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Abstract A proper choice of inelastic parameters is one of the most important
aspects for a successful simulation ofmetal forming processes. Several issuesmust be
observed when choosing such parameters, amongst which the compatibility between
the magnitude of the plastic deformation of the target forming operation and the
mechanical test employed to obtain those parameters.Within this context, the present
work addresses the suitability of selected phenomenological hardening models and
identification of the corresponding inelastic parameters based on curve-fitting strate-
gies (logarithmic-based equations) and optimizationmethods (non-logarithmicmod-
els) for the AISI 304 austenitic stainless steel. Tensile tests were performed using
specimens of different sizes. Based on a combined assessment of all types of spec-
imens, it was observed that the curve-fitting technique was able to describe with
excellent accuracy deformations up to maximum load. In order to contemplate larger
plastic deformations, an inverse problem strategy based on optimizationmethodswas
used to account for material response up to macroscopic failure of the specimens.
Numerical simulation of the tensile tests shows that the latter technique associated
with non-logarithmic hardening equations provided the best approximation to the
experimental data.

1 Introduction

Austenitic stainless steels are the most widely used type of corrosion-resistant steels.
This class of steels are generally characterized by containing low levels of Carbon
and high levels of Chromium and Nickel. In addition to Cr and Ni, other elements
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may be added in order to confer specific properties and characteristics to the mate-
rial, e.g. Molybdenum to increase pitting resistance, Phosphorus and Sulphur to
improve machinability, Selenium for better machined surfaces, Boron to enhance
the steel capacity to absorb neutrons in nuclear thermal reactors, Silicon for higher
heat resistance and Copper to improve cold working, amongst other elements [1].
The stainless steel AISI 304 is the most used grade due to its combination of mechan-
ical (formability and weldability) and chemical (corrosion and oxidation resistance)
characteristics.

The good formability of the type 304 stainless steel is associated with its relatively
low yield stress and high ductility, thereby allowing large plastic deformation before
onset of mechanical failure. Such features favour cold working processing [2] (roll
forming, deep drawing, etc.), making possible to manufacture with greater efficiency
a wide range of products and components, including consumer items, architectural
elements and industrial equipment. Therefore, a proper description of mechanical
properties is highly significant to industries, especially when using computational
packages to simulate metal forming operations (the user must provide actual inelas-
tic parameters). This work is inserted in this context, aiming to contribute to the
discussion by assessing the suitability of some selected phenomenological equations
to model hardening evolution and alternative strategies to obtain the corresponding
parameters.

Form the viewpoint of tool design and prediction of manufacturing costs, includ-
ing the modern concept of energy accountability, the issues briefly discussed in the
previous paragraph highlights the necessity to develop a methodology to determine
material parameters. Material parameters describe different aspects of the nature of
the material, ranging from mechanical and thermal behaviour to chemical kinetics.
The strategy addressed in this work is primarily concerned with mechanical param-
eters in association with inelastic deformation.

The literature shows an increasing number of works discussing strategies to deter-
mine different types of inelastic parameters, which in turn are associated with the
material constitutive relation (plastic, viscoplastic, etc.) and purpose of the analysis
itself (hardening, damage, etc.). Techniques based on curve fitting and optimiza-
tion methods have been largely adopted in this class of problems. For instance, the
suitability of selected hardening equations to describe plastic deformation of duc-
tile materials was addressed by Samuel and co-workers [3, 4]. The authors studied
several ductile materials, amongst which the AISI 316L stainless steel, and used a
curve-fitting technique up to instability onset to obtain the hardening parameters. One
of the relevant works on the application of optimization methods to obtain harden-
ing parameters was presented by Ponthot and Kleinermann [5]. The study is mostly
focused on mathematical aspects of several gradient-based optimization schemes.
The authors proposed application in cascade of optimization methods to identifica-
tion of hardening parameters of the ASTM A533, Grade B, Class 1 low alloy steel
based on tensile tests.

A discussion on the hardening behaviour and a proposal of a new phenomeno-
logical hardening equation were presented by Dimatteo et al. [6] for Dual Phase
(DP) 450/600/800/1000 and Transformation Induced Plasticity (TRIP) 800 steels.
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A curve-fitting strategy associated with tensile tests was adopted to determine the
hardeningparameters of a new3rdorder logarithmic yield stress curve. Thevalidation
procedure indicated excellent correlation of the engineering stress and strain curves
up to maximum load. Noticeably, the present work also investigates the suitability of
the hardening equation proposed by Dimatteo et al. [6] to describe isothermal hard-
ening evolution for the AISI 304 stainless steel. A parameter identification technique
using optimization methods was used by Vaz Jr. et al. [7] to obtain hardening and
fracture parameters of lowCarbonAISI 1020 steel. The authors discussed application
of hybrid optimization strategies and described an experimental-numerical scheme
to determine inelastic parameters for two damage constitutive relations.

