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Chapter 6
Genome Wide Association Study (GWAS) 
on Disease Resistance in Maize

Vivek Shrestha, Mani Awale, and Avinash Karn

6.1  �Introduction

Crop losses due to disease infestation account for a major loss to farmers world-
wide. Scientists and farmers have long adopted many traditional and chemical 
methods to control diseases in crop plants. Intensive use of chemicals, mostly fun-
gicides and pesticides, has been able to control the disease infestation to some 
extent, but they come at a price. The use of chemicals does not only increase the cost 
of production, but it also negatively impacts the environment and health of both 
farmers and the consumers. Often times, the pathogen develops resistivity toward 
the fungicides being applied on them, which are no longer effective to control the 
damage that affect the crop yield and quality. Therefore, one sustainable way to 
reduce the impact of crop yield and quality loss due to plant diseases is to develop 
disease-resistant crops. Disease resistance breeding has been a major source of dis-
ease control (Hammond-Kosack and Jones 1997; Balint-Kurti and Johal 2009; 
Poland et al. 2009). The simplest way to define disease resistance breeding is the 
introgression of the disease resistance genes in the plants infected with the disease. 
The source of the resistance genes is either natural or induced. Disease resistance is 
generally categorized as qualitative and quantitative resistance. Qualitative resis-
tance is based on a single dominant or recessive gene, race-specific and usually 
confers a high level of resistance, whereas the quantitative resistance is based on the 
oligogenic or polygenic inheritance and governed by additive or partial dominant 
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genes and generally race-nonspecific (Wisser et  al. 2006). Quantitative disease 
resistance is given more importance by the plant breeders as it is more durable and 
has broader specificity (Parlevliet 2002; Poland et al. 2009).

One of the widely known theories regarding the disease resistance/susceptibil-
ity is H.H.  Flor’s gene-for-gene interaction theory (Flor 1971). Gene-for-gene 
interaction theory originated using flax (Linumusitatissimum) as host plant and 
fungal rust pathogen, Melampsora lini. The theory states that, a host plant requires 
a dominant or semi-dominant resistance R gene with a corresponding avirulence 
(Avr) gene in the pathogen to be disease resistant. R genes are responsible in the 
plants to detect the Avr gene-specific pathogen molecules, resulting in the down-
stream signal cascades to produce defensins, which trigger defense (Hammond-
Kosack and Jones 1997). Hypersensitivity response is commonly seen as a defense 
response triggering the incompatibility reaction between host and pathogen. 
Modification or complete loss of the R gene or the Avr gene results in disease sus-
ceptibility, which is commonly seen in biotrophic pathogens, such as fungi, bacte-
ria, viruses, and nematodes. R gene generally encodes proteins that recognize the 
pathogen effectors or modification of plant proteins that are the targets of the effec-
tors (Nimchuk et al. 2003). Among the six known classes of R-genes, the most 
known class is the nucleotide binding, leucine-rich repeat (NB-LRR) amino acids 
sequence motifs, which are involved in the pathogen recognition and related func-
tions. Unraveling the structural and functional roles of these R genes will be ben-
eficial to improve disease resistance in plants. There were several R genes being 
identified, isolated, and cloned. The first R gene to be isolated was Hm1 from 
maize, which is responsible for resistance against the leaf spot fungus Cochliobolus 
carbonum (Johal and Briggs 1992). Hm1 encodes for a reductase enzyme that 
detoxifies the C. carbonum HC-toxin. On invasion by the biotrophic pathogens, 
R-genes confers an effective defense response, usually, by involving in a hypersen-
sitive response, where the tissue immediately adjacent to the site of the pathogen 
undergoes rapid programmed cell death (Poland et  al. 2009). Some other early 
cloned R genes were Pto gene (Martin et al. 1993) that encodes for serine threo-
nine kinase, in tomato against the Pseudomonas syringae. Other cloned genes for 
Pseudomonas syringae are RPS2 in Arabidopsis (Bent et al. 1994), a NBS/LRR 
protein family. Xa-21 (Song et al. 1995) gene in rice for Xanthomonas oryzae pv. 
oryzae. The list and details of several other important cloned genes can be found in 
Hammond-Kosack and Jones (1997).

