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Abstract In quality control, the quality of process or product can be characterized
by a profile that defines as a functional relationship between a quality response
variable and one or more explanatory variables. Many research works have been
accomplished on statistical process control for simple linear profile with indepen-
dent or autocorrelated observations. This chapter will serve as a review of some
recent works on statistical quality control on autocorrelated simple linear profiles.

1 Introduction

In many statistical process control (SPC) applications, the quality of a product can
be characterized by a functional relationship between a response variable and one
or more independent variables. This functional relationship is often called profile.
The profile that links a response variable to the explanation variables can be linear
and nonlinear in nature. In statistical quality control, Jensen et al. [6] considered a
general linear profile model with m profiles. We assume that there are n observations
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in each of the j -th profile, j = 1, 2, . . . , m. The general linear profile model is
defined as

yj = γ 0,j + Xjγ j + Zj bj + εj , (1)

where yj is a n×1 vector of responses, Xj is a n×p matrix of the regressor variables
associated with the fixed effects, γ j is a p × 1 parameter vector of coefficients
for the fixed effects, Zj is a n × q matrix of predictors associated with random
effects, bj ∼ MN(0, D) is a q × 1 vector of random effect coefficients, MN(0, D)

denotes a multivariate normal distribution with zero mean vector 0 and positive
definite variance-covariance matrix D, εj ∼ MN(0, Rj ) is a n × 1 vector of errors,
and MN(0, Rj ) is a multivariate normal distribution with zero mean vector 0 and
positive definite variance-covariance matrix Rj for j = 1, 2, · · · ,m. If the errors
are assumed to be independent, then Rj = σ 2I where I is the identity matrix.
If the errors are correlated, Rj is often assumed as a simple form such as the
autoregressive (AR) model in order to reduce the number of covariance parameters
needed to be estimated. When Eq. (1) is reduced to the model that has only one fixed
effect regressor variable and no random effect terms, the profile model is called a
simple linear profile (SLP) model. The currently developed SPC on SLP models
have been focused on the same levels of fixed effect regressor for all the profiles.
Therefore, the SLP model can be defined as

yi,j = γ0 + xiγ1 + εi,j , (2)

where yi,j is the response in the j -th profile at the i-th level of predictor, xi ,
γ0 is the intercept, γ1 is the model parameter for the predictor and εi,j are
N(0, σ 2) distributed for i = 1, 2, · · · , n and j = 1, 2, · · · ,m. SPC methods
that involve monitoring a SLP process have drawn considerable attention over the
past two decades because a SLP model is easy to handle and can be applied to
many production processes. Process monitoring using control charts is a two-stage
process, which has Phase I and Phase II. Phase I is to evaluate the stability of the
process and estimate the in-control values of the process parameters, and Phase
II is to monitor the future online data obtained after Phase I and detect shifts in
the process parameters. In phase I, it is important to confirm the process stability
under a given false alarm rate, i.e., a type-I error probability. In Phase II, the
emphasis is on detecting process change as soon as possible. Both stages are usually
measured by parameters, mean and standard deviation, of the run length distribution,
where run length is the number of samples taken before an out-of-control signal
is occurred. Therefore, the average run length (ARL1) when the process out-of-
control during the Phase II monitoring is often used to compare the performance
of competing control chart methods under a given average run length ARL0 for
in-control Phase I. Numerous studies have been conducted on the use of profile
monitoring methods, for example, Mestek et al. [11], Stover and Brill [17], Kang and
Albin [7], Kim et al. [8], and Mahmoud et al. [10] studied some Phase I monitoring
methods for SLP processes in order to set and evaluate the stability of a process and
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to estimate process parameters. Kang and Albin [7], Kim et al. [8], Noorossana
[13], Gupta et al. [5], Zou et al. [19], and Saghaei et al. [14] studied Phase II
monitoring methods for SLP processes to detect shifts in the process parameters
as soon as possible. Woodall et al. [18] reviewed the research papers related to
SPC using profiles, provided examples of profile monitoring methods, identified
some weaknesses in existing methods and proposed some new research directions.
All the aforementioned studies have assumed that all the m profile models have
the same n values of one fixed effect regressor variable, and the error terms in the
models are independent and follow a normal distribution. When the error terms are
not independent, Noorossana et al. [12] studied a SLP model with error terms that
have a first-order autocorrelation structure between profiles and showed the impact
on the ARL performance of the T 2 control chart proposed by Kang and Albin [7].
In Noorossana et al. [12], three methods based on exponentially weighted moving
average/range (EWMA/R) and T 2 [7] and EWMA-3 [8] were provided to eliminate
the effect of autocorrelation between profiles and the ARL. When the response
variables are produced at set of points over time, the response of a profile are very
often autocorrelated. In this case, Soleimani et al. [16] considered a SLP model with
error terms that follow a first-order autoregressive model (AR(1)) within profile and
suggested the use of Hotelling T 2 control charts and EWMA-type control charts,
namely EWMA-3 charts, for monitoring SLP processