective Retrospective
Number of 
patients

596 4527 [4]
1517a [30]

1.891b 514 654 119
113a

Setting Civilian, 
single center

Civilian, 
multi center

Civilian, 
single center

Civilian, 
single center

Civilian, 
multi center

Civilian, 
single center

Variable 
type

Non-
weighted, 
dichotomous

Weighted Weighted Non-
weighted, 
sum 
predictors

Non-
weighted, 
sum risk 
factors

Weighted, 
sum risk 
factors

Definition 
of MT

>10 units 
first 
24 hours

>10 units 
ED to ICU

>10 units 
first 
24 hours

>10 units 
first 
24 hours

>10 units 
first 
24 hours

SBP 
(mmHg)

≤90 <100
<120

≤90 <110 <90 <90–≥110
(4 
categories)

Heart rate 
(bpm)

≥120 >120 ≥120 >105 >120

Hemoglobin 
(g/dl)

<7–<12
(5 
categories)

≤7–>10
(3 
categories)

≤11

Base excess 
(mmol/l)

<−10–<−2
(3 
categories)

Base deficit 
(mmol/l)

>5

Lactate 
(mmol/l)

≥5 0–≥7.5
(4 ranges)

INR >1.5
FAST Positive Positive Positive cRegions 

positive
Age (years) ≥60 and 

≤59
Mechanism 
of injury

Penetrating High-risk 
injuryc

GCS ≤8 <9
Pelvic/
extremity 
fracture

Positive Positive 
(pelvic)

Type A–C

Gender Male
AUROC 0.859 0.892

0.887a

0.889 0.91 0.985

FAST focused assessment with sonography of trauma, INR international normalized ratio, AUROC 
area under the receiving operator characteristic, GCS Glasgow coma score, SBP systolic blood 
pressure
aIndependent internal validation
b95% of patients Chinese origin
cHigh risk injury, trauma to the ventral chest between the midclavicular lines, abdominal injury with 
diffuse tenderness, survival of a vehicular crash in which another occupant died, vehicular ejection, 
or penetrating torso injury
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Table 4.2 Military database-derived MT score/model summarization of characteristics

Score/model
McLaughlin
[19]

Larson
[35]

Schreiber
[36]

MASH
[23]

Design Retrospective Retrospective Retrospective R
Number of 
patients

302
396a

1.124 558 1298
1186a

Setting Military, single 
center

Military, multi 
center

Military, two 
center

Military, multi center

Variable type Non-weighted, 
dichotomous, 
sum predictors

Non-weighted, 
sum of 
predictors

Non-weighted, 
individual 
predictive 
variables

Weighted, sum of 
predictors

SBP (mmHg) <110 <110 <110
Heart rate (bpm) >105 >110 ≥100
RR (min) ≥30
Hemoglobin (g/dl) ≤11 ≤11
Hematocrit (%) <32
BD (mmol/l) ≤6
INR >1.5
pH <7.25
Mechanism of 
injury

Penetrating

FAST Positive
Pre-hospital 
intervention

Blood products, 
tourniquet use, 
hemostatic agent use

Injuries sustained Amputated limb #, 
femoral fracture #, 
open tibial fracture #, 
pelvic injury, arterial 
bleeding, HTX

GCS <15
AUROC 0.839

0.747a

0.804 0.92
0.93a

AUROC area under the receiver operator curve, INR international normalized ratio, GCS Glasgow 
coma score, BD base deficit, RR respiratory rate, SBP systolic blood pressure, bpm beats per min-
ute, mmHg millimeters of mercury, HTX hemothorax, FAST focused assessment with sonography 
for trauma
aIndependent internal validation

 Civilian Database Developed Models

 Assessment of Blood Consumption (ABC) Score
The ABC score was proposed initially in 2009 by Nunez et al. as a way to easily and 
rapidly identify those patients who are severely injured that would benefit from early 
activation of a massive transfusion protocol [15]. The score has since been validated 
in a multicenter trial at three Level 1 trauma centers with positive results. The initial 
ABC score is an ED arrival score comprised of four non-weighted variables: focused 
assessment with sonography for trauma (FAST) positivity, penetrating mechanism, 
arrival systolic blood pressure (SBP) less than or equal to 90 mmHg, and heart rate 
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of greater than 120 beats per minute. These variables were dichotomous, either 
receiving a 0 or a 1. The scoring then assigned a 1 to any variable that was positive 
for a maximum total score of 4. The score was derived from the institutions trauma 
surgeons’ clinical gestalt in predicting MT (10 units or more of RBCs in the first 
24 hours after admission) and using a logistic regression model to evaluate the four 
variables for accuracy. Of the four components, SBP <90 mmHg had the highest cor-
relation to MT activation with an OR of 13 (p < 0.001, CI 6.93–24.52), followed by 
positive FAST (OR 8.2, p < 0.001, CI 4.34–5.30), HR greater than 120 beats per 
minute (OR 3.9, p  <  001, CI 2.00–6.85), and penetrating mechanism (OR 1.9, 
p < 0.02, CI 1.15–3.44) [15]. When this score was applied to 596 patients, the overall 
MT rate was 12% and mortality was 18.1%. When the ABC was compared to the 
TASH and McLaughlin scoring systems for the same cohort of patients, the ABC 
score had the highest overall accuracy with an AUROC (area under the receiver oper-
ator characteristic) curve of 0.859 [15]. When outcomes were stratified by ABC 
score, a score of 2 was deemed to be the appropriate cutoff value for activation of 
MT. When two or more parameters were present, the percentage of patients in the 
cohort requiring MT was 40%, compared to 10% with a score of 1, increasing to 48% 
with a score of 3, and 100% with a score of 4. A score of 2 had a sensitivity of 75% 
and specificity of 86%. Scores of 2 or greater accurately predicted the need for MT 
(10 units of RBCs in the first 24 hours of admission) in greater than 80% of patients.

The ABC score was validated in a retrospective multicenter study of 3 level 1 
trauma centers in 1018 patients [41]. An ABC score of greater than or equal to 2 was 
used as the threshold for predicting MT, defined as need for 10 units or greater of 
RBC in the first 24 hours of admission. Sensitivity and specificity between the cen-
ters for predicting MT were 76–90% and 67–87%, respectively. Despite a low PPV 
of 55%, the NPV was as high as 97%. There was also no significant difference 
between trauma centers in the AUROC, ranging between 0.833 and 0.903, all highly 
accurate [41]. The ABC score is a simple and effective tool to aid in rapidly assess-
ing a severely injured patient without taking away from the clinical care of the 
patient and delaying lifesaving fluid resuscitation waiting for time-consuming labs 
for decision-making. Although the PPV was seemingly low, identifying a patient as 
being severely injured and ordering MTP unnecessarily can be forgiven; however, 
the situation where a patient is in need of MT and no products are available early 
can put the patient at significant harm for death. The strong NPV of the ABC score 
translated to a less than 4% incidence of this disastrous situation [18].

 Baker Model
The Baker model, from a US Level I trauma center, incorporates physiologic data 
present on patient arrival to the trauma bay and injury severity based on physical 
exam findings or mechanism of injury reports to predict need for any ED transfu-
sion. The goal of the Baker et al. study was to attempt to limit the perceived overuse 
of cross-matching in the trauma bay by identifying risk factors for transfusion on 
presentation to the ED [36]. Four variables in the data collected correlated with the 
need to initiate transfusion: systolic blood pressure <90  mmHg, HR >120  bpm, 
GCS  <9, and high-risk injury defined as chest trauma to the “box”, abdominal 
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injuries with signs of peritonitis, death of an occupant in the same vehicle, ejection, 
and penetrating injuries to the torso [36]. In this retrospective review of 654 ED 
patients receiving blood transfusion within 24 hours of arrival, systolic blood pres-
sure of <90 correlated with transfusion most frequently. Presence of all four factors 
resulted in a 100% transfusion rate, with three factors present the rate was 68%, two 
42%, one 12%, and with none present, there was still a 2% transfusion rate. Although 
this model, as it is currently designed, does not specifically predict the need for MT, 
during the analysis, the average RBC transfusion over the first 24  hours was in 
excess of 10 units. Several limitations to the Baker et al. study were acknowledged 
including exclusion of bradycardic (HR <60 bpm) patients who died prior to blood 
draws to determine the need for transfusion resulting in only three risk factors and 
the admittedly enigmatic definition of “high-risk injury” [4].

 Prince of Wales Score
Also known as the Rainer score, the Prince of Wales (PWH Score) was developed 
at the Prince of Wales hospital in Hong Kong [42]. The retrospective study com-
prised of 1891 civilian trauma patients, 95% of which were of Chinese nationality. 
MT was defined as >10 units of RBCs in a 24-hour period and of the patients stud-
ied, 92 fell within criteria. The data identified seven variables to be predictive of 
need for MT: SBP ≤90 mmHg, GCS ≤8, HR ≥120 bpm, CT or FAST positive, 
Hemoglobin ≤7 g/dl, base deficit (BD) >5 mmol/L, and displaced pelvic fracture. A 
score of ≥6 was 96.9% predictive of MT with sensitivity of 31.5%, specificity of 
99.7%, PPV of 82.9%, and NPV of 96.6%. A score of >1 gave a sensitivity and 
specificity of 79.3% and 86%, respectively. The AUROC for the Rainer/PWH model 
was 0.889 [4]. The model is limited in that it cannot be directly transferrable to 
international use because a very specific and cohort with regional disease (high rate 
of thalassemia, dementia, renal failure) that complicate variable calculation as well 
as the fact that the score has yet to be validated or prospectively studied [42].

 Trauma-Associated Severe Hemorrhage (TASH) Score
Yucel et al. devised the Trauma-Associated Severe Hemorrhage (TASH) Score from 
data obtained through the trauma registry of the German Trauma Society (TR-DGU) 
in 2006 [8]. The TASH model incorporates radiographic, laboratory, and physio-
logic parameters in assigning a score. MT was defined as 10 units of RBCs admin-
istered from presentation to ICU from the ED, which averaged 3.8 hours in this 
cohort. Only directly admitted patients were included in the analysis [8]. Using 
multivariate logistic regression and univariate statistical analysis, seven indepen-
dent variables were found to correlate with probability of MT and were used in the 
TASH model [32]. These variables include: (1) sex of the patient, (2) systolic blood 
pressure (SBP), (3) heart rate (HR), (4) hemoglobin (Hb), (5) base excess (BE), (6) 
result of FAST examination of the abdomen, and (7) relevant injuries to the extremi-
ties and abdomen represented by the Abbreviated Injury Scale (AIS) Score. Each 
variable was weighted after multivariate logistic regression analysis and assigned a 
score, thus giving the user a TASH score of between 0 and 28. In the derivation arm, 
4527 patients were studied and a score of ≥16 was shown to predict individual need 
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for MT of 50%. This was validated within the same database using 1517 patients, 
and similar predictive values were determined. When both datasets were evaluated 
for overall predictive accuracy, a score of ≥16 correctly predicted MT in 89.6% of 
patients leading to an AUROC of 0.864–0.910 in the validation data set [8].

In a later re-validation study by Maegele et al., significant improvements in the 
way patients were resuscitated resulting in overall improved mortality across partici-
pating centers were considered, and an additional 5834 patients from the same 
TR-DGU were studied [43]. Additional data were attempted to be introduced into the 
scoring system including INR, pH, temperature, lactate, and mechanism of injury as 
they were not reliably recorded in the TR-DGU with the previous study and no perfor-
mance improvement was noted. Multivariate regression was also performed on the 
current TASH variables and no weighting score adjustments were made [44]. As a 
result of the re-validation study, the authors concluded that TASH can be easily used 
with readily available data within a reasonable amount of time. The timeframe for 
calculation was subsequently studied in response to criticism about its efficiency. In a 
German study of 40 patients at a single Level I trauma center, the TASH score was 
able to be calculated with return of all variables and need for MT determined reliably 
within 8 minutes of patient arrival to the trauma bay. It is unknown if this time to cal-
culation can be externally generalized to other trauma centers [45]. Currently, the 
TASH model is being implemented with regularity across Germany and Europe [32]. 
Despite its limitations such as an extensive amount of patient dropout due to missed 
data including base excess which is shown to correlate with hemorrhage and outcome 
leading to potential selection bias as well as including variables that are highly subjec-
tive and operator dependent, the TASH model appears highly accurate [44].

 Traumatic Bleeding Severity Score (TBSS)
Ogura et al. set out to improve upon previously established models for predicting need 
for MT such as the TASH and ABC models by incorporating a demographic which he 
claimed was left out and is underappreciated: patients over age 65 [17]. In Japan, the 
elderly (>65 years of age) population is booming and comprises approximately 22% 
of the total Japanese population. In a low volume trauma center that sees approxi-
mately 250 patients per year with mean ISS >16, 113 patients were enrolled with 
mean age for MT of 64 and 50 for non-MT, improving predictive value for the elderly 
population. Five independent variables were identified using logistic regression analy-
sis to be predictive of MT of greater than 10 units of RBCs in the first 24 hours of 
admission and using a weighted scoring system a total score was obtained. These five 
variables were: age, SBP after 1 liter of crystalloid infusion, number of regions (of 4) 
that FAST was positive, presence of and type of pelvic fracture, and arterial serum 
lactate concentration. Of these five variables, a score of 0–57 was assigned. Scores 
≥15 had 97% sensitivity and 96% specificity for need for MT. When these patients 
were compared to ABC and TASH models, the AUROC for the TBSS was 0.985 and 
0.813 and 0.892 for the ABC and TASH, respectively. One major limitation of the 
study is the difference between transfusion practices in Japan compared to the United 
States. In Japan, a single unit of RBC is approximately one-third that of a unit of RBC 
in the United States by volume. This, according to the authors, will not affect the 
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calculation and accuracy of the TBSS; however, MT thresholds in other countries will 
need to be recalibrated adding that further external validation is needed [17].

 Vandromme Model
The Vandromme Score was devised from civilian trauma data of 6638 patients from 
a single Level I trauma center in Birmingham, Alabama [44]. Various patient char-
acteristics were used to identify patients at risk for MT, based on a number of com-
bat studies on MT [46]. MT was defined as 10 units or more of RBCs within the first 
24 hours of admission. Five clinical measurements were used to devise the score 
including: (1) INR >1.5, (2) Serum lactate ≥5, (3) HR >105 beats per minute, (4) 
Hb ≤11, and (5) SBP <110 mmHg. Using a best-fit predictive model with three or 
more positive predictive measures for MT resulted in a Specificity of 98%, 
Sensitivity 53%, PPV 33%, and Negative Predictive Value (NPV) 99%. With all 
clinical measures positive, the PPV improved to 86%. The authors could not con-
clude that this combination of clinical variables was predictive enough to support 
the use of the model. Further investigation was warranted in the future to improve 
upon the current data [44].

 Military Database Developed Models

 McLaughlin Score
The McLaughlin model was developed from retrospective data collected at one com-
bat support hospital from the Joint Theater Trauma Registry (JTTR) established in 
2004 and kept at the US Army Institute for Surgical Research (ISR) [31]. Combat 
injured trauma patients were evaluated and 3442 patient records were reviewed with 
680 patients receiving at least one unit of RBCs. Of these transfused patients, 302 
were identified to have received a MT, defined as ≥10  units of RBCs in the first 
24  hours of patient arrival to the ED.  Four risk factors for MT were found: 
SBP <110 mmHg, HR >105 bpm, pH <7.25, and Hematocrit <32%. All four compo-
nents were non-weighted either receiving a 0 or a 1 value. A predictive equation was 
developed:
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When this model was internally validated at the same combat support hospital, 
the AUROC curve was 0.747 and the model’s ability to accurately predict those who 
needed MT was only 66%. When the independent variables were analyzed, the inci-
dence of MT went from 20% to 80% when one value was present to when all four 
were present [31]. McLaughlin admittedly pointed out several limitations to the 
original study including provider bias seen in which lab studies to order between 
patients of varying degrees of injury severity, missing data, lack of mortality data 
due to difficulty with long-term follow-up of Iraqi nationals, and significant differ-
ences between the developmental and validation groups in terms of injury severity 
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due to escalation of military conflict between the two study periods leading to a 
decreased sensitivity and PPV [31].

 Larson Model
For this model, a retrospective review of Joint Theatre Trauma Registry (JTTR) 
data of 1124 combat casualties who had been transfused at least one unit of RBC 
was performed and 420 (37%) received a MT defined as ≥10  units of RBCs 
within 24 hours of admission [47]. Four data points from the available literature 
were used to predict need for MT: HR >105 bpm (Larson and colleagues chose 
>110 bpm for ease of remembering), SBP <110 mmHg, Hb ≤11 g/dL, and BD 
≤6 mmol/L. The presence of at least two variables resulted in a sensitivity of 
69% and a specificity of 65% [47]. Some limitations to the Larson model pre-
clude its practical use. The majority of patients were penetrating and injuries 
were from combat related. Additionally, blood product administration times were 
absent confounding temporal relationships with timing of transfusions as well as 
the 5-year patient selection period spanning a time period during which a new 
clinical practice guideline was adopted implementing damage control resuscita-
tion practices in theater [47].

 Schreiber Model
Schreiber and colleagues performed a retrospective analysis of 558 combat 
casualties at two different combat support hospitals in Iraq [48]. Two-hundred 
and forty- seven patients required MT defined as transfusion of ≥10  units of 
combined whole blood and RBCs. After univariate analysis and stepwise logis-
tic regression, three variables were identified as predictive of need for MT. The 
variables were: INR >1.5, Hb ≤11 g/dL, and penetrating mechanism of injury. 
Hb was however the most predictive of these variables with an OR for need for 
MT of 7.7. The mortality observed in the patients receiving MT was 39% vs. 1% 
in the non-MT patients. The AUROC was 0.804 [48]. Combat medic practice, 
transport times to combat support hospitals (CSH), patient age and demograph-
ics, i.e. young, healthy soldiers, all were confounding variables in its ability to 
translate the findings to civilian practice. Admittedly, although coagulopathy 
plays a major role in hemostatic control during MT, the availability of critical 
blood components such as platelets, FFP, and cryoprecipitate was variable due 
to the nature of the combat environment; however, whole blood was frequently 
used [48].

 Military Acute Severe Hemorrhage (MASH) Score
The MASH Score was derived from the UK Joint Theatre Trauma Registry data-
base. McLennan et al. evaluated 1298 combat casualties, 275 of which received MT 
which they defined as 6 units or more in a 4-hour time period or 10 units or more of 
RBCs in 24 hours [35]. Univariate regression analysis was used to identify variables 
predictive of MT, and they were included in the score derivation chart. The variables 
included not only physiologic criteria and injury patterns but treatment factors as 
well. Scores for all variables except for limb amputation and fracture number were 
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categorical receiving a 0 or 1. A MASH score of 3 points or more had a positive 
likelihood of MT of 8.08 (95% CI 6.69–9.79) and a negative likelihood of 0.20 
(95% CI 0.15–0.25). The data was internally validated with similar results and an 
AUROC of 0.92 [35]. The major limitation of the study is its retrospective nature 
and numerous missing data points. Both radiographic evaluation and injury coding 
were retrospectively assigned to fit into the scoring algorithm. It is not known, based 
on the study method, if the results would be the same if data points were calculated 
based on real-time evaluations of the imaging and physical examination limiting its 
efficacy [35].

The models mentioned in this chapter, both military and civilian, were grouped 
based on the cohort from which the data was gathered. Despite the dichotomy in the 
cohort populations, there is no evidence that these models are not translatable but it 
does stand to reason that civilian models work best with civilian applications and 
military models with military applications. In addition to the above-mentioned scor-
ing systems and models for predicting massive transfusion, there still exist numer-
ous others not specifically described in this chapter. These include the Shock Index, 
Trauma Induced Coagulopathy Clinical Score, Massive Transfusion Score, 
Cincinnati Individual Transfusion Trigger study, the Emergency Transfusion Score, 
the Coagulopathy of Severe Trauma Score, Moore model, Wade model, Revised 
Trauma Score, and Modified Field Trauma Score [3, 18, 20, 32, 34, 46, 49]. There 
have even been models developed and incorporated into smartphone applications 
that are readily available for download to make the computation of predictive scores 
easier [50].

 Use of Individual Values as Triggers for Massive Transfusion

Despite the predictive value of previously mentioned scoring systems, they are not 
always practical to apply. Acutely, gathering and calculating a score of up to ten 
variables may be impractical in any environment when time is critical. With a num-
ber of the scoring systems, accuracy for predicting the need for MT is predicated on 
having all or most of the variables present to give a total score. Callcut et al. sought 
out to determine if individual triggers for MT were as useful as commutative scor-
ing systems. In a prospective observational study at a level 1 trauma center, 170 
patients were studied that required immediate operative intervention [51]. They 
found that individual transfusion triggers, as defined from prior scoring systems 
such as the CITT and the ABC, were accurate in predicting both need for MT and 
need for any transfusion. The presence of any single transfusion trigger (INR >1.5, 
BD ≥6, SBP <90  mmHg, Temp <35.5  °C, Hb <11  g/dL) accurately predicted 
77–88% of the patients who received MT [51]. The finding that INR was the stron-
gest predictor of MT was also validated in other studies including the 2011 valida-
tion of individual triggers in the PROMMTT patient database [52]. The INR trigger 
was found to be present in 19% of total patients and 43% of those required MT (OR 
3.4, 95% CI 2.5–4.7) followed by BD (OR 2.8, 95% CI 2.0–3.9) and SBP (OR 2.6, 
95% CI 1.9–3.4) [52].
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Thromboelastography (TEG)/ROTEM® was also evaluated as an additional 
marker of acute traumatic coagulopathy. Hampton et al. evaluated 795 patients in 
3 Level I trauma centers to determine if adding LY30, clot lysis 30 minutes after 
maximum clot strength was achieved, could be an independent predictor of 
trauma- related mortality. Results indicated that adding LY30 did not significantly 
improve AUROC (0.86 with 4-variable analysis and 0.88 with 5-variable analysis) 
but did improve HL goodness-of-fit from 0.37 to 0.90 [53]. Schöchl et al. simi-
larly studied coagulopathy using the ROTEM, reporting on the FIBTEM assay, 
which is a fibrin- based extrinsically activated test with tissue factor and the plate-
let inhibitor cytochalasin D.  FIBTEM maximum clot firmness (MCF) and 
FIBTEM clot amplitude at 10 minutes (A10) were found to be equally predictive 
of need for MT (≥10 units of RBCs in 24 hours) with an AUROC of 0.84 and 0.83, 
respectively [54].

In the pre-hospital setting and within the first 15 minutes of trauma bay resuscita-
tion, laboratory and radiographic information may not be available. Simple vital signs 
analysis may be the only option for the resuscitation team to determine if an MTP 
should be activated. Simple vital sign information from a pulse oximeter was sug-
gested to be predictive of MT by Mackenzie et al. Heart rate, SpO2%, and photople-
thysmograph (PPG) wave forms were shown to be predictive of MT, defined in this 
study as 4 units of RBCs in first 4 hours, with an AUROC of 0.94 [55]. Despite its low 
enrollment and loss of data due to unforeseen circumstances, the idea that a single 
device that can be reduced in size and easily transported is a promising research that 
may not only have pre-hospital civilian trauma implications but may improve transfu-
sion practices in battlefield casualties where resources are limited [55].

 Conclusion

Earlier recognition of severe hemorrhage and treatment of shock and coagulopathy 
along with early activation of MTP and administration of blood products improves 
survival. Therefore, adjunctive tools that can aid in identifying patients who need an 
MT and speed delivery of blood products to the bedside are valuable. The models 
and scoring systems that we have described in this chapter, and those not described, 
have all ventured to identify variables both physiologic, radiographic, and hemato-
logic that can predict the need for MT. The majority of these studies were flawed by 
their retrospective nature, had differing arbitrary definitions a MT, and many still 
require prospective validation. Some of the best performing models statistically we 
discussed were the TASH and MASH scores, with an AUROC value of 0.91 and 
0.92, respectively. However, these higher performing predictive models rely heavily 
on numerous variables with weighted scoring systems and complex algorithmic 
calculations that may make them unrealistic in time-sensitive certain situations. 
Despite their usefulness, no single model can be fully endorsed by any trauma orga-
nization. While there is no substitute for a trauma surgeon’s clinical judgment and a 
high index of suspicion, or “gestalt,” a rapid tool that immediately aids the trauma 
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team to initiate an MTP would certainly be useful. Future studies to identify various 
independent variables and the use of real-time assessment of shock and coagulopa-
thy to guide resuscitation are necessary to further improve outcomes for patients 
with traumatic hemorrhagic shock.
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5Remote Damage Control Resuscitation

Jacob R. Peschman, Elon Glassberg, and Donald H. Jenkins

 Introduction

While the term remote damage control resuscitation (RDCR) may be relatively 
young, the principle is not [1]. For traumatically injured patients, providing basic 
care at the point of injury focused on controlling hemorrhage and transporting them 
to medical care as quickly as possible has been practiced in military conflicts for 
centuries. However, in order for the patient to receive advanced treatment, they must 
survive long enough to reach medical care. While many have recognized that limit-
ing blood loss was key, the extent of what could be done in a prehospital setting 
remained very limited even in the twentieth and early twenty-first centuries. 
Interventions have typically centered around common sense; applying pressure, 
bandages, or basic first aid. In 1966, the National Academy of Sciences released 
“Accidental Death and Disability: The Neglected Disease of Modern Society” 
which focused significantly on the need to improve prehospital care and transport of 
injured patients in the United States [2]. In addition to recommendations concerning 
trauma system development, improving communications, and coordinating trans-
portation programs to get patients to hospitals faster, it also highlighted the need for 
early bystanders to provide care to the injured patient. “Beyond the fifth grade of 
elementary school, every American citizen should be trained in basic first aid.” As 
the trauma care in hospitals evolved starting with damage control surgery (DCS) in 
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the late 1980s and early 1990s, transforming into the principles now known as dam-
age control resuscitation (DCR), it was immediately recognized that these princi-
ples must also be implemented before patients reach the hospital to improve their 
morbidity and mortality [3–6]. This need for improved prehospital care has evolved 
to include programs such as the American College of Surgeons’ Advanced Trauma 
Life Support (ATLS) training, the National Association for Emergency Medical 
Technicians’ PreHospital Trauma Life Support (PHTLS) program, and the 
Department of Defense’s (DoD) Tactical Combat Casualty Care (TCCC). The new 
“Stop the Bleed” campaign sponsored by the American College of Surgeons goes 
one step further, targeting training to anyone, so that bystanders can apply basic 
principles of hemorrhage control before first responders reach the scene [7]. The 
modern basis of the bleeding control strategies taught in these programs, often with-
out using the term, comes from RDCR and carries immense potential for impacting 
the lives of the traumatically injured in both the military and the civilian settings.

 Sutton’s Law and Opportunities in RDCR

“Go where the money is,” the phrase known as Sutton’s law, has been used in medi-
cal teaching for decades to remind medical students and residents to focus on the 
area with the greatest likelihood to answer a question or make an impact. In trauma 
care, this is addressing hemorrhagic shock early and efficiently. Shock is the state 
when there is inadequate oxygen delivery to maintain aerobic metabolism in cells. 
This leads to the development of an oxygen deficit. Oxygen debt is a term that has 
been proposed to reflect the accumulation of an oxygen deficit over time as a way to 
quantify an individual’s degree of shock [8]. It has been known since the 1960s 
based on animal models that development of an oxygen debt following hemorrhage 
can lead to states where shock becomes irreversible and fatal [9]. Among survivors, 
the degree of debt and time to repayment correlate to morbidity including develop-
ment of multiple system organ failure and coagulopathy [10, 11]. Therefore, pre-
vention of building an oxygen debt, and repaying what has developed as early as 
possible, can improve patient outcomes [8, 12, 13]. The idea of reaching a state of 
irreversible shock following hemorrhage has been central to our understanding of 
when and why trauma patients die. When Dr. Trunkey first described the “trimodal” 
distribution of death following traumatic injury, targets for improvements in trauma 
care began to emerge [14]. Over 40% of trauma deaths occurred within the first 
hour, many before arriving to receive medical care, while the other “peaks” occurred 
at 1–4 hours and at >1 week due to late complications, primarily infection. In the 
time since, significant focus on the care we provide in the hospital has led to a 
change in this distribution. While the late peaks have flattened out or disappeared, 
early death remains responsible for the bulk of mortality [15, 16]. Data from the 
recent conflicts in Iraq and Afghanistan have shown the same in military systems. 
Nearly 90% of injury-related mortality occurs before casualties reach a medical 
treatment facility (MTF), with estimates that 25% of those injuries were potentially 
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survivable as they are primarily due to hemorrhage [17]. As Sutton’s law suggests, 
the money is in intervening early, before the patient accrues an oxygen debt that 
cannot be repaid. This is where RDCR takes center stage.

 The Distinct Field of RDCR

The Trauma Hemostasis and Oxygenation Research (THOR) Network is a mul-
tidisciplinary collaborative effort made up of clinicians, medics, educators, and 
researchers whose focus is to improve outcomes for the traumatically injured 
[18]. The group has taken a central role in not only defining RDCR but promot-
ing the importance of research, education, and training on the topic. While some 
groups have advocated the inclusion of prehospital care as part of what is encom-
passed by standard DCR principles [19], the THOR Network has supported the 
distinction of RDCR from DCR for multiple reasons and has employed scientific 
principles to support its development [20]. DCR principles include rapid com-
pressible hemorrhage control, rapid control of surgical bleeding, hypotensive 
resuscitation, balanced hemostatic resuscitation, avoidance of the overuse of 
crystalloid fluids, preventing and correcting hypoperfusion, acidosis, coagulopa-
thy, hypothermia, and hypocalcemia. When DCR principles are applied in the 
prehospital setting, those providing the care and the resources available to them 
are different [21]. The practitioners are typically first responders and emergency 
medical personnel in civilian systems and combat medics, paramedics, hospital 
corpsmen, and even physicians in some military and civilian settings. Many of 
these providers can lack experience with patients in severe hemorrhagic shock. 
In the prehospital arena, there is also limited availability of many of the diagnos-
tic (monitoring, laboratory) and therapeutic (blood component therapy, surgical 
capabilities) resources that are standard of care for hospital-based DCR. Airway 
management may also differ in the prehospital phase as the risks of intubation 
and positive pressure ventilation are magnified in the prehospital setting due to 
the inability to volume load and monitor for reduced preload and cardiac output 
in an intubated patient [22]. The threshold for intubation for RDCR is therefore 
different than when DCR is practiced in hospital. Management strategies may 
also differ in resource-rich areas with short evacuation times (e.g., urban cities) 
compared to austere environments with prolonged evacuations. Although the 
ultimate goal of reduced morbidity and mortality is the same in RDCR as in 
DCR, the short-term goal is to deliver a patient to a hospital, MTF, or forward 
surgical team with physiology that is salvageable and with the best chance of 
recovery. Another important reason to separately define DCR and RDCR is to 
appreciate the differences needed in future research efforts. We must study the 
application and outcomes of prehospital interventions with the different chal-
lenges and goals in mind. RDCR-specific data should ultimately be what drives, 
or tempers, widespread adoption of moving hospital therapies to prehospital set-
tings or unique prehospital therapies themselves. Though the principles of DCR 
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will be the framework for the remainder of this chapter, the goal is to highlight 
the unique considerations in RDCR.

 Definitions

One of the many successes of the ATLS program is that it provides a consistent 
unifying terminology for the assessment of the trauma patient. Terms such as pri-
mary survey, secondary survey, and “the ABCs” let different medical personnel, 
with different experiences and backgrounds, speak the same language. For interna-
tional partnerships, this may even mean doing it regardless of the language they 
speak. Consistency in terminology is also important for identifying gaps and direct-
ing research efforts, as standardized definitions allow apples to be compared to 
apples. Several terms with specific descriptions as they apply to RDCR have been 
defined by the THOR Network and warrant familiarization [20]. A summary can be 
seen in Table 5.1. First, as has been alluded to, the addition of “remote” to damage 
control resuscitation denotes it as applying DCR principles to the prehospital setting 
and ending with the initiation of surgical care. The term “forward” can be similarly 
used but is more military specific. As a brief aside, using the term “forward” should 
be done with some caution to avoid any confusion with the military term of a for-
ward surgical team (FST). These have gained widespread application since the 
“golden hour” policy put forth by the Secretary of Defense in 2009 to have surgical 
care available within 1 hour of any combat casualty [23]. An FST can provide DCR 
and DCS, when a trauma victim reaches this capability in a military system. 
Therefore, RDCR ends upon surgical control of bleeding at an FST. Resource avail-
ability is acknowledged with the terms “far-forward” or “austere,” which denote 
environments where healthcare providers do not typically work and basic resources 
(such as shelter, power) and medical technologies may not be available. While these 
terms are often thought of as synonymous with larger distances and longer transport 
times, evacuation time should be distinctly described as “delayed” (>60 minutes) or 

Table 5.1 Remote damage control resuscitation terminology

Term Definition
Remote or forward The pre-hospital setting or phase of resuscitation
Far-forward or 
austere

The environment where professional healthcare providers normally do not 
operate and basic equipment and capabilities necessary for resuscitation 
are often not available

Delayed evacuation >60 minutes from wounding until reaching a medical treatment facility 
that is capable of providing DCS and DCR

Prolonged 
evacuation

>6 hours from wounding until reaching a medical treatment facility that is 
capable of providing DCS and DCR

Acute coagulopathy 
of trauma

Endogenous coagulopathy that occurs as a result of severe traumatic 
injury

Trauma-induced 
coagulopathy

Describe both endogenous and exogenous causes of coagulopathy 
following trauma

DCR Damage Control Resuscitation, DCS damage control surgery
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“prolonged” (>6 hours) based from the time of injury until reaching an MTF that 
can provide DCR [15]. Trauma-induced blood failure is a term that THOR has 
established to describe the consequences of reduced function of the elements of 
blood and the endothelium that result in shock, endotheliopathy, coagulopathy, and 
immune dysfunction [11, 24]. Trauma-induced coagulopathy (TIC) has been cate-
gorized into primary and secondary etiologies [20]. The acute coagulopathy of 
trauma (ACT) has been defined as the primary mechanisms that occur due to the 
biologic response to trauma. ACT is distinct from secondary, iatrogenic, or exoge-
nous factors that contribute to coagulopathy (dilutional and consumptive processes). 
Precise and explicit definitions of terms used to describe RDCR/DCR principles 
will facilitate education, training, and research aimed at reducing death and disabil-
ity from severe traumatic hemorrhage [20].

 Compressible Hemorrhage Control and Rapid Control 
of Surgical Bleeding

Stop bleeding as soon as possible. It is really that simple. While the means to do this 
will vary based on the location of injury, the sooner some form of compression can 
be applied to slow or stop bleeding until definitive surgical control of bleeding can 
be performed the better. This principle is so important in the prehospital setting, 
that, unlike ATLS and the ABCs of airway, breathing, and circulation, for the corps-
man or combat medic, TCCC teaches MARCH [25, 26]. MARCH stands for mas-
sive hemorrhage, airway, respiratory, circulation, and hypothermia, taking note that 
massive hemorrhage is to be addressed even before airway. Ultimately, the role of 
the person attempting to control hemorrhage is to prevent hypoperfusion and aug-
ment the hemostatic response to injury. One method of hemorrhage control is to 
apply hemostatic adjuncts. Hemostatic adjuncts can be divided into two primary 
categories: “mechanical” hemostatic adjuncts which refer to devices that stop or 
slow hemorrhage and “injectable” hemostatic adjuncts which comprise medications 
and plasma derivatives that results in immediate hemostatic effects on the body’s 
coagulation system [20]. A summary of the different hemostatic adjuncts available 
for RDCR can be seen in Table 5.2. While injectable hemostatic adjuncts typically 
require minimal specific training to be administered, which is discussed in more 
detail in the section on hemostatic resuscitation, mechanical adjuncts encompass a 
broad range of products with varying levels of invasiveness and complexity of 
application.

Mechanical hemostatic adjuncts are really the first line of treatment available 
to control hemorrhage. They function by applying direct compression to, in, or 
proximal to bleeding injuries. Gauze, with or without impregnation of hemo-
static substances, and extremity tourniquets are the most frequently utilized 
mechanical hemostatic adjuncts available. They are also among the oldest. 
Gauze with direct manual compression or wound packing can be one of the best 
and most efficient ways of controlling hemorrhage. While fairly straightforward 
to teach and perform, a potential downside is that it prevents the person 
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applying pressure from continuing on with any other responsibilities, such as 
providing care to additional victims or to continue to fight/protect themselves 
during military conflicts or in civilian mass casualty scenarios. More recently, 
the addition of topical hemostatic agents such as kaolin (a white clay mineral) 
or chitosan (sugar molecule derived from shellfish exoskeleton) to gauze has 
been introduced. Data supports the hemostatic ability of these impregnated 
gauze products; however, most are single-arm studies without direct comparison 
to conventional gauze or among the various hemostatic compounds [27]. 
Injectable sponges for non-compressible junctional hemorrhage have also been 
adopted into TCCC training [28]. Tourniquet use dates back to the Roman era 
with more detailed descriptions in the 1700s [29]. While robust military data 
exists supporting the use of extremity tourniquets at the point of injury by non-
medical personnel, civilian adoption had been much slower even as recently as 
5–10 years ago due to concern for the perceived risks of incorrect tourniquet 
placement and inappropriately selected patients. Fortunately, these concerns 
have been proven unfounded [30, 31]. Subsequently, tourniquet use has been 
adopted and incorporated in the civilian ATLS and PHTLS as well as “Stop the 
Bleed,” aimed at nonmedical personnel. This may finally meet the challenge 

Table 5.2 Hemostatic adjuncts in remote damage control resuscitation

Category Adjunct Mechanism of action
Mechanical Gauze External compression or wound packing directly to site of 

injury
Topical hemostatic External compression or wound packing directly to site of 

injury with gauze impregnated with substances with 
hemostatic properties (i.e., kaolin, chitosan)

Extremity tourniquet Direct or proximal external compression on arterial supply 
to extremity

Junctional tourniquet Proximal external compression to axilla or groin for 
injuries not amenable to extremity tourniquets

Abdominal aortic 
tourniquet

Proximal external compression to the abdominal aorta for 
pelvic or junctional injuries not amenable to extremity 
tourniquets

Pelvic binder Prevention of mobility of pelvic fractures resulting in 
ongoing bleeding, decrease potential space for blood loss

Expandable 
hemostatic agents

Percutaneously injectable expandable substance for 
temporary control of non-compressible deep wound or 
abdominal hemorrhage

REBOA Endovascular occlusion of aorta for non-compressible 
truncal or pelvic hemorrhage

Injectable TXA Antifibrinolytic agent which inhibits plasminogen
PCC Plasma-derived compound of coagulation factors II, IX, X, 

+/− VII
rFVIIa Activated form of coagulant factor VII
Cryoprecipitate Plasma preparation of coagulant factors, primarily 

fibrinogen
Fibrinogen 
concentrate

Standardized concentration of fibrinogen in lyophilized 
powder form

J. R. Peschman et al.



91

from the National Academy of Sciences by increasing awareness and comfort of 
performing hemorrhage control by bystanders equivalent to performing cardio-
pulmonary resuscitation [32].

More advanced mechanical hemostatic adjuncts are also available. Junctional 
tourniquets are designed for injuries near to the axilla, shoulder, or groins that 
would otherwise not be controlled by a standard extremity tourniquet. They tend to 
be bulkier and are more difficult to apply, so specific training is needed. However, 
the addition of junctional tourniquets to the prehospital armamentarium theoreti-
cally expands the number of potentially controlled extremity hemorrhage by an 
additional nearly 20% [17]. Though limited data currently exists on their efficacy 
outside of cadaver and animal studies [33–35], several products are available and 
training is included in military programs including TCCC [36]. Abdominal aortic 
tourniquets apply external pneumatic compression to the abdominal aorta, target-
ing otherwise non-compressible pelvic or lower extremity junctional hemorrhage. 
These have yet to see widespread adoption as they require more training to place 
and provide limited additional hemorrhage control to the previously described 
tourniquets and have the potential to limit respiration due to abdominal compres-
sion. Further evidence on their utility is needed as swine model reports remain 
mixed and other data remains limited to case reports [33, 37–39]. Pelvic binders, 
however, have been widely used for decades and have been incorporated in ATLS 
and TCCC [40]. Unlike a tourniquet, the principle behind a pelvic binder is to limit 
and prevent additional motion that can cause ongoing bleeding and to decrease the 
potential space for blood loss, not to directly compress the arterial supply proximal 
to a site of active hemorrhage. While widely applied, the actual data supporting 
their use is also limited, and risk for skin necrosis with prolonged placement is real. 
As such, trauma organization guidelines do recommend their use but with caution 
[41]. Two additional emerging mechanical agents warrant mention. Retrograde 
endovascular balloon occlusion of the aorta (REBOA) has already generated sig-
nificant interest and growing adoption in hospital settings for DCR [42]. Japan has 
implemented it in limited settings by Emergency Physicians, prior to the availabil-
ity of surgical support, with success in a small series [43]. While still in its infancy 
in many ways, the fact that it is deployable percutaneously, with the primary tech-
nical skill being placement of a standard femoral arterial line, the idea that at some 
point in the future the technology could be taught to combat medics and prehospi-
tal providers for field deployment for select patients holds significant interest [44]. 
Another emerging option for non- compressible hemorrhage is in percutaneously 
injectable expandable hemostatic material. The primary goal would be to cause 
rapid hemostasis in otherwise non- compressible infra-diaphragmatic abdominal 
hemorrhage. Such an expandable foam-based product is in development with DoD 
support [45]. The goal of all these products is to provide temporary control to sites 
that are otherwise not accessible externally allowing transport to a site where surgi-
cal capabilities exist, or as an adjunct for surgical control of massive bleeding. 
While data is limited, it seems the potential of these types of products is 
promising.
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 Avoiding the Overuse of Crystalloids

Another central principle of DCR that has significant applicability in RDCR is the 
concept of hypotensive resuscitation. Other terms in the literature that may be 
encountered include permissive hypotension, balanced resuscitation, or delayed 
resuscitation. Some variation may exist when the terms are applied however, the 
overarching concept is the same. As discussed above, prevention of ongoing hemor-
rhage is critical to the traumatically injured patient. An injured victim’s initial 
response to bleeding is to form a platelet plug as part of primary hemostasis. As 
such, this initial clot that forms can be tenuous. Part of the original thought process 
behind hypotensive resuscitation was to avoid “popping” the clot that had formed 
by aggressively resuscitating a patient to a “normal” blood pressure with crystal-
loids [46]. Targeting a palpable radial pulse and appropriate mentation, typically 
equivalent to a systolic blood pressure of roughly 90 mmHg, has been the resuscita-
tion strategy adopted by the US military [47]. Data reported by civilian trauma 
centers indicates hypotensive resuscitation decreases transfusion needs and 
improves mortality in penetrating torso trauma upon arrival to the hospital [48, 49]. 
The principle, however, has been found to have additional benefits, as targeting 
lower blood pressures also means less fluid being administered. In austere settings, 
this allows for better resource utilization, but beyond that in situations with limited 
access to blood or blood components, this also prevents overuse of crystalloid flu-
ids, which has been shown to contribute to coagulopathy, abdominal compartment 
syndrome, acute respiratory distress syndrome, and increased mortality in trauma 
patients [50–53].

Despite significant support in the literature, there are several major limitations 
that must be further studied in relation to hypotensive resuscitation in RDCR. First 
is that most studies have been in the setting of relatively short evacuation times. 
Data to support its safety in prolonged or even delayed evacuations is lacking. 
Additionally, hypotensive resuscitation is contraindicated in patients with, or 
patients suspected to have, severe traumatic brain injury. Since hypotension and 
hypoxia are known to worsen outcomes following severe traumatic brain injury, 
incorporating hypotensive resuscitation in prehospital management of multisystem 
trauma patients requires thoughtful application and more research into patient selec-
tion, since some patients may have severe TBI without it being appreciated by pre-
hospital providers. Additionally, as elderly patients become a larger proportion of 
the trauma patients seen at civilian trauma centers, appreciation of the changes in 
physiology due to comorbid conditions, medications, and aging require thought 
regarding the risk to benefit ratio for the application of hypotensive resuscitation in 
this cohort as decrease from the patient’s baseline systolic blood pressure of just 
10% on arrival to a trauma center has been shown to be more predictive of mortality 
in elderly injured patients than traditional fixed criteria physiologic parameters in a 
retrospective cohort. This data is supportive of a report by Eastridge that indicated 
an admission systolic blood pressure of <110 mmHg was associated with increased 
mortality. These knowledge gaps leave us with many questions about the optimal 
prehospital resuscitation endpoints we currently use, including the safe target 
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systolic blood pressure. As a result, a THOR position statement published in 2018 
concluded that for patients without severe traumatic brain injury, the goal of resus-
citation for patients at risk of traumatic hemorrhagic shock should be a SBP of 
100 mm Hg, recognizing that a range of 90 mm Hg to 110 mm Hg may be more 
practical. The position paper also states that for patients with severe TBI the goal for 
resuscitation should be for a SBP >110 mmHg. Future investigation centering on 
the amount and types of fluid, correct endpoints of resuscitation, and long-term 
outcomes such as end organ failure and survival to hospital discharge with accept-
able neurologic outcomes represent needed areas of RDCR research.

These questions of application also lead to interest in other means of measuring 
and monitoring the severity of injury and efficacy of resuscitation. Markers of oxy-
gen debt may be more appropriate targets as endpoints of resuscitation during 
RDCR. Markers such as lactic acid and base deficit, both now available as point of 
care testing, may be worthwhile additions to the available tools for those providing 
in transit care [8, 12, 13]. While both are feasible, limited data exists in well- designed 
clinical studies as markers to guide resuscitation, rather than to predict outcomes 
[54]. Other endpoints of resuscitation under exploration that have been used in the 
hospital setting but may have application to RDCR, include point-of- care ultrasound 
which has multiple potential prehospital uses and non-invasive Tissue Saturation 
Oxygen Monitoring (StO2) [55, 56]. StO2 is a technology that utilizes a commer-
cially available infrared spectrometry probe to measure real-time tissue perfusion. 
Current literature has shown tissue saturation levels <70% or over 90% have better 
correlation to multiple clinical outcomes in trauma patients than standard physio-
logic markers such as tachycardia, base deficit, and lactate, correlation to the need for 
blood product transfusion and mortality [57, 58]. Another emerging technology is 
Compensatory Reserve Index (CRI) which utilizes non- invasive photoplethysmogra-
phy sensors to tracks analog arterial waveforms and has shown better correlation to 
early signs of blood loss than traditional physiologic parameters [59]. Research on 
the utility of these and other emerging technologies in RDCR, as well as their poten-
tial advantage to provide continuous real-time feedback for response to intervention, 
is currently ongoing and would greatly support expansion of their use.

 Prevent and Correct Acidosis, Hypothermia, and Hypocalcemia

Directly addressing and preventing the development of the lethal triad of acidosis, 
hypothermia, and coagulopathy must be a central focus of RDCR. Hypothermia, 
while seemingly simple to address is critical and can be challenging in prolonged 
evacuations from austere environments where both time and the elements may be 
working against the patient and those providing care. Even in urban settings with 
short transport ties, preventing/treating hypothermia is important. A recent study 
published from Norway identified that >70% of trauma victims were hypothermic 
(defined as a body temperature of <36° C) on arrival of emergency medical service 
providers [60]. All attempts should be made to prevent hypothermia through removal 
of wet clothing, passive, and active rewarming efforts including utilizing heated 
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blankets and administration of warm fluids or ideally blood products when needed. 
Commercially available hypothermia prevention kits have been utilized by the US 
DoD since 2004 and are considered a central part of prehospital care and the teach-
ing of TCCC [61]. Acidosis is the result of hypoperfusion and shock due to genera-
tion of acidic metabolites, lactate, and other unmeasured anions, during anaerobic 
metabolism, with the degree of acidosis correlating with mortality and prognosis 
[62]. While adaptive to some degree as it aids in offloading of oxygen from hemo-
globin at the cellular level, it also has multiple negative effects on the body includ-
ing increasing minute ventilation as compensation, decreasing responsiveness to 
catecholamines, and worsening coagulopathy. Directly correcting acidosis with 
base compounds, most commonly sodium bicarbonate, while logical intuitively 
should be avoided unless extreme states of acidosis are present resulting in severe 
hemodynamic instability. An additional factor that can contribute to acidosis is 
aggressive crystalloid fluid resuscitation. Normal saline has a pH of 5.5 and due to 
its chloride content it can cause a hyperchloremic metabolic acidosis. In addition, 
no benefit has been found with the use of hypertonic fluid. It was originally thought 
to have enhanced intravascular volume expansion ability with decreased volume 
administered. Data on hypertonic saline for hemorrhagic shock has been mixed, 
although in general, there is no benefit with its use over traditional crystalloids in a 
prehospital setting [63]. Lastly, though hypocalcemia is not part of the lethal triad, 
it is worth discussing. Hypocalcemia in patients with traumatic hemorrhagic shock 
may occur due to consumption as a co-factor for hemostasis and also due to citrate 
within blood product storage solutions. A review of military patients from the con-
flicts in Iraq and Afghanistan revealed that 70% of combat casualties that received 
blood were noted to be hypocalcemic on arrival to the MTF [64]. Hypocalcemia can 
contribute to several physiologic abnormalities, including hypotension, and has 
been reported to occur after as little as 2 units of red blood cells (RBCs). Some stud-
ies have found association between severe hypocalcemia, <0.9  mmol/L, and 
increased mortality in trauma patients, though at present no studies have shown that 
correcting this improves outcomes [65]. However, many institutions and organiza-
tions recommend calcium replacement in the setting of massive hemorrhage [65, 
66]. Hypocalcemia should be directly addressed via the intravenous administration 
of calcium chloride or calcium gluconate. When ionized calcium concentrations 
cannot be measured, it is reasonable to empirically administer calcium intrave-
nously for every 2–4 units of RBCs transfused.

 Hemostatic Resuscitation

The final principle of DCR applied to RDCR is hemostatic resuscitation, which is 
the use of whole blood or a “whole blood equivalent” with individual blood compo-
nents in a 1:1:1 unit ratio. Inherent in the principle of hemostatic resuscitation is 
avoidance, or at the very least limitation, of crystalloids and colloids. Military data 
strongly supports the use of fresh whole blood (FWB) for resuscitation [67, 68]. 
Walking blood banks are well suited for austere environments as they eliminate the 
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significant challenges of storage while providing the pinnacle of resuscitative fluids. 
Unfortunately, they also carry with them unique logistic challenges, issues with 
screening for infectious diseases, and maintaining adequate donor pools [69]. 
Prescreening programs and the expansion of low-titer O+ whole blood use, which 
has shown to be safe as a universal donor, improve some of these issues [70, 71]. 
However, transition of WBB programs to civilian settings has remain limited, with 
the Royal Caribbean Cruise Lines having perhaps the most successful large-scale 
implementation of a civilian walking blood bank program, with 37 transfusion cases 
reported [72]. Expansion of the use of low-titer cold-stored type O whole blood is 
starting to gain favor as the benefits of whole blood resuscitation continue to be 
reported [73–75]. For RDCR, especially in settings of delayed or prolonged evacu-
ation whole blood may be preferred compared to the use of component therapy 
(RBC, plasma, platelet units) as it is logistically very challenging to appropriately 
store and transport all three blood components. Patients who require shorter evacu-
ation times may be adequately temporized with just RBCs or even RBCs and plasma 
before hemostasis is achieved at an MTF, but for severely bleeding patients with 
longer transport times the most beneficial component may be platelets, and the only 
feasible way to resuscitate a trauma patient with all aspects of blood is to use whole 
blood. Whole blood for prehospital use has been shown to be feasible in well- 
developed trauma systems through coordinated efforts between trauma surgeons, 
blood banks, and emergency services [76–79]. The use of advanced technology 
such as drones will further enhance the availability of blood products in remote 
 settings [80].

To supplement whole blood, or when whole blood is not available, use of freeze- 
dried plasma can be advantageous. Its use has been successfully implemented by 
the Germans, Norwegians, French, and Israelis [81–83]. The availability of plasma 
prehospital is also important because data indicates that its early use is associated 
with improved outcomes for patients with severe TBI [84]. A recent RCT published 
by Sperry et al. also indicates the use of plasma prehospital improved survival com-
pared to the use of crystalloids [85]. Freeze-dried platelets are currently in develop-
ment and have the potential to dramatically improve RDCR hemostatic resuscitation 
capabilities in austere environments [86, 87].

Lastly, injectable hemostatic adjuncts have potential for significant impact in the 
prehospital setting as either a complement to blood products or when blood prod-
ucts are not available. Tranexamic Acid (TXA) is an anti-fibrinolytic agent that 
inhibits plasminogen and plasmin, which are key factors for clot lysis. Both the 
MATTERs and CRASH-2 trials report decreased mortality when administered 
within the first 3 hours following trauma though potential for increased thrombotic 
complications exists [88, 89]. Prehospital TXA use in both military and civilian set-
tings has shown the practice to be feasible with ongoing prospective randomized 
trials currently in progress [90–92]. Other potential injectables include Prothrombin 
Complex Concentrate (PCC), a plasma-derived compound coagulation factors II, 
IX, X +/− VII, activated recombinant factor VII (rFVIIa), fibrinogen concentrates, 
and cryoprecipitate. While each has gained interest in empiric use in trauma, little 
data supports their use. rFVIIa has significantly fallen out of favor despite some 
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evidence that it may decrease the need for massive transfusion, when given early 
[93]. Similarly, the utility of empiric PCC seems limited to reversal of warfarin and 
some of the newer oral anticoagulant agents as an adjunct to FFP [94]. These agents 
potentially could play a larger role as direct factor replacements based on functional 
coagulation studies such as Thrombelastography (TEG) or Rotational 
Thromboelastometry (ROTEM). The RETIC study attempted to analyze if ROTEM- 
directed coagulation factor concentrates affected outcomes compared to the use of 
plasma. Unfortunately, this trial was limited by differences in the time to treatment 
in both groups that could have been avoided with the use of thawed plasma [95]. 
Currently, there is no high-quality data to support the use of these hemostatic 
adjuncts based on TEG or ROTEM data.

 Conclusion

“You may delay, but time will not.”
Benjamin Franklin
Poor Richard’s Almanack, 1758

Outside of prevention efforts, the opportunity to change the trajectory of a trauma 
victim’s life for the better starts at the moment of injury. From that second on, an oxy-
gen debt is accumulating that must be repaid, and time is the enemy. Applying the 
principles of RDCR brings active treatment to the patient while transporting them to a 
treatment facility as quickly as possible. In many ways, this is only possible by chang-
ing the historical perception that treatment starts in the trauma bay to a more modern 
approach where trauma care is optimized by initiating the resuscitation at the scene of 
the injury. Utilizing the prehospital transport time to control bleeding and treat blood 
failure may be the difference between a patient that has survivable injuries vs. an inevi-
table fatality. Many interventions and strategies are available to start addressing blood 
failure in a prehospital setting, but they require training of prehospital personnel and 
the resources to support them. Not only will the continued advancement of the practice 
and science of RDCR improve the care of trauma patients in the remote setting, it also 
holds great promise in improving prehospital care of all trauma patients, as well as 
patients with many other conditions such as gastrointestinal and peripartum hemor-
rhage. It is time for every trauma provider to make sure they are knowledgeable about 
RDCR and to champion its implementation and ongoing research.
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6Permissive Hypotension

Allan Pang, Ravi Chauhan, and Tom Woolley

 Introduction

Trauma patients are a complex population, with each individual requiring a unique manage-
ment strategy tailored to his/her needs – the acceptance of a single global blood pressure 
target would appear to be the antithesis of this principle. – M. Wiles [1]

Permissive hypotension (PH) in the context of life-threatening haemorrhage 
(LTH) is a resuscitation strategy which is used within damage control resuscitation 
(DCR), in which a lower than normotensive blood pressure is targeted until the 
source of haemorrhage is controlled [2]. The perceived benefit of PH is that it lim-
its bleeding and prevents dislodging of any clot formed at the injury site by avoid-
ing excessively high blood pressures. This must be balanced against the dangers of 
an under-perfused bleeding patient who will suffer from increasing physiological 
burden of reduced oxygen delivery resulting in endotheliopathy, coagulopathy, aci-
dosis and hypothermia which can ultimately lead to multi-organ failure to include 
‘blood failure’ [3, 4].
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The ultimate goal of DCR is the delivery of a casualty to higher echelons of care 
(i.e. a hospital with suitable surgical facilities available) with sufficient physiologi-
cal reserve to survive definitive surgical haemostasis and further aggressive resusci-
tation. The paradigm of DCR has evolved over many iterations ultimately leading to 
the current practice of combined use of blood-based resuscitation and limiting sys-
tolic blood pressure (SBP) which is believed to be effective in promoting haemosta-
sis and reversing shock.

This chapter will examine the evolution of PH and its part in DCR, the benefits 
and risks of PH and how future iterations of PH have started to evolve.

 Evolution of the Management of Haemorrhagic Shock

Post-injury haemorrhagic shock remains the major cause of morbidity and mortality 
in patients suffering major trauma [5, 6]. Shock is a defined state of oxygen delivery 
that is inadequate to meet vital organ metabolic demands. Once perfusion falls and 
hence oxygen delivery of an organ falls below a sufficient level, anaerobic metabo-
lism dominates, leading to an oxygen deficit at the cellular level. The product of the 
severity of shock and time spent in a shocked state is known as oxygen debt, which 
must be repaid. Failure to resolve this debt results in worsening organ dysfunction/
failure, including blood failure, making ongoing resuscitation increasingly difficult 
and eventually impossible [7].

Emphasis on restoration of circulating volume to maintain perfusion remained 
the mainstay of clinical practice until the start of the twenty-first century. The basis 
of this was founded on canine models initially proposed by Wiggers [8, 9], who 
found that survival rates were poor following periods of prolonged severe haemor-
rhagic shock even after re-administration of blood that had been lost.

This was further developed by Reynolds [10] and Shires [11], who found that 
administration of whole blood with large amounts of crystalloid solution relative to 
the amount of blood loss (2 ml per 1 ml of blood loss) could result in the reversal of 
the state of shock and dramatically improve survival rates. This is the basis of the 
‘3:1 rule’ where 2–3 times of estimated blood loss would be administered in the 
form of crystalloid solution, early in the treatment of haemorrhagic shock. This was 
adopted by Advanced Trauma Life Support and taught until 1997 [12].

Concurrently, in the latter half of the twentieth century, work looking at manage-
ment of patient with burns found that successful management resuscitation of burns 
patients required very large volumes of crystalloid fluid [13], forming the basis of 
the Parkland formula which is still widely used today [14]. There was a belief that 
the ‘burns model’ would serve as an excellent model for trauma resuscitation as 
both injury patterns appeared to lead to extracellular deficits.

This reinforced the strategy of large-volume resuscitation in the context of 
traumatic haemorrhage, and widespread liberal fluid resuscitation strategies were 
used. During the Vietnam War, aggressive crystalloid administration strategies, 
whilst believed to have saved many lives and reduced the incidence of renal 
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failure [15], were also thought to have been the cause of ‘Da Nang lung’, now 
known as acute respiratory distress syndrome (ARDS) along with other recog-
nised syndromes associated with excess crystalloid use such as abdominal com-
partment syndrome [16].

 Development of Permissive Hypotension

As early as 1918, it was suggested that restoring a normal blood pressure value had 
dangers of worsening haemorrhage by disrupting the formation of clots at the site of 
injury.

Injection of a fluid that will increase blood pressure has dangers in itself. If the pressure is 
raised before the surgeon is ready to check any bleeding that might take place, blood that is 
sorely needed may be lost. – W. Cannon [17]

Despite this, it was not until a growing body of evidence in the 1990s and early 
2000s started to challenge the dogma of large-volume crystalloid resuscitation. 
Three strategies began to emerge to deliver hypotensive resuscitation summarised in 
Table 6.1.

 Restricted Resuscitation

Animal studies report that in simulated cases of uncontrolled haemorrhage, adminis-
tration of large volume of crystalloids, whilst increased blood pressure, worsened 
bleeding at the injury site and mortality [18–20]. Two retrospective studies found that 
those who received a restrictive fluid regime during the resuscitation phase had better 
chance of survival [21, 22]. These findings should be interpreted with caution as there 
may be confounding factors between morality and the amount of fluid administered.

Recently, a multicentre prospective randomised pilot trial was conducted to com-
pare outcomes of controlled resuscitation (250  ml of 0.9% saline) vs. standard 
resuscitation (2000  ml of 0.9% saline) in response to hypotension in trauma 
(<70 mmHg or absent radial pulse). They examined 192 patients and reported 24-h 
mortality to be higher in the standard resuscitation group (18% vs. 3%) in those who 
suffered from blunt trauma [23].

Table 6.1 Summary of fluid resuscitation strategies

Type of resuscitation 
strategy Intervention to patient

Major clinical trials focusing 
on concepts

Restricted resuscitation Limit the volume of fluid administered Schreiber et al. [23]
Delayed resuscitation Restrict fluid resuscitation until 

admission to hospital
Bickel et al. [25]

Hypotensive 
resuscitation

Titrate and control BP to less than 
normal range

Dutton et al. [28],  
Carrick et al. [30]
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 Delayed Resuscitation

A study looking at pre-hospital management of LTH found that the administration 
of fluid prior to surgical intervention did not have a significant influence on mortal-
ity rate [24]. Bickell et al.’s landmark study randomised 598 shocked patients with 
penetrating torso trauma into 2 groups: those who received early fluid administra-
tion (pre-hospital) and those who received delayed fluid administration 
(in-hospital).

The group with delayed fluid resuscitation had a better survival rate (70 vs. 62% 
(p  =  0.04)) and suggested that it may also reduce intraoperative bleeding [25]. 
Within this group, in blood samples taken on arrival to hospital, there were also 
significantly higher haemoglobin and platelet concentrations with a shorter pro-
thrombin, and partial thromboplastin times were longer. This may suggest that large 
volumes of crystalloid may not just attenuate secondary bleeding but also worsen 
coagulopathy.

 Hypotensive Resuscitation

When targeting a lower than normal blood pressure, in animal models, both survival 
outcomes and control of haemorrhage improved [26, 27]. The models of haemorrhage 
often used in animal studies may not be entirely representative of a traumatic haemor-
rhage in humans. The animal models used are the most sensitive to re- bleeding (i.e. a 
lesion to a major artery with large volumes of crystalloid fluids given immediately) 
and are conducted under anaesthesia resulting in differences in vascular resistances 
and regional blood flow due to anaesthetic-induced vasodilatation. Despite this, col-
lectively these studies do suggest that very aggressive and early resuscitation with 
clear fluids is detrimental and provides a useful starting point for clinical studies.

Clinical human studies, however, found it difficult to demonstrate benefits of 
hypotensive resuscitation. Dutton et al. [28] performed a prospective randomised 
controlled trial (RCT); 110 hypotensive trauma patients with presumed haemor-
rhagic shock were randomised to receive fluid resuscitation to a targeted SBP 
(hypotensive (70 mmHg) vs. normotensive (>100 mmHg)). There were no differ-
ences in ‘in-hospital mortality’ between these two groups; however, mean SBP in 
these two groups were higher than intended (100 mmHg vs. 114 mmHg).

This deviation from the intended study protocol shows how unpredictable SBP 
rises can be even with small aliquots of fluid administration. What was also seen in 
this study was the phenomenon of a spontaneous recovery of SBP following the 
control of the bleeding source without fluid administration along with pressure 
oscillations as seen in Fig. 6.1.

Morrison et  al. looked at intraoperative control of blood pressure, comparing 
targeting mean arterial pressure (MAP) of 50 mmHg vs. 65 mmHg. In the prelimi-
nary findings [29], they found that within the hypotensive group, early post- operative 
mortality had improved and that there were less to develop coagulopathies. As with 
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Dutton’s team, trying to maintain separation of MAP proved challenging, and in 
fact the mean MAP values in both groups were not statistically different. This study 
was terminated early as it was unable to demonstrate differences in 30-day mortality 
with the proposed sample size [30].

What should be noted is that many of these studies had established trauma net-
works with short pre-hospital times (<60 min) and access to surgery was readily 
available. This means that any period of hypotension is short and potentially the 
adverse effects of shock may not have as significant of an effect. However, this is 
not the case in many parts of the world, even within the economically developed 
nations, particularly in isolated rural regions, or within a military context.

Of the three strategies for hypotensive resuscitation mentioned previously, there is 
no strong evidence that any can be applied universally to bleeding trauma patients, 
and no human data exist to guide the duration of a hypotensive strategy. To add more 
confusion, it is also unclear whether the restrictive resuscitation/controlled resuscita-
tion approach might be beneficial as a consequence of less crystalloid use or due to 
hypotension itself. The risks associated with hypotensive resuscitation, in particular 
hypoperfusion and end-organ damage, have been documented in the literature, 
although to counter this, certain animal studies dispute the significance [31].

A recent Cochrane Review demonstrated that no large-scale RCT has shown any 
benefit from hypotensive resuscitation in trauma [32]. This highlights the uncer-
tainty behind the postulated mortality benefit. Despite the lack of evidence, the con-
cept of hypotensive resuscitation for LTH has been adopted in many national trauma 
guidelines and has entered widespread practice as a result [33, 34].
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Fig. 6.1 An example of blood pressure oscillation and eventual equilibration in a patient from the 
low-pressure arm of the study. (From Dutton et al. [28], Fig. 3, with permission of Wolters Kluwer 
Health, Inc.)
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 Defining an Appropriate Target

Analogously, the question concerning what blood pressure to aim for has also been 
left unanswered. When evaluating PH, one cannot avoid trying to define blood pres-
sure targets and as such consider a suitable range, i.e. the lower and upper limits 
acceptable in PH. A consensus group in 2002 suggested that the presence/absence 
of a palpable peripheral pulse (i.e. radial pulse) could be used as this end point [35].