Although the R genes are found to be effective in biotrophic fungus, studies 
show that the R-genes might not work in a similar fashion against the necrotrophic 
pathogens. For instance, the hypersensitive response can increase the susceptibility 
to necrotrophic pathogens, instead of increasing resistance. Although there is 
immense potential of disease resistance by R genes, observation of the performance 
of the crop cultivars with different types of resistance have led to the conclusion that 
quantitative disease resistance is more durable than the typical R-gene mediated 
resistance (Parlevliet 2002; Poland et al. 2009).

Molecular mechanism of gene-for-gene interaction theory or the host-pathogen 
interaction were not well known until recent work by Jones and Dangl (2006), 
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where they studied the molecular mechanism of host-pathogen interaction mainly 
pertaining to the biotrophic pathogen (Jones and Dangl 2006). They elaborated on 
the complex multiphase host-pathogen interplay. Briefly, they explained that the 
plant (host), when invaded by a pathogen, initially recognizes some common fea-
ture of those pathogen, which are called microbial associated molecular patterns 
(MAMPs), using pattern recognizing receptors. For instance, flagellin in bacteria 
and chitin in fungus are the MAMPs. This recognition event triggers the innate 
immune response in host plant, also known as the first line of defense or host basal 
defense, which defends further pathogen invasion or development. In response to 
that MAMP-triggered immunity of the host, virulent pathogen fight back, releasing 
effector proteins, which destroy the host basal defense. This triggers the host plant 
to further use its second line of defense, using resistance genes such as NB-LRR; 
these recognize the pathogen secreted effector proteins and finally destroy them. 
This immunity is known as the effector-triggered immunity. The molecular under-
standing of the host pathogen interaction will definitely be beneficial for the devel-
opment of disease resistance in plants; however, there are still a lot of unknowns in 
the field of host pathogen interaction.

Maize has been a model plant for many plant scientists. It has a long history 
of research in disease resistance. Maize southern leaf blight is one of the biggest 
epidemics ever known in history, causing loss of a billion dollars to the US 
economy. Hybrid seed production using the maize carrying Texas cytoplasm for 
male sterility (cms-T) was popular in the era of 1950s. A race of the southern 
corn leaf blight called race T was found to be very pathogenic on cms-T maize, 
causing epidemic in 1970 and 1971 (Ullstrup 1972). It was found later that the 
pathogen race T produces T-toxin (Pring and Lonsdale 1989) (a family of linear 
long chain polyketides) that binds specifically to the URF13. URF13 is a pep-
tide of 13 kDa that resides in the inner membrane of mitochondria and acts as a 
ligand-gated channel (Levings and Siedow 1992). The interaction between the 
T-toxin and the URF13 transforms the channel to a large pore, causing the mem-
brane to be leaky, and ultimately leading to the cell death. Since then cms-T 
were eliminated from the elite germplasm, and then polygenic disease resis-
tance studies were introduced (Balint-Kurti and Carson 2006; Balint-Kurti and 
Johal 2009). The first gene to be cloned in maize is the Hm1 genes, which confer 
specific resistance against a leaf blight and ear mold disease of corn caused by 
C. carbonum race 1 (CCR1).The pathogen produces a toxin called HC-toxin. 
This gene was cloned using transposon tagging and was found to be an NADPH-
dependent HC-toxin reductase, which inactivates the HC-toxin by reducing the 
key carbonyl group on HC-toxin (Johal and Briggs 1992). Studies have shown 
that 228 R gene analogs have been identified in maize, using the partial sequence 
data derived from several different maize lines (Xiao et al. 2007). Wisser et al. 
(2006) studied 50 publications regarding the disease resistance gene in maize, 
which included 437 QTL and 17 major genes (Wisser et al. 2006). For a more 
comprehensive review of maize disease management, it is suggested to the read-
ers to look in the following reviews (Pratt and Gordon 2006; Wisser et al. 2006; 
Balint-Kurti and Johal 2009).