The brief reviewpresented in the previous paragraphs is not exhaustive and intends
to illustrate some of the existing approaches regarding the nature of the inelastic
parameters and methodology of parameter identification. It is important to mention
that other relevant investigations on the subject are discussed later in the appro-
priate sections. The present work addresses the suitability of selected phenomeno-
logical hardening models and identification of the corresponding inelastic parame-
ters based on curve-fitting strategies (logarithmic-based equations) and optimization
methods (non-logarithmic models) for the AISI 304 stainless steel. The chapter is
organized as follows: Section 2 introduces a discussion on logarithmic-based phe-
nomenological hardening equations and its intrinsic association with curve-fitting
procedures. Section 3 presents alternative, non-logarithmic hardening equations and
an optimization-based strategy to obtain the corresponding hardening parameters.
Application of both parameter identification techniques is discussed in Sect. 4 based
on tensile tests using specimens of different sizes prepared according to two different
technical standards. The main conclusions and remarks are summarised in Sect. 5.

2 Phenomenological Hardening Equations and Curve
Fitting Strategies

Tensile tests associated with curve fitting strategies have largely been adopted to
determine yield stress parameters for metal materials. In addition to its simplicity,
this technique makes possible to directly correlate true stresses and true strains,
thereby conferring a straightforward physical significance. For the sake of objec-
tivity, the reader is referred to Davis [8] for a detailed description of the method,
including experimental considerations and requirements. Notwithstanding, it is rel-
evant to emphasise that logarithmic true strains and true stresses represent the actual
state of the material and are derived by considering the actual area and length of the
specimen as well as constant volume during plastic deformation. The assumption
of uniform deformation required by this method restricts evaluation of strains and
stresses up to necking (instability) onset. The curve fitting technique is particularly
significantwhen determining thematerial parameters based on specimens of different
sizes. This strategy evinces eventual measurement discrepancies: in spite of different
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levels of tensile loads (owing to different cross-sectional areas), the true stress strain
curves for each test must show very close approximation up to maximum load.

The literature shows a wide range of empirical equations to describe the yield
stress based on logarithmic, (ln σ) × (ln ε) curves. This work addresses yield stress
described by the classical Swift’s equation [9] and alternative approaches, such as
the double-n Swift [10] and a third-order logarithmic polynomial curve [6] (referred
here also as cubic logarithmic equation).

One of the most well-known yield stress equation is due to Swift [9]. The author
addressed mathematically the conditions for instability of plastic strains based on
the Mises-Henky constitutive model. The instability conditions were demonstrated
for a strain-hardening material described by the empirical relation

σY = k
(
ε̄p + ε0

)n
, (1)

where σY is the yield stress, ε̄p is the equivalent plastic strain, k is known as strength
coefficient, n is the strain-hardening exponent, and ε0 is an initial measure of the
plastic state of the material (referred here as initial strain). The fitting constants
k and n can be easily determined from double logarithm plot of the experimental
true stress-strain data within the envelope comprised by the elastic deformation and
onset of plastic instability (maximum load). The initial strain, ε0, is obtained by
the intersection of the uniaxial elastic and plastic curves, σ0 = Eε0 = kεn0, so that
ε0 = (E/k)1/(n−1), where σ0 is the initial yield stress and E is the Young’s modulus.

Further modifications of Eq. (1) have been proposed to accommodate non-linear
variations of the hardening evolution. Hertelé et al. [10] highlight the fact that two-
stage hardening has been observed in various types of metals, including stainless
steels. The authors proposed a strategy based on the Ramberg-Osgood equation and
presented results for the DIN 1.4462 duplex stainless steel. Kashyap et al. [11, 12]
adopted two and three stages of the Holloman relation, σY = kεn, to describe the
behaviour of the AISI 316L stainless steel under high temperature.

In the present work, a double-n Swift curve is investigated, so that

σY =
{
k1(ε̄p + ε0)

n1 if ε̄p � ε̄Tp

k2(ε̄p + ε0)
n2 if ε̄p > ε̄Tp

, (2)

in which k1 and k2 are the strength coefficients of each stage, n1 and n2 are the
corresponding hardening indices, ε0 = (E/k1)1/(n1−1) is the initial strain, and εTp =
εT − ε0 = exp[ln(k1/k2)/(n2 − n1)] − ε0 is the transitional equivalent plastic strain.