As with most areas pertaining to PH, the evidence for defining these limits is 
scarce, especially when taking into consideration non-anaesthetised patients. What 
does seem to be clear is that patients suffering trauma (except for those with severe 
traumatic brain injury) do not necessarily seem to be disadvantaged from short peri-
ods of hypotension. [36–39] There is some experimental evidence that tissue auto-
regulation limits may be lower than originally suspected [40].

When considering blood pressure measurements, Emerson et al. in 1945 studied 
112 battle casualties presenting to a field hospital [41]. They found that mortality in 
those arriving in shock with SBP < 85 mmHg was 35%, whereas those arriving with 
a SBP >85 mmHg was 11%. Of those who died and had additional blood volume 
measurements (n  =  13), some assessments of the factors leading to death were 
made. Two of these cases had extremity injuries, one from a through-and-through 
gunshot wound to the thigh and one open bilateral lower limb fractures. Both of 
these cases should have been amenable to external haemorrhage control. The salient 
feature of these patients was the prolonged pre-hospital phase (7 h and 6 h from the 
time of injury) with systolic pressures of 50 mmHg and 60 mmHg, respectively, at 
time of admission. Notwithstanding ‘adequate’ volume resuscitation with blood, 
they never recovered from shock. Emerson and his colleagues wrote:

These patients failed to respond to adequate shock treatment, although in neither case could 
this failure be attributed to lack of adequate transfusion therapy or to the presence of infec-
tion. The sequence of events suggests that failure of shock therapy in these cases is related 
to irreversible changes in the cardiovascular system resulting from prolonged tissue anoxia.

This observation would suggest that 85 mmHg might be too low to be the lower 
limit for a prolonged period. In the absence of any evidence, the currently accepted 
level of 80–90 mmHg should be the absolute lowest. Simultaneously, it could be 
argued that a higher goal of 100 mmHg may be more appropriate in order to ensure 
that 90 mmHg is never infringed.

In 2007 Eastridge et al. analysed 871,000 patients from the US National Trauma 
Data Bank [42]. When traumatic brain injury (TBI) was excluded, the authors cor-
related mortality and admission base deficit with admission SBP. Baseline mortality 
was <2.5%. Figure 6.2 compares mortality and base deficit against systolic blood 
pressure on arrival in the ED. The slope of the graph changed at 110 mmHg such 
that below 110 mmHg, there was a 4.8% increase in mortality for every 10 mmHg 
drop in SBP. A similar inflection point for base deficit appeared at 118 mmHg. They 
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concluded that a SBP ≤110 mmHg is a more clinically relevant definition of hypo-
tension and shock than 90 mmHg.

Similarly, Hasler et al. examined 48,000 patients from the UK Trauma Registry 
suffering from blunt trauma [43]. Figure 6.3 shows the odds ratio against systolic 
pressure on arrival, which documented that the odds of dying increased below an 
SBP of 110 mmHg and had doubled below an SBP of 100 mmHg, with a similar 
inflection point at 110 mmHg.

These studies indicate that an SBP on admission of <110 mmHg is associated 
with worsening outcomes. Thus, an SBP of 110 mmHg may indicate a ‘lower limit 
of normal’ and perhaps the upper limit of a pressure range target for resuscitation.
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 Duration of Hypotension

The use of PH as a resuscitative strategy is a balancing act between two poor 
outcomes. If we raise blood pressure, we risk uncontrolled haemorrhage; how-
ever, a low blood pressure risks under-perfusion and the physiological insult that 
comes with this. Initially the greatest danger is haemorrhage, and so we tolerate 
a low blood pressure to control this; however, as time passes, the magnitude of 
physiological derangement increases and may cause more harm.

This raises a question: At which point during the execution of permissive hypo-
tension do the adverse effects associated with the strategy offset the benefits? It is 
reasonable to conclude that prolonged hypoperfusion/hypotension will worsen clin-
ical outcomes and animal studies support this belief. The effects of permissive 
hypotension of 60-, 90- and 120-min duration were evaluated in rats with uncon-
trolled haemorrhage [44]. Survival times and organ function were nearly identical 
for those in the 60- and 90-min groups, yet in those rats treated with hypotensive 
periods longer than 90 min, the outcomes were significantly worse.

In another similar study of 24 pigs with controlled haemorrhage, those treated 
with severe hypotensive resuscitation (systolic BP 65 mmHg) for 8 h had persistently 
worse base excess and tissue oxygen saturation, and significantly higher mortality, 
compared to those resuscitated to systolic BP 90 mmHg or 80 mmHg [45]. The point 
at which the hypotensive strategy causes more harm is not yet addressed in any inter-
national consensus guideline and makes answering the question above difficult. The 
answer may lie in the nature of the trauma and the initial response of the patient.

 Remote Damage Control Resuscitation

It is important to highlight differences in the strategies of patient management 
inherent in pre-hospital and in in-hospital phases of care. Very different monitoring 
capabilities and treatment options exist, including the availability of anaesthesia and 
immediate surgery.

Consequently, a difference in the approach to hypotensive resuscitation is 
required. DCR principles are applied mainly to hospitalised patients under general 
anaesthesia. Remote damage control resuscitation (RDCR), in most parts of the 
world, is applied to pre-hospital patients who are awake and at times spontaneously 
breathing. This leads to increased systemic vascular resistance in those patients who 
are awake and breathing relative to those who are anaesthetised and mechanically 
ventilated.

Anaesthetised patients are vasodilated by anaesthetic drugs and opioids and 
often have advanced haemodynamic monitoring, a multidisciplinary team caring for 
them and ongoing surgery (if required). This allows the in-hospital provider to 
maintain a higher cardiac output whilst keeping SVR and pressure targets low, thus 
maximising oxygen delivery to the tissues. This approach is nearly impossible in the 
pre-hospital setting and therefore caution to be applied when trying to apply evi-
dence derived from an in-hospital setting to a pre-hospital setting.
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 Management with Concurrent Traumatic Brain Injury

The management strategy for LTH in a patient with associated traumatic brain 
injury (TBI) is an area of controversy. Debate exists as to whether or not the guide-
lines for permissive hypotension should be changed in the presence of TBI as no 
human evidence exists from prospective studies [46]. There is retrospective and 
observational data for patients with TBI that link increased mortality with reduc-
tions in mean arterial pressure [28, 47].

The 2016 guidelines published by the Brain Trauma Foundation, relating to in- 
hospital management of traumatic head injury, supports maintaining a systolic 
blood pressure above 110 mmHg, based on level 3 evidence. These guidelines do 
not offer direction on the suitability of this strategy in those with LTH [48]. What 
we do know is that aggressive fluid resuscitation in patients with LTH and TBI is 
unfavourable [49]. Studies involving rats, dogs and swine models have indicated 
that crystalloids used to raise cerebral perfusion (through raising the BP) result in 
damage to microvasculature leading to extravasation and ultimately raised intracra-
nial pressure through cerebral oedema [50–52].

Vrettos et al. studied the effect of PH in both TBI and blunt abdominal trauma in 
pigs [53]. They simulated a TBI using a standardised fluid percussion model and 
uncontrolled haemorrhage by releasing a surgical knot on the aorta. At this point 
they randomised the pigs into two groups: those with aggressive crystalloid fluid 
resuscitation and those left hypotensive for 1 h (PH). All pigs in the aggressive fluid 
resuscitation group died; however, for those in the PH resuscitation group, 50% 
survived and were able to have their haemodynamic profile and consequently cere-
bral oxygenation restored to pre-injury levels when resuscitated.

The National Institute for Health and Care Excellence (NICE), UK, advises that 
in patients with both TBI and LTH, if haemorrhagic shock is dominant, then restric-
tive volume resuscitation should be continued; however, if TBI is dominant, a less 
restrictive volume resuscitation approach should be used to maintain cerebral perfu-
sion pressure [54]. Interestingly, this guidance is followed by the following 
statement:

Based on low quality randomised controlled trials, and the experience and opinion of the 
GDG (Guideline Development Group).

 Potential Areas for Future Development

 Hybrid Resuscitation

During prolonged evacuation, the balance of risk between exacerbating further 
bleeding against hypoperfusion evolves with time. Initially, the greater risk might 
be to disrupt a fragile nascent clot, and so it might be appropriate to severely restrict 
fluid administration allowing blood pressure to remain low. As clot strength 
increases with time, the risk of clot disruption diminishes; however, the impact of a 
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shocked hypoperfused state accumulates with time leading to acidosis, coagulopa-
thy and end-organ damage/failure.

Experimental studies in anaesthetised pigs with haemorrhagic shock with the 
background of blast lung found that prolonged periods of hypoperfusion led to sig-
nificant worsening survival time and mortality [55]. Further animal studies found a 
new paradigm of allowing a period of hypotension (60 min) followed by a normo-
tensive resuscitation target using crystalloid fluid administration.

This was known as ‘novel hybrid resuscitation’, which was found to improve 
survival as well as reversal of a shocked state in the same animal model as described 
above [56]. The question that this piece of research was evaluating who to best to 
manage casualties where there were prolonged evacuation times (i.e. the military) 
and in 2006, the UK military adopted novel hybrid resuscitation as part of their 
clinical guidelines for prehospital care of traumatic haemorrhage.

This highlights that PH is realistically limited for casualties with short evacua-
tion times with readily available surgical facilities. This approach to reverse shock 
by raising the BP target at 60 min addresses the fact that the therapeutic priority has 
shifted towards shock rather than limiting re-bleeding.

 Use of Blood Products

Shock is characterised by an oxygen deficit which in the context of LTH is due to 
the failure of delivery to meet oxygen demand. The oxygen delivery equation is as 
follows:

 O delivery arterialO content cardiac output2 2= ´  

In the context of LTH, hypovolaemia is the precipitating factor in low cardiac 
output. Cardiac output is the product of heart rate and stroke volume. The use of 
clear IV fluids will increase preload and myocardial contractility leading to 
increased stroke volume and therefore cardiac output. Clear IV fluids also reduce 
viscosity of blood and thereby improve microvascular flow at the capillary bed. 
Whilst this is all initially beneficial to the patient, these effects are only tempo-
rary as crystalloid fluid freely redistributes across the capillary bed into the inter-
stitial fluid (up to 2/3), minimising the effect on improving cardiac output. The 
temptation will be then to continue to administer clear fluids to maintain cardiac 
output, and as discussed previously, too much crystalloid fluid has detrimental 
effects.

The use of blood products would improve cardiac output by the same mecha-
nisms as crystalloid fluids and will stay within the intravascular space longer whilst 
also increasing arterial oxygen content. There is an increasing body of evidence in 
the benefit of blood products early for patients with LTH [57].

The Trauma Hemostasis and Oxygenation Research (THOR) Network has 
recently published a position statement on the role of permissive hypotension in 
RDCR [58]. They advocate the early use of blood products, in particular, whole 
blood. This is based on a significant animal study [59] and several retrospective 
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studies [57, 60–62], which found improvements in mortality, base excess and coagu-
lopathy when pre-hospital blood products were used compared against crystalloid 
fluid.

The group also evaluated what would be a suitable systolic blood pressure to aim 
for. Based on the evidence seen above [44, 45], a target systolic blood pressure of 
100 mmHg should be used. By using blood products early, we can use this higher 
threshold to prevent the dangers of under-perfusion and oxygen debt.

 Point-of-Care Assessment of Shock

It has long been recognised by physiologists and anaesthetists/intensivists that mon-
itoring mean arterial blood pressure is a poor measure of the degree of haemorrhage 
and developing shock [63], principally because reflex increases in vascular resis-
tance (to maintain or elevate pressure) cause a reduction in tissue blood flow that is 
underestimated or even hidden when blood pressure is the primary assessment. The 
above sentiments would hold true in the context of permissive hypotension.

Although monitoring methods are discussed elsewhere in this book, alternative 
hypothesised methods include measures of global blood flow (such as stroke vol-
ume or cardiac output) or tissue perfusion or oxygenation (such as lactate or base 
excess), which may give a more timely warning of hidden haemorrhage since the 
former are part of the initial effect of haemorrhage, whilst the latter change in 
response to the physiological alterations that delay the overt falls in arterial blood 
pressure. Similarly, changes in tissue perfusion may indicate a need for intervention 
and consequently techniques to change global flow.

At present, there is no single machine or measurement that gives a rapid, accu-
rate answer to the degree of shock and response to fluid resuscitation. Many physi-
ological indices have merit, but currently no empirical test has shown the outcome 
superiority of one over another. In the absence of prospective effectiveness trials, 
pre-hospital clinicians will continue to need to collect, digest and interpret all the 
information, overlaid by experience, in order to maximise the chance of a bleeding 
patient surviving.

 Summary

Within the paradigm of RDCR and DCR, PH is a principal strategy. The goal of PH 
is to provide just enough preload to sustain cardiac output/oxygen delivery to pre-
vent cellular injury and exacerbation of blood failure whilst also preventing adverse 
effects of hypothermia, dilutional coagulopathy, re-bleeding, endothelial injury and 
resultant inflammation.

Providing this balance is difficult and compounded in the pre-hospital phase of 
resuscitation where monitoring is challenging. The duration and depth of PH must also 
be balanced with the rate of bleeding and duration of time to surgical control of bleed-
ing. In line with the quotation at the start of this chapter, when exploring resuscitation 
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approaches in trauma patients, consideration should be given to age, mechanism and 
severity of injury, presence or absence of shock and what treatment, if any, occurred at 
a pre-hospital or in-hospital setting and the availability of blood- based products.

There are currently no methods available that can inform the ability to achieve 
the balance needed to ensure adequate oxygen delivery whilst minimising the 
adverse effects of fluid resuscitation. This balance also changes with the primary 
use of blood products, where increased oxygen delivery, haemostasis and endothe-
lial cell repair can be achieved with less risks of haemodilution, inflammation and 
endothelial injury.

Nevertheless, it is imperative to acknowledge that permissive hypotension is nei-
ther a treatment nor a substitute for definitive surgical haemorrhage control. To 
quote a recent manuscript by Nevin and Brohi, ‘Permissive hypotension is a tech-
nique employed on the journey to a greater overall destination’ [64].
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7Hemostatic Resuscitation

Andrew P. Cap, Jennifer M. Gurney, 
and Michael A. Meledeo

 Introduction

Evidence from the battlefield and the civilian prehospital environments is clear: 
hemorrhage is the leading cause of preventable death in trauma. The goal of the 
trauma medical community at large has been to reduce the number of these prevent-
able deaths to zero [1]. Saving the life of an exsanguinating patient requires two 
objectives: early hemorrhage control and appropriate, hemostatic resuscitation. The 
more rapidly these are accomplished, the greater the chances of survival. There is a 
distinct reciprocity between hemorrhage control and appropriate resuscitation: 
hemorrhage causes a quantitative and qualitative failure in the hemostatic function 
and, more broadly, of the global homeostatic function of blood and the endothelium 
that contains it. To understand the pathophysiology of hemorrhagic shock and how 
this drives therapeutic imperatives, the blood-endothelium unit should be thought of 
as an organ system and the shock state as organ failure. The rapid onset of blood 
organ failure quickly leads to failure of the other dependent organs, and death within 
minutes to hours, depending on the rate of hemorrhage.

The critical role of blood in supporting other organs has long been appreciated; 
however, the degree to which the dysfunction of the blood-endothelial organ con-
tributes to hemorrhagic death, and the time course over which this develops, has 
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only recently been acknowledged. Basic research combined with a focused empiri-
cism approach to analyzing clinical data from military and civilian trauma systems 
has led to the development of “damage control resuscitation” (DCR) [2]. The con-
cept of damage control has been embraced in the military’s battlefield continuum of 
care; it describes a paradigm of early recognition and therapies to control hemor-
rhage facilitating the movement of casualties to higher capabilities. The DCR bun-
dle in the military’s battlefield trauma system include prehospital hemostasis with 
tourniquets or hemostatic dressings, rapid surgical control of bleeding and avoid-
ance of crystalloids, and hemostatic resuscitation or a whole blood-based resuscita-
tion with either whole blood or blood components in a 1:1:1 ratio that recapitulates 
whole blood [3, 4]. Hemostatic resuscitation is central to the DCR bundle of care.

Hemostatic resuscitation stands in stark contrast to prior resuscitation strategies 
that prioritized maintenance of circulating volume (generally with crystalloids) and 
restoration of oxygen delivery (with red blood cells) but neglected delivery of 
hemostatic products [5]. Hemostatic resuscitation has profound implications not 
only for treatment of the individual patient but also for the design and support of 
entire trauma and blood banking systems. The application of DCR principles, with 
hemostatic resuscitation as its core, in both military and civilian settings, has 
reduced trauma mortality and is revolutionizing trauma care. This chapter will dis-
cuss the physiologic principles underpinning DCR; the history of its empiric, clini-
cal evolution; and the importance of whole blood and blood component transfusion 
strategies, in addition to factor concentrates and adjuncts to hemostatic resuscita-
tion. The chapter also reviews potential treatment strategies for the future.

 Coagulopathy Is a Manifestation of Blood Failure: The Need 
for Hemostatic Resuscitation

The term blood failure refers to the physiologic consequences of untreated hemor-
rhage (see Chap. 3 for a larger discussion of blood failure). Severe injury with resul-
tant hemorrhage results in failure of oxygen delivery by blood (a quantitative 
deficiency), leading to accumulation of oxygen debt and a cascade of events driven 
by cellular hypoxia and metabolic failure (quantitative and qualitative deficiencies 
in blood function). Endotheliopathy develops within the first 30 min of hemorrhage- 
induced hypoperfusion and is characterized by release of tissue plasminogen activa-
tor (tPA) with activation of fibrinolysis, as well as loss of endothelial glycocalyx and 
associated dysfunction of endothelial regulation of permeability and interactions 
with the coagulation and immune systems [6]. From a historical standpoint, coagu-
lopathy, as it relates to hemorrhage, was described and studied in both the Korean 
and Vietnam wars [7, 8]. Coagulopathy now is known to develop in parallel with 
endothelial dysfunction. The exposure of tissue factor on damaged tissue activates 
thrombin generation, which is dramatically amplified on the surfaces of activated 
platelets, leukocytes, and endothelial cells, as well as on microvesicles derived from 
these and other cells [9–11]. Activation of fibrinolysis is coupled with consumption 
of fibrinogen by the burst of thrombin activity, leading to clot formation but also to 
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increases in circulating fibrin monomer and fibrin degradation products [12, 13]. 
Oxygen debt directly alters coagulation function through effects on fibrinogen such 
as oxidative stress [14]. The combination of these factors can interfere with normal 
fibrin polymerization and the formation of stable clots. The net result is a quantita-
tive loss of clotting capacity as well as a qualitative defect which is manifest in both 
traditional clotting time-based coagulation assays (e.g., prolongation of prothrom-
bin time, PT) and viscoelastic assays of clotting. Traditional coagulation tests like 
the prothrombin time are also affected by the association of factors V and VIII with 
activated phospholipid surfaces where they serve as anchors for the assembly of the 
tenase and prothrombinase complexes, thus reducing their levels in circulating 
blood that is sampled for clinical testing. In some respects, this aspect of measured 
coagulopathy may be considered an artifact, though it does reflect the tremendous 
mobilization of resources to generate thrombin in vivo. Though plasma anticoagu-
lant pathways that regulate thrombin generation, such as the protein C and S sys-
tems, are activated by elevated thrombin generation, prolongations in clotting times 
observed in hemorrhagic shock patients occur despite both elevated thrombin gen-
eration potential and evidence of prior and ongoing thrombin generation (e.g., ele-
vated levels of thrombin-antithrombin complexes), as well as rapid fibrinogen 
consumption and degradation [15, 16].

In light of this, the early coagulopathy of trauma could be seen as a failure to 
regulate exuberant thrombin generation and fibrinolysis, leading to a fundamentally 
consumptive coagulopathy, rather than an anticoagulated state in which thrombin 
generation is inadequate to the hemostatic challenge [17–20]. In addition, platelets, 
the vital cellular effectors of hemostasis, are rapidly activated (in part by exposure 
to elevated thrombin levels) and consumed early in response to injury but then 
develop qualitative functional defects, such as loss of aggregation function, through 
a combination of metabolic failure and inhibitory signaling, which magnify the 
effects of coagulopathy in the plasma [21, 22]. Decreases in platelet number and 
function are correlated with increased trauma mortality [23, 24]. During hemor-
rhage the combination of the loss of blood cells and the movement of interstitial 
fluid into the vascular space results in hemodilution. Hemodilution is exacerbated 
by the loss of endothelial barrier function and decreased Starling forces and ampli-
fies functional defects in coagulation and platelet function. Loss of red blood cell 
mass reduces the buffering capacity of blood, exacerbating lactic acidosis, and leads 
to loss of platelet margination to the edges of the blood flow stream where they can 
attach to damaged tissue and initiate hemostasis [25, 26]. Red cells provide the bulk 
of clot mass and contribute to blood viscosity; their loss in hemorrhage is thus a 
central feature of coagulopathic bleeding. The downward spiral of blood failure 
encompasses all of the sub-systems of the hemo-vascular organ including loss of 
vasomotor regulation, beginning with systemic vasoconstriction due to adrenergic 
hyperactivity [27] followed by vasoplegia, and an immunopathology, resulting in 
systemic inflammation and dysregulated innate and adaptive immunity [28–31]. 
The loss of hemostasis homeostasis in catastrophic hemorrhage described above 
reflects first and foremost the quantitative loss of whole blood, not just depletion of 
any single component. That central fact underlies the resultant pathophysiology and 
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implies a treatment approach: lost organ function must be replaced. Hemorrhage 
control cannot be successful without restoration of oxygen delivery and hemostatic 
function. Severe blood loss must be treated with blood transfusion. Indeed, hemo-
static resuscitation can be thought of as the core organizing principle of 
DCR. Application of these concepts has required a major change in clinical practice 
and the organization of trauma systems. The evolution of this transformation is 
described below.

 The History of Damage Control and the Coaptation 
with Hemostatic Resuscitation in Trauma Care

Damage control resuscitation represents the convergence of concepts and interven-
tions that control bleeding and treat blood failure. Principals such as early mechani-
cal hemorrhage control and hemostatic resuscitation are the pillars of DCR. The 
term “damage control” has its roots in the US Navy and is the concept of refocusing 
the efforts of a damaged ship’s crew on fire control and leak containment. The trans-
lation of this concept to the massively hemorrhaging patient that will succumb to 
their injuries without rapid intervention is germane, especially when considering 
the military continuum of battlefield care. Damage control in the Navy are measures 
to keep a severely damaged ship afloat with temporary salvage techniques so that it 
might survive to arrive at a port for formal repairs. It is a process that requires quick 
decision-making and often painful trade-offs in stabilizing a devastating situation 
and curtailing losses. The Damage Control Handbook, published in 1945 by the 
Bureau of Naval Personnel, describes the rapid salvage approaches for damaged 
ships: “If the ship does not sink within a very few minutes after damage, she prob-
ably will survive for several hours.” The parallels in trauma management, especially 
when it comes to interventions for hemorrhage, are readily apparent. Naval damage 
control has four goals: extinguish the fire, stop the flooding, repair machinery, and 
provide care to wounded personnel. These concepts applied to the care of traumati-
cally wounded patients are stop the bleeding and minimize contamination, tempo-
rize nonlethal injury, stabilize the patient’s metabolic disturbances, and then later 
perform definitive repairs. Hemostatic resuscitation is essential for bleeding control 
and minimizing metabolic disturbances; it is compulsory for effective DCR.

This principle of rapid salvage and stabilization of a bleeding patient instead of 
proceeding directly to definitive repair was described in 1983 by Stone et al. [32]. 
In this foreshadowing of the modern DCR approach, patients underwent abbrevi-
ated laparotomy for hemorrhage control to avoid additional bleeding from coagu-
lopathy and the development of blood failure, although the term “blood failure” had 
not been described. Ten years later, the concept of damage control surgery was 
defined by Rotondo and Schwab as initial control of hemorrhage and contamination 
followed by intraperitoneal packing and rapid closure, allowing for resuscitation to 
normal physiology in the intensive care unit and subsequent definitive re- exploration 
[33]. This practice was widely adopted and is now considered the gold standard in 
the care of significantly injured patients. The initial description of the damage 
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control concept did not include hemostatic resuscitation; instead it emphasized 
high-volume infusion of crystalloids and red blood cell concentrates, with minimal 
and late use of plasma and platelets; whole blood was rarely used. Despite the rec-
ognition as early as 1982 that crystalloids caused hemodilution and acidosis and 
contributed to hypothermia (if not warmed prior to infusion), leading to worsened 
coagulopathy and a “bloody vicious cycle” [34, 35], the resurgence of hemostatic 
resuscitation to treat trauma-induced blood failure, aka “the blood vicious cycle,” 
took an additional two decades to fully rediscover.

While surgical damage control was being refined and the damage control con-
cept expanded to ICU care and other surgical disciplines, resuscitation strategies 
were slower to change. Resuscitation has classically been defined as an intervention 
designed to expand the intravascular space and restore oxygen delivery to vital 
organs. However, as alluded to above and as will be described further in this chapter, 
the convergence of the damage control surgery and hemostatic resuscitation has led 
to the evolution of resuscitation to now represent an intervention not only for oxy-
gen carrying capacity but also for hemostasis and other aspects of blood function 
including maintenance of endothelial structure and function. Hemostatic resuscita-
tion treats hemorrhagic shock and blood failure and is a key component of damage 
control. Both mechanical (surgical) hemorrhage control and hemostatic resuscita-
tion are necessary for DCR; one without the other is insufficient for the hemorrhag-
ing patient. Over the last two decades, these concepts have simultaneously evolved 
and coapted; hemostatic resuscitation was somewhat of a late addition to the DCR 
strategy – despite many of the concepts being employed since World War II. As 
blood failure become better elucidated, hemostatic resuscitation, which includes 
plasma, platelets, cryoprecipitate, and whole blood transfusion, complemented the 
damage control strategy and led to the integrated concept of DCR.

 Damage Control and Hemostatic Resuscitation in Combat 
Casualty Care

Much of the current understanding of damage control resuscitation and hemostatic 
resuscitation have come from the recent military experiences in Iraq and Afghanistan. 
Damage control concepts have long been used by the military across the spectrum 
of care, and damage control should be viewed more as a strategy than a specific 
procedure. In the modern US military battlefield system of care, which evolved 
from roughly 2003 to 2018, the concept of damage control starts with the point-of- 
injury medic rapidly controlling hemorrhage with a tourniquet and hemostatic 
dressing use. Rapid evacuation to far-forward surgical care where abbreviated lapa-
rotomy and additional hemorrhage and contamination control procedures are per-
formed is the next stage in the damage control spectrum of care. After hemostatic 
resuscitation with blood products and rewarming, the patient is evacuated to a 
higher level of care for definitive management. Important elements in the modern 
damage control strategy include early use of whole blood, minimal crystalloid infu-
sion to avoid hemodilution, and active rewarming measures. These, combined with 
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moving surgical and resuscitative capabilities closer to the point of injury, encom-
pass a “bundle of care” which mitigates the effects of massive hemorrhage. The 
development of this system – which now includes prehospital blood transfusion – 
required a paradigm shift in the understanding of the goals of resuscitation and the 
importance of treating early blood failure with hemostatic resuscitation.

Interestingly, resuscitation for combat casualties with whole blood and plasma 
was used in the beginning of the twentieth century up until the Vietnam War. Blood 
and plasma were transfused to wounded soldiers promptly after injury, and mobile 
blood banks were used to deliver whole blood to the forward line of battle [36, 37]. 
Ironically, at the end of the Vietnam War, there was a movement away from whole 
blood toward crystalloid and blood component resuscitation. This was a reduction-
ist attempt to provide a goal-directed strategy to replace circulating and interstitial 
volume while sequentially treating identified physiologic deficiencies. Crystalloids 
were given to increase volume, red blood cell concentrates to replace oxygen- 
carrying capacity, plasma to replace factors, etc. Given the rapid physiologic decom-
pensation of patients suffering traumatic hemorrhage, it might have been anticipated 
that a sequential, goal-directed strategy such as this would have been difficult to 
implement effectively, especially in austere military settings. This resuscitation 
strategy was a scientific, intellectual, and elegant approach to resuscitation which 
was rooted in the urge to deconstruct the pathophysiology and measure precisely 
before treating; interestingly, it was widely adopted without direct comparison to 
the antecedent whole blood approach or any comparative study.

 Relearning Lessons of the Past

In both military and civilian environments, there have been significant investments 
to advance the understanding of the physiology of hemorrhage and the development 
of mitigating strategies for hemorrhage control. Devices, medications, operative 
strategies, and attempts at optimization of transfusion practices have been aimed at 
improved hemorrhage control in order to avoid the aberrant and frequently deadly 
physiologic lethal triad (acidosis, coagulopathy, and hypothermia) associated with 
hemorrhage. However; in a remote setting or far-forward battlefield with limited 
access to equipment and supplies, successful resuscitation requires a care provider’s 
knowledge and recognition of hemorrhage physiology rather than technology and 
advanced materiel. It is critical that this knowledge be codified and passed on to 
avoid the cycle of relearning lost lessons.

Over the last two decades, there has been a paradigm shift in resuscitation strate-
gies regarding both what is given as well as when it is given. The trauma community 
has learned that rapid transfusion using either whole blood or a combination of blood 
components that recapitulates the oxygen carrying and hemostatic function of whole 
blood will decrease death from hemorrhage. Additionally, the community has learned 
that resuscitation should begin as soon as the need is identified, at the site of injury if 
possible. Transfusion at the point of injury (POI), at a remove from the manpower and 
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logistical support of a hospital, is called remote damage control resuscitation (RDCR) 
and is now recognized as the lifesaving intervention having the most potential to 
decrease preventable deaths from severe hemorrhage early after injury [38, 39].

Much of what has been learned about RDCR comes from theaters of war, where 
the most concentrated source of hemorrhaging patients is found. While the terms 
damage control resuscitation, hemostatic resuscitation, and remote damage control 
resuscitation are part of the “resuscitation lexicon” that has emerged during the 
recent conflicts in the Middle East, their concepts date back to World War 
I. Transfusion practice evolution during military conflicts has demonstrated that the 
battlefield is often a source of advancement and innovation in medicine, fueled by 
intense and concentrated patient experiences as well as the national impetus to 
improve patient outcomes. The history of battlefield medicine has given great 
insight into what has worked and what has not. Unfortunately, lessons learned from 
the past have had to be relearned during the recent conflicts. One of the most obvi-
ous of these is the employment of tourniquets for extremity hemorrhage control, but 
these relearned lessons also include principles associated with transfusion therapies 
dating back to World War I, such as “The indications for blood transfusion are based 
on the fact that transfused blood is the best substitute for blood lost in acute hemor-
rhage,” from the 1918 article The transfusion of whole blood: a suggestion for its 
more frequent employment in war surgery by Dr. LB Robertson [40]. This century- 
old article states that a seriously bleeding patient needs whole blood – what was lost 
must be replaced. While this seems apparent and even simplistic, resuscitation strat-
egies employed since 1918 have varied significantly, incorporating usage of bal-
anced salt solutions, colloidal volume expanders, blood component therapy, and 
finally, again, whole blood – despite the fact that Robertson and colleagues turned 
to blood because of the failure crystalloid- and colloid-based resuscitation. Many of 
the lessons learned from conflict over the years have not been effectively dissemi-
nated in peacetime to maintain continuity of best practices.

Resuscitation for the past several decades thus has consisted of crystalloid solu-
tions (lactated Ringer’s or normal saline) and packed red cells (if available), a strat-
egy that remains pervasive in  locations that have insufficient blood products or 
supply chain deficiencies. These products temporarily restore perfusion pressures 
and provide some oxygen delivery but forego support for hemostasis and aggravate 
endotheliopathy and reperfusion injury. Hemostatic resuscitation incorporating 
plasma and platelets and minimizing crystalloids on the other hand offers a signifi-
cant number of other benefits besides restoring perfusion. Even beyond the coagula-
tion factors in plasma, blood products promote homeostasis which is critical to 
preventing exacerbation of other aspects of blood failure [6, 41]. As important as 
procoagulant factors are, the anticoagulants such as antithrombin, protein C, and 
protein S control excess thrombin generation remote from sites of injury and main-
tain hemostatic and homeostatic balance [42, 43]. Rapid replacement of what has 
been lost in hemorrhage (all the elements of whole blood) assists with early reversal 
of shock, hemostatic dysfunction, and endotheliopathy (including associated capil-
lary leak and inflammation).
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 Physiologic Requisite for Hemostatic Resuscitation

The advocacy for interstitial resuscitation puts the cart before the horse: replacing 
what was lost from the interstitium is irrelevant if blood failure is not adequately 
treated. Indeed, interstitial resuscitation as a primary resuscitation approach proved 
harmful, and even Shires and colleagues sought to correct the misperception that 
crystalloid use could substitute for blood [44]. Nevertheless, a return to hemostatic 
resuscitation with whole blood or balanced components would only evolve due to 
the high casualty volume and logistical challenges of maintaining blood supplies 
experienced by the US military in Iraq and Afghanistan, more than three decades 
after the end of the Vietnam War. Improved data capture and enthusiasm for 
outcomes- based research enabled rapid dissemination of new practices and wide-
spread adoption of modern military blood transfusion strategies.

How did these paradigm shifts occur? As US military casualties began to mount 
in 2004, blood supplies reaching trauma hospitals and forward surgical teams were 
found to be inadequate in the management of severely injured patients. Supplying 
fresh frozen plasma (FFP) proved to be difficult due to challenges in cold chain 
management and high bag breakage rates. Platelet units were completely unavail-
able. Resuscitation with red blood cells and crystalloid alone led to high rates of 
exsanguination, and there were shortages of red cell units. Physicians turned to 
whole blood collected from walking blood banks to supplement the inadequate 
component therapy. The experience with fresh whole blood transfusion proved 
revelatory. Outcomes were visibly better [45]. The Armed Services Blood Program, 
concerned about the risk for transfusion transmitted disease from using untested 
blood collected from walking blood banks, responded to the need for an expanded 
component supply by moving apheresis platelet collection teams into theater and by 
increasing RBC and plasma shipments [46, 47]. Clinicians attempted to reproduce 
the results they had seen with fresh whole blood by incorporating plasma and plate-
lets early in the resuscitation of bleeding patients. When supplies of these compo-
nents were exhausted, they switched back to whole blood. Aware of the unique 
circumstances they found themselves in, these remarkable clinicians recorded in 
great detail the interventions they applied and the outcomes they observed. Data 
from these early studies, conducted between 2003 and 2007, inspired similar efforts 
in civilian populations which confirmed and extended the battlefield findings. 
Importantly, these early data collection efforts led to the creation of the DoD Trauma 
Registry, which has grown into the largest combat trauma registry in history and has 
provided data for many important studies.

While many analyses of combat trauma data have been published, several have 
proven to be extremely important for the subsequent development of DCR hemo-
static strategies. The first of these studies, and by far the most frequently cited paper 
on resuscitation from the Iraq War experience, was the 2007 study published by 
Borgman and Spinella [48]. In this seminal work, the authors described how an 
increasing ratio of plasma to red cell units was associated with dramatically reduced 
risk of death in combat trauma patients. As the ratio of plasma to red cells increased 
from 1:8 to 1:1, mortality dropped from 65% to 19%. This paper gave rise to the 
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“1:1” plasma to red cell ratio concept. Perkins and Cap extended these findings with 
an analysis of the impact of adding apheresis platelets to hemorrhage resuscitation. 
They found that adding platelets in a ratio of ≥1:8 (i.e., about one apheresis unit for 
every 6 units of red cells) was associated with the highest survival (95%) compared 
with patients transfused the lowest ratio of platelets (64% survival) [49]. Spinella 
and colleagues showed that the best results were obtained when fresh whole blood 
was included in resuscitation, even when compared to component-based therapy 
that included platelets [45]. Multiple studies of whole blood use in Iraq and 
Afghanistan have confirmed that whole blood is associated with outcomes at least 
as good, if not better, than component-based therapy [50, 51].

Ultimately, damage control resuscitation (DCR) was understood to include the 
comprehensive treatment package of early hemostatic resuscitation with blood 
product transfusion, immediate arrest of ongoing hemorrhage (even if the therapy is 
not definitive), avoidance of crystalloids and colloids, maintenance of normother-
mia, use of hemostatic adjuncts, and physiologic stability to thwart the early coagu-
lopathy of trauma and to decrease the likelihood of blood failure.

As hemostatic resuscitation began to take shape, the strategy of initial crystalloid 
resuscitation followed by a serial augmentation of red cells, plasma, and lastly 
platelets was abandoned and no longer considered optimal care [52–57]. While it 
remains unclear if the detrimental effects of crystalloid are secondary to dilution of 
clotting factors and platelets, injury to the endothelium, or another primary effect of 
these acidotic, potentially pro-inflammatory fluids, it has been shown that even 
small volumes (approximately 1.5 liters) of crystalloid are deleterious. Both crystal-
loid- and colloid-based resuscitations ultimately may result in a decline in oxygen 
delivery, exacerbating acidosis and coagulopathy and thereby increasing blood loss 
which increases the challenge of surgical hemorrhage control in addition to the 
other derangements in physiology. In hemostatic resuscitation, only low volumes of 
crystalloids and colloids are used in both the prehospital setting and through the 
entire resuscitation including intraoperative management and the immediate post-
operative period.

Thus, data emerging from the large numbers of casualties treated in Iraq and 
Afghanistan supported the use of a hemostatic resuscitation consisting of whole 
blood or blood component products (packed red cells, plasma, and platelets) admin-
istered in ratios that mimicked whole blood and had better efficacy in treating the 
coagulopathy of trauma. Similar results were observed in a large, multicenter obser-
vational study of civilian trauma patients [58]. The Prospective, Observational, 
Multicenter, Major Trauma Transfusion (PROMMTT) study was a comparative 
efficacy investigation in ten trauma centers that demonstrated how early transfusion 
of higher plasma and platelet ratios (versus red cells) was associated with decreased 
mortality during the initial 6 h after admission [59]. PROMMTT demonstrated the 
challenges of survival bias in studies evaluating an exsanguinating patient cohort, 
the importance of coordinating efforts necessary to transfuse the optimal ratio of 
plasma and platelets within minutes of hospital arrival, and, most importantly, that 
suboptimal transfusion ratios are associated with early death. PROMMTT provided 
critical evidence that helped inform the design of the follow-on randomized trial 
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which has fueled the evolution of transfusion practices in the hemorrhaging trauma 
patient [59–63].

Hemostatic resuscitation has been shown to improve outcomes when surgical 
hemorrhage control is necessary; additionally, evidence is mounting suggesting that 
it can improve rates of successful nonoperative management in Grade IV and Grade 
V blunt liver injuries [64, 65]. In a retrospective analysis of more than 1400 blunt 
liver injuries before and after implementation of hemostatic resuscitation at a Level 
1 trauma center, increased success rates of nonoperative management were observed; 
additionally, a significant improvement in survival was achieved [65].

As military resuscitation practice evolved over the course of the conflicts in Iraq 
and Afghanistan, hemostatic resuscitation approaches were translated to the prehos-
pital environment, with medics at the point of injury and helicopter evacuation 
crews administering transfusions. From a physiologic standpoint, this transition had 
obvious appeal since it offered the possibility of reducing shock dose and prevent-
ing coagulopathy. Observational studies of both the US and British military experi-
ence as well as US civilian trauma system experience were indeed promising 
[66–69]. The most detailed such study, by Shackelford and colleagues of the US 
Joint Trauma System, observed a striking reduction in mortality among combat 
casualties transfused within 30–40 min of injury [70]. In addition, the “golden hour” 
decision by Secretary of Defense Robert Gates to increase the number of helicopter 
evacuation platforms in Afghanistan available to transport casualties to surgical care 
within 1 h, much applauded for its association with a reduction in combat mortality, 
was found to have had its beneficial effect primarily through the early delivery of 
blood transfusion to wounded personnel [71]. This experience supported the expan-
sion of hemostatic resuscitation as part of an overall DCR approach to settings 
remote from hospital capabilities and the coining of the term “remote damage con-
trol resuscitation” or RDCR.

Since hemostatic resuscitation principles state that plasma should be the primary 
volume resuscitation fluid in order to reduce endothelial dysfunction, and restore 
lost coagulation factors, the Department of Defense funded two randomized studies 
of plasma-based prehospital resuscitation to evaluate whether moving the hemo-
static resuscitation approach out of the hospital would improve trauma outcomes as 
suggested by the multiple observational studies discussed above [2, 56–58, 72, 73]. 
The COMBAT trial was a single-center study comparing plasma (2 units adminis-
tered by paramedics) to normal saline in ground ambulance evacuation [74]. This 
study did not find a reduction in trauma mortality with early plasma transfusion, but 
evacuation times were so short (<20 min for both arms) that many patients could not 
receive the intervention before arrival at hospital (only 32% received both units of 
plasma during transport). This study was halted early due to futility. The PAMPER 
trial was a multicenter study that compared plasma (2 units administered by flight 
crew) to standard of care (generally crystalloids but include red cell units) in heli-
copter evacuation of trauma patients. This study found a substantial survival advan-
tage for early plasma transfusion – reduction of 30-day mortality by one-third (22% 
vs. 32% mortality). The difference in findings between the two studies may be due 
to many factors, and cross-study comparisons are hazardous; however, the mortality 
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difference may have been due to the long evacuation times (approximately 40 min) 
in PAMPER compared to COMBAT [69]. Neither study identified any disadvan-
tages to beginning transfusion support in the prehospital environment, and in both, 
most patients receiving early transfusion went on to require further blood transfu-
sion support, indicating that triage algorithms could be successfully implemented 
by prehospital providers. Overall, the weight of currently available clinical evidence 
as well as our current understanding of hemorrhage, coagulopathy, and blood fail-
ure supports the implementation of RDCR, or early hemostatic resuscitation, in 
both civilian and military settings, particularly when transportation time to fully 
capable trauma hospitals exceeds 20 min.

 What to Transfuse and When

While the choice of which product to deliver first depends on the condition and need of 
the patient, hemostatic resuscitation prioritizes platelets first, followed by alternating red 
cell units and plasma units in a ratio of 1:1:1 to best mimic whole blood, when whole 
blood is not available. For patients requiring transfusion, early delivery of plasma and 
platelets is associated with improved survival within the first 6 h. Additionally, maintain-
ing the 1:1:1 ratio of platelets, plasma, and red cells has been shown to improve out-
comes including reduced mortality and cessation of anatomic bleeding. This hemostatic 
damage control resuscitation is currently the standard operating procedure for massive 
transfusions within the military and many civilian centers [75].

In addition to what is being transfused, the timing of transfusion is critical. Many 
advances in trauma and critical care emphasize that the more expeditious the inter-
vention, the more efficacious the therapy. Well-understood early interventions that 
result in improved treatment effects are antibiotics in sepsis, time to neurosurgical 
intervention for extra-axial traumatic hemorrhage, time to tourniquet placement for 
extremity hemorrhage, time to intervention for stroke therapy, time to revasculariza-
tion in myocardial infarctions, and time to hemostatic transfusion in hemorrhage. 
Time is critical, and while it seems like an obvious statement: hemorrhaging patients 
die quickly; therefore, minutes matter. Time to hemostatic transfusion and time to 
hemorrhage control are the difference between a life and death for a patient with 
severe bleeding. Given that most deaths from hemorrhage occur in the prehospital 
environment, employing strategies to mitigate the effects of hemorrhage and 
improve hemorrhage control in the far-forward combat environment will have the 
highest impact mortality. Additionally, strategies used to control bleeding in the 
military population can be extrapolated into civilian practices and ideally have a 
large impact on preventable death from trauma.

Clearly then, there are several parameters to be considered when developing trans-
fusion strategies for DCR, and these become even more critical in the RDCR setting. 
The product or products transfused should recapitulate to the extent possible the func-
tionality of whole blood. Oxygen delivery and hemostasis must both be accomplished. 
Products like whole blood, plasma and platelets should be optimized primarily for 
their ability to support hemorrhage control. Speed and ease of use are vitally 
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important, particularly as the staff available to administer the transfusions becomes 
constrained as in the prehospital environment. During initial resuscitation, complexity 
should be minimized wherever possible to reduce risk of errors and improve speed, 
through use of broadly compatible products and minimization of testing.

 Tools of the Trade: All Roads Lead to Whole Blood

Early in the recent wars in Iraq and Afghanistan, whole blood was utilized in US 
Military operations primarily by forward deployed teams that were equipped with a 
limited supply of packed red blood cells; whole blood transfusion during this period 
was driven by necessity rather than clinical indication [51, 76]. At the combat sup-
port hospitals, the highest level of care on the battlefield, whole blood was initially 
used when apheresis platelets were unavailable. Over time, through both focused 
empiricism and investigations of comparative efficacy which demonstrated 
improved survival with whole blood, battlefield hospitals began using whole blood 
not just when components were unavailable but because of the clinical superiority 
of whole blood [45, 51, 77].

While component therapy is a vast improvement over crystalloid and colloid for 
hemostatic resuscitation, there are deficiencies to the method that must be addressed. 
With multiple components transfused comes multiple doses of anticoagulant; whole 
blood is superior in this regard since anticoagulant-induced dilution is minimized 
with a single product. In a reconstituted whole blood made from 1:1:1 blood com-
ponents, hematocrit and factor levels are lower than equivalent units of whole blood 
[78, 79]. Additionally, whole blood contains platelets, providing superior hemo-
static function to component therapy in the variety of situations in which platelets 
cannot be supplied. Logistically, it is much easier to collect, transport, store, and 
transfuse a single product that meets the essential needs of a bleeding patient.

Because of the benefits to patient care and logistical simplicity, there continues 
to be enthusiasm for whole blood use in in both military and civilian settings: it is 
being considered, studied, and reestablished as the optimal therapy for hemorrhage. 
Cold stored, low titer Group O whole blood was introduced into Iraq in November 
2016. In 2017, 311 units of cold stored LTOWB were transfused, and it was the 
preferred resuscitation product when compared to component therapy. Based on the 
usage of, and demand for, LTOWB, the authors concluded that it is not only feasible 
but has logistical advantages and will likely emerge as the preferred transfusion 
product for far-forward damage control resuscitation [80].

Combat casualties requiring massive transfusion have a mortality rate up to 33% 
and will receive the largest benefit from whole blood transfusion. In a large retro-
spective review of patients that received whole blood without platelet transfusion 
compared to those who received balanced component resuscitation (including plate-
let transfusion), those who received whole blood had a higher survival at both 24 h 
and 30 days. The use of fresh whole blood was associated with a 13% increase in 
30-day survival and demonstrated that the volume of fresh whole blood transfused 
was independently associated with improved 30-day survival [45].
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Whole blood can refer specifically to two types of products. The first is fresh 
whole blood (FWB), drawn on an emergency basis and transfused within a limited 
window post-collection (typically 24 h). This has the drawback of omitting formal 
pathogen screening which increases the risk of transfusion transmitted disease 
(TTD) [81]. This risk can be partially mitigated through the use of point-of-care 
rapid screening tests, though such testing can be impractical under the most austere 
conditions of combat casualty care. Blood group typing and matching can be per-
formed with point-of-care tests, or FWB can be drawn only from pre-screened indi-
viduals who are group O low anti-A and anti-B titer donors (low titer O whole 
blood, LTOWB). LTOWB red cells will be compatible with recipients of other 
blood groups, and the risk of transfusing incompatible plasma is minimized by 
selecting donors with low titers against A and B blood group antigens. FWB can be 
collected and stored at refrigerated temperatures (1–6 °C) within the first 8 h for up 
to 21 days in CPD anticoagulant or 35 days with CPDA-1 anticoagulant. If whole 
blood is collected where it can be tested for TTDs, it can be provided as a standard 
refrigerated and fully tested product (cold whole blood, CWB). However, the stored 
blood suffers from the same “storage lesion” as has been previously described for 
blood components. Over time, stored whole blood red cells undergo shape change 
and lose function, platelets bind fibrinogen and release their intracellular contents 
(depleting functionality), and waste products accumulate in the plasma increasing 
acidity. Despite this, cold-stored blood still supports hemostasis and provides plate-
lets in many scenarios in which they would be unavailable. Storing platelets at cold 
temperatures reduces their rate of functional decline as observed in the platelet stor-
age lesion for the room temperature-stored standard-of-care platelet product.

Given that the vast majority of combat deaths occur in the prehospital environ-
ment, prior to reaching a surgical capability, these are the combat casualties who 
will most benefit from blood far forward. WB is the logical choice for a nearly 
perfect resuscitative product in the far-forward environment given that it has oxygen 
carrying capacity, coagulation factors, and platelets in the ratio that are lost during 
exsanguination. It is logistically easier to carry and transfuse one unit of whole 
blood compared to multiple units of components. In the current theaters of opera-
tion, the blood transfusion capability continues to mature at both point of injury and 
in the en route care environment. In 2013 the Norwegian Special Operations Forces 
instituted an RDCR protocol which included far-forward collection and transfusion 
of whole blood. A similar protocol for tactical DCR (TDCR) in order to transfuse 
low-titer Type-O WB at POI was adopted by US Army Ranger Regiment: Ranger 
O-low-titer Type O (ROLO). Currently, US Special Operations Forces carry low 
titer group O whole blood on select missions [82–84]. Transfusion far forward is an 
essential capability that saves lives of combat casualties.

In far-forward or prolonged field care conditions with life threatening hemor-
rhage, where hemostatic resuscitation is most critical, it becomes particularly appar-
ent that whole blood is a superior option with respect to simplicity of logistics, usage, 
and outcomes. Carrying all blood components (RBCs, plasma, platelets) is all but 
impossible for the military medic, and even most medical transports cannot support 
the multiple temperature storage modalities required for proper maintenance of 
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individual components. Additionally, both collection and delivery of a single product 
reduce risk, including crossmatching risk reduction through use of low-titer O whole 
blood as mentioned above – a benefit in prolonged field care, at role 2 facilities, and 
even for humanitarian care where the recipient’s type is unknown. However, the defi-
nition of what constitutes “low-titer” for anti-A and anti-B is still under some debate, 
with the maximum set to <256 by US Armed Forces until such time as more strong 
evidence emerges to re-evaluate this threshold established in World War II.

Leukoreduction has been recommended to reduce the immunomodulatory side 
effects of whole blood transfusion. Remy et al. showed that there was a distinct loss 
of platelet function even with “platelet-sparing” leukocyte filtration, an effect that 
must be considered in the cost-benefit analysis of whether or not to use leukoreduc-
tion [85]. The US military does not currently leukoreduce whole blood, though 
approximately 50% of civilian centers do so [86, 87].

Another consideration in the implementation of a LTOWB program for hemo-
static resuscitation is how to manage the risk of alloimmunization to the D or other 
antigens in patients receiving uncross-matched blood. It is generally accepted that 
alloimmunization to the D antigen represents the greatest risk, as it is the most immu-
nogenic antigen on red blood cells. In female patients of child-bearing potential, 
development of an anti-D antibody could lead to hemolytic disease of the fetus and 
newborn (HDFN), though only about 20% of D-negative recipients of D-positive red 
blood cells or whole blood develop antibodies. While a simple solution to this prob-
lem would appear to be available – transfusion of only D-negative LTOWB to females 
of child-bearing potential – the reality is that D-negative potential donors make up 
only 7% of the population and that D-positive group O whole blood is generally the 
only product available in sufficient quantities to resuscitate patients. Thus, decisions 
regarding what products to offer to which populations should be made based on a 
local risk assessment. Transfusion of D-positive LTOWB to females of unknown 
blood type can be justified due to the imperative to preserve the patient’s life when 
weighed against the relatively low risk of causing harm to a future theoretical preg-
nancy. Furthermore, HDFN is treatable and does not automatically doom all future 
pregnancies. Finally, it is important to realize that the limitations on availability of 
D-negative LTOWB are similar to those for D-negative RBC units and that most of 
the emergency release blood available is D-positive [88].

The tangible benefits from both logistical and patient care perspectives make 
whole blood a superior option to component therapy following hemorrhage, espe-
cially in massive transfusion cases and in the prehospital setting.

 Tools of the Trade: Component Blood Products

 Red Cells

Red cells (erythrocytes) are the largest volumetric cellular fraction of blood, per-
forming the critical functions of delivering oxygen to tissues, supplying critical 
enzymatic functions, and buffering the blood [89]. Their contribution to hemostasis 
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consists primarily in providing the bulk of clot mass and in pushing platelets to the 
edges of the blood flow stream and facilitating their interaction with damaged vessel 
walls in a process known as margination [26]. In the microvasculature, red cells 
contribute significantly to buffering the acidosis generated by hypoperfusion. Since 
coagulation enzyme activity drops with dropping pH, red cells play a crucial role in 
maintaining the activity of the coagulation system and reducing capillary bleeding. 
In addition, hypoxia triggers release of tPA from endothelial cells, activating fibri-
nolysis. Red cell delivery of oxygen to the vascular bed can mitigate this process 
which otherwise contributes significantly to development of acute traumatic coagu-
lopathy [90, 91]. Thus, red cell transfusion is critical to recovery of oxygen deficit 
and hemostatic function.

As stated above, historically, red cells have been among the first products deliv-
ered in resuscitation, often at a higher ratio than plasma or platelets. They remain 
very common in transfusion, partly because of their support for oxygen delivery but 
also likely because they are easier to maintain in blood banking practice [92]. Red 
cells are isolated from whole blood via centrifugation and transferred into a preser-
vative solution which by Food and Drug Administration regulations allows them to 
be maintained at temperatures from 1 to 6 °C for up to 42 days. However, multiple 
studies have indicated that red cells undergo a “storage lesion” over time; as red 
cells remain in storage prior to transfusion, they begin to shed microvesicles, to lose 
membrane integrity, to have diminished oxygen carrying capacity, and to suffer 
altered morphology [93, 94]. Aged red cell transfusion may result in greater likeli-
hood of poor outcomes in trauma patients that require a large amount of RBC trans-
fusions [95–98].

Red cells remain an important part of the balanced resuscitation prescribed by 
DCR, but they must be used with platelets and plasma to achieve primary and sec-
ondary hemostasis.

 Plasma

The need for plasma in hemostatic resuscitation should be self-evident; plasma con-
tains all of the necessary enzymes and substrates for producing a clot, factors which 
are rapidly depleted in trauma due to consumption, dilution (from autoresuscitation 
or crystalloid usage), and/or continued hemorrhage. Restoration of what has been 
lost in plasma is mandatory for continued hemostasis. As noted above, early use of 
plasma, even prehospital, has been shown to reduce mortality in severely injured 
trauma patient [48, 67].

Plasma can be collected via centrifugation of whole blood or can be obtained 
through apheresis, and there are several options for storing the plasma. For maxi-
mum retention of enzymatic function, plasma can be frozen immediately (within 
8 h) after collection at temperatures below −18 °C. Alternatively, often for conve-
nience and logistical purposes, plasma is isolated from whole blood within 24 h of 
collection and frozen, resulting in some diminished capacity of labile factors (par-
ticularly factors V and VIII) but overall preservation of fibrinogen, the primary 
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substrate for clot formation [99]. Frozen plasma can be kept for a year before expi-
ration, but it requires sufficient time for thawing (30–40 min using conventional 
techniques), a substantial consideration in emergency scenarios. Alternatively, 
plasma can be thawed prior to use and stored refrigerated for up to 5 days (thawed 
plasma), or it can be stored as a refrigerated product and never frozen (liquid 
plasma). Liquid plasma can be stored for 26 days if collected in CPD anticoagulant 
or for 40 days if collected in CPDA-1. All thawed or liquid plasmas are deficient to 
various degrees in labile factors like FV and FVIII, but overall ability to support 
hemostasis in emergency settings appears to be adequate [100, 101]. The conve-
nience of omitting the thawing step can mean the difference between timely plasma 
transfusion and the delivery of a temporally unbalanced resuscitation that appears to 
be associated with suboptimal outcomes [57, 102].

Plasma can also be dehydrated through one of several lyophilization or spray- 
drying processes, resulting in a relatively stable powder of plasma proteins that can 
be rehydrated on demand [103]. This allows for easier transport as cold chain 
requirements are reduced and no freezer is required for storage, and rehydration can 
occur much more rapidly than thawing an equivalent volume of frozen plasma. 
While dried plasmas are available in some countries, no dried plasma products are 
yet approved by the US Food and Drug Administration. Usage within the United 
States has been restricted to an investigational new drug application of the French 
lyophilized plasma in military special operations forces. Comparative efficacy of 
FDP versus other plasmas is still being studied, especially with regard to its utility 
at point-of-injury care [104–107]. See Chap. 8, Dried Plasma, for more 
information.

Plasma from group AB donors has long been considered universal due to its lack 
of anti-A or anti-B antibodies. Since only about 4% of US and European popula-
tions are AB, this plasma is in short supply. It has emerged that Group A plasma can 
be safely transfused to recipients of any group, even when anti-B titers are unknown 
[108]. Group A plasma is being widely adopted as an emergency release product in 
many trauma systems including the US military.

 Platelets

After being neglected in resuscitation strategies for many years, pragmatically and in 
the literature, platelets deserve special mention for their critical function of rapidly 
initiating coagulation and hemostasis at the site of wounding. The vital role of plate-
lets in hemostasis has long been recognized; therefore, it is not understood why these 
key elements were often omitted as an imperative component of hemorrhage resus-
citation after the transition to component therapy. It appears that the reason is more 
logistical than biological: platelets are problematic from a supply standpoint. Once 
collected (e.g., by platelet apheresis in volumes of 200–300 ml from a single donor), 
they are typically stored at room temperature (approximately 22  °C) with gentle 
agitation. This already presents problems for austere and extreme environments with 
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limited power and unregulated temperatures, and these settings (e.g., theaters of war, 
high altitudes, polar stations, or space flights) are also associated with higher risks to 
life and limb where hemostatic blood products would be most valuable on scene. But 
even beyond the storage requirements, the shelf life of platelets is the most restrictive 
of the blood products: regulations limit platelets to a 5–7- day post-collection expira-
tion, primarily because storage at room temperature gives ample opportunity for 
what would have been inconsequential contamination at collection to become a 
major problem after 5–7 days of bacterial growth. This restriction in particular makes 
platelet usage outside of large trauma centers extremely limited.

Platelets, like red cells, suffer from a “storage lesion” over time, although with 
platelets this occurs more rapidly, exacerbated by room temperature storage where 
metabolism functions markedly better than the refrigeration of red cells allows. In 
vitro aggregation function declines rapidly and is minimal after 72  h [109]. 
Mitochondrial exhaustion is apparent, and waste products are abundant [110]. 
Clinical outcomes are also affected [111].

Recognizing the importance of platelets in balanced hemostatic resuscitation, 
several avenues have been investigated to extend shelf life and improve function. In 
an effort to reduce the effect of platelet alpha 2b beta 3 receptors binding fibrinogen 
in the plasma solution in which they are carried, a variety of additive solutions have 
been used to dilute the fibrinogen and supply nutrients to the platelets during storage 
[112]. These have shown moderate success in improving the function over time, but 
there is still opportunity for reducing bacterial growth.

To overcome the contamination issues and limit biochemical activity during stor-
age, the obvious solution is to store under refrigeration similarly to whole blood. 
This idea has once again been brought to the forefront of transfusion research after 
decades of being dismissed by the blood banking community due to studies in the 
late 1960s and early 1970s that demonstrated a reduced recovery and survival of 
transfused platelets that had been stored in refrigerated temperatures [113]. Recently, 
that paradigm for viability has been questioned, as studies have shown that the room 
temperature-stored platelets that freely circulate and boost the recovery and survival 
counts are largely non-functional in hemostasis [109]. In fact, the likely explanation 
for the diminished recovery of refrigeration-stored platelets is because they are, in 
fact, migrating to sites of injury and performing their intended function; this has 
been proven in animal studies that show these cold-stored platelets (in whole blood) 
localizing in thrombi on damaged endothelium [114, 115]. These in vitro and ani-
mal studies have led to human testing; a randomized control trial performed in 
Norway evaluated cold-stored platelets versus standard room temperature-stored 
platelets in cardiac surgery patients and found that cold platelet use was associated 
with reduced post-operative blood loss. Overall, cold-stored platelets (CSP) have 
been compared to room temperature (RT)-stored platelets across the following 
parameters and been found to be generally superior: aggregation to single or mul-
tiple agonists, adhesion to collagen under flow including reversal of antiplatelet 
drug effect, spreading on fibrinogen-coated surfaces, clot strength, clot retraction, 
clot architecture, thrombin generation, thromboelastography/thromboelastometry, 
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mitochondrial function, resistance to activation of apoptosis, maintenance of mem-
brane integrity and granule content, response to regulatory stimuli, preservation of 
RNA, secretion of inflammatory mediators, risk of bacterial growth, and in vivo 
hemostasis in both animal models and human patients including those undergoing 
surgery and those with hypoproliferative thrombocytopenia due to chemotherapy or 
other bone marrow failure states [116–118]. These results have been replicated 
since the early 1970s through the present (2018) and in laboratory and clinical set-
tings using multiple variations of CSP (platelet-rich plasma concentrate pools, buffy 
coat pools, apheresis units collected on multiple platforms, units stored in plasma or 
platelet additive solutions, gamma-irradiated or pathogen-reduced units) in the 
United States, Norway, Sweden, Australia, Germany, Korea, and China. In short, 
the superior hemostatic function and bacterial safety of CSP are well-established. 
The US Department of Defense has used CSP stored for up to 14 days in the hemo-
static resuscitation of combat casualties in Afghanistan and Iraq, and the US FDA 
has granted a variance for the use of CSP in the treatment of bleeding patients [119]. 
CSP offers a way to expand access to hemostatic resuscitation safe from bacterial 
contamination for a broad range of patients previously without access to platelet 
transfusions.

As previously mentioned, perhaps the easiest solution to incorporating platelets 
into transfusion is through the use of whole blood. Whole blood is already stored 
refrigerated and contains platelets, plasma, and red cells all in one package. CSP 
and whole blood will soon be more broadly available and will transform hemostatic 
resuscitation in the far-forward setting.

 Tools of the Trade: The Role of Laboratory Testing, Factor 
Concentrates, and Tranexamic Acid

Goal-directed therapies have been used for decades. For example, acute traumatic 
coagulopathy has been identified by some as an increase in prothrombin time 
(PT), and many efforts to provide reversal of this coagulopathy have focused on 
the goal of restoring PT to normal. In fact, resuscitation in the pre-DCR era used 
crystalloid and red cells first to establish tissue perfusion, followed by plasma and 
platelets as guided by the PT and platelet counts to correct objectively identified 
coagulation deficits. As we have seen, this approach led to late use of plasma and 
platelets and suboptimal resuscitation of bleeding patients. PT was recognized as 
an inadequate diagnostic [120], and thus more robust methods have gained ground 
in recent years, with viscoelastic tests of coagulation such as thromboelastogra-
phy (TEG) and rotational thromboelastometry (ROTEM) analyzing an ex  vivo 
blood sample for a variety of parameters providing additional therapeutic targets 
[121–123]. Varying the combinations of reagents in these assays can isolate spe-
cific coagulation-related problems. Point-of-care (POC) devices have also been 
introduced to provide limited information to guide treatment at the scene or en 
route [124].
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The use of viscoelastic testing technology to facilitate early diagnosis of clotting 
aberrancies and guide goal-directed therapies has been suggested as being superior 
to empiric ratio-based component therapy, and factor adjuncts to resuscitation have 
received attention over the last decade. Recombinant factor VII initially showed 
promise for the treatment of trauma-induced coagulopathy [125, 126]; however, 
larger retrospective and prospective studies did not demonstrate a mortality benefit 
[127–129].

Studies have suggested that early fibrinogen supplementation may improve out-
comes in traumatic hemorrhage. Cryoprecipitate from plasma contains fibrinogen, 
factor XIII, factor VIII, vWF, and fibronectin, and it is commonly used for resuscita-
tion in cases where early fibrinogen and factors will provide the most benefit. 
Similarly, for cases where pharmaceutical anticoagulant reversal is required, pro-
thrombin complex concentrates can restore thrombin activation, a procedure typi-
cally guided by prothrombin time and international normalized ratios. Identification 
of hyperfibrinolysis as a major bleeding problem following ischemia and plasmino-
gen activator release has supported the use of tranexamic acid as an early adjunct 
(within 3 h of injury) in patients identified as at risk for bleeding complications to 
stabilize fibrin networks against exuberant plasmin-induced breakdown. Some 
groups have suggested the use of viscoelastic tests to limit the use of tranexamic 
acid to those manifesting evidence of fibrinolysis.

The use of factor concentrates and tranexamic acid guided by viscoelastic test-
ing, while intellectually attractive, has not been adequately studied. One single- 
center randomized study evaluated this approach compared to use of plasma in the 
resuscitation of blunt trauma patients [102]. Although the authors found an advan-
tage to use of concentrates, this was largely driven by the time delay in treatment in 
the plasma arm due to the need to thaw plasma. Clearly, this delay in treatment 
could be obviated by the use of thawed or liquid plasma or indeed whole blood. In 
addition, the study did not include penetrating trauma patients who may experience 
brisk bleeding and rapid decompensation that limits the utility of a testing-intensive 
resuscitation strategy. Also, there is little consensus on viscoelastic test thresholds 
for determining the use of factor concentrates or antifibrinolytics like tranexamic 
acid [130]. Finally, the viscoelastic tests like TEG and ROTEM are not practical for 
prehospital use. Although a single-center RCT recently demonstrated a survival 
benefit from the use of TEG-directed therapy, further study of this promising goal- 
directed approach is required before it can be broadly implemented [123].