6  Genome Wide Association Study (GWAS) on Disease Resistance in Maize
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6.2  �Association Mapping Versus QTL Mapping

Quantitative or metric traits are those traits which can be measured and possess 
continuous variation. The loci that govern the genetics of these traits are called 
quantitative trait loci (QTL).The continuous variation is due to the polygenic inheri-
tance of genes with mostly small additive effects, and these genes are influenced by 
the environment. Mendelian methods of genetic analysis are not suitable to dissect 
these quantitative traits and hence different quantitative methods are used to study 
and understand them. Sax (1923) reported the linkage between seed coat color and 
seed size in common bean (Phaseolus vulgaris) that started the physical localiza-
tion/mapping of the polygenes (Sax 1923). Development of the concept of the link-
age along with the ability to construct the genomic map of the given species leads 
to the development of the QTL mapping. The first QTL mapping was done by 
Paterson et  al. in 1988, using the restriction fragment length polymorphism in 
tomato (Paterson et al. 1988). Several reviews on QTL mapping in disease resis-
tance in maize have been published (Wisser et  al. 2006; Balint-Kurti and Johal 
2009). The general methods of QTL mapping involve the utilization of a mapping 
population, usually a bi-parental population, derived from the cross between two 
genetically diverse parents, a dense marker linkage map for a particular species and 
genotypic data (SNPs, SSRs), standard phenotypic measurement and suitable soft-
ware program (Singh and Singh 2015), such as R/QTL (Broman et al. 2003), QTL 
Cartographer (Wang et al. 2007), and so on.

The QTL mapping has been widely used in several crops, such as rice (Ray et al. 
1996; Tan et al. 2001; Tian et al. 2015), maize (Lübberstedt et al. 1999; Balint-Kurti 
and Carson 2006; Li et al. 2008; Park et al. 2014), wheat (Quarrie et al. 1994; Castro 
et al. 2008; Acuna et al. 2014), tomato (Paterson et al. 1988; Foolad 1999; Causse 
et al. 2002; Causse et al. 2004), and others. QTL mapping provides the QTL effect 
size, the additive and dominance effect that are helpful for the trait introgression and 
improve breeding scheme. QTL mapping, also known as linkage mapping, pos-
sesses high power to detect the QTL and has the potential to identify or map the rare 
functional alleles of genes compared to the association mapping. With all these 
merits, QTL mapping also possesses multiple demerits, such as genetic variation is 
limited in the bi-parental mapping, as the mapping population is initiated with just 
two parents with limited recombination events. Low resolution power is another 
most challenging issue of QTL mapping. A QTL location may span from a few to 
tens of centimorgan; usually from 5 to 20 cM, encompassing several hundred genes, 
which will be time-consuming and difficult to analyze and further validate the iden-
tified QTLs (Doerge 2002). Hence, there are only a limited number of known QTLs 
that has been cloned or tagged at the gene level (Price 2006).

Association mapping, also known as linkage disequilibrium (LD), has emerged 
as a popular tool to dissect the complex traits at the sequence level. Initially, asso-
ciation mapping had been used extensively in medical genetics, but was limited in 
plant genetics due to the structured population often found in plants, which may 
lead to nonfunctional associations. In 2001, Thornsberry et al. introduced associa-
tion mapping in plants (maize) by using statistical methods to account for the 
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variation due to population structure (Thornsberry et al. 2001). Since its introduc-
tion, association mapping has gained wide popularity in dissecting the complex 
traits in plants because of the advances in high-throughput genomic technologies, 
interests in identifying novel and superior allele, and improvements in statistical 
methods (Zhu et al. 2008).

Association mapping is different to QTL mapping in the following aspects: asso-
ciation mapping usually involves the use of unstructured or natural populations, 
consisting of diverse sets of individual or taxa. For instance, the Goodman associa-
tion panel of maize consists of 282 diverse sets of maize inbreds, which collectively 
include tropical, subtropical, temperate, popcorn, and sweet corn lines, drawn from 
different environments and different locations (Flint-Garcia et al. 2005). The merit 
of using such natural population is that it exploits the linkage disequilibrium (LD) 
from the ancestral recombination present between or among them (Nordborg and 
Tavaré 2002), unlike linkage in the QTL mapping, which is only from the hybridiza-
tion between the bi-parental lines. Association mapping utilizes the LD (nonrandom 
association of the alleles, which is a property of a population unlike linkage, which 
is a property of individual) between the SNPs and the associated genes or QTLs for 
detecting the marker-traits association. One of the important aspects of using the 
association mapping over QTL mapping is its high resolution that can detect the 
causative variants or causal genes.

