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1  Introduction

The use of green plants in the restoration of contaminated sites is generally termed 
as phytoremediation, a technique that evolved during the last decades of the twenti-
eth century (Salt et al. 1995). Even though the term “phytoremediation” was coined 
in the earlier 1990s, the concept of using plants to clean up contaminated environ-
ments dates back to 300 years. The first plant species documented for the bioaccu-
mulation of heavy metals were Thlaspi caerulescens and Viola calaminaria, and the 
credit for this goes to Baumann (1885) at the end of the nineteenth century. Later in 
1935, Byers reported that plants coming under the genus Astragalus are capable of 
accumulating up to 0.6% Se in the tissue. One decade later, Minguzzi and Vergnano 
(1948) identified some plants which are able to accumulate nickel (Ni) in shoots. 
Later on, Rascio (1977) reported the potential of Thlaspi caerulescens toward zinc 
(Zn) accumulation and tolerance.

The idea of using plants to remove metals from contaminated soil was further 
developed by Utsunomiya (1980) and Chaney (1983), and the first field trial on Zn 
and cadmium (Cd) phytoextraction was conducted by Baker et al. (1991). Following 
Baker till date, there were enormous reports on the heavy metal remediation tech-
nique using a number of plants (Salt et  al. 1995; Clemens 2001; Suresh and 
Ravishankar 2004; Lone et  al. 2008; Lutts and Lefévre 2015; Devi et  al. 2016). 
These findings throw light to several similar studies, and now a number of plants 
have been identified as metal tolerators or as metal accumulators.

Phytoremediation in its sense is a very broad technique including several kinds 
of remediation alternatives (rhizofiltration, phytoaccumulation, phytoexcretion, 
phytostabilization, and phytovolatilization), and plants should be selected as per the 
requirement of the site. When an area is only slightly contaminated, plants with a 
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strong ability to take up metals from soils can be utilized. These accumulated metals 
can either be stored inside the plant tissue, a process termed phytoaccumulation, or 
may exclude from the tissue, processes termed phytoexcretion and phytovolatiliza-
tion. However, when dealing with more heavily polluted sites, like sites for the 
disposal of mine tailings, plants that do not transport the metals to the shoots, but 
instead bind them in the root or the rhizosphere, are preferred. This approach is 
termed phytostabilization (Wong 2003; Zeng et al. 2018).

Phytostabilization is a less invasive, low-cost phytotechnology which uses green 
plants to stabilize the toxic metal ions within the root or near the rhizosphere. It is 
now widely accepted as a means to decontaminate and restore the physical, chemi-
cal, and biological characteristics of the contaminated soils (Bolan et  al. 2003; 
Kumpiene et  al. 2008). Phytostabilization is not actually physically removing the 
contaminants from the soil, but rather causes the deactivation and immobilization of 
the potential ions, thereby preventing the further movement of the same to the food 
chain. The term phytostabilization thus refers to the use of pollutant-tolerant plants 
for mechanical stabilization of polluted land in order to prevent bulk erosion, reduce 
airborne transport, and leach pollutants (Fitz and Wenzel 2002; Boisson et al. 2016). 
It is mostly used for the remediation of soil, sediment, and sludges (USEPA 2000) 
and depends on roots’ ability to limit contaminant mobility and bioavailability in the 
soil. The main objectives of phytostabilization have been summarized by Vassilev 
et al. (2004) as follows:

 (i) To change the trace element speciation in the soil aiming to reduce the solubil-
ity and exchangeable fraction of these elements

 (ii) To stabilize the vegetation cover and limit trace element uptake by crops
 (iii) To reduce the direct exposure of soil-heterotrophic living organisms to pollutants
 (iv) To enhance biodiversity by limiting the metal mobility

2  Phytostabilization Criteria

Phytostabilization can be applied to fields with varying level of contamination and 
also with different soil texture, i.e., features like soil pH, salinity, and metal levels, and 
contaminant types may vary from field to field. Thus, phytostabilization efficiency can 
be enhanced only through the careful selection of the appropriate plant species and 
also of the applied amendments particular to the field selected (Berti and Cunningham 
2000). There are thus two major components in the phytostabilization process to be 
considered: the plant itself and the amendments added to the system.