The material parameters (k1, n1) and (k2, n2) of Eq. (2) can be obtained from a
double logarithmic plot of the experimental true stress-true strain data based on the
assumption of uniform plastic deformation. The key aspect of the double-n Swift
curve is the proper computation of the transition point. In this work, the transition
between curves “1” and “2” is determined by minimizing a combination of the
fitting errors of both hardening stages when determining parameters (k1, n1) and
(k2, n2) (the technique makes use of a simple line search method which maximizes
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the average coefficient of determination, R
2
(εT ) = (R2

1 + R2
2)/2, of curves “1” and

“2”). It is also important to note that, contrasting to other empirical equations, the
material parameters k and n of the Swift and double-n Swift curves provide a strong
physical and technological significance. The strength coefficient, k, directly indicates
the magnitude of the forces involved in forming operations, whereas the value of the
hardening exponent, n, points out preferred forming processes according to its level.

Within the framework of empirical descriptions of plastic deformation, Dimatteo
et al. [6] proposed use of a 3rd order (ln σ) × (ln ε) polynomial fit to DP and TRIP
steels in an attempt to predict the influence of alloying elements and heat treatment
conditions in a simple manner. This work investigates a possible extension of the
applicability range to the AISI 304 stainless steel. In the present study, provision for
the elastic envelope is also included, so that

ln(σY ) = A[ln(ε̄p + ε0)]3 + B[ln(ε̄p + ε0)]2 + C[ln(ε̄p + ε0)] + D, (3)

where A, B, C, and D are the model parameters to be determined by the curve fitting
procedure. Similarly to Swift’s equation, the initial strain, ε0, is obtained by the inter-
section between the uniaxial elastic and plastic curves and solving the cubic equation,
A[ln(ε0)]3 + B[ln(ε0)]2 + (C − 1)[ln(ε0)] + [D − ln(E)] = 0, for the initial strain.
Remark (i): The curve fitting procedures seek the best approximation under uniaxial
stress conditions. Therefore, a combination of such strategy and the aforementioned
hardening equations does not guarantee a priori accurate yield stress predictions
beyond the instability point. This fact has important implications when computing
the actual forming load for large plastic deformations, as discussed in the following
sections.
Remark (ii): It is relevant to mention that the AISI 304 stainless steel is subject
to deformation-induced phase transformation of austenite to martensite. The phase
transformation mechanisms give rise to complex hardening behaviour according
temperature and strain rates. De et al. [13] indicate that the stress-strain curves for
low strain rates and temperatures higher than 298 K follow a typical “parabolic”
evolution, which, therefore, makes possible to model inelastic deformation using
straightforward phenomenological approaches.

3 Alternative Yield Stress Equations and Identification
of Material Parameters

It is particularly relevant to acknowledge that phenomenological constitutive models
have been largely used (and preferred) in industry. Moreover, many non-logarithmic
hardening equations are empirical in nature and have been recommended for individ-
ual materials or else portraying specific internal structures (see, for instance, Larour
[14] and references therein). However, there have been proposed some yield stress
equations derived by usingmicromechanical concepts that can also be applied within
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the realm of phenomenological models. This work considers two non-logarithmic
hardening equations which can be obtained from physical mechanisms of dislocation
theory and yet recover well-known empirical models (without, however, addressing
phase transformation).

El-Magd [15] accounts for physical mechanisms of dislocation theory assuming a
Taylor-like correlation between the yield stress and total dislocation density associ-
ated with Mecking and Kocks’ [16] evolution of the dislocation density. A constant
assumption of the micromechanical parameters gives rise to a yield stress equation
identical with Voce’s [17] empirical relation,

σY = Cv
1 + (

Cv
2 − Cv

1

)
exp

(−Cv
3 ε̄p

)

= σ v
0 + (

σ v∞ − σ v
0

) [
1 − exp

(−δv ε̄p
)] , (4)

where Cv
1 = σ v∞ and Cv

2 = σ v
0 are associated with the saturation and initial yield

stress, respectively, andCv
3 = δv represents the deformation rate to approach the satu-

ration stress. Depending upon thematerial, Voce’s equation provides good fit only for
small plastic strains owing to the fact that the yield stress asymptotically approaches
a constant value for large plastic deformations, i.e. σY → σ v∞. For instance, El-Magd
[15] indicates that Eq. (4) presents acceptable approximations for the austenitic steel
X6CrNi18-11 at different temperatures in the range of relatively small strain up to
0.2.