Nested Association Mapping (NAM) population is another most widely used 
population both for the QTL mapping and association studies in Maize (McMullen 
et al. 2009). NAM is designed in such a way that it can harbor the advantage of both 
QTL and association mapping. The population was constructed to enable both high 
power and high resolution through the joint-linkage association analysis. Briefly, 
the population was designed by crossing a common parent, B73, with the other 24 
diverse founder parents, and 200 RILs per family were created using the subsequent 
selfing for 5 generations of the resulting F1s. The diverse lines consist of mostly the 
tropical lines, a few temperate, sweet corn, and a popcorn inbred line. The NAM 
genetic map is a composite map created using 4699 RILs combined across the 25 
families representing 1106 loci, with the average marker density of one marker on 
every 1.3 cM (McMullen et al. 2009).

6.2.1  �GWAS Working Models

Similar to QTL mapping, association mapping also requires the phenotypic and 
genotypic data along with the genome map. However, due to use of unstructured 
population, one needs to be careful to consider those variations generated by the 
unstructured population while running the GWAS.  The GWAS model needs to 
account for population structure in order to avoid getting spurious SNP hits in the 
analysis. This can be accounted using the Q matrix or the principal components 
(PCs) in the GWAS model, which can be obtained from the marker information. 
The next covariate used in the model is the relationship matrix or the kinship matrix 
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(K), which will account for the variation from the related alleles by identical by 
descent in the population. K matrix can be calculated either from the pedigree data 
or from the marker data. With the development of the genotyping platform and the 
statistical methods, the methodology of GWAS has improved drastically in the 
recent years.

Association mapping, simply, is a genome-wide scan of the tested molecular 
markers with the phenotype of interest. The association test idea was brought up on 
using the simple linear model, where the model is fitted using the SNPs as the pre-
dictor variable as fixed effect, and estimates the markers effect for the particular trait 
of interest using t-statistics. Since, the association mapping involves mostly the use 
of diverse natural or unstructured panel, the variation due to the diversity of the 
subpopulation within the population needs to be accounted in the model. The gen-
eral linear model (GLM) takes into account the population structure in the form of 
Q matrix or principal components (PCs) and uses it as covariates in the model, 
which helps to control the spurious association (Price et al. 2006). The very popular 
and widely used mixed linear model (MLM) is the enhancement of the GLM, in the 
sense that it also accounts for the genetic relatedness, i.e., the K matrix fitted as 
random effect in the model. This Q + K matrix strongly helps to control the false 
positives (Yu et al. 2006). The development of tools and methods for doing associa-
tion studies continues to grow using EMMA (Kang et al. 2008), CMLM (Zhang 
et al. 2010), and MLMM (Segura et al. 2012), which were developed especially to 
reduce the computational time for doing the GWAS. Recently, a new method was 
developed, FARMCPU, which is reported to completely remove the confounding 
between the testing markers and both K and Q, by combining MLMM and Fast-
LMM-Select, allowing a fixed and random effect model to perform separately, and 
is also reported to be computationally efficient (Liu et al. 2016). FARMCPU claims 
to reduce the false positives without losing the true positives.

6.3  �Disease Resistance Studies in Maize Using GWAS

6.3.1  �Fusarium Ear Rot

Zila et  al. (2013) revealed some of the important QTLs in the Fusarium ear rot 
resistance in maize (Zila et al. 2013), using the maize core diversity panel (Flint-
Garcia et  al. 2005). Fusarium ear rot, caused by Fusarium verticillioides (Sacc) 
Nirenberg, a common disease of maize affects both the quality of food and feed. 
The fungus is a hemibiotrophic fungus and endemic to the maize growing regions 
in the world. The fungus produces mycotoxin fumonisin, a suspected carcinogen 
associated with the various diseases in livestock and humans. It has been reported 
that a high genotypic correlation exists between the ear rot resistance and the 
fumonisin accumulation, indicating effective negative selection on fumonisin in the 
resistance cultivars. The disease has caused a huge loss of grains and the quality of 
grains. The best strategy to control the disease is to develop the disease resistance 

V. Shrestha et al.



119

maize cultivars. Fusarium ear rot resistance is mostly governed by polygenes and 
strongly influenced by the environment. Hence, there has been no report of the fully 
immune cultivars being discovered (Clements et al. 2004; Zila et al. 2013). Previous 
QTL studies have shown that the resistance QTLs for the Fusarium ear rot have 
small effect size and are not consistent between the populations (Pérez Brito et al. 
2001; Ding et al. 2008).