2.1  Selection Criteria of Plants for Phytoremediation

For the effective phytostabilization process, selection of plant is a crucial step, and 
some important criteria must be considered before selection. Plants characterized as 
suitable candidates for phytostabilization must be native to the contaminated area 
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and be tolerant to other stress factors like drought, salt, and metal and also must 
limit the metal accumulation to the shoot (Mendez and Maier 2008). In other words, 
plants that over-accumulate toxic trace metals in their roots, excluding or limiting 
translocation to shoots, can be regarded as efficient phytostabilizers (McGrath et al. 
2002; Maestri et al. 2010). Moreover, it was suggested that plant species with high 
bioconcentration factor or BCFroot (>1) and low translocation factor or TFs (<1) 
could be considered as a potential candidate for the phytostabilization (Yoon et al. 
2006; Meng et al. 2013; Shackira and Puthur 2017). Additionally plants used for 
phytostabilization need to exhibit tolerance to multiple metals and metalloids pres-
ent in the sediments (Fitz and Wenzel 2002).

To meet the complete objectives of phytoremediation (i.e., to decrease water and 
soil pollution), the selected plants should also be native to the region that needs to 
be depolluted, grow quickly, and have dense root and shoot systems preventing 
heavy metal dispersion by water and/or wind erosion (Berti and Cunningham 2000; 
Freitas et al. 2004; Ali et al. 2013). Besides the plants must possess a large quantity 
of propagules (Henson et al. 2013) and should preferentially disperse by seeds to 
allow the implementation of phytostabilization on a large scale (Mench et al. 2006; 
Bert et al. 2008). It has been also reported that the reclamation methods for phyto-
stabilization require elevated seed production, which usually results in a more con-
tinuous vegetation cover (Mendez and Maier 2008; Mench et  al. 2010). Finally, 
species need to have the potential to promote soil development process by a long- 
term succession in the polluted areas (Mendez and Maier 2008).

To conclude, selection of a plant species for phytostabilization of heavy metals 
should take into consideration the following features:

 (a) Plants should be tolerant to the soil conditions.
 (b) Plants must grow quickly to set up a ground cover.
 (c) Plants should have dense rooting systems.
 (d) Plants must be easy to establish and to maintain under field conditions.
 (e) Plants must have a relatively long life or be able to self-propagate (Berti and 

Cunningham 2000; Mendez and Maier 2008).

2.2  Soil Amendments

The rate of phytostabilization can be amplified when used in combination with cer-
tain soil amendments which facilitate trace metal immobilization in the soil, and this 
remediation strategy is known as aided phytostabilization (Alvarenga et al. 2009). 
The final aim is to reduce metal mobility in the substrate, and numerous organic and 
inorganic materials have been used to reduce solubility and bioavailability of heavy 
metals. These include liming material, phosphate, compost, biosolids, zeolite, and 
aluminosilicates such as bentonite, fly ash, etc. (Bolan et al. 2003; Kumpiene et al. 
2008; Mench et al. 2010). Inclusion of such amendments in the substrate will then 
improve the nutritional status of the rooting medium, facilitate plant establishment in 

Phytostabilization of Heavy Metals: Understanding of Principles and Practices



266

a more vigorous manner, supply plant nutrients in a slow- release form, and reduce 
metal leaching to the belowground level (Kumpiene et al. 2008).

Incorporation of organic additives to the contaminated soils induces numerous 
changes in the chemical (e.g., pH, organic acids, soil solution composition) and 
biological (e.g., microbial diversity) properties of soil (Perez-de-Mora et al. 2006; 
Stanczyk-Mazanek and Sobik-Szoltysek 2010). Amendments added to the soil 
thus convert the soluble and pre-existing high-soluble solid phase forms to more 
stable solid phases resulting in a reduced biological availability and plant toxicity 
of heavy metals. A decrease in the mobile trace element pool in soil promoted by 
amendments allows the settlement and the growth of vegetation as well as ecosys-
tem restoration on highly contaminated sites (Ruttens et al. 2006). Specific func-
tions of organic and inorganic amendments used in phytostabilization process are 
listed in Fig. 1.

3  Mechanism Underlying Phytostabilization

During phytostabilization, plants accumulate metals within root tissue or near the 
rhizosphere and are able to reduce the mobility or bioavailability of metals by stabi-
lizing it in the substrate and/or by accumulating within the root. The higher accumu-
lation of metals in roots may further decrease the mobility of metals in sediment 
(Nedjimi and Daoud 2009). The basic mechanism underlying phytostabilization 
depends on various factors like microorganisms present in the rhizosphere, root 
exudates, cell wall binding of metal ions, chelation of metal ions by metal-binding 
molecules, and their eventual sequestration into the vacuoles. The basic mechanism 
underlying phytostabilization includes the trace element mobility in the rhizosphere 
and is controlled by various soil factors such as pH, organic matter, texture, redox 
potential, and temperature and also by microbes (Chaignon and Hinsinger 2002). 
Phytostabilization can occur through the sorption, precipitation, complexation, or 
metal valence reduction (Ghosh and Singh 2005).