A better representation for larger plastic strains can be derived by approximating
the effects of the dislocation storage rate as a linear function of plastic strains [15],
so that

σY = Ct
1 + Ct

4ε̄p + (
Ct
2 − Ct

1

)
exp

(−Ct
3ε̄p

)

= σ t
0 + ζ ε̄p + (

σ t∞ − σ t
0

) [
1 − exp

(−δt ε̄p
)] , (5)

in which Ct
1 = σ t∞ and Ct

2 = σ t
0 represents the saturation and initial yield stress,

respectively, Cv
3 = δt is the deformation rate to approach the saturation stress, and

Ct
4 = ζ t portraits the linear hardening coefficient. This equation closely approximates

an empirical model proposed by Tome et al. [18]. In addition, hardening laws similar
to Eq. (5) have oftentimes been referred as modified Voce model. The literature
shows increasing use of this hardening equation to describe the yield stress evolution
of different materials, such as the 100Cr6 steel [19], X8CrNiMoNb16-16 austenitic
steel [15], DP780 and TRIP780 high strength steels [20], and Al-2/4/8/10Si casting
alloys [21].
Remark (iii): Voce’s and modified Voce hardening equations were not conceived
to follow the plastic deformation behaviour naturally represented in the classical
logarithmic form. Therefore, this work adopts an optimization strategy to determine
parameters of both Eqs. (4) and (5), thereby making possible to evaluate plastic
deformation up to final deformation stages (catastrophic failure).
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3.1 Identification of Material Parameters—The Optimization
Algorithm

Parameter identification can also be regarded as an inverse problem, which consists
of finding a set of material parameters which minimizes the differences between
experimental measures and corresponding computed responses with respect to a
given norm [22]. In the present study, (i) the experimental measures comprise loads
and displacements evaluated in tensile tests using specimens of different geometry
up to macroscopic failure. (ii) The computed response is determined by solving an
elastic-plastic boundary value problem, which, in this work, is solved by an in-house
finite element code based on a hyperelastic, large deformation formulation [23, 24].
(iii) The norm defines how differences are computed and this study adopts a linear
combination of the L2 error norm for each tensile test.

Unconstrained nonlinear optimization is utilised in the present parameter identi-
fication problem, which can be generally defined as

Minimise g(p) =
ns∑

s=1

λsgs(p) p ∈ Rnp

Such that pinfi ≤ pi ≤ psupi i = 1, . . . , np

, (6)

in which g(p) is the global objective function (global fitness), computed from indi-
vidual fitness measures, gs(p), where the subscript “s” indicates a tensile test of an
individual type of specimen, and ns is the total number of specimen types. In Eq.
(6), p = [

p1 p2 · · · pi · · · pnp
]T

is the design vector containing np design variables pi
(material parameters), and pinfi and psupi are lateral limits (minimum and maximum
values of each material parameter).

The contribution of the tensile tests of each type of specimen to the global objective
function is defined by weights, λs, so that

∑ns
s=1 λs = 1. The individual fitness, gs(p),

is evaluated by the L2 norm of the differences between the experimental, RExp
s , and

corresponding computed loads, R(p)Nums , of a tensile test “s”, as

gs(p) = ∥∥RExp
s − R(p)Nums

∥∥
L2

=
√√√√

Ns∑

j=1

[
RExp
s,j − R(p)Nums,j

]2 , (7)

where Ns is the number of experimental points for tensile test “s”. The optimization
technique adopted in this work uses the gradient-free downhill simplex method,
also known as Nelder-Mead (NM) algorithm [25]. It is important to mention that
other optimization methods could have been used in conjunction with the proposed
strategy. Notwithstanding, the NM algorithm was adopted based on the following
reasons:
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(i) The NM method does not require a continuously differentiable objective func-
tion. The combination of individual objective functions and the high non-
linearity of the plasticity problem can cause the sensitivity analysis (deriva-
tive of the global objective function with respect to each design variable) of
gradient-based schemes to fail, especially after the maximum load, close to the
macroscopic failure (see, for instance, the issues associated with the gradient-
based Sequential Quadratic Programming (SQP) method discussed in Vaz Jr.
et al. [26]). In the present NM implementation, even if computation of one or
more individual fitness, gs(p), fail, the scheme naturally purges the correspond-
ing set of material parameters p and the optimization process continues.

(ii) The NM method was shown competitive in this class of problems when
compared to some gradient-based techniques and soft-computing algorithms
[27]. The authors discussed application of the Broyden-Fletcher-Goldfarb-
Shanno (BFGS), Sequential Quadratic Programming (SQP), Globally Conver-
gent Method of Moving Asymptotes (GCMMA), Particle Swarm Optimization
(PSO), Genetic Algorithm (GA), Nelder-Mead and Univariate methods to iden-
tification of inelastic parameters using tensile tests and deep drawing operations.