Disease resistance itself is a quantitative trait, governed with multiples genes and 
affected by the environment. Hence, it is a great challenge to a plant scientist to 
incorporate the disease resistance genes without any growth or yield penalty. Briefly, 
the study was conducted using the 267 inbred lines evaluated in two sets of environ-
ment and the association mapping was done using 47,445 SNPs (Olukolu et  al. 
2013), using a mixed model. Three SNPs were found to be significantly associated 
with disease resistance in at least one subset of environment (Zila et al. 2013). Two 
of the three identified SNPs were found to be co-localized with the genes related 
with the programmed cell death. The chromosome 9 SNP explained the largest pro-
portion of the variation in line mean values for ear rot resistance (R2 = 11.5), whereas 
the SNPs in chromosome 1 and 5 explained 8.8 and 9.6% variation for the Fusarium 
ear rot resistance; collectively, 26% of the variation is explained by all the 3 SNPs.

Chromosome 9 gene was identified as GRMZM2G178880, which belongs to the 
cellulose synthase-like family A (CslA) protein family. Expression of this gene is 
found to be highest in the endosperm of the developing seed kernel between 20 and 
24  days after flowering (Sekhon et  al. 2011). Genes in the CslA protein family 
encode for the noncellulose polysaccharides, such as mannan polymers that form 
part of the wall matrix in plant cells (Dhugga 2005). Degradation of the mannan-
rich cell walls might play an important role in the programmed cell death in the 
host-pathogen interaction (Rodríguez-Gacio et al. 2012) and may play a role in the 
disease resistance.

The SNP on chromosome 5 was located downstream of a Heat Shock Protein 
(HSP60) gene, GRMZM2G111477 (Zila et al. 2013). HSP60s are the chaperonins 
and are involved in the protein folding when the plants are in stressed condition. In 
Rice and Arabidopsis, the role of HSP60s is reported to be involved in the pro-
grammed cell death (Ishikawa et al. 2003). SNP on chromosome 1 is found within 
the coding region of the GRMZM2G703598, but has neither gene function pre-
dicted nor orthologs with other grass species (Zila et al. 2013).

A major limitation of association mapping in maize is its low linkage disequilib-
rium (LD) state which requires large number of genetic markers to detect marker-
trait associations. Romay et  al. (2013) reported that the use of approximately 
680,000 GBS markers were sufficient to detect most of the known candidate genes 
associated with flowering time in maize (Romay et al. 2013). Polymorphism that 
strongly associated with the lower LD in tropical or subtropical population was 
more difficult to detect compared to polymorphism that more frequently associated 
with greater LD in temperate subpopulations. Hence, it indicates that although 
increased marker coverage and association panel size improves the power of the 
GWAS, consideration needs to be taken while doing GWAS with low LD subpopu-
lation (tropical/subtropical population), in order to capture the rare allele variants 
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associated with those subpopulations (Romay et al. 2013). Rapid LD decay along 
the chromosomes in the maize core diversity panel suggests the use of larger SNP 
density and large association panels needed to identify the novel loci associated 
with the ear rot resistance.

6.3.2  �Northern Leaf Blight

Poland et al. (2011) studied northern leaf blight in maize (Poland et al. 2011) using 
GWAS. They evaluated 5000 inbred lines from the nested association mapping lines 
for the resistance to the northern leaf blight and identified 29 QTLs, and most of 
them possessed multiple alleles.

Quantitative disease resistance (QDR) is reported to be associated with durable 
resistance as pathogen that overcomes a single allele of small effect does not gain a 
large selective advantage, and loss of the allele with small effect does not leave the 
host completely susceptible (Poland et al. 2009). Northern leaf blight (NLB) is an 
endemic disease in the maize growing areas of the world causing moderate to severe 
yield losses (Perkins and Pedersen 1987). NLB is caused by a fungal pathogen 
Setosphaeriaturcica (anamorph Exserohilumturcicum), a hemibiotrophic fungus, 
and is commonly found in the tropical highlands. Previous studies on the NLB have 
shed light on several QTLs. Among these, three genes confer incomplete race-
specific resistance. Ht1 (Bentolila et al. 1991) located in maize bin 2.08 and Ht2 
(Yin et al. 2003) and Htn1 (Simcox and Bennetzen 1993) located in the maize bin 
8.06. However, as stated earlier, due to the low resolution of the QTL mapping, the 
positional cloning of these genes was difficult and not widely used in the breeding 
programs. Hence, this study combined the positive aspect of both the association 
mapping and the linkage study to unravel the genetic architecture of the NLB.