AMENDMENTS

Inorganic amendments

NPK fertilizers 
Increase nutrient 
content 

Lime
Increases soil 
pH 

Organic amendments 

Biosolids/Compost
Increases soil pH 

Improves physical structure of soil

Slow-release of nutrient source 

Complexation of heavy metals 

Fly ash
Increases soil pH 

Improves physical 
structure of soil

Fig. 1 Various organic and inorganic amendments used for increasing the rate of immobilization 
of toxic metal ions in the phytostabilization process
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3.1  Role of Microorganisms

Under natural conditions plant roots are exposed to a large number of different 
microorganisms which play crucial roles in the recycling of plant nutrients, mainte-
nance of soil structure, detoxification of noxious chemicals, and control of plant 
pests and pathogens (Filip 2002). Association between plant and microbes may be 
specific or non-specific, i.e., in specific association, plants provide carbon source 
that helps bacteria to reduce the toxicity of the contaminated soil, and in non- specific 
association, various metabolic activities of plants increase the growth of microbial 
community, which then degrades the contaminants entrapped in soil (Kushwaha 
et al. 2015). Thus, the microorganisms (bacteria and mycorrhiza) living in the rhi-
zosphere of plants not only actively contribute to change the metal speciation, but 
they can also assist the plant in overcoming phytotoxicity, thereby aiding the reveg-
etation process (van der Lelie et al. 1999).

It has been reported that the addition of bacteria like Sphingomonas macrogolt-
abidus, Microbacterium liquefaciens, M. arabinogalactanolyticum, Alyssum 
murale, etc. to the soil significantly increased the phytoavailability of heavy metals 
including Ni by reducing the soil pH, thereby facilitating phytostabilization (Abou- 
Shanab et al. 2003). Similarly, Brassica napus plants were inoculated with differ-
ent kinds of bacteria like Pseudomonas chlororaphis, Azotobacter vinelandii, 
Bacillus mucilaginosus, and Microbacterium lactium for the increased tolerance 
toward various heavy metals (Wu et  al. 2006; Ma et  al. 2009; He et  al. 2010). 
Different Glomus spp.-mediated phytostabilizations of heavy metals like Zn and 
Cd in Zea mays L. have been reported earlier by Janeeshma (2015).

3.2  Complexation with Root Exudates

Exudates secreted by roots affect the solubility, mobility, and phytoavailability of 
metal ions which play crucial role in phytostabilization (Colzi et al. 2012). About 
12–40% of the photosynthates transported from the leaves to the roots are released 
into the rhizosphere during plant development naturally. These exudates may include 
various kinds of sugars, polysaccharides, organic and amino acids, peptides, and 
proteins depending upon the plants (Lin et al. 2003; Hinsinger et al. 2006). Root 
exudates may be grouped into two, high-molecular-weight (e.g., mucilages including 
polysaccharides, polyuronic acid, and ectoenzymes) and low-molecular- weight 
(e.g., organic acids, sugars, phenols, and various amino acids including nonprotein 
amino acids, such as phytosiderophores) compounds. Root exudates play a significant 
role in the process of phytostabilization by enhancing the accumulation, stabilization, 
or volatilization of contaminants from soil (Kushwaha et al. 2015).

In addition to the above facts, root exudates constitute an efficient energy sources 
for microorganisms present in the soil and act as ligands for binding heavy metal 
ions which ultimately influence the pH of the rhizosphere. The change in soil pH 
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influences the mobilization of metals in soils and their accumulation by plant roots. 
Thus, roots can indeed modify the trace element mobility by changing soil pH and 
electrochemical potentials through element sorption in the apoplast or their rhizode-
position/complexation in the rhizosphere (Hinsinger 2001; Lombi et  al. 2001; 
Chaignon and Hinsinger 2002).