(iii) TheNelder-Meadmethodhas been used successfully in parameter identification
associated with more elaborate mechanical tests and complex constitutive rela-
tions (which indicates its robustness). For instance, Banabic et al. [28] applied
the NM scheme to identification of inelastic parameters for a biaxial tensile
test, and Pannier et al. [29] used this optimization method to find elastic-plastic
constitutive parameters based on the Virtual Fields Method associated to ten-
sile tests. The NM technique was also successfully used in conjunction with
different material constitutive relations, such as composite [30] and damaged
[7] materials.

Highlights of the Nelder-Mead algorithm: The NM optimization method defines a
regular polytope of np + 1 vertices (for a np-dimensional design space correspond-
ing to a np number of material parameters), which moves towards the optimum by
replacing the worst vertex by a new one selected from pre-defined positions along
a given search direction. The reader is referred to Nelder and Mead [25], Luersen
and Le Riche [30], and Lagarias et al. [31] for additional details on the NM opti-
mization technique, and Vaz Jr. et al [26] for the NM algorithm used in the present
investigation.

4 Numerical Results and Discussions

The previous sections show that inelastic parameters can be determined using tensile
tests based on calibration or inverse problem techniques. The former adopts curve
fitting strategies of the true stresses and strains in a (ln σ) × (ln ε) plot, whereas the
latter uses optimization methods.
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Table 1 Chemical composition of the AISI 304 steel (in wt%)

Cr Ni Mn Si C P S

Nominal 18–20 8–10.5 max 2.0 max 1.0 max 0.08 max 0.045 max 0.03

This work 18.677 8.780 1.9856 0.21897 0.07612 0.01984 0.02767

Experimental investigations shows that tensile tests of ductile materials involve
four general stages: (i) uniform elastic deformation; (ii) plastic deformation under
uniform stress states; (iii) instability onset and growth of triaxial stress states; and (iv)
catastrophic/macroscopic failure. Calibration procedures are performed under uni-
axial stress/strain conditions comprising stage (ii) up to instability onset (or necking)
to avoid triaxial stress states. Contrastingly, inverse problem techniques can account
for elastic-plastic deformations up to macroscopic failure. This study is performed
for the AISI 304 stainless steel with chemical composition presented in Table 1.

In the present work, tensile tests were executed using cylindrical specimens pre-
pared according to the American ASTM E8M-09 [32] and Brazilian ABNT NBR
ISO 6892 [33] technical standards under displacement control at room temperature
(298 K). Extensometers with initial gauge lengths l0 = 25 mm and l0 = 50 mmwere
used according to the specimen size withmaximum crosshead speed vc = 3mm/min.
The specimens used in this work are illustrated in Fig. 1 and referred as follows:

• ASTM #1: initial gauge length l0 = 25 mm and diameter d0 = 6.0 mm,
• ASTM #2: initial gauge length l0 = 50 mm and diameter d0 = 12.54 mm,
• NBR #3: initial gauge length l0 = 50 mm and diameter d0 = 10.0 mm.

The geometrical models (used in the simulations) for all types of specimens con-
sider axisymmetry around the rotation axis Z − Z ′ and symmetry about the R − R′
axis, making possible tomodel only 1/4 of the specimen. All cases adopt a structured,
eight-noded quadrilateral finite element mesh with 200 elements and 661 nodes with
progressive refinement towards the specimen R − R′ axis. The finite element mesh
used for specimen ASTM #2 is presented in Fig. 2. Meshes for ASTM #1 e NBR #3
specimens are geometrically proportional to ASTM #2 with identical element topol-
ogy. The Young modulus and Poisson’s ratio used in the simulations are E = 205
GPa and ν = 0.29, respectively.

4.1 Curve Fitting of Logarithmic-Type Yield Stress Curves

The curve fitting procedure for the Swift (Eq. 1), double-n Swift (Eq. 2) and third-
order logarithmic curves (Eq. 3) requires definition of lower and upper limits, i.e.
the elastic limit and instability onset, respectively. The elastic limit corresponds to
the lower bound imposed by the elastic curve, σ = Eε, whereas the maximum load
was assumed as the instability limit. The true strains and true stresses are determined
as ε = ln(1 + e) and σ = S(1 + e), respectively, where e = Δl/l0 is the elongation
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Fig. 1 Geometry of the specimens for the ASTM and ABNT-NBR standards

Fig. 2 Finite element mesh
for the ASTM #2 specimen

U6.27 mm

25 mm
R

R’

Z’Z
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(engineering strain), S = R/A0 is the engineering stress, R is the axial load, and
A0 is the initial cross-sectional area [8]. It was observed that evolution of the true
stress−true strain curve for theASTM#1,ASTM#2 andNBR#3 specimens presents
small variations up to instability onset. Such results indicate a good consistency of
the measured data. Therefore, curve fitting was performed taking into account the
true stress–true strain data of all types of specimens, making possible to determine
a single set of parameters for each hardening curve, i.e. Swift, double-n Swift and
cubic logarithmic curves.