Overall, empiric use of TXA in bleeding trauma patients is well-supported by the 
literature, though this represents off-label use in the United States. The CRASH-2 
study randomized over 20,000 patients to either TXA or placebo and found a 9% 
reduction in relative risk of all-cause mortality and a 15% reduction in relative risk 
of hemorrhage mortality in patients receiving TXA [131]. In this study, TXA was 
given without viscoelastic testing guidance in a dose of 1 g over 10 min followed by 
1 g over 8 h. TXA reduced mortality if given within 3 h of injury but was associated 
with higher mortality when given more than 3 h after injury. Current clinical guide-
lines suggest using TXA as given in CRASH-2, within 3 h of injury.
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Currently, there are no high-quality data to support either the empiric or visco-
elastic testing-based use of fibrinogen concentrate, prothrombin complex concen-
trates, or recombinant human activated factor VII (rhFVIIa) outside of the setting of 
a clinical trial. In the United States, fibrinogen concentrate is approved for the treat-
ment of congenital hypofibrinogenemia. Prothrombin complex concentrates con-
taining factors II, VII, IX, and X such as Kcentra are licensed for the reversal of 
vitamin K antagonists, and rhFVIIa is approved for the treatment of patients with 
hemophilia who have inhibitors to FVIII.  In addition to the complexity and time 
requirement of reconstituting multiple vials of these products in the acute setting, 
and the considerable costs of these factors, the thrombotic risk of using these prod-
ucts off-label in the absence of high-quality clinical data supporting their safety or 
efficacy in unselected trauma patients argues for caution. Further study of these 
products in bleeding trauma patients is needed.

A frequently overlooked hemostatic adjunct is calcium. Hypocalcemia is present 
in a majority of trauma patients requiring urgent resuscitation due in part to the 
calcium chelating effects of intracellular phosphates and other substances released 
from damaged cells. Transfusion of citrated blood causes further calcium sequestra-
tion and can cause clinically significant hypocalcemia [132]. Hypocalcemia can 
cause not only cardiac arrhythmias but also dysfunctional coagulation and vasople-
gia. Infusion of calcium early in resuscitation (e.g., one gram of calcium IV/IO as 
either 30 ml of 10% calcium gluconate or 10 ml of 10% calcium chloride) can miti-
gate these problems and boost not only coagulation function but also cardiac output 
and vascular tone.

 Mitigation of Transfusion Hazards

While evidence suggests that blood and blood products should be given early fol-
lowing trauma, increased usage, especially in emergency scenarios, raises the likeli-
hood of a transfusion-related complications. Transfusion-related acute lung injury is 
a concern with use of plasma, though this has been significantly mitigated by use of 
plasma from male donors or never-pregnant females or females documented to lack 
anti-HLA antibodies [133]. Over-transfusion, or transfusion-associated circulatory 
overload, has been documented, and thus transfusions should be carefully moni-
tored and documented [134].

Potentially lethal hemolytic transfusion reactions can be mitigated through use 
of low-titer group O whole blood, group O red cells, and group AB or A plasma. 
Safety concerns associated with on-scene collection and transfusion (as has become 
possible in military practice) must be addressed through rigorous training in donor 
selection and repetition of collection procedures that emphasize competence in 
blood typing and infectious disease rapid testing, as well as the development of 
donor screening programs and rigorous record keeping. The potentially serious haz-
ards of prehospital blood collection and transfusion are significantly diminished by 
using a pre-screened, blood group-identified donor pool [135].
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Even when blood is collected in advance, screening can be a major expenditure 
with respect to both time and money, reducing the supply and availability of product 
in remote locations. New innovations in pathogen reduction technologies have been 
proposed to provide a rapid method to reduce the transfusion-transmitted disease 
risks associated with fresh whole blood, and these products and methods have been 
made available in locations suffering from virulent outbreaks including Ebola [136]. 
Photochemical inactivation of pathogens is the current approach, with the latest 
products using photosensitizers and ultraviolet light to damage nucleic acids. These 
technologies may also reduce the very small but real risk of transfusion-associated 
graft-versus-host disease through inactivation of the lymphocytes transfused from 
donor to recipient [137]. These pathogen reduction technologies are undergoing 
regulatory evaluation in the United States.

 Conclusion

The preponderance of the available evidence suggests that hemostatic resuscitation 
is a core element of the DCR bundle of care. DCR is inclusive of early mechanical 
hemorrhage control, no crystalloid, and hemostatic resuscitation which is the holis-
tic approach to treating blood failure by replacing the functionality of whole blood 
lost to hemorrhage. DCR and hemostatic resuscitation reduce trauma mortality 
compared to resuscitation strategies that do not address both the restoration of per-
fusion and of hemostasis in a timely manner. Emerging data from military and civil-
ian experience demonstrate that translation of the DCR approach into the prehospital 
setting as RDCR extends the benefits of DCR further reduces trauma mortality. 
Significant challenges remain in the broad implementation of a “blood far-forward” 
paradigm such as the financial and logistical challenges to providing whole blood or 
components in the prehospital environment. Training prehospital personnel in 
hemostatic resuscitation procedures and transfusion is difficult and requires a sub-
stantial investment in skills maintenance. Training not only military personnel but 
also civilians in whole blood collection, establishment of emergency donor panels, 
and documentation of emergency transfusion is a major undertaking but one that 
could prove lifesaving in the event of civilian or military mass casualty events where 
the local blood supply is exhausted and resupply from other regions has not occurred. 
Research challenges include the need to identify better ways to store blood products 
in order to preserve their shelf life and function. Ultimately, these challenges must 
be overcome in order to make progress towards the goal of zero preventable deaths 
that military experience in elite units has taught us could be close to achievable.
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Abbreviations

DCR Damage control resuscitation
FDP Freeze-dried plasma
FFP Fresh frozen plasma
FLyP French lyophilize plasma
LP Lyophilized plasma
RBCs Red blood cells
S/D Solvent/detergent
SDP Spray-dried plasma
TBI Traumatic brain injury
TEG Thrombelastography

 Introduction

Hemorrhage remains the leading cause of preventable death in trauma patients [1]. 
Contrary to the classical teachings of the “golden hour,” in patients with severe trun-
cal hemorrhage, peak mortality occurs at 30 min [2]. For patients who survive long 
enough to make it to a hospital, the median time to death from hemorrhage is 
90–150 min after admission [1, 3]. The lethal triad of hypothermia, acidosis, and 
acute coagulopathy of trauma is well recognized as a common pathway to irrevers-
ible shock and death [4, 5]. Rapid treatment utilizing damage control resuscitation 
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(DCR) with blood components mimicking whole blood in the setting of permissive 
hypotension, avoiding crystalloid and colloid, followed by prompt surgical hemor-
rhage control, is the best strategy to prevent traumatic hemorrhagic death and the 
onset of the lethal triad [1, 4, 6, 7]. Plasma transfusion is an essential part of this 
approach and remains a significant logistical challenge even today, hence the need 
for a reliable, shelf-stable, easy-to-carry and administer plasma product such as 
dried plasma.

 Benefits of Early Plasma Transfusion

The role of plasma in DCR has been reaffirmed time and time again. In 1945, 
Beecher noted that “Plasma gives more time to get whole blood into the patient” [8]. 
Multiple US large center retrospective cohorts showed that 24–28% of severely 
injured trauma patients are found to be coagulopathic on admission. Coagulopathic 
patients have significantly higher mortality rates, while the degree of coagulopathy 
correlated with the severity of injury [9–11]. Analysis of the German Trauma 
Registry yielded similar results with rates of coagulopathy up to 34% as well as a 
direct correlation between the amount of crystalloid received prehospital and an 
increasing degree of coagulopathy [12]. Looking back at the first decade of war in 
Iraq, 33% of combat casualties were coagulopathic on admission, which correlated 
with a fivefold increase in mortality [13]. These data highlight the importance of 
recognizing the early onset of the coagulopathy of trauma at the time of injury, as 
well as endothelial damage, which plasma has been shown to correct [14]. Therefore, 
correction of coagulopathy should not be delayed until laboratory values are avail-
able to guide therapy and goals of care. The approach to the trauma patient should 
aim at preventing and correcting this coagulopathy as soon as possible to decrease 
its effects on mortality and progression of shock.

The importance of balanced resuscitation to include a high ratio of plasma deliv-
ered early became evident in the Iraq War where a survival advantage was noted in 
patients receiving close to 1:1 plasma-to-RBC ratio during massive transfusion 
compared to those who received less plasma [15]. During this conflict, over 
335,000 units of blood products were transfused with nearly 110,000 being plasma 
[16, 17]. Analysis of combat casualties over 10 years revealed improved survival in 
those receiving a higher ratio of plasma and platelets to blood [13]. By 2010, clini-
cal practice guidelines implemented by the Department of Defense (DoD) led to 
almost 100% of combat massive transfusions to be at a 1:1:1 ratio [18]. The 
PROMMTT trial then showed that early plasma administration was associated with 
reduced mortality in the first 6 h [3]. Following that, the PROPPR trial demonstrated 
that patients transfused with a higher plasma ratio achieved more hemostasis and 
had less early death due to exsanguination [19].

A retrospective review of patients receiving thawed plasma available in the ED 
showed shorter time to plasma transfusion (43 vs. 89 min), a reduction in blood 
transfused over 24 h, and decreased 30-day mortality [20]. A recent review of US 
combat casualties in Afghanistan rescued by medical evacuation (MEDEVAC) units 
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showed that early blood product transfusion prehospital or within minutes of injury 
resulted in greater 24-h and 30-day survival [21]. In a large civilian cohort from a 
level 1 trauma center, prehospital administration of blood products including RBCs 
and plasma has been shown to be feasible and beneficial with improved acid-base 
status on admission and decreased overall blood product use in 24 h as well as a 
reduction in the risk of death in the sickest patients over the first 6 h [22]. All these 
findings point toward the need for a method to deliver early plasma in a reliable 
fashion.

Plasma produces superior volume expansion when compared to crystalloids, 
allowing less volumes infused to match volume lost, faster hemodynamic recovery, 
and decreased third-spaced volume [23]. It is important to use plasma as the primary 
resuscitation fluid for patients who are bleeding [4]. Other benefits of plasma stem 
from its ability to mitigate the effects of shock on physiology. The role of plasma in 
the correction of the endotheliopathy of trauma has been reported in multiple stud-
ies and is likely more important than correcting coagulopathy. The mechanism of 
action is thought to be through promoting systemic vascular stability and preventing 
endothelial permeability, coagulopathy, and inflammation which eventually lead to 
shock and end-organ failure [24, 25]. Moreover, in a rat model of injury and shock, 
plasma was able to restore the endothelial glycocalyx, improve syndecan-1 expres-
sion, and correct lung injury caused by shock [26].

In a swine model of traumatic brain injury (TBI) and hemorrhagic shock, trans-
fusion of fresh frozen plasma (FFP) decreased neurologic impairment and hastened 
recovery to baseline cognitive function when compared to saline infusion [27]. 
Neuroprotective effects of plasma in hemorrhagic shock and TBI are thought to be 
due to improved cerebral perfusion, decreased glutamate-mediated excitotoxicity, 
and reduction in mitochondrial dysfunction as demonstrated in animal models [28]. 
Plasma also reduced the size of brain lesions and swelling in multiple swine models 
of TBI and hemorrhagic shock [29, 30]. It also incurs neuroprotection by providing 
higher brain oxygenation and cerebral perfusion profiles [30]. In humans, a large 
retrospective cohort analysis showed that in the subgroup of patients with multifo-
cal intracranial hemorrhage, early administration of plasma was associated with a 
survival benefit [31].

 Logistical Challenges in Plasma Transfusion

Unfortunately, delivery of early balanced resuscitation is fraught with strategic and 
logistical challenges. In the USA, half of all trauma patients are cared for outside of 
levels 1 and 2 trauma centers, where blood products are frequently not readily avail-
able [32]. In the military, forward surgical teams (FST) were developed to provide 
immediate support and treatment to injured soldiers. They used to only carry red 
blood cells (RBCs) for transfusion, and more recently, they are able to provide 
plasma but not platelets [33]. Warm fresh whole blood (WFWB) is available in 
these circumstances and has been shown to improve survival in combat casualties 
treated by FST [33]. These challenges, along with misconceptions regarding the 
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role of blood products in resuscitation, led to the overuse of crystalloids and its own 
set of unique complications. Excessive crystalloid resuscitation has been shown to 
be detrimental, while balanced blood product resuscitation decreases the onset of 
acute respiratory distress syndrome (ARDS) and abdominal compartment syndrome 
and improves survival [32, 34].

The recognition of the importance of early, balanced DCR has led many trauma 
systems in the USA, and around the world, to search for novel approaches to pro-
vide blood products as soon as possible to severely injured trauma patients. These 
include carrying them in the prehospital setting and having them readily available in 
the ED. The logistical difficulties in providing FFP transfusions early in trauma are 
based on the need for reliable cold storage facilities, specialized transport equip-
ment and personnel to provide them, and a lengthy thawing process. There is also a 
significant loss of up to 50% due to bag breakage during transport and thawing [35].

FFP is prepared through separation from whole blood and stored at −18 °C or 
colder with a shelf life of about 1 year. The thawing process requires a 30–37 °C 
agitated water bath or a warming device cleared by the US Food and Drug 
Administration; this takes 15–30  min [36]. Thawed FFP should be immediately 
used but can be stored between 1 and 6 °C for up to 5 days. All those factors pre-
clude its immediate availability and delay administration in many settings such as 
austere environments, the battlefield, and smaller hospitals with limited blood bank-
ing capabilities. Of great importance and increasing realization is that these same 
limitations apply in the larger centers as well.

 History of Lyophilized Plasma

The use of plasma in the resuscitation of trauma and hemorrhagic shock began with 
the work of Dr. John Elliot, who in 1936 devised a mechanism to separate plasma 
from red blood cells and store it in a vacuum bottle. He believed plasma was all that 
was needed to treat hemorrhagic shock [37–39]. Elliot utilized pooling by mixing 
the plasma of up to eight donors together to neutralize anti-A and anti-B antibodies 
and eliminate the need for cross-matching [38, 40]. Reports of treating shock with 
dried plasma go back as early as 1938 [41]. In 1940, the British Army called upon 
the American Red Cross to provide plasma shipped directly to London, and the 
blood plasma for Great Britain project started [42, 43]. The “Blood for Britain” 
campaign resulted in almost 15,000 units of blood donated from 1940 to 1941 in 
New York City alone with the majority used to produce liquid plasma, while the 
RBCs and platelets were discarded. The program was then stopped due to high 
incidence of bacterial contamination in liquid plasma [42, 43].

Meanwhile, Dr. Max Strumia was experimenting with turning Elliot’s liquid 
plasma into a sterile powder and refined the drying process by inventing a device for 
freeze-drying under a vacuum [37, 44]. This was followed by production of several 
hundred units of dried plasma for testing by the US Army and Navy. In 1941, freeze- 
dried, or lyophilized, plasma was approved for use by the Council on Pharmacy and 
Chemistry of the American Medical Association. Boxes were designed containing 
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the dried plasma in a bottle accompanied by a bottle of sterile water for reconstitu-
tion [37]. Lyophilized plasma use started in WWII where millions of units were 
produced by the American Red Cross and administered by the US and British armies 
and also distributed to the Allied Forces [17, 37, 42]. It was the primary mode of 
resuscitating combat casualties for most of WWII.

The recognition of serum hepatitis as a result of pooled lyophilized plasma trans-
fusion caused it to fall out of favor. It continued to be used in the Korean War but 
was abandoned altogether in the 1950s [37, 42]. The French military continued to 
produce lyophilized plasma through the mid-1980s when HIV transmission via 
blood transfusion was recognized. They resumed production in 1994 utilizing small 
donor pools (under 11 donors) and amotosalen with UV light processing for patho-
gen reduction [54]. During the same time, the German Red Cross started processing 
pooled plasma with a solvent/detergent (S/D) treatment as a method of pathogen 
inactivation. This continued through the early 2000s when the recognition of pos-
sible prion disease transmission caused them to switch to a single-donor approach 
[42, 45].

 Efficacy and Safety of Dried Plasma

 Production and Forms of Dried Plasma

Production of dried plasma is achieved in two ways: freeze-drying, also known as 
lyophilization, or spray-drying. Lyophilization is achieved by freezing the plasma 
under a vacuum in a glass container for several days, which decreases the water 
content to 1–2% [45]. Spray-dried plasma production utilizes atomization of liquid 
plasma via pressurized drying gas to droplets which are then exposed to hot gas (up 
to 150 °C) in a drying chamber followed by rapid evaporative cooling. This method 
can dry a unit of plasma (~250 mL) in approximately 25 min [17, 46]. Dried plasma 
can then be reconstituted to its original volume or a concentrated form. Multiple 
pathogen inactivation methods are available to use during the process, and the 
choice depends on the manufacturer’s preference and experience.

 Pathogen Inactivation

Newer and more accurate viral detection and pathogen inactivation methods have 
led to the improved safety of blood products, reducing the residual risk of transfusion- 
transmitted HIV-1 and HCV to approximately 1  in 2 million blood units [47]. 
Pathogen inactivation methods used for plasma include solvent/detergent (S/D) 
treatment and photochemical inactivation techniques [17]. S/D treatment, which is 
FDA-approved, binds lipid-enveloped viruses and bacteria to inactivate them fol-
lowed by a filtration process to remove cells and debris, but it has no effect against 
non-enveloped viruses and prions [48]. Rigorous screening standards require testing 
donors for non-enveloped viruses twice at a 6-month interval to decrease the risk of 
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transmission. Moreover, photochemical inactivation utilizes a photosensitizer that 
binds the DNA and RNA of pathogens, including non-enveloped viruses, and nucle-
ated cells, followed by ultraviolet light exposure to inactivate them [49]. INTERCEPT 
(Cerus Corp., Concord, CA) is an FDA-approved system, which uses amotosalen (a 
psoralen molecule) to bind DNA and RNA followed by UV light activation [50]. 
The Mirasol System (Terumo BCT, Lakewood, CO), which uses riboflavin as the 
photosensitizer, is currently approved for clinical use in Europe but only approved 
for investigational use in the USA and Canada [51]. Methylene blue can also be 
used with visible light exposure [52].

Standard S/D treatment causes a decrease in vWF activity (24%), factor V (37%), 
protein S (44%), and alpha-2 antiplasmin (79%). Similarly, amotosalen + UV light 
reduces factor VII (23%) and factor VIII (27%) [17, 48]. A newer S/D treatment 
product, Octaplas LG (Octapharma, Lachen, Switzerland), received FDA clearance 
in 2013 and employs a prion reduction step and a modified S/D process that better 
preserves factor levels [17].

 Buffering and Reconstitution

Reconstituted porcine lyophilized plasma is alkalotic with a pH >8.5, making it 
highly lethal when injected in swine due to their lack of ability to buffer their plasma 
[53]. Human lyophilized plasma is also alkalotic with a pH near 8; however, it is 
well tolerated clinically in humans [54]. This increase in pH after lyophilization is 
attributed to the loss of bicarbonate during the drying process. Multiple acidic buff-
ering solutions were studied to evaluate their effect on the hemostatic properties of 
lyophilized plasma. For example, when ascorbic acid (vitamin C) is added to lyoph-
ilized plasma (LP), 84% of the coagulation factor activity was maintained [55].

In a swine model of polytrauma and hemorrhagic shock, a significant decrease in 
interleukin-6 (IL-6) levels was observed in all LP-treated animals compared to 
those receiving FFP, suggesting an anti-inflammatory effect [55]. This was corrobo-
rated by another study using concentrated LP (50%) that showed buffering with 
ascorbic acid resulted in reduced serum levels of IL-6 and TNF [56]. Another study 
examined the effect of other buffers, such as citric acid and hydrochloric acid, on 
lyophilized plasma. No difference in physiology, coagulation parameters, or blood 
loss was noted, but animals receiving ascorbic acid had lower IL-6 levels and less 
oxidative DNA damage [57]. Using higher concentrations of ascorbic acid didn’t 
affect the physiologic benefits of LP, but no improvement in the anti-inflammatory 
effects or further decrease in DNA oxidative damage was detected [53].

The type of fluid used to reconstitute dried plasma has not been shown to affect 
the degree of inflammation or oxidative DNA damage induced by shock in a swine 
model of polytrauma and hemorrhagic shock [58]. However, the type of fluid used 
for reconstitution does affect the hemostatic efficacy and ability of lyophilized 
plasma (LP) to mitigate the effects of shock. Animals treated with LP reconstituted 
with sterile water and lactated Ringer’s (LR) had less blood loss compared to those 
reconstituted in normal saline (NS) and Hextend. The group that received Hextend 
had persistently elevated INR values and contained the only animal that did not 
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survive the experiment. Serum IL-6 levels were lowest in the sterile water group 
when compared to NS [59]. The optimal solution for buffering lyophilized plasma 
in humans is unknown and will require further investigation. For now, sterile water 
is used to reconstitute human LP.

 Lyophilized Versus Fresh Frozen Plasma

The process of freezing and thawing plasma is not benign and has several detrimen-
tal effects on coagulation proteins. Never-frozen liquid plasma was found to have a 
superior coagulation profile and factor activity, as well as thrombin generation 
potential, when compared to plasma from thawed FFP [60]. Thawed plasma was 
compared at day 0 and after storage at day 5, and a significant degradation of clot-
ting factors was detected in the older product, with a 40% reduction in thrombin 
generation potential and significantly decreased hemostatic profile on thrombelas-
tography (TEG) analysis [61]. Thawed FFP decreased vascular permeability in vitro 
by a factor of 10; however, that effect decreased to only a factor of 2.5 when 5-day- 
old thawed plasma was used [62]. These findings reinforce some of the advantages 
of dried plasma over FFP.

 Concentrated Dried Plasma

Concentrated, low-volume reconstitution of lyophilized plasma (50%) has been 
demonstrated to be safe in a swine polytrauma model of hemorrhagic shock with 
similar physiologic effects, hemostatic properties, and coagulation parameters (INR 
and TEG) [63]. This could have logistical advantages in packaging and transport on 
the battlefield as well as in austere environments. The effects of infusing this hyper-
tonic, hyper-oncotic fluid are unknown in humans and will require careful 
evaluation.

Spray-dried plasma (SDP) at original concentration was compared with triple 
concentrated SDP in the resuscitation of a swine model of polytrauma and hemor-
rhagic shock. In vitro evaluation of coagulation parameters of SDP compared with 
FFP did not reveal any difference between the two products. However, triple- 
concentration SDP showed an increase in clotting factor activity and prolonged PT/
PTT. Treatment with all three formulations corrected INR rapidly and increased clot 
strength (TEG-maximum amplitude (MA)). This confirmed that concentrated, low- 
volume SDP is as effective as FFP and regular SDP in reversing trauma-associated 
coagulopathy [64].

 Coagulation Profile of Dried Plasma

The accepted standard for factor loss in frozen then thawed plasma is 25–40% [65]. 
In vitro analysis of swine FFP vs. lyophilized plasma (LP) coagulation tests (PT, 
PTT, INR, fibrinogen) did not reveal any statistically significant difference. 
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Reconstituted LP has been shown to maintain an average of 86% of coagulation 
factor activity when compared to FFP [66]. In comparison, spray-drying causes 
reduction in several factors including 25% for fibrinogen and protein S, 50% for 
vWF activity, and 70% for factors V and VIII. However, this has been shown to have 
no effect on the ability of SDP to generate thrombin [67]. On the contrary, after a 
year of storage at −25 °C, lyophilized plasma had no significant change in clotting 
factors activity when compared to fresh plasma [68]. Lyophilized plasma stored as 
long as 30 years had similar preservation of components [69].

 Studies in Animal Models of Shock

Multiple studies demonstrate the safety and efficacy of lyophilized plasma (LP). In 
a series of studies using a swine model of polytrauma and hemorrhagic shock, LP 
demonstrated superior hemostatic efficacy to FFP when combined with RBCs in 1:1 
ratio. Concentrated LP reconstituted to 50% of its volume was also well tolerated 
and equally effective in correcting shock physiology when compared to unconcen-
trated LP [56]. In another study, fresh whole blood (FWB), FFP, and LP all cor-
rected coagulopathy equally in a swine model. There was 85% mortality in the 
crystalloid only group and no mortality in any of the blood products groups [66]. 
Another study showed that when compared with colloid alone, 7-day survival was 
superior in animals that received spray-dried plasma – this effect was equivalent to 
that seen in animals that received whole blood [70]. Moreover, animals receiving 
balanced LP-to-RBC had significantly less blood loss than those receiving FFP or 
LP alone, and LP was as effective as FFP in reversing coagulopathy in this animal 
model [55].

Lyophilized plasma (LP) demonstrated similar effects as FFP, both in vitro and 
in vivo, on reducing endothelial cell permeability, increasing trans-endothelial resis-
tance, decreasing leukocyte-endothelial binding, and preserving adherens junctions. 
In an in vitro mouse model of hemorrhagic shock, LP and FFP both equally reduced 
pulmonary injury, inflammation, and vascular permeability [71]. Spray- dried 
plasma (SDP) also reduced vascular permeability and other indicators of endothe-
lial damage as well as FFP [72]. FFP and SDP equally decreased shock- induced 
pulmonary vascular permeability in vivo. SDP was also equivalent to FFP in the 
correction of shock in a mouse model. They both reduced alveolar wall thickening, 
leukocyte infiltration, and the breakdown of EC junctions [73].

 Neuroprotective Effects of Lyophilized Plasma

Plasma has been shown to have multiple neuroprotective effects in traumatic brain 
injury. In a swine model of polytrauma, hemorrhagic shock, and TBI, both lyophi-
lized plasma (LP) and FFP were shown to decrease brain lesion size by 50% after 
6  h of injury when compared to saline infusion; swelling was also 54% less in 
plasma-treated groups [74]. A follow-up study to evaluate the long-term effects of 
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resuscitation with FFP vs. LP on neurological outcomes showed similar recovery of 
cognitive function in studied animals. The brain lesion size was significantly smaller 
in LP group on experiment day 3, but this effect dissipated by day 10 [75]. Another 
large 30-day animal study recently showed similar neuroprotective results with 
faster return to baseline neurological function in animals treated with LP and FFP 
vs. NS [76].

 Modern-Day Lyophilized Plasma

Since its reintroduction in the 1990s, lyophilized plasma has been used in a vari-
ety of settings around the globe. Currently, the largest two manufacturers of 
lyophilized plasma are the French Military and the German Red Cross. Multiple 
accounts of the use of lyophilized plasma have been reported, including adminis-
tration at the point of injury, in the ED and in the ICU. French lyophilized plasma 
(FLyP) is used by US military special operations under an agreement between the 
French and US governments as an expanded access investigational new drug 
application [15, 17, 77]. German lyophilized plasma, known as LyoPlas N-w, has 
been carried by UK foot patrols since 2012. The use of LyoPlas N-w was easily 
integrated into the first responder care package. One case of successful usage by 
the British Military is reported in the literature [78]. The National Bioproducts 
Institute in South Africa also produces a pooled, S/D-treated, ABO-universal 
lyophilized plasma, Bioplasma FDP, which has been in use in South Africa since 
1996, with a strong record of safety [79].

The Norwegian helicopter emergency medical service experience with the use of 
lyophilized plasma (LyoPlas N-w, AB) during a 12-month period reported transfu-
sion of 16 patients having sustained blunt and penetrating trauma, as well as non- 
traumatic hemorrhage (ruptured AAA, upper GI bleeding, etc.). Two patients died 
on scene, and the remaining were alive at 30 days. No transfusion-related complica-
tions were reported. Lyophilized plasma is stored at room temperature in the fast- 
response car and in the helicopter, making it readily available. Pre-transfusion 
hypotension was seen in 62% of the patients, but only 12% were still hypotensive at 
the time of admission. Median systolic blood pressure increased after prehospital 
lyophilized plasma transfusion in all patient categories. 68% of the patients received 
emergency surgery after arrival at the hospital [80].

The Swedish Armed Forces also use lyophilized plasma, and the first civilian 
helicopter emergency medical systems in Sweden started carrying the product in 
2015. They published a case report describing a patient with carotid artery injury 
due to a high-velocity gunshot wound to the neck and in-flight reconstitution and 
administration of lyophilized plasma (LyoPlas N-w) in a Medevac helicopter. 
The reconstitution of LyoPlas N-w powder took about 4  min in a dark Black 
Hawk helicopter cabin. The hemodynamic stability of the patient improved after 
administration [81].

The Israeli Defense Force Medical Corps (IDF-MC) introduced lyophilized 
plasma, in the form of LyoPlas N-w, to its protocol of prehospital trauma care and 
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transfusion in 2013 [82]. A case report of its use in a civilian after a motor vehicle 
accident described their first experience with point-of-injury administration of 
lyophilized plasma [83]. This was followed by a retrospective review of 109 patients 
who were transfused with lyophilized plasma from 2013 to 2016. The majority 
(83%) of patients received only one unit of LyoPlas N-w, and only 8.2% received 
prehospital blood transfusions. There were five instances (4.6%) of difficulty with 
administration after reconstitution mainly due to low flow rates. Side effects were 
reported in only one female patient who developed chills and shivering during infu-
sion which stopped upon prompt discontinuation [84]. This study is a real-life 
example of utilizing prehospital lyophilized plasma in early resuscitation of trauma 
casualties demonstrating safety and feasibility.

 French Lyophilized Plasma (FLyP)

Dr. Jean Julliard started producing freeze-dried plasma in 1945 after its inception by 
the US military in WWII. By 1950, the Centre de Transfusion Sanguine des Armées 
(CTSA) became the first European center to produce lyophilized plasma. During 
the Indochina War, almost 40,000 units of lyophilized plasma were delivered to the 
French military. Production was suspended in 1985 due to concerns for HIV trans-
mission. In 1991, production restarted with the first Gulf War and has continued 
since that time [54].

Since 1994, French lyophilized plasma (FLyP) is made using a pool of less than 
11 donors. Pooling based on blood type selection allows the dilution and neutraliza-
tion of natural anti-A and anti-B hemagglutinins, making FLyP a universal donor 
product compatible with any recipient blood type. Since 2003, it is also being leu-
koreduced. Starting in 2010, plasma from women with a history of pregnancy is 
tested for HLA antibodies and excluded if positive. That was the same time that 
FLyP started undergoing amotosalen and UV light processing as a pathogen DNA/
RNA inactivation method. This process was chosen over solvent/detergent treat-
ment due to better preservation of clotting factors. The French hemovigilance pro-
gram has been monitoring FLyP since 1994, and so far, no reactions or infectious 
complications have been reported out of more than 1100 units transfused [54].

FLyP is packaged in glass bottles, shelf-stable in ambient temperatures between 
2 and 25 °C for 2 years, and easily rehydrated with 200 mL of water in less than 
3 min, allowing for immediate transfusion with RBCs. FLyP contains all clotting 
factors and proteins. After more than 2 years of storage at ambient temperature, the 
fibrinogen and clotting factor levels of FLyP are equivalent to FFP [85]. Despite a 
certain level of factor reduction (20–25%), lyophilization has not been shown to 
alter in  vitro hemostatic efficacy of plasma. When reconstituted, FLyP has a pH 
close to 8 [54].

In 2011, FLyP was authorized by the French Agency for the Sanitary Safety of 
Health Products (AFSSAPS) for use in civilians in austere settings or until thawed 
plasma became available [54]. Clinical efficacy of FLyP was studied in a prospec-
tive trial on 87 ICU patients in Afghanistan and was found to be safe and efficacious 

M. Zaza et al.



155

in the management of polytrauma and shock [86]. Furthermore, the difference in 
administration times between FLyP and FFP in a level 1 trauma center was studied. 
Retrospective analysis showed significantly less time to product administration 
between patients receiving FLyP vs. FFP (median 15 vs. 95 min). This is consistent 
with similar reports in the literature of time to FFP transfusion [21]. Subsequently, 
time to achieve 1:1 resuscitation ratio with RBCs was shorter in FLyP group. There 
were also significantly less cases of massive transfusion utilization and RBC trans-
fusion in the FLyP group compared to the FFP group (7 vs. 45%). No differences in 
hospital length of stay, ICU length of stay, or 24-h mortality between the two groups 
were noted [87].

Recently, a randomized open-label clinical trial of 48 patients who were assigned 
to receive 4 units of FLyP or FFP within 6 h of injury was completed. Patients in the 
FLyP group demonstrated less time from randomization to infusion compared to 
those in the FFP group (median 14 min vs. 77 min). This led to higher levels of 
fibrinogen achieved within 45 min of randomization, as well as a greater improve-
ment in INR, factor V, and factor II levels. The difference in coagulation parameters 
between the two groups remained significant at 6 h. However, there was no differ-
ence detected in mortality between the two groups [88].

 German Lyophilized Plasma (LyoPlas N-w)

In the 1990s, the German Red Cross Blood Service West produced solvent/deter-
gent (S/D) treated lyophilized plasma using pooled plasma. Due to concern for 
Creutzfeldt-Jakob-type prion disease transmission, which is not inactivated by stan-
dard S/D treatment, pooled plasma was replaced with single-donor lyophilized 
plasma in 2007 [45]. This product is licensed under the name LyoPlas N-w (German 
Red Cross Blood Service West, Hagen, Germany).

Quarantined plasma from a single donor is stored frozen for at least 4 months 
until the donor returns for retesting for HIV, hepatitis C virus, hepatitis B virus, 
hepatitis A virus, and parvovirus B19. After the quarantine, the plasma is thawed 
and connected by sterile docking to the patented steam-sterilized “bottle-in-bag” 
system, which consists of a glass bottle and a rubber stopper inside a plastic bag. 
During transfer into the glass bottle, the plasma passes through a filter with a nomi-
nal pore size of 0.2 μm. Once 200 mL of plasma is transferred, the bottle is closed 
with the stopper and removed from the system. Plasma is then frozen to −30 °C 
followed by lyophilization in specially designed freeze-dryers. The lyophilization is 
accomplished by a stepwise increase of the temperature from −45 °C to +15 °C, 
resulting in water content below 1% [45].

Sterile water for reconstitution (200 mL) is included in the LyoPlas N-w kit and 
accomplished within 10 min depending on the plasma composition and water tem-
perature. Transfusion can be accomplished via the glass bottle or the plastic bag, 
which allows for pressure infusion if needed. After storage at 2–8 °C for 24 months, 
LyoPlas N-w only had a 10% reduction in factor V, VIII, and vWF. All other factors 
remained stable. Storage at room temperature, however, led to 54% decrease in 
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fibrinogen levels and vWF activity. This is why the shelf life of LyoPlas N-w has 
been restricted to 15 months only. After reconstitutions, factor degradation increases 
over time at room temperature. At 48 h, factor VIII and protein S levels decreased 
by 66 and 50%, respectively. Only 10% degradation of those factors was noted in 
the first 6 h, however. This is why it is recommended to use LyoPlas N-w within 6 h 
of reconstitution [45].

From 2007 to 2011, a total of 237,850 units of LyoPlas N-w were provided to hos-
pitals, doctors, and the German military compared to 343,821 units of FFP delivered 
during the same time period. This reflects the wide use of LyoPlas N-w in Germany 
(41% of all plasma used) under various clinical settings requiring transfusion and not 
just trauma resuscitation. The rates and types of transfusion-related complications 
reported between 2007 and 2011 were similar for FFP and LyoPlas N-w (0.018 vs. 
0.023%). No viral transmission has been reported since its inception in 2007 [45].

 Products Currently Under Development

The US Department of Defense (DoD) and the Biomedical Advanced Research and 
Development Authority (BARDA) are sponsoring multiple different programs to 
provide dried plasma products in different forms (lyophilized and spray-dried). The 
aim is to make the distribution, storage, and administration of plasma in combat and 
civilian environments safe and feasible [79].

Historically, there was a dried plasma product licensed in the USA under Plas-SD 
manufactured by Vitex (Melville, NY) which was required to have a black box 
warning due to the risk of adverse thromboembolic events caused by low levels of 
protein S. This was attributed to the solvent/detergent treatment. However, newer 
technology provided by Octaplas LG seems to have resolved the problem [79]. The 
Vitex product is no longer available.

HemCon Medical Technologies, Inc. (Portland, Oregon) was in the process of 
developing a dried plasma product for the US Army Medical Research and Materiel 
Command (Fort Detrick, MD) between 2008 and 2013. It was going to be a single- 
donor lyophilized plasma product derived from licensed FFP. In 2011, the product 
underwent a successful phase I clinical trial and was shown to have factors within 
the normal range [17, 89]. Unfortunately, the partnership ended in 2014 due to busi-
ness reasons.

Teleflex Inc. (Limerick, PA) recently acquired Vascular Solutions (Minneapolis, 
MN) which replaced HemCon as the Army’s partner in developing a single-donor, 
lyophilized plasma product since 2014 named RePlas. In 2017, they announced the 
commencement of the phase I clinical study of Ascending Doses of Autologous 
FDP vs FFP. This product is being developed in collaboration with the US Army 
Medical Materiel Development Activity (USAMMDA). They plan on having FDA 
approval by 2021 [17, 77, 90, 91].

Entegrion Inc. (Research Triangle Park, NC), in partnership with the Office of 
Naval Research, has been developing Resusix, a group AB, pooled, solvent/deter-
gent spray-dried plasma under a US Navy, Marine Corps, and Defense Health 
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Agency program since 2008. S/D treatment using a process licensed from 
Octapharma (Lachen, Switzerland) that is effective against lipid-enveloped viruses 
and other pathogens is utilized. The S/D process also removes immunogenic lipids, 
and a filtration step removes cellular debris and proinflammatory microparticles. 
Phase I clinical trials were completed in 2016, and developers have a goal of being 
licensed by 2020 [17, 92, 93]. Nova Laboratories (Leicester, UK) will perform the 
spray-drying and packaging for the product [79].

Velico Medical (Beverly, MA), is developing a spray-drying device and propri-
etary bag system (Frontline ODP) that will enable blood banks to produce licensed, 
single-donor, spray-dried plasma units locally within 30 min. This program is con-
ducted under a contract from BARDA, a part of the US Department of Health and 
Human Services, and is still in the preclinical phase [46, 93–95]. This product will 
provide a certain independence from manufacturers and allow local augmentation 
of production in times of need [79].

 Future of Lyophilized Plasma

Damage control resuscitation is now the standard of care in the treatment of hemor-
rhagic shock. It is clear that trauma patients with serious injury will benefit from 
DCR within minutes of injury. Plasma transfusion is an integral part of this concept 
but suffers from several logistical constraints. This also makes it an area where sig-
nificant advancements are necessary and can improve patient outcomes.

Early delivery of plasma is one avenue that seems to suffer the most. Many chal-
lenges exist that hinder this goal including physical requirements for storing and 
transporting FFP, required personnel, and thawing times. Certain steps taken by 
major trauma centers to remedy that have been successful, including having thawed 
plasma ready in the ED at all times and carrying thawed and liquid plasma in the 
prehospital setting. These measures are costly and require a large-scale operation. 
Smaller hospitals will not be able to accommodate such measures. Patients present-
ing to such facilities will suffer worse outcomes from delay in administration of 
plasma until it is available or until transported to a larger center. Physicians are 
forced to use crystalloid and colloid in such situations to stabilize patients. 
Furthermore, trauma casualties in remote locations requiring long transport times or 
austere environments requiring prolonged extrication will be at a huge disadvan-
tage. Finally, soldiers and combat casualties are also negatively affected by the 
delay of plasma transfusion, which has been demonstrated over and over again.

The solution is to have a product that is readily available, easy to store and trans-
port, and can be administered quickly and safely. Dried plasma provides all these 
advantages. It can be stored up to 2 years at room temperature and reconstituted 
within minutes. It’s been shown to be safe and efficacious clinically and in animal 
models with similar coagulation properties to FFP.

A dried plasma product introduced in the USA will allow for earlier plasma 
administration starting prehospital and continuing into the hospital setting, which 
will likely improve patient outcomes, as demonstrated by the French experience 
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[87]. Dried plasma should certainly replace the recommended crystalloid adminis-
tration in the ATLS guidelines, which were designed to accommodate all levels of 
practice and take into account the variable availability of blood products. Taking 
this concept one step further, it may prove beneficial and efficient to replace FFP 
altogether, especially when time to transfusion is a critical element of care, thus 
eliminating the need for cold storage facilities and complicated thawing equipment 
and procedures. The future of lyophilized plasma is exciting, and while it is an old 
product, it will likely see a new beginning.
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ACD Anticoagulant Citrate Dextrose Solution
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BARDA Biomedical Advanced Research and Development Authority
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CABG Coronary artery bypass grafting
CBER Center for Biologics Evaluation and Research
CD41a Cluster of differentiation 41a (GPIIb/IIIa)
CD42b Cluster of differentiation 42b (GPIb)
cGMP Current Good Manufacturing Practice
CLIP Cryopreserved Platelets Versus Liquid Platelets Trial
CPP Cryopreserved platelet product
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FDA Food and Drug Administration
FFP Fresh frozen plasma
GPIb Glycoprotein Ib
GPIIb/IIIa Glycoprotein IIb/IIIa
ICH International Council for Harmonisation of Technical Requirements 

for Pharmaceuticals for Human Use
LDH Lactate dehydrogenase
LSP Liquid-stored platelets
LyPt Lyophilized platelets
LyPt-P Lyophilized platelets stabilized with paraformaldehyde
LyPt-T Lyophilized platelets stabilized with trehalose
MTFs Medical treatment facilities
NATO North Atlantic Treaty Organization
NHP Non-human primate
NIH National Institutes of Health
NLAF Netherlands Armed Forces
NZWR New Zealand white rabbits
PAS Platelet additive solution
PVC Polyvinyl chloride
RT Room temperature, 20–24 °C
US United States
WB Whole blood

 Early Platelet Product Development and Exploration 
of Alternative Storage Methods

Platelets are critical components of blood that restore and maintain normal hemo-
stasis in the event of injury. Since Max Schultze first described platelets in 1865 and 
Giulio Bizzozero described platelet aggregation thrombus formation in 1882, there 
have been continuous efforts to understand the functional roles of platelets, provide 
them to patients, and maximize the effectiveness and safety of transfused plate-
lets in a variety of clinical settings [1]. Despite this early understanding of platelet 
nature and function, the relationship between platelet count and hemostasis was not 
established until Duke’s seminal publication in 1910. The clinical use of platelet 
concentrates first described in 1914 was primarily for the preparation of vaccines 
against bacterial infections [2, 3]. Clinical use of platelets to treat thrombocytope-
nic bleeding did not widely occur until the 1950s when direct transfusion of whole 
blood (WB) from the donor to the patient was replaced with platelet concentrates 
prepared from WB, refrigerated, and stored for up to 3 days [3–7]. Development of 
collection by apheresis in 1961 supported further advances in clinical use [8]. There 
was early recognition that platelet concentrates exposed to cold temperatures con-
trolled hemorrhage, but did not increase platelet counts as effectively as fresh WB 
or fresh platelet concentrates [9–12]. During this time, Dr. Emil Freireich described 
survival benefits due to platelet transfusion to treat thrombocytopenic bleeding. 

H. Pidcoke et al.



165

Patients required several transfusions per week as the circulation time of refrig-
erated platelets was 1–2  days [13]. Studies with radiolabeled platelets indicated 
that in vivo cold-stored platelet survival was shorter than fresh preparations. The 
desire for longer storage and in vivo circulation triggered investigations into alter-
native storage techniques. Successful clinical use of lyophilized and cryopreserved 
platelets to control thrombocytopenic bleeding were first reported in the 1950s [9, 
14–16]. The blood banking community eventually moved to room temperature stor-
age to avoid the early clearance, thus prioritizing longer in vivo circulation over 
storage time (Fig. 9.1).

In 1956, Drs. E.  Klein, P.  Arnold, and colleagues reported that, even though 
platelet counts were not elevated, both cryopreserved and lyophilized platelets were 
effective in controlling thrombocytopenic bleeding in children with acute leuke-
mia and aplastic anemia [14, 15]. The potential clinical benefit of these products 
for the management of thrombocytopenia was shown by Stefanini and Kistner in 
1958 [16]. Deaths due to hemorrhage in thrombocytopenic patients undergoing 
chemotherapy was reduced by platelet transfusion. Development efforts focused 
on improving the in vivo circulation time of platelets to reduce the frequency of 
transfusions. Murphy and Gardner demonstrated that storage of platelets at room 
temperature (RT, 20–24 °C) resulted in remarkable improvements in platelet circu-
lation, thereby decreasing the number of transfusions needed to support thrombocy-
topenic patients [11, 12, 17]. RT-stored platelets thus became the standard of care; 
however, availability quickly became an issue, and research focused on methods to 
extended storage time. Plastic bags with improved gas permeability, investigations 
into platelet storage solutions, and improvements in platelet apheresis collection 
systems became the primary developmental goals.

Fig. 9.1 Platelet product development timeline
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Despite technological improvements that improved in vivo circulation, ex vivo 
storage of platelet components was limited to 3 days with the consequence that avail-
ability of a reliable supply of platelets remained a continual challenge. Lyophilized, 
cryopreserved, and refrigerated platelets had the potential to extend ex vivo storage, 
but development efforts lagged due to the focus on circulation time and the inability 
to show hemostatic benefits in some thrombocytopenic animal models [9, 11, 18]. 
Although it was not known at the time, the disappointing function of these products 
was likely due to changes in the platelet membranes and other effects of cold activa-
tion and, in the case of lyophilization, excessive damage to the structural integrity 
[19–23]. Effective methods to protect platelets during lyophilization were decades 
away, but research into potential cryoprotectants began almost immediately [18, 
24–26].

Investigators continued in vitro and animal studies to characterize cryopreserved 
platelets but recognized that a cryoprotectant such as glycerol and/or dimethyl sulf-
oxide (DMSO) was needed to improve results [18, 24–32]. Djerassi, Roy, and col-
leagues described a successful method of cryopreserving platelets using glycerol and 
DMSO [25, 26]. With these advances, studies documented preservation of morphol-
ogy, viability, organelles, contractile proteins, clot retraction, lactate dehydrogenase 
(LDH), oxygen consumption, aggregation and release reactions, as well as measur-
able in vivo survival in human and animal models [33, 34]. Despite the move to 
RT-stored platelets and the use of directed donor HLA-compatible platelets to sup-
port alloimmunized patients, Schiffer and colleagues at the University of Maryland 
chose to use cryopreserved autologous platelets well in the 1980s [10, 35–40].

 Challenges in Providing Room Temperature Platelet 
Concentrates

Platelet storage at RT was limited to 3 days until 1981, when the US Food and Drug 
Administration (FDA) issued a guidance allowing an extension to 5 days. In 1984, 
FDA amended the guidance to allow 7-day storage, but this was rescinded 2 years 
later due to adverse events related to bacterial contamination [41]. The 5-day stor-
age period was accompanied by the requirement for routine bacterial testing, leav-
ing little time for transport and storage of platelets to remote areas. The short shelf 
life of 22 °C stored platelets (roughly 3 days following infectious disease testing 
and processing) results in significant and constant pressures on availability [42, 43]. 
This in turn presents significant production, distribution, and logistical challenges to 
blood organizations [43, 44]. To cover urgent needs, hospital users maintain platelet 
inventory in excess of their daily demand [44]. One undesirable outcome is wastage 
due to expiration estimated at 7.7–12% in the USA and up to 25% in some centers 
[43–45].

Supplying room temperature-stored platelet concentrates to combat personnel 
created even greater challenges for the US military. Maintaining platelet concentrate 
agitation during storage and transport resulted in an additional logistical burden pre-
venting platelet availability in austere environments. Alternative platelet-containing 
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products like cold-stored group O WB were available and used during the Korean 
and Vietnam conflicts; however, the only approved WB product for use within the 
USA was type-specific. As the blood type of acutely bleeding civilian prehospital 
patients is often unknown, WB fell out of civilian use in the 1980s. Military interest 
in cryopreservation and lyophilization persisted due to the need for longer storage 
times to accommodate extended transport times over large distances [32, 46–49].

 Cryopreserved Platelet Product (CPP) Characterization 
and Development

 US Military CPP Research and Development Programs

As an alternative to RT platelets, the US Office of Naval Research sponsored a CPP 
research program at the US Naval Blood Research Laboratory, Boston, MA, in the 
1970s. Valeri and colleagues extensively characterized CPP in DMSO and evaluated 
in vitro and in vivo performance prior to advancing to clinical trials [32, 48, 50, 51]. 
A variety of parameters were measured including oxygen consumption, aggregation, 
release reactions, storage duration, ultrastructural alterations, and phagocytic func-
tion followed by evaluations of circulation and hemostatic effectiveness in canine, 
baboon, and other animal models [32, 48, 50, 51]. The Valeri method began with 
freezing single units of platelets prepared from WB in 5% DMSO at a freezing rate 
of 1 °C/min to −40 °C, followed by storage in the vapor phase of liquid nitrogen 
[52]. Frozen platelets were prepared for transfusion by thawing in a 37 °C water bath, 
washing, and resuspending in plasma. Valeri’s group continued to develop and refine 
their methods ending with freezing of apheresis collected platelets in 6% DMSO that 
were frozen and stored at −80 °C. The units were thawed, washed, and resuspended 
in anticoagulant citrate dextrose (ACD) solution plasma prior to transfusion.

The culmination of this development program was a clinical trial in patients 
undergoing cardiopulmonary bypass surgery who were randomized to receive either 
CPP or RT platelets in the perioperative period. The trial was successful in dem-
onstrating that CPP established hemostasis as effectively as control platelets and 
non- inferiority metric was met [53]. The results were published in 1999, but the 
cumulative preclinical and clinical data on the Valeri method for platelet freezing 
were not sufficient to obtain FDA approval. Valeri and colleagues continued devel-
opment including the pivotal invention of the no-wash method, enabled by removal 
of the DMSO/plasma supernatant prior to freezing [54].

 International CPP Research and Development Programs

The Netherlands Armed Forces (NLAF) also experienced considerable challenges 
in supplying platelets to austere environments. Having learned from the Valeri labo-
ratory, the NLAF chose to augment standard blood products with CPP and other 
frozen blood products rather than rely on a walking blood bank for fresh WB and 
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apheresis platelet products. The NLAF began using frozen 6% DMSO platelets 
reconstituted in thawed plasma with thawed deglycerolized red cells and thawed 
fresh frozen plasma (FFP) in their deployed medical treatment facilities (MTFs) 
in 2001 [55]. They published their experience in 2016 after reviewing 4 years of 
hemovigilance and combat casualty outcomes data collected in Afghanistan begin-
ning in 2006. Results were excellent, with only 1 observed mild transfusion reaction 
in 3060 transfused products. Twenty-four-hour and hospital stay mortality (14% 
compared to 44% in historical controls, p = 0.005) decreased significantly in mas-
sive transfusion patients. The authors concluded that the use of frozen products, 
including CPP, in massive transfusion is safe and effective [55].

Rapid dissemination of these findings was likely facilitated during the recent 
conflicts in Iraq and Afghanistan, because exchange of medical information was 
common among the North Atlantic Treaty Organization (NATO) coalition forces 
[56]. In Australia, the University of Queensland, the Australian Red Cross (ARC), 
the Australian Defense Force (ADF), and others are collaborating to expedite a CPP 
development program [57–59]. In addition to potential military applications, pro-
viding a platelet product with storage times of years, rather than days, could provide 
hemostatic platelets in smaller rural hospitals that cannot sustain an RT platelet con-
centrate inventory. One-third of Australia’s population lives in remote areas where 
providing emergency services and blood products is challenging [60]. The recogni-
tion that longer-stored, potentially more hemostatic platelet-derived products are 
needed for both civilian and military centers mirrors similar viewpoints recently 
expressed by physicians in the USA and Europe [42, 61].

The ARC has studied CPP using various preparations in platelet starting mate-
rial. The major differences included the initial storage solution (70% platelet addi-
tive solution, or PAS, versus 100% plasma), the final reconstitution fluid (70% 
PAS versus 100% plasma), and method of collection (apheresis versus buffy coat 
preparation) [62–66]. ARC reported differences in factor activity, protein content, 
microparticles, and other biological response modifiers in these CPP compared to 
standard RT platelets [64]. They noted that fibrinogen was higher in CPP, whereas 
factors V and VIII activity were decreased. The clinical significance of these find-
ings regarding in vivo CPP function and outcomes was difficult to estimate given 
that these platelets are primed for activation and in vitro studies are difficult to cor-
relate to clinical findings. The ARC investigators found that thrombin generation 
and clotting activity were faster, while clot strength was similar to fresh [64–66]. 
As reported by others, aggregation was attenuated compared to Day 2, but compari-
son was not made to aggregation after Day 3, when RT platelets typically respond 
poorly to agonists.

Reade and colleagues recognized the limitations of currently available clini-
cal data for CPP.  The University of Queensland, the ARC, and the ADF col-
laborated on a randomized, controlled multicenter clinical trial in a surgical 
bleeding population, Cryopreserved Platelets Versus Liquid Platelets (CLIP) Trial 
(ACTRN12612001261808) [57]. The investigators hypothesize that CPP will be 
at least as effective and safe as conventional RT platelets in the management of 
active bleeding related to surgery. The primary endpoints are protocol feasibility 
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in this setting and safety and acceptability [57]. Clinical efficacy as measured by 
28-day mortality, blood loss, transfusion requirement, and thromboembolism will 
be assessed as secondary endpoints. Results are not yet available.

The US Army has sponsored a development program for CPP.  Based on the 
Valeri no-wash method, a Current Good Manufacturing Practice (cGMP) manufac-
turing process has been developed [67]. Briefly, gamma-irradiated (25Gy) apher-
esis platelets in plasma from either the Trima apheresis system (Terumo BCT, Inc., 
Lakewood, CO, USA) or Amicus apheresis system (Fresenius-Kabi, Lake Zurich, 
IL, USA) are brought to 5.6 to 6.7% effective DMSO concentration by adding 
27% sterile DMSO/saline concentrating by centrifugation at 1250× g for 10 min, 
removal of supernatant to a final volume of 20–35 mL in a freezing bag (Cryostore 
500, OriGen Biomedical, Austin, TX, USA), placed into a polyvinyl chloride (PVC) 
overwrap bag, and stored in a cardboard freezing box. The box is placed flat on the 
floor of a chest-type mechanical 80 °C freezer. CPP are stable for up to 24 months 
at ≤ −65 °C. To prepare for transfusion, CPP is thawed in a 37 °C water bath for 
8 min. After a 30-min rest period, 0.9% NaCl at 20–24 °C is added slowly in ali-
quots of 10 mL and 15 mL while gently mixing. The resuspended CPP contains 
approximately 2.0 × 1011 to 3.6 × 1011 irradiated platelets in a volume of ≥45 mL to 
≤60 mL and approximately 1250–2530 mg residual DMSO. Thawed diluted CPP 
units are stable at RT for up to 4 h.

 CPP In Vitro Phenotype

The phenotype of thawed CPP is distinct from RT 5-day liquid-stored platelets 
(LSP). CPP presented with increased microparticles content, phosphatidylserine 
exposure, and thrombin generation capabilities (thrombin peak, Table 9.1), sug-
gestive of a more activated cell state. The more activated state of CPP is appar-
ent in transmission electron micrographs (Fig.  9.2). Comparing fresh platelets 
(Fig. 9.2a) to CPP (Fig. 9.2b), while the ultrastructure of microtubules and open 

Table 9.1 In vitro phenotype for 5-day LSP and CPP

5-day LSP CPP
Platelet concentration (×103/μl) 1521 ± 144 6295 ± 816
Microparticles (% of platelet events) 6 ± 3 42 ± 9
Phosphatidylserine exposure (% of platelet 
events)

7 ± 4 73 ± 4

Aggregation (ADP + EPI) (%) 75 ± 24 20 ± 13
Aggregation (collagen) (%) 83 ± 14 16 ± 12
TGA peak thrombin (nM) (SD) 72.3 (10.3) 159.6 (25.7)

From Cid et al. [68], with permission of John Wiley and Sons
For aggregation assay final concentrations: ADP adenosine diphosphate at 10 μM, EPI epinephrine 
at 5 μM; collagen at 10 μg/ml and platelet concentrations at 300 × 103 platelets/μl. For TGA throm-
bin generation assay with final concentration of 66 × 103 platelets/μl, 1pM tissue factor in pooled 
fresh frozen plasma
LPS liquid-stored platelet, SD standard deviation
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canalicular system is maintained in many cells, the CPP (Fig. 9.2b) cell popu-
lation has a larger representation of active platelets. Approximately 30–50% of 
4000× fields appear as platelets, with more pseudopodia observable, occasional 
platelets with granule contents constricted to the center of the cell, and some 
platelets observed with few, if any, granules (Fig. 9.2b). No aggregates, per se, 
were observed (Fig.  9.2b). Confirming the increased microparticle contents of 
thawed CPP identified with flow cytometry (Table 9.1), the 2000× g CPP super-
natant prepared with the 16,000× g centrifugation shows many spherical particles 
500 nm and smaller (Fig. 9.2c).

Interestingly, CPP response to exogenous agonist compared to 5-day LSP in 
an aggregation assay is decreased (Table 9.1). Examining the clotting phenotype 
of CPP under shear flow over rabbit aorta in a flow chamber (with CPP restored 
platelet- depleted WB) revealed CPP maintained half of the platelet deposition 
capability of WB restored with 5-day LSP under medium shear (Fig. 9.3, CPP 
at 10.7 ± 3.1 and 5-day LSP at 22.9 ± 4.1 percent platelet coverage) [68]. Fibrin 
coverage is equivalent between both cell types (Fig.  9.3, 21–25%); however, 
CPP supported an almost threefold higher prothrombin cleavage which is main-
tained over 10 min of shear flow (Fig. 9.3, CPP at 606 ± 216 compared to LSP 
221 ± 67) [68].

 CPP Recovery and Survival

Autologous recovery and survival of CPP in healthy subjects have been evaluated 
compared to fresh autologous platelets transfused simultaneously following the 
method recommended by the Biomedical Excellence for Safer Transfusions (BEST) 
Collaborative, with some modifications for CPP [67, 69, 70]. As expected with an 

a b c

Fig. 9.2 Transmission electron microscopy of LSP and CPP and CPP supernatant reveal the 
increased activation morphology of CPP. Transmission electron micrograph of (a) LSP at 7000×, 
(b) CPP at 7000×, and (c) the CPP supernatant following high centrifugation to visualize mic-
roparticles at 19,500×. Bar = 2 μm in a and b and 500 nm in c. (From Dumont et al. [67], with 
permission of John Wiley and Sons)
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activated platelet product, CPP recovery was 52% of fresh platelets (Table  9.2); 
however, they circulated for 7.5 days or 89% of fresh platelets [70]. This is con-
sistent with good clinical outcomes previously reported when similar CPP prod-
ucts were used for hypoproliferative thrombocytopenia as discussed above. CPP 
recoveries are lower and could result in the need for increased transfusions, but 
it is also possible that CPP may allow physicians to manage patients with a lower 
platelet count due to the improved hemostatic potential of this product. Further 
studies are needed to evaluate CPP safety and clinical utility, and these are currently 
in progress.

 CPP Phase 1 Dose Escalation

Advancing CPP into clinical trials has been challenging. In a Phase 1 clinical trial 
(Safety Study of Dimethyl Sulfoxide Cryopreserved Platelets; ClinicalTrials.gov 
Identifier: NCT02078284) [71], patients with a WHO bleeding score ≥2 received 
from 0.5 to 3 units of CPP (n = 24) or 1 unit of LSP (n = 4). There were no related 
thrombotic or other serious adverse events and five mild transfusion-related adverse 
events. Among the CPP recipients, 14/24 (58%) had improved bleeding scores, 
including 3/7 (43%) patients who had intracerebral bleeding. CPP post-transfusion 
platelet increments were significantly less than LSP (Fig. 9.4); however, days to 
the next transfusion for CPP or LSP were the same [71]. A Phase 2 trial in cardiac 
surgery patients undergoing coronary artery bypass grafting (CABG) is planned for 
the near future (Fig. 9.1).

Table 9.2 Transfused 
platelet recovery and survival

Platelet recovery (%) Platelet survival (d)
Fresh 63 ± 9 8.6 ± 1.1
CPP 33 ± 10 7.5 ± 1.2
P <.0001 <.0001
% of fresh 52 ± 12 89 ± 15

From Slichter et al. [70], with permission of Elsevier
Data reported as mean ± standard deviation, n = 32

a

b

Fig. 9.3 Micrographs of platelet adhesion under flow conditions (Baumgartner model). 
Microscopic fields of perfusion experiments for platelet-depleted whole blood substituted with 200 
× 109 platelets/L of 5-day LSP (a) or CPP (b) reveals CPP with decreased platelet coverage com-
pared to LSP under shear (22 ml at 600/s for 10 min). (From Cid et al. [68], with permission of 
John Wiley and Sons)
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 Lyophilized Platelet (LyPt) Characterization and Development

 Lyophilized Platelets Stabilized with Paraformaldehyde (LyPt-P)

In addition to the CPP program, the US military also funded development of several 
techniques to produce LyPt. Two have been the most extensively described and pur-
sued. One technology, developed by Read and colleagues, used paraformaldehyde 
to fix platelets prior to lyophilization [72]. The authors reported that these LyPt-P 
were morphologically similar to fresh. Rehydrated LyPt-P expressed glycoprotein 
Ib (GPIb) and glycoprotein IIb/IIIa (GPIIb/IIIa) on cell surfaces and adhered via 
GPIb; displayed adhesion and spreading, although not to the extent of fresh plate-
lets; restored bleeding time in thrombocytopenic rats from >15 to 0.5–1.5 min and in 
dogs on cardiopulmonary bypass from 8–12 to 2–4 min; incorporated in the bleed-
ing time wounds in dogs; and when transfused in advance of an injury, were adher-
ent to the area of injury but not to intact endothelium [72–74]. It is clear that factors 
V and VII bind to the surface of these lyophilized platelets and that they are able to 
catalyze thrombin generation [48, 75]. On the other hand, although bleeding times 
in the dog studies improved, they did not return to baseline, lyophilized platelet 
surface coverage of the injured lumen was approximately half of fresh, responses to 
agonists other than ristocetin were attenuated, and inside-out signaling was largely 
inhibited [48, 72–74, 76].

Platelet CI
Platelet CCI
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Fig. 9.4 CPP dose escalation. Platelet count increments (left axis) and corrected count increment 
(right axis) for Phase 1 CPP dose escalation trial. (From Slichter et al. [71], with permission of 
John Wiley and Sons)
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Paraformaldehyde platelets were also tested in a swine liver injury model of 
non- compressible hemorrhage as a surrogate for prehospital use and were found to 
substantially increase survival compared to saline administration (80% versus 20%, 
p = 0.023) [77]. The human LyPt-P product administered caused thrombotic com-
plications in one animal, but this result was not unexpected as the authors noted; 
thrombosis is a known complication of xenographically mismatched transfusions 
to swine. Thrombosis occurs due to the interaction of human platelets with porcine 
von Willebrand factor [77].

To assess clinical efficacy and safety of the product in a xenographically matched 
model, Bode and colleagues developed a collaboration with clinical veterinarians to 
perform a pilot study in thrombocytopenic dogs with clinical signs of hemorrhage 
[78]. Canine patients were randomized to receive canine LyPt-P versus fresh canine 
platelets. Results were similar between groups regarding 24-h bleeding scores, 
transfusion reactions, additional transfusions, hospitalization time, and 28-day sur-
vival, suggesting that this pilot data supports use of lyophilized platelets to treat 
thrombocytopenic hemorrhage [78].

 Lyophilized Platelets Stabilized with Trehalose (LyPt-T)

Another platelet lyophilization technology funded by the US Department of Defense 
(DoD), with early funding from Defense Advanced Research Projects Agency 
(DARPA) and National Institutes of Health (NIH), uses trehalose as a stabilizing 
agent prior to lyophilization (Thrombosomes®, Cellphire, Inc., Rockville, MD), 
a process described in 2001 by Wolkers, Crowe, and associates [79]. Trehalose, a 
disaccharide used by multiple organisms that can survive significant desiccation, 
stabilizes membranes by forming hydrogen bonds with polar residues in proteins 
and phospholipids. The hydrogen bonds replace the water shell surrounding the 
platelet membranes, mimicking the hydrated state and protecting macromolecules 
from damage [79–82]. Crowe and associates reported near-normal aggregation 
responses to thrombin, collagen, and ristocetin, although subsequent studies have 
not been able to fully reproduce these early findings. Other investigators attempted 
to use this same technology to cryopreserve nucleated cells, but were not success-
ful until the cells were transfected with a crustacean cyst stress protein gene which 
acted synergistically with trehalose to protect cellular reproduction [82]. Trehalose 
stabilization appears to be adequate to protect non-nucleated platelets during desic-
cation, and the reconstituted LyPt-T product appears to retain similar morphology 
to fresh platelets (Fig.  9.5) although dense granules and alpha-granules are less 
distinct than fresh on TEM (Fig. 9.5a, b) and the SEM morphology is consistent 
with activated platelets (Fig. 9.5c, d) [83]. LyPt-T also displayed significant in vitro 
adhesion when imaged with Lucifer Yellow staining (Fig. 9.5e), participated in clot 
formation, and demonstrated in vivo hemostatic capacity [83–86].