Stabilization of toxic metal ions in the rhizosphere by root exudates without 
uptaking it into the root plays a crucial role in the phytostabilization process. 
Graminaceous plants secrete an amino acid compound, namely, phytosiderophore 
which can form a stable complex with iron (Fe), Cd, Zn, and copper (Cu) 
(Chaignon et al. 2002; Xu et al. 2005). Nair et al. (2008) have also reported the 
role of siderophores secreted by plant roots in arsenic (As) immobilization, 
thereby detoxifying the toxicity. Similarly, organic acids like oxalic acid, malic 
acid, citric acid, etc. secreted by wheat plants prevent the entry of Cd2+ into roots 
(Kushwaha et al. 2015). There are also reports stating that the heavy metals espe-
cially Ni- and Zn-chelating histidine molecules along with citrate accumulate in 
root exudates and help to reduce the uptake of the same inside the cell (Salt et al. 
2000; Hall 2002).

3.3  Cell Wall Binding

From the soil, heavy metals can enter the plant root cell either by simple passive 
diffusion through the plasma membrane or by active metal uptake via special metal 
transporters. There are enormous reports stating that cell wall is recognized as one 
of the main compartments for heavy metal accumulation in plant roots (e.g., 
Małecka et al. 2008; Meyers et al. 2009; Konno et al. 2010). Plant cell walls are rich 
in pectin compounds, which are able to bind divalent and trivalent metal cations, 
and the main pectin domain in the cell wall responsible for binding metal ion is 
homogalacturonans (HGA) (Pelloux et al. 2007; Caffall and Mohnen 2009). The 
physiological advantage of metal binding with the HGA of cell wall is the metabolic 
inactivation of the absorbed metal ions within the apoplast itself there by reducing 
the toxicity (Jiang and Wang 2008).

Bringezu et al. (1999) have reported that different heavy metals were accumu-
lated in the epidermal cell walls of heavy metal-tolerant Silene vulgaris ssp. humilis. 
Moreover, it has been reported earlier that lead (Pb) can bind efficiently with the 
carboxyl group of pectin in the cell wall and is considered as the most important 
reliable interaction by which a plant can tolerate Pb toxicity (Meyers et al. 2008; 
Jiang and Liu 2010). Moreover, increased content of various metals including Fe, 
Cu, Zn, and Pb have been observed in the cell walls of Minuartiaverna sp. hercyn-
ica growing on heavy metal-contaminated mine tailings (Solanki and Dhankhar 
2011; Kushwaha et  al. 2015). Enhanced pectin level in the roots of Cu-tolerant 
Silene paradoxa has resulted in binding of Cu at a higher rate to the root cell wall, 
thereby restricting Cu accumulation within the roots itself (Colzi et al. 2012).
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3.4  Chelation with Metal-Binding Molecules

Metal ions once enter to the cytosol may be sequestered into the vacuole via chela-
tion of metal ions by organic acids, amino acids, peptides, or metalloproteins, thereby 
providing greater resistance to the toxicity of heavy metals. The two best- characterized 
heavy metal-binding ligands in plant cells are the phytochelatins (PCs) and metallo-
thioneins (MTs). These include different classes of low- molecular- weight, cysteine-
rich peptides or polypeptide molecules which have a high affinity to various heavy 
metals and are synthesized inside the plant cell (Hall 2002).

The synthesis of PCs in plants is triggered by the presence of heavy metals. 
Heavy metals induce the activation of an enzyme, namely, phytochelatin synthase, 
which acts upon a glutathione substrate so as to produce PCs (Cobbett and 
Goldsbrough 2002; Suresh and Ravishankar 2004). It has been reported earlier that 
Pb and mercury (Hg) exposure in a halophyte S. salsa was found to significantly 
enhance the mRNA expression of SsPCS. SsPCS is the second PCS gene cloned 
from a halophyte, and it might contain a different metal sensing capability than the 
first PCS from Thellungiella halophila (Cong et al. 2016).

Plant MTs have been classified into Classes I, II, and III based on the arrange-
ment of Cys residues. Most of the plant MTs are Class I proteins containing two 
smaller Cys-rich domains and a large spacer region devoid of this amino acid. In 
Class II MTs, Cys residues are distributed in a scattered manner in the entire pro-
tein sequence. Class III MTs differ markedly from Class I and II MTs and are 
enzymatically derived (Usha et al. 2009). Expression analysis of different metallo-
thionein genes was studied by several groups in different plant species. Significant 
increase in the transcripts of AmMT2 gene in Avicennia marina plants was 
reported by Huang and Wang (2010) in response to Zn, Cu, and Pb. Similarly in 
Bruguiera gymnorrhiza, remarkable increase was found in the transcript level of 
BgMT2 in response to Zn, Cu, and Pb in leaves (Huang et al. 2011). Chen et al. 
(2014) studied the metallothionein gene (KoMT2) expression in the leaves of 
Kandelia obovata seedlings exposed to Cd stress and the expression levels of the 
gene was found to be increased. The overall mechanism underlying phytostabili-
zation has been elucidated in Fig. 2.