Figure 3 shows the experimental data and fitted equations in a (ln σ) × (ln ε) plot,
and Table 2 presents the corresponding material parameters. For the sake of clarity,
not all experimental points are represented in Fig. 3 and forthcoming figures. The best
fit was achieved by the cubic logarithmic curve with a coefficient of determination
R2 = 0.998627, as represented in Fig. 3 by the thick solid line. The double-n Swift
yield stress curve was also able to provide a good approximation to the experimental

values with a mean coefficient of determination R
2 = 0.979821 (solid line in Fig. 3).

On the other hand, the Swift curve provided a very poor fitting, clearly indicated by
the dashed line in Fig. 3, with a coefficient of determination R2 = 0.948860.

Numerical simulations of the tensile test were conducted for theASTM#1,ASTM
#2 and NBR #3 specimens using the geometrical models previously described. The
maximum experimental displacements measured for each specimen are applied to
the corresponding geometrical model as: [ASTM #1 (l0/2 = 12.5 mm):U#1 = 7.30
mm], [ASTM #2 (l0/2 = 25 mm): U#2 = 12.88 mm], and [NBR #3 (l0/2 = 25

Fig. 3 Curve fitting of the
true stresses and strains for
the Swift, double-n Swift
and cubic logarithmic
hardening equations
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Table 2 Material parameters
for the Swift, double-n Swift
and cubic logarithmic
hardening equations

Model Parameter Value

Swift k 1162.60 kPa

n 0.223907

ε0 1.27526 × 10−3

Double-n Swift k1 781.201 kPa

n1 0.125434

k2 1436.36 kPa

n2 0.341271

ε0 1.71422 × 10−3

εTp 5.95026 × 10−3

Cubic logarithm A 3.59939 × 10−3

B 8.17363 × 10−2

C 0.608688

D 21.3109

ε0 1.97856 × 10−3

mm):U#3 = 12.80 mm]. The material parameters presented in Table 2 for the Swift,
double-n Swift and cubic logarithmic equations were used in the simulations.

Figure 4a–c present the loading curves for specimens ASTM #1, ASTM #2 and
NBR #3, respectively, computed using Swift, double-n Swift and cubic logarith-
mic models. The poor fitting exhibited by the Swift curve (see the dashed line in
Fig. 3) is translated into also poor numerical loading response for all specimens: the
tensile load is overestimated for small strains and grossly underestimated for large
deformations, i.e. the excessive necking towards the end of the tensile test caused
an unrealistic decrease of the tensile load. The best data fitting demonstrated by the
cubic logarithmic curve is strictly observed up to the maximum load for all speci-
mens (thick solid lines in Fig. 4). However, the hardening parameters of the cubic
logarithmic curve obtained for the present tensile tests caused the computed tensile
load to steadily increase after the maximum experimental load, i.e. no necking was
observed in the simulations up to the maximum applied displacements (U#1,U#2 and
U#3) for the respective specimens.

The fitted double-n Swift equation provides the best results for the tensile load.
Such good approximation (up to the maximum load) for stainless steels has already
been established in the literature [10–12]. Figure 4a and c show that this hardening
equation was also able to capture the general tendency of the load behaviour after the
maximum load. Notwithstanding, the transition between the different slopes of the
double-n Swift curve (represented by the hardening coefficients n1 and n2, as shown
in Fig. 3) caused an unrealistic bulge in the loading curve when the elongation
approaches εT ≈ 0.06314 (i.e. when plastic strains approximate εTp ), as highlighted
in Fig. 5. Themaximumdifferences between experimental and numerical loads in the
transition region of the double-nSwift curve increasewith the cross-sectional area, so
thatΔR#1 ≈ 310 N (d0 = 6 mm),ΔR#3 ≈ 1200 N (d0 = 10 mm), andΔR#2 ≈ 2700
N (d0 = 12.54 mm) for specimens ASTM #1, NBR #3, and ASTM #2, respectively.
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Fig. 4 Loading curve for specimens ASTM #1, ASTM #2 and NBR #3: logarithmic-based yield
equations