LyPt-T are prepared from Group O, leukoreduced apheresis platelets that meet 
FDA and AABB (the organization formerly known as American Association of 
Blood Banks) requirements. Units from up to ten donors are pooled and concentrated 
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by centrifugation. The supernatant plasma is removed, and the platelets are resus-
pended in a trehalose-containing proprietary buffer and incubated at 37 °C. After 
incubation, platelets are diluted to ~2.0 × 106 per μL with a proprietary bulking agent, 
dispensed into glass vials, and lyophilized with a proprietary process. Vials are stop-
pered under vacuum and transferred to a dry-heat oven for annealing. Fitzpatrick 
and associates demonstrated that 98.6% ± 0.4 of cells expressing both GPIIb/IIIa 
(CD41a) and GPIb (CD42b) were in the size range of 0.5–2.5 μm, revealing that 

a

c

e

d

b

Fig. 9.5 Transmission electron microscopy and scanning electron microscopy demonstrated acti-
vated LyPt-T phenotype compared to fresh platelets. Transmission electron micrograph of (a) fresh 
platelets at 7000× and (b) LyPt-T at 7000×. Scanning electron micrograph of (c) fresh platelets at 
2000× and (d) LyPt-T at 2000×. (e) Lucifer Yellow-stained LyPt-T demonstrated that particles 
incorporate into the developing thrombus at 40×. (From Joshi et al. [83], © Schattauer GmbH with 
permission)

H. Pidcoke et al.



175

the majority of particles were not microparticles or aggregated particles (Table 9.3). 
GPIIb/IIIa expression was as expected at 98.71% ± 0.18, GPIb expression in the 
trehalose-treated lyophilized product was reduced at 44.77% ± 6.65, and Annexin 
V binding was 86.05% ± 2.65% [85]. Thrombin generation (Table 9.3) was similar 
to plasma controls [85]. Aggregation was diminished in plasma (data not shown) 
but somewhat better in buffer solution particularly in response to thrombin and ara-
chidonic acid (Table 9.3). Clot strength was at the lower end of reference ranges 
with a maximum amplitude (MA) of 38.6 ± 1.8 mm (Table 9.3), and R-time was 
within reference ranges at 9.2 ± 1.1 m (Table 9.3) [85, 87]. Circulation kinetics were 
assessed in New Zealand white rabbits (NZWR) with the infusion of both human 
and species-specific 111In-labeled lyophilized platelets (Table 9.4). Circulation time 
for both were similar with a precipitous drop occurring within the first 10 min com-
pared to fresh rabbit platelets, and less than 40% of the product remaining in circu-
lation at 2 h [85]. Safety and toxicology studies in rabbit, canine, and non-human 

Table 9.3 In vitro phenotype of reconstituted LyPt-Ta

Test Conditions (units)
Results
Mean ± 1SD

Safety
  Aerobic culture Growth/no growth NG
  Anaerobic culture Growth/no growth NG
  Endotoxin EU (ml) 0.2 ± 0.1
Strength
  Particle count Particles (ml) 1.67 × 109 ± 5.7 × 107

Identity
  Percent of CD41a- and CD42b-positive particles Overall particles 

(%)
57 ± 2.5

  CD41a and CD42b double-positive in each size 
range

<0.5 μm (%) 0.3 ± 0.1
0.5–2.5 μm (%) 98.6 ± 0.4
>2.5 μm (%) 1.0 ± 0.4

  CD62P: % positive 0.5–2.5 μm (%) 93.2 ± 2.5
  Annexin V: % positive 0.5–2.5 μm (%) 96.5 ± 0.3
  Phosphatidylserine exposure μg (ml) 30.4 ± 2.6
Potency
  Aggregation in buffer AA (%) 58.0 ± 1.6

Thrombin (%) 50.7 ± 5.8
  Thrombin generation potency units TGPU/106 

particles
1.9 ± 0.1

  Thrombin generation maximum Peak (nM) 70.8 ± 4.6
  Thromboelastography R (m) 8.8 ± 0.4
  Thromboelastography MA (mm) 38.4 ± 0.3
Stability
  Residual moisture content (%) 0.7 ± 0.2

For aggregation assay final concentrations: Thrombin at 2.5 U/ml with; AA arachidonic acid at 
500 μg/ml and LyP-T concentration at 375 × 103 particles/μl. For TGA thrombin generation assay 
with final concentration of 4.8 × 103 LyP-T/μl, 1pM tissue factor in solvent detergent treated 
pooled frozen plasma
SD standard deviation, NG no growth, CD cluster of differentiation, TGPU thrombin generation 
potency units, MA maximum amplitude
aPreviously unpublished data
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primate (NHP) models demonstrated no adverse events or findings on macroscopic 
and microscopic examination [85]. Studies in multiple preclinical models have 
provided positive evidence of hemostatic effect: (1) thrombocytopenia (busul-
fan induced in NZWR) and a radiation induced LD50/30  in NZWR, (2) canine 
{CABG} (Fig. 9.6), and (3) acute hemorrhagic shock induced by traumatic livery 
injury in NHP [84–86].

Inaba and associates evaluated in vivo function of both human and swine LyPt-T 
compared to placebo in a porcine model of nonsurgical hemorrhage that combined 
controlled blood removal with lactated Ringer’s replacement and an uncontrolled 

Table 9.4 Blood loss (CPM) over timea

Minutes 0 2 4 6 8 10 12 15 20 30
Saline 2.66 15.27 26.94 41.05 47.52 56.95 64.52 80.26 106.98 149.70
Buffer 11.79 22.32 32.03 42.83 55.11 64.54 74.33 86.40 109.16 153.80
Thrombosomes 12.27 20.46 24.81 25.95 27.22 26.98 27.93 28,16 30.49 34.86
LRP 14.09 22.43 28.67 32.10 34.87 36.74 37.44 38.27 41.71 47.19

CPM (counts per min). A whole blood sample was collected, radiolabeled, and reinfused prior to 
initiating the ear bleed study. Samples of shed blood were collected periodically as shown and 
CPM determined from the collected sample
aPreviously unpublished data
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bleeding phase produced by a liver injury [88]. Injury was followed by treatment 
with a three-arm study of human LyPt-T, porcine LyPt-T, and control porcine plate-
let concentrates. The model resulted in a significant increase in lactate, which is 
predictive of increased mortality risk in humans [89]. At 15 min, shed blood was 
calculated, and as expected, transfusion with xenographically mismatched platelets 
resulted in worse outcome. Transfusion of lyophilized swine platelets did not alter 
the amount of uncontrolled hemorrhage at 15 min but resulted in a significantly 
higher hematocrit at 48 h compared to the other two arms, suggesting a better hemo-
static effect [88]. Further studies in animal models of injury and in clinical animal 
patients are planned and in progress to assess hemostatic function in the treatment 
of thrombocytopenic bleeding.

Funding for continued development of LyPt-T is now provided by a 
Biomedical Advanced Research and Development Authority (BARDA) contract. 
A Phase I safety study in healthy human volunteers (Evaluation of the Safety and 
Immunogenicity of Autologous Thrombosomes® in Healthy Human Subjects; A 
Microdose Escalation Study (Cohorts 1–4) and Repeat Microdose Immunogenicity 
Study (Cohort 5, ClinicalTrials.gov Identifier, NCT02223117) has been completed 
although results are not yet available in published form, and a second Phase 1 safety 
study (Thrombosomes® in Bleeding Thrombocytopenic Patients; ClinicalTrials.
gov Identifier: NCT03394755) in thrombocytopenic bleeding oncology patients is 
currently enrolling subjects.

 Regulatory Hurdles for Novel Platelet Products

Regulatory evaluation of novel products in the USA involves multiple in  vitro 
evaluations, animal studies, and human trials. In the absence of a predicate prod-
uct, a development program can cost in excess of several hundred million dollars 
after considering all exploratory, discovery, and post-market studies required. JG 
Vostal recently outlined FDA requirements for platelet products related to the FDA 
review process and stated that the more novel a product, the higher the concerns it 
raises regarding safety and efficacy, which in turn increases the financial burden 
of providing the data required by the FDA [90]. Products in development such as 
those described here require extensive in vitro characterization, to include plate-
let physiology, morphology, and biochemistry. These are followed by preclinical 
studies in multiple models and species and Phase 1 dose escalation trials to assess 
safety, if required. Additional in vitro studies are also needed to demonstrate that, 
regardless of the variability of the starting material, manufacturing methods and 
characterization of the product comply with the FDA and International Council 
for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use 
(ICH) requirements for the validation of analytical methods, maintains consistency 
during the manufacturing process, and conforms to release and other cGMP crite-
ria. This can be very challenging given the inherent biological diversity observed 
between individual donors when determining platelet count, hemostatic efficacy, 
ex vivo and in vivo survival, and other qualities of the platelet starting material.
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In characterizing products, development teams must address qualities such as 
product identity, purity, potency, strength, reproducibility, and creation of scalable 
processes that do not change the essentials of the product manufacturing process. 
The products described face different and unique challenges. Each unit of CPP is a 
unique lot of product from a single donor, whereas each trehalose-stabilized lyophi-
lized platelet dose is an aliquot from a lot manufactured from a platelet pool col-
lected from up to ten individual donors. Depending on the proposed indication and 
novelty of the product, regulatory bodies may ask for additional studies, including 
in vivo radiolabeled recovery and survival studies, Phase 1 dose escalation safety 
trials, Phase 2 dose-finding studies, Phase 3 trials to establish efficacy to treat clini-
cal disease, and, finally, Phase 4 post-market studies. Phase 1–3 studies invariably 
assess safety endpoints but are not usually powered to detect rare safety risks. For 
this reason, FDA is increasingly requiring Phase 6 post-market studies to evaluate 
innovative products.

With strict enforcement of patient blood management, blood product use is 
declining and associated profit margins are increasingly smaller. It is no wonder 
that companies involved in the blood industry must carefully evaluate whether or 
not to invest in expensive, decades-long product development efforts. Introduction 
of new products into an already competitive landscape compounds the difficulties 
as clinicians appropriately have moved to evidence-based decision-making, leading 
to further expense related to the conduct of clinical trials aimed at driving prod-
uct adoption. Rapid changes in biomedical sciences increase the risk, because of 
the greater potential for a disruptive technology to change the field before mar-
ket approval. With increasing complexity in the regulatory requirements comes 
the risk that regulatory barriers become so high that a product with a challenging 
business case but a high potential to save lives may never become commercially 
available. FDA has tried to address this problem by designating some novel prod-
ucts as “orphan drugs” if the patient population is small or if the expected return 
is lower than the required investment. In addition, the DoD (US Army Medical 
Materiel Development Activity, or USAMMDA; DARPA; and others), BARDA, 
and directed congressional appropriations may be able to generate funding streams 
to address the so-called product valley of death, describing the interval after a great 
idea has been shown to be feasible but is too risky to attract investment capital for 
further development. Without DoD or BARDA funding, the product development 
programs described in this chapter would not exist, yet they are aimed at addressing 
life- threatening injuries sustained in environments in which good treatment alterna-
tives are scarce or absent.

The current proposed indication for use of CPP is “Treatment of acute hemor-
rhage in patients with a platelet deficiency or a platelet dysfunction when LSP are 
unavailable” and that of LyPt-T is “for the treatment of uncontrolled hemorrhage.” 
FDA considers both CPP and LyPt-T to be hemostatic agents derived from human 
platelets rather than conventional blood products, but this classification remains 
within the scope of the Center for Biologics Evaluation and Research (CBER). 
Both products are primed to participate in clot formation, with accelerated thrombin 
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formation in in vitro assays. Available data does not suggest that these phenotypes 
are clinically dangerous as initiators of thromboembolic events and may indeed be 
helpful to treat active bleeding, but differences from the current standard of care 
have prompted increased FDA scrutiny and requirements. The preclinical work for 
both products has been extensive, expensive, and time-consuming. Movement of 
these products into clinical trials has been equally challenging. Rapid changes in 
clinical practice have increased the complexity of identifying study populations 
where equipoise exists and there is an appropriate balance between risk of harm and 
potential benefit. To address the proposed indication for these products, study sub-
jects must be actively bleeding, and while this requirement may seem simple at first 
glance, the identification of bleeding patient populations in the face of continual 
improvements in blood-sparing techniques has been problematic. The difficulties in 
accurately assessing bleeding endpoints are well-recognized due to lack of common 
definitions, subjective quantification of blood loss, and a high degree of outcome 
variability [91].

Despite these uncertainties, the FDA’s regulatory review process may soon take 
on a more streamlined aspect as the FDA and the US DoD have agreed to work 
closely together in support of critically needed breakthrough technologies. Potential 
benefits of this approach may include more frequent and accelerated reviews by 
the FDA, consultation on development from an FDA team not involved in product 
review, consideration of interim limited indications to allow early use in settings 
without viable alternatives, and greater weight given to animal and non-US data if 
production methods are sufficiently similar. Successful execution of Phase 1 safety 
trials and Phase 2 efficacy studies undoubtedly will remain required elements of 
development programs; however, FDA may reevaluate the necessity and timing of 
Phase 3 studies on a case-by-case basis. If so, it is likely that FDA will rely more 
heavily on surveillance or prospectively designed randomized controlled interven-
tional Phase 4 post-market studies.

 Summary

Cryopreserved and lyophilized platelets have a long, but limited, history of human 
use that dates back to the 1950s yet involves a small number of total study subjects. 
Despite decades of research characterizing the quality and nature of these prod-
ucts, questions remain regarding the relationship between in vitro performance and 
in vivo function to control bleeding. That said, results to date indicate promising 
in vivo hemostatic potential in several animal models. Although the data is retro-
spective and cannot definitively establish causality, human use of cryopreserved 
platelets in military settings also appears to be associated with benefit. The regula-
tory pathway for these products, particularly in the case of CPP, has been decades 
long, and more trials are needed to provide high-quality data to regulatory bodies. 
These products could be life-saving in settings where other good alternatives are 
limited or not available.
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 Introduction

Trauma is the leading cause of death in the United States in persons younger than 
44 years, with traumatic hemorrhage and trauma-induced coagulopathy contribut-
ing to mortality in the first 24 h [1]. Ongoing research in trauma resuscitation has 
revealed that goal-directed resuscitation with a protocolized balanced blood product 
transfusion strategy results in improved early survival and less deaths due to exsan-
guination [2–5].

Regardless of transfusion strategy, the need for red blood cells (RBCs) and their 
oxygen-carrying capacity is critical to survival. An American Association of Blood 
Banks (AABB) Blood Survey Report from 2013 showed a 12% decrease in whole 
blood and RBC collection when compared to 2011, even though the utilization of 
whole blood and RBCs decreased by 5% [6, 7]. Even with improvement in hemor-
rhage control strategies in trauma, other means of storing RBCs need to be explored 
due to the limited shelf life of liquid-packed RBCs and the development of storage 
lesions over time. One example of this is frozen RBCs (fRBCs).

 History

The first published study of successful cryopreservation of RBCs was by Dr. Audrey 
Smith in 1950, who discovered that human blood diluted with equal parts of 30% 
glycerol-saline and frozen to −80 °C did not undergo the usual hemolysis caused by 
freezing and thawing [8]. She observed that glycerol, a sugar alcohol that is 
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permeable to cell membranes, acted as a cryoprotective agent (CPA) during the 
freeze-thaw process. It was thought that the principle protective action was their 
ability to prevent the excessive concentration of electrolytes and other substances 
that otherwise occurs with freezing [9]. Although other CPAs such as dimethyl sulf-
oxide and hydroxyethyl starch have been used to prevent cryoinjury, glycerol is the 
more commonly studied and utilized CPA [9, 10]. Mollison and Sloviter published 
the first successful transfusion of thawed fRBCs and found a post-thawing preserva-
tion of 80–90% of the original cellular volume [11].

This resulted in enthusiasm for the process, as it was seen that cryopreservation 
could allow the long-term storage and stockpiling of large quantities of blood for 
prolonged periods, thus alleviating the issue of seasonal or unexpected catastrophic 
shortages and establishing greater availability of rare blood types.

 Cryopreservation

The cryopreservation process requires three steps after screening and pathogen test-
ing of the packed RBCs (pRBCs):

 1. Glycerolization phase
 2. Storage phase
 3. Deglycerolization phase

Glycerol is a very effective cryoprotectant for cells in which they can diffuse into 
fairly quickly, such as human erythrocytes. The uptake of glycerol by human eryth-
rocytes are both an active and passive process [12–15]. Once intracellular, glycerol 
will form firm hydrogen bonds with intracellular water, inhibiting it from turning 
into ice. In turn, this will suppress the rise in sodium chloride concentration to pre-
vent extreme hypertonicity [16, 17].

Currently, two methods are commonly used to cryopreserve RBCs: the high 
glycerol concentration (HGC) method with 40% weight/volume (W/V) or the low 
glycerol concentration (LGC) method with 20% W/V.

The HGC method allows for an initial slow freezing rate (~1–3 °C/min) and stor-
age in −80 °C freezers but adds to the thawing time. The LGC method requires 
rapid cooling (>100 °C/min) to −140 °C in liquid nitrogen but reduces the thawing 
time [18]. Advantages of the HGC method include storage up to 37 years and the 
relative ease of transportation in freezers [19]. One advantage of the LGC method is 
that it results in less hemolysis upon thawing than the HGC method [20]. Prior to 
transfusion, frozen RBCs require deglycerolization due to increased hemolysis 
caused by a more rapid endosmosis of water than exosmosis of glycerol [21].

The deglycerolization phase involves washing the glycerolized RBCs with 
hypertonic sodium chloride solution. The diluted RBCs are then placed in a centri-
fuge and the supernatant fluid is removed. The RBCs are washed twice with isotonic 
sodium chloride solution. Historically, the entire process required 1 l of wash solu-
tion and took almost 3 h [22].
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Multiple methods were developed to speed up the process, and in 1963, Dr. 
Charles Huggins invented the cytoglomerator, which uses a dilution/agglomeration 
technique. It first involves removal of glycerol by adding non-electrolyte solutions 
contacting glucose and fructose to glycerolized RBCs while stirring. This decreases 
the ionic strength of the environment, causing RBCs to clump together, or agglom-
erate, once stirring stops. After decantation of the supernatant, isotonic saline is 
added to the agglomerated RBCs for disaggregation [23]. The average time was 
50 min with 6.8 l of washing fluids used. In 1967, Haemonetics developed a blood 
processor called the M115 cell processor with a polycarbonate bowl with an 
attached shaker for mixing of the washing solutions. This process took 35 min and 
only used 2 l of washing fluid [24]. Both of these systems, however, are open sys-
tems, and the RBCs must be administered within 24 h of post-thaw and washing 
[25–27]. Haemonetics later developed a closed-system automated cell processor in 
1998; the ACP 215 is able to use thawed pre-wash blood stored at 1–6 °C for up to 
14 days and produce acceptable-quality post-wash RBCs that can be stored up to 
7–14  days [28, 29]. This device utilizes sterile connecting devices, in-line 0.22 
micron bacterial filters for solution delivery, and a disposable polycarbonate bowl 
to deglycerolize RBCs. The post-wash RBCs are then stored in standard blood 
storage solutions, either additive solution (AS)-3 (saline, adenine, glucose, citrate, 
and phosphate) or saline-adenine-glucose-mannitol (SAGM). The entire freeze-
thaw-wash process takes about 2 h and is currently the most prevalent method of 
processing fRBCs [30].

 Benefits

 Inventory and Availability

Over 75 million units of blood are donated every year worldwide, with blood ser-
vices depending on the altruism of the donors [31]. In the United States, blood 
donation, distribution, and transfusion services all operate within a blood supply 
network consisting of collection centers (hospital and community) and transfusing 
facilities. Basic economics of supply and demand apply, with the hope that blood 
banks will always have enough blood in storage for emergent demands. Since 
1971, national surveys have been administered for the blood supply network to 
assess supply and demand. Recent National Blood Collection and Utilization 
Survey (NBCUS) Reports published by the US Department of Health and Human 
Services have described a decrease in donor blood collection, with an 11.6% 
decrease between 2013 and 2015 [32]. This echoes a steady decrease in demand as 
well, which has been a trend seen in earlier surveys [33]. This is likely due to a 
focused effort to reduce transfusions, such as minimally invasive surgeries, restric-
tive transfusion practices, success with cytokine-based therapies, and immunosup-
pression for aplastic anemia [33]. However, this raises concern that hospitals do 
not have enough supply to accommodate for surge demand in times of crises or 
major disaster. One example is the Zika virus outbreak in 2016, where blood 
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collection was halted in Puerto Rico until nucleic acid testing could be imple-
mented under investigational new drug protocols. With their inherent supply cut 
off, Puerto Rico depended on the importing of blood products from the non-Zika-
affected blood centers in the mainland United States. Another important issue is 
wastage of blood products, which may occur from time expiry, wasted imports, 
blood that was medically or surgically ordered but not used, stock time expiration, 
hemolysis, or miscellaneous reasons. The 2011 NBCUS survey reported a 12% 
wastage rate, with causes attributed to unacceptable test results, units sacrificed by 
collectors for unspecified reasons, and outdated units [34]. Recent results from 
three level I trauma centers’ utilization of blood products during massive transfu-
sion protocols also showed an RBC wastage rate of 9% [35]. Even with the FDA 
extension of liquid RBC shelf life from 21 to 42 days, fRBCs can still be stored for 
over 10 years, thus decreasing the wastage of blood through outdating by thawing 
the blood needed ahead of time [21].

Ever since the terrorist attack on September 11, 2001, a focus has been placed on 
the availability of blood products to prepare for possible future catastrophic events. 
This event initiated the American Red Cross (ARC), America’s Blood Centers 
(ABC), and other government agencies to produce weekly data reflecting that blood 
centers and hospitals each maintain on average a 3- to 5-day supply of RBCs to cre-
ate an estimated 10-day reserve [36]. However, a 2006 ABC newsletter showed less 
than half of their centers maintained a blood supply of 3 or more days. In addition, 
seasonal shortages are common, especially in the winter and summer months due to 
inclement weather, seasonal viral infections, decrease in donor pool, and vacations 
[37]. These seasonal shortages could be alleviated by the availability of fRBCs in 
blood centers and hospitals.

 Storage Lesion Elimination

The term “storage lesion” refers to changes in RBCs while in storage and is char-
acterized by reversible and irreversible defects. Ex vivo storage affects RBC energy 
metabolism, redox metabolism, and the cell membrane, thus creating a “pheno-
type” of morphologic, structural, and functional changes [38]. The RBC storage 
phenotype is characterized by depletion of 2,3-DPG, ATP, glutathione, and loss of 
normal shape, with an accumulation of reactive oxygen species, lactate, potassium, 
inflammatory lipids, and extracellular vesicles (EV) [39]. The major driving forces 
of the phenotypic lesion are caused by a defective ATP-centered metabolism and 
oxidative stress. RBC membrane stability and deformability are reliant on energy 
from ATP, which is not in constant supply in storage, causing some RBCs to 
undergo hemolysis or eryptosis. Posttransfusion, deformed RBCs may be engulfed 
by macrophages in the spleen, liver, or bone marrow [40]. However, certain aspects 
of the storage lesion may be reversed upon transfusion, such as 2,3-DPG levels, 
ATP, and electrolyte imbalances [41]. The buildup of EVs and inflammatory lipids 
in stored blood activates neutrophils to produce an inflammatory cascade after 
transfusion and could be involved in the pathogenesis of transfusion related lung 
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injury [42, 43]. Another hypothesis is that the release of cell-free hemoglobin and 
microparticles may decrease the amount of nitic oxide and deficiency in nitric 
oxide synthase activity [44].

Standards set by the AABB require RBCs to be frozen within 6 days of collec-
tion, therefore halting the metabolism of erythrocytes and theoretically decreasing 
the likelihood of red blood cell storage lesions. Fabricant et al. and Hampton et al. 
performed prospective randomized studies comparing transfusion of standard liquid 
RBCS or cryopreserved RBCs in trauma patients. Patients who received fRBC 
transfusions had higher tissue oxygenation levels and 2,3-DPG levels with lower 
interleukin 8, tumor necrosis factor alpha, and D-dimer concentrations when com-
pared with liquid RBCs [45, 46]. A multi-institutional study across five level 1 
trauma centers comparing fRBCs and liquid RBCs in 256 trauma patients demon-
strated decreased levels of alpha-2 macroglobulin, haptoglobin, c-reactive protein, 
and serum amyloid-P in the fRBC patients, but no difference in tissue oxygenation, 
organ failure, infection rate, and mortality [47]. Recently, McCully et al. noted that 
patients with BMI >30 who received fRBC had increased tissue oxygenation and 
lower free hemoglobin when compared to those who received liquid RBC [48]. 
These multi-institutional clinical trials highlight the benefits of fRBCs in a civilian 
setting.

 Blood Washing

One major hazard of blood transfusion is the transmission of pathogens, especially 
hepatitis. It was not until 1963 when the discovery of a screening test for hepatitis B 
was discovered [49]. Prior to this, it was found that fRBCs had a reduced likelihood 
of transmitting serum hepatitis or hepatitis B [50]. This was attributed to the wash-
ing step, as it was found that the hepatitis B antigen was in the eluent. Washing also 
reduced the number of WBCs and plasma, thus reducing the risk of transfusion 
reactions [51]. This caused an increase in the utilization of fRBC in dialysis centers 
and patients undergoing renal transplantation [52]. However, with the ever- 
improving infectious disease screening process of blood banks, and the use of pre- 
storage leukoreduction, liquid RBCs are just as safe from an infectious point of 
view as fRBCs [53].

 Rare Blood

The most irrefutable benefit of fRBCs is the preservation of a bank of rare blood 
types [52]. Since the 1960s, the medical community recognized patients with com-
plex serology whose options for blood transfusion are severely limited. In 1960, 
Valeri’s group at the Naval Blood Research Laboratory built a 200-unit rare pheno-
type frozen RBC repository in conjunction with the AABB, with the state of 
New  York following suit in 1968 [53]. The America Rare Donor Program was 
formed in 1998 to provide rare blood for those patients in need [54]. The Laboratory 
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of the Dutch Red Cross Blood Service also began storing rare fRBCs and reached a 
maximum of 300 units for the year of 1981 [55]. Another benefit is the storage of 
autologous blood for those with transfusion-dependent disorders. These patients 
can store their own blood in preparation for elective surgery or other unplanned 
events [56, 57].

 Clinical Use

Throughout history, wars have played an important role in the development and 
advancement of medical care. The first documented successful blood transfusion 
took place in the US Civil War, when, in 1864, Dr. Fryer transfused 16 ounces to a 
soldier who underwent an above-knee amputation [58, 59]. By the first World War, 
knowledge of citrate as an anticoagulant was available, but not utilized for quite 
some time [60]. Rous and Turner in the first year of World War I created a mixture 
of 5.4% glucose and 3.8% sodium citrate to protect RBCs from hemolysis for 
4 weeks [61]. In 1917, a military physician named Oswald Robertson designed an 
icebox with glass containers filled with whole blood mixed with the Rous-Turner 
solution, thus becoming the world’s first blood banker [62]. By the World War II, 
whole blood was able to be fractionated into plasma and was used to treat burn vic-
tims in Pearl Harbor after the Japanese attack [63]. During the early years of World 
War II, the general belief was that plasma was enough to compensate for hemor-
rhagic shock [64]. As the war raged on, focus was turned back to whole blood, 
which carried through the Korean War. Noticeably, the mortality rate of wounded 
soldiers after reaching a hospital decreased from 10% in World War I to 2.6% in the 
Korean War [65, 66].

In the time between the Korean and Vietnam Wars, the US Navy commissioned 
the Blood Research Laboratory in 1956, later renamed the Naval Blood Research 
Laboratory (NBRL) in 1965, which was tasked with developing long-term preserva-
tion of RBCs, especially for use on naval ships. That same year, the NBRL estab-
lished the first frozen blood bank at Chelsea Naval Hospital in Massachusetts, 
adopting the HGM [53].

The first clinical trial utilizing fRBCs was performed by Haynes et al. at Chelsea 
Naval Hospital, where more than 1000 units of fRBCS stored up to 44 months were 
transfused to more than 355 patients. In addition to equivalent clinical results as 
compared to liquid RBCs, they found a decreased rate of transfusion-related hepa-
titis and adverse febrile reactions [21].

In 1966, a frozen blood bank at the Navy Station Hospital in Da Nang, Republic 
of South Vietnam, was established. Their objective was to receive a limited supply 
of frozen Group O, Rh-negative blood from the United States for use in selected 
casualties, using a Huggins cytoglomerator for the processing of fRBCs. A total of 
307 units of fRBCs were transfused. In vitro studies showed a 27% red cell loss, 
with a final volume of 210 mL with a hematocrit of 87%. In vivo studies showed an 
immediate posttransfusion mean hemoglobin increase of 3.68 mg/100 mL as com-
pared to 0.72 mg/100 mL for liquid RBCs. Measured serum creatinine and bilirubin 
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level were acceptable. The authors concluded that fRBCs during wartime are an 
alternative to the walking donor system, which is fraught with possible logistical 
complications such as transportation, communication, personnel, blood-borne 
pathogen transmission, and donor safety [67]. During the 1991 Gulf War, approxi-
mately 7000 frozen units were available on two US Naval hospital ships, but none 
were used. The Joint Trauma System Performance Improvement Branch analyzed 
data from the Department of Defense Trauma Registry and Massive Transfusion 
Database in Afghanistan and found 63 patients between January 2010 and September 
2011 who received massive transfusions that required the use of fRBCs. When com-
pared to a control population of 525 patients who did not receive fRBCs during their 
massive transfusions, there were no significant differences in complications includ-
ing transfusion reactions, coagulopathy, renal failure, deep vein thrombosis, or 
respiratory failure [68]. Currently, the US Naval Hospital Ship Mercy carries a stock 
of 2850 fRBC units at all times, and in 5 months, over 200 deglycerolized units 
were transfused to patients in various settings [69]. The US Military Joint Trauma 
System Clinical Practice Guideline regarding fRBCs supports the use of fRBCs, 
with the primary indication as a supplement to liquid RBCs during periods of 
increased transfusion requirements in order to decrease hemorrhagic morbidity and 
mortality in casualties [68].

Internationally, the Laboratory of the Dutch Red Cross Blood Service began 
freezing RBCs in the early 1960s. Using the LGM, they initially began freezing 
phenotypically uncommon or rare RBCs. They also froze O-positive and O-negative 
units to increase their inventory in anticipation of the possible shortages in the sum-
mer and winter months [64]. During the first Gulf War in 1991, the Netherlands 
Military Blood Bank realized that shipment of liquid RBCs was cost-ineffective and 
would not guarantee availability at all times, unlike fRBCs. To test this, they froze 
and sent 1360 units of fRBCs and frozen platelets to Iraq in 2005. They learned that 
a military hospital blood bank facility can be deployed without regular shipments of 
liquid blood products and can meet the needs of a surgical team by thawing and 
washing a certain amount weekly, creating a hybrid liquid-frozen blood bank, 
although it is not known how busy the surgical team was during that time [69].

Civilian usage of fRBCs began with the invention of the cytoglomerator by Dr. 
Huggins, making Massachusetts General Hospital the first civilian center to use fRBCs 
on a large scale [13]. Between 1971 and 1972, his blood bank froze over 15,000 units, 
and 14,406 units were transfused in the subsequent years, with Huggins claiming that 
no cases of hepatitis occurred [55]. Gerald Moss, a student of Dr. Huggins, ran the 
Cook County Blood Bank in Chicago using almost exclusively fRBCs. By 1975, they 
were freezing and thawing more than 10,000 units of RBC a year [55].

 Drawbacks/Future Directions

One of the biggest drawbacks of fRBCs is the preparation. Whereas liquid RBCs are 
ready to use after removal from a 1–6 °C cooler, fRBCS need to be deglycerolized 
and prepared, which takes at least 50 min even with the new ACP 215 [70]. This 
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detracts from the utility of fRBCS in emergent scenarios. This problem can be miti-
gated by maintaining a portion of the RBCs thawed for immediate use. A second 
drawback is cost, which is about three times the cost of liquid preservation, with the 
majority due to instruments used in processing, disposables, and solutions [71]. 
This ties into the third drawback, which is the in vivo recovery rate of 75% at 24 h 
after transfusion of fRBCs [72]. Although this is at the threshold of the FDA’s cur-
rent standard of transfusion recovery rate, the extra cost associated without the ben-
efit of increased recovery can cause reservations in widespread adaptation of this 
technique of blood storage. However, the prospective randomized multicenter trial 
revealed that hematocrits performed 12  h after transfusion were identical in the 
liquid and fRBC groups. This suggests that the senescent cells that are removed in 
the deglycerolization process are similarly removed by the body after transfusion 
resulting in equivalent loss in vivo. A recent paper by Chang et al. found that after 
deglycerolization, cryopreserved blood developed storage lesions at a faster rate 
when compared with liquid never-frozen pRBCs, thus negating one of the benefits 
of fRBCs if they are not transfused within 14 days after deglycerolization [73].

The processing and usage of fRBCs peaked in 1978/79, where the majority of 
their use was in dialysis centers for potential cadaveric renal transplant recipients. It 
was originally thought that sensitization to donor histocompatibility could affect 
graft survival and fRBCs had a lower amount of leukocytes than liquid RBCs to 
provoke this immune response. However, Opelz and Terasaki in 1978 published a 
study of 1360 cadaver donor transplants comparing 4-year graft survival in never- 
transfused patients and those who had over 20 pretransplant transfusions. The 
results showed that graft survival was 30% in those who never received transfusions 
as compared to over 65% in those who received transfusions, suggesting that prior 
exposure to donor histocompatibility, antigens enhanced graft survival [74]. As a 
result of this study, utilization of fRBCs began their steady decline. The demand for 
fRBCs also declined after the discovery of the human immunodeficiency virus 
(HIV) in 1983. By 1992, 9621 cases of acquired immunodeficiency syndrome 
attributed to blood transfusions were identified, and it was not until 1985 when a 
screening process for HIV was created. Since the cryopreserved blood was not 
tested for HIV, fear of transmission has curtailed their use [75].

Regarding rare blood use, with the advent of longer liquid RBC storage, the 
Dutch Red Cross now averages transfusing 30 units per year. Even the American 
Red Cross Rare Donor Registry decreased their inventory size from 18,000 to 9800 
between 1981 and 1990 [55].

In the wake of the terrorist attack on the World Trade Center in New York City, 
New York, and the Pentagon in Arlington, Virginia, a total of 2800 people were killed 
and 4000 were injured. Despite the New York Blood Center having between 18,000 
and 22,000  units available and the Washington DC metropolitan area having 
12,000 units available during that time, only a mere 258 units of RBCs were trans-
fused [63]. A few hours after the attacks, the Red Cross ceased distribution of blood 
from its regional centers, forcing local hospitals to look elsewhere for blood. Around 
the same time, the National Institutes of Health opened up their blood bank, and 
ceased collections within 24 h due to adequate filling of its inventory. In addition, 
blood donors were lining up outside of local donation centers to contribute to the 
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blood supply inventory. With no evidence of blood shortage, the Red Cross did not 
cease donations for weeks, with their justification being the creation of a “National 
Blood Reserve” of a 7- to 10-day supply of liquid RBCs followed by fRBCs, resulting 
in collection of 287,000 extra units of blood [53]. The Red Cross purchased 70 
Haemonetics ACP 215 machines, only to find out that many of the extra units of blood 
were preserved in additive solutions that were not licensed to be used with the 
machine. Only 9500 of the planned 100,000 units were frozen, and many of the extra 
units were sold or given away as they neared their expiration date. In total, almost 
600,000 extra units of blood were collected with over 300,000 units destroyed. Due to 
the high wastage of donated blood, the state of New York experienced a decrease in 
the number of donors due to their perception that their donated blood was wasted [53].

A task force composed of the Blood Centers of America, the American Hospital 
Association, the Centers for Disease Control and Prevention, the US Department of 
Defense, the DHS, the FDA, the ABC, and the ARC formed the Interorganizational 
Task Force on Domestic Disasters and Acts of Terrorism to address three lessons 
learned from 9/11:

 1. There must be control of excess collections to prevent waste of donated blood 
units.

 2. Facilities should maintain adequate inventories to prepare for “disasters at all 
times in all locations.”

 3. All blood centers should have a 7-day supply of RBCs at all times [53].

Significantly less than half of the hospitals and blood centers have a 7-day supply 
of RBCs. If a disastrous event was to deplete of the entire blood supply in a com-
munity, it would take 2–3  days to screen and process freshly donated blood for 
transfusion, whereas fRBCs can be thawed in less than an hour. If each blood center 
had a frozen blood bank as an adjunct to a disaster preparedness plan, a solid and 
dependable supply could supplement the need in times of surge and decrease waste 
by having the ability to freeze RBCs.

 Conclusion

Frozen RBCs have demonstrated benefits over liquid RBCs with improved bio-
markers, less infection, and most importantly, a very long shelf-life. Frozen RBCs 
remain an important solution for disaster scenarios, for austere conditions, and for 
patients with rare blood types.
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 Introduction

In austere battlefield conditions and remote civilian locations, trauma-associated 
uncontrolled hemorrhage and acute coagulopathy remain one of the leading causes 
of mortality [1–6]. In such scenarios, transfusion of whole blood and blood compo-
nents (e.g., RBCs, platelets, and plasma), as per Damage Control Resuscitation 
(DCR) guidelines, can significantly reduce trauma-associated morbidities and mor-
talities [7–9]. However, the limited availability and portability, special storage 
requirements, and high contamination risks of these blood products present severe 
logistical challenges that preclude facile, ubiquitous pre-hospital application in mil-
itary and civilian scenarios, for either immediate (e.g., point-of-injury or en route) 
or prolonged field (e.g., extended, in place) care at the point-of-injury [10–17]. A 
robust volume of research is currently being dedicated toward resolving these issues 
and enhancing the availability and applicability of donor-derived blood products in 
the field [18–21]. In parallel, enabled by transformative advances in the areas of 
synthetic chemistry, biomaterials, and nanofabrication, an exciting area of research 
has emerged that focuses on the development and evaluation of semisynthetic or 
synthetic “bioinspired” surrogates of blood products that can be manufactured at 
large scale (i.e., sufficient availability); can be sterilized without compromising bio-
function, and stored as small volume deliverables over long periods of time across 
broad ambient temperature ranges and environmental conditions (i.e., easy storage 
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and portability); can be easily reconstituted and administered “on demand” in far-
forward scenarios (i.e., pre-hospital applicability); can potentially avoid the need 
for type matching (universal application with minimal immunogenic risk); can cir-
culate safely upon intravascular administration without systemic risks; and can 
mimic, leverage, and amplify endogenous mechanisms of blood component func-
tion to mitigate the effects of traumatic exsanguinating hemorrhage [22–24]. This 
field of research has developed in the areas of functionally mimicking blood’s cel-
lular as well as non-cellular components and continues to focus on resolving trans-
lational challenges with regard to biocompatibility, safety, pre-hospital availability, 
and universal applicability.

The research endeavors on preserving and transporting donor-derived blood 
started during World War I, and blood transfusions became widely available by 
World War II. Based on this advance, multiple blood banks were established in the 
USA from the 1950s onward, and blood donation was promoted as a form of civic 
responsibility. Subsequent development of processes and methodologies for isola-
tion and storage of various blood components has significantly enhanced utilization 
of whole blood and its components. Currently, transfusions of whole blood as well 
as various isolated components are clinically approved for application in civilian 
and battlefield trauma (e.g., in Damage Control Resuscitation), surgical settings 
(e.g., transplants), chronic and acute anemias, and disease-associated, drug-induced, 
or congenital bleeding disorders [25–32]. RBC transfusion is clinically significant 
in efficient mitigation of hemorrhagic shock, as part of the Massive Transfusion 
Protocol (MTP) in hypoperfused patients with critically limited oxygen delivery 
[33–37]. It has also been demonstrated that pre-hospital use of RBC transfusion (if 
available) can significantly improve survival in critically injured subjects [38, 39]. 
Such transfusions are dependent on donor-derived RBC products (e.g., packed Red 
Blood Cell or pRBC). However, according to the Red Cross, only ~40% of US 
population is eligible to donate blood at any given time, and only 10–15% actually 
donate. In addition, blood-based products have formally limited shelf-life due to 
accrual of processing and storage-related damage as well as risks of pathogenic 
contamination. Currently, RBCs have a maximum shelf-life of 42 days, while plate-
let suspensions have a shelf-life of 5 days, at room temperature [40]. Also, RBCs 
(and platelets) develop storage lesions over time, which affect their stability, in vivo 
circulation lifetime, and post-transfusion physiology [41, 42]. Significant research 
is underway to enhance the shelf-life of blood products by cold storage, freezing, 
lyophilization, etc. and to develop pathogen reduction technologies like psoralen-
based or riboflavin-based UV irradiation, as well as extensive serological testing of 
donor blood, leukoreduction, and specialized storage protocols [13, 19, 31, 43–48]. 
Nevertheless, portability of blood products, especially to remote battlefield and 
civilian locations, especially for pre-hospital point-of-care use, continues to be a 
major logistical challenge [14, 17, 49].

Such challenges can be potentially addressed by bioinspired engineering of 
semisynthetic or synthetic surrogates of blood components [22, 50, 51]. In fact, 
major interest in such synthetic surrogates developed during the HIV crisis of the 
1980s due to fear of contaminated blood products, and this research has been 
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ongoing, with several designs and products that have progressed through pre-clini-
cal and clinical evaluations. However, currently no such product is clinically 
approved by the FDA for human applications in the USA, although certain products 
have been approved for human use in South Africa and, under special circum-
stances, dispensed for compassionate use provision in the USA and Europe. Of 
note, a 2008 meta-analysis of 16 clinical trials of 5 different HBOCs indicated 
increased risk of both myocardial infarction and death in subjects who received 
such products [52]. Although this report raised significant concern with regard to 
the clinical safety and utility of these particular HBOCs, the design of this analysis 
has been debated and, importantly, this work has directed significant re-emphasis to 
better understanding the pros and cons of these products at fundamental physiologi-
cal and mechanistic levels. To this end, the current categorization of such products 
has shifted from “blood substitutes” to “oxygenation therapeutics” so as to empha-
size the important role of such products in scenarios where donor-derived RBCs 
may not be sufficiently available (e.g., far-forward military setting) as well as for 
niche scenarios, such as ex vivo perfusion of transplantable organs. In this frame-
work, we will focus on reviewing “hemoglobin-based oxygen carriers” (HBOCs), 
comprehensively discussing relevant designs, current state-of-art and novel mole-
cules in development, along with emphasizing criteria for successes and 
challenges.

 Hemoglobin (Hb) Function in RBCs for Oxygen Transport

In blood, the primary function of RBCs is the transport of oxygen (O2) and to some 
extent carbon dioxide (CO2) to and from tissues, by virtue of binding of the gases to 
hemoglobin (Hb) within RBCs. The average amount of Hb in adult human RBCs 
(mean corpuscular hemoglobin, or MCH) is 27–31 picograms per cell (~250 million 
Hb molecules). Hb is a tetrameric protein comprised by two α- and two β-polypeptide 
chains, each bearing an iron-containing heme prosthetic group that is capable of 
reversibly binding one oxygen molecule (O2). Figure  11.1a shows a multi-scale 
representation of an RBC, Hb within an RBC, and the chemical structure of an iron-
containing “heme” group within Hb. The O2-binding kinetics to Hb is positively 
cooperative, such that a small variation in oxygen partial pressure (pO2) as blood 
transits from lung to tissue (Fig. 11.1b) results in a large change in oxygen that is 
captured (in lung) and then released (in tissue) by Hb as exhibited by the classic 
sigmoidal shape of the O2-binding equilibrium curve (OEC, Fig. 11.1c) [53, 54]. 
O2-carrying iron in Hb is in its reduced “ferrous” (Fe2+) state. Approximately 10% 
of the O2 molecules release as superoxide, generating methemoglobin (MetHb), in 
which the iron is oxidized to the “ferric” state (Fe3+) and rendered unable to bind 
oxygen [55]—this process is accelerated in the setting of increased O2 delivery and/
or during other conditions characterized by oxidative stress. Due to this reason, in 
RBCs, Hb oxygenation/deoxygenation cycling is closely coupled to RBC energet-
ics and anti-oxidant systems (e.g., driven by enzyme NAD-cytochrome b5 reduc-
tase), such that the Fe2+-containing Hb is maintained in its O2-binding state. Failure 
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to reverse MetHb formation not only diminishes oxygen-carrying capacity, but the 
cooperativity is also impaired, leading to increased O2 affinity for remaining ferrous 
hemes (in “partial met” tetramers), and this also leads to dysregulated vascular tone 
and inflammatory reactions. Furthermore, Hb in RBCs have the unique capability to 
undergo conformational changes to allow O2 saturation (loading) in the lungs 
(higher O2 affinity) and then O2 release in tissue (lower O2 affinity). This reversible 
conformational regulation of O2-binding affinity of Hb is aided by allosteric effector 
molecules like 2,3-diphosphoglycerate (2,3-DPG), which forms in RBCs as a gly-
colytic intermediate. Therefore, maintaining such oxygen-carrying thermodynamic 
and kinetic characteristics of Hb is one of the important and challenging design 
considerations in the context of developing a “bioinspired” Hb-based RBC 
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Fig. 11.1 (a) Multi-scale representation of RBCs and Hemoglobin (Hb), showing a scanning 
electron micrograph (SEM) image of RBC depicting the biconcave discoid structure, along with 
sequential schematic of RBC structure, Hb structure, and “Heme” structure; (b) shows a schematic 
of RBC movement between lung (oxygen loading site) and tissue (oxygen off-loading site), while 
(c) shows corresponding oxygen equilibrium curve (OEC) characteristics of Hb. (From 2017 
Military Supplement: Hemoglobin-based Oxygen Carriers Current State-of-the-Art and Novel 
Molecules, Anirban Gupta, Shock Injury, Inflammation and Sepsis, Oct 3, 2018, Publish Ahead of 
Print, Figs. 1–4, with permission of Wolters Kluwer Health, Inc.)
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surrogate [56]. In this context, an essential factor is to maintain the intraerythrocytic 
physicochemical milieu of Hb, since outside of the protective RBC environment 
(i.e., in plasma, which fundamentally differs from that in RBCs with regard to pH, 
redox potential, key ion/small molecule abundance, etc.), the Hb tetramer is prone 
to rapidly oxidize and disassemble into its dimeric and monomeric protein units, 
which in turn results in rapid clearance from circulation into extravascular space and 
kidneys. This results in reduced circulation residence time and increased risk of 
nephrotoxicity. Extraerythrocytic Hb is also devoid of oxygen affinity regulatory 
effectors, such as 2,3-DPG, as well as protective anti-oxidant enzymes and reducing 
equivalents. As a result, free Hb in plasma exhibits dysregulated tissue oxygenation 
capacity compared to RBC-encapsulated Hb and is also prone to rapid MetHb 
accrual (without reversal systems available in RBCs), thereby degrading its oxygen 
transport ability. Unencapsulated Hb is also a potent nitric oxide (NO) scavenger, 
which is produced by endothelial cells as a principle effector molecule to achieve 
vasodilation in response to multiple physiologic reflexes that optimize tissue perfu-
sion; notably, this pathologic Hb-NO interaction has been implicated in hyperten-
sive and (paradoxical) perfusion-limiting side effects of unencapsulated Hb. Hence, 
providing efficient tissue oxygenation while maintaining reasonable circulation 
lifetime, minimizing hypertensive side effects, and avoiding Hb-induced toxicity 
are the three prominent design requirements for HBOCs. The following sections 
review and discuss the various design approaches that attempt to address these 
requirements.

 Hb-Based Oxygen Carrier (HBOC) Systems

HBOCs are semisynthetic systems that utilize biologically generated Hb as the 
oxygen-carrying component and are formulated either as chemically modified cell-
free suspensions or conjugated and cross-linked with polymers along with protec-
tive enzymes or encapsulated within microparticulate or nanoparticulate vehicles 
[51, 57]. The Hb used in these systems is usually derived from outdated human or 
bovine RBCs or from recombinant sources [57–63]. In the case of outdated human 
or bovine RBCs, the Hb is isolated via cell lysis, purified by sterile filtration and 
chromatographic techniques, and sterilized (e.g., by low heat) [64]. Using cell-free 
Hb presents the advantage of minimum antigenicity and improved oxygen diffusiv-
ity, due to the lack of interference by cell membrane. In fact, reported in the early 
twentieth century, suspension of cell-free Hb in lactated Ringer’s solution was used 
to intravenously treat 15 patients; however, a large number of them developed renal 
toxicity and cardiovascular complications [64]. Similar results were also found in 
the 1950s when US Navy treated several patients with cell-free Hb [65]. Cell-free 
Hb was also found to have a very short circulatory residence time because the Hb 
tetramer rapidly dissociates into dimeric and monomeric forms that can bind non-
specifically to plasma proteins or are captured by scavenging proteins devoted to 
this purpose (haptoglobin, hemopexin) and thus undergo rapid clearance by the 
reticulo-endothelial system (RES) into spleen and liver, as well as renal clearance 
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into kidneys, leading to Hb-induced toxicities in these organs [66, 67]. Additionally, 
cell-free Hb and its dissociated derivatives can also extravasate into the subendothe-
lial domain of the circulatory system and rapidly sequester nitric oxide (NO), result-
ing in its conversion into nitrate (dioxygenation reaction) and of oxy-Hb to MetHb 
[68]. NO is an essential endogenous vasodilator (e.g., endothelial-derived relaxant 
factor) and therefore such NO scavenging results in vasoconstriction and cardiovas-
cular complications, paradoxically, thereby diminishing tissue O2 delivery. 
Furthermore, 2,3-DPG absence in plasma (as well as lack of Bohr and Haldane-
based OEC “shifting,” which is enabled in “intact” RBCs) leads to unnaturally high 
cell-free Hb oxygen affinity, limiting O2 off-loading across physiologic O2 gradi-
ents—further diminishing tissue O2 delivery. Cell-free Hb can also change blood 
osmolarity, leading to alteration of blood volumes and associated side effects. 
Altogether, for these reasons, cell-free human Hb appears problematic for in vivo 
oxygen-carrying applications. Instead of human Hb, studies have also been con-
ducted with bovine Hb, but this also presents similar issues of stability, extravasa-
tion, NO scavenging, and renal clearance and toxicity. Historically, an innovative 
approach to address some of these issues was by development of “designer” recom-
binant Hb (e.g., in E. coli) where targeted mutations decrease the likelihood of tet-
ramer dissociation, optimize heme redox behavior, and modulate propensity for NO 
consumption, but an optimal combination of mutations that results in free-Hb per-
formance similar to that observed for intraerythrocytic Hb remains elusive [69–
71]. Recombinant technologies are also prohibitively expensive, in comparison to 
human or bovine sourcing for Hb. Therefore, a substantial volume of research has 
been directed to achieve in  vivo stabilization and performance optimization via 
chemical modification of purified Hb utilizing techniques (alone or in combina-
tion) such as cross-linking, polymerization, and macromeric surface conjugations. 
The goals of these modifications are to reduce Hb dissociation, extravasation, and 
renal clearance, while maintaining reasonable circulation lifetime and O2-transport 
capacities.

 Chemically Modified HBOCs

Hb tetramers can be cross-linked both intra- and intermolecularly. For example, 
intramolecular cross-linking in human Hb formed between its two α-subunits using 
acylation with bis-(3,5 dibromosalicyl)-fumarate (also known as Diaspirin) led to a 
product called HemAssist from Baxter, USA [57, 72, 73]. This product showed an 
increase in circulation residence time up to 12 h compared to <6 h for unmodified 
Hb, but in human trials, cross-linked Hb unfortunately led to a 72% increase in 
mortality compared to saline, and clinical trials were discontinued [74]. An analo-
gous approach to cross-link the α-subunits of recombinant Hb using Glycine led to 
a product called Optro from Somatogen, USA, but this also resulted in increased 
risks of cardiac arrest and mortality [75–77]. Instead of site-specific intramolecu-
lar cross-linking only, polymerized Hb has also been created from using bifunc-
tional cross-linking reagents like glutaraldehyde-based cross-linking of bovine 
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Hb (e.g., Hemopure originally from Biopure, USA, now HbO2 Therapeutics, USA) 
or human Hb (e.g., PolyHeme from Northfield Labs, USA) and o-raffinose-based 
cross-linking of human Hb (e.g., the product HemoLink from Hemosol, Canada) 
[78, 79]. Such polymeric cross-linking creates higher-molecular-weight cell-free 
Hb that retains “simple” oxygen-binding properties (physiologic OEC shifting is 
not retained) while minimizing dissociation and rapid clearance observed for 
unmodified Hb tetramers, when free in plasma. One challenge in these approaches 
is to precisely control polymer molecular weight and geometry, and rigorous purifi-
cation steps are necessary to ensure product quality. PolyHeme was reported to 
progress into Phase III clinical trials in the USA in treating trauma-associated blood 
loss and showed a decreased need of natural blood transfusions [77]. Clinical trials 
with HemoPure also showed a reduced need of additional blood transfusions in 
cardiac surgery [80]. HemoPure has received clinical approval in South Africa and 
Russia for acutely anemic human patients and is occasionally used on a compas-
sionate basis in the USA. An analogous product from the same company (HbO2 
Therapeutics, USA) called Oxyglobin is currently approved in the USA for veteri-
nary use, but has not gained widespread acceptance. HemoLink also advanced to 
Phase III clinical trials but was discontinued in 2003 when patients receiving treat-
ment experienced adverse cardiac events. In fact, as noted in the meta-analysis 
which led to FDA stopping clinical trials for this HBOC class, all of these products 
in their clinical studies have shown various degrees of transient hypertension, organ 
damage through microvascular constriction and dysfunction, gastro-intestinal dis-
tress, nephrotoxicity, neurotoxicity, and increased mortality [52, 80–82].

Instead of intramolecular cross-linking and intermolecular polymerization, Hb 
modification has also been carried out with macromeric bioconjugation to increase 
stability and vascular residence time while reducing immune recognition [83–85]. 
Important examples of this approach are found in polyethylene glycol (PEG) modi-
fication (e.g., the products Hemospan from Sangart Inc., USA, and PEG-Hb from 
Enzon, USA) and poly(oxyethylene) modification of pyridoxylated cross-linked Hb 
(e.g., the product PHP from Apex Bioscience, USA). PEG-ylated Hb products have 
undergone extensive clinical trials, and the studies showed risks of bradycardia and 
elevation of hepatic pancreatic enzymes even at low doses [86]. Nonetheless, the 
Phase I and Phase II clinical trials showed that Hemospan was well tolerated in 
humans for efficient oxygen delivery, and Phase III trials in orthopedic surgery 
patients were carried out in Europe [87]. The trials suggested that the risk of cardio-
vascular and renal dysfunction still persisted with such chemically modified Hb 
products. During the past two decades, it has been identified that cell-free Hb 
(including chemically modified versions) are potent scavengers of nitric oxide (NO) 
via rapid irreversible binding (rate constant ~107 M−1 s−1), which in turn can affect 
systemic and pulmonary vascular tone, resulting in vasoconstriction, hypertension, 
and lowering of cardiac output [88, 89]. A resolution of this issue has been attempted 
by (NO pre-loading) Hb modifications, such as S-nitrosylation of cysteine residues 
in the β-subunits of Hb; however, this approach is critically constrained by natural 
limits imposed by simple stoichiometry [90]. Of note, RBCs contain anti-oxidant 
enzymes, such as catalase (CAT) and superoxide dismutase (SOD) that mitigate 
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oxidative stress arising from Hb-generated superoxide. In an interesting approach, 
these enzymes have been cross-linked to polymerized Hb to form PolyHb-SOD-
CAT, which has shown combined advantages of long circulation time and reduced 
oxidative damage [91, 92]. Another interesting approach is to incorporate regula-
tory molecules such as 2,3-DPG and methemoglobin reductase along with Hb in 
appropriate HBOC systems, to prevent hemoglobin oxidation [93]. In recent years, 
a product named HemoTech has been reported that uses purified bovine Hb cross-
linked intramolecularly with ATP and intermolecularly with adenosine, and conju-
gated with reduced glutathione (GSH) [94]. This unique design employs 
pharmacologically active molecules (ATP, adenosine, and GSH) as the chemical 
modifiers, in that ATP is intended to regulate vascular tone through purinergic 
receptors, adenosine is intended to counteract the Hb-based vasoconstriction via 
stimulating adenosine receptors, and GSH is intended to protect heme from NO and 
various reactive oxygen species. Pre-clinical and early-phase clinical studies have 
shown that HemoTech works as an effective oxygen carrier in treating blood loss, 
anemia, and ischemic vascular conditions, and further studies are warranted [95]. 
Another polymeric Hb reported in recent years is OxyVita®, which is produced 
through modification of a zero-linked polymerization mechanism using carbodi-
imide chemistry on bovine tetramer hemoglobin to produce “super-polymeric” 
macromolecules [96]. In yet another recent approach, a polynitroxylated PEG-
ylated hemoglobin (PNPH) nanostructure design has been reported, named 
VitalHeme™ (SynZyme Technologies LLC, Irvine, CA), where PEG-ylated hemo-
globin is covalently modified with catalytic-caged NO [97]. These designs report-
edly allow for higher Hb stability in  vivo and are currently under pre-clinical 
investigation. Figure 11.2 shows some of the prominent designs based on chemical 
modification of cell-free Hb that have undergone (or are still undergoing) pre-
clinical and clinical evaluation for oxygen transport. In spite of promising pre-
clinical results, many of the chemically modified Hb products have been withdrawn 
from clinical studies and discontinued in production, due to indication of clinical 
risks stemming from chemical heterogeneity and variable stability of final product, 
suboptimal vascular residence time, non-ideal oxygen loading and off-loading capa-
bilities, rapid irreversible conversion to methemoglobin, and increased cardiovascu-
lar and renal dysfunction issues. While some of the newer products are refining their 
design and processing to address these issues, a “next-generation” approach has 
focused on Hb encapsulation within various micro- and nanocarrier vehicles, to 
more closely mimic the physiological encapsulated state of Hb in RBCs.

 Encapsulated HBOC Systems

During the past two decades, particulate drug delivery platform technologies (mic-
roparticles and nanoparticles) have revolutionized the packaging and delivery of 
pharmaceutical compounds, by encapsulating active compounds/biologics to pro-
tect them from plasma-induced effects, increase their circulation time, and allow 
sustained availability to cells, tissues, and organs. This design concept has also been 
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adapted to create HBOCs that encapsulate Hb within suitable particulate vehicles. 
In fact, the pioneering concept and demonstration of “bio-artificial cells” was pre-
sented as early as the 1950s and 1960s by Chang and colleagues, by encapsulating 
Hb as well as other proteins and enzymes within polymeric membrane-based 
microvesicles. The membrane material originally used was collodion (cellulose 
nitrate) and later changed to biodegradable polyethylene glycol-polylactide (PEG-
PLA) [98, 99]. These Hb-loaded microvesicles, aptly termed “hemoglobin 

Fig. 11.2 Representative approaches and design schematics for HBOCs based on chemical modi-
fication (cross-linking, surface modification, polymerization, etc.) of Hb that have undergone sig-
nificant pre-clinical and clinical evaluation. (From 2017 Military Supplement: Hemoglobin-based 
Oxygen Carriers Current State-of-the-Art and Novel Molecules, Anirban Gupta, Shock Injury, 
Inflammation and Sepsis, Oct 3, 2018, Publish Ahead of Print, Figs.  1–4, with permission of 
Wolters Kluwer Health, Inc.)
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corpuscles,” showed oxygen equilibrium curves similar to RBCs and also allowed 
coencapsulation and activity of RBC-relevant enzymes like 2,3-diphosphoglycerate 
(2,3-DPG), carbonic anhydrase, and CAT [100–102]. However, in these systems, a 
major challenge was posed by the rapid macrophagic uptake and clearance of these 
micrometer-sized vesicles from circulation, resulting in suboptimal circulation resi-
dence time for in vivo use. Reducing the diameter to ~1 micron only marginally 
improved the circulation lifetime, and a significant research effort has been directed 
toward further improving the vascular residence time by modifying the surface of 
the vesicles with lipids and polysaccharides. In another similar design approach, 
Djordjevich et al. reported on encapsulation of Hb in micron and submicron size 
lipid vesicles (liposome-encapsulated Hb or LEH), with membrane made of phos-
pholipids and cholesterol [103–105]. A number of variations of this design have 
followed, e.g., “neohemocytes,” “TRM-645 Neo Red Cells,” etc., where the primary 
focus has been to maintain uniform Hb-encapsulation levels and uniform size distri-
bution of the vesicles, minimize vesicle destabilization or fusion over time, and 
enhance storage stability of the vesicles while maintaining the RBC-analogous oxy-
gen transport properties of the encapsulated Hb [106–108]. During the 1990s, the 
“Stealth Liposome” technology was clinically established, where lipid nanovesicles 
(100–200  nm in diameter) were surface-functionalized with polyethylene glycol 
(PEG) to enhance storage stability, reduce opsonization, and prevent rapid macro-
phagic uptake, and this significantly enhanced the circulation residence time [109, 
110]. Consequently, this technology was adapted to form Hb-encapsulated PEG-
ylated liposomal vesicles (HbV) [111–113]. 1,2-Dioctadecadienoyl-sn-glycero-3-
phosphatidylcholine (DODPC) was used as the major membrane phospholipid for 
HbV preparation, such that γ-irradiation-induced radiolysis of water molecules in 
the vesicles generated hydroxy (-OH) radicals that promoted intermolecular polym-
erization of dienoyl groups to produce highly stable liposomes that could withstand 
freeze-thawing, freeze-drying, and rehydration processes. The HbV design has 
shown substantial improvement of circulation lifetime (~60 h in some animal mod-
els), and several refinements of this design have been recently reported [114–118]. 
The oxygen transport ability of these HbV systems was found to be similar to natu-
ral RBCs, with comparable oxygen saturation and release kinetics. Also, the liposo-
mal encapsulation of Hb attenuated its NO scavenging effect and thereby appears to 
reduce the associated negative effects on vasculature. Hb encapsulation in liposo-
mal vesicles also prevented glomerular clearance of Hb (since liposomes are too big 
for renal clearance) and therefore reduced nephrotoxicity. The current optimized 
HbV product contains about 30,000 Hb molecules encapsulated within one PEG-
ylated liposomal vesicle of ~250 nm in diameter. In comparison, a natural RBC is 
~7 μ in diameter and ~2 μ in thickness, containing about 250 million Hb molecules. 
HbVs have undergone extensive pre-clinical evaluation in suitable animal models 
for potential use as an RBC surrogate in transfusion and resuscitative mitigation of 
massive hemorrhagic shock and hemodilution incidents, and oxygenation of isch-
emic as well as transplanted tissues and organs. Although these studies have shown 
promise of HbVs as RBC surrogate oxygen carrier, these systems still present issues 
of broad size distribution of the vesicles, variation in Hb-encapsulation efficiencies, 
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as well as variable pharmacokinetics and complement-mediated immune response 
in  vivo. Further research is currently directed toward resolving these issues for 
potential clinical translation of HbV designs as well as other analogous designs of 
liposome-encapsulated hemoglobin (LEH) systems as RBC surrogates (114–118). 
Interestingly, instead of encapsulating Hb, others have attempted to encapsulate 
oxygen (O2) directly within phospholipid microvesicles (2–4 μm in diameter) to 
deliver O2 to deoxygenated RBCs in circulation [119, 120]. Although these oxygen-
loaded microbubbles were found to be stable for a few weeks in storage with only 
small extent of oxygen loss, in vivo they were found to have a very short circulation 
lifetime (<1 h). Therefore, treatment with these systems would require multiple dos-
ing, which may prompt negative effects of dysregulated oxidative stress and associ-
ated toxicity and immune response. Therefore, long-term safety profile of such 
technologies needs to be rigorously evaluated.

Encapsulation of Hb has also been studied in other microparticle and nanoparti-
cle systems other than lipid vesicles. In pioneering work by Chang et al., Hb was 
encapsulated within polymeric nanoparticles (80–200 nm in diameter) made from 
PEG-PLA and analogous block-copolymers [121, 122]. These polymeric nanopar-
ticles allow oxygen transport kinetics of Hb at levels similar to natural RBCs, and 
the polymeric material could be engineered to be biocompatible and biodegradable. 
Furthermore, enzymes that maintain the redox environment for Hb stability and 
function regulation (e.g., carbonic anhydrase, CAT, SOD, MetHb reductase, etc.) 
could also be encapsulated within the same nanoparticles toward further mimicry of 
“natural” RBCs [123]. This design approach has also been adopted for other poly-
mer systems including poly(ε-caprolactone)/poly(L-lactic acid) (PCL/PLA) copo-
lymers, poly(L-lysine) (PLL), poly(lactic-co-glycolic acid) (PLGA)/PEG 
copolymers, etc. [124, 125]. Amphiphilic block-copolymer systems also provide 
the ideal building blocks for designing polymer vesicles, otherwise known as poly-
mersomes, analogous to liposomes. These polymersome systems have been recently 
utilized to create polymersome-encapsulated Hb (PEH) systems [126]. Hb loading 
in these PEH systems is reportedly 1–2 mg/mL, compared to human blood (i.e., 
within RBC) concentration of ~150 mg/mL. Utilization of hollow fiber-based mem-
brane extrusion system has provided an automated way to manufacture these PEH 
systems [127]. These PEH systems are reportedly capable of encapsulating both 
bovine and human Hb, and have shown oxygen equilibrium kinetics and other bio-
physical parameters similar to RBCs. This suggests considerable promise toward 
the application of such PEH systems as RBC surrogates, but currently very limited 
in vivo evaluation data is available for these systems. A potential issue with poly-
mersome systems may be their higher shell thickness compared to liposomes, which 
may increase oxygen diffusion time beyond the (low millisecond) time window 
required for physiologic gas exchange during circulatory transit. Modulation of 
polymer molecular weight of the shell components, and therefore of the shell thick-
ness, can provide a unique way to influence oxygen flux properties of PEH systems. 
Higher stability of polymersomes compared to liposomes, both in storage and 
in vivo, is an additional advantage for use as Hb-encapsulated RBC surrogate sys-
tems. Ongoing and future studies with these systems should be directed toward 
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establishment of batch-to-batch consistency, sterilization metric and storage stabil-
ity evaluation, post-sterilization Hb bioactivity determination, in vivo pharmacoki-
netics and biodistribution determination, and therapeutic evaluation in appropriate 
animal models (e.g., hemorrhagic shock, ischemia, etc.). Figure 11.3 shows some 
representative designs and components for encapsulated Hb systems that have 
undergone and are currently still undergoing in  vitro and in  vivo evaluation for 
RBC-mimetic oxygen carrier application.