4  Pros and Cons of Phytostabilization

Phytostabilization, the approach of using green plants for in situ stabilization/decon-
tamination of metal wastes, is a feasible alternative to other costly remediation prac-
tices. As mentioned earlier, plants play an important role in phytostabilization by 
protecting the soil surface and also by physically stabilizing the soil with dense root 
systems to prevent erosion. Plant roots also help to minimize water percolation 
through the soil, further reducing contaminant leaching to the belowground part (Berti 
and Cunningham 2000). In addition, plant roots can also provide surfaces for sorption 
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or precipitation of trace metal elements, thereby playing an important role in ground-
water protection and reduction of metal dispersion (Ruttens et al. 2006).

Phytostabilization is employed to treat polluted soils involving the establishment 
of a persistent plant cover that prevents pollution spread by erosion, water percolation, 
leaching, and wind dispersal of toxic dust (Berti and Cunningham 2000; Wong 2003). 
Phytostabilization can also diminish the metal bioavailability by their precipitation to 
less soluble compounds (Wong 2003). Vegetative stabilization improves the chemical 

Fig. 2 General mechanisms of phytostabilization of heavy metals
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and biological properties of the site through an increase in organic matter content, 
cation exchange capacity, and biological activities (Lutts and Lefévre 2015). 
Furthermore, this method of using appropriately selected plant species can improve 
the soil parameters and affect the fertilization methods (Reevers et al. 2007).

However, this technology does not achieve a complete cleanup of the contami-
nated soil, but rather changes the mobility of potentially toxic elements by either 
reducing concentrations in the soil water/matrix or by reducing re-entrainment of 
toxic particulates following the development of a stable and permanent vegetation 
cover. Sometimes, the use of soil additives is required for the physical and chemical 
immobilization of toxic metal ions in the process of phytostabilization. Thus, even 
though phytostabilization offers a great deal in limiting the bioavailability of metal 
ions, it cannot be sometimes suggested as a perfect remedial measure especially in 
the sites where stabilization is not much possible. Major advantages and disadvan-
tages of phytostabilization are listed in Table 1.

5  Phytostabilization: The Most Affable and Affordable 
Technique

Phytostabilization seems to be a more comprehensive practice since this technique 
offers an aesthetically pleasing and environmental-friendly approach with an afford-
able economic feasibility. Remediation of polluted soil through phytostabilization is 

Table 1 Major advantages and limitations of phytostabilization technique

Sl 
no. Advantages Limitations

1 Disposal of polluted biomass is 
not required

The contaminants remain in place

2 Effective immobilization reduces 
leaching and bioavailability of 
toxic metal ions

It is useful at sites with shallow contamination and is 
not much effective at sites where the contaminants 
reaches deep in the soil

3 The presence of plants with dense 
root system reduces soil erosion

The vegetation and soil may require long-term 
maintenance to prevent rerelease of the contaminants 
and future leaching

4 Does not destroy or remove soil 
organic matter, soil 
microorganisms, and soil texture

Vegetation may require extensive fertilization or soil 
modification using amendments

5 It has a lower cost and is less 
disruptive than other more 
vigorous soil remedial 
technologies

Contaminant stabilization might be due primarily to 
the effects of soil amendments, with plants only 
contributing to stabilization by decreasing the amount 
of water moving through the soil

6 Revegetation enhances ecosystem 
restoration and renders the site 
aesthetically pleasing

The root zone, root exudates, contaminants, and soil 
amendments must be monitored to prevent an increase 
in metal solubility and leaching

7 Vegetation provide physical 
stability to the soil

Plants that accumulate heavy metals in the roots and in 
the root zone typically are effective at depths of up to 
24 inches
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nowadays being applied by a number of researchers who have estimated the actual 
cost of the technique implemented in a field to be less as compared to other reme-
diation techniques.