Briefly, a large NAM population created with 5000 recombinant inbred lines 
(RILs) was used for the dissection of the complex traits (Yu et al. 2008). Apart from 
the 25 NAM RILS families, RILs from the intermated B73 X MO17 (IBM) popula-
tion was included as a 26th family in the study. The NAM RILs were genotyped 
with 1106 SNP markers and the data are also publicly available in www.panzea.org. 
The study was conducted over three seasons in nurseries artificially inoculated with 
the single isolate of S. turcica race 1. The NAM parent showed the extensive varia-
tion on the resistance of the NLB, where the common parent B73 showed 34% of 
the diseased leaf area being moderately susceptible. The study reported that the 
GXE interaction of the NLB resistance was minimal; however, the study was car-
ried out only in one location. The author also mentioned that there exists a strong 
negative correlation between the flowering time (days to anthesis (DTA)) and the 
NLB resistance in the founder lines (Poland et al. 2011). Joint linkage study was 
done using stepwise model selection and DTA as a covariate in the model, resulting 
in the 29 QTLs accounting for 77% of the total variance. Most of the QTLs have a 
small effect and only few have a large effect. Large effect QTL was identified on 
chromosome 8 at 152.2 MB segregating in multiple families which were likely to 
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be Ht2, the position was consistent with the physical location identified by fine 
mapping. The broad sense heritability for the NLB index for the NAM founders 
was 0.74 (Poland et al. 2011). Most tropical maize lines possess higher level of 
NLB and other disease resistance than the temperate lines reflecting the favorable 
conditions for disease development in tropics and thus, useful for a breeder to select 
for resistance in these environments (Poland et al. 2011). GWAS was done using 
1.6 million SNPs, identified 208 significant SNPs association, and 28 of 29 QTLs 
had one or more SNP associations.

A small subset of the 208 SNP loci found to be associated with the resistance to 
NLB is shown in Table 6.1, which is adapted from the Poland et al. (2011). The 
study showed five SNPs associated with the receptor-like kinase (RLK) genes and 
one additional association with the sixth LRR-related gene. LRR domains have 
been reported to be associated with the plant disease resistance. Several SNPs 
detected showed candidate genes with antifreeze domains which has high similarity 
to the pathogenesis related proteins and were reported to enhance disease resistance. 
Several serine/threonine protein kinases were identified, and they are also involved 
in the plant defense responses.

6.3.3  �Southern Leaf Blight

Kump et al. (2011) conducted GWAS study on southern leaf blight (SLB) of maize, 
using nested association mapping population (Kump et al. 2011). SLB is caused by 
the fungus Cochliobolus heterostrophus, a necrotrophic fungus, which tends to 
occur usually after anthesis. There are limited QTLs and markers identified as the 
disease resistance QTLs for SLB. They performed joint linkage analysis and identi-
fied 32 QTLs, with mostly small additive effects on the SLB resistance. Most of the 
SNPs detected were previously reported to be near or within the sequence homo-
logues to the genes previously identified in the disease resistance.

Maize NAM represents 135,000 recombination events and hence, good for asso-
ciation mapping as well as linkage study. The study was done across the three envi-
ronments. GWAS was run using 1.6 M HapMap SNPs that were identified among 
the founder lines and imputed on the complete NAM panel for the study (Kump 
et al. 2011). In the study, they used the SLB index values as a phenotypic measure-
ment, which represent the mean of SLB resistance measured across time points and 
environments. Measurement was done using a standard nine-point rating scale. The 
B73, common NAM parent, was the most susceptible among all parents. Heritability 
of the SLB index score was found high, around 87%. The identified SNPs and QTLs 
and their position in the chromosome were shown in the study (Kump et al. 2011). 
The 32 QTLs jointly explained 80% of the phenotypic variation of the SLB resis-
tance, as well as 93% of the genotypic variation of the SLB resistance. Additive 
epistatic interaction between the QTLs was not detected. The QTL with the largest 
effect estimate was mapped to the bin 3.04, which is known as the previously identi-
fied region for the SLB resistance (Balint-Kurti et al. 2007). With the above studies, 
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it should be noted that plant scientists working in GWAS of diseases that correlated 
with the flowering time or days to anthesis (DTA) should account for DTA variation 
as covariate in their GWAS model. In the study, the author found the 30 flowering 
QTLs, explaining around 85% of the phenotypic variation for the DTA, where 8 
pairs of the QTLs for SLB and DTA were found to have overlapping support inter-
vals. The RILs subfamily B73 X CML247 possesses the highest of 15 QTLs with 
significant allelic effect, whereas the B73 X CML52 possesses 2 QTLs.