Fig. 11.3 Representative approaches and design schematics for HBOCs based on encapsulation 
of Hb in microparticle and nanoparticle systems that have undergone significant pre-clinical evalu-
ation and hold clinical promise. (From 2017 Military Supplement: Hemoglobin-based Oxygen 
Carriers Current State-of-the-Art and Novel Molecules, Anirban Gupta, Shock Injury, Inflammation 
and Sepsis, Oct 3, 2018, Publish Ahead of Print, Figs. 1–4, with permission of Wolters Kluwer 
Health, Inc.)
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 Novel Molecules and Designs Incorporating Hb as O2 Carrier

The focus of this section is to not distinguish between “chemically modified” and 
“encapsulated” Hb systems, but rather describe and review emerging novel 
designs and technologies that incorporate Hb for oxygen transport purposes. In 
one interesting approach, instead of Hb, PEG-ylation was carried out on bovine 
carboxyhemoglobin (CO-Hb), and the resultant PEG-CO-Hb system has been 
evaluated for oxygen transport (and CO transport) properties [128–130]. The 
rationale behind this design is that endogenous CO produced from (hypoxia-
enhanced) heme-oxygenase activity is reported to render cytoprotective and 
homeostatic effects, such as inhibition of apoptosis and inflammation and reduc-
tion of oxidative stress and vasodilatory activity [131]. The PEG-CO-Hb product 
(Sanguinate, Prolong Pharmaceuticals, South Plainfield, New Jersey, USA) has 
undergone pre-clinical evaluation in small animal models, and is now in Phase I/
II clinical trials for sickle cell anemia, thrombotic thrombocytopenic purpura 
(TTP), and ischemia after subarachnoid hemorrhage, with promising safety pro-
file and oxygenation parameters. In another approach, core-shell cluster structures 
were formed by conjugating human serum albumin (HSA) on Hb using Hb sur-
face lysines conjugated to HSA cysteine-34 using α-succinimidyl-ε-maleimide 
cross-linker [132]. These Hb-HSA clusters reported lower risk of rapid clearance 
and extravasation and thus improve circulation residence time. Further modifica-
tion of these Hb-HSA core-shell nanoclusters was recently reported in which anti-
oxidant enzymes and platinum nanoparticles were embedded in HSA pockets for 
Hb protection [133]. Thus far, this nanocluster design has been evaluated only 
in vitro, for oxygen-binding capacity, redox properties, and stability, with promis-
ing results. However, rigorous in vivo pharmacokinetics, toxicology, biodistribu-
tion, and oxygenation studies, along with demonstrating batch-to-batch 
compositional and functional consistency, are needed to establish in vivo utility. 
In another approach, Hb has been loaded in microparticles by coprecipitation with 
calcium carbonate (CaCO3), followed by glutaraldehyde cross-linking and CaCO3 
dissolution, resulting in Hb payload density approaching that of RBCs [134]. 
However, although these Hb microparticles demonstrate oxygen equilibrium 
kinetics similar to free Hb (affinity too high for O2 release under physiologic con-
ditions), the circulation lifetime is significantly extended, compared to free Hb. 
Analogous Hb microparticles carrying about 80% Hb content compared to RBCs 
have been reported where Hb and MnCO3 were coprecipitated, immediately fol-
lowed by human serum albumin addition for encapsulation and stabilization of the 
particles [135]. These particles have shown reduced risks of NO scavenging and 
associated effect on vasoconstriction. In yet another recent approach, Hb was 
covalently conjugated directly to the hydrophobic or hydrophilic domain of block-
copolymers, and the resultant conjugates were self-assembled to form Hb-loaded 
micelles [136, 137]. In another interesting design, MnCO3 nanoparticles were 
used as templates to deposit layer-by-layer (L-B-L) assemblies of Hb and dialde-
hyde heparin (DHP), followed by cross-linking to stabilize the layers and selec-
tive dissolution of the template core [138]. A similar approach was also used to 
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form L-B-L-coated nanotubes where alternate layers of Hb, DHP, and the enzyme 
CAT were deposited, to create systems for potential application in treating oxida-
tive stress [139]. These complex nanostructures have been characterized in vitro 
for their morphology, stability, cytotoxicity, and in some cases biofunctionality, 
but pre-clinical evaluation for oxygen carrying efficacy in vivo is not yet reported. 
Another recent exciting development in the area of novel HBOC molecules is the 
utilization of large-molecular-weight extracellular Hb isolated from marine inver-
tebrates like polychaete annelid (e.g., the product HEMOXYCarrier from 
Hemarina, France) [140]. Pre-clinical studies with this unique Hb molecule have 
shown reduced microvascular vasoconstriction and no significant impact on mean 
arterial blood pressure, compared to other HBOCs that utilize bovine or human 
Hb [139]. Further investigation of this system is currently ongoing to evaluate its 
potential as a clinical oxygen carrier therapeutic system.

In recent years, some Hb-encapsulation approaches have also focused on adapt-
ing the physico-mechanical properties of natural RBCs that significantly influence 
their biological functions. Healthy RBCs have a biconcave discoid morphology, 
with a diameter of ~8 μm and a thickness of ~2 μm. These RBCs are also highly 
flexible (Young’s modulus 0.1–0.2 kPa) that enables them to change their morphol-
ogy when passing through microvascular circulation [141, 142]. The mechanical 
integrity and viscoelastic nature of RBCs during their cyclical deformation is ren-
dered by a two-dimensional spectrin network that exhibits context-variable stiff-
ness and tethering to the cytosolic membrane surface. Oxygen loading results in 
RBCs having significantly more deformability than oxygen unloading, and this 
enables the flexibility RBCs require to efficiently transit the microvasculature. 
RBC size, shape, and flexibility also influence their movement and distribution in 
the blood flow field, where they mostly reside in the center of the parabolic flow 
field in mid to large vessels, while in small vessels and capillaries, RBCs distribute 
throughout for efficient oxygen exchange [143, 144]. These considerations have 
recently led to biomaterials-based mimicry of RBC’s physical (size, shape, and 
flexibility) attributes into Hb-encapsulating synthetic constructs. For example, 
polyelectrolyte-driven layer-by-layer assembly has been used to create micropar-
ticles that mimic the shape and deformability of natural RBCs [145]. In this 
approach, Hb and BSA were electrostatically deposited on the surface of discoid 
PLGA particles of ~7 μm diameter and 400 nm shell thickness, and then the PLGA 
core was selectively dissolved to yield RBC-shaped Hb-loaded particles that have 
high elastic deformation. Similar RBC-mimetic flexible particles have been fabri-
cated using PEG hydrogel system in a stop-flow-lithography (SFL) approach 
where the mechanical properties of resultant particles could be controlled by mod-
ulating cross-linking density of the hydrogel systems [146]. In a different approach, 
RBC shape-mimetic particles were fabricated from acrylate hydrogels using a 
“particle replication in non-wetting templates” (PRINT®) technology [147]. These 
particles were made in 2–3 μm molds, such that, upon hydration, the particles 
swelled to disks with ~6 μm diameter and ~1.5 μm thickness. Also, the meniscus 
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effect from the molds resulted in the particles being thinner in the middle and 
thicker at the edges, resembling the biconcave morphology of RBCs. RBC mor-
phology and flexibility mimicking particle designs made through these two tech-
niques have demonstrated in  vitro elastic deformation capabilities sufficient for 
transport through narrow channels, and controllable circulation lifetime in vivo, 
depending on their elastic modulus. Although these particles have been reported to 
be capable of Hb encapsulation via physical trapping or covalent bonding, detailed 
oxygen transport capabilities and associated in vivo transfusion applications have 
not been reported. In another interesting approach, liposome-encapsulated actin-
hemoglobin (LEAcHb) constructs were prepared using a polymerized actin core, 
to mimic morphology of natural RBCs [148]. Although these particles were much 
smaller (~140 nm) than RBCs, the biconcave shape along with the mechanical sup-
port of the membrane improved the half-life to ~72 h. In natural RBCs, the nega-
tive surface charge electrostatically prevents RBC aggregation over a distance of 
20  nm, and this rationale has led to some research in mimicking RBC-relevant 
surface charge on Hb-encapsulating PEG-PLA nanoparticles (<200 nm in diame-
ter) using cetyltrimethylammonium bromide (CTAB) or anionic sodium dodecyl 
sulfate (SDS) surfactants [149]. Of note, cationized particles were found to have a 
half-life of ~11 h (8-fold higher than untreated particles), while the anionized par-
ticles were quickly eliminated, giving a half-life of <1 h. In yet another particularly 
innovative approach, a biosynthetic artificial RBC (ErythroMer) has been devel-
oped following a formal “bioinspired” design principles and is reported to closely 
emulate RBC physiology, particularly under physiologic stress by preserving 
cooperative O2 binding/dissociation and by linking O2 affinity to biochemical cues 
of aerobic sufficiency, while inhibiting methemoglobin (metHb) accumulation and 
NO sequestration [150]. Importantly, this design is crafted to enable sterile, lyophi-
lized storage suitable for rapid reconstitution even in remote/austere environments. 
Moreover, due to unique shell properties, this polymeric particle is expected to be 
immuno-silent, with limited complement activation or other immune-related reac-
tions. ErythroMer is based upon a novel amphiphilic polymeric system that 
employs polyethylene imine (PEI) grafted to palmitic acid that self-assembles to 
form payload-bearing toroidal-shaped nanoparticles (termed nanobialys, ~200 nm 
diameter) that encapsulate Hb, as well as maintain both physiologic, context-
responsive O2 affinity and a reductive environment to retard the rate of metHb 
accrual by coencapsulation of the synthetic allosteric inhibitor RSR-13 and leuko-
methylene blue [150]. These novel Hb-containing particles, termed, have shown 
promising oxygen transport in vivo in rodent models of hemorrhagic shock/resus-
citation and near-complete exchange transfusion. Detailed biocompatibility stud-
ies (e.g., for PEI which can pose cytotoxicity issues), circulation lifetime and 
stability, Hb-loading capacity and oxygen transport capabilities, etc. must be fur-
ther evaluated to establish the clinical potential of such designs as RBC surrogates 
in transfusion medicine. Figure  11.4 shows design schematics of these novel 
emerging designs and structures for Hb-based oxygen carriers.
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 Current State-of-Art and Future Perspectives

In traumatic injuries and hemorrhage, tissue oxygenation is severely compromised, 
resulting in drastic, progressive damage to vital tissues and organs. Therefore, rapid 
hemorrhage control and restoration of tissue oxygen are critical to optimizing out-
comes. To this end, timely transfusion of whole blood or balanced ratio administra-
tion of blood components (RBCs, platelets, and plasma) has become the current 
clinical standard. However, these blood products currently present significant logis-
tical challenges with regard to widespread usage in austere battlefield and pre-
hospital settings, where trauma- and hemorrhage-related morbidities and mortalities 
become significant, particularly in the context of prolonged field care scenarios. 
One potential solution is the bioengineering of semisynthetic or synthetic surrogates 
of blood components that are specifically designed for facile use in this challenging 
environment. In this framework, one important category of technology is that of 
Hb-based oxygen carriers (HBOCs), which provide the oxygen transport properties 
of RBCs while enabling higher availability (via in vitro large-scale manufacture), 

Novel molecules and
designs for HBOCs

Novel molecules and
designs for HBOCs

Product names, Materials and
design approaches

Product names, Materials and
design approaches

HemoTech (HemoBioTech) :
Bovine Hb cross-linked

intramolecularly with ATP,
intermolecularly with adenosine,
and further conjugated with GSH

HEMOXYCarrier (Hemarina) :
Giant extracellular Hb (3600 kDa)

obtained from marine annelid

Core-shell structured protein clusters
of bovine hemoglobin (Hb) and human
serum albumin (HSA) by forming Hb-
HSA via linkage of Hb surface lysines

to HSA cysteine-34 using α-succinimidyl-
ε -maleimide cross-linker

Template-induced layer-by-layer (L-B-
L) assembly of cationic Hb with

anionic polymers like dialdehyde
heparin (DHP), followed by

dissolution of the template core

Conjugation of Hb on the surface of
block copolymer-based core-shell

nanoparticle structures

Erythromer :
Hydrophobic tail conjugated

amphiphilic polyethylene imine
(PEl) molecules self-assemble with
human Hb, DPG and anti- oxidants

in reverse-micelle process
to give nanobialys particle

Mechanobiologic mimicry of RBCs
where Hb is encapsulated within
RBC morphology-mimetic flexible

discoid polymer-based
microparticles formed by

lithographic or template-induced
printing techniques

Hb co-precipitated with CaCO3 or
MnCO3, stabilized by cross-linking

(e.g. with glutaraldehyde) and
further complexed with anionic

proteins like HSA to form nano- or
micro-scale clustered particles

Direct conjugation of Hb on the
hydrophobic block of a block
copolymer and subsequent
micellization of the polymer

molecules to form Hb-encapsulated
micelle nanoparticles

Hb
Hb

HSA

PEG

Fig. 11.4 Representative schematics for novel HBOC molecules and designs, including new 
polymerization strategies, new sources of Hb, and novel encapsulation and biomimetic strategies 
that are currently under development and pre-clinical evaluation. (From 2017 Military Supplement: 
Hemoglobin-based Oxygen Carriers Current State-of-the-Art and Novel Molecules, Anirban 
Gupta, Shock Injury, Inflammation and Sepsis, Oct 3, 2018, Publish Ahead of Print, Figs. 1–4, with 
permission of Wolters Kluwer Health, Inc.)
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universal applicability (no need for blood type matching), reduced contamination 
risks (due to sterilization), and longer shelf-life under ambient conditions (for some 
designs). While a wide variety of approaches have been dedicated to creating 
HBOCs, with some advancing to clinical trials, major risks associated with cell-free 
Hb (e.g., short circulation lifetime, renal clearance and associated toxicity, NO 
scavenging and associated vasoconstrictive/hypertensive side effects, etc.) have led 
to negative clinical outcomes and deep concerns for viability of this therapeutic 
class. As a result, no HBOC has attained FDA approval for human use, although one 
product (HemoPure or HBOC-201) is approved for (restricted) human use in South 
Africa and has been, under special circumstances, dispensed for compassionate use 
provision in the USA and Europe [151]. Other HBOC products (PolyHeme, 
Hemospan, and HemoTech) all advanced to different levels of clinical trials (e.g., 
Phase I for HemoTech, Phase II for Hemospan, and Phase III for PolyHeme); how-
ever, further studies are needed to establish their clinical safety and efficacy profiles. 
In many clinical studies, functional efficacy comparison has been to natural RBC 
transfusion, and, though HBOCs have demonstrated a reduction in the number of 
RBC transfusions, it remains to be answered whether HBOCs are suitable as “RBC 
substitutes” or rather as “oxygen carriers” in scenarios in which natural RBCs are 
either unavailable or undesirable. Future considerations of clinical study design 
should utilize this framework to compare HBOCs to relevant “standard of care” 
(e.g., saline or plasma expanders in pre-hospital trauma) instead of RBCs, to most 
appropriately evaluate real-world comparative risk/benefit in this context. Other 
questions that remain are whether these chemically modified and polymeric HBOC 
designs based on cell-free Hb have adequately addressed issues of NO scavenging 
(associated hypertensive effects) and heme toxicity. Newer HBOC designs, both 
chemically modified cell-free Hb (e.g., HemoTech) and encapsulated Hb (e.g., 
LEH, PEH, ErythroMer etc.), are still undergoing rigorous pre-clinical evaluation to 
elucidate and establish batch-to-batch consistency, mechanism of action, pharmaco-
kinetics and biodistribution, tissue oxygenation capability, and in vivo safety pro-
files. In this framework, it remains to be seen if “encapsulated” Hb designs are 
superior to chemically modified cell-free systems, in terms of allowing coencapsu-
lation of oxygen affinity regulatory and redox environment preserving molecules. It 
is important to note here that such multicomponent design will add manufacturing 
costs and thus the cost–benefit analysis need to be rigorously validated in appropri-
ate pre-clinical models, before clinical studies and translation. Going forward, there 
is a significant need to systematically study cell-free chemically modified polymeric 
Hb designs versus encapsulated Hb designs (with or without effector molecule and 
anti-oxidant enzyme coencapsulation) in a suite of established anatomically and 
physiologically relevant pre-clinical animal model to compare circulation residence 
time, tissue oxygenation efficacy, NO scavenging-associated hypertensive risks and 
heme-associated toxicity, and importantly, suitability for pragmatic field use (both 
acutely and in prolonged field care scenarios).

Regarding Hb sourcing, most designs have utilized either human or bovine Hb, 
although some newer designs have adapted utilization of recombinant Hb where the 
physicochemical and biological properties can be precisely engineered, as well as 
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giant Hb sourced from marine invertebrates with salutary properties. One critical 
aspect regarding Hb sourcing for efficient HBOC design is the regulation of oxygen 
loading/off-loading capacity of the Hb used. For human Hb, this is regulated by 
allosteric effector molecules like 2,3-DPG, which maintains the P50 of human Hb at 
26–28  mm mercury. However, oxygen affinity for cell-free human Hb (i.e., in 
absence of DPG) is much higher (OEC curve shifts to left), and this will lead to 
reduced oxygen release across any given physiologic gradient [152]. In contrast, 
oxygen affinity of bovine Hb is not critically dependent on DPG but rather on chlo-
ride ions, which are present in abundance in all mammals including humans. Bovine 
Hb has also been reported to have higher thermal stability than human Hb during 
isolation and processing [153]. Furthermore, while human Hb is sourced from out-
dated human units, bovine Hb can be obtained from dedicated farms and slaughter-
houses and hence has more availability. Therefore, from availability, processing, 
and oxygen transport regulation standpoint, bovine Hb may provide benefit over 
human Hb and is used for Hemopure (or HBOC-201). However, both human and 
bovine sourcing share risk of infectious transmission, although this risk can be miti-
gated by appropriate processing and novel pathogen reduction technologies. Other 
alternative sources of Hb (recombinant technologies, annelid supramolecular extra-
cellular Hb, etc.) should incorporate isolation and manufacturing costs, as well as 
physicochemical comparison of oxygen loading/off-loading aspects (with respect to 
human Hb), in order to successfully translate the corresponding HBOC designs to 
the clinic. Importantly, HBOCs designed with cell-free non-human Hb should also 
carefully analyze product immunogenicity, compared to encapsulated version of the 
same Hb. Other than Hb-based systems, oxygen carriers based on perfluorocarbons 
(PFCs) and iron (Fe2+)-containing porphyrin systems have also undergone signifi-
cant pre-clinical and limited clinical evaluation, but an ideal oxygen carrier system 
for safe and effective in vivo use from this approach is yet to be realized. It is also 
important to note that the various HBOC systems should not be categorized as “arti-
ficial blood,” but rather as a critical component of such a system. It is now unam-
biguously clear that attention to hemostatic blood components (platelets and plasma) 
is critical to successful resuscitation for hemorrhagic shock, and a significant vol-
ume of research has evolved in the area of platelet surrogates and plasma expanders, 
reviewed elsewhere [23, 24, 154–158]. Exciting advancements have also been 
made in recent years to develop “donor independent” RBCs (and platelets) from 
stem cells, AKA “blood pharming” [159–164]. In continuing evaluation and clini-
cal translation of these technologies, it should be very important to consider and 
resolve manufacturing challenges (e.g., scaling up of complex multicomponent 
designs while maintaining batch-to-batch consistent quality and functional effi-
cacy, etc.) as well as meticulously design pre-clinical studies in physiologically 
relevant animal models and clinical studies where current “standard of care” in the 
specific application is compared. Through such studies, it is envisioned that 
Hb-based oxygen carriers will revolutionize combat casualty care in pre-hospital 
and en route scenarios, as well as allow emergency management of civilian trauma 
in remote locations or when blood products are not immediately or sufficiently 
available.
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12Intravenous Haemostatic Adjuncts

Jez Fabes and Simon Stanworth

 Background and Methods

This chapter will address the use of four intravenous haemostatic agents as part of 
the resuscitative management of patients with major traumatic bleeding. It will 
describe the mechanisms of action and evidence to support the efficacy and safety 
of these agents in acquired bleeding. Although the focus will be on traumatic haem-
orrhage, emergency teams and clinicians are faced with major bleeding in many 
settings beyond trauma, and inevitably questions arise about the broader applicabil-
ity of these agents.

The search methodology for this chapter has been based on search parameters 
undertaken for a Cochrane review [1] and by use of terms to cover all haemostatic 
agents in Medline and the Transfusion evidence library. In brief, the published 
Cochrane review describes a systematic review of  the effectiveness of pro- 
haemostatic agents in acquired bleeding, other than rFVIIa. Searches for recent 
clinical trials of rFVIIa was undertaken by running the searches undertaken by 
prior Cochrane reviews and by reviewing cross-references in identified articles.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20820-2_12&domain=pdf
mailto:jfabes@doctors.org.uk
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 Tranexamic Acid

 Haemostatic Agent Nature and Administration

Tranexamic acid (TXA; Cyklokapron) is a synthetic lysine analogue available as a 
100  mg/mL solution. It now resides on the World Health Organization’s List of 
Essential Medicines [2]. Recognised side effects are reported to include gastrointes-
tinal upset, nausea, allergic reaction, visual disturbance, hypotension with rapid i.v. 
administration and seizures at high doses. Relative contraindications include a his-
tory of previous convulsions, renal failure (dose adjustment required), pregnancy, 
patients at high risk of thrombosis and massive haematuria. There is no evidence of 
teratogenicity in animal studies with the manufacturer recommendation that use in 
pregnancy should only occur if potential benefit outweighs risk. TXA crosses the 
placenta [3].

 Pharmacology and Action

The antifibrinolytic action of TXA is mediated by reversible binding to lysine bind-
ing sites on plasmin and plasminogen and thereby competitively inhibiting binding 
to fibrin. This impairs the ability of plasmin to break down fibrin, inhibiting fibrino-
lysis and thereby maintaining the fibrin meshwork and promoting clot stability. The 
small size of TXA means that distribution is to all body compartments. Clearance is 
predominately through renal excretion of the unchanged drug with a plasma half- 
life of two hours [4].

TXA has approximately eight times the antifibrinolytic efficacy of the older syn-
thetic lysine analogue ε-aminocaproic acid that requires a loading dose followed by 
continuous infusion to maintain therapeutic plasma concentration. As such, the use 
of ε-aminocaproic acid is now reserved for situations where TXA is not immedi-
ately available. The older antifibrinolytic agent aprotinin is no longer recommended 
in the trauma scenario due to a lack of benefit [5] and a consistently negative impact 
on mortality [6].

 Indications, Efficacy and Safety

Hyperfibrinolysis, driven by protein C activation secondary to tissue hypoperfusion 
and injury, is a key component of trauma-induced coagulopathy (TIC) and is associ-
ated with a high mortality [7–10]. The CRASH-2 trial [5] (Clinical Randomisation 
of Antifibrinolytic therapy in Significant Haemorrhage) provides the main evidence 
base for antifibrinolytic intervention in adult blunt and penetrating trauma. This 
randomised controlled trial of over 20,000 trauma patients with, or at risk of, signifi-
cant bleeding allocated patients to clinician-blinded doses of either placebo or 1 g 
TXA over 10 minutes followed by a further placebo or 1 g dose over 8 hours. TXA 
significantly reduced all-cause mortality from 16.0% to 14.5% (relative risk 0.91) 
and haemorrhagic deaths by 0.8% (relative risk 0.85), predominately through an 
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impact on exsanguination on the day of injury in those receiving TXA within 
3 hours of injury [11, 12]. Importantly, administration after 3 hours significantly 
increased the risk of mortality secondary to bleeding (4.4% vs. 3.1% placebo mor-
tality; relative risk 1.44).

While evidence in elective sugery shows that TXA reduces the need for blood trans-
fusion [13], this is not borne out in Cochrane analysis of randomised trials in acute 
trauma [12]. However, the survival benefit of TXA in CRASH-2 may have led to sur-
viving patients receiving blood where equivalent patients in the placebo arm would 
have died and hence not been transfused - eliminating any benefit of TXA on overall 
transfusion. Meta-analysis of 12 studies investigating TXA in orthopaedic trauma sur-
gery showed a reduction in packed red blood cell (PRBC) for transfusion require-
ment  (odds ratio 0.41) and bleeding mass without any increase in symptomatic 
thromboembolism (TE) [14]. Additional data supports the use of TXA in mature civil-
ian trauma systems with a reduction in all-cause mortality and multiorgan failure in 
severely shocked patients, but not those without shock [15]. However, a post- hoc anal-
ysis of CRASH-2 suggests that TXA is of benefit regardless of severity of injury and 
should not be restricted to high risk or major haemorrhage patients [16].

The beneficial effects of TXA appear to be more pronounced the sooner it is 
given after injury, with delivery within an hour providing the greatest mortality 
benefit [11]. Meta-analysis of the CRASH-2 and WOMAN trials of TXA in trauma 
and major obstetric haemorrhage (MOH), respectively, showed that immediate 
TXA administration improved survival by more than 70% with efficacy decreasing 
by 10% for every 15-minute treatment delay until 3 hours, after which there was no 
benefit [17]. Administration of TXA beyond 3 hours after injury appears to be asso-
ciated with an increased risk of harm [11] through fatal haemorrhage, although this 
was a post-hoc subgroup analysis with reduced precision. This has led the UK 
National Clinical Guideline Centre to recommend that empiric administration of 
TXA should be avoided more than 3 hours after injury without evidence of ongoing 
hyperfibrinolysis [18, 19].

Consideration should be given to the provision of TXA in a pre-hospital setting 
to minimise the time to delivery, although at present there is no robust evidence to 
support this approach [20–22]. Prospective data demonstrates that pre-hospital 
administration of TXA has beneficial effects on ROTEM indices of TIC with 
enhanced clot stability and reduced fibrinolysis [23]. TXA may also have a role in 
isolated traumatic brain injury. Prospective data from two randomised controlled 
trials (RCTs) of TXA vs. placebo in isolated traumatic brain injury demonstrates a 
reduction in haemorrhagic progression [24, 25] with a further RCT showing a non-
significant trend towards improved mortality and outcome [26]. Retrospective 
observational data from Japan shows a significant reduction in 28-day mortality 
(10.0% vs. 18.4%) including in a subgroup with primary brain injury (6.0% vs. 
13.2%) where TXA was given within 3 hours of injury [27].

The European guidelines on management of major bleeding and coagulopathy 
following trauma [28, 29] recommend TXA administration as early as possible to 
the trauma patient who is bleeding or at risk of significant haemorrhage (GRADE 1A 
[30]). These guidelines also highlight administration within 3 hours of injury in the 
bleeding trauma patient (Grade 1B) and that consideration should be given to 
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administration of the first dose of TXA en route to hospital (Grade 2C). The UK 
National Clinical Guideline Centre also recommends that TXA may be used in pae-
diatric trauma by extrapolation from the CRASH-2 study and the good safety profile 
of TXA in paediatric patients [18].

TXA is a cheap and readily available intervention with a cost of around £45 [18, 
31] per life year gained. However, Europe-wide audit [32] of trauma practice in 
2015 showed that only 66% of centres are using tranexamic acid frequently; future 
audits will hopefully demonstrate an increase in uptake.

 Dosing
Pharmacokinetic modelling of TXA levels in high injury severity patients receiving 
a single 1 g dose of TXA demonstrates that concentrations are likely to fall to a 
subtherapeutic level without additional dosing or infusion [33]. The European 
guidelines recommend a loading dose of 1 g infused over 10 minutes, followed by 
an i.v. infusion of 1 g over 8 hours [28, 29]. However, there is no efficacy or phar-
macokinetic data supporting this dose, and higher doses are used in other settings, 
such as cardiac and orthopaedic surgery. Paediatric dosing uses the adult protocol 
for children over 12 years of age; younger children should receive 15 mg/kg (to a 
maximum of 1 g) followed by an infusion of 2 mg/kg per hour for 8 hours or until 
the bleeding stops, whichever is longer [34, 35].

 Safety
The safety profile of TXA in trauma is good, with no evidence for an increased risk of 
venous thromboembolic events [12, 17, 36] and a reduction in the rate of arterial 
events [5]. High doses of TXA are a recognised precipitant for convulsive events in a 
dose-dependent manner although total TXA doses around 100 mg/kg may be required 
[37]. In the CRASH-2 cohort, however, there were not reported seizure events.

While hyperfibrinolysis is uncontrovertibly damaging, ineffective fibrinolysis 
has been suggested by some researchers to be harmful with evidence of a nadir in 
mortality with measures of fibrinolysis at 30 minutes between 0.81% and 2.9% [38, 
39]. There is a reported concern regarding harm in patients receiving TXA without 
evidence of hyperfibrinolysis through fibrinolysis shutdown (LY30 below 0.8%). A 
retrospective review of trauma cases showed that those with fibrinolysis shutdown 
were more likely to have received TXA or cryoprecipitate [40]. The risk-benefit 
profile of TXA may be enhanced in the future through rapid viscoelastic testing 
(VET) markers of fibrinolysis such as measures of functional fibrinogen [41]. 
However, current recommendations are that provision of TXA in the context of 
haemorrhagic TIC should not be delayed to obtain VET-based evidence of hyperfi-
brinolysis [42].

 Future Studies

The prospective Cal-PAT study assessing the feasibility of pre-hospital TXA admin-
istration to  trauma patients with evidence of haemorrhagic shock has released 
interim data. This  shows a significant reduction in blood product usage, a trend 
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towards lower 24-hour mortality (3.9% vs. 7.2%) without any increase in adverse 
events [43]. The ongoing PATCH study of pre-hospital TXA will also give further 
insight into this area [44].

The CRASH-3 study, [45] an international, randomised, placebo-controlled 
trial  that has now completed recruitment, will assess the impact of early TXA 
administration on death and disability in isolated traumatic brain injury (TBI) 
patients. This will complement the ongoing study into pre-hospital TXA in moder-
ate-to-severe TBI [46].

Further insight in this area may be derived from the ongoing ULTRA study [47] 
of the efficacy of TXA in preventing aneurysm rebleeding in non-traumatic sub-
arachnoid haemorrhage and the recently analysed TICH-2 trial [48] of TXA in 
spontaneous intracerebral haemorrhage.

 Fibrinogen Concentrate and Cryoprecipitate

 Haemostatic Agent Nature and Administration

Fibrinogen concentrate (FgC; Fibryga, RiaSTAP) is provided in variable pathogen- 
inactivated doses around 1 g per vial in powdered form for i.v. use once reconsti-
tuted. Fibryga should be administered within 4  hours of reconstitution, while 
RiaSTAP contains human albumin and should be administered within 8 hours of 
reconstitution. FgC is derived from pooled human plasma and demonstrates compa-
rable pharmacokinetics to native fibrinogen with a half-life of 80 hours (70 hours in 
paediatric patients).

Cryoprecipitated AHF (antihaemophilic factor), commonly known as cryopre-
cipitate, is derived from separating the cold-insoluble protein fraction from fresh 
frozen plasma (FFP) by centrifugation and constitutes a subset of clotting proteins 
present in a single unit of whole blood. This 5–20 mL volume can be frozen and 
stored for up to 1 year prior to use. A single unit of cryoprecipitate contains 150–
250 mg fibrinogen, 100–150 units of vWF, fibronectin, 80 units of factor VIII and 
50–75 units of factor XIII. Pooled cryoprecipitate, as used clinically, contains the 
cryoprecipitate from 5 to 10 units of FFP. Cryoprecipitate requires 10–30 minutes 
to thaw and should be administered through a standard transfusion filter within 
4 hours. Blood group compatibility (but not Rhesus type) is preferred.

 Indications, Efficacy and Safety

Fibrinogen, clotting factor 1, is the final common substrate in the clotting pathway 
and is enzymatically converted by thrombin to fibrin. Fibrin promotes clot stability 
and platelet activation through GPIIb/IIIa activation and also functions as antithrom-
bin I, thereby regulating clot proliferation. Fibrinogen is distributed solely to the 
vascular compartment without any systemic reserve; hence, the 8–10 g of fibrinogen 
in the pre-morbid patient is very sensitive to haemorrhagic losses, consumption and 
dilution. Protein C activation is a key component of TIC and leads to significant 
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hypofibrinogenaemia [49, 50] such that fibrinogen deficiency is the commonest and 
earliest-detected clotting factor abnormality in TIC. Additionally, the physiological 
environment of trauma with haemodilution, acidosis, hyperfibrinolysis and hypo-
thermia compound the situation through impaired fibrinogen function [51, 52].

Hypofibrinogenaemia, variably defined but typically as less than 1.5 or 2 g/L 
[53], is present in 25–70% of patients with haemorrhagic shock [49], more severe 
injuries and anaemia [54] and is associated with greater transfusion requirement 
[55] and worse outcomes [49, 53, 56, 57]. While it is clear that fibrinogen replace-
ment in hypofibrinogenaemic coagulopathy improves outcomes [49, 56, 58, 59], 
prior to the availability of clotting results the initial approach to management of TIC 
and bleeding is contentious [60, 61]. The source of fibrinogen in initial resuscitation 
may be provided through either fibrinogen concentrate, FFP (which contains 
approximately 2 g/L fibrinogen), or cryoprecipitate.

While FFP administration maintains fibrinogen concentrations, it will not correct 
hypofibrinogenaemia [62] without infusion of around 30 mL/kg [63] and may worsen 
coagulopathy [50, 64, 65] and outcomes [61] with associated multiorgan failure [66, 
67]. Because of these issues, FgC and cryoprecipitate have been assessed as alterna-
tive sources of fibrinogen. The choice between FgC or cryoprecipitate for fibrinogen 
supplementation is not clear with systematic reviews demonstrating no significant 
difference in outcomes [68, 69]. There is broad heterogeneity in institutional practice 
with cryoprecipitate [70], which is currently the leading source of fibrinogen in the 
UK, in contrast to the rest of Europe where FgC is more prevalent [71]. A key limita-
tion of cryoprecipitate is delay in administration of typically 2 or more hours, by 
which time mortality may be 50% [72]. However, the CRYOSTAT study demon-
strated that with appropriate infrastructure it is possible to administer cryoprecipitate 
within 90 minutes and generate fibrinogen levels above 1.8 g/L. [73]

Fibrinogen concentrate has the advantage of more rapid availability due to easy 
reconstitution and the lack of need for blood group matching as well as a smaller 
administration volume and hence lower risk of TRALI and TACO than FFP. FiiRST, 
a prospective study of FgC in haemorrhagic shock secondary to trauma, has shown 
the feasibility of administration within one hour of admission with no evidence of an 
increase in complications [74]. The early-fibrinogen in trauma (E-FIT) study will 
shortly report on the feasibility of providing FgC within 45 minutes of admission and 
maintenance of fibrinogen levels above 2 g/L in the face of ongoing bleeding across 
multiple UK trauma centres. While retrospective data of FgC administration  in 
trauma shows a likely impact on survival, especially in patients with a higher injury 
severity score [75, 76], systematic reviews of FgC in surgery [77], trauma [78, 79] or 
haemorrhage [80] have not found any mortality benefit so firm conclusions cannot be 
drawn as yet. Similarly, while FgC in comparison to FFP [61] or cryoprecipitate [69] 
in broader haemorrhage settings demonstrates clinical efficacy, direct prospective 
comparisons are required.

Two grams of fibrinogen rather than high-dose FFP is appropriate in significant 
haemorrhage while clotting results are pending [81]. This is sufficient to maintain 
fibrinogen levels in the face of dilution by an initial transfusion of four units of 
PRBC. Clotting factor-only approaches to the management of TIC with FgC and/or 
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prothrombin complex concentrate (PCC) show clinical and viscoelastic testing 
(VET) efficacy with reduced transfusion requirement and mortality [82, 83]. 
Consequently, some national guidelines [84, 85] now support FgC as the primary 
intervention for fibrinogen replacement although the European guidelines [28] for 
the initial resuscitation of coagulopathy still support an FFP:RBC ratio of 1:2 or 
greater (Grade 1B evidence). Initial resuscitation based on admission Hb level is 
also likely to be of value [28] (Grade 1C) with consideration of a threshold of 10 g/L 
for intervention [54]. At present, robust, prospective data supporting either FFP- 
based strategies or direct fibrinogen supplementation is lacking [86]. The choice of 
the form of fibrinogen administered to patients will be dependent on local guide-
lines, institutional practice, product availability, clinician preference and expertise. 
Health economics are also likely to play a role as per gram of fibrinogen FgC is four 
times the cost of cryoprecipitate ($1140 vs. approximately $414) [87].

Where FgC or cryoprecipitate is administered, a point of care (POC)-based tar-
geted approach to transfusion should be implemented. VET-guided fibrinogen sub-
stitution permits a reduction in blood product exposure and treatment cost without 
impairment of clinical outcomes [81, 88, 89]. Furthermore, POC- or VET-guided 
administration of FgC and PCC, without the use of FFP, may lead to a  reduced 
requirement for PRBC and platelet transfusion with good clinical outcomes [59, 
89]. Similar findings have been demonstrated in a range of perioperative settings 
with a 90% reduction in FFP usage and a reduction in the incidence of massive 
transfusion [90].

 Fibrinogen Dose
The critical threshold of hypofibrinogenaemia is not clear, although the significant 
increase in risk profile around 2 g/L [53, 91] may represent a sensible supplementa-
tion threshold. Numerous approaches to fibrinogen supplementation dosing have 
been proposed, but no method is currently validated [92]. Hence, patients with 
haemorrhage and evidence of hypofibrinogenaemia (plasma fibrinogen below 2 g/L 
or ROTEM MCF below 7 mm [93]) should receive supplementation with repeat 
POC testing to titrate further intervention. While the PT and APTT are rarely 
deranged in hypofibrinogenaemia [94] and Clauss [95] assays have long turnaround 
times, FIBTEM [93, 96] and functional fibrinogen [97] assays are effective at iden-
tifying hypofibrinogenaemic coagulopathy and can be used to guide therapy. The 
initial dose of 3–4 g FgC or 15–20 units of cryoprecipitate recommended by the 
European guidelines on management of major bleeding and coagulopathy [28] 
would be expected to increase the plasma fibrinogen level by 1.5–2 g/L and the 
ROTEM MCF by 6–8 mm [90].

 Safety
Overall FgC appears safe without a significant increase in the incidence of TE [98]. 
Recorded adverse reactions are non-specific and include fever, erythema, pruritus, 
musculoskeletal weakness and vomiting. Hypersensitivity reactions are recognised, 
however, and are a contraindication to use. As a human plasma product there is an 
inherent risk of transmission of viral and prion (i.e. creutzfeldt-jakob disease (CJD)) 

12 Intravenous Haemostatic Adjuncts



230

diseases, although with pathogen inactivation during preparation this risk is low. 
Safety data regarding fibrinogen infusion in a range of settings is being addressed 
by an upcoming Cochrane review of the efficacy and safety of prohaemostatic 
agents [1].

The risk of infectious transmission with a single unit of cryoprecipitate is equiva-
lent to that of a unit of FFP or PRBCs; however, the pooling of cryoprecipitate from 
multiple sources means the risk per ‘pool’ is that of all constituent units summated. 
While this risk is very low, with a single case in the UK to date, progress in patho-
gen inactivation techniques may reduce this risk further [99]. Hypersensitivity reac-
tions are recognised, and these are likely to be comparable in frequency and severity 
to those seen with FFP. The fractionated nature of cryoprecipitate results in a lower 
alloantibody count and therefore a lower risk of haemolytic transfusion reaction 
than FFP which can be reduced further with group matching.

 Future Studies

The Pilot Randomized trial of Fibrinogen in Trauma Haemorrhage (PRooF-iTH) 
study is currently enrolling and will report on the efficacy and safety of first-line 
treatment with fibrinogen concentrate in trauma haemorrhage [100].

The Fibrinogen Concentrate in Trauma Patients, Presumed to Bleed (FI in TIC) 
study has completed recruitment and will provide RCT evidence comparing pre- 
hospital FgC to placebo in trauma [101].

The ongoing FEISTY trial is assessing the feasibility and efficacy of fibrinogen 
supplementation using VET-guided administration of FgC or cryoprecipitate [102].

CRYOSTAT-2 is currently recruiting to assess the impact of high-dose cryopre-
cipitate in the initial resuscitation of major traumatic haemorrhage [103].

 Prothrombin Complex Concentrate

 Haemostatic Agent Nature and Administration

Four-factor prothrombin complex concentrate (PCC; Beriplex, Octaplex, Kcentra) 
is derived from donor-pooled human plasma and contains human albumin, human 
antithrombin III and heparin. All formulations are reconstituted from lyophilised 
powder and infused slowly at room temperature.

Four-factor PCC contains significant levels of vitamin K-dependent clotting fac-
tors (II, VII, IX, X) and protein C and S. The composition of each 500 unit vial of 
PCC depends on the manufacturer and should be checked prior to administration, 
but typically contains:

• Factor II: 550 units
• Factor VII: 350 units
• Factor IX: 500 units

J. Fabes and S. Stanworth



231

• Factor X: 750 units (NB Octaplex 500 units)
• Protein C: 550 units
• Protein S: 450 units

Of note, mass spectrometric analysis of Kcentra demonstrated 92 plasma pro-
teins not included on the product insert, any number of which may contribute to the 
action of PCC in TIC and other settings [104]. Interestingly, in this analysis, Factor 
VII concentrations were very low (less than 1% that of prothrombin) highlighting 
the batch variability of this complex.

 Indications, Efficacy and Safety

The role of PCC may prove to be limited outside of vitamin K antagonist (VKA)-
related coagulopathy as thrombin generation is generally well maintained during 
trauma [105]. Furthermore, as clot instability is the major issue in TIC, platelets and 
fibrinogen are likely to be paramount in importance [106, 107]. However, PCC is 
likely to be an important part of concentrate-based approaches to TIC management, 
especially where there is evidence of delayed onset of thrombin generation.

PCC provides rapid factor replacement within a small administration volume and 
is indicated in patients with VKA-acquired coagulopathy, VKA-associated bleeding 
and urgent reversal of VKAs. There is very little evidence regarding the use of PCC 
outside the context of emergency reversal of VKA and potentially novel oral antico-
agulants (NOACs), although it is licensed in most European countries for the man-
agement of acquired coagulopathy. Reversal of VKA-associated coagulopathy can 
be achieved within minutes [108, 109] compared to a number of hours with 
FFP. PCC can be administered rapidly and is a negligible volume in comparison to 
other transfusion products.

The rapid action of PCC and factor concentrates in enhancing thrombin genera-
tion and clot strength coupled with a minimisation of volume expansion and factor 
dilution might be expected to reverse coagulopathy more quickly than FFP.

Support for this comes from a limited number of retrospective studies assessing the 
empirical management of coagulopathic patients (defined as an INR ≥ 1.5). The addi-
tion of PCC to FFP-based management of TIC led to a reduction in PRBC and FFP 
use, more rapid correction of coagulopathy and a 5% absolute reduction in mortality 
[110]. Similar benefits were seen with the addition of PCC to FFP-based management 
of coagulopathic traumatic brain injury [111] with the additional advantage of shorter 
time to surgical intervention, an effect also seen in emergency general surgery [112]. 
A further retrospective study showed that the use of PCC in high-energy pelvic and 
limb fractures led to more rapid correction of coagulopathy and consequent surgical 
intervention as well as a reduction in PRBC and FFP requirement [113].

PCC is most commonly used as part of a factor concentrate-based manage-
ment approach with fibrinogen and other concentrates, with additive effects on 
VET markers of coagulopathy [114]. A large retrospective database review [59] 
of clotting factor concentrates (FgC and PCC) compared to FFP in TIC showed 
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a comparable mortality, but the concentrate-only approach required significantly 
less PRBC and had an 80% absolute risk reduction for the incidence of multior-
gan failure and shorter ventilation requirement. Similarly, a retrospective analy-
sis [82] of data from the DIA-TRE-TIC study [115] showed that a clotting 
factor-based approach reduced PRBC and platelet exposure with an attendant 
reduction in multiorgan failure (18% vs. 37%) and sepsis compared to FFP-based 
management. A further retrospective study [88] showed TEG-guided concen-
trate-based management led to an avoidance of RBC transfusion in 29% of 
patients in the FgC-PCC group vs. 3% in the FFP group with comparable data for 
platelet transfusion.

The only prospective data regarding PCC use comes from the RETIC trial [116], 
a single-centre open-label RCT in Austria that assessed the impact of VET-guided 
management using clotting factor concentrates vs. FFP in trauma. While the limita-
tions of this study make it difficult to draw conclusions regarding the efficacy of the 
two approaches, PCC was required in 16% of patients in the clotting factor concen-
trate arm compared to 100% of those receiving FFP, demonstrating it may play a 
key role as a component of algorithm- and VET-based strategies.

There is insufficient data available to make firm recommendations on the best 
approach to the management of either initial resuscitation or that following avail-
ability of clotting results  when considering use of PCC.  The current European 
guidelines [28] state that management could include FFP or clotting factors or a 
combination of both and supports the use of PCC in the setting of delayed coagula-
tion initiation as represented by prolonged clot initiation (ROTEM-CT or TEG-R) 
times where fibrinogen levels are normal (Grade 2C).

 Safety
The safety profile of PCC outside emergency reversal of VKAs is unknown [117, 
118], but an association with raised thrombin levels and low antithrombin is recog-
nised [119, 120]. PCC is known to increase subsequent arterial and venous throm-
botic complications [121] and disseminated intravascular coagulation [122], 
suggesting early thromboprophylaxis should be implemented where PCC has been 
used. The use of PCC in reversal of VKA-related coagulopathy has an associated 
TE risk of around 4% [123, 124]. Complications in VKA reversal with PCC are 
lower than for FFP [125] with RCT evidence of fluid overload and similar cardiac 
complications in 12.8% of patients receiving FFP compared to 4.9% of those treated 
with PCC [126]. The use of a potent procoagulant in this patient cohort with a high 
TE risk must be balanced against benefit; dose titration may be achieved through 
VET measures of clot reaction time once fibrinogen is replete although there is 
insufficient data at present to support specific thresholds for VET measures of clot 
initiation time [42].

Hypersensitivity reactions rarely occur and may be severe requiring cessation of 
infusion, while low-grade reactions may respond to a slower rate of infusion. As a 
product of human plasma, transmission of infectious agents is possible despite 
donor testing and pathogen inactivation. A history of heparin-induced thrombocyto-
paenia is a contraindication to use, and prior episodes of disseminated intravascular 
coagulation are a relative contraindication unless bleeding is life-threatening.
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 Recombinant Activated Factor VII

 Haemostatic Agent Nature and Administration

Recombinant activated human factor VII (rFVIIa; eptacog alfa, Novo-Seven) is pro-
duced through recombinant cell lines. It is comparable to the endogenous activated 
clotting factor VII although with a shorter plasma half-life (2 vs. 5 hours).

Physiological levels of the activated serine protease FVIIa, complexed with tis-
sue factor (TF), act through catalysis of the activation of clotting factors IX and X 
in the extrinsic clotting pathway. At supraphysiological levels, it appears that rFVIIa 
functions on the activated platelet surface to enhance factor X activation and throm-
bin generation, independently of TF [127]. As such, deranged levels of substrates or 
cofactors like calcium, factor X, fibrinogen, prothrombin and platelets are likely to 
impair rFVIIa efficacy [128]. The activity of rFVIIa in vitro is very dependent on the 
physiological environment which should be borne in mind regarding its likely clini-
cal efficacy. rFVIIa activity is reduced by 90% and the rFVIIa:TF complex by 60% 
in a pH of 7.0 [129], although rFVIIa appears to be resistant to temperature changes 
with full activity in vitro at 33 °C.

 Indications, Efficacy and Safety

Prospective controlled interventional studies in trauma are challenging to perform 
[130] and as such the majority of evidence for rFVIIa is of low quality. Two parallel 
RCTs [131] assessing rFVIIa efficacy in blunt and penetrating trauma requiring six 
or more units of PRBC within 4 hours have been performed using high rFVIIa doses 
(200, 100 and a further 100 mcg/kg). Both cohorts receiving rFVIIa required less 
PRBC transfusions and were more likely to avoid massive transfusion (above 20 
PRBC units; 14% vs. 33%), although only the blunt trauma cohort reached signifi-
cance. A subgroup analysis of those patients requiring higher FFP doses showed 
that rFVIIa reduced the incidence of MOH and/or ARDS (3% vs. 20%). However, 
no mortality benefit from rFVIIa was found in these studies or the larger follow-up 
RCT [130], although the reduction in PRBC requirement was reproduced in keep-
ing with retrospective studies in traumatic [132–134] and other forms [135] of 
haemorrhage. Additionally, some retrospective studies have identified that, while 
rFVIIa significantly reduces initial haemorrhagic mortality, longer-term mortality is 
unchanged due to multiorgan failure [136, 137]. Additionally, while early studies 
suggested efficacy in isolated traumatic intra-cranial haemorrhage, the literature is 
now inconsistent [138–141] with some evidence of harm and a lack of prospective 
data to support its use [142].

Two meta-analyses [143, 144] and a systematic review [145] of rFVIIa across all 
off-license uses confirmed a lack of mortality benefit despite a reduction in blood 
loss and PRBC transfusion requirement. A trend towards better outcomes was noted 
where rFVIIa was used therapeutically rather than prophylactically and at doses no 
greater than 90 μg/kg. Interestingly, this systematic review also identified a reduc-
tion in the incidence of ARDS in trauma patients treated with rFVIIa (risk 
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difference − 0.05) which may be attributable to the reduction in allogenic blood 
product transfusion required.

In keeping with the physiological sensitivity of rFVIIa, some experts feel that 
only a subset of patients respond to rFVIIa and this may explain the mixed results 
to date and the failure to demonstrate a mortality benefit in heterogeneous trauma 
cohorts. This has been noted in retrospective case reviews [146–149] demonstrating 
that patients with a pH under 7.2, platelet count under 100 × 109/L and systolic 
blood pressure under 90 mmHg at the time of rFVIIa administration have a poor 
response. For maximum efficacy, rFVIIa should therefore be given concurrent to 
efforts to optimise these conditions.

The high cost of rFVIIa at £3,700 in 2007 [150] for a single dose and limited 
evidence base for efficacy mean that guidelines for off-license use in trauma should 
be instituted and administration reserved for where life-threatening haemorrhage 
and coagulopathy have persisted despite all other routine measures. The European 
guidelines support the use of rFVIIa where resuscitation has achieved a platelet 
count above 50 × 109/L, fibrinogen above 1.5–2.0 g/L, haematocrit above 0.24 with 
concomitant administration of antifibrinolytics, correction of acidosis, core body 
temperature and ionised calcium levels along with surgical haemostasis have failed 
[28, 29]. This is supported by prospective multicentre data showing that an rFVIIa 
dose of 100 μg/kg was increasingly effective and led to better survival when a larger 
number of these criteria were met prior to rFVIIa administration [151]. Additional 
indications for use may include life-threatening bleeding where conventional ther-
apy cannot be tolerated, is inappropriate or refused or where no other therapy is 
available.

 Dose
There is significant variability  in the published rFVIIa dose used [150] with no 
assay to determine optimal dose for a given patient or scenario. Expert opinion 
[152] based on data available in 2006 led to the recommendation of an initial dose 
of 200 μg/kg followed by two doses of 100 μg/kg. This formed the basis for the dos-
ing regime in the existing RCTs of rFVIIa in trauma [130, 131] with pharmacoki-
netic modelling data to support the efficacy of this dose [153]. Meta-analysis of 
rFVIIa in major surgical haemorrhage showed that a dose of 50 μg/kg or above was 
required for significant treatment benefit [154]. However, some evidence in trauma 
cohorts supports a lower dose (48 μg/kg vs. 62 μg/kg) of rFVIIa as equally effica-
cious [155] and potential benefit for INR correction with doses as low as 20 μg/kg 
[141]. The best duration of therapy is also unknown and must be determined empiri-
cally by response to therapy, correction of coagulopathy and clinical correlation. 
Higher cumulative doses of rFVIIa in off-label settings associate with a higher inci-
dence of thrombosis [145, 147]; hence the minimum effective dose should be sought 
for any given scenario.

 Safety
The concern regarding arterial and venous TE complications with rFVIIa has been 
present since the expansion in off-license use [156]. A major issue with the current 
evidence base for rFVIIa is the limited range of licensing and hence its predominant 
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use for off-license indications often without clear guidelines or criteria for adminis-
tration [157] and limited coordinated collection of complications. The prospective 
RCTs that have been performed with rFVIIa did not show an increase in the inci-
dence of TE events in trauma [130, 131, 158]. This may be explained by the action 
of rFVIIa predominately in concert with the endogenous coagulation system and 
localisation of activity to those areas with tissue damage and TF expression; hence, 
the risk of systemic thromboembolic events may be minimised.

However, meta-analyses [143, 144] of off-license rFVIIa use demonstrated a trend 
towards increased overall thromboembolic complications with a statistically signifi-
cant increase in arterial events (relative risk 1.45 [143]). Systematic review of off-
license rFVIIa confirmed this increase in arterial events for medium- and high- dose 
rFVIIa [145], with comparable evidence from observational data [147]. One retro-
spective dose-correlation study showed no difference in the incidence of TEs between 
30 and 100 μg/kg doses in a range of coagulopathic bleeding patients [159].

While the evidence for TE events in haemophilia, even at high doses, suggests 
that rFVIIa is safe, this young cohort of patients differs significantly from the patient 
cohort receiving off-license use of rFVIIa who more commonly have TE risk fac-
tors. A review of TEs in RCTs of rFVIIa use in off-license indications also showed 
that arterial events were more common among those greater than 75  years old 
(10.8% vs. 4.1%) [160]. This might explain the lack of increase in TE events in the 
trauma RCTs discussed above as the majority of this patient cohort were young and 
therefore at lower TE risk. The TE risk from rFVIIa is highest in patients with lower 
degrees of coagulopathy, pre-morbid risk factors for TE and those with direct vas-
cular injuries [161].
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Abbreviations

ARDS Acute respiratory distress syndrome
ATLS Advanced Trauma Life Support
DCR Damage control resuscitation
FDA Federal Drug Administration
HES Hydroxyethyl starch
HSD  6% dextran-70 in 7.5% sodium chloride
HTS Hypertonic saline
kDa Kilodaltons
LR Lactated Ringer’s
mEq/L Milli-equivalents per liter
mmHg Millimeters of mercury
mOsm/L Milli-osmoles per liter
MW Molecular weight
NS Normal saline
RBC Red blood cell
TCA  Tricarboxylic acid

 Introduction

Trauma is one of the leading causes of early mortality in the United States in persons 
under 50 years of age [1, 2]. Exsanguination is the leading cause of preventable death 
in this population. Exsanguination accounts for an even larger percentage of traumatic 
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deaths in a battlefield setting than it does in the civilian setting [3, 4]. Trauma surgeons 
have been investigating methods to stem the degree of hemorrhage and to prevent as 
many of these deaths as possible. The concept of an abbreviated initial operation to 
arrest the lethal triad of coagulopathy, metabolic acidosis, and hypothermia was first 
described in 1983 by Stone and colleagues [5]. Since that time, there has been increas-
ing promulgation of operative strategies that aim to temporize traumatic injuries and 
not necessarily provide definitive repair. This operative strategy has been termed 
“damage control surgery” and has been continuously refined based on the care of 
injured warfighters during the last two decades of conflict. Concurrently with the 
refinement of damage control surgery, there has been a parallel refinement in the fluid 
resuscitation known as damage control resuscitation (DCR) [6].

During World War I, battlefield surgeons recognized the importance and utility of 
whole blood in the treatment of acutely injured persons [7]. This practice continued 
through World War II and the Korean War, but it was noted that there was difficulty 
with storing whole blood that leads to significant wastage. Over time the use of 
whole blood was replaced by component therapy as it facilitated storage and mini-
mized waste. As use of component therapy increased, crystalloid fluid use also 
increased for restoration of the circulatory volume. Unfortunately, with the large 
volume of crystalloid therapy there was a concomitant rise in the incidence of acute 
lung injury through an increase in the amount of extra-vascular lung water [8]. This 
recognition and efforts to avoid displacing established clots and avoiding coagulopa-
thy lead to a decrease in the volume of crystalloids used, but crystalloids remained a 
mainstay of trauma resuscitation codified in the Advanced Trauma Life Support 
(ATLS) guidelines prior to the 10th edition. Blood products were used sparingly due 
to concerns with acute transfusion reactions and immune system depression.

Over the last several years there has been a resurgence in the utilization of blood 
products based largely upon the US military experience in Iraq and Afghanistan. 
Studies emerged that elucidated a survival benefit in patients who received a high 
plasma to red blood cell (RBC) transfusion ratio [9, 10] in both military combat and 
civilian trauma populations. This was subsequently studied in the US civilian trauma 
population in the PROPPR randomized controlled trial which demonstrated 
improved hemostasis and decreased death from exsanguination when a transfusion 
ratio of 1:1:1 plasma/platelets/RBCs was given compared to 1:1:2 [11]. This has 
resulted in recommendations for balanced resuscitation with blood products, includ-
ing whole blood transfusions, and more judicious use of crystalloid fluids, during 
the damage control surgery/resuscitation phase of care.

The ideal fluid for use in the DCR setting would be one that provides a reproduc-
ible expansion of the intravascular space, limits interstitial edema, such as in the intes-
tines and lung, aids in the restoration of hemostasis, has little systemic accumulation, 
has minimal side-effects, and is cost-effective. The ideal fluid would enhance the abil-
ity to subsequently close the open abdomen following damage control procedures. 
Post-traumatic complications such as an open abdomen/intra-abdominal hypertension 
(Fig. 13.1) and acute respiratory distress syndrome (Fig. 13.2) add significant morbid-
ity to the patient and increases the cost of care. Unfortunately, no such synthetic fluid 
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Fig. 13.1 An example of 
the sequela of intra- 
abdominal hypertension 
and bowel edema after a 
large volume crystalloid 
and blood product 
resuscitation following an 
abdominal gunshot wound. 
Note the persistent bowel 
dilation and fibrinous 
exudate

Fig. 13.2 Chest x-ray 
with bilateral infiltrates in 
acute respiratory distress 
syndrome that developed 
following a large volume 
crystalloid resuscitation
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currently exists and we are left with a variety of different fluids that may be used in the 
DCR setting. This chapter will review the various types of fluids commonly available 
for use during DCR. Recommendations for the use of blood product transfusions in 
targeted hemostatic resuscitation are covered in other chapters.

 Colloids

Colloids are crystalloid solutions containing a soluble high molecular weight com-
pound. These compounds are usually derived from a carbohydrate- or glycol-based 
polymer but also include albumin (a product of blood fractionation) and gelatins which 
are derived from collagen [12]. The carbohydrate-, glycol-, and gelatin-based colloids 
are synthetic, whereas albumin is a natural purified substance. While colloids are often 
thought of as being uniform, they are actually a diverse class of fluids with different 
physical properties and pharmacokinetics. The molecular weight of the macromolecule 
plays a large part in determining the viscosity of the fluid. Of the colloids, albumin is 
the only one with a fairly uniform molecular size and the synthetic polymers are mix-
tures that are purified to be of a specific mean weight. The colloidal macromolecules 
are dissolved within an electrolyte solution to minimize disruption of the patient’s 
serum electrolytes are generally formulated to be iso- osmolar to serum. The character-
istics of some of the common colloid fluids are found in Table 13.1 [12–14].

The macromolecules are designed to be too large to traverse the glycocalyx and 
generally remain within the vasculature for a period of time. The actual plasma half- 
life of the colloid is dependent upon its molecular weight, route of metabolism, and 
degree of organ dysfunction. The concentration of the colloid in plasma increases the 
oncotic pressure within the vasculature relative to the interstitial and intracellular 
spaces and forces a net movement of water into the vascular space. The higher the 
oncotic pressure generated, the greater the amount of volume expansion.

Table 13.1 Common colloid fluids

Name (product name)
Osmolarity 
(mOsm/L)

Oncotic 
pressure 
(mmHg)

Estimated 
% volume 
expansion

Electrolyte 
composition pH

Albumin, 5% 330 20–29 80 Na 100–145 mEq/L
Cl 100–145 mEq/L

6.7–7.3

Albumin, 25% 330 100–120 200–400 Na 100–145 mEq/L
Cl 100–145 mEq/L

6.7–7.3

6% hydroxyethyl starch 
(MW 670 kDa) in 
lactated Ringer’s 
(Hextend)

273 25–30 100 Na 143 mEq/L
Cl 124 mEq/L
Lactate 28 mEq/L
Ca 5 mEq/L
K 3 mEq/L
Mg 0.9 mEq/L

5.9

6% hydroxyethyl starch 
(MW 600 kDa) in normal 
saline (Hespan)

308 25–30 100 Na 154 mEq/L
Cl 154 mEq/L

5.9

6% Dextran-70 in 
hypertonic saline (7.5%)

2566 75 120 Na 1283 mEq/L
Cl 1283 mEq/L

5.7
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Because the colloid draws in water from the body tissues, it results in a greater 
volume expansion than the actual volume of fluid infused. The decreased fluid 
requirement makes colloids attractive in theory due to mitigation of many of the 
complications associated with large volume infusions. By requiring less fluid vol-
ume per unit of volume expansion and long-term room temperature storage, col-
loids provide logistical benefits. Additionally, the decreased fluid volume weighs 
less, which is an important consideration in austere and prehospital environments 
where there are limitations in how much equipment and supplies can be carried in 
both military and civilian environments.

 Albumin

Albumin is the most abundant protein in plasma and has an average molecular 
weight of 66 kDa. It is made by the liver and physiologically functions to aid in the 
transport of small molecules. It provides a pH buffer, maintains oncotic pressure, 
and aids in the binding and transport of divalent cations. Albumin’s role in maintain-
ing oncotic pressure, and hence circulating blood volume, is the property that makes 
it useful in fluid resuscitation. Albumin is found in the extracellular fluid as well and 
can have increased translocation from the vasculature due to increased vascular 
permeability in the setting of shock. This translocation can contribute to the worsen-
ing of soft tissue edema and organ dysfunction.

Since albumin is derived from donated human blood, it does carry a theoretical 
risk of infectious disease transmission. The blood is screened at the time of donation 
for prior exposure to several different infectious diseases after which the albumin is 
purified by either cold fractionation with ethanol or chromatography and is then 
heat pasteurized. Although the fractionation and pasteurization processes lead to 
significant reductions in viral particles, there remains a theoretical risk for viral and 
prion disease transmission [15]. As a resuscitation fluid, albumin is relatively expen-
sive due to the processing required. It is a stable solution that can be stored at room 
temperature. The purification process also removes the immunogenic elements 
found in whole blood, although allergic reactions, including anaphylaxis, have been 
described.

There have been many studies evaluating the use of albumin in humans, but there 
are a few that are relevant for patients with traumatic hemorrhagic shock and DCR. In 
2004, Finfer and colleagues published the results of the SAFE study which evaluated 
the use of a 4% albumin solution against normal saline for fluid resuscitation of criti-
cally ill patients admitted to the ICU, in a multicenter, randomized, and double-
blinded study. The trial was adequately powered to evaluate the primary endpoint of 
28 day all-cause mortality [16, 17]. There was no difference in the primary or second-
ary endpoints. However, in a subsequent post-hoc subgroup analysis, the SAFE study 
investigators found that traumatically brain injured patients who had been in the albu-
min resuscitation arm had a higher mortality rate at 2 years as compared to those who 
received normal saline as their resuscitative fluid [18]. The investigators attributed this 
to increased intracranial pressure during the first post-injury week [19]. A subsequent 
Cochrane Review in 2013 pooled the data from 24 studies of all types of critically ill 
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patients, yielding 9920 patients, to evaluate the use of albumin for resuscitation. The 
pooled relative risk was reported to be 1.01 (95% CI 0.93–1.10), thus failing to find a 
mortality difference when albumin was compared to a crystalloid solution [20]. Given 
the lack of benefit, as compared to crystalloid solutions, and potential risk of harm in 
traumatic brain injured patients, albumin is not a common first line product for fluid 
resuscitation in patients with life-threatening bleeding requiring DCR.

 Hydroxyethyl Starch

Hydroxyethyl starches (HES) are highly branched glucose-based polymers that are 
derived from amylopectin. Hydroxyethyl groups are synthetically added to the 
hydroxyl groups using ethylene oxide. The addition of multiple hydroxyethyl groups 
stabilizes the starch to degradation and metabolism. The amylopectins can come from 
a variety of plant sources and when purified have a wide range of molecular weights 
due to variations in the polymer length. HES is cleared via renal excretion, and its 
half-life in plasma is dependent upon renal function and tissue deposition.

Animal and clinical studies have been difficult to interpret due to the different 
sizes of starches being studied. Given the significant structural differences between 
the various HES products, findings with one product may not be applicable to all the 
others. Two commercially available formulations, Hextend and Hespan, both use an 
HES mixture with an average molecular weight of 600–670 kDa and are the most 
commonly studied for the use in trauma resuscitation. There is a newer variant of 
HES known as tetrastarch that has a mean molecular weight of 130 kDa. Tetrastarch 
was formulated with the intent of having a shorter half-life than other HES poly-
mers. This product has not been evaluated for use in the trauma resuscitation setting, 
but it has been associated with negative outcomes in septic ICU patients but may 
have less risk for anaphylaxis [12, 21, 22].

As with all colloids, HES produces a volume expansion via an increase in vascu-
lar oncotic pressure. Hextend and Hespan’s ability to expand the circulatory volume 
is similar to that of 5% albumin [12]. Both of these solutions contain 6% HES since 
studies have suggested that HES solutions with concentrations greater than 10% 
high molecular weight HES have increased rates of death, acute kidney injury, and 
need for renal replacement therapy [23]. These risks have led to FDA black box 
warnings on all forms of HES [24, 25]. For many clinicians, HES fluids have long 
raised concerns about anaphylaxis, coagulopathy, and uncontrolled massive hemor-
rhage [26], although these concerns have been largely based upon case reports. 
Olgivie and co-workers attempted to examine the safety, efficacy, and effect on 
coagulation of Hextend with a non-randomized, non-blinded study in 2008. In this 
study, they found that the patients who received Hextend had a lower mortality rate 
and no evidence of coagulopathy or transfusion requirement [26, 27]. The design of 
the study limits the ability to interpret if there is a survival benefit, but the results do 
show that Hextend does not affect PT or PTT in the 500–1500 ml volumes studied. 
Thrombelastography was not used in this study, so we do not know if other aspects 
of hemostasis were affected by Hextend, which has been associated with decreased 
factor VIII and von Willebrand factor when used in higher doses [12, 28]. Given the 
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lack of clear clinical benefit and potential risk of harm with HES, it is difficult to 
recommend its use outside of an austere or logistically challenged environment.

 Dextran

Dextrans are biosynthetic, highly branched, polysaccharides. Similar to HES, dex-
trans can have a wide range of molecular weights, but are purified to specific molec-
ular weights. In the DCR setting, dextran-70 (70 kDa average molecular weight) is 
the most commonly used and studied. As with albumin and HES, dextrans can pro-
vide a significant increase in the intravascular volume relative to the infused volume 
and are primarily excreted in the urine. Dextrans as a class have been associated 
with anaphylaxis, coagulopathy, and renal failure by precipitation in the renal 
tubules. They also impair blood cross-matching by obscuring the RBC surfaces.

There have not been many studies to evaluate the use of dextran in the trauma 
setting due to concerns about coagulopathy. In 1991, Mattox and co-workers evalu-
ated the use of 6% dextran-70 in 7.5% sodium chloride (HSD) in a multicenter trial. 
This study compared the use of 250 ml of the dextran solution vs 250 ml of a crys-
talloid solution prior to standard resuscitation. In this study, they did not note coagu-
lopathy with the doses and volumes used. There was no clear mortality benefit for 
the study cohort overall, but the subgroup that did require an operation demon-
strated a survival benefit. Also importantly, the standard therapy appeared to be 
associated with a higher incidence of acute respiratory distress syndrome (ARDS), 
renal failure, and coagulopathy [29]. This lead to a blinded multicenter randomized 
study of prehospital use of 7.5% hypertonic saline, normal saline, and HSD (ROC 
study). This study was stopped early after a planned safety review for futility and 
patient safety. Patients in the HTS and HTS/dextran arms who did not receive blood 
transfusions in the first 24 hours after injury were found to have a higher mortality 
rate [30]. It was not clear to the study’s authors why there was this effect, but they 
postulated that shock was masked by HTS resuscitation resulting in delayed trans-
fusions. Early mortality was higher in the HTS groups, but later mortality was lower 
leading to no overall difference. Based on these studies, dextran is not recommended 
for DCR.

Given the lack of a robust benefit with the use of colloids in the setting of resus-
citations along with their higher cost, colloid solutions are not recommended as the 
first line fluid for use in DCR. Currently in the US Military Tactical Combat Casualty 
Care (TCCC) Guidelines, Hextend remains a part of the treatment recommenda-
tions, but only if blood products are not available, and remains preferred over crys-
talloids due primarily to prehospital logistics [31].

 Crystalloids

Crystalloids are electrolyte-containing fluids that have been in use for nearly 
200 years. They have been the mainstay of resuscitation prior to the develop-
ment of DCR strategies since crystalloid fluids are widely available and 
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relatively inexpensive. Crystalloids can be broadly classified into two catego-
ries: saline and balanced salt solutions. Saline solutions contain only sodium 
chloride whereas balanced salt solutions are electrolyte solutions that contain 
other cation and anions in addition to the sodium and chloride and generally 
contain a pH buffer. Commonly used balanced salt solutions for resuscitation 
include lactated Ringer’s, Normosol-R, and Plasma-Lyte-A. The composition of 
these commonly used crystalloids is summarized in Table 13.2 [12, 32]. Unlike 
colloids, crystalloids diffuse rapidly out of the vascular space and into the extra-
vascular spaces.

 Saline Solutions

In the resuscitative setting, commonly used concentrations of saline are 0.9%, 3%, 
and 7.5% NaCl. 0.9% NaCl is generally known as normal saline (NS), while the 
latter three concentrations are collectively referred to as hypertonic saline (HTS). 
All saline solutions have a measurable pH in the acidic range (4.5–7.0) due to their 
lack of a buffering component. The low pH is due to the dissolved carbon dioxide in 
the solution and the presence of sodium and chloride ions act to stabilize the disso-
ciation of carbonic acid. Additionally, there is likely leaching of acid from the poly-
vinylchloride (PVC) containers that further drop the pH of saline [33]. When used 
in a maintenance infusion rate and volume, the acidity of saline is readily buffered 
by plasma and generally is of little consequence. However, when saline is adminis-
tered rapidly and in large volumes during DCR, it can both overwhelm and dilute 
the buffering capacity of plasma. Additionally, in the DCR setting, the patient may 
already have developed some degree of acidosis from shock and loss of buffering 
capacity from hemorrhage.

Table 13.2 Common crystalloid fluids

Name 
(product 
name)

Electrolytes (mEq/L)

Buffer
Osmolarity 
(mOsm/L) pHSodium Chloride Potassium Calcium Magnesium

0.9% NaCl 
(normal 
saline)

154 154 0 0 0 None 308 4.5–
7.0

3% NaCl 
(hypertonic 
saline)

513 503 0 0 0 None 1027 4.5–
7.0

7.5% NaCl 
(hypertonic 
saline)

1283 1283 0 0 0 None 2560 4.5–
7.0

Lactated 
Ringer’s

130 109 4 2.7 0 Lactate 
28 mEq/L

273 6.7

Plasma-Lyte 
A and 
Normosol-R

140 98 5 0 3 Acetate 
27 mEq/L
Gluconate 
23 mEq/L

294 7.4
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Isotonic and hypertonic solutions contain significantly higher concentrations of 
chloride anions than is normally present in plasma. With rapid and/or high volume 
infusions, this often leads to a hyperchloremic metabolic acidosis which in turn 
contributes to the acidosis experienced by a patient in shock. This can frequently 
lead to a prolonged over resuscitation when clinicians are working to correct the 
acid-base disorder present during shock. The acidosis may lead to increased vascu-
lar permeability, edema, and development of coagulopathy [34]. The hyperchlore-
mia may also lead to immune dysfunction, decreased glomerular filtration rate, and 
increased risk of acute kidney injury [23, 35]. In an observational study of abdomi-
nal surgery patients, Shaw and co-workers found that patients who received NS (as 
compared to those receiving Plasma-Lyte) on the day of their operation had a sig-
nificantly higher mortality rate and complication rate. In this study, NS was associ-
ated with post-operative infections, need for renal replacement therapy, blood 
transfusions, and electrolyte and acid-base disturbances [36]. The authors postu-
lated that the use of NS leads to increased morbidity and greater resource utilization 
incurring a higher cost of care.

Hypertonic saline solutions have been attractive in resuscitation due the potential 
benefit of increasing a patient’s circulating volume by drawing water from the inter-
stitial tissues into the blood stream via osmotic pressure. This increase in blood 
volume requires a lower infusion volume due to the higher concentration of sodium 
chloride in the HTS solutions. Similar to colloid solutions, this would provide a 
logistical benefit to these solutions by weight and volume reduction. However, due 
to the rapid diffusion of crystalloid out of the vascular space, the volume expansion 
may be much shorter in duration than with colloid-based volume-expanding fluids. 
In general, a decreased infusion volume with HTS still can result in less fluid over-
load and extravascular lung water as compared to NS.

There have also been some animal model studies suggesting that HTS infusion 
has beneficial immunomodulatory effects [37, 38]. Use of 7.5% saline in the pre-
hospital setting was evaluated in the ROC study as mentioned earlier. There was no 
significant benefit observed for patients receiving HTS as compared to those who 
received NS [30]. Another prehospital study of HTS found that prehospital admin-
istration of HTS to brain injured patients did not yield any short- or long-term ben-
efits [39]. HTS does remain useful in acutely controlling intra-cranial hypertension 
but prolonged use may lead to a transient rebound hyponatremia [28]. Due to a 
reduction in fluid resuscitation and the potential to reduce bowel edema, HTS has 
been considered as a therapeutic agent to expedite abdominal closure after damage 
control laparotomy. This is currently being studied in a multicenter trial.

 Balanced Salt Solutions

Balanced salt solutions have a lower osmolarity and a lower chloride concentra-
tion compared to saline solutions and contain other electrolytes in addition to 
sodium and chloride. The lower chloride infusion decreases the likelihood of 
developing hyperchloremia and the complications associated with it. Another 
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common characteristic of balanced salt solutions is that they are buffered with 
lactate or acetate to a pH of 6.5–7.5. The lactate and acetate are eventually 
metabolized via the TCA cycle, but lactate metabolism occurs in the liver and 
kidney while most cells can metabolize acetate. Prior to being metabolized, the 
infused lactate can lead to elevated plasma concentrations of lactate, while theo-
retically concerning, this has not been shown to have any clinical significance. 
However, large volume infusion of buffered fluids can lead to metabolic alkalo-
sis, hypotonicity, or cardiotoxicity, particularly in the setting of impaired hepatic 
metabolism [23]. Lactated Ringer’s (LR) solution contains racemic lactate, and 
the d-enantiomer had been previously shown to be pro-inflammatory in an 
in vitro model by increasing neutrophil activation and leukocyte gene expression 
in a pro-inflammatory pattern [40]. Several clinical studies have found racemic 
LR to be anti-inflammatory in other disease processes such as acute pancreatitis 
[41]. The effects of LR on immunomodulation should be considered when it is 
used as a resuscitative fluid, particularly at faster infusion rates or greater infu-
sion volumes [40, 41].

Two clinical observational studies have shown that, when compared to NS, use 
of a balanced salt solution was associated with a lower incidence of acute kidney 
injury, need for dialysis, and infections [36, 42]. To date there has not been a ran-
domized controlled trial that evaluates saline and balanced salt solutions in a pro-
spective fashion. Use of a calcium-containing balanced salt solution with red blood 
cell transfusions may theoretically lead to clotting due to the chelation of the cal-
cium by citrate used to prevent clotting in the packed red blood cell unit [23, 34]. 
There are no data to suggest that one balanced salt solution is better than others for 
use in DCR.

Both NS and HTS solutions have significant potential downsides for use in the 
DCR setting. Balanced salt solutions appear to have a better benefit-to-risk com-
parison than saline solutions and should be used as the crystalloid fluid of choice for 
DCR. Although balanced salt solutions appear to have a better safety profile, they 
still must be used judiciously, as they result in third spacing and complications asso-
ciated with hypervolemia such as ileus, pulmonary failure, ARDS, intra-cranial 
hypertension, and intra-abdominal hypertension [43–45].

 Summary

A primary goal of DCR is terminating life-threatening hemorrhage and the develop-
ment of coagulopathy and shock. As noted earlier, there is no perfect resuscitation 
fluid as each currently used commercially available fluid has its own set of benefits 
and risks. Neither colloids nor crystalloids directly restore the blood’s ability to clot 
or carry oxygen. Transfusion of blood components or whole blood provides for both 
of these as well as expansion of the circulatory blood volume.

US Tactical Combat Casualty Care revised its guideline in 2014 prioritizing 
resuscitation fluids for life-threatening hemorrhage as follows (in order of most to 
least preferred: whole blood, plasma, RBCs, platelets (in 1:1:1 ratio), plasma or 
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RBCs only, Hextend, and crystalloids (LR or Plasma-Lyte A)). In a non-austere 
environment, a balanced salt solution should be preferred over Hextend or other 
colloids as there is little evidence to suggest differences in outcome, colloids are 
significantly more expensive, and there are no logistical issues that would favor 
colloids.
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 Introduction

Airway care of the patient with life threatening haemorrhage has two fundamen-
tal objectives: to prevent respiratory insufficiency (hypoxaemia or hypercarbia) 
and to facilitate damage control resuscitation interventions. Immediate care must 
ensure a patent airway, protection of the airway and lungs from contamination 
and when necessary, assistance with ventilation. This must be achieved from the 
onset of haemorrhage and may require a range of interventions from basic airway 
manoeuvres to advanced airway procedures. Subsequently, there may be a 
requirement to deliver general anaesthesia to permit invasive haemorrhage con-
trol procedures. In this chapter, we discuss the range of techniques to manage 
both phases of airway care safely and effectively in the presence of life threaten-
ing haemorrhage.

 Airway Care in the Remote Damage Control Resuscitation 
(RDCR) Setting

 Background

Many of the studies of preventable deaths from trauma that highlight the importance 
of haemorrhage control also demonstrate that airway obstruction is a significant 
cause of preventable death in the pre-hospital setting [1, 2]. One extensive review of 
military battlefield trauma deaths concluded that airway obstruction represented the 
second most common category of death due to potentially survivable injury that 
occurred prior to arrival at a medical treatment facility (MTF) [3]. It is therefore 
imperative that providers of care in the pre-hospital environment have the necessary 
skills to recognise and manage airway compromise in the presence of life threaten-
ing haemorrhage.

 Environment

For many patients with life threatening haemorrhage, damage control resuscitation 
will start in the pre-hospital environment (remote damage control resuscitation). 
This environment may be an urban setting with short transport times to sophisti-
cated medical facilities. In many parts of the world, however, pre-hospital care is 
delivered in remote, austere and sometimes dangerous environments. There are 
many challenges associated with delivering remote damage control resuscitation, 
including safe and effective airway care, in such settings. There may be a lack of 
monitoring, equipment, communications, transport and medical supplies. Extended 
evacuation times may necessitate that providers undertake not only the time-critical, 
life-saving, airway interventions but also provide ongoing protection of the airway 
en-route to appropriate medical facilities.
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 Who Provides Care?

Initial airway care of the patient with life threatening haemorrhage is not the exclu-
sive domain of any given medical provider but will fall to whoever has the necessary 
skills to recognise and manage airway compromise. In some health care systems, 
particularly civilian Emergency Medical Services (EMS) and Helicopter Emergency 
Services (HEMS), a small cadre of highly trained paramedical or medical staff can 
be deployed to supplement the basic airway skills of other providers on the few 
occasions when more sophisticated interventions are required. In more hostile, mili-
tary environments, this may not be feasible and so basic healthcare providers may 
need to have a wider range of airway skills appropriate to the casualties they may 
encounter. Military initiatives such as the Tactical Combat Casualty Care (TCCC) 
training program and the Civilian Tactical Emergency Casualty Care (C-TECC) 
program seek to address these problems and emphasise the time-critical nature of 
not only haemorrhage control measures but also airway interventions. Such courses 
and an investment in the overall doctrine necessary to deliver these skills have been 
shown to have a significant impact upon outcomes from trauma. One study of mili-
tary trauma outcomes following the introduction of a TCCC program demonstrated 
a dramatic reduction of preventable deaths on the battlefield [4].

 Airway Care in Life Threatening Haemorrhage

Airway obstruction due to a reduced level of consciousness (due to reduced brain 
perfusion) is a significant risk for patients with life threatening haemorrhage. The 
priority of airway care for such patients is therefore to maintain a patent airway to 
facilitate adequate ventilation and tissue oxygen delivery whilst achieving haemor-
rhage control. Fick’s principle highlights that tissue delivery of oxygen (DO2) is 
proportional to the haemoglobin concentration, oxygen saturation and cardiac out-
put. (Fig. 14.1) A sustained fall in oxygen delivery below a critical point will pre-
cipitate accumulation of lactic acid and an “oxygen debt” which may lead to 
irreversible tissue ischaemia and coagulopathy [5]. Hence key damage control 
resuscitation strategies to ensure adequate tissue oxygen delivery for patients with 
life threatening haemorrhage are to maximise oxygen saturations, retain (and when 
possible, replace) haemoglobin, improve preload and cardiac output with plasma 
and minimise the detrimental effect upon cardiac output of any interventions 
undertaken.

DO2 = 1.34 × Hb X SaO2 × CO

DO2 (oxygen delivery), Hb (haemoglobin concentration), SaO2 (oxygen saturation), CO
(cardiac output)

Fig. 14.1 Oxygen delivery (DO2) 
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 Principles of Safe and Effective Airway Care

 Indications for Intervention

Many patients with life threatening haemorrhage need no immediate airway inter-
vention, either in the pre-hospital setting or upon arrival at a medical treatment 
facility. Whilst basic airway skills can be delivered by providers with relatively 
limited training and experience, there are some patients who will need more sophis-
ticated interventions. The proportion of patients requiring these advanced interven-
tions varies by population studied. One review of 6875 combat casualties arriving at 
Combat Support Hospitals during Operation Iraqi Freedom found that 4.8% had 
undergone advanced airway interventions, delivered by a variety of providers, in the 
pre-hospital phase [6]. In another study of pre-hospital airway interventions in UK 
civilian practice, a significant proportion (57%) of trauma patients who had under-
gone initial airway intervention by EMS personnel still had airway compromise 
(partial airway obstruction or evidence of airway contamination) on arrival of an 
advanced care team and required advanced airway interventions [7]. Thus, provid-
ers of airway care in the pre-hospital environment must be trained not only in basic 
airway skills but also recognition of when more advanced interventions are required. 
Consideration needs to be given of which advanced airway skills and equipment 
will then be used and which providers will be required to deliver them.

 Airway Assessment and Basic Care

All patients with haemorrhagic shock are at risk of developing airway compromise 
and therefore require rapid initial assessment and ongoing observation for impending 
airway compromise. The starting point of all airway care are the traditional methods 
of visual inspection of the airway and associated ventilatory efforts, listening for typi-
cal noises of airway obstruction and when necessary feeling for the movement of air. 
These methods may be more time consuming and inaccurate than generally realised, 
particularly in austere or hostile environments [8]. Monitoring with continuous wave-
form capnography will help assess the net results of airway patency and ventilatory 
effort and is essential if advanced airway interventions are subsequently performed 
[9]. Pulse oximetry will provide information about oxygenation and circulation of 
blood although is often unreliable in the low flow states found in life threatening 
haemorrhage. Providers should avoid overreliance upon such adjunctive monitoring 
and be prepared to make repeated clinical assessments of airway patency, ventilatory 
effort and mentation. A stepwise approach to airway care should be used to ensure that 
simple strategies are the starting point after which an escalation of intervention can be 
employed to achieve a patent airway. Positioning of patients plays a vital role in initial 
airway care. In many settings, providers will want to position the patient in the supine 
position to facilitate airway care, interventions to address life threatening haemor-
rhage and casualty transport, but for many patients this represents a suboptimal posi-
tion. Patients with life threatening obstetric haemorrhage may suffer aorto-caval 
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obstruction when placed in the supine position and so should be managed in a tilted 
position. Patients with life threatening haemoptysis or haematemesis may aspirate 
blood if placed in the supine position. Similarly, patients with soiling of the airway or 
inability to maintain an airway in a supine position may be best managed in the lateral 
position to allow gravity to assist with postural drainage and opening of the airway. 
Many providers are naturally concerned about the potential risk of the lateral position 
for patients with suspected spinal injury, but a systematic review identified no evi-
dence to suggest that placing patients with spinal injury into a lateral position carries 
a risk of neurological deterioration provided appropriate precautions are taken [10]. 
Simple airway opening manoeuvres such as jaw thrust, chin lift or head tilt may be 
required in the presence of airway obstruction but only jaw thrust is suitable for trauma 
patients with suspected cervical spine injury. Numerous studies have shown that cer-
vical spine injury is rare in the presence of penetrating neck injury or gunshot wounds 
to the head and that in such settings airway management should take priority over 
cervical spine immobilisation [11, 12].

 Airway Adjuncts

In some patients, a patent airway can only be maintained by the use of simple air-
way adjuncts, either a nasopharyngeal (NPA) or an oropharyngeal airway (OPA). 
Nasopharyngeal airways have the advantage of being relatively easy to insert, are 
better tolerated in patients who are not completely obtunded (hence less likely to 
cause gagging or vomiting) and can be inserted when a patient has trismus. 
Conversely, there is some evidence that incorrectly sized NPAs are ineffective or 
can actually precipitate airway obstruction [13]. Furthermore, there are case reports 
of intracranial passage of NPAs in patients with associated major head injury and of 
significant epistaxis with incautious insertion of the device [14, 15]. The relatively 
low risks of insertion must be balanced with the perceived benefits in each setting. 
OPAs are widely used as airway adjuncts but are usually only tolerated by deeply 
unconscious patients. In the event that these basic strategies fail then providers will 
need to escalate to more invasive methods of airway care.

 Advanced Airway Care

 Surgical Airways and Extraglottic Airway Devices (EADs)

Airway care in remote or austere settings often falls to relatively inexperienced pro-
viders with limited training or equipment and hence strategies to manage airway prob-
lems must take their level of training and experience into account. For this reason, 
many military organisations have chosen to train their pre-hospital medical providers 
in the skills required to perform surgical airway insertion (cricothyrotomy) when there 
are direct airway injuries or providers are unable to perform alternative advanced 
techniques such as the use of extraglottic airway devices (EAD) or drug-assisted 
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endotracheal tube placement. There are many advantages of cricothyrotomy as an 
advanced airway intervention in an RDCR setting. It is a relatively easily learned and 
remembered technique that in its simplest form requires little equipment or post-pro-
cedural care [16]. There are a variety of techniques from simple dissection and inser-
tion of a cuffed tracheal tube (“scalpel, finger, bougie”) to Seldinger devices and 
techniques that require more equipment and training. There would currently appear to 
be no clear advantages of any given technique or equipment [17]. Military studies 
have shown success rates of up to 93% [18–20]. A potentially compelling advantage 
is that this procedure can also be performed under local anaesthetic or with appropri-
ate sedation (using agents least likely to cause hypotension or respiratory depression). 
When an airway has been secured, patients can be allowed to breathe spontaneously 
as muscle paralysis is not required to facilitate this procedure. There are clear haemo-
dynamic benefits of spontaneous negative pressure ventilation over positive pressure 
ventilation for patients with life threatening haemorrhage. Cricothyrotomy is less 
widely used in civilian pre- hospital care settings due to lower rates of ballistic facial 
injury, concerns about potential harm of the procedure, increasing use of extraglottic 
airway devices and wider availability of drug- assisted intubation skills.

Another advanced strategy of airway care is the use of an extraglottic airway device 
(EAD). Such devices are relatively easy to use and can be rapidly inserted with little 
risk of harm in deeply unconscious patients. They can be used for either spontaneous 
or assisted ventilation. They may require little or no ancillary equipment, particularly 
when a version is used that does not require cuff inflation after insertion. Although they 
all feature some sort of cuff or seal to limit the risk of aspiration of gastric contents or 
airway contaminants, they cannot be considered to offer a secure airway. Furthermore, 
to allow insertion, patients must either be deeply unconscious or drugs must be admin-
istered to obtund airway reflexes otherwise vomiting may occur. This can make them 
complex to employ in patients with dynamic airway compromise. Some providers sug-
gest the use of pharmacologically assisted laryngeal mask (PALM) placement although 
this does expose the patient to all the risks of sedation or even paralysis without the 
advantages of achieving a secure, cuffed endotracheal tube [21]. The safety and effi-
cacy of this technique remain unclear. There is no doubt, however, that as rapidly 
inserted airway interventions for unconscious patients or as “rescue” devices in the 
case of failed endotracheal intubation, EADs have a role to play in the advanced airway 
care of patients with life threatening haemorrhage [22].

 Endotracheal Intubation and Positive Pressure Ventilation

 When Should Patients with Life Threatening Haemorrhage 
Be Intubated?

Patients with life threatening haemorrhage who are unable to be oxygenated by use 
of any of the basic airway manoeuvres or adjuncts described above, or whose airway 
cannot be protected from contamination of blood, debris or gastric contents will need 
placement of an endotracheal tube to maintain oxygenation. This is usually 
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facilitated by a process of drug-assisted sedation and paralysis to achieve rapid 
sequence intubation (RSI). Paralysed patients must then be ventilated by positive 
pressure ventilation. In the presence of haemorrhagic shock, any induction agent can 
exacerbate the hypotensive state and positive pressure ventilation will further reduce 
cardiac output. Given these risks, controversy exists about the efficacy of pre-hospi-
tal intubation, with some retrospective studies seeming to show that it confers no 
survival advantage whilst other prospective studies have suggested improved out-
comes [23–25]. Furthermore, some studies have even suggested that a strategy of 
rapid transport to hospital by police or private transport rather than Emergency 
Medical Services is associated with lower mortality for trauma patients, perhaps 
highlighting the time-critical need to achieve haemorrhage control as the greatest 
priority [26, 27]. On arrival at a medical treatment facility, patients who have not 
already been intubated are likely to need rapid sequence intubation to allow invasive 
haemorrhage control procedures as part of a coordinated damage control resuscita-
tion strategy. The significant risk of haemodynamic compromise of this procedure 
should be mitigated whenever possible by a policy of aggressive blood product 
resuscitation in the peri-intubation phase.

A summary of the indications for endotracheal intubation is shown in Table 14.1.

 When Should Patients with Life Threatening Haemorrhage Not 
Be Intubated?

Life threatening haemorrhage is not in itself an indication for intubation and positive 
pressure ventilation despite the perception that this brings order to a sometimes cha-
otic and challenging situation. When undertaken in awake hypotensive trauma patients 
in the field, pre-hospital intubation and positive pressure ventilation have been shown 
to be associated with increased in-hospital mortality [28]. Whilst many such patients 
will eventually require intubation to facilitate haemorrhage control procedures, this 
should be deferred, whenever safely possible, until the patient can be adequately 
resuscitated. Providers of airway care, particularly in remote settings where blood 
products may be less widely available, must therefore be trained in a range of appro-
priate airway strategies to manage the airway without resorting to intubation. Reduced 

Table 14.1 Indications for 
endotracheal intubation in 
RDCR

Immediate:
  Failure to achieve oxygenation or ventilation by other 

techniques
  Inability to protect airway
Urgent:
  To perform damage control surgery/invasive 

haemorrhage control procedures
  Impending airway obstruction, e.g. burns
  Neuroprotective ventilation
  To facilitate transfer
  Combative head injury patients
  Humanitarian – distressing multiple injuries
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level of consciousness due to life threatening haemorrhage should also not in itself 
mandate intubation in the pre-hospital setting as this does not necessarily correlate 
with ability to maintain an airway. If adequate oxygenation can be maintained and the 
airway protected from contamination using appropriate measures (e.g. postural drain-
age or suction) in a patient who is self-ventilating, then consideration should be given 
to transporting the patient to an appropriate medical treatment facility as rapidly as 
possible without performing intubation. When advanced airway practitioners are 
deployed into the pre-hospital environment, it must be recognised that they possess 
the vital skills and experience not only to perform intubation but also to identify when 
patients with life threatening haemorrhage can safely be managed without intubation. 
Providers must weigh the potential benefits of intubation and positive pressure venti-
lation against the significant risks of these procedures, particularly critical organ 
hypo-perfusion and cardiac arrest, in the presence of life threatening haemorrhage and 
consider whether alternative, lower risk, airway management strategies (including 
EAD placement or cricothyrotomy) can be employed pending the availability of more 
definitive resuscitation facilities.

 Rapid Sequence Intubation in the Presence of Life Threatening 
Haemorrhage

If intubation must be performed in the presence of life threatening haemorrhage, 
there are specific considerations that minimise risk and optimise outcomes:

 Blood Product Resuscitation
Given the hypotensive effects of induction agents and reduction of cardiac output 
caused by positive pressure ventilation, it is vital that patients with life threatening 
haemorrhage are resuscitated by blood product administration, whenever possible, 
prior to intubation and ventilation. If blood products cannot be made available, then 
crystalloid or colloids should be used to improve preload prior to intubation.

 Pre-oxygenation/Apnoeic Oxygenation
Patients with haemorrhagic shock will rapidly desaturate during the intubation process 
unless appropriate measures are taken to maximise pre-oxygenation and minimise the 
duration of apnoea. A strategy of effective pre-oxygenation (with associated denitroge-
nation) is vital to maximise the time until haemoglobin desaturation. In time-critical 
settings, this is best achieved by eight deep breaths within 60 seconds with high flow 
oxygen delivered using a non-rebreathing facemask although this technique may not be 
suitable for heavily pregnant or uncooperative patients [29]. Studies have also sug-
gested that the process of apnoeic oxygenation by delivery of high flow oxygen via 
nasal speculum during apnoea significantly delays onset of hypoxaemia [30, 31].

 Pre-treatment
An opiate, usually fentanyl or remifentanil, is routinely used as a pre-treatment agent 
during RSI of haemodynamically stable patients to obtund the sympathetically 
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mediated hypertensive reflex of endotracheal intubation. In the presence of haemor-
rhagic shock, these drugs carry significant risk of precipitating hypotension and 
should therefore be omitted.

 Sedation/Induction
All induction agents can provoke hypotension in the presence of life threatening 
haemorrhage [32]. Ketamine or etomidate are commonly used as they cause less 
haemodynamic compromise than other agents and exert rapid effects, even in the 
presence of shock [33]. One review of anaesthesia in haemodynamically compro-
mised emergency patients concluded that ketamine represented the best choice of 
induction agent, particularly in austere and remote healthcare settings [34]. 
Ketamine, although negatively inotropic in vitro, causes less hypotension than most 
other agents due to a mechanism of endogenous catecholamine release [35, 36]. 
Ketamine can, however, provoke hypotension in shocked patients who are catechol-
amine depleted and so induction doses must be reduced for such patients. One 
review of ketamine administration as an induction agent for pre-hospital RSI high-
lighted that patients with a shock index (heart rate/blood pressure) ≥0.9 pre- 
intubation, were more likely to become hypotensive than those with a lower shock 
index <0.9 [37]. Etomidate is also widely used although it has been withdrawn from 
use in some countries due to concerns about adrenal suppression [38]. Whichever 
agent is chosen, providers must be fully conversant with the safety profile and modi-
fications of dose regimes required in the presence of haemorrhagic shock.

 Paralysis
Administration of a neuromuscular blocking agent (NMBA) to achieve paralysis 
greatly facilitates laryngoscopy and passage of an endotracheal tube between the 
vocal cords. Indeed, trauma patients who are able to tolerate this procedure with-
out drug administration have been observed to have dismal outcomes [39]. The 
resultant apnoea carries the risk of respiratory acidosis, hypoxia during the intu-
bation process and hypotension when positive pressure ventilation is initiated. 
Suxamethonium or rocuronium have the most rapid onset of action and hence are 
the neuromuscular blocking agents of choice for intubation of patients with life 
threatening haemorrhage. When given at appropriate doses both have similarly 
rapid onset of paralysis [40]. In the shocked state, higher range doses are required 
to achieve rapid onset of paralysis. A Cochrane review found no statistical differ-
ence in intubation conditions when succinylcholine was compared to rocuronium 
at a dose of 1.2 mg/kg but concluded that succinylcholine was clinically superior 
as it has a shorter duration of action [41]. This may be a disadvantage in some 
settings. Rocuronium has fewer contraindications, causes no muscle fasciculation 
(and hence no increase in oxygen consumption) and has a much longer duration 
of action. Resuscitation teams must decide whether a short acting agent that then 
allows resumption of spontaneous, negative pressure ventilation during transport 
would be advantageous in the context of life threatening haemorrhage or whether 
more prolonged paralysis (and hence maintenance of positive pressure ventila-
tion) is required to facilitate transport or surgical intervention. Other important 
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considerations include the availability of a reversal agent for rocuronium (sugam-
madex) and product storage requirements [42].

 Intubation
Laryngoscopy to achieve endotracheal intubation for patients with life threatening 
haemorrhage carries risk of direct airway injury or failure to achieve intubation. For 
trauma patients with potential associated cervical spine injury there is a requirement 
to maintain manual in line stabilisation (MILS). The resulting suboptimal anatomi-
cal position of the airway may significantly impede direct visualisation of the glottic 
opening. This may be improved by use of external laryngeal manipulation (ELM) or 
the application of “backwards, upwards, rightwards pressure” (BURP) [43, 44]. 
Both techniques have potential to significantly improve visualisation of the vocal 
cords and a gum elastic bougie should routinely be used to guide endotracheal tube 
placement. Fibre optic and video laryngoscope devices may give better views than 
direct laryngoscopy but may not be available in austere settings or effective in the 
presence of significant contamination of the upper airway.

Cricoid pressure is traditionally applied during paralysis in an attempt to protect 
from regurgitation of gastric contents prior to ETI placement although some authors 
highlight potential risks of this manoeuvre [45]. It is clear that delays incurred 
whilst trying to visualise the glottis or due to multiple attempts at laryngoscopy 
carry the risk of hypoxia and so multiple attempts (more than three) or unnecessary 
delays must be avoided [46]. Choice of endotracheal tube size is also vital to ensure 
success and minimise risk of harm. Pregnant patients may have respiratory tract 
mucosal oedema and capillary engorgement that can reduce the size of the glottic 
opening and so smaller endotracheal tubes should be used. Confirmation of correct 
placement of the endotracheal tube is best achieved using continuous wave form 
capnography to measure end-tidal carbon dioxide (EtCO2). [9] Whilst other tech-
niques including auscultation may be employed, they carry significant risk of failing 
to identify oesophageal intubation.

 Positive Pressure Ventilation
A key concept in the safe and effective management of the airway for patients with 
life threatening haemorrhage is the impact of positive pressure ventilation on intra-
thoracic pressure. The adverse effect of positive pressure ventilation on cardiac out-
put is well described [47]. Intrathoracic pressure becomes raised during the inspiration 
phase of positive pressure ventilation. In patients with haemorrhagic shock this will 
reduce the already compromised venous return and hence reduce right ventricular 
output, pulmonary blood-flow and cardiac output [48]. In human models of simu-
lated shock states, the advantages of negative pressure ventilation have been demon-
strated using negative pressure impendence devices [49]. In porcine models of 
haemorrhagic shock the impact of positive pressure ventilation on cardiac output has 
been explored and compared to spontaneous, negative pressure ventilation. In one 
model of haemorrhagic shock, intubated animals undergoing positive pressure venti-
lation were demonstrated to have greater reduction in cardiac output and body tem-
perature than non-intubated, spontaneously breathing animals [50]. There appeared 
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to be no survival advantage from intubation and positive pressure ventilation, empha-
sising that intubation and ventilation are not treatments for haemorrhagic shock but 
the unavoidable consequences of advanced airway care. When positive pressure ven-
tilation is initiated, providers must employ a ventilation strategy that minimises the 
impact upon cardiac output. One porcine model of ventilation strategies in severe 
haemorrhagic shock demonstrated that reduction of end expiratory pressure was the 
factor that had greatest influence upon haemodynamic stability although decreasing 
tidal volumes and increasing respiratory rates also had beneficial effects [51]. Positive 
pressure ventilation in the presence of haemorrhagic shock has also been suggested 
to be an independent cause of a more pronounced systemic inflammatory response 
although the effect of this upon acute traumatic coagulopathy remains unclear [52].

 Post-intubation Care
Following successful intubation, patients with life threatening haemorrhage will 
need appropriate on-going care, monitoring and reassessment of the impact of this 
intervention. In RDCR settings there will be a priority to transport the patient to an 
appropriate medical facility during which time sedation will need to be maintained 
and consideration given to maintaining paralysis with a long acting NMBA. Sedation 
is typically maintained with further bolus administration of a sedative agent such as 
ketamine that will have least impact upon haemodynamic stability and also provide 
analgesia. Ventilator settings must be optimised to minimise impact upon cardiac 
output and confer lung protection. Low tidal volumes (6–8 ml/kg) are typically used 
and respiratory rates adjusted to maintain appropriate EtCO2 levels, with initial rates 
of 8–10 breaths per minute. Positive end expiratory pressure (PEEP) should be 
maintained at 0 mmHg pending adequate resuscitation, unless there is significant 
concomitant lung injury that requires PEEP to improve oxygenation. In this sce-
nario the least amount of PEEP needed to maintain oxygen saturations above 90% 
is reasonable. Post-intubation care for patients intubated in a medical facility, or 
arriving from the field already intubated, will similarly require maintenance of seda-
tion, paralysis and analgesia and careful management of ventilator strategies. When 
effective haemorrhage control and resuscitation have been achieved, administration 
of opioid agents such as fentanyl may improve tissue perfusion and protect from 
reperfusion injury by achieving dilation of the microcirculation [53].

 Special Situations: Head Injury

Patients with life threatening haemorrhage who also have traumatic brain injury 
(TBI) present special challenges to providers of airway care and ventilatory support. 
Such patients may initially be combative and resistant to attempts to provide appro-
priate airway care and in some instances, may have trismus, making assessment and 
support of the airway extremely difficult. Simple airway manoeuvres may be ade-
quate but there may be a need for pharmacological assistance to facilitate simple 
interventions. Despite historical concerns about the use of ketamine in head injured 
patients, available evidence suggests that it is safe for such patients and may even 

14 Airway Management of Patients with Life Threatening Haemorrhage: Principles…



270

have a neuroprotective effect [54, 55]. Use of low dose ketamine may allow 
improved pre-oxygenation prior to progression to rapid sequence intubation. 
Hypotension associated with administration of induction agents for rapid sequence 
intubation and positive pressure ventilation has been shown to have a detrimental 
effect upon cerebral perfusion and survival following TBI.  A single episode of 
hypotension below 90 mmHg has been shown to be independently associated with 
more than a doubling of mortality in the presence of TBI [56]. Any hypoxaemia 
associated with onset of apnoea or attempts to secure endotracheal intubation has 
also been shown to have a significant effect upon survival, with a single excursion 
of oxygen saturation below 90% associated with more than a doubling of mortality 
[57]. The combination of both hypotension and hypoxia has been demonstrated to 
be associated with a six-fold risk of mortality in TBI [58]. Furthermore, any over- 
enthusiastic hyperventilation of patients with TBI following intubation will provoke 
hypotension and vasoconstriction and hence reduce cerebral blood flow with conse-
quent detrimental impact upon outcome [59]. Providers must be mindful of these 
pitfalls when performing airway care in the presence of suspected head injury for 
the patient with life threatening haemorrhage.

 Impact of Airway Interventions in Life Threatening 
Haemorrhage upon Outcomes

There can be no doubt that rapid intervention with basic airway skills to maintain 
oxygenation in patients with severe haemorrhage can be life-saving, particularly in 
the presence of direct airway injury or reduced levels of consciousness due to head 
injury or poor brain perfusion. But more advanced interventions, particularly when 
performed prematurely in under-resuscitated patients, can have harmful conse-
quences. Interpretation of outcomes for patients with life threatening haemorrhage 
who undergo advanced airway interventions are potentially confounded by uncer-
tainty about the causation of poor outcomes. Are they due to the underlying haemor-
rhagic shock state and any associated injuries or pathologies or are they due to the 
dangers of the airway intervention process and any associated delays? Evidence of 
the impact of pre-hospital intubation in less critically injured patients illustrates the 
potentially harmful consequences of this intervention. In one retrospective database 
review, adult trauma patients who were intubated before arrival in hospital, but who 
on retrospective review were considered to be only moderately injured, were matched 
with similarly injured patients who did not undergo intubation [60]. Intubated 
patients were found to have spent longer on scene, had more volume replacement, 
more coagulation derangement and lower haemoglobin concentrations than the non-
intubated patients, suggesting that the potential harm of this intervention must be 
considered by providers. As long ago as 1943 the potential hazards of anaesthesia in 
the presence of haemorrhagic shock were emphasised in descriptions of the use of 
barbiturate anaesthesia in shocked trauma patients at Pearl Harbour [61]. One retro-
spective database review of trauma patients who received massive transfusion on 
arrival in hospital attempts to compare outcomes of these patients with life 
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threatening haemorrhage who received RSI before arrival in hospital with those who 
didn’t [62]. The authors observed an association between pre- hospital RSI and higher 
risk of mortality and concluded that this effect was likely to be due to the effect of 
RSI and ventilation but noted that it may have been due to the patient factors that 
caused providers to perform intubation in the field rather than waiting until arrival at 
hospital. A systematic review and meta-analysis of pre- hospital intubation compar-
ing mortality rates of adult trauma patients who underwent pre-hospital intubation 
with those who were intubated in the emergency department also noted an associa-
tion between pre-hospital intubation and higher mortality rates [63].

Intubation of shocked trauma patients also carries risk when performed in hospi-
tal. A study of the outcomes for adult trauma patients intubated on arrival at hospital 
noted higher mortality rates for those who suffered post-intubation hypotension 
[64]. Overall, these studies would seem to support concern that emergent intubation 
of patients with life threatening haemorrhage carries significant risk of harm and 
that consideration should be given to deferring intubation, in the absence of airway 
obstruction, evidence of hypoxaemia, hypercarbia or other compelling indications, 
until measures can be taken to resuscitate the patient.

The potential pitfalls of intubation in the presence of life threatening haemor-
rhage are summarised in Table 14.2.

 Summary

Airway care is a key component of damage control resuscitation for patients with life 
threatening haemorrhage. Oxygenation and ventilation must be maintained at all times 
and when necessary, providers will need to employ a range of airway management strat-
egies, including rapid sequence intubation, to achieve this. Providers must be aware of 
the potential harm and delays that more complex interventions may cause and when 
oxygenation can be maintained by simple interventions, should consider deferring 
definitive airway care until appropriate resuscitation products and facilities are available. 
The risk of intubation and positive pressure ventilation causing a life-threatening reduc-
tion in cardiac output is substantial for all patients with haemorrhagic shock. When rapid 
sequence intubation is undertaken to facilitate invasive haemorrhage control techniques, 
every possible care must be taken to minimise the risks of this procedure.

Table 14.2 Potential pitfalls of RSI in the presence of life threatening haemorrhage

Intervention Potential adverse effect
Sedation agents Hypotension, respiratory depression, hypoxaemia
Neuromuscular blocking 
agents

Apnoea, hypoxaemia, respiratory acidosis

Intubation attempts Hypoxaemia, unrecognised oesophageal placement of endotracheal 
tube, iatrogenic airway injury

Positive pressure 
ventilation

Reduced cardiac output, hypothermia, inflammatory response

Inadvertent 
hyperventilation

Cerebral vasoconstriction
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 Introduction

Traumatic brain injury (TBI) remains a leading cause of death and disability 
 worldwide [1, 2]. In the United States alone, approximately 1.7 million people are 
affected by TBI each year, and TBI ultimately contributes to approximately 30% of 
all injury-related deaths [3, 4]. In both civilian and military traumatic settings, TBI 
is frequently accompanied by other traumatic insults, including vascular injury and 
life-threatening hemorrhage (LTH), which is the leading cause of preventable death 
in trauma [5]. The presence of severe TBI, in addition to LTH, presents a unique 
clinical scenario in which providers should be well-versed. Severe TBI alone can 
contribute to widespread impairment of hemostasis, endothelial function, coagula-
tion, and immune function [6–8]. In the setting of LTH, severe TBI can contribute 
to potentiation of the lethal triad—acidosis, coagulopathy, and hypothermia—in 
trauma. To improve patient outcomes, pre- and in-hospital care of patients with LTH 
and severe TBI requires avoiding hypoxia and hypotension to minimize secondary 
brain injury and optimizing intracranial hemodynamics [4, 9].

Within recent years, damage control resuscitation (DCR) has become a highly 
popular treatment strategy with increasing relevance in both military and civilian 
trauma [10]. Originally termed by the United States Navy, “damage control” refers 
to providing only those interventions deemed necessary to control hemorrhage and 
minimize gross contamination [11], with the goal of restoring a patient to a surviv-
able physiologic status through early definitive resuscitation and aggressive correc-
tion of metabolic derangements, hypothermia, and acidosis [10]. Achieving these 
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means is possible through application of several key concepts for LTH, including 
permissive hypotension, prioritizing blood product transfusion over crystalloids, 
and aggressive correction of shock and coagulopathy with whole blood or blood 
product component therapy in 1:1:1 unit ratios to simulate whole blood [12, 13]. As 
TBI and LTH often coexist in severe trauma, both civilian and military providers 
must be well-versed in the application of DCR in the setting of severe TBI and 
LTH. Although such a management strategy is well-established for LTH, alternative 
treatment strategies and management considerations should be applied to patients 
with concurrent severe TBI.

This chapter highlights [1] the effects of severe TBI on hemostasis, immune 
function, endothelial function, and shock (oxygen deficit) which results in cell 
death, [2] resuscitation principles for pre- and in-hospital care of patients with LTH 
and severe TBI, [3] resuscitation strategies involving blood products and crystal-
loids/colloids, and [4] novel neurotherapeutic agents which appear promising to 
improve clinical outcomes in the setting of severe TBI and LTH.

 The Impact of TBI on Shock, Coagulopathy, Endotheliopathy, 
and Immune Dysfunction

Following the direct impact of TBI, normal hemostasis, inflammation, and endothe-
lial cell and immune functions are immediately disrupted. Although these altera-
tions are observed in traumatic injuries without TBI, the presence of concurrent 
severe TBI and LTH can substantially increase the magnitude of impaired hemosta-
sis, massive inflammation, and endotheliopathy compared to these isolated condi-
tions alone [14–17]. All of these impairments ultimately contribute to the 
development of impaired hemostasis, which occurs in over 60% of patient with 
severe TBI [18, 19].

Development of coagulopathy appears to be related to the rapid induction of a 
hypercoagulable state, with subsequent transformation to a hypocoagulable state. 
In the simplest of terms, platelet activating factor (PAF) and brain tissue factor 
(TF), both potent procoagulants, are released by the brain following injury, 
 resulting in a consumption of coagulation factors and platelets [6]. Despite this 
oversimplification, the proposed pathophysiologic mechanisms are highly com-
plex and are suspected to include hypocoagulation, platelet consumption and dys-
function, decreased coagulation factor activity, hyperfibrinolysis, and excessive 
inflammation (Fig. 15.1) [6, 16, 17, 20–27]. This sequence of TBI-induced coagu-
lopathy has been linked to detrimental outcomes with mortality rates ranging 
from 17% to 86% [18, 28]. Although the prevailing dogma is that severe TBI 
promotes a significant coagulopathy, there is some prospective observational data 
to suggest that TBI may not necessarily produce a coagulopathy out of proportion 
to injury in other body region in recent years [29]. Nonetheless, the presence of 
severe TBI, in addition to LTH, presents a unique scenario in which providers 
should be well-versed to provide the best clinical outcomes for severe TBI 
patients.
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 Initial Injury and Platelet Activation and Disruption

Severe TBI typically results in immediate disruption of brain microvasculature and 
the blood-brain barrier (BBB), resulting in an immediate hemorrhagic contusion 
[6]. The closely surrounding area, known as the penumbra, is also a highly sensitive 
area which can result in delayed microvessel failure causing progressive hemor-
rhagic contusion [30]. Following microvasculature and BBB disruption, complex 
interactions between platelets and damaged endothelium or the subendothelial 
matrix may occur, leading to the release of massive inflammatory mediators, includ-
ing prostaglandins, cytokines, and PAF [6, 31, 32]. Such mediators can contribute to 
additional BBB breakdown along with the release of additional PAF and other pro-
coagulants [33]. As a downstream effect, platelet hyperactivation may ensue fol-
lowed by subsequent platelet consumption and exhaustion, causing both primary 
and secondary platelet depletion [20, 34]. Platelet dysfunction secondary to inhibi-
tion of adenosine diphosphate or arachidonic acid receptors may also occur, even in 
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Fig. 15.1 Current understanding of the systemic mechanisms underlying coagulopathy and 
 hemorrhagic contusions after traumatic brain injury. Numerous complex, highly interactive path-
ways are involved in contributing to the development of coagulopathy following traumatic brain 
injury including direct impact, microvessel injury, blood-brain barrier disruption, platelet dysfunc-
tion, endotheliopathy, protein C activation, hyperfibrinolysis, and iatrogenic coagulopathy. (From 
Maegele et al. [6], Copyright (2017), with permission with permission of Elsevier)
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the setting of normal platelet counts [20, 23, 34]. Furthermore, this platelet dysfunc-
tion can further coagulopathy by influencing coagulation and inflammatory path-
ways through complement-mediated mechanisms [35–37].

 Brain Tissue Factor and Activation of the Coagulation Cascade

Brain tissue factor (TF) release and activation may also play a significant role in the 
development of inflammation and systemic coagulopathy [6, 38]. In the absence of 
severe TBI, any brain TF released is normally isolated by the BBB.  Following 
severe TBI, however, TF is shed in the systemic circulation and can be bound exten-
sively by factor VIIa, propagating the extrinsic coagulation pathway [6, 39]. 
Following subsequent thrombin activation, platelet dysfunction and exhaustion can 
occur [39]. In severe cases, however, disseminated intravascular coagulation (DIC) 
may ensue, occurring as early as 6 hours following severe TBI. With the onset of 
DIC, massive systemic activation of both the intrinsic and extrinsic clotting path-
ways may occur, resulting in further consumption of coagulation factors and plate-
lets, leading to further coagulopathy. Furthermore, the combination of brain TF and 
TF released from other associated traumatic injuries can further platelet activation, 
along with endothelial-derived and platelet-derived micro-particles, enabling for-
mation of procoagulant complexes [14, 24, 40]. As this cascade is propagated, 
fibrinogen and platelet concentrations may significantly decrease and can result in 
further coagulopathy and the potentiation of any existing bleeding [41, 42].

 Hyperfibrinolysis

Although platelet and coagulation factor consumption contribute to TBI-induced 
hypocoagulable conditions [41, 42], several alternative mechanisms promoting 
hyperfibrinolysis have been proposed. In rodent models, both endogenous tissue- 
type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), 
well-known mediators of fibrinolysis, have been demonstrated to be increased in 
brain tissue following TBI [43]. Furthermore, a depletion of alpha-2-plasmin inhibi-
tor, resulting in an increase in plasmin, has also been demonstrated [24]. As plasmin 
is the cleavage product of plasminogen and a key mediator of fibrinolysis, its 
increased levels are suspected to make patients with severe TBI particularly suscep-
tible to impaired hemostasis [6].

 Endothelial Dysfunction (Endotheliopathy) and Other 
Mechanisms

When severe TBI is coupled with polytrauma and LTH, additional mechanisms 
related to endothelial dysfunction or endotheliopathy also come into play [23]. In 
this setting, massive endothelial damage secondary to shock and injury can result in 
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severe glycocalyx shedding, which has been shown to induce auto-heparinization 
[44]. This may ultimately lead to endogenous anticoagulation of TBI patients [44]. 
In addition, elevated catecholamines often occur secondary to a hyperadrenergic 
state and endothelial dysfunction, and have been correlated with coagulopathy fol-
lowing TBI [23, 45, 46]. Furthermore, patients with concurrent TBI and LTH have 
also been shown to exhibit activation of downstream protein C pathways, which can 
promote further inflammation, hyperfibrinolysis, and inhibition of coagulation fac-
tors Va and VIIIa [24, 47].

Lastly, liberal fluid resuscitation for patients with LTH often promotes iatrogenic 
hypocoagulation secondary to hemodilution, acidosis, and hypothermia (most fluids 
are room temperature and have a low pH), which can further worsen the lethal triad 
of trauma—metabolic acidosis, hypothermia, and coagulopathy [48–50]. Acidosis 
alone can markedly affect the interplay of coagulation factors, while hypothermia is 
known to inhibit fibrinogen synthesis and thrombin generation [48–50].

 Prehospital Resuscitation of the TBI Patient

To achieve optimal patient outcomes, management of severe TBI begins at the time 
of injury. Initial priorities include in-field triage, stabilization of the patient, and 
transfer to definitive care facilities. During this process, the major goal should be to 
minimize secondary brain injury and optimize intracranial hemodynamics. As 
effective prehospital resuscitation has been linked to short-term and long-term out-
comes [51–53], first-responders, emergency medical services, and in-field providers 
must be well-versed in severe TBI management in the setting of LTH.

Initial prehospital care prioritizes a patient’s “airway” and “breathing.” A defini-
tive airway should be established in all patients with an inability to protect the air-
way, inability to maintain oxygenation and ventilation, and a Glasgow Coma Scale 
(GCS) less than nine. Prehospital hypoxia has been shown to worsen severe TBI 
outcomes along with furthering neuroinflammation and promoting neurobiomarker 
release potentiating poor TBI outcomes [16, 54–56]. An oxygen saturation level of 
at least 90% or a pO2 greater than 60 mmHg should be targeted [57]. Oxygen values 
less than these have been shown to increase TBI-associated mortality fourfold [58]. 
Furthermore, normal ventilation rates, including an end-tidal CO2 (ETCO2) of 
35–40 mmHg, should be targeted for patients with severe TBI. Hyperventilation 
(ETCO2 <35 mmHg) should be avoided for routine use or elevated intracranial pres-
sure (ICP) prophylaxis [59–61], and only implemented for patients with signs of 
impending cerebral herniation [62].

Following stabilization of patient’s airway and breathing, the next priority 
becomes “circulation.” Hemorrhage from trauma is the primary cause of hypovole-
mia and hypotension. In the prehospital setting, hypotension, which is defined as a 
systolic blood pressure (SBP) less than 90 mmHg, can be markedly dangerous in 
patients with severe TBI [63]. Each episode of hypotension has been shown to have 
deleterious effects on the brain [63]. The goal of fluid resuscitation in this setting is 
to optimize cerebral hemodynamics and further oxygen delivery to the brain. For 
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patients with concurrent LTH, early and definitive hemorrhage control is key to 
minimize ongoing hemorrhage. Although the traditional definition of hypotension 
(<90 mmHg) was previously the target SBP according to the prior Brain Trauma 
Foundation (BTF) guidelines (3rd edition), new literature has emerged which sup-
ports a higher level, which varies by age, to improve outcomes [64–66]. The prior 
threshold of 90 mmHg is thought to underestimate hypotension-induced secondary 
brain injury [65]. The 4th edition of the BTF guidelines now states that a SBP 
greater than 100 mmHg, depending on age, should be targeted for patients with 
concurrent severe TBI [57]. For patients between 50 and 69 years old, a SBP of 
greater than 100 mmHg should be targeted [57]. For patients between the ages of 15 
and 49 or greater than 70 years old, however, a SBP greater than 110 mmHg should 
be maintained [57]. Currently, these recommendations remain in contrast with the 
Tactical Combat Casualty Care (TCCC) guidelines, which still suggest a SBP target 
of 90 mmHg.

Furthermore, there are no current recommendations regarding the optimal fluid 
for resuscitation [53]. Isotonic crystalloids are the fluid used most often in the pre-
hospital setting given resource and logistical constraints. However, blood product 
administration may provide definitive resuscitation for patients with concurrent 
LTH and can improve neurologic outcomes following severe TBI. Several alterna-
tive choices for patients with severe TBI exist and may have logistical advantages. 
Such resuscitative strategies will be discussed later in the chapter.

Early neurologic assessment, including GCS, should be performed to help 
guide severe TBI management. Patients should be frequently monitored for signs 
of Cushing’s triad, including hypertension, bradycardia, and irregular respira-
tions. They should also be monitored for signs of impending cerebral herniation, 
which includes dilated, unreactive, and asymmetric pupils, and a motor exam with 
extensor posturing or progressive neurologic deterioration. In patients with con-
cerning signs, hyperventilation (ETCO2 30–35 mmHg) should be employed until 
clinical improvement is observed and should only be used as a temporizing 
maneuver [53]. In addition, hypertonic saline, which ranges from 3% to 30%, may 
be administered to aid in ICP management if deemed a concern [67–70]. A bolus 
of 250 mL or 2 mL/kg of 7.5% saline has been commonly used in studies. Although 
found to be inferior to hypertonic saline in ICP reduction, mannitol (0.5–1.0 mg/
kg) may be used for patients with cerebral herniation if intravascular volume can 
be maintained. However, none of these agents have trial evidence supporting 
improved survival or neurologic outcomes compared to each other. Lastly, combi-
nation of hypertonic saline with dextran (250 mL bolus of 7.5% saline/6% dex-
tran) has been studied but also failed to show any clinical benefit compared to 
normal saline alone [68].

Patients with severe TBI and LTH may also present with hypothermia and is 
associated with increased fluid resuscitation and blood product transfusions due to 
severity of their illness. Therefore, prehospital hypothermia should be avoided as 
much as possible [71, 72]. Furthermore, prehospital hypothermia is independently 
associated with morbidity and mortality, including pneumonia and adult respiratory 
distress syndrome (ARDS) [71, 72].
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Sedation and analgesia may also be required for transporting patients to a higher 
level of care. According to the 4th edition of the BTF guidelines, barbiturates and 
propofol may be used as sedation for patients with TBI. Both agents can reduce ICP 
and help terminate seizure activity. High-dose barbiturates may be used to control 
elevated ICP that fails to respond to medical and surgical therapy. However, provid-
ers must be aware that it may cause hemodynamic stability during use. Propofol 
may also be used as a sedative given its rapid onset, short duration of action, ability 
to decrease ICP, and preservation of CO2 reactivity and cerebral autoregulation [73]. 
Propofol, however, has failed to show improvement in mortality for 6-month out-
comes [74]. Providers must also be aware of propofol infusion syndrome, which can 
occur at high doses and can cause significant morbidity.

In recent years, there has been an emerging use of ketamine for prehospital 
induction, maintenance, and sedation for patients with TBI [75]. Ketamine was his-
torically avoided due to concerns that it caused an increase in ICP. However, recent 
evidence suggests otherwise. A systematic review by Zeiler et al. failed to demon-
strate that ketamine increases ICP [76]. In some cases, ketamine use actually 
decreased ICP.  Furthermore, no significant adverse effects were noted related to 
ketamine administration. Recent studies appear to demonstrate that ketamine may 
actually have neuroprotective effects in TBI by inhibiting spreading depolarization, 
decreasing neurotoxic metabolites, and attenuating oxidative stress and apoptosis 
[75, 77–80]. Although ketamine is currently not listed in the 4th edition BTF guide-
lines, it appears to be one of the most commonly used prehospital sedatives in the 
field. Evidence continues to accumulate supporting its use.

Lastly, antibiotics may be administered for patients with associated penetrating 
injuries related to TBI. Gram positive organisms, including Staphylococcus aureus, 
and gram-negative bacteria may be involved [81]. As such, cephalosporins are the 
most preferred antibiotics; however, some recommend ceftriaxone, metronidazole, 
and vancomycin for extended durations for penetrating brain injury [81].

 In-Hospital Resuscitation of the TBI Patient

Once transported to definitive care facilities, severe TBI patient should be trans-
ported to the intensive care unit (ICU) for critical care monitoring and manage-
ment. In the ICU, oxygenation and ventilation should remain key priorities. If not 
already established, a definitive airway should be considered if indicated (GCS 
≤8). Oxygenation should be maintained with a pO2 >60 mmHg or oxygen satura-
tion >90%, while normocapnia (ETCO2 35–40 mmHg) should be targeted in the 
absence of cerebral herniation [57]. If hyperventilation is indicated for cerebral 
herniation, it should only be conducted for a period of 24 hours. Following ensur-
ing a secure airway and breathing, a patient’s circulation should be re-evaluated. 
As stated previously, a SBP of greater than 100  mmHg should be targeted for 
patients between 50 and 69 years old [57]. However, a SBP greater than 110 mmHg 
should be maintained for patients between the ages of 15 and 49 or greater than 
70 years old [57].
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Once stabilized, focus should turn to managing neurologic deficits. Early imag-
ing, including computed tomography (CT), should be obtained to assess the degree 
intracranial injuries and prognosticate patients. There is some evidence, although 
weak, to support using ICP monitoring for patients with severe TBI to reduce in- 
hospital and 2-week post-injury mortality [57]. When ICP monitoring is used, an 
ICP of less than 22 mmHg should be targeted [57]. Maintaining a cerebral perfusion 
pressure (CPP) of 60–70 mmHg is critical to provide adequate perfusion to the brain 
[57]. Several modalities exist to achieve lowering ICP if a concern, including hyper-
tonic saline bullets (30 cc of 23.4% saline), hypertonic saline infusions (3% saline), 
and mannitol in select patients. An external ventricular drain (EVD) may be used for 
continuous CSF drainage to lower ICP [57]. This may be used within 12 hours after 
injury for patients with an initial GCS <6–8 [57, 82]. Other modalities to lower ICP 
exist, but have weak supporting evidence. According to the BTF guidelines, early 
hemicraniectomy can be considered in select patients as a last resort [57, 83]. 
Although long-term outcomes remain controversial and may lead to unfavorable 
outcomes, this procedure has been shown to reduce ICP and minimize days in the 
ICU [83]. The latest study suggests that decompressive craniectomy should be used 
only in patients with refractory intra-cranial hypertension (ICP >25 mmHg) that 
have failed all medical treatments, rather than as an early treatment [84]. This 
approach, however, varies widely internationally and different approaches in terms 
of timing may be considered, especially for adult versus pediatric patients.

Several other management options may be considered. Antiepileptic drugs, 
including Levetiracetam, have been shown to decrease the incidence of early post- 
traumatic seizures when administered within 7 days of injury and may be used [85, 
86]. Enteral nutrition should be initiated as early as possible to decrease mortality 
[87, 88]. Lastly, hypothermia [89] and steroids [90] are no longer indicated in these 
settings, although previously thought to be beneficial.

 Resuscitation Strategies for Severe TBI and LTH Patients

Resuscitation strategies remain complex in patients with concurrent LTH and severe 
TBI.  However, initial critical steps for prehospital and in-hospital resuscitation 
include hemorrhage control and volume expansion to restore systemic perfusion 
and oxygenation. In the absence of TBI, patients with LTH should receive DCR 
strategies with focus on hypotensive resuscitation. The injured brain in patients with 
concurrent TBI, however, is highly susceptible to secondary insult including hypo-
tension and hypoxia. Therefore, maintenance of an adequate SBP and CPP, as previ-
ously mentioned, is required [57], and the concept of DCR with hypotensive 
resuscitation is contraindicated in this setting.

Unfortunately, the optimal resuscitation strategy for patients with LTH and 
severe TBI in the prehospital setting is rather limited. Crystalloids and colloids are 
readily available, but blood products are often unavailable in the field due to logisti-
cal constraints. In the setting of LTH, blood products can be life-saving and improve 
outcomes if administered early in ratio-based resuscitation (1:1:1) [12, 91]. For 
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patients with TBI, resuscitation guidelines are not as clear. The BTF guidelines 
recommend crystalloid for any TBI patient with hypotension in prehospital settings 
[57]. However, the evidence for this recommendation is weak and warrants further 
investigation.

Here, we present different resuscitation strategies, including crystalloids, col-
loids, and blood products, for patients with concurrent LTH and severe TBI. Each 
strategy has its own benefits and limitations, which providers should consider care-
fully during the development of their management protocols.

 Crystalloid Resuscitation Strategies

Historically, blood products are often unavailable for resuscitation of patients with 
LTH and severe TBI in the prehospital setting. As such, crystalloids and colloids are 
the two major types of resuscitative fluids administered to improve circulating vol-
ume, shock, and oxygen delivery. Crystalloids are a relatively cheap way to achieve 
rapid improvement in SBP. However, once administered, crystalloids can decrease 
oncotic pressure and promote significant interstitial tissue edema when given [92]. 
As such, a large volume is required to maintain an increase in plasma volume, which 
can be logistically challenging in an austere environment or resource-constrained 
settings [93]. Judicious use should always be considered as cerebral edema, a life- 
threatening complication contributing to TBI-associated mortality, can ensue.

Current Advanced Trauma Life Support (ATLS) guidelines recommend the use 
of crystalloid, including either normal saline (NS) or lactated ringer’s (LR), for 
initial resuscitation [94]. In the setting of LTH, this can be life-saving. However, the 
optimal fluid for resuscitation in patients with TBI is unknown at this time [95]. 
Several animal studies suggest that LR resuscitation is associated with improved 
physiological outcomes and decreased secondary bleeding [96, 97], while NS resus-
citation may lead to hypochloremic acidosis, which can cause systemic vasodilation 
and coagulopathy [98]. Despite this, some consider NS to be the preferred fluid for 
TBI patient resuscitation given its increased osmolarity compared to LR [95]. 
Within recent years, prospective observational studies have demonstrated increased 
mortality with LR use compared with NS in patients with TBI [95]. Although most 
would consider NS use for patients with TBI, these controversies remain, and ran-
domized controlled clinical trials are needed to further elucidate LR and NS resus-
citation for patients with TBI in the prehospital phase.

 Colloid Resuscitation Strategies

In contrast to crystalloids, colloids (albumin, dextran, and hydroxyethyl starch) are 
able to increase intravascular oncotic pressure by drawing water from interstitial 
tissues and maintain existing volume in the intravascular space [99]. In theory, col-
loid administration may help prevent over-resuscitation resulting in interstitial 
edema and aid in maintaining microcirculatory flow [100]. As such, colloids could 
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potentially be used to help minimize the risk of cerebral edema. However, the use of 
colloids remains controversial in patients with TBI, as some suspect that the 
increased permeability of a damaged BBB can result in unfavorable outcomes. 
Despite this, colloids are generally preferred in tactical combat casualty care as they 
can provide the resuscitative volume needed to improve intravascular volume and 
“theoretically” minimize the total volume required to achieve this [101].

Although initially thought to be a promising colloid agent, albumin has provided 
suboptimal results for patients with LTH and severe TBI. The Saline versus Albumin 
Fluid Evaluation (SAFE) trial demonstrated that 4% albumin can cause increased 
ICP and mortality among TBI patients [102]. Although not fully explained by the 
study, some suspect that this increased mortality is attributed to colloid extravasa-
tion into the brain parenchyma following TBI-associated BBB damage, which may 
worsen any initially existing TBI-induced cerebral edema [103, 104]. Some studies, 
however, have demonstrated benefits when using higher concentrations of albumin 
(20%), leading to decreased neurologic deficits and brain tissue necrosis in experi-
mental models of TBI.

Hextend, a colloid volume expander consisting of 6% hetastarch in LR, has dem-
onstrated promise in clinically realistic large animal studies. Following administra-
tion, Hextend can decrease brain swelling compared to NS resuscitation alone 
[105]. In small animal studies, 10% hetastarch has demonstrated decreased brain 
tissue necrosis and neurologic severity scores (NSS) [106]. However, its use has yet 
to be confirmed in randomized human trials of patients with concurrent LTH and 
severe TBI.  Despite this, Hextend is currently considered the first-line fluid of 
choice among colloids and crystalloids for use in far-forward combat resuscitation 
given its markedly beneficial effects in preclinical animal studies and low volume 
[93, 101]. However, further studies are required to further elucidate its safety and 
beneficial effects in trauma patients.

 Blood Product Resuscitation Strategies

The optimal resuscitation strategy for patients with LTH and severe TBI in the pre-
hospital settings involves early administration of either whole blood or red blood 
cells (RBCs), fresh frozen plasma (FFP), and platelet concentrates while minimiz-
ing crystalloid use. Such blood products and derivatives have demonstrated superi-
ority to crystalloids and colloids by providing definitive resuscitation through 
improving oxygen-carrying capacity, replacement of clotting factors, and anti- 
inflammatory mechanisms [12, 107]. Furthermore, blood product administration 
can mitigate the effects of the lethal triad including trauma-induced coagulopathy, 
hypothermia, and acidosis. In the setting of isolated LTH, blood products should be 
administered either as whole blood or in a 1:1:1 fashion to target DCR through 
hypotensive resuscitation (SBP target of 90 mmHg) for patients with hemoglobin 
deficits, ongoing hemorrhage, and hemodynamic instability. However, when con-
current severe TBI exists with LTH, achieving DCR requires targeting a SBP greater 
than 100 mmHg, depending on age, and an adequate CPP, as previously discussed 
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[57]. Currently, no well-defined transfusion thresholds based on evidence guide 
transfusion practices in patients with severe TBI/closed head injury. It is well 
known, however, that patients with severe TBI requiring blood product transfusions 
demonstrate poor clinical outcomes [108]. As such, judicious blood product trans-
fusion should be considered to minimize morbidity and mortality.

 Red Blood Cell Transfusion

Within recent years, RBC transfusion for anemia in patients with severe TBI has 
become a controversial topic. Post-traumatic anemia and poor clinical outcomes in 
patients with severe TBI has been an inconsistent finding [109]. It is well known 
that decreased oxygen delivery to the brain following severe TBI can result in pro-
gression of ischemia, causing secondary brain injury [108]. As oxygen delivery to 
the brain is primarily dependent on the hemoglobin (Hb) concentration, decreased 
Hb has been suspected to cause exacerbation of TBI [108]. However, the exact Hb 
threshold at which RBCs should be administered for transfusion has remained a 
matter of debate [110, 111].

Currently, there are clear clinical guidelines indicating that a Hb less than 7 g/dL 
mandates RBC transfusion [109]. Randomized control trials analyzing the role of 
restrictive transfusion (Hb <7 g/dL) compared to liberal transfusion (Hb <10 g/dL) 
demonstrate that patients with restrictive Hb transfusion thresholds had more favor-
able outcomes and less thromboembolic events [112, 113]. Although previously 
employed, there appears to be no benefit to liberal transfusions for severe TBI 
patients targeting a Hb greater than 10 g/dL. In fact, liberal transfusion may be del-
eterious [114]. Some studies have indicated that liberal transfusion thresholds can 
even lead to progressive hemorrhagic injury, contributing to higher morbidity and 
mortality [115]. Although further work to elucidate the optimal Hb threshold is 
ongoing, most providers would agree that the current standard involves restrictive 
blood transfusion thresholds in patients with non-active bleeding. For patients with 
active bleeding, it is reasonable to maintain a Hb of at least 9 g/dL.

 Fresh Frozen Plasma Transfusion

Plasma-based resuscitation strategies have demonstrated improved outcomes in 
trauma patients within recent years. Following LTH, clotting factor levels can 
decrease by nearly 30% from baseline after replacing a patient’s blood volume with 
RBC transfusions [116]. Any further hemorrhage beyond this point can severely 
impact a patient’s ability to maintain hemostasis, leading to trauma-induced coagu-
lopathy, which is present in nearly 25% of trauma patients [18]. Within recent years, 
the Pragmatic, Randomized Optimal Platelet and Plasma Ratios (PROPPR) trial 
assessed clinical outcomes in severely injured trauma patients receiving high and 
low plasma and platelet transfusion ratios (1:1:1 versus 1:1:2 plasma: platelet: RBC) 
[117]. Although no differences were found in 24-hour or 30-day mortality, the 1:1:1 
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group experienced fewer deaths by exsanguination at 24 hours [117]. This improve-
ment has been thought to be secondary to FFP’s ability to decrease vascular perme-
ability and promote improvement in endotheliopathy.

In the setting of concurrent LTH and severe TBI, no randomized control trial data 
exists for plasma-based resuscitation strategies. However, well-performed preclini-
cal animal and clinical observational and prospective studies appear to suggest a 
benefit. In porcine models of concurrent LTH and severe TBI, FFP improves sec-
ondary brain injury through decreased lesion size and improved neurologic recov-
ery [118]. Lyophilized plasma, an alternative strategy that meets military constraints 
(e.g., long shelf-life, stable without need for refrigeration, low volume), has also 
been investigated demonstrating comparable therapeutic effects to FFP on second-
ary brain injury and neurologic recovery in porcine models [119]. Such benefits are 
suspected to be due to improvement in volume expansion and cerebral perfusion, 
attenuation of glutamine-mediated excitotoxicity, decreased mitochondrial dys-
function, as well as repair of endothelial and BBB injury [120]. Repair of endothe-
lial injury following LTH with plasma-based resuscitation strategies has been 
confirmed in animal lung models [121, 122]. It is also suspected that FFP resuscita-
tion can directly affect gene regulation by upregulating genes involved in metabolic 
and platelet signaling, and downregulating genes involved in inflammatory path-
ways [123].

Several human studies have confirmed beneficial effects with plasma-based 
resuscitation; however, others report detrimental effects. Peininger et  al. demon-
strated that a high plasma:RBC ratio is an independent predictor of improved sur-
vival among 1250 trauma with concurrent LTH and severe TBI [91]. However, 
others have demonstrated that high plasma:RBC transfusion ratios are associated 
with improved survival in patients without TBI [124]. A few studies, however, have 
reported adverse outcomes with FFP transfusion, demonstrating worsening second-
ary brain injury and higher mortality rates in TBI [125]. Although some controversy 
remains, further work is required to further elucidate the effects of FFP in human 
trauma patients with concurrent LTH and severe TBI. Investigation is also needed to 
compare the safety and efficacy of different formulations of plasma such as FFP, 
liquid plasma, and solvent detergent plasma. Processing differences for plasma lead 
to alterations in product characteristics and immune effects [126, 127]. It is unknown 
if these in vitro differences have any clinical relevance.

 Platelet Transfusion

Similar to plasma-based resuscitation strategies, platelet resuscitation strategies 
have demonstrated improved outcomes in patients with LTH within recent years. 
Similarly, the PROPPR trial demonstrated that high platelet ratio transfusions (1:1:1 
versus 1:1:2 plasma: platelet: RBC) patients can significantly decrease deaths by 
exsanguination at 24 hours in severely injured trauma patients [117].

Evidence for platelet-based resuscitation strategies has been emerging for 
patients with concurrent LTH and severe TBI.  It is well-known that platelet 
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consumption and dysfunction occurs secondary to alteration in local and systemic 
coagulation pathways following TBI [6]. In recent years, ratio-based platelet resus-
citation strategies have demonstrated improved outcomes in trauma patients with 
TBI.  Spinella et  al. conducted a retrospective review analyzing 2,312 trauma 
patients with massive hemorrhage, with and without TBI, focusing on patients who 
received high or low platelet to RBC units (<1:2 vs. ≥1:2) [124]. TBI patients who 
received high platelet ratios were found to have improved 30-day survival compared 
to patients with low platelet:RBC ratios [124]. Similarly, in a 3-year retrospective 
analysis of patients with TBI as the only major injury, Oroujikoar et al. found that 
TBI patients receiving ratio-based platelet resuscitation had higher survival rates 
compared to patients with non-ratio based resuscitation strategies [128]. For severe 
TBI patients requiring massive transfusion for concurrent LTH, it is suspected that 
ratio-based platelet resuscitation can help aid in intravascular volume resuscitation, 
platelet replenishment, as well as prevention of dilutional coagulopathy [128]. This 
correction of coagulopathy, through platelet resuscitation, may also help improve 
clinical outcomes for patients with intracranial bleeding, as well as improve time to 
definitive operative repair if needed [129]. The benefits of plasma transfusion may 
also occur with platelet transfusion since there is almost an entire unit of plasma 
within a unit of apheresis platelets.

Within recent years, several animal studies have attempted to investigate the 
mechanisms of action by which platelets provide therapeutic effects in TBI at the 
level of the brain. In a rodent model, platelets have been demonstrated to promote 
BBB healing by activating oligodendrocyte precursor cells (OPCs) [130]. OPCs are 
predominantly responsible for differentiation into oligodendrocytes, which can then 
repair injured areas of demyelination secondary to TBI [130]. Further studies inves-
tigating this arena are currently being employed.

 Whole Blood Transfusion

Although previously considered the historic resuscitation for LTH, whole blood 
had, until recently, disappeared from mainstream use for definitive resuscitation. 
Unfortunately, this transition from whole blood to blood component transfusion had 
occurred without clinical evidence of superior or equal efficacy and safety. Within 
recent years, however, there has been a resurgence of whole blood for transfusion in 
both military and civilian centers for LTH. Currently, there are 20 trauma centers 
implementing whole blood for transfusion in LTH, and this list is rapidly 
expanding.

Although data continues to emerge to support its use, whole blood may pro-
vide many biological and logistical advantages compared to blood product com-
ponent therapy [131]. First, whole blood contains balanced and increased cellular 
components of RBCs, platelets, and plasma [132]. This avoids additives and anti-
coagulants that can contribute to dilutional coagulopathy noted with individual 
therapies [132]. Furthermore, whole blood contains a 30% higher oxygen 
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carrying capacity when compared to individual blood component therapy [133]. 
In terms of hemostatic function, platelets in whole blood stored at 2–6 °C have 
improved platelet aggregation and stronger clots compared to those stored at 
20–24 °C [134–138].

Although there may be may logistical and biological benefits to whole blood 
transfusion, there is limited data regarding its use in LTH and TBI. Further studies, 
however, are required to help further support its adoption in the near future.

 Complications of Blood Product Transfusion

Although blood products can be life-saving and improve outcomes when adminis-
tered early and in ratio-based resuscitation, they should be administered judiciously 
as several possible complications may occur. The most common complications 
include either acute or delayed, non-hemolytic reactions, which are relatively minor. 
For patients with severe TBI, transfusion-related acute lung injury (TRALI) and 
transfusion-associated circulatory overload (TACO) can contribute to significant 
morbidity and mortality [139–141]. TRALI results from immune complex- mediated 
damage to the pulmonary vasculature resulting in increased permeability and 
edema, which can manifest as dyspnea and bilateral pulmonary edema. In TACO, 
increased hydrostatic pressure results in increased edema, manifesting as respira-
tory distress, hypoxemia, and volume overload [108]. Treatment for TRALI and 
TACO involves initial supportive measures and mechanical ventilation, while TACO 
also mandates diuresis [108].

 Novel Therapeutics Agents for Improving Clinical Outcomes

Within recent years, identifying pharmacologic agents to improve outcomes in 
patients with concurrent LTH and severe TBI has become an area of interest. As 
far-forward settings and austere environments are often resource-limited and logis-
tically constraining, definitive resuscitative strategies with blood products are not 
always possible. Pharmacologic agents improving survival and minimizing neuro-
logic injury, coagulopathy, inflammation, and oxidative stress have been investi-
gated. Such agents are low volume, environmentally stable, cheap, and easy-to-use 
and have the potential to be high impact treatment strategies. Among numerous 
agents, valproic acid (VPA) appears to be a promising prehospital neurotherapeutic 
agent which could be used in patients with concurrent LTH and severe TBI. It has 
demonstrated its significant therapeutic effects in preclinical animal models. Other 
agents, including anti-inflammatory, anti-edema, and antioxidant agents, have dem-
onstrated promise, although their therapeutic profiles are more selective and tar-
geted. Further studies investigating the therapeutic effects of these agents are 
ongoing but are likely to be potential treatment strategies in the near future [142].
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 Valproic Acid

VPA, a historic anti-convulsant drug approved by the Food and Drug Administration 
(FDA) in 1978, has become a promising agent for patients with LTH and severe TBI 
in recent years. VPA is a histone deacetylase inhibitor (HDAC inhibitor or HDACI), 
which causes histone and non-histone acetylation affecting gene expression and 
protein function. When added to other resuscitative fluids, VPA has been demon-
strated to improve outcomes in preclinical models. In rats, NS + VPA (300 mg/kg) 
resuscitation improved survival to 80% compared to 17% in animals resuscitated 
with NS alone [143]. In swine subjected to LTH and polytrauma, Hextend + VPA 
improved survival to 50% compared to 25% in Hextend-treated animals alone [144].

In recent years, large animal models have been used to further demonstrate VPA’s 
effects in traumatic models including concurrent LTH and severe TBI.  In swine 
subjected to TBI and LTH, animals resuscitated with NS + VPA (150 mg/kg) dem-
onstrated smaller brain lesion size, decreased neurologic injury, improved neuro-
logic recovery, and faster normalization of cognitive function [145]. With the 
addition of polytraumatic injuries, similar findings have been observed. Animals 
resuscitated with NS + VPA (150 mg/kg) showed less neurological impairment and 
smaller brain lesion size after treatment compared to those resuscitated with NS 
alone [146].

In mediating these effects, VPA has been shown to alter the BBB following 
injury and promote gene regulation in the brain and peripheral blood mononuclear 
cells (PBMCs) [147]. Following administration in swine subjected to TBI and LTH, 
VPA treatment improves protein expression profiles leading to improvement of 
BBB integrity [148]. Brain tissue harvested at 8 hours following VPA treatment has 
even demonstrated upregulation of genes involved in neurogenesis and neuroregula-
tion and downregulation of genes involved in apoptosis and inflammation [148]. 
Similarly, in swine subjected to TBI, polytrauma, and LTH, VPA-treated animals 
demonstrated altered gene expression in PBMCs [149]. VPA treatment upregulates 
gene pathways involved in cellular growth and proliferation, and downregulates 
pathways involved in alteration of cell cycle checkpoints, apoptosis, acute phase 
reactants, and the inflammatory response [149]. In similar models, VPA treatment 
has also been demonstrated to reduce collagen, arachidonic acid, and adenosine 
diphosphate-induced platelet aggregation, suggesting that VPA can decrease plate-
let aggregation and affect clot dynamics (strength and rate) [150].

Initial human studies have demonstrated great promise as well. The safety and 
tolerability of high-dose VPA has recently been tested [151] and will be moving to 
a phase II clinical trial in the coming years.

 Anti-inflammatory Agents

Astrocyte and microglial activation, cytokine release, and BBB disruption can con-
tribute significantly to the development of neuroinflammation following TBI. Within 
recent years, inhibiting neuroinflammation has been a potential target to improve 
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clinical outcomes following TBI. Anti-inflammatory pharmacologic agents, includ-
ing minocycline, have become promising candidates. Minocycline is a second- 
generation tetracycline that exhibits potent anti-inflammatory and neuroprotective 
properties and has been shown to be effective in preclinical models through sup-
pression of IL-1B, IL-6, microgliosis, and neuronal apoptosis [152]. In the past 
several years, minocycline has been demonstrated to reduce serum neurofilament 
levels in patients with spinal cord injury (SCI) in clinical trials [153]. Although 
several studies have demonstrated improvements in long-term behavior following 
neurologic injury, others have demonstrated only transient effects on recovery 
[152]. Others, however, are concerned that despite decreasing microglial activation, 
increased neurodegeneration may be observed with minocycline use [154, 155]. 
However, further studies in this arena are ongoing.

Synthetic peroxisome proliferator-activated receptor (PPAR) agonists are another 
potentially efficacious anti-inflammatory agent for the treatment of TBI and 
SCI. Following activation, PPARs can translocate from the cytoplasm to the nucleus 
to augment gene expression, suppressing COX2 and iNOS, two pro-inflammatory 
mediators [156–158]. Fenofibrate has been shown to reduce inflammation, oxida-
tive stress, and cerebral edema following TBI through PPAR-alpha agonism [159]. 
However, Pioglitazone and Rosiglitazone, PPAR-gamma agonists, have also been 
demonstrated to decrease astrocytic and microglial activation and to promote neu-
roprotective proteins HSP27 and Mn-SOD, facilitating improved behavior and his-
tological outcomes following TBI [160, 161]. Such effects have even been observed 
in various TBI models including cortical impact, diffuse TBI, and lateral percussive 
injury [160, 162, 163].

 Anti-edema Agents

Cerebral edema is a significant contributor to early morbidity and mortality follow-
ing TBI. It can lead to a significant increase in ICP, preventing the brain from appro-
priate cerebral perfusion and oxygenation [164]. When severe TBI is coupled with 
aggressive fluid resuscitation, cerebral edema can worsen even further [164]. Several 
agents have been used to help prevent against cerebral edema in these settings. In 
severe TBI, the administration of mannitol, an osmodiuretic, has been demonstrated 
to decrease brain edema for in-hospital patients [165]. However, prehospital data is 
currently lacking and mannitol use may be contraindicated for severe TBI patients 
with concurrent LTH given the risk of hypotension. Other pharmacologic agents, 
including cannabinoid receptor agonists, have demonstrated promise in the preclini-
cal setting [166–168]. Following TBI, dexanabinol (HU-211) has been shown to 
reduce brain edema by decreasing neuroinflammation and improving BBB integrity 
in a murine model of closed head injury. Furthermore, selective activation of can-
nabinoid receptor-2 has been shown to reduce neuroinflammation, reduce cerebral 
edema, enhance cerebral blood flow, and even improve neurobehavioral outcomes 
following murine models of controlled cortical impact-induced TBI and 
endovascular- induced subarachnoid hemorrhage [168, 169].
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 Antioxidative Agents

Oxidative damage to the brain can occur as early as minutes following TBI. Several 
key pathways involve free radical production from the enzyme xanthine oxidase, 
arachidonic acid cascade, and mitochondrial leak/generation. Following produc-
tion, these free radicals can cause significant oxidative damage to proteins, DNA, 
and RNA. In recent years, targeting inhibition of free radical production and scav-
enging circulating free radicals has been investigated [170].

Cyclosporine A (CsA), a drug commonly used as immunosuppression in trans-
plantation, inhibits mitochondrial permeability transition pores, which can pre-
vent the production of free radical species [142]. Initial preclinical studies have 
demonstrated promise, as it has been able to provide neuroprotection in preclini-
cal models by inhibiting lipid peroxidation and mitochondrial damage contribut-
ing to neurotoxicity [142]. Other drugs, including phenelzine, an FDA-approved 
monoamine oxidase inhibitor, have demonstrated similar results and may act syn-
ergistically to CsA [171]. These drugs are suspected to act via attenuation of 
mitochondrial dysfunction and neuronal damage and to decrease glutamate and 
lactate levels [172–174]. Other promising antioxidant therapies, including 
dimethyl fumarate, ubiquinol, and N-acetylcysteine, have demonstrated efficacy 
in preclinical models when administered within several hours following injury 
[175–177]. Unfortunately, many of these have failed to demonstrate translation 
into human TBI patients secondary to their limited therapeutic window. However, 
some view this limitation as an excellent opportunity for prehospital neurothera-
peutic resuscitation if able to be administered early [178]. Further studies are 
required to further refine these therapeutic strategies targeting prevention of 
 oxidative damage.

 Conclusions

In conclusion, LTH and severe TBI remain leading causes of preventable deaths in 
trauma. Although DCR has become a highly popular treatment strategy for LTH, the 
presence of concurrent severe TBI requires alternative treatment strategies and man-
agement considerations. It is important to understand that the presence of severe 
TBI can significantly contribute to systemic coagulopathy. Improving patient out-
comes requires being well-versed in the pre- and in-hospital care of patients with 
LTH and severe TBI, which aim to minimize secondary brain injury and optimize 
cerebral hemodynamics. Several novel resuscitative treatment strategies have dem-
onstrated great promise in improving outcomes in patients with LTH and TBI, but 
require further testing and exploration in the coming years. To ensure streamlined 
delivery, all of these options should be carefully considered and incorporated into an 
Institutional TBI-Management Protocol in collaboration with the various stakehold-
ers (emergency medicine, trauma surgeons, neurosurgeons, pharmacy, blood bank, 
nursing, etc.). These protocols should also be periodically updated as new informa-
tion becomes available.
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16Emergency Preparedness Aspects 
of DCR for Civilian Mass Casualty 
Scenarios

David W. Callaway, Reed Smith, and Sean M. Fox

 Introduction

The goal of Mass Casualty Incident (MCI) preparedness and response is to reduce 
potentially preventable death during times of acute health system strain from patient 
volume and acuity [1–3]. An MCI is defined as an event which “generates more 
patients at one time than locally available resources can manage using routine pro-
cedures or resulting in a number of victims large enough to disrupt the normal 
course of emergency and health care services and would require additional non- 
routine assistance.” [4] Though extensively studied in the military, the epidemiol-
ogy of mortality in civilian Traumatic-MCI (T-MCI) is more variable. In the civilian 
setting, despite a decade of high-profile dynamic T-MCIs, there exists no standard 
injury pattern [5]. For example, a 2014 Emergency Medical Services database 
 analysis revealed that although 40.7% of self-reported MCIs were categorized as 
“traumatic,” motor vehicle accidents accounted for 63% of the calls (i.e., blunt 
mechanism). In contrast, Smith et al. reported a majority of mortality from Civilian 
Public Mass Shootings was secondary to penetrating torso and neurologic trauma 
(i.e., penetrating mechanism) [6, 7]. Accordingly, health systems must implement 
an all-hazards approach to T-MCI, be prepared for much broader threats, and 
develop robust polytrauma response paradigms.
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Damage control resuscitation (DCR) is the current standard of care for treatment 
of patients suffering from trauma-related massive hemorrhage. DCR is a bridging 
strategy that aims to minimize blood loss, hypothermia, acidosis, and coagulopathy 
through early hemorrhage control, aggressive hemostatic resuscitation, and rapid 
movement to surgical hemorrhage source control to enable definitive surgical stabi-
lization. Early, aggressive, and rapid are the key phrases in the Emergency 
Department. However, the complexity, patient volume, and systems impact of 
T-MCI create unique challenges to DCR implementation.

This chapter will focus on the tiered application of damage control resuscitation, 
including remote DCR (RDCR) principles, as a key pillar of civilian T-MCI emer-
gency readiness and response. The emergency management framework is a standard 
tool for developing a systems approach to DCR integration into the full spectrum of 
T-MCI and disaster response. For the purposes of this chapter, the doctrine will 
broadly divide disasters into readiness and response phases applied across the oper-
ational arenas of prehospital care, first receiver facilities (FRF), and trauma 
centers.

 Readiness

In the hemorrhaging trauma patient, the development of oxygen debt that causes 
endotheliopathy and immunologic and hemostatic dysfunction is referred to as 
“blood failure” [8]. Up to 25% of major trauma patients presenting to the ED suffer 
from acute traumatic coagulopathy (ATC) with resultant increased mortality [9]. 
Although, the mechanisms of ATC are complex, it is thought to be caused by hypo-
perfusion that leads to increased activated protein C and hyper-fibrinolysis. Thus, 
the DCR approach of hemostatic resuscitation is based on the principle of balanced 
blood product administration, limitation of crystalloid/colloid infusions, plus phar-
macologic adjuncts in order to limit “blood failure,” and death from hemorrhage. 
Early initiation of hemostatic resuscitation at point of injury and continuation 
through FRF and on to the trauma center improves 24-hour and 30-day survival in 
trauma [10, 11]. However, the logistics of hemostatic resuscitation and DCR are 
challenging given the variable resources across systems, and success relies heavily 
on a systems commitment to readiness.

Readiness is broadly comprised of mitigation and preparedness activities. A crit-
ical initial step in T-MCI readiness is articulating the DCR priorities within the miti-
gation and preparedness context in order to align key response stakeholders from 
the prehospital, first receiver, and trauma center communities. Mitigation is the pro-
cess of clearly defining the problem set, conducting a system gap analysis, articulat-
ing a plan for whole of community and regional healthcare response, and executing 
pre-disaster measures to reduce risk. Mitigation activities should build capabilities 
(i.e., training, equipment, etc.) and address physical assets with limited capacity 
(i.e., ambulances, hospital beds, blood collection/distribution, etc.). Delineation of 
priorities and goals allows for an accurate system gap analysis (Table 16.1). A com-
mon operating framework with common language allows all stakeholders to align 
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Table 16.1 Example DCR gap analysis: blood product availability

Topic Risk Impact Priority Current Proposed Gap
General Determine 

the range 
of 
potential 
disasters 
likely to 
be faced

Predict the 
effect of these 
disasters on 
population, 
critical 
infrastructure, 
and 
government 
operations

1,2,3, etc. 
(1 = highest 
priority)

Quantitative 
or 
qualitative 
description 
of current 
system

Desired 
future 
state

Material, 
administrative, 
logistical, 
regulatory, and 
policy gaps

Prehospital 
RBC 
availability

Routine 
trauma
T-MCI 
surge

Delayed DCR 
and potential 
increased 
mortality and 
overall system 
blood product 
use

8 25% 2 U e.g., policies, 
quality 
assurance, 
blood storage

Prehospital 
plasma 
availability

Routine 
trauma
T-MCI 
surge

Delayed DCR 
and potential 
increased 
mortality and 
overall system 
blood product 
use

5 Very few 2 U e.g., policies, 
quality 
assurance, 
blood storage

Prehospital 
LTOWB

Routine 
trauma
T-MCI 
surge

Delayed DCR 
and potential 
increased 
mortality and 
overall system 
blood product 
use

3 Very few 4 U e.g., policies, 
quality 
assurance, 
blood storage

First 
receiver 
facility 
PRBC 
availability

Routine 
trauma
T-MCI 
surge

Inability to 
provide state 
of the art 
trauma 
resuscitation 
or offload 
trauma centers 
in T-MCI

6 4 U (units) 8 U e.g., Blood 
stewardship 
program

First 
receiver 
facility 
plasma 
availability

Routine 
trauma
T-MCI 
surge

Inability to 
provide 
state-of-the- 
art trauma 
resuscitation 
or offload 
trauma centers 
in T-MCI

4 2 U (units) 4 U e.g., Blood 
stewardship 
program

(continued)
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expectations and resources [12]. Intentional collaboration and coordination across 
disciplines and health systems is vital for developing this common operating frame-
work. Preparedness is a multiphase, continuous cycle of planning, organizing, train-
ing, equipping, exercising, evaluating, and taking corrective action in an effort to 
ensure effective coordination during T-MCI incident response [13]. Preparedness 
requires building the resilience of each link in the chain of survival through focused 
application of DCR capability and capacity building exercises. The Parisian 
response to the November 13, 2015, terror attack illustrates the importance of prep-
aration. As the attack unfolded, the French government activated their “White Plan” 
for the first time in the nation’s history. This robust plan, developed in the mitigation 
phase, had been frequently exercised; such familiarity allowed for a RDCR and 
fixed facility DCR plan to be deployed immediately.

 Prehospital

Early RDCR saves lives. Civilian prehospital T-MCI mitigation and preparedness 
activities should enable strategies that allow for rapid initiation of stabilizing trauma 
care at or near the point of wounding despite limited resources and personnel, 

Table 16.1 (continued)

Topic Risk Impact Priority Current Proposed Gap
Trauma 
Center 
blood 
product 
availability

Routine 
trauma
T-MCI 
surge

Required for 
standard of 
care trauma 
resuscitation

1 4 concurrent 
MTP

8 MTP
20 U 
LTOWB

e.g., No 
LTOWB 
policy or 
procedure, no 
financial 
model 
supporting

Local 
blood 
supplier 
product 
availability

Routine 
trauma
T-MCI 
surge

Direct access 
required if 
>15 patients 
requiring 
MTP

2 40 U PRBC
20 U FFP
10 U PLT

60 U 
RBC
40 U 
FFP
20 U 
PLT
50 U 
LTOWB

e.g., Financial 
model for 
FWB

Regional 
blood bank 
product 
availability

T-MCI 
surge

Direct access 
required if 
>20 patients 
requiring 
MTP

7 60 U PRBC
40 U FFP
20 U PLT

80 U 
RBC
60 U 
FFP
20 U 
PLT
100 
LTOWB

e.g. Financial 
model for 
FWB, 
regulatory 
compliance 
issues, ability 
to safely scale 
walking blood 
banks

Note the content and numbers listed are for illustrative purposes only
MTP Massive transfusion packs, RBC Red blood cells, FFP Fresh frozen plasma, PLT Platelets, 
LTOWB Low Titer Group O Whole Blood, U Unit
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followed by coordinated continuity of care across the entire medical response 
 system. However, the complexity of the civilian healthcare system means that medi-
cal directors of EMS/fire agencies must clearly determine how to implement the 
basic principles of RDCR.  They must then develop training standards, identify 
funding sources, standardize and ensure compatibility of equipment, and create sus-
tainment plans that span community groups and professional first responders.

Unification around common response language is critical to successful inter-
agency RDCR implementation. The US military demonstrated that the tiered pre-
hospital application of RDCR principles through the systematic application of the 
Tactical Combat Casualty Care (TCCC) operational paradigm reduces mortality 
from trauma in combat [2]. The shared common language of TCCC allowed for 
clear outcomes, standardized training, and accountability. In the civilian pre-trauma 
center arena, the Committee for Tactical Emergency Casualty Care (C-TECC) high- 
threat trauma chain of survival offers a parallel framework for the integration of 
RDCR principles into T-MCI response [14–16].

The TECC guidelines provide a foundation for comprehensive civilian prehospi-
tal DCR plans [17]. The guidelines are based on the application of RDCR principles 
in a threat-based matrix comprised of three dynamic phases: direct threat, indirect 
threat, and evacuation care [18]. In direct threat care, the focus is on responder 
safety and the first principle of RCDR-aggressive control of life-threatening hemor-
rhage using a combination of direct pressure and tourniquets. Success requires pre-
paring all levels of care providers, from the citizen through the highly trained 
Emergency Medical Providers to execute hemorrhage control in high-threat envi-
ronments. In the indirect threat care phase, the external threat to victim and responder 
is present but is not direct and immediate. During this phase, depending on the 
resources and situation, additional aspects of RDCR can be initiated. The final 
phase of TECC is termed evacuation care and occurs when the injured and the pro-
vider are in areas where there is little ongoing threat. During this phase, all aspects 
of RDCR should be considered. Experience from the US military suggests that 
early, aggressive resuscitation with blood products, including whole blood, reduce 
mortality from trauma [19, 20]. However, in domestic operations data supporting 
whole blood use in trauma remains sparse [21]. Based upon community resources, 
operational constraints, and risk tolerance, appropriate resuscitation strategies may 
range from low-crystalloid resuscitation to prehospital administration of whole 
blood. During the readiness phase, leaders must determine where on this RDCR 
continuum their system will fall and create strategies to fill their gaps.

Readiness activities must acknowledge the logistical challenges of RDCR and 
create solutions for scenarios where full operational medical resources may not be 
brought to bear. On a basic level, this means aggressively implementing whole of 
community hemorrhage control programs such as Stop the Bleed or FEMA’s Until 
Help Arrives. On a high level, it means examining decisions regarding out of hospi-
tal resuscitation standards. For example, for RDCR to have the greatest effect on 
survival, prehospital systems must embrace field blood transfusion programs, sys-
temic and topical hemostatic adjuncts, tourniquets, and educating providers about 
the risks of using positive pressure ventilation for hemorrhagic shock patients. 
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Protocols, procedures, training, and guidance for EMS providers on airway and 
prehospital blood management and administration must be developed. Transfusion- 
related material should include the medical aspects of transfusion, strategies for 
management of transfusion expenses, mitigation of regulatory compliance issues, 
strategies for quality control and medical quality assurance, training on transfusion 
indications, protocols for judicious product utilization, and strategies for recycling/
rotation of blood products back to the blood bank to limit waste.

In addition, medical systems readiness must address the need for interoperable 
and coordinated communication. RDCR implemented on scene must be able to be 
communicated to first receiver facilities to efficiently transition from field RDCR to 
inhospital DCR. Without an effective communication system between prehospital 
public safety assets and fixed medical facilities, the gap in information will be a true 
barrier to real-time implementation. Additionally, the content and data points shared 
in this field report should be clearly defined. By defining and training to this com-
munication flow, the real-time dissemination of medical information will allow for 
successful RDCR and DCR across the multiple levels of provider care.

 First Receiver Facilities (FRF)

First receiver facilities (FRF) are defined as non-Level 1 trauma centers that by 
design or circumstance provide initial live-saving care for victims of T-MCI. While 
trauma centers are often the focus of preparedness funding, there are only 217 level 
1 trauma centers in the United States [22]. As a result, first receiver facilities with 
limited resuscitation and operative capabilities may find themselves on the front line 
of T-MCI response and fill a key role in the TECC Chain of Survival. The response 
to the 2017 Las Vegas attack clearly demonstrated that non-level 1 trauma centers 
play a major role in mitigating the consequences of T-MCI. The Sunrise Medical 
Center in Las Vegas, a level 2 trauma center, received over 150 patients in less than 
an hour. Non-trauma facilities in the Valley Hospital System care for an additional 
228 victims [23].

First receiver facilities often have only limited resuscitation resources (e.g., 
blood products such as platelets) and limited surgical coverage and may have little 
experience in managing T-MCI. The whole of community readiness process must 
acknowledge these limitations, catalogue existing resources, and intentionally 
strengthen this link in the chain of survival.

One model is to consider FRF as casualty collection points (CCP) where addi-
tional stabilization may occur prior to transfer to definitive care. Readiness efforts 
can focus on the nuanced application of RDCR. At the FRF, the key DCR opera-
tional goals should be hemorrhage control, hemostatic resuscitation (if possible), 
hypotensive resuscitation, hypothermia prevention, and rapid distribution of casual-
ties to regional trauma centers. Material acquisition should focus on targeted pur-
chases including tourniquets, hemostatic agents, and fluid warmers. Education 
programs should emphasize team training on key components of RDCR. Process 
development should focus on building robust transfer mechanisms. And, 
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administration efforts should create expedited staff credentialing procedures to 
maximize utilization of fixed resources such as operating theaters.

In addition to playing a stabilizing role, FRFs should also investigate mecha-
nisms to receive patients from trauma centers. Trauma centers could proactively 
move existing patients or transfer incident patients after initial stabilization. This 
“safety valve” model allows for urgent rather than emergent surge capacity and can 
offload postoperative caseloads from the trauma center.

While the above are important components of a robust readiness system, the 
major response gap at FRF is rapid access to adequate blood transfusion capabilities 
required for hemostatic resuscitation. Multiple studies have reported that earlier and 
increased use of RBCs, plasma, platelets, and whole blood are associated with 
improved outcomes [11, 20, 24, 25].

Again, reality and community limitations must be considered. So even in the 
absence of blood product availability, readiness activities can integrate other DCR 
components into the T-MCI resuscitation plan such as albumin-based resuscitation 
or low-volume crystalloid administration [26]. Since the landmark study by Bickell 
et al. in 1994, multiple studies have challenged the survival benefit of large volume 
or empiric intravenous fluid administration in trauma [27]. While maintenance of 
perfusion pressure is a core resuscitation principle, crystalloids result in dilutional 
anemia and coagulopathy, activate the inflammatory cascade, accelerate hypother-
mia, worsen acidosis, and result in interstitial edema due to increased permeability 
of capillary gap junctions [28–30].

During the readiness phase, it is critical that FRF develop continuity of opera-
tions plans (COOP). Ideally these plans improve daily operations in order to 
strengthen crisis response. For DCR, a key component of the COOP is close coor-
dination with local and regional blood banks to create robust donor and vendor 
systems. The COOP must be realistic and tailored to community resources. For 
example, if the primary DCR plan is to initiate RBC and FFP transfusion augmented 
by TXA and restricted crystalloid use, some critical points include:

• Identification of total blood products in the hospital at any given time
• Test time from ordering to preparation to delivery to administration
• Verification of blood product access priority
• Determining number of units allocated per patient
• Validating product resupply process and timing

 Trauma Center

Trauma centers are central to the readiness process, serving as the coordinating 
node, deep knowledge experts, and system advocates. Trauma centers play an 
important role leveraging regional trauma committees, utilization and evaluation of 
regional referral networks, coordination of educational activities, integration of vir-
tual care, and strengthening of logistical support. They must encourage and support 
the integration of non-trauma first receiver facilities into the broader DCR strategy.
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Trauma centers also play a critical role in pushing RDCR strategies closer to the 
point of injury. If prehospital damage control and blood transfusion is to be success-
ful in the United States, the blood collection centers must be fully integrated as 
leaders and partners in these programs. Organizations such as the American 
Association of Blood Banks need to develop guidance for blood collection centers 
to assist in implementation and management of field blood use, addressing the 
inherent regulatory issues, financial cost sharing, product tracking and accountabil-
ity, field quality control programs, and all guidance on supply and recycling/
rotation.

Trauma programs at large academic centers, as key subject matter experts, can 
play a leading role in building these coalitions to drive comprehensive DCR strate-
gies. They can also play an important role in driving public policy around DCR such 
as utilization of whole blood, development and distribution of alternative resuscita-
tion products such as freeze dried plasma, and development of tiered community 
DCR protocols.

At trauma centers, hemostatic resuscitation with component therapy or Low 
Titer Group O Whole Blood (LTOWB), hemostatic adjuncts, and rapid damage con-
trol surgery should be the standard of care. In T-MCI scenarios, patient volumes and 
compressed operational timelines can strain standard logistical and administrative 
support functions that enable DCR. Trauma programs must insure internal readiness 
through practiced implementation of the Hospital Incident Command System 
(HICS). The HICS creates a dedicated, standardized leadership function that allows 
for proper inter- and intra-facility coordination.

In order to provide timely DCR capabilities in T-MCI, health system leaders 
must be proactive in their inclusion of the hospital-based blood bank and blood sup-
pliers in the HICS. Health system leaders must build relationships with local and 
regional blood suppliers in order to “activate” these resources in T-MCI surges. As 
part of blood capacity readiness activities, systems should focus on building robust, 
yet flexible blood stewardship programs that support routine operations and allow 
for flexible surge capacity. These programs should include massive transfusion pro-
tocols (MTP) that have been demonstrated to improve outcomes and reduce blood 
product wastage, as well as goal-directed trauma resuscitation with viscoelastic 
testing [31–33].

 Response

The 2017 mass shooting in Las Vegas, NV, demonstrated the complex, dynamic 
nature of T-MCI response. The whole of community response to the attack included 
layperson interventions, law enforcement patient transport, integrated warm zone 
operations, non-trauma center engagement, and trauma center surge capacity. Las 
Vegas is the case study for whole of community application of the RDCR-DCR- 
damage control surgery (DCS) continuum in T-MCI. Readiness activities create the 
critical foundation for response and allows for flexibility during highly dynamic 
T-MCI scenarios.
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 Prehospital

The focus of RDCR is to extend the “physiologic system failure” time from point of 
injury to life-stabilizing/life-saving surgical care. Across the spectrum of high- 
threat T-MCI response, public safety entities face the same operational roadblocks 
to implementation. The high-threat patient care model is conducted in four separate 
phases: access, assess, stabilize, and evacuate. Each phase has unique consider-
ations as applied across the Direct Threat/hot zone (i.e., area where the direct ongo-
ing threat to the patient and responder exceeds the benefit of comprehensive trauma 
intervention), the Indirect Threat/warm zone (i.e., area of ongoing, indirect threat 
that can be mitigated in order to allow for targeted trauma care intervention), or the 
evacuation zone. Of note, given the increased targeting of first responders and cur-
rent threat matrix, responders should not consider any area a cold zone.

In the access and assessment phases, common barriers to care including ongoing 
threat, geographic restraints, overwhelming patient numbers, and equipment 
requirements. Though scene safety remains an important tenant of prehospital 
response, Emergency Medical System (EMS) and fire rescue are increasingly 
embracing a role in the integrated assault rescue model as they move to provide care 
in the warm zone. The two most common integrated response systems are the 
Rescue Task Force and the “Warm Corridor” models. The Rescue Task Force frame-
work pairs law enforcement and medical/rescue specialists to create dynamic 
response teams that move to casualties. In the “Warm Corridor” paradigm, law 
enforcement officers conduct preliminary clearance of areas then post at designated 
locations within line of sight of other officers to reduce the risk to responding medi-
cal teams. Regardless of the model deployed, the target outcome is to provide more 
robust capabilities and earlier EMS access to casualties in the warm zone [34–36].

The stabilization phase is the phase of response that, despite the barriers of ongo-
ing threat, wounding patterns, and limited manpower and equipment, has a clear 
path forward in the evidence- and best-practice-based DCR application guidelines 
of TECC. The evacuate phase has immediate operational challenges that become 
more complex in T-MCI (e.g., staging of ambulances, destination protocols, the use 
of alternative evacuation platforms, etc.).

The first casualty management step in T-MCI is identification and categorization 
of victims through proper scene management and triage. In high-threat T-MCI, 
these are dynamic processes. Traditional triage tools that immediately place ambu-
latory patients in green/low-acuity categories are dangerously limited in T-MCI 
with high volumes of penetrating trauma. In addition, US experience reveals that 
victims often flee the scene and self-present to hospitals, that ongoing threats can 
limit medical first responder response and prompt law enforcement transport of 
casualties, and stabilizing RDCR is often delayed during the evacuation phase.

Current triage tools were designed to determine priority for surgical intervention. 
However, they do not adequately account for modern DCR practices. Studies sug-
gest that markers of severe injury including multiple proximal amputations, pene-
trating torso trauma especially with evisceration, and torso trauma with 
decompensated hemorrhagic shock are predictors of blood transfusion and surgical 
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care. These components must be considered early in the T-MCI response in order to 
both determine correct destination protocols but also proactively engage system/
regional blood bank resources.

The second phase is rapid and coordinated victim evacuation to appropriate sta-
bilizing care. A “RDCR evacuation system” provides for rapid, multimodal trans-
port of casualties to definitive care or deploys advanced resuscitation assets closer 
to the point of injury. In the civilian setting, EMS is traditionally responsible for 
patient transport. However, in high-threat T-MCIs where access and egress may be 
compromised, casualty evacuation and transport require more operational flexibil-
ity. In certain circumstances such as penetrating torso trauma, speed of transport 
may be paramount. Several US studies suggest that, in urban environments, the 
utilization of private vehicles or police transport compared to EMS for victims of 
penetrating torso trauma results in equivalent or improved mortality [37–40]. 
Specific to high-threat T-MCI, in the response to the 2012 Century Theater shooting 
fleeing victims and bystanders prevented Fire and EMS from accessing seriously 
injured casualties. As a result, law enforcement transported 75% of the patients dur-
ing the first 30 minutes of response [41]. No adverse outcomes were reported.

Finally, in addition to structured nonmedical victim transport, systems should 
also have the capacity to provide RDCR interventions on scene or during transport. 
In scenarios with prolonged transport times or limited access to definitive care, 
slowing “physiologic system failure” is critical. Table 16.2 details RDCR transport 
planning components. In the civilian setting, many RDCR principles such as 
mechanical hemorrhage control, hypothermia prevention, limited crystalloid infu-
sion, and prehospital tranexamic acid (TXA) are gaining broader acceptance 
 [42–45]. However, there remains a significant RDCR capability gap related to the 
ability to perform balanced blood product resuscitation in the prehospital. Few EMS 
systems have prehospital blood protocols and only an estimated 25% of helicopter 
EMS systems have blood programs [46].

Emerging combat and civilian data suggests that prehospital blood component 
therapy in trauma is safe and feasible and may improve clinical outcomes [47, 48]. 
The London Ambulance Service demonstrated that civilian prehospital RBC 
administration in trauma was feasible, reduced blood product transfusion in 
24 hours, improved base excess/acid base balance on admission, and may improve 
survival [49]. Some US EMS agencies are even moving to LTOWB administration 
in the prehospital setting [50]. Clearly, with proper quality assurance and pro-
cesses, the ability to mobilize large stores of LTOWB in the prehospital setting 
could fundamentally change the future of resuscitation in T-MCI. Currently, pre-
hospital blood transfusion programs that, at minimum, allow for transfusion of 
RBCs and plasma should be considered the minimum capability of comprehensive 
prehospital RCDR [51].

Prehospital strategies to mitigate the acute coagulopathy of trauma are growing. 
Many prehospital systems currently use of tranexamic acid as a hemostatic adjunct 
to prevent and/or treat hyper-fibrinolysis and coagulopathy. Given the low cost and 
cube space of TXA, this intervention is relatively easy to scale in T-MCI. In addition 
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to TXA, many agencies are aggressively pursing options to administer plasma in the 
field. Fresh frozen plasma (FFP) and thawed plasma (TP) have been utilized by 
several US prehospital systems with varying degrees of success [11, 47, 52]. The 
logistics of prehospital plasma administration, especially in T-MCI, are daunting. 
Several studies demonstrate that more durable and field expedient plasma formula-
tions such as freeze-dried and spray-dried plasma are safe and effective [53, 54]. 
However, in the United States, there is currently no FDA-approved freeze-dried 
plasma option. In order to effectively provide RDCR during T-MCI, prehospital 
systems should have in place mechanisms to rapidly access plasma either through 
hospital-based resupply or destination protocols. Finally, hypothermia prevention in 
trauma is critical as a drop in core temperature of 1 °C decreases clotting factor 
function 10%, impairs platelet function resulting in spiraling coagulopathy, and 
increases morbidity and mortality in trauma patients [55, 56]. Many EMS systems 
now endorse limited patient exposure during the evacuation phase followed by rapid 
application of commercial hypothermia prevention kits. 

Table 16.2 Trauma system DCR transport components (example components)

Process Justification
Multimodal patient transport protocols (e.g., 
law enforcement transport)

Allows for more rapid movement of patients to 
definitive care
Rapid scene decompression of T-MCI

Dynamic trauma destination protocols Allows for rapid redistribution of patients based 
on bed availability
Alignment of resources with injury patterns
Reduces care variability
Improves efficiency in transport

Trauma evaluation protocols that limit time 
in the prehospital and non-trauma center care 
space (e.g., limited radiology utilization)

Improves efficiency in transport
Reduces presurgical time
Minimizes impact on non-trauma center patient 
flow

Aggressive blood product utilization 
protocols by transport teams

Addresses DCR balanced transfusion 
requirements
Mitigates capability gap in non-trauma center 
ED

Direct to OR/IR protocols Reduces time to definitive care
Creates frontline emergency department 
capacity
Reduces cost of additional ED visit
Improves staff: patient utilization ratio

Blood product replenishment protocols (e.g., 
transport agencies replenishing community 
hospital)

Maintains DCR capabilities of non-trauma 
center hospital
Cost-efficient solution for maintaining DCR 
capability within trauma system

Coordinated, interoperable communication 
systems and defined communication content

Allows efficient information flow among public 
safety and health systems
Defined communications flow and content from 
field providers allows for seamless transition 
from RDCR to full DCR in healthcare facilities

16 Emergency Preparedness Aspects of DCR for Civilian Mass Casualty Scenarios



314

 First Receiver Facility Response

The FRF should focus on executing their COOP and emergency management plans. 
The mission is to provide EMS agencies with more robust pre-trauma center capa-
bilities and offload trauma center volume. Given the resource limitations of smaller 
non-level 1 trauma centers, in the face of overwhelming numbers, these facilities 
should focus on the basic components of RDCR including hemorrhage control, 
hypothermia prevention, limited crystalloid resuscitation, and limited use of radiol-
ogy studies to only guide triage and transportation priorities.

As noted, many FR facilities lack robust blood transfusion capabilities. With 
planning, a properly designed trauma system can account for these limitations 
through a variety of mechanisms. For example, many community hospital blood 
banks can rapidly provide the FR facility with 1–2 units of uncrossmatched PRBCs. 
However, access to plasma requires thawing of fresh frozen plasma (FFP) and a 
minimum delay of ≥45 minutes. In these circumstances, systems can deploy critical 
care transport teams to FR facilities equipped with thawed plasma or liquid plasma 
as part of their resuscitation armamentarium in order to achieve early balanced 
resuscitation [57, 58]. Pre-trauma center plasma administration has the added ben-
efit of early agent reversal in anticoagulated patients with TBI [59].

First receiver facilities universally do not have access to platelets in an operation-
ally relevant time frame. This deficiency limits the ability to reasonably meet 1:1:1 
ratio benchmarks in T-MCI. Fortuitously, the American Association of Blood Banks 
(AABB) recently changed their standards to include LTOWB as a transfusion option 
for hemorrhagic shock in trauma patients with unknown blood types [60]. This 
advancement, combined with the fact that under certain storage solutions, LTOWB 
can be stored at 4C for up to 35 days can mitigate the platelet gap and could dramati-
cally improve system preparedness for large-scale DCR implementation.

 Trauma Center

Trauma centers are the lynch pins in T-MCI response. The key role trauma centers 
play in reducing mortality in T-MCI is the ability to manage noncompressible hem-
orrhage through comprehensive DCR and damage control surgery (DCS) to a large 
surge of adult and pediatric patients on short notice. In general, hemorrhage control 
interventions in the emergency department (ED) are limited and the priority should 
be rapid movement to the operative suite or interventional radiology. However, two 
relatively rapid, potentially life-saving techniques are important when applied early 
in the DCR armamentarium, pelvic circumferential compression devices (PCCD) 
for high-energy pelvic fractures [61–63], and Retrograde Endovascular Balloon 
Occlusion of the Aorta (REBOA) [64, 65]. In appropriate patients, stabilization of 
pelvic fractures reduces blood product requirements and mortality. While PCCDs 
likely provide improved mortality, some data suggests that properly applied impro-
vised pelvic binders with bedsheets provides similar outcomes and this technique 
should be practiced in order to scale the capability during high-volume surge [66]. 
In T-MCI, REBOA offers a less resource intensive option than ED thoracotomy to 
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stabilize selected in extremis patients with torso trauma, expanding capabilities and 
buying time to move to operative repair or interventional radiology.

Trauma center blood banks are critical in the T-MCI response. The blood banks 
should execute their MCI policy and immediate begin to prepare MTP packs as well 
as initiate COOP plans to coordinate access to additional regional blood products. 
Additional staff will be required as timely, large volume blood product distribution 
to the ED, operating suite, and ICUs will be essential. Complicating operations, 
trauma centers must also be prepared to provide blood resuscitation for a diverse 
patient population in the T-MCI setting. For example, the elderly trauma victim on 
antiplatelet and warfarin therapy, perhaps with prior blood transfusion histories, 
creates clinical and administrative complexity.

Trauma programs in high-risk areas must also consider the possibility that a MCI 
may be large enough that it exhausts the local blood supply. While all efforts should be 
made to have blood products from the region transported to centers where casualties are 
being resuscitated, it is optimal to have a contingency plan just in case there are no blood 
products available and there are still casualties with survivable injuries to resuscitate. In 
countries where it is permitted, an emergency plan to collect warm fresh whole blood 
from donors near or within the trauma center can be developed. The collection and use 
of warm fresh whole blood has been a standard practice in military hospitals since the 
Civil War, but its use in civilian hospitals has been limited due to regulatory restrictions 
from using blood that has not been formally tested for transfusion transmitted diseases. 
In Norway, an emergency plan for the use of warm fresh whole blood has been devel-
oped and activated at least once in 2018 when the blood supply was near exhaustion. In 
countries or regions where the risk is high for the exhaustion of the blood supply in MCI 
events emergency fresh warm whole blood programs should be considered.

Another complex scenario is the appropriate administration of balanced blood 
products to the traumatized child. Though there is evidence that higher plasma and 
platelet to red blood cell ratios are associated with lower mortality rates in teenag-
ers, the pediatric specific literature is often undermined by the small study popula-
tion sizes and the fact that many of the attempts to achieve the 1:1:1 ratio are not 
successful due to the logistics of obtaining the thawed plasma [67, 68]. Given the 
infrequency of severe pediatric trauma and the mixed data, the application of DCR 
in a single, severely injured child is challenging. Trauma centers cannot rely on ad 
hoc pediatric resuscitation. They must develop and train specific pediatric DCR 
plans then build the operational systems in order to scale these during a 
T-MCI. Specifically, consideration should be made for pediatric MTP logistics (e.g., 
weight-based blood administration, hypothermia prevention protocols).

 Conclusions

Damage control resuscitation is the standard of care for the systematic management 
of the critically injured trauma patient in MCIs. Early hemorrhage control, hypoten-
sive resuscitation, hemostatic resuscitation, limited crystalloid administration, phar-
macologic adjuncts, and aggressive hypothermia prevention can mitigate blood 
failure and improve survival.
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In the wake of the Pulse Nightclub shooting, Orlando Regional Medical Center 
(ORMC), the local level 1 trauma center, absorbed greater than 50 casualties over 
the span of a few hours. The location of the shooting resulted in rapid transport to a 
level 1 trauma center. And, the timing of the attack (i.e., late evening) allowed for 
ORMC to surge into multiple open operating theaters. However, lessons from the 
2015 Paris attacks and the 2017 mass shooting in Las Vegas demonstrate reliance on 
a single trauma center can create a fragile response system. These incidents instead 
demonstrated that proper mitigation and planning must be undertaken in the readi-
ness phase in order to enable the appropriate application of a whole of community 
response to a T-MCI. All healthcare systems that potentially manage trauma patients 
should implement a comprehensive, tiered DCR strategy as part of their emergency 
preparedness activities.
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DCR for Non-trauma Patients

Ryan P. Dumas and Jeremy W. Cannon

 Introduction

Since the introduction of the truncated laparotomy in 1983 [1] and subsequent 
 popularization of damage control surgery (DCS) by Rotondo et al. in 1993 [2], similar 
concepts have been applied to resuscitation, termed damage control resuscitation (DCR) 
[3, 4]. DCR combats the “lethal triad” of trauma coagulopathy and has become the stan-
dard of care for severely injured trauma victims with exsanguinating hemorrhage [4–8]. 
When combined with DCS, this approach has been associated with improved patient 
outcomes [9]. The fundamental importance of hemostatic resuscitation was underscored 
by the PROPPR trial in which patients in the 1:1:1 group achieved hemostasis sooner and 
had decreased mortality from hemorrhage within the first 24 hours [10].

Despite these potential benefits, the application of DCR principles remains vari-
able [11, 12]. Evidence-based clinical recommendations for the application of DCR 
are the subject of a new Eastern Association for the Surgery of Trauma (EAST) 
guideline [13]. The emphasis on trauma applications is understandable given the 
demographics of hemorrhage-related deaths in the United States; however, peptic 
ulcer disease, ruptured abdominal aortic aneurysm, and maternal hemorrhage also 
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claim numerous lives every year (Fig. 17.1). In addition, some studies estimate that 
perioperative hemorrhage in cardiac, vascular, oncologic surgery, and other opera-
tions for benign conditions are responsible for between 60% and 70% of patients 
undergoing massive transfusions [14, 15]. Thus, it is very important to consider how 
the principles of DCR may apply in these non-trauma populations [16]. This chapter 
will review the use of DCR principles in various nontraditional patient populations 
including pediatric patients, geriatric patients, and non-trauma patients.

 Pediatrics

The principles of DCR should be in the forefront of every practitioner’s mind taking 
care of a bleeding pediatric patient. The core tenets of DCR in this population 
remain the same: hemostatic resuscitation while limiting crystalloid administration, 
recognizing and treating causes of hypothermia, coagulopathy and acidosis, and 
rapid definitive hemostasis [17]. There are, however, multiple unique elements of 
pediatric morphology and physiology that make DCR in this population particularly 
challenging. Pediatric patients are thinner, have less subcutaneous fat, and have an 
increased surface area to body mass ratio and are thus vulnerable to hypothermia 
[18]. Furthermore, although pediatric patients have relatively more circulating vol-
ume (10% body weight vs. 7% in adults), the absolute pediatric blood volume is 
quite small [19, 20]. Thus, even seemingly small volumes of blood loss can repre-
sent a catastrophic hemorrhage in a child. Finally, although pediatric patients have 
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Fig. 17.1 Annual deaths and years of life lost (YLL) from hemorrhage in the United States. Each 
entity is shown as a relative percent, and the absolute numbers of deaths and YLL are shown above 
each bar (K denotes 1,000, M denotes 1,000,000). Perioperative deaths in the United States from 
other entities are not known and thus are not shown on this figure. AAA Abdominal Aortic 
Aneurysm, PUD Peptic Ulcer Disease. (Data from Cannon JW. Hemorrhagic shock. N Engl J Med 
2018. 378:370–9)
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increased cardiac reserve and are able to compensate for up to nearly 50% of blood 
loss before developing hypotension, once this reserve is spent, they tend to progress 
quickly to cardiac arrest [21]. Evidence suggests that pediatric patients may also 
respond differently to inflammation as compared to adults [22] and that children 
less than 12 months of age have immature hemostatic systems and may have differ-
ent blood transfusion requirements [23]. Additionally, procoagulant factor levels are 
reportedly low in pediatric patients until 6 months of age although the functional 
significance of these differences remains unclear [24]. Similarly, difference in plate-
let function, aggregation, and adhesion are also described [25].

With these important differences in mind, the following paragraphs summarize our 
current understanding of the application of adult DCR principles to pediatric patients. 
Historically, DCR has been used in pediatric patients undergoing burn resection and 
reconstruction for craniosynostosis [26]. More recently, data from combat operations 
in Iraq and Afghanistan have shed more light on the application of DCR in injured 
children [27, 28] while the ongoing MAssive Transfusion In Children (MATIC) study 
promises to illuminate modern pediatric resuscitation in civilian practice for both 
trauma and non-trauma patients (http://pediatrics.wustl.edu/matic/AboutMATIC).

 Permissive Hypotension

Permissive hypotension has historically been one of the core tenets of DCR but 
remains one of the most controversial. The evidence for permissive hypotension in 
adults is mixed [29, 30]; thus, its application remains unclear [17]. Despite two ran-
domize controlled trials that support use of permissive hypotension [31, 32] in trauma 
patients, a 2014 Cochrane Review concluded that there was insufficient evidence to 
support the use of hypotensive resuscitation strategies [33]. The most recent analysis 
from 2018, however, suggests there may still be a role and benefit for hypotensive 
resuscitation but that the majority of the studies are underpowered to detect a differ-
ence [34]. From the original study by Bickell et al. [23], it appears that delayed resus-
citation is likely best applied to patients with penetrating torso injuries in an urban 
environment with extremely short prehospital times. To date, there are no pediatric 
trials that have studied the use hypotensive resuscitation on pediatric patient outcomes 
and there is insufficient evidence to support the use of permissive hypotension. Thus, 
best practice in the perioperative period is likely to target age- adjusted normotension. 
Table 17.1 summarizes the normal vitals ranges in pediatric patients.

Table 17.1 Normal pediatric physiology [105, 106]

Respiratory rate  
(breaths per minute)

Heart rate  
(beats per minute)

Systolic blood pressure 
(mm Hg)

0–9 months 32 136 75
10–24 months 26 124 90
2–4 years 24 114 97
4–8 years 23 103 102
8–12 years 20 94 107
12–16 years 20 85 115

17 DCR for Non-trauma Patients
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 Minimize Crystalloids

There is evidence, however, to support the deleterious effects of crystalloid infu-
sions in pediatric patients. Prehospital IV fluid administration has been associated 
with increased transfusion requirements, abnormal laboratory coagulation parame-
ters, as well as a trend toward increased mortality [35]. In a recent large study of 
over 1300 pediatric trauma patients in Iraq and Afghanistan, investigators identified 
an association between crystalloid volume and both increased length of stay and 
prolonged ventilator days [36].

 Coagulopathy and Shock

There is general consensus that the acute coagulopathy of trauma present in adults 
is also present in pediatric trauma patients. In a recent retrospective review of over 
800 pediatric patients, early coagulopathy was present approximately one-third of 
patients and was associated with a significant increase in mortality [37]. Similar 
results have been reported in pediatric patients treated during combat operations 
[38]. Not surprisingly, hypotension and injury severity score with associated with 
early coagulopathy in pediatric patients [37].

 Transfusion

Similar to adult patient populations, a massive transfusion protocol (MTP) should 
be implemented in all pediatric tertiary care centers [18, 21]. In pediatric patients, 
massive transfusion is defined as one of the following: transfusion >100% of esti-
mated blood volume in 24 hours, ongoing transfusion of >10% of blood volume per 
minute, or replacement of 50% of estimated blood volume in 3 hours or less [23]. 
Importantly, a threshold of 40 cc/kg of all blood product transfused during the first 
24 hours identified children at risk for mortality [27].

Although the evidence for MTP use in pediatric patients is still emerging, 
developing and employing an MTP for bleeding pediatric patients are likely ben-
eficial [24]. The optimal target ratios of packed red blood cells, plasma, and plate-
lets for the empiric phase of an MTP have yet to be firmly defined. It seems, 
however, that in pediatric patients, there may be more latitude in the exact ratio 
than in adults [28, 39]. Likewise, the optimal order of blood product administra-
tion has yet to be precisely defined. So long as volume overload is avoided, it is 
likely safe to lead with plasma and platelets followed by red blood cells. In the 
absence of an established best practice, there remains a lot of variation in the 
implementation of pediatric MTPs [23]. Fortunately, MTP for trauma in pediatric 
patients remains a relatively uncommon event compared to adults [40]. There is 
some evidence to support the use of TXA in pediatric trauma [41]; however, a 
recent survey of pediatric hospitals found that only 15% use antifibrinolytic ther-
apy routinely [42].
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 Geriatrics/Elderly

Elderly patients represent an ever-growing demographic in our society. Although 
the elderly represents one-eighth of the population, they consume one quarter of 
trauma and critical care expenditures [43]. Patients over the age of 65 undergo 
approximately two million operations annually [44]. Studies have shown worse out-
comes for elderly patients undergoing emergency operations [45] and when com-
pared with their younger peers, elderly trauma patients are characterized as having 
worse outcomes [46]. Likewise, for those patients aged 65–79 undergoing a massive 
transfusion (defined as ≥10 units packed red blood cells over 2 consecutive calendar 
days [as an approximation for 24 hours given the nature of the data collection for-
mat for the registry]) for any indication, 30-day mortality was 27.7% and for patients 
over the age of 80 was 36%, compared to a mortality of just over 10% in patients 
ages 18–39 in a recent epidemiologic analysis [15]. This association between mas-
sive transfusion, age and mortality was also confirmed by another recent study [14]. 
Thus, we believe there are some important considerations when applying DCR prin-
ciples to this population although to date, no study has specifically evaluated DCR 
outcomes in the elderly [47].

Elderly patients undergoing DCR for any indication are generally unwell at base-
line with more medical comorbidities [48] and more frequent use of anticoagulants 
and antiplatelet agents [49, 50]. Progressive loss of physiologic reserve in this popu-
lation has been coined “homeostenosis” [51]. A number of physiologic changes 
have been described and quantified, such as decreased pulmonary reserve [52], car-
diovascular changes [53], and worsening renal function (Table  17.2) [54]. 
Hypoperfusion in the elderly may occur despite normal appearing vital signs [47]. 

Table 17.2 Changes in 
geriatric physiology with 
aging [51]

Neurologic
  Decreased brain mass
  Impaired autoregulation
Cardiovascular
  Decreased maximum HR
  Decreased maximum CO
  Large arteries decreased compliance
  Increased peripheral vascular resistance
  Increased systolic blood pressure
Pulmonary
  Decreased FEV1 and FVC
  Increased VQ mismatch
  Decreased inspiratory and expiratory pressures
  Decreased alveolar surface area
Renal
  Decreased solute secretion
  Decreased renal mass
  Decreased response to ADH, renin, and aldosterone
Temperature regulation
  Decreased shivering
  Decreased vasoconstriction
  Decreased sweat production

17 DCR for Non-trauma Patients
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Demetriades et al. showed that the majority of severely injured elderly patients did 
not meet traditional definition for trauma team activations based on presenting vitals 
[55]. Furthermore, traditional vital sign ranges that may predict mortality in patients 
less than 65 years of age may not be as useful in the elderly [56]. Due to preexisting 
atherosclerosis, elderly patients have a blunted vasoconstrictive responses [47]. It is 
very important to highlight, however, that the degree of physiologic change varies 
widely from patient to patient [51]. Further complicating the clinical picture, tradi-
tional endpoints of resuscitation such as urine output may not be as reliable in the 
elderly. Elevated lactate and base deficit levels should prompt increased monitoring 
as these laboratory indicators can herald occult hypoperfusion in the elderly. In 
elderly blunt trauma patients, elevated lactate and base deficit are associated with a 
fourfold increase in mortality [57]. Finally, geriatric patients, like pediatric patients, 
are very susceptible to hypothermia. A recent study found that patients over the age 
of 55 were more likely to arrive to the ICU hypothermic and hypothermia was found 
to be an independent risk factor for mortality [58].