5.1  Cost-Effectiveness of Phytostabilization

Phytostabilization has been recognized as an adaptable, eco-friendly, and cost- 
effective strategy for the restoration of a functional ecosystem which is highly pol-
luted. In general, the in situ inactivation of metals through phytostabilization may 
be an economically realistic and cost-effective remediation alternative, especially 
for vast industrial sites, dredged sediment dumps, and other dumping grounds where 
due to the huge volumes of material to be treated, excavation or landfilling is 
impractical and especially cost-inefficient (Vassilev et al. 2004). In general, the eco-
nomics of any phytoremediation technique like phytostabilization are characterized 
by two considerations: the potential for application and the cost comparison to con-
ventional treatments. Before going to practice phytostabilization in a larger field, 
one has to consider the whole system costs that may include the following:

 (i) Design costs:

 (a) Site characterization
 (b) Work plan and report preparation
 (c) Treatability and pilot testing

 (ii) Installation costs:

 (a) Site preparation
 (b) Soil preparation (physical modification: tilling, chelating agents, pH con-

trol, drainage)
 (c) Infrastructure (irrigation system, fencing)
 (d) Planting (seeds, plants, labor, protection)

 (iii) Operating costs:

 (a) Maintenance (irrigation water, fertilizer, pH control, chelating agent, 
drainage water disposal, pesticides, fencing/pest control, replanting)

 (b) Monitoring (soil nutrients, soil pH, soil water, plant nutrient status, plant 
contaminant status) (EPA 2000; Vassilev et al. 2004)

The actual costs of the phytostabilization process cannot be practically listed 
accurately and may vary strongly with specific site conditions, contaminant type, 
plants selected, distance to target level, scale of operation, etc. However, Cunningham 
et  al. (1995) have made an attempt to calculate the actual costs of the process. 
According to him, for phytostabilization, cropping system costs have been estimated 
at US$200–$10,000/ha, equivalent to US $0.02–US $1.00/m3 of soil, assuming a 1 m 
root depth (Cunningham et al. 1995). The cost of traditional remediation techniques 
like physical removal or chemical stabilization of metals ranges from approximately 
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US$1.50 to US$450 per m3 of soil entrapped with metal contaminants (Berti and 
Cunningham 2000; Evans and Willgoose 2000). Moreover, as an emerging remedia-
tion technology, phytostabilization can minimize this cost to an estimated US$0.40–
26 per m3 for revegetation (Ford and Walker 2003).

5.2  Practical Applications of Phytostabilization

Phytostabilization can be applied at sites where other regulatory strategies of metal 
decontamination usually fail and have high environmental risks due to continuous 
erosion or leaching (Berti and Cunningham 2000). This mechanism can be used to 
minimize migration of contaminants in soils through absorption and accumulation by 
the roots, adsorption onto roots, or precipitation within the root zone of plants. 
Phytostabilization is a management strategy for stabilizing toxic contaminants: its 
purpose is to establish a vegetation cover that will reduce soil erosion, windblow of 
contaminated particles, and water pollution by interception of incident precipitation.

Many heavy metals including Pb, As, Cd, chromium (Cr), Cu, Zn, etc. have been 
efficiently stabilized by phytostabilization technique (Berti and Cunnigham 2000; 
Alkorta et  al. 2010). Phytostabilization is functional in different plant species in 
order to cover the different metal content in the soil and to conserve a portion of the 
plant diversity of pristine areas. In order to self-sustain the phytostabilization, the 
use of different tolerant and native plants species is recommended because they can 
perform distinct functional roles in the habitat apart from decontamination. An 
association of several species in polluted area should also increase the soil cover 
percentage, combining several shoot and root characteristics and then improving 
erosion control. Even though till date numerous plant species have been reported to 
be potential candidates for phytostabilization of different kinds of lands, the two 
most studied sites of phytostabilization are wetlands and mining sites.

5.2.1  Phytostabilization in Wetlands

In general, the term “wetlands” refers to transition zones between terrestrial and 
aquatic systems with soil saturated with water for at least part of the year or covered 
by shallow water along with characteristic wetland plant species (Kalff 2002). 
Wetlands constitute a highly productive ecosystem and are often situated close to 
highly populated and industrial areas. As a consequence, large amounts of toxic 
metal pollutants are entrapped in the salt marsh ecosystems and act as important 
sinks for heavy metals. Thus wetlands may be regarded as crucial sites for 
phytostabilization.