Fig. 5 Loading curves for
the double-n Swift curve

Remark (iv): the curve-fitting strategy to determine the hardening parameters for the
Swift, double-n Swift and cubic logarithmic equations minimizes the differences
between experimental and numerical true strains and true stresses based on polyno-
mial least square regression for a (ln σ) × (ln ε) plot. This strategy does not require
information after the upper limit given by the maximum load. Therefore, it is not
expected, a priori, a good approximation of the loading curve for the logarithmic-
based hardening equations after necking onset under triaxial stress states.
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4.2 Parameter Identification of Alternative Yield
Stress Equations

The strategy used to determine the hardening parameters of Voces (Eq. 4) and mod-
ified Voce (Eq. 5) yield equations is markedly different from calibration procedures.
Instead of using curve fitting techniques, material parameters of both equations are
determined by numerically assessing the load response of the specimens submitted
to controlled displacements. The final hardening parameters are those which mini-
mize compound differences (evaluated by the L2 norm) between experimental and
numerical loads for specimens ASTM #1, ASTM #2 and NBR #3. The Nelder-Mead
optimization algorithm was used in the simulations, which requires an initial esti-
mate of the material parameters, p(0)

i , and corresponding minimum and maximum
values (lateral constraints, pinfi and psupi ), as indicated in Table 3. For the sake of
objectivity, assessment of the capacity of the algorithm to solve the problem and
other studies of the optimization scheme are omitted here (e.g. convexity, sensitivity
to mesh size and to changes of the initial estimates and lateral constraints, influence
of the convergence limit, etc.). It is also relevant to emphasise that equal contribution
for tensile tests of each specimen ASTM #1, ASTM #2 and NBR #3 was assumed
in the identification process, so that λ1 = λ2 = λ3 = 1/3 in Eq. (6).

The material parameters determined for the original Voce and modified Voce
hardening equations are presented in Table 3, whereas the loading curves for the
tensile test of each specimen are shown in Fig. 6. The simulations indicate that
both hardening models present good approximation to the experimental data up to
the maximum load. Nevertheless, evaluation of the loading curves of all specimens
indicates that the modified Voce equation was able to provide a better prediction than
the Voces model. It is possible to visually identify in Fig. 6a that, for the smallest
specimen ASTM #1 (d0 = 6 mm), the original Voce equation led to large differences
towards the end of the loading process. Quantification of such differences is discussed
in the following paragraph.

A comparative (quantitative) assessment with respect to load evolution for hard-
ening equations associated with both curve-fitting (Swift, double-n Swift and cubic

Table 3 Lateral constraints, initial estimates and final hardening parameters for the Voce and
modified Voce hardening equations

Model Parameter pinfi psupi pi Value

Voce Eq. (4) σ v
0 (MPa) 200 800 500 432.137

σ v∞ (MPa) 400 1500 800 1424.73

δv 0 50 25 2.46965

Modified Voce Eq. (5) σ t
0 (MPa) 200 800 500 406.749

σ t∞ (MPa) 400 1200 800 768.524

ζ t (MPa) 300 1200 750 746.444

δt 0 50 25 7.04351
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Fig. 6 Loading curve for specimens ASTM #1, ASTM #2 and NBR #3: original Voce andmodified
Voce yield equations

polynomial) and inverse problem (Voce and modified Voce) techniques was also per-
formed. In order to better perceive eventual discrepancies, specimen-based, ϕs(p),
and global, Φ(p), indices were defined based on the relative L2 error norm between
experimental and numerical tensile loads as

ϕs(p) =
∥∥RExp

s − RNum
s

∥∥
L2∥∥RExp

s

∥∥
L2

and Φ(p) =
3∑

s=1

ϕs(p). (8)

Table 4 presents both ϕs(p) and Φ(p), from which one can conclude that the
modifiedVoce equation presents the best global performance, followedby the double-
n Swift, original Voce, cubic logarithmic and Swift equations. Noticeably, the global
error measureΦ(p) for the modified Voce equation is 30% smaller than the double-n
Swift. Table 4 also indicates that differences change for individual specimens, with
the modified Voce equation attaining best approximations for ASTM #1 and NBR
#3 specimens and the double-n Swift for the ASTM #2 specimen. Figure 7 enables a
visual appraisal of the differences between the loading curves for the modified Voce
and double-n Swift hardening equations. The relative large differences exhibited by
the double-n Swift loading curve after the maximum load for specimens ASTM #1
and NBR #3 (clearly visible in Fig. 7) led to the larger values of the global index,
Φ(p). It can also be observed in Fig. 7 and Table 4 that differences for the ASTM #2
specimen are marginal for both hardening equations.
Remark (v): Some reasonsmight explain the better performance of themodifiedVoce
hardening equation with respect to the double-n Swift model: (i) the optimization
technique (minimization of the experimental-numerical differences) utilised for the
modified Voce equation accounts for the experimental loading curve up to macro-
scopic failure, which contrasts to the double-nSwiftmodel that performs curve fitting
up to the maximum load. (ii) The unrealistic bulge located in the transition between
hardening indices n1 and n2 imposes further differences for the double-n Swift equa-
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Table 4 Individual, ϕs(p), and global, Φ(p), error indices for all hardening equations