 Permissive Hypotension

Because vital signs are not a useful indicator of hypoperfusion in the elderly, the 
practice of permissive hypotension in this population is controversial. Permissive 
hypotension in the elderly has been studied in a retrospective fashion and was not 
associated with increased survival [59, 60]. However, the quality of the evidence is 
low and randomized controlled trials are lacking.

 Crystalloids

Like in adults and pediatrics, however, the evidence supporting limiting crystalloid 
infusions in geriatric patients is more robust. In elderly patients in hemorrhagic 
shock, attempts should be made to limit crystalloid to two liters during the emer-
gency department phase of patient care [61, 62].

 Transfusions

Elderly patients have different cardiac physiology including impaired ventricular 
filling, decreased maximal cardiac output, and a decreased maximal heart rate [63]. 
Additionally, geriatric patients have a smaller blood volume and blunted cardiovas-
cular responses [64]. Some studies also support more aggressive transfusion thresh-
olds in non-bleeding geriatric patient with myocardial infarction [63]. Whether or 
not these benefits extended to patients undergoing DCR remains unclear.

Other non-trauma indications for DCR in the elderly patient population includes 
aortic surgery, cardiac surgery, and gastrointestinal hemorrhage. Recent studies 
have attempted to mitigate bleeding risk and the need for transfusion in these patient 
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populations. For example, a recent randomized controlled trial of elderly patients 
undergoing combined coronary artery bypass grafting and aortic valve surgery 
found that prophylactic tranexamic acid reduced blood transfusion requirements 
perioperatively [65].

Anticoagulant and antiplatelet therapy in the aging population is also an impor-
tant consideration during DCR of the elderly patient. These medications are widely 
prescribed and carry a substantial bleeding risk [50]. Particularly, the use of these 
medications increases the risk of intracranial hemorrhage. Additionally, these 
patients are also at risk for delayed hemorrhage following a negative CT scan exam-
ination of the head. Studies have shown that anticoagulant use increases the risk of 
mortality by sixfold in patients with a traumatic brain injury [66]. Although it is 
beyond the scope of this chapter, prompt reversal of therapeutic anticoagulation 
should be part of DCR for bleeding-injured and non-injured patients alike.

 Obstetrics

Despite common perception, in large epidemiologic studies in industrialized nations, 
massive transfusion due to obstetrical bleeding is low 1.8% [15], and obstetrics 
patients have the lowest mortality following MTP (2.8%) [14]. When maternal bleed-
ing does occur, however, it can be very dramatic and acute care surgeons are likely to 
be consulted to aid in the multidisciplinary care of these patients [67].

Before discussing some of the considerations of DCR in obstetrics patients, like 
elderly and pediatric patients, it is important to highlight some physiologic differ-
ences in pregnant mothers (Table 17.3). Changes during pregnancy, both hormonal 
and physiologic, most significantly affect the cardiovascular system. Despite a large 
increase in circulating blood volume, the major contributor is plasma volume with 
a relatively smaller increase in red cell mass. This is important when considering the 
pathophysiology of hemorrhagic shock. Whereas hemodynamic changes may be 
evident in Class II and III shock in nonpregnant patients, in pregnant patients, 
hemodynamic changes may not become visible until 1500–2000 cc of blood loss. 
Like blood volume in pregnancy, maternal cardiac output and oxygen consumptions 
are similarly increased [68].

One of the more important and simple considerations for non-obstetric practitio-
ners to remember during DCR of an obstetric patient is the physiologic impact of 

Table 17.3 Changes in 
maternal physiology during 
pregnancy [107]

Plasma volume Increases
Red blood cell mass Increases
White blood cell count Increases
Peripheral vascular resistance Decreases
Heart rate Increases
Systolic blood pressure Decreases
Cardiac output Increases
Clotting factors Increase
Respiratory rate Increases
Glomerular filtration rate Increases
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the gravid uterus on the pregnant mother. Recumbent positioning has been found to 
reduce cardiac preload by as much as 25% [69]. To mitigate this risk, hypotensive 
obstetric patients should be bumped up with rolls placed under the right flank to 
relieve any pressure on the inferior vena cava. Finally, lower extremity venous 
access for resuscitation, such as femoral artery cannulation, should be avoided.

 Postpartum Hemorrhage

Defined as blood loss greater than 500 cc following a vaginal delivery and more 
than 1000 cc following a caesarian section, postpartum hemorrhage (PPH) occurs in 
approximately 2.9% of all deliveries of which 79% are attributable to uterine atony 
[70]. The reason behind current increased rates of PPH is thought to be due to medi-
cation given during induction to augment labor such as high-dose and prolonged 
courses of oxytocin (in contrast to postpartum prophylactic dosing of oxytocin to 
prevent PPH) [71] and increased rates of caesarian sections [72]. There are a num-
ber of options for the treatment of PPH based on the DCR paradigm. These thera-
pies include uterotonics (e.g., postpartum oxytocin at prophylactic dosing), 
interventional therapies, and surgical control. Recently, resuscitative endovascular 
balloon occlusion of the aorta (REBOA) has emerged as a useful adjunct for tempo-
rary aortic occlusion in patients with postpartum hemorrhage [73].

 Transfusion

The majority of the recommendations and principles of hemostatic resuscitation 
applied to trauma patients can be applied to pregnant mothers. Similar to trauma 
patients, a high ratio of plasma to red blood cells may be beneficial in this patient 
population, but further research is needed [74]. TXA has not been studied in 
obstetric patients with life-threatening hemorrhage. Instead, the use of TXA in 
this patient population has primarily been studied as a prophylactic agent used to 
prevent PPH. A recent meta-analysis published in 2015 ultimately favored the 
use of TXA and found that the incidence of blood loss greater than 500 cc was 
less in patients receiving TXA versus placebo [75]. The benefits of TXA for 
patients with obstetric hemorrhage were also found in a study that examined its 
use in PPH treatment. Duration of hemorrhage and blood loss was significantly 
lower in patients receiving TXA following hemorrhage [76]. Finally, the benefits 
of TXA were confirmed in a recent randomized controlled trial published in 2017 
[77] with over 20,000 patients. The investigators found that death due to bleeding 
was significantly lower in patients receiving TXA. The use of recombinant acti-
vated factor VII (rVIIa) for PPH has fallen out of favor as several trials in the 
obstetric literature have shown no survival benefit and increased complications 
[78], although numerous case reports touting the benefits of rVIIa can be found 
in the literature [79]. Finally, monitoring fibrinogen is especially important in 
obstetric hemorrhage in which certain kinds of placental pathology cause rapid 
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fibrinolysis and it is a good indicator of PPH severity [78]. Consensus guidelines 
support the use of fibrinogen concentrate for ongoing PPH over the use of cryo-
precipitate [80].

 Gastrointestinal Hemorrhage

In recent years, the emphasis in this patient population has been on a restrictive 
transfusion strategy using hemoglobin targets. A large randomized trial of patients 
with upper gastrointestinal bleeding treated with a restrictive transfusion strategy 
(transfusion for Hb <7 vs. Hb <9) for upper gastrointestinal bleeds had improved 
outcomes [81]. The benefits of such a strategy was confirmed by a recent 2017 
meta-analysis [82]. However, on close examination of the studies considered, 
patients with massive hemorrhage and hemodynamic instability were excluded, and 
the benefit of a restrictive strategy was dominated by patients with portal hyperten-
sion in which over-resuscitation is known to increase portal pressure thereby 
increasing the likelihood of rebleeding.

Germane to the application of DCR in patients with gastrointestinal hemorrhage, 
a large epidemiologic study in Australia and New Zealand found that 13.9% of 3500 
MTP activations were for this indication [14]. Thus, it is imperative to distinguish 
those patients with massive GI bleeding and hemorrhagic shock who require a ratio- 
based resuscitation strategy to optimize hemostasis. As with other indications for 
DCR, studies have shown that significant practice variation in transfusion thresh-
olds persists [83]. A platelet threshold of fifty thousand has been proposed although 
this recommendation is largely based on expert opinion [84]. Furthermore, transfus-
ing patients on antiplatelet agents with platelets stored at room temperature may not 
improve patient outcomes [85]. A 2014 Cochrane Review of TXA for variceal 
bleeding found some evidence to supports its use although the quality of the evi-
dence was low [86]. One small randomized controlled trial with TXA showed no 
difference in blood loss between placebo and TXA-treated patients with lower gas-
trointestinal bleeds [87].

These resuscitative measures are designed to reverse accumulating oxygen debt 
and augment hemostasis. Other temporizing measures include balloon tamponade 
of bleeding varices [88], esophageal stenting [89, 90], and even REBOA [91, 92]. 
However, in most cases, early endoscopic control is imperative for definitive hemo-
stasis. In patients who have failed endoscopic treatment or who have pathology not 
amenable to endoscopic control, angioembolization or surgical hemostasis may be 
required.

 Perioperative and Operative DCR Considerations

During DCR of massively bleeding trauma and non-trauma patients in the operating 
room, acute care surgeons should actively follow markers of resuscitation such as 
base deficit and lactate and, if available, thromboelastography data. Although 
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high- quality evidence in support of using thromboelastography to monitoring coag-
ulation parameters during DCR is lacking [93], the technology is available and has 
found its way into the armamentarium of both acute care surgeons and obstetricians 
alike and algorithms have been developed in efforts to fine-tune DCR [94]. Studies 
indicate these tests may be helpful for the early detection of coagulation abnormali-
ties and fibrinogen administration [95]. One caveat is that “normal values” may be 
different in different patients [96].

During massive transfusion, calcium is chelated by citrate present in all stored 
blood products. If hypocalcemia occurs patients can become hypocoagulable. 
Targeting a blood pressure that optimizes end-organ perfusion is also optimal. 
While permissive hypotension may still have a role outside the operating room in 
select patient populations, the use of intraoperative permissive hypotension is not 
supported by the literature. Randomized controlled trials evaluating hypotensive 
resuscitation in trauma patients [97] and in non-trauma patients requiring during 
laparotomy have not indicated any benefit. Surgeons should ultimately target nor-
motension during these operations.

Intraoperative red blood cell salvage is an important component of intraoperative 
DCR [98, 99], despite an unclear benefit on mortality; a 2015 Cochrane Review 
showed a decrease transfusion requirement in the first 24 hours following injury and 
no differences in cost or infectious complications with the use of cell salvage 
technology.

In non-trauma patients undergoing massive transfusion and non-massively trans-
fused trauma patients the ratio of blood products transfused may not be as critical. 
Although it decreased mortality in non-trauma patients in the first 48 hours after 
injury, a high ratio of plasma:RBC (>1:2) did not improve overall survival in mas-
sively transfused non-trauma patients [100]. Similar results were published by 
Sambasivan et al. in 2011, whose study of trauma patients found that a high ratio of 
FFP and platelets to RBCs increased ventilator days and length of stay and did not 
affect mortality in non-massively transfused trauma patients [101].

Prior to the MATTERs and CRASH-2 studies [102, 103], investigators explored 
the perioperative use of TXA. A recent review found that TXA prophylaxis was 
associated with reduced blood loss and reduced transfusions in elective cardiac, 
transplant, orthopedics, neurosurgery, and obstetrics procedures [104].

 Conclusion

DCR is a well-established bundle of care for severely bleeding patients. Its princi-
ples, although predominately studied in trauma patients, can be applied to other 
patient populations. Keeping varying physiology in mind, the core principles of 
hemostatic resuscitation, limiting crystalloid infusion, careful consideration of per-
missive hypotension, as well as prompt identification of the need for and activation 
of MTP can be applied to pediatric patients, geriatric patients, and those with peri-
partum, gastrointestinal, and perioperative hemorrhage alike. Identifying hypoper-
fusion in the elderly is challenging and relying on vitals without careful analysis of 
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laboratory values may be misleading. During perioperative DCR, use of red cell 
salvage techniques, REBOA, and hemostatic adjuncts such as TXA should be con-
sidered if significant blood loss is anticipated. More work is needed to understand 
the demographics of massive bleeding and hemorrhagic shock in non-trauma 
patients and to optimize the hemostatic resuscitation of these patients.
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18Optimal Methods of Teaching 
and Training DCR/RDCR

Ethan A. Miles and John C. Maitha

The practitioner of RDCR (remote damage control resuscitation) is tasked with  taking 
a team sport (DCR) which is typically practiced by large well-trained teams in major 
medical centers and perform the key tasks in a remote and typically dangerous envi-
ronment often by themselves with nothing but a small aid bag on their back. The 
prehospital provider may be a military medic, a civilian EMS paramedic, a wilderness 
search and rescue team, or a rural physician. Regardless of level of formal education, 
the majority of procedures and knowledge may be taught to most medical providers. 
If given quality training and medical direction, individuals can be expected to success-
fully provide the majority of the key components of RDCR in any environment.

The medical director must include four key components to allow the prehospital 
provider to practice: (1) training and education, (2) certification, (3) licensure, and 
(4) credentialing. The training and education of RDCR should be done with the 
ultimate goal in mind of credentialing the individual to perform the key components 
described in this chapter. Written and hands-on testing of RDCR is a key component 
in the process of credentialing and requires definitive goals in the performance of 
RDCR given the unique environment in which the individual provider is expected 
to perform. By setting specific goal directed steps, the student can clearly identify 
performance steps required for successful completion of the training. Given the 
severity of consequences and lack of alternate treatment in the resuscitation of 
patients with hemorrhagic shock in the remote setting, scope of practice tends to be 
much wider than typically encountered. Ultimately though, it is up to the medical 
director to determine the scope of practice given in RDCR to the practitioner.

Utilizing the crawl, walk, and run methodology allows the instructor to ensure 
the student has a solid understanding at each phase of instruction and allows for 
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simple resets when knowledge gaps are discovered. In training RDCR, the crawl 
phase consists of developing a core basis of understanding of DCR as well as the 
development of the required procedural skills in a lab or classroom setting. The 
walk phase advances to the application of DCR principles into the student’s expected 
environment and how the skills learned may be utilized in their setting; decision- 
making should be emphasized at this point. The run phase recreates the student’s 
expected environment as closely as possible (i.e., in a helicopter at night, under 
simulated enemy fire, or in the back of an ambulance while moving) with timed 
scenarios designed to challenge both the knowledge gained as well as the actual 
skills application (i.e., multiple casualties with limited equipment in CCP-casualty 
collection point).

There are two goals of RDCR training. The first goal is to develop an adequate 
understanding of life-threatening hemorrhage (LTH), hemorrhagic shock and its 
consequences, components of RDCR, when to use the components of RDCR, and 
how they affect the patient. The second is to master the basics of TCCC and fully 
integrate RDCR principles into a standardized trauma patient primary assessment. 
When training RDCR in the initial education phase, great emphasis should be 
placed on how the physiology applies to practical application vs. an in-depth review 
of processes which do not directly impact decision-making in the field. The graphic 
below is an example of how the concepts of LTH, hemorrhagic shock, and oxygen 
debt [1] are taught at the 75th Ranger Regiment during RDCR training with specific 
emphasis on how to manage each pathway. See Fig. 18.1.

Fig. 18.1 The RDCR treatment approach to delay the secondary effects of trauma
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By gaining a solid understanding of how the principles of DCR apply to the 
casualty in the field, the student may then conceptualize the importance of each step 
in the process of RDCR.

Following the completion of the first goal of initial education of the lethal triad 
effects a focus on the primary trauma assessment should be started. Without mas-
tery of a basic trauma assessment RDCR is futile. The purpose of the trauma assess-
ment is to treat life-threatening injuries and then apply RDCR to treat the secondary 
effects of trauma.

 Models for Training

Multiple models exist for utilization in training RDCR, and best-training practices 
typically combines the models to take full advantage of each. The main models cur-
rently utilized are task trainers, human patient simulators (HPS), live role players 
(LRP), live tissue training (LTT), and virtual training. While no single model pro-
vides a perfect training solution, a solid understanding of the benefits and down-
sides of each will help the trainer piece together the optimal training path for student 
success.

Dedicated task trainers such as IV arms and wound-packing simulators are best 
utilized during initial skills training in order to facilitate the student learning the 
physical steps of the procedure. During this step, students are often familiarized 
with a piece of equipment such as an IO device and instructed through the entire 
procedure. The second portion of training where dedicated task trainers are helpful 
is during the run phase where the individual skill has been mastered and the student 
needs a model to complete a particular step in the trauma lane and move on to focus 
on the RDCR portion. An example of this would be the utilization of a sternal IO 
trainer when using a live role player, thus allowing the student to perform the task 
as they would in a live patient without incurring the risk of performing an IO in a 
live role player.

The HPS provides a training model, which can be fairly appropriate for most 
tasks in RDCR training. In training RDCR, the advantages of an HPS include full 
size and weight (which pushes the student to use proper movement and hypothermia 
prevention techniques), realism of injury with newer models, and vital sign feed-
back without instructor coaching and allow the majority of the individual tasks to be 
performed on a single model. The downsides of the HPS tend to be technical reli-
ability, time involved in setup/refitting, lack of variability in wound patterns, HPS 
operator proficiency, and a rapidly fading realism effect. The HPS is best used dur-
ing the “walk” phase where the student is starting to bring together multiple steps of 
the assessment and intervention phase in RDCR.  This allows the student to get 
multiple trauma lane runs in, which facilitates committing the key steps of the pro-
cess in the right order.

Live role players (LRPs) provide an optimal model for a realistic training model 
in several areas. Distinct advantages include live patient feedback, accurate model 
for measuring vital signs, and obtaining vascular access with autologous blood 
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transfusion If using a properly trained LRP, the student often pays much more atten-
tion to hypothermia prevention, safe realistic patient movement techniques, and 
pain control. Disadvantages of LRPs include a limited number of procedures you 
can perform; limited vital sign variability and injury patterns generally rely on mou-
lage which has limited ability to replicate massive hemorrhage. LRPs are generally 
utilized best during the run phase and can significantly contribute to the chaos of 
MASCAL event training.

Live Tissue Training (LTT), using animal models to recreate trauma models, 
provides several distinct advantages to include; absolute realism with hemorrhage 
control, live real-time physiologic feedback, ability to perform WB transfusions, 
and variability of real wounding patterns. Disadvantages include restriction of use, 
smaller patient size, anatomic differences, difficulty with integration into large unit 
level exercises, backside veterinary support and cost. While this training is often 
restricted, its value when combined with a comprehensive training program is sig-
nificant. This type of training should not be utilized as a one size fits all, rather it 
should be utilized only after careful consideration of the goals of training and in 
conjunction with the models outlined above.

Human cadavers provide the highest accuracy for an anatomically correct train-
ing model. The cadaver provides an ideal model to learn anatomy and perform many 
key procedures such as IO placement, airway adjuncts, surgical airway, needle 
decompression, and chest tube insertion. The cost and sensitivity have a potential to 
significantly impact availability of use. Cadavers are typically best utilized during 
the crawl phase when the student is gaining a detailed anatomic understanding of 
injury patterns and lifesaving interventions.

When selecting models to use in training RDCR, care should be taken to match 
the models for the objectives. In the majority of training, a combination of models 
will be needed to train (and retrain) students as they refine their ability to run a 
trauma lane. By objectively grading at each phase, the instructor can utilize the best 
model to facilitate optimal training in area identified as a weak spot for the student. 
The chart below shows a simple diagram identifying individual model strengths and 
weaknesses to facilitate a proper combination for training based on what is avail-
able. See Fig. 18.2.

 Goals in RDCR Training

The first goal of training is the early recognition and intervention in LTH, which is 
the first step in the MARCH (Massive Hemorrhage, Airway, Respiration, Circulation 
and Hypothermia/Head Injury) process. Students should be taught to recognize 
injury patterns that pose a high risk for massive hemorrhage loss or continued non-
compressible hemorrhage. Additionally, the provider should train on the manage-
ment of the designated medical team as well as the management of nonmedically 
trained responders during this time.
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 The Crawl Phase

During the crawl phase students should complete multiple MARCH assessments 
while communicating to the instructor common injury patterns on casualties to 
engrain the algorithmic approach. The crawl phase can include verbal prodding 
from the instructor to facilitate emphasis and focus on injury patterns during each 
step of the casualty assessment.

• The start of the crawl phase should emphasize the primary trauma assessment.
• The Tactical Combat Casualty Care Guidelines and many military medics use 

the MARCH pneumonic to identify initial life-threatening injuries. The MARCH 
pneumonic is effective in the RDCR arena because it is designed to treat and 
identify the initial and secondary effects of trauma.

• This phase should not be stressful to the student promoting a learning environ-
ment of question and answers between student and instructor.

• The crawl phase should emphasize perfecting the algorithmic approach using 
the MARCH pneumonic, or equivalent, with numerous trauma assessments on 
other classmates absent injury or combat equipment. Multiple repetitions of the 
student touching or verbally implying where an appropriate intervention should 
be applied in the primary trauma assessment will build a strong foundation for 
DCR. Technical application of interventions for minor and complex wounding 
should be added during the walk and run phases. Perfecting the basic algorith-
mic approach without distractions will greatly increase the effectiveness of run 
phase as the instructor can focus on decision-making verses technique and 
sequence correction.
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Fig. 18.2 Training model strengths and weaknesses to maximize individual RDCR skill training 
effectiveness
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• Skill stations or round robin style training should be utilized to cover in detail the 
capabilities of the equipment used to stop immediate life threats and provide 
instruction on implementing DCR interventions following treatments of initial 
life threats. See Table 18.1 for round-robin example.

• An effective method to maintain proficiency and updated information on the lat-
est medical developments for the MARCH primary survey is to review the 
Tactical Combat Casualty Care Guidelines. The guidelines are updated periodi-
cally with the latest medical literature and recommendations from deployed mili-
tary medics. A free website to access updated guidelines, skill sheets, and videos 
can be found at www.naemt.org or you can download the free “Deployed 
Medicine” application for Android or iPhone devices.

• If the DCR training course includes live tissue training (LTT), a tabletop block of 
instruction is required. The table top or wet lab block of instruction should cover 
indication, contraindications, and alternative methods for each procedure per-
formed. Proctor standardization on a training model is highly recommended 
prior to the start of the tabletop instruction so every student performs individual 
procedures to the same standard. See Table 18.2 for example of a tabletop block 
of instruction.

• An example training schedule for training initial trauma assessments and DCR 
can be found in Table 18.3.

Table 18.1 Example of an 
individual RDCR technical 
skill rotation

Time Skill station – round robin
25 minutes Intermediate airways
25 minutes Buddy transfusion – blood
25 minutes Junctional tourniquets
25 minutes Hypothermia management
25 minutes IV fluid warmer
25 minutes Extremity tourniquets
25 minutes Evacuation packaging
25 minutes Peripheral saline lock
25 minutes IO device insertion (sternal)
25 minutes Monitoring devices – SP02, ETC02

Table 18.2 Example of a 
minor surgical skill training 
rotation utilizing LTT

Time Table top task list
25 minutes Surgical airway
25 minutes Tourniquet application
25 minutes Hemostatic application
25 minutes Tourniquet conversion
25 minutes Needle thoracentesis
25 minutes Chest tube insertion
25 minutes Intravenous access
25 minutes Intraosseous infusion (nonsternal)
25 minutes Lateral canthotomy
25 minutes Blood transfusion

E. A. Miles and J. C. Maitha
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Table 18.3 Comprehensive training schedule to teach RDCR in 1 week

Day 1 Time Event Location Instructor Uniform
Crawl 
phase

0900–1000 TCCC updates Field
1000–1100 Deployment casualty AARs Field
1100–1200 Skill stations Field
1200–1300 Lunch Field
1300–1600 Skill stations Field
1600–1700 Pain management class Field
1700–UTC Aid bag/equipment preparation Field

Day 2 Time Event Location Instructor Uniform
Crawl 
phase

0800–0900 Trauma airway class Field
0900–1000 Thoracic trauma class Field
1000–1100 RDCR class Field
1100–1200 Blast/burns/crush management Field
1200–1400 Day trauma lanes – moulage Body 

armor
1400–1500 Lunch Field
1500–1700 Day trauma lanes – moulage Body 

armor
1700–UTC LTT/equipment preparation Field

Day 3 Time Event Location Instructor Uniform
Crawl 
phase

0800–0900 Animal care brief Field
0900–1000 Head trauma/hypothermia class Field
1000–1100 Orthopedic trauma Field
1100–1200 Spinal trauma Field
1100–1200 Proctor standardization Field
1200–1300 Lunch Field
1300–1400 LTT patient preparation Field
1400–1700 LTT tabletop instruction Field
1700–UTC AAR Field

Day 4 Time Event Location Instructor Uniform
Walk 
phase

0800–0900 K9 trauma management Field
0900–1000 MASCAL/CCP operations Field
1000–1100 Mission brief/planning/rehearsals Field
1100–1200 Lunch Field
1300–1400 LTT patient preparation Field
1400–1700 Day time trauma lanes Body 

armor
1700–1800 Range recovery/chow Field
1800–1900 LTT patient preparation Field
1900–2000 Mission brief/planning/rehearsals Field
2000–UTC Nighttime trauma lanes Body 

armor
AAR following training 
completion

Field

Day 5 Time Event Location Instructor Uniform

(continued)
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 The Walk Phase

Progression to the walk phase is accomplished by producing an injury pattern on the 
chosen training model consistent with massive hemorrhage (extremity amputation) 
or noncompressible hemorrhage (penetrating trauma to the torso or junctional 
bleed). Without verbal prodding by the instructor, the student should rapidly iden-
tify all sources of significant bleeding and intervene to stop any potential compress-
ible bleeding. The focus of the student during the walk phase is effectively 
implementing the MARCH process while completing the appropriate treatment 
tasks to a specific time standard. Verbal prodding by the instructor should be elimi-
nated and focused towards assessing the student’s critical thinking process. The 
walk phase ends when the student can effectively complete a MARCH assessment, 
identify life threats without verbal ques. and apply all necessary interventions within 
the specified time standard.

Advances to the application of DCR principles into the students expected envi-
ronment and how the skills learned may be utilized in their setting; decision-making 
should be emphasized at this point. The priority of the walk phase is to integrate the 
basic skills and didactic instruction taught during the crawl phase into a simple 
trauma patient scenario. The question and answers between student and instructor 
should be minimized and more focus should be placed on correcting student 
deficiencies.

• To increase the intensity and stress of the scenario, the students should be in the 
uniform that the expected environment requires (body armor, helmet, extrication 
tools, etc.).

• In general, The walk phase takes place during the day time.
• The most effective casualty models for the walk phase are moulage and patient 

simulators. Both training models can provide the most realistic feedback to the 
student and better drive the algorithmic process.

• Casualty scenarios should be dictated by the medical director but have input 
from prehospital providers. The most effective trauma scenarios come from 
After Action Reviews (AARs) articulated from prehospital providers who oper-
ate in the student’s expected environment. It is particularly effective to review the 

Table 18.3 (continued)

Day 1 Time Event Location Instructor Uniform
Run 
phase

1200–1300 LTT patient preparation Field
1300–1400 Mission brief/planning/rehearsals Field
1400–1800 Daytime MASCAL exercise Body 

armor
1800–1900 Ranger recovery/chow Field
1900–2000 LTT patient preparation Field
2000–2100 Mission brief/planning/rehearsals Field
2100–UTC Nighttime MASCAL exercise Field

AAR following training 
completion

Field
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management during the scenario in comparison with the actual management pro-
vided to the casualty in the real-world event. This provides the student with a 
greater sense of realism and can review outcomes of the real-world casualty.

 The Run Phase

During the run phase, the instructor may add in distraction injuries such as super-
ficial skin wounds to determine the student’s ability to discriminate hemorrhage 
requiring immediate intervention from superficial wounding. In addition to per-
forming hemorrhage control interventions, at the run stage, the student should 
start activating the RDCR response system (calling for blood, casualty transport 
team, managing first responders, etc.). Goal times will vary based on complexity 
of injury pattern, but in general the following times should be achievable. See 
Table 18.4.

The run phase should provide enough realism and complexity for the instructor 
to evaluate the student’s ability to medically manage a casualty scenario. The stu-
dent should focus on completing advanced medical tasks while assigning basic 
tasks to adjacent team members. Providing complex wounding patterns and short 
evacuation times can create situations where the student requires a team approach to 
care and maximize the RDCR response system. Attention should be given to areas 
where efficiencies can be increased, for example, hemostatic pressure dressing can 
be held while directing first responders, activating the RDCR system, and preparing 
equipment. The run phase should end when the student can effectively apply medi-
cal interventions, manage a team through the RDCR process, and complete the 
treatment process to the point of casualty evacuation.

• The student uniform should include all equipment required to accomplish the 
mission in the expected environment. The mission environment should be estab-
lished as chaotic as possible. Add explosions, pneumatic gun fire, smoking bar-
rels, aircraft hulks, or adverse terrain for a stressful training iteration.

• Casualty scenarios should be complex and polytraumatic, require multiple inter-
ventions, and create a scene where casualty reporting is difficult.

• Casualty movement should be physically challenging. Incorporate difficult 
patient movement scenarios from prior prehospital provider experiences to add 
realism but also limit unrealistic scenario movements.

• Minor feedback should be required or provided and evaluation of task comple-
tion is the priority.

Table 18.4 Estimated time standards indicating efficacious application of LTH interventions

RDCR task Time standard
Tourniquet placement 60 seconds
Wound packing 60 seconds to pack and 3 minutes of pressure  

(for current hemostatics)
Junctional tourniquet placement 90 seconds
Pelvic binding 60 seconds
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 Training RDCR

Once hemorrhage is controlled as best as possible given the patients’ injuries, life- 
threatening airway (A) and respiration (R) issues are identified and treated. The 
focus of training then turns to meeting goals of RDCR. Through pattern recogni-
tion (established during prior repetitive patient assessments) and early assessment 
of vital signs the student should arrive at a diagnosis of hemorrhagic shock and 
start the process of goal driven resuscitation. Early placement of pulse oximetry, 
ETCO2, and blood pressure measurement greatly assists in this process. Depending 
on the model used, the proctor may have to utilize verbal cluing for clinical and 
vital signs in order to drive the scenario in the desired direction. The ability to 
produce desired vital signs in a HPS (human patient simulator) presents a distinct 
advantage during this phase as the student is able to arrive at their own conclu-
sions based off of his or her assessment rather than looking to the proctor for 
clues. See Fig. 18.3.

Current goals include:

• Systolic BP 100 (when using Whole Blood for resuscitation)
• Pulse <100
• SpO2 >90
• Lactate <5
• Clinical signs – normal mentation, normal skin tissue perfusion, and appropriate 

pulse quality

Once hemorrhage control is complete and initial assessment determines that 
hemorrhagic shock is present or pending, the resuscitation phase of training begins. 
Multiple interventions need to be performed in rapid order during this phase and the 
student should focus on efficiencies in performance. For example, it has become 
standard practice within the 75th Ranger Regiment that if an IO is used for RDCR 
then it is initially flushed with 1 gram of TXA, thus combining the flush step of 
performing an IO with the administration of TXA step in RDCR. Time to accurate 
intervention continues to be assessed with the following goals (each time standard 
is based from the time the student makes it to the C portion of the MARCH process). 
See Fig. 18.4.

• IV or IO access: C + 3 minutes
• First Dose of TXA: C + 5 minutes
• First unit of blood begins: C + 10 minutes
• Walking donor drawn: 15 minutes after recognition of injury if using a team 

member to draw and C + 15 minutes if student is drawing blood
• Patient warming/hypothermia prevention: C + 5 minutes
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Signs/Sx of Hemorrhagic Shock
1+ Amputation

Blunt/Penetrating Trauma (Junctional/Abdominal/Thoracic)
Pelvic Fracture

Initial LSI
Initiate Call for FWB

IV/IO Access X 2
1st Dose TXA

Pulse, MS, BP, Lactate

FDP until FWB available
1 Unit FWB

Continuous Monitoring
Evacuate ASAP

Reassess

2nd dose of TXA > 30 min from 1st dose
Ca after 4 units blood products
If IO, preferred site is Sternum
FWB>Component>Plasmalyte

Test dose FWB if time/pt permits otherwise wide open

BP > 100
Lactate < 5
Pulse < 100

BP < 100
Lactate > 5
Pulse > 100

Fig. 18.3 75th Ranger Regiment Hypovolemic Shock Protocol [6]. (From Fisher et al. [6], with 
permission of Oxford University Press)
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 Skills Teaching

The core skills involved in RDCR are hemorrhage control and the physiologic 
administration of blood products and medications to treat shock and blood failure. 
While there are numerous methods involved in hemorrhage control, explanation of 
the methods is beyond the scope of this chapter. The main concept to keep in mind 
with hemorrhage control is mastery of the basics; new techniques should never take 
the place of the basic tenets of tourniquet application and proper hemostatic wound 
packing.

The first step of the RDCR process is to effectively control all immediate life 
threats and establish intravenous (IV) or intraosseous (IO) access for whole blood 
or blood product transfusion. In the MARCH algorithm step C (circulation) is the 
appropriate point to direct, if nonmedical personnel are available, or personally 
obtain access.

• Vascular line size should be no less than 18 gauge.
• IO access should be taught to include the sternal and humeral head sites.

Intervention Goal

60 sec

901 min +3 
min pressure

After LSI

C+3min

C+5min

C+10min

C+5min

15min

LSI (TQ/
Wound Pack)

Hemostatic

VS Check

IV/IO

TXA

WB

Hypothermia
Prevention

ROLO Draw

Fig. 18.4 Estimated 
treatment timeline goals in 
the spectrum of RDCR 
care
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• Emphasis should be placed on training non-medical providers in IV/IO skills. A 
team approach to RDCR is always more effective and provides faster treatment. 
Having a nonmedical provider establish access for a blood transfusion saves 
time.

While medication administration is a fairly straightforward process, practicing 
the exact steps pays dividends when seconds count during patient treatment. Field 
and hospital-based training should focus on either practicing with the exact medica-
tions or by using simulated medications. By requiring each step to be actually per-
formed, the student gains a better appreciation for the setup of his or her equipment 
and ways to speed or smooth out the process. Experimentation and cross talk should 
be encouraged during this stage of training, facilitating best ways to setup an indi-
vidual’s equipment.

FWB transfusions can be a daunting task if the student or trainer has minimal 
experience; however, this is a relatively simple procedure, which can be learned 
rapidly. Starting with an equipment familiarization, the student should layout the kit 
in order of the steps being performed. Many aftermarket blood transfusion kits are 
packaged with excess materials that are irrelevant to collection in the RDCR envi-
ronment. The procedure requires very little equipment and focus should be on the 
basic steps to eliminate any unnecessary procedures involved.

• One method for streamlining the procedure is to:
 1. Start by placing a 14–16 g IV in the antecubital fossa.
 2. Apply a saline lock adapter plug.
 3. Insert the hard needle from the donor bag is placed through the saline lock.
 4. Release the clamp on the donor bag line.
 5. Blood will begin to fill the donor bag.
 6. This technique allows for continuous or intermittent blood collection in the 

event the casualty requires movement.

When drawing a unit of FWB, the student must learn to accurately judge volume 
to determine when the bag is full and collection should cease. Overfilling could 
result in wasted time and increased risk of clot formation within the bag. Underfilling 
a collection bag could result in an overall increase in relative citrate administration, 
thereby increasing risk of citrate toxicity and hypocalcemia. A simple method for 
determining how full a bag should be is to bring a kitchen scale to training and fill 
the bag to the 600 gm mark. This method gives the student an accurate frame of 
reference, which generally imparts a lasting ability to judge the fullness of a bag by 
eyesight and feel. A simple procedure in the field is to use a zip tie secured around 
the middle of the bag with a 6.5-inch circumference and fill until flow stops. This 
method reliably results in a full blood bag without overfilling [2]. In general stu-
dents become quite proficient at estimating ideal volume after just a few draws. 
When drawing a unit of FWB for use in RDCR, speed of draw is a critical consid-
eration. While adhering to the safety precautions outlined in this chapter, students 
should be prompted and allowed multiple attempts while being timed in order to 
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facilitate rapid blood collection in the field. One simple method is to have competi-
tions between groups to see who can fill a bag the quickest with the highest volu-
metric accuracy. Administration of the unit of blood back in to the donor is a very 
simple process, and doing so significantly instills confidence in the student to per-
form transfusions in a real-world patient. Administration should be performed as 
soon as possible after donation, but no longer than 4 hours after the draw.

With these steps trained, the student should be able to rapidly obtain IV and IO 
access, administer TXA, and draw/transfuse a unit of FWB within a 15-minute 
timeframe. Task completion (if using pre-drawn WB) within a 15-minute time stan-
dard is ideal and will provide the best outcome for a combat casualty [3]. Additional 
products utilized in the RDCR process should be added to the training based on the 
unit’s medical protocols and what products are available. Cold stored-low titer O 
whole blood (CS-LTOWB) may be simulated by placing a label on a 500 ml bag of 
normal saline and carried in a cooling container. Simulated freeze-dried plasma 
(FDP) is commercially available for use in training; however, caution in training 
must be taken as the simulated FDP dissolves much quicker than actual FDP. 
Expired units of packed red blood cells (PRBCs), plasma, and platelets can often be 
obtained from blood banks which allows for hands on practice with these items, 
thus facilitating efficient administration in a simulated patient.

All of the skills discussed in this section should be realistically trained among the 
team that will be working on patients together. This team may include nonmedical 
personnel as well, who can greatly accelerate the speed at which the RDCR process 
flows. Nonmedical personnel should be trained to the highest level possible as over-
sight from medical direction allows. For example, nonmedical personnel within the 
75th Ranger Regiment are routinely taught how to properly identify a donor, collect 
a unit, document, and assist in the administration of a unit of FWB. When utilizing 
a team approach, it is vital to have set standard operating procedures (SOPs) for all 
to follow and to train those SOPs within the actual group who will be working 
together.

• Standard operating procedure (SOP) example
• Identify donors
• Unit Collection
• Utilizing a team approach
• Documentation and administration of FWB

 Safety in Training

Training RDCR poses few, but potentially serious, risks to health. Proper care must 
be taken whenever performing autologous blood transfusions to avoid blood mis-
match errors. It essential that training standard operating procedures (SOPs) are 
created and upheld during all training to prevent blood transfusion mismatch. For an 
increased measure of safety, the medical director may elect to only draw and trans-
fuse one individual at a time, thereby decreasing the chance for mismatching drawn 
units. However, in the authors’ experience, multiple students can safely perform 
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autologous transfusions at the same time by adhering to basic safety precautions. In 
fact, in the advanced stages of training, having multiple students perform autolo-
gous transfusions at the same time encourages efficiency and speed by facilitating 
timed challenges. Three simple procedures greatly assist in preventing a potentially 
lethal mismatch: (1) When drawing a unit from a donor, the bag and the donor 
should be labeled with the same unique mark (letters or numbers work well). The 
donors’ arm or forehead can be labeled for ease of recognition. (2) The donor bag 
should be signed by the donor at time of draw. (3) Physical separation of students 
and whole blood to decrease the chances of unintentionally mixing units of blood. 
The first two steps allow for a simple timeout to be performed prior to reinfusion of 
the blood into the donor. During this timeout, the donor verifies his or her signature 
and the administrator verifies that the mark on the bag matches the mark on the 
patient.

Another potential risk in training autologous whole blood transfusions is the 
potential for citrate toxicity and allergic reaction. While these reactions are rare, 
providers should be prepared to respond and treat allergic reactions. Mild citrate 
reactions are not uncommon and generally consist of a mild cough during reinfu-
sion. For mild reaction, the transfusion can be slowed, stopped, or continued with 
close monitoring. Rarely anaphylactic reactions can occur with transfusion [4], 
which is even more rare with autologous blood transfusion [5]. These reactions can 
be treated with standard allergic reaction protocols. The medical director overseeing 
training should have epinephrine and diphenhydramine available for treatment. 
With any reaction, the administration can be stopped and remaining blood discon-
tinued. A single unit of blood donation is very well tolerated without significant side 
effect in the overwhelming majority of healthy individuals.

Additional risks include infection, thrombus formation, and contaminated needle 
stick. Using standard precautions as performed with any routing medical procedure 
greatly reduces these risks. Care should be taken to ensure sterile procedure even if 
in austere training environment, and personal protective equipment should be used 
at all times.

While there are definitive risks involved with RDCR training, simple precautions 
greatly reduce these risks and allow for high-quality training. The medical director 
in charge of training should ensure establishment of SOPs as discussed above and 
be adequately prepared to respond to complications. The benefit gained by students 
performing live transfusions prior to real-world execution should not be underesti-
mated due to discomfort with the risks discussed above. While there is a steep learn-
ing curve to RDCR, the training discussed in this chapter is essential to being able 
to execute DCR in the remote environment and no current technology is a suitable 
replacement for autologous transfusions in the training environment.

 Qualification Standards

In order to authorize medical personnel to perform the tasks involved with RDCR, 
the medical director must set standards of training. Each unit will have some varia-
tion in protocols, training time, and expectations. The key to quality training is that 
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each of the section and tasks discussed in this chapter should have defined standards 
which may include time standards, following key steps in and SOP, and ability to 
provide reasoning for actions in the RDCR process. One method for doing this is to 
perform a written test covering key concepts of RDCR. This written test captures 
knowledge of the subject and decision-making ability with a resulting written score. 
Following the written score, skills stations covering each of the defined tasks (hem-
orrhage control, IV/IO access, blood draw, medication administration, etc.) can be 
easily set up to test the student’s ability to perform each step safely and quickly and 
to the standards set by the medical director in the SOP. Finally, a graded trauma lane 
which evaluates the student’s overall ability to bring the knowledge and skills to a 
simulated real-world scenario serves as a final test. Depending on the students’ level 
of training and expected environment to operate in, the graded trauma lanes can 
include multiple patients, extremes of environment (night, cold, in evacuation plat-
forms) and distracting events (simulated gunfire). Once complete with the assess-
ments, the medical director will have a comprehensive picture of each student’s 
capabilities. At a minimum, skills should be evaluated annually with regularly 
scheduled (minimum of quarterly) interval training on the above skills and 
knowledge.
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19Learning Healthcare System Principles 
to Facilitate Spread of DCR

Kara McElvaine, Joe C. McCannon, and C. William Schwab

 Introduction

The fields of healthcare and public health regularly generate new innovations and 
evidence-based practices designed to alleviate suffering, improve quality of care 
and help the system function more efficiently. But while there is no shortage of 
well-established ideas about how to improve performance, disseminating what 
works remains a challenging and, at times, elusive enterprise [1–4].

The medical community and the reader alike now know what Damage Control 
Resuscitation (DCR) is and how vital it can be when used “with the right patient, in 
the right place, at the right time” [5, 6]. However, many brilliant and powerful 
healthcare interventions like DCR are not implemented broadly or reliably, particu-
larly when the added complexity of cooperation across disciplines, environments, 
and specialty domains are introduced. As such, those seeking to introduce DCR into 
their system must think critically about the ways by which they, along with their 
teams, will introduce and embed the intervention within and throughout their sys-
tem, ultimately creating a sustainable process. There is a clear intrinsic motivation 
within all providers for delivering innovations like DCR—indeed, any interruption 
in delivery of this approach risks less than optimal outcomes and ultimately the loss 
of human life or a reduction in the quality of life.
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Adopting the principles of a learning healthcare system (LHS) can create an 
engine for embedding research-based and evidence-supported interventions and 
practices like DCR into clinical care. This chapter will provide an overview of an 
LHS, describe how it constantly learns, and offer an example from Intermountain 
Healthcare. Following these, a description of how an LHS can ideally implement 
and improve the practice of DCR will be discussed. An important facet of DCR is 
the need to bring DCR to the patients most in need and at an early interval after life- 
threatening injury and exsanguination. Thus, we will address how different compo-
nents of the trauma LHS (prehospital, en route, and in-hospital care) must integrate 
data, experience, and report outcomes to continuously learn, identify gaps, and 
direct further research and improvement. Prior to concluding, the chapter will 
briefly look at what it might take to introduce DCR at national scale.

 An Introduction to Learning Healthcare Systems

According to the Institute of Medicine, an LHS is a system “in which science, infor-
matics, incentives, and culture are aligned for continuous improvement and innova-
tion, with best practices seamlessly embedded in the delivery process, and new 
knowledge captured as an integral by-product of the delivery experience” [7]. This 
kind of undertaking requires all involved to grapple with the critical work of itera-
tive testing, sound measurement, systems analysis, and change management [8]. It 
also requires understanding the factors that limit learning and implementation of 
effective models. These include:

• The incorrect belief that simply publishing new innovation is sufficient to lead to 
its adoption [1]

• The sheer volume of new information (publications, studies, protocols) that most 
healthcare professionals in the healthcare system have to process

• Management incentives, such as ranking by individual performance rather than 
by team performance, that create fear and limit learning

• The logistical and operational challenges of introducing innovations into new 
settings and contexts, with all of their attendant differences

• The fundamental imbalance in access to care, quality of care, and care outcomes 
experienced in particular geographies and by different groups (e.g., people of 
color) and cultures in the American healthcare system [9, 10]. These inequities 
are sometimes replicated with relation to acquisition of new knowledge and 
practice, thereby hindering learning and spread and heightening maldistribution 
of outcomes [9, 11, 12]

Equity here is defined as achieving equally high outcomes for all patients remov-
ing the predictability of success or failure that in some areas of healthcare correlate 
with social or cultural factors; any learning system must address sources of inequity, 
including cultures that preference certain races, classes, and genders [13, 14].

Learning systems that effectively introduce new innovations operate in an excep-
tional way that proactively mitigates for these barriers. Specifically, LHSs under-
stand the inherent patterns of behavior and cultural norms in the systems and 
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organizations in which they operate; refine their interventions thoughtfully to meet 
the needs, requirements, and values of all adopting audiences; pursue many strate-
gies to raise awareness and deepen will for change; and offer many forms of support 
for adult learning and implementation of new practice via a variety of adult learning 
methods [15, 16]. Lastly, LHSs have styles of operating that are highly tolerant of 
rapid iteration, adaptation, and learning [17].

Below is a simplified table intended to compare typical and less effective learn-
ing systems with the extraordinary, transformational learning systems at a high level 
(Table 19.1). It is not meant to be exhaustive, but rather to provide a comparison of 
the more traditional and proposed learning systems in healthcare today.

Table 19.1 Comparing typical with exceptional learning systems

Typical learning systems Exceptional and transformational learning systems
The aim of the network is to facilitate 
general learning
No sense of direction or urgency, so 
making progress is not the goal

The system-level aim of the network is crisp and 
quantifiable
The aim focuses action and induces cooperation 
toward a shared vision of success

The system is oriented to focus upward in 
the hierarchy; leadership receives data and 
reports
The system’s capacity to learn is limited 
because the orientation is toward 
leadership rather than the front lines and 
the patient

The system is oriented to focus on the needs of the 
patient/customer; leadership removes barriers to 
progress in the field
Frontline providers are empowered to deliver 
quality care based on their deep contextual 
wisdom

The system catalogues explicit knowledge 
(libraries)
Inadequately contextualized information, 
not designed to help practitioners change 
behavior

The system facilitates the exchange of tacit 
knowledge
Focused on sharing the emergent tricks of the 
trade and pragmatic how-to’s

The system furnishes aggregate 
information
Bright spots and areas for improvement 
are combined, so opportunities for 
learning are lost

The system measures site-level performance and 
disaggregates data by race and class wherever 
possible
Allows for learning about local adaptations, and 
helps motivated teams improve

A large investment is made in teaching and 
training
Fosters passive learning

Experimentation and improvisation are 
encouraged or required; there are high 
expectations for testing and adjustment
Providers constantly apply new knowledge and 
learning to meet outcome goals for patients

Consensus is the primary approach to 
decision-making
While important under certain 
circumstances, consensus can be time 
consuming

Agility is valued, and a variety of decision- making 
approaches are used depending on the stakes/risk 
involved
Allow stakeholders and caregivers to have the 
license to explore different approaches toward 
shared aims

New networks are created
Work intensive and potentially inefficient

Existing networks are harnessed
Other communities are likely working on the same 
problem. Collaborating is mutually beneficial

The system is centrally managed
Can be an impediment to rapid learning

System management is distributed; losing control 
is viewed as success
Frontlines are laboratories for learning

Sources: [18–20]
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 Leadership

In order to launch and maintain an effective DCR program using the principles 
described above, leadership at every level must support the constant improvement 
of knowledge, experience, and study of DCR with all stakeholders throughout the 
delivery system. There are many existing definitions of leadership, but when it 
comes to establishing and maintaining learning health systems, we appreciate 
Marshall Ganz’s definition: “Leadership is accepting responsibility to create condi-
tions to enable others to achieve shared purpose in the face of uncertainty” [21]. The 
function of leadership in a transformational LHS is to create an ongoing practice of 
identifying, recruiting, and developing leaders at all levels and supporting one 
another’s personal growth and professional development [17, 22, 23]. A workplace 
or community with more leaders of this type will be more effective and intercon-
nected than those with a more traditional linear reporting structure.

Looking to Ganz’s definition and the literature on leadership and leadership in 
healthcare, what might it look like to create conditions to enable others to achieve? 
We propose that leaders must take a hard look at existing policies, standard proce-
dures, and incentive systems to understand what behaviors and attitudes are being 
reinforced [21, 23]. There is no such thing as a neutral system—the structure of any 
organization and community expectations for performance are always buttressed by 
deeper intersubjective beliefs. Methods like design thinking’s empathy interviews, 
colleague shadowing, and 360 feedback processes can be powerful experiences to 
gain an understanding of those deeper beliefs.

 Measurement and Data Systems

Any attempt at systemic quality improvement will need to create and tend to multi-
disciplinary measurement to ensure that teams are making progress toward priori-
tized goals. Effective measurement systems are designed to give frontline clinicians 
expedient access to formative data and empower those frontline clinicians to use 
data to inform their delivery of care. Less effective measurement systems, on the 
other hand, tend to provide summative data oriented toward leadership, which are 
used for clinician evaluation and even punishment based on outcomes. These inef-
fective measurement systems are not designed to aid frontline learning, which 
makes them less accessible in the critical moments of delivery of care.

In the highest performing LHSs, data systems are structured from the bottom-up 
rather than the top-down. Provider-level data counters inertia with a sense of urgency 
and can motivate staff into action [21, 24, p., 278]. Aggregate data showing exclu-
sively high-level system performance hides trends and reduces the likelihood of 
learning. This approach of acting and reflecting at the team and individual provider 
data reinforces the clinical gaps, reveals areas for improvement, and at times, dem-
onstrates how to promote learning. Using patient data to generate clinical evidence 
is extremely important to an LHS. Registries, which allow for timely analysis of and 
quick access to patient data, are also enormously useful [18, 24].
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This process starts with gathering data while treating patients and developing 
information that leads to actions to be incorporated into future practice. Quality 
improvement gradually becomes a routine and perpetual process, helping all stake-
holders optimize outcomes with and for patients by using evidence-based practices 
and interventions.

 What a Learning Healthcare System Can Look Like: 
Intermountain Healthcare’s LHS

Intermountain Healthcare (IHC) is a nonprofit healthcare system in Utah, which 
employs over 32,000 staff in 22 hospitals and 180 clinics [25, 26]. Under the leader-
ship of former Chief Quality Officer Brent James, IHC began using lean manage-
ment principles in 2009 and started dabbling in quality improvement in 1986 [26, 
27]. See the timeline below for a brief overview of their quality improvement jour-
ney (Fig. 19.1).

One of the most powerful ways that IHC intentionally organized as an LHS was 
in the adoption of this mantra: Make it easy to do it right. By way of example, Brent 
James cited Dr. Alan Morris: “Morris has all sorts of hunches that he tests. His ICU 
is a little learning lab. At one point, he had three trials running, all using a standard 
protocol as a control” [7, 27, p. 7]. Here, Morris is clearly committed to improving 
his practice and outcomes for his patients, and the structure of IHC empowered him 
to allocate the necessary time for the development of protocols which could then be 
shared and used throughout IHC’s system [28].

IHC’s structure and measurement systems are fully oriented to the needs of their 
patients—it is explicitly the role of leadership to remove barriers to progress in the 

1975: Intermountain 
Healthcare (IHC) is created 

1986: IHC began testing the 
idea that higher quality care 

leads to reduced costs

1991: IHC’s top 40 managers 
started training in quality 
control and improvement 

1996: The “Clinical 
Integration” plan aimed to 

establish quality as IHC’s core 
business approach 

1995: 65 clinical protocols 
that had been developed and 

implemented during the 
“Project Phase,” were 

identified producing about 
$20 million in annual savings 

1992-1995: IHC enters “The 
Project Phase” where 
thousands of quality 

improvement projects were 
undertaken by providers

1999: Financial incentives 
were aligned to IHC’s “Clinical 

Integration” aim

2007: Nine Clinical Programs 
went live on IHC’s Patient 

Care Management System (IT 
platform) 

2014 and onward: IHC 
continues supporting many 

quality improvement projects, 
and sharing learning across 

their system 

Fig. 19.1 A BRIEF Timeline of Intermountain Healthcare’s improvement journey
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field. Their integrated management structure supported this orientation. In the 
1990s, they built a clinical management structure parallel to the existing administra-
tive structure. James’ strategy was to merge the two structures over time: “we should 
give the two structures tight links and shared goals, and then let them collapse 
together, into a single structure. We hope that over time they will experience and see 
the redundancy and ask themselves ‘why are we holding two meetings?’ and merge 
of their own accord” [8, 27, p. 8].

The third pivotal action that IHC took was building a brilliantly structured Patient 
Care Management IT infrastructure to make “bottom-up” data available for front-
line providers to use in decision-making while delivering care. Aligning data man-
agement with clinical processes helped to encourage physician buy-in. In James’ 
words, “you manage what you measure… doctors manage patients, not money” [5, 
27, p. 5]. The mechanics of this type of measurement and logical processing infra-
structure are beyond the scope of this chapter, but are covered well in other pieces 
[27, p. 9 and 30].

Additional examples of healthcare systems successfully employing the other ten-
ants of an LHS include Virginia Mason, ThedaCare, Mayo Clinic, and Ascension 
Health [29–32].

 Putting These Models to Work for DCR

Hypothesis: Damage Control Surgery (DCS), DCR, and the observation that mov-
ing the control of bleeding and mitigating the pathophysiologic and biologic conse-
quences of exsanguination and severe injury “forward” to prehospital and early 
hospital settings can prevent death and disability after injury [33, 34]. DCR is appli-
cable to all geographical environments, and its concepts and therapeutic pieces can 
be initiated by all levels of providers, including bystanders through the chain of 
survival to in-hospital teams of specialists (Fig. 19.2). This chain of steps required 
of DCR provides the vehicle and motivation to amalgamate several components of 
emergency response and large contingencies of providers and professionals. If suc-
cessful, national effort to implement DCR universally could be a best practice cata-
lyst for leading the development of a national trauma system.

The recent report from the NASEM, A National Trauma Care System: Combining 
the Military and Civilian Systems to Achieve Zero Preventable Deaths After Injury, 
identified that preventable death after major trauma is an unrecognized problem that 
is epidemic in proportion [18]. Evidence from the US Military Medical System and 
Joint Trauma System’s Department of Defense Trauma Registry identified that of the 
4596 combat-related deaths, 976 patient deaths were preventable if early control of 
bleeding or interventions to support physiology and coagulation were applied until 
surgical control of bleeding was accomplished [35, 36]. Civilian reports on prevent-
able death highlighted the scale in the civilian sector and a crude estimate of 25,000–
30,000 patients of the approximately 147,790 trauma fatalities in 2014 in the United 
States were potentially preventable; uncontrolled bleeding was the most common 
cause [18, 37]. The report is lengthy and contains dozens of recommendations to 
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address this problem-motivating federal leadership, establishing a national trauma 
system with standards, policy, and incentives to affect regional and local change, 
creation of a trauma research agenda, and assuring an expert workforce. Key to many 
of these recommendations is the adoption of the framework of the LHS to enable the 
system-wide changes to lower the preventable death toll.

Bleeding to death after injury remains the greatest challenge to the emergency 
medical and trauma systems. DCS and subsequently DCR were empirically devel-
oped by clinicians struggling to keep patients alive with horrific wounds and in a 
physiologic death spiral [38–41]. DCR forms a bundle of care rather than a specific 

Fig. 19.2 DCR and the 
LHS: chain of survival 
after critical injury. The 
trauma system is a 
continuum of care from 
discovery of the injured 
patient through recovery 
and reentry to society. The 
early providers of trauma 
care are essential for the 
commencement of DCR 
and its continuation till the 
patient is stabilized and 
definitive care completed 
in the hospital. (From 
National Academies of 
Sciences, Engineering, and 
Medicine [18])
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therapy and has its place and perhaps its greatest impact if used in the earliest 
phases of trauma care: prehospital, en route, and hospital/trauma center arrival. Its 
concepts, especially rapid transport to definitive care and early tactical control of 
bleeding—manual pressure and tourniquets—are simple and applicable in all envi-
ronments and deployable by the earliest responders to the injury incident. Sustaining 
life and mitigating the pathophysiology of blood failure until the onset of DCS is the 
goal [33]. Twenty years of advancing the DCS paradigm and over a decade of inno-
vation with DCR provide a “test of time” to the efficacy of these modalities [42]. 
Combined Damage Control Resuscitation and Damage Control Surgery (DCR-S) 
has produced survival advantages and reductions in blood usage, promoted biologic 
homeostasis, and improved outcomes in both the military and civilian settings, 
including austere and remote environments [43–46]. Professional societies’ endorse-
ment and publication of evidence-based clinical guidelines supporting the com-
bined DCR-S pathway for improving patient survival are widespread [18, 41].

The need to improve trauma care systems should be at the forefront of our efforts 
as heralded by “A National Trauma Healthcare System: Integrating Military and 
Civilian Trauma Systems to Achieve Zero Preventable Deaths After Injury” [18]. 
Furthermore, taking on the challenge to eliminate preventable deaths from bleeding 
demands advancing the application of DCR-S to every injured patient at risk and 
across the all delivery environments. This will require local and regional coopera-
tion but would be best guided and refined as a national effort. At this time, DCR-S 
appears to be a powerful catalyst that drives the further development of emergency 
and trauma systems, ultimately advancing the public’s health.

 Visions of an Ideal Application of DCR Across the Country

Leadership and professional societies have endorsed the combined concepts of 
DCR and DCS. The amassed evidence, affirmations by interdisciplinary thought 
leaders, and favorable experiences by respected peer groups should motivate the 
leadership and providers of entities not familiar with DCR to learn and apply the 
concepts and principles of DCR. Thus on a regional, local, and organizational level, 
education and training of DCR should follow the best practices and management 
guidelines currently available [41]. Across the spectrum of early trauma care, all 
stakeholders should be motivated to understand DCR and what, where, and when to 
clinically initiate and apply it.

In support of the clinical providers, the clinical scenes, the necessary support, 
and organizational agencies such as regional EMS medical councils, EMT and 
advanced paramedic training and certification programs, and blood banking, infor-
mation technology, data registry, and information technology personnel should be 
informed of the DCR program and modify data collection elements, tools, and 
reporting so that concurrent review of DCR can be monitored and refined to identify 
gaps and performance improvement opportunities. Leadership and user groups 
should also be active in surveillance and identifying issues that require modification 
of practice guidelines, refinement of training, and areas for subsequent research.
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Data and experience with DCR should be disseminated to a national agency that 
is capable of managing large data cohorts and provide feedback and comparisons 
across the participating agencies. This promotes objective feedback and points to 
large areas of improving need as well as informs investigators and researchers to 
further needs and refinements overall. The larger national picture also provides fur-
ther motivation by demonstrating accomplishment of set goals to all involved.

Moving from national professional societies to more regional and local efforts 
must be used to identify barriers to learning and reluctance to accept (usually lack 
of awareness and knowledge and/or poor leadership models) and implement DCR 
(tactical impediments, educational barriers, resourcing). Solutions to removal of 
these barriers are best done by involvement of all professionals throughout the sys-
tem, and patients that system has served, thus forging consortium of motivated 
stakeholders. Ideally, each stakeholder recognizes their special place and integral 
role in the DCR-S chain of survival. This approach seems to be very powerful in the 
salvage of the individual and, nationally, a means to lower preventable death and 
disability after injury.

 A Portrait of the Future: DCR Carried Out on an LHS Framework

What could it look like if DCR were carried out within an LHS? Here is one possi-
ble narrative: The informed bystander discovers and calls 911 for help and, initially 
and subsequently with a first responder, accomplishes hemorrhage control (pressure 
on bleeding, where applicable tourniquet application), and removes the patient to a 
safe area if necessary; the prehospital providers supplement the bystanders with 
rapid assessment, enhancement of communication, rapid extrication, packaging, 
and transport of the patient. The time to transport promotes enrooted care and moni-
toring, intravenous access, and starting limited fluid therapy to administer necessary 
drugs and set the stage for commencement of blood product and procoagulant thera-
pies upon arrival or in some environments en route. The recording of data into an 
EMR designed with templates/parameters to enhance understanding mechanism of 
injury, physiology, times, and therapies has been promoted by remote technology 
that has recognized a DCR patient and alerted the onsite team and receiving trauma 
teams. In the operating room at the receiving hospital, teams activate protocols to 
receive the patient directly and commence DCS, and as needed, anesthesia and 
nursing teams apply very advanced life support technology and continue 
DCR. Simultaneously, the massive transfusion protocol within the hospital is initi-
ated, and the regional telemedicine center is notified.

Any provider that initiates DCR treatment electronically alerts the regional med-
ical helicopter to the potential for rendezvous with the ground transporting unit and 
enables advance therapies including blood component transfusion by the aeromedi-
cal team. Time and communication data and recordings are captured. In rural and 
remote locations, telemedicine and telepresence capability can be delivered by the 
emergency telemedicine center that also delivers other complementary care direc-
tion such as ICU and consultative responses to providers requesting such services.
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Data is captured or entered from monitors, vehicular gauges, and clocks through-
out the prehospital and transport routes. As needed, prehospital providers can rap-
idly access medical command centers and bidirectional audiovisual connection 
projects the scene and patient. Patient data, physiologic trends, and applied thera-
pies are chronologically recorded and shared with a medical command physician or 
other provider with expertise in the medic and prehospital teams practice domain. If 
necessary, telepresence is initiated and allows the medical command to deliver tacit 
knowledge and, as necessary, direct more invasive procedures. Constant communi-
cation and visual imaging is being used and recorded for subsequent study and 
performance improvement efforts.

Injuries requiring DCR will need DCS or invasive techniques and the operating 
theater or room is the destination of choice. This “Operating Space” has multiple 
modalities, including advanced imaging (whole-body LODOX scan, CT, MRI, 
angiographic, biplane capabilities), and can adapt to multiple teams with adequate 
space, supporting staffs, and equipment. Upon completion, the patient is moved to 
the ICU and for ongoing care, resuscitation, and further diagnostic studies. At all 
times, therapies and physiologic trends are recorded. In the ICU, data is captured, 
and where appropriate, video recording is used for performance improvement 
efforts; these are integrated into the EMR, registry, and other databases. The trauma 
registry team becomes active in the review and abstraction of data and completes a 
primary review of DCR preselected data elements. Any immediate concerns are 
brought to the care teams and performance improvement personnel, and further 
information about the patient, event, and treatments is added to the confidential PI 
record. This registry data populates performance improvement professionals and 
electronically alerts clinicians of other clinical management guidelines, potential 
research studies, and on-call specialists at the local hospital and available at the 
level I or II trauma center.

In keeping with the LHS model, the data and knowledge generated by the ideal-
ized process described above is used to inform other professionals across regional 
and national networks. This frontline work will also regularly generate new research 
questions, and related testing and piloting, to help advance the field and refine 
patient management and system development.

 National Scale

While this chapter focuses mainly on the spread and implementation of DCR within 
organizations and local networks, spreading DCR nationally is an important aspira-
tion. For that to happen, much of the thinking outlined above would need to be 
applied at a national level by a national organization (or consortium of organiza-
tions) that decides to pursue this goal. Specifically, they would need to:

• Conduct thorough and ongoing analysis of variation in implementation across 
the national system in order to identify “bright spots” that might act as mentors 
to others and groups in need of more intensive support.
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• Secure a clear, shared commitment from national bodies to prioritize national 
spread, including arriving at an aim and supporting pursuit of it through contex-
tually and culturally aligned incentives and technical supports.

• Maintain a coordinated system for spreading DCR, embracing the principles of 
an LHS, so that organizations and systems across the country can rapidly learn 
the practical details of implementation from one another in a supportive learning 
environment.

• Provide timely access to data on nationwide performance, including tracking and 
providing access to new innovations in implementation.

Implementing evidence-based practice across any setting or geography is hard 
work that requires active learning, which itself can only happen when every profes-
sional in the system is thoroughly supported and empowered to make local adapta-
tions that allow the intervention to thrive [47]. This, above all, will be critical in 
spreading the important work of DCR. We hope the application of LHS principles 
can contribute to broader adoption of DCR-S efforts across a nation. To be sure, 
these approaches require intentional planning and reflection, as well as allocation of 
resources for collecting data and learning, but as noted above in other areas of 
healthcare and public health, they can support meaningful progress and give us 
some optimism for the future.
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