As an ecosystem, wetlands are helpful for recovering and cycling nutrients; 
releasing excess nitrogen; deactivating phosphates; treating wastewater; removing 
toxins, chemicals, and heavy metals; etc. The extensive rhizosphere of wetland 
plants provides an enriched culture zone for the microbes involved in degradation. 
The wetland sediment zone provides reducing conditions that are conducive to the 
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metal removal pathway. The physicochemical properties of wetlands provide many 
positive attributes for remediating heavy metals. These unique characteristics of 
wetlands promote various biogeochemical processes that are responsible for the 
extraordinary capacity of wetlands to retain heavy metals from a diverse range of 
industrial effluents including municipal, agricultural, refinery, and pulp-mill efflu-
ent (Moshiri 1993). Thus, phytostabilization with wetland plants is an eco-friendly, 
aesthetically pleasing, cost-effective, solar-driven, passive technique that is useful 
for cleaning up environmental pollutants with low to moderate levels of contamina-
tion (USEPA 2001).

Castro et al. (2009) have reported that monocotyledonous halophyte species such 
as Triglochin maritima and Juncus maritimus provide higher Hg stabilization than 
the dicotyledonous species of halophytes such as Sarcocornia perennis and 
Halimione portulacoides. Moreover, mangroves with high BCFroot, for example, 
Kandelia obovata (Liu et  al. 2014), Avicennia marina (MacFarlane et  al. 2003), 
Phragmites australis (Weis and Weis 2004), Aegiceras corniculatum (Wu et  al. 
2015), etc., are appropriate candidates for phytostabilization, retaining metallic 
inputs and thereby reducing transport to adjacent estuarine and marine systems. 
Moreover, the halophytic shrubs recommended for phytostabilization include creo-
sote bush (Larrea tridentata) and desert broom (Baccharis sarothroides). Recently, 
Shackira and Puthur (2017) and Shackira et al. (2017) have reported high BCFroot 
(>1) and low TFshoot (<1) in Acanthus ilicifolius L. at high Cd and Zn concentrations, 
suggesting that Acanthus ilicifolius is a potential candidate species for Cd and Zn 
phytostabilization in polluted wetlands.

5.2.2  Phytostabilization in Mine Tailings

Introduction of plants directly at mine tailings has repeatedly been attempted, but 
has usually failed. This is due to the fact that such impoundments offer a harsh 
environment with high levels of heavy metals, low levels of macronutrients, and 
poor substrate structure (Clemensson-Lindell et al. 1992). Extraction of metals by 
mining results in large volumes of wastes that have to be removed in order to avoid 
contamination of the environment. The problem arises primarily after extraction of 
nonferrous base metals like Cu, Pb, and Zn, since these are found in ores with high 
sulfide content. After the metals have been extracted, approximately 95% of the 
rock is left as finely grained sand called mine tailings, containing high levels of 
metal sulfides, among which pyrite (FeS) is most abundant. The acidic drainage 
water from mine tailings may be a source of heavy metal leakage to various water 
bodies ultimately entering to the food chain and cause serious threats to the ecosys-
tem (Notter 1993).

The success of the phytostabilization and ecological succession in the mining 
areas depends on the knowledge of the characteristics of metals and contaminated 
soils, rhizosphere processes, as well as the rate of uptake, translocation, accumula-
tion, and chelation of metals by the pioneer plants (Mendez and Maier 2008; Abreu 
and Magalhães 2009). The plant populations (metallophytes) inhabiting the mine 

A. M. Shackira and J. T. Puthur



275

sites are usually specific ecotypes which are well adapted to mining conditions as 
well as drought and nutritional stresses. The ecological behavior of distinct plant 
species occupying mining areas has been studied by several authors (Freitas et al. 
2004; Batista et al. 2007; Anawar et al. 2011; Abreu et al. 2012).

A low coverage by grasses could promote the colonization and establishment of 
native shrub species, since the facilitation is known to be an important process in 
harsh environment and enhance the phytostabilization and restoration strategies 
(Cunningham et  al. 1995; Wong 2003; Padilla and Pugnaire 2006; Shackira and 
Puthur 2017; Shackira et al. 2017). Cistus ladanifer L. is one of the spontaneous spe-
cies considered promising for phytostabilization of mining areas with multi- elemental 
(e.g., As, Cu, Pb, Zn, etc.) contamination (Alvarenga et al. 2004; Abreu et al. 2011; 
Anawar et al. 2011; Santos et al. 2012). Halophytes (salt-tolerant plants) are espe-
cially valuable in phytostabilization, and Atriplex spp. have been reported as pioneer 
species inhabiting in mine tailings (Jefferson 2004). The use of plants from Fabaceae 
family and/or other nitrogen-fixing species within the plant community can also be 
advantageous in the process (Wong 2003; Ahmad et al. 2012). List of plants charac-
terized as potential candidates for phytostabilization of various heavy metals in dif-
ferent soil types are summarized in Table 2.