Technique Hardening model ϕs(p) Φ(p)

ASTM #1 ASTM #2 NBR #1 Global index

Curve fitting Swift 0.5184282 0.4239484 0.4881430 1.430520

Double-n Swift 0.1481382 0.0735302 0.0249953 0.246664

Cubic logarithmic 0.0981038 0.1419500 0.0900999 0.330154

Optimization Original Voce 0.1498700 0.0871119 0.0161115 0.253093

Modified Voce 0.0825237 0.0805894 0.0108542 0.173967

The bold value indicates the minimum values of the error indices

Fig. 7 Loading curve for
double-n Swift and modified
Voce hardening equations

tion. (iii) No physical justification holds for double-n Swift model since this equation
if essentially of empirical character.

5 Concluding Remarks

Austenitic stainless steels have been used in many applications, ranging from con-
sumer items (cutlery, pans, sinks, etc.) and architectural components (ornamental
work, decorative panels, poolside fittings and fixings, etc.) to industrial equipment
(e.g. pharmaceutical, food and beverage, chemical andmining equipment). The stain-
less steel AISI 304 constitutes the most used grade owing to its combination of
good corrosion/oxidation resistance, weldability, formability, toughness characteris-
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tics and ductility (large deformation before failure onset). Due to such high industrial
interest, this work discusses suitability of some selected equations to model harden-
ing evolution and alternative strategies to obtain the corresponding parameters within
the phenomenological framework.

Tensile tests have long been used to determine hardening parameters of ductile
materials. Aiming to confer further credibility to the present analysis, specimens
prepared according to the American ASTM E8M-09 [32] (ASTM #1 and ASTM
#2) and Brazilian ABNT NBR ISO 6892 [33] (NBR #3) standards were used. Due
to simplicity, calibration procedures based on curve-fitting strategies are by far the
most common approach adopted to determine hardening parameters. Themain draw-
back of this technique is the requirement of uniform deformation, which restricts its
application to relatively small plastic deformations (up to instability onset). This
work addresses this method by comparing the following logarithmic-type hardening
equations: Swift [9] (largely used in industry), double-n Swift (previously recom-
mended for austenitic steels [10–12]), and a 3rd order (ln σ) × (ln ε) polynomial
equation (recommended for some DP and TRIP steels [6]). The latter provided the
best fit of the experimental data up to maximum load, followed by the double-n Swift
and Swift models.

Simulation of metal forming processes, such as extrusion, wire drawing and deep
drawing, involves larger plastic deformations than those permitted by curve-fitting
strategies. Therefore, this study also addresses identification of material parameters
based on inverse problem techniques (by using optimization methods). In such case,
Voce’s and modified Voce equations were adopted to describe material hardening.
Despite of phenomenological character, these equations were selected due to their
association with physical mechanisms of the dislocation theory.

A comparative assessment of all hardening equations (Swift, double-n Swift, 3rd
order logarithmic, Voce and modified Voce) were performed by numerical simu-
lation of tensile tests for the ASTM #1, ASTM #2 and NBR #3 specimens up to
macroscopic failure. The computational model uses an in-house fine element code
based on an elastic-plastic, finite strain formulation [23, 24]. The experimental data
shows relevant plastic deformation after the maximum load, reaching elongations
(engineering strains) up to 50% higher than those observed for uniform deformation.
In order to quantify the approximation provided by the aforementioned hardening
equations and corresponding parameters, an index was defined based on the relative
L2 error norm between experimental and numerical loads up to macroscopic failure.
The simulations indicate that the modified Voce equation produced an error index
30% smaller than the double-n Swift. Moreover, both equations were able to predict
the load behaviour after the instability onset with acceptable accuracy. Contrastingly,
Swift’s hardening model grossly underestimates tensile loads after maximum load,
whereas no instability onset was predicted by the 3rd order polynomial equation.

Therefore, owing to the discussion summarised in the previous paragraphs,
the modified Voce equation associated with inverse problem techniques based on
optimization methods are recommended to describe isothermal hardening for the
austenitic stainless steel AISI 304. The double-n Swift equation can also be used, but
some care should be exercised.
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