A list of the important candidate gene annotation for SLB resistance is shown in 
Table 6.1, adapted from Kump et al. (2011). Two genes with leucine-rich repeat 
(LRR) domains were found. Another important gene found was a gene with strong 
similarity to NPR1, which is related to defense response. An SNP was found adja-
cent to a homolog of the rice gene NRR (negative regulator of the resistance) that 
encodes a protein which interacts with the NPR1 protein during the defense response 
(Chern et al. 2005).

6.3.4  �Head Smut

A GWAS study on the head smut conducted by Wang et al. (2012) identified 18 
novel candidate genes, which were further categorized into resistance genes, dis-
ease response genes, and other disease resistance function genes. The author used 
45,658 SNPs with an association panel of 144 inbred lines and ran the GWAS in 
mixed linear model (Q + K) in Tassel V2.1.

Head smut is caused by fungus Sphacelothecareiliana (Kühn) Clint, a global 
maize disease causing moderate to severe loss of both quality and quantity. The 
study was conducted in different environments with different replications. Artificial 
inoculation was performed using the previously collected teliospores of S. reiliana 
at a ratio of 1000:1 (teliospores: seed). The percentages of the completely infected 
plants per plots were scored in either tassels or ears at the mature plant stage. 
Extensive variation of the susceptibility to head smut was found among the lines, 
which range from 0% to 83% susceptibility range and the broad sense heritability 
was high at 88.7% (Wang et al. 2012). The genotype by environment interaction 
was also significant.

Several QTL mapping studies have been done and have found several QTLs for 
the head smut (Lu and Brewbaker 1999; Lübberstedt et al. 1999; Li et al. 2008). 
However, the QTLs were not very consistent among the studies. The QTLs found 
were reported mainly on chromosome 1, 2, 3, 8, 9, and 10. The major QTL for the 
head smut resistance, qHSR1, has been fine mapped in bin 2.09 using the 68 BC2 
recombinants from the cross of Ji1037 and Huangza04 (Chen et al. 2008).

The mixed linear model outputs 19 significant SNPs, which collectively explained 
86.5% of the total phenotypic variation ranging from 3.5% to 9.2%. Defense-related 
gene families such as serine/threonine protein kinases, leucine-rich repeat protein, 
MADS-box protein (bin 3.05), Auxin (bin 5.05), and WD40 repeat containing pro-
tein (bin 9.03) were identified. Two nucleotide-binding sites (NBS) encoding pro-
tein were detected on chromosome 8. Bin 2.09 was previously identified as a head 
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smut resistance region. The SNP on chromosome 2, with physical position 
219834173 on AGPv1, was found to be overlapped in the region and was later 
molecularly validated as resistance gene. This gene GRMZM2G166566 is anno-
tated as a basic leucine zipper transcription factor and has R2 value of 9.3%.

6.3.5  �Gray Leaf Spot

Gray Leaf Spot (GLS) (causal agents Cercosporazeae-maydis and Cercosporazeina) 
is one of the most important foliar diseases of maize. In the United States, C. zeae-
maydis occurs everywhere where corn is being cultivated, whereas C. zeina is 
mainly found on the East coast (Wang et al. 1998). Disease is prevalent in the areas 
where dewy mornings are followed by a hot humid afternoon and relatively cool 
nights. Breeding the disease resistance cultivars is the most prominent strategy to 
control the disease. Mammadov et  al. (2015) combined the high QTL detection 
power of genetic linkage mapping with high resolution power of GWAS to study the 
resistance of GLS, which is beneficial for the marker-assisted QTLs introgression 
(Mammadov et al. 2015).

The association study used the 300 maize association panel and was replicated in 
four different environments. The Association Panel comprised 215 DAS proprietary 
lines of North and South American origin, 27 ex-PVP lines, 37 CYMMIT lines, and 
21 lines from the National Plant Germplasm system. All lines in the association 
panel were chosen based on their previously known reaction to GLS, which were 
categorized into four major categories: GLS susceptible, moderately GLS suscep-
tible, moderately GLS resistant, and GLS resistant. For any bi-allelic SNP [A/B], a 
positive effect suggests that the allele contributing to GLS severity comes from 
allele A and a negative effect suggests that the allele contributing to GLS severity 
comes from allele B. GWAS was conducted using ~25,000 SNP markers with minor 
allele frequencies (MAF) > 0.1.