Table 2 List of plants characterized as potential candidates for phytostabilization of various 
heavy metals

Plant Metal
Site of 
stabilization References

Agrostis capillaris L. As Wetlands Porter and Peterson (1975), 
Benson et al. (1981), 
Symeonidis et al. (1985)

Deschampsia cespitosa (L.) P. Beauv. As Wetlands Cox and Hutchinson (1980, 
1981)

Silene vulgaris (Moench) Garcke As Wetlands Paliouris and Hutchinson 
(1991)

Avicennia marina (Forsk.) Cu and 
Cd

Wetlands MacFarlane et al. (2003)

Phragmites australis (Cav.) Trin. ex 
Steudel

Cu and 
Pb

Wetlands Weis and Weis (2004)

Lolium perenne L. Cu Soils Santibáñez et al. (2008)
Atriplex halimus L. Cd Wetlands Nedjimi and Daoud (2009)
Quercus ilex subsp. ballota Cd Mine tailings Domínguez et al. (2009)
Lupinus uncinatus Schldl. Cd Soils Ehsan et al. (2009)
Triglochin maritima L. and
Juncus maritimus Lam.

Hg Wetlands Castro et al. (2009)

Rhizophora mucronata (Lam.) Cu, Pb, 
Mn, and 
Fe

Wetlands Pahalawattaarachchi et al. 
(2009)

Microchloa altera (Rendle) Stapf Cu Soils Shutcha et al. (2010)

(continued)
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Table 2 (continued)

Plant Metal
Site of 
stabilization References

Haumaniastrum katangense (S. Moore) 
P.A. Duvign. & Plancke

Cu Soils Chipeng et al. (2010)

Typha latifolia L. Mn, Cr, 
As, Zn, 
Co, Cd, 
Ni

Industrial 
sludge

Varun et al. (2011)

Arachis pintoi Krapov. & W.C. Gregory Cu Mine tailings Andreazza et al. (2011)
Salix babylonica L. Cu Mine tailings Chen et al. (2012)
Ricinus communis L. cultivar Zibo No. 8 Cd Soils Zhang et al. (2014)
Silene vulgaris Garcke (Moench) Cd Wetlands Moreno et al. (2014)
Festuca rubra L. Zn, Cd Mine tailings Galende et al. (2014)
Vigna unguiculata subsp. sesquipedalis 
L.

Cd Soils Deivanai and 
Thulasyammal (2014)

Oenothera glazioviana Micheli Cu Mine tailings Guo et al. (2014)
Kandelia obovata Sheue, Liu & Yong Cd Wetlands Liu et al. (2014)
Aegiceras corniculatum L. As Wetlands Wu et al. (2015)
Andropogon schirensis Hochst.ex  
A.Rich., Eragrostis racemosa (Thunb.) 
Steud., Loudetia simplex (Nees) C. E. 
Hubb., Monocymbium ceresiiforme 
(Nees) Stapf, and Hyparrhenia 
diplandra (Hack.) Stapf.

Cu Soils Boisson et al. (2016)

Lupinus microcarpus Sims As Soils Díaz et al. (2016)
Cistus ladanifer L. As, Pb, 

Cu, Zn
Mine tailings Santos et al. (2016)

Acanthus ilicifolius L. Cd, Zn Wetlands Shackira and Puthur (2017), 
Shackira et al. (2017)

Osmanthus fragrans Lour., Ligustrum 
vicaryi L., Cinnamomum camphora (L.) 
J. Presl., Loropetalum chinense var. 
rubrum, and Euonymus japonicas cv. 
Aureo-mar.

Cd Soil Zeng et al. (2018)

Eichhornia crassipes (Mart.) Solms., 
Pistia stratiotes L.

Cd Water Sricoth et al. (2018)

6  Future Perspectives

Phytostabilization programs have low installation and maintenance costs compared 
to other remediation options. Polluted soils which lack green vegetation are consid-
ered as susceptible to soil erosion and leaching, and hence to guarantee the success-
ful restoration of degraded ecosystem, the use of potential phytostabilizing species 
which have tolerance to multiple stress conditions is highly recommended. Moreover, 
this technology can increase the incomes from nonproductive contaminated soils if 
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associated with species with economic value. Although the technique, phytostabili-
zation, has become more widely accepted nowadays, further research is needed con-
cerning the testing of new amendments and the selection of tolerant plant species for 
the process.
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