Besides, they used 72 lines for the biparental QTL mapping developed from the 
cross between DAS-001 (GLS resistant) and DAS-002 (GLS susceptible). Both 
DAS are the proprietary maize inbred lines of Dow AgroSciences. The map of 1985 
SNP markers was evenly distributed across ten maize chromosomes. Extended 
composite interval mapping (ECIM) model was used for QTL mapping.

They identified four GLS resistance QTL on the chromosome 1, 6, 7, and 8, 
which was further validated by GWAS. The genetic linkage – GWAS hybrid map-
ping system in the study identified one novel GLS resistance QTL (QTLGLSchr8a) 
and confirmed four previously mapped QTL (QTLGLSchr1, QTLGLSchr6, 
QTLGLSchr7, and QTLGLSchr8b) with more refined position. Three minor and one 
major QTL were detected on chromosomes 1, 6, 7, and 8, respectively. The QTL on 
chromosome 8 (QTLGLSchr8) explained about 26.5% of the variation, while the 
QTL on chromosomes 1 (QTLGLSchr1), chromosome 6 (QTLGLSchr6), and chro-
mosome 7 (QTLGLSchr7) were responsible for 4.55%, 6.85%, and 5.23% of GLS 
resistance, respectively. In total, all four identified QTL explained 43.13% of GLS 
resistance in the DAS-001 inbred line (Mammadov et al. 2015).
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6.4  �Future Perspective

Genome-wide association studies in crops have tremendously benefitted the farm-
ers, cooperatives, agriculture companies, and the scientific community. It has 
already been proven that the GWAS studies are beneficial in finding the causal vari-
ants of the disease and can be effectively used in developing disease resistance 
cultivars. However, one needs to be careful in using the GWAS model, as it has a 
high chance to provide false positive SNPs, given the incorrect model, and we 
already know that it is affected by several factors such as population structure, kin-
ship, and selection history, hence, it is always useful to have positive control traits/
SNPs in running the GWAS model or one can do simulation of the SNPs in the 
absence of the positive control to avoid those spurious hits. With the decrease in the 
cost of genotyping, GWAS using high density markers, high population sample 
size replicated in different environments and years will provide high power to detect 
the causal variants.

Quantitative traits are governed by polygenes of mostly small effects. Interaction 
of genes and their associative role in the phenotype is proven to be highly important. 
However, detecting those epistatic QTLs are still a major challenge for plant scien-
tists. Now it is time to contemplate on designing the mapping population that can 
dissect the epistatic variation over the additive variation in studying quantitative 
traits. The other major limitation of GWAS is that it is not capable of detecting the 
rare allelic variants. The power of detection of marker-trait association depends on 
allele frequency of the particular QTL.  Rare/low frequency alleles having either 
small or large effect are not detected by GWAS. The functional role of those rare 
variants has started to shed light in human as well as in plant disease. Hence, the 
next few decades will be important to understand the functional role of the rare vari-
ants/alleles in disease resistance.

The other limitation of GWAS includes the missing heritability concept, where 
the high heritable traits on the phenotypic variation remain unexplained. One of the 
reasons is that we tend to ignore the effect of thousands of SNPs under the thresh-
old, which might possess good biological information. Hence, the concept of 
genomic prediction and selection has evolved in the recent years in the field of plant 
disease resistance. Genomic prediction utilizes the genomic breeding values of the 
genotypes obtained from genotypic and phenotypic information from the training 
set population and used that to predict the phenotype of the breeding set. This is 
useful, as the genotypic cost is decreasing dramatically, whereas the phenotypic 
cost is still high. Genomic prediction has already begun in a few diseases in maize 
(Technow et al. 2013; Gowda et al. 2015) and shown to have good prediction, which 
helps to reduce the cycle of selection and ease the breeding effort for developing 
disease-resistant cultivars. Exploring and mitigating the disease resistance chal-
lenge using multi-omics integration and system genetics approach is another inter-
esting modern day concept. With all these fascinating developments in tools and 
concepts, the breeding for the disease-resistant cultivars in the coming decades will 
be another revolution in mitigating the poverty and malnutrition and for the sustain-
able agriculture across the globe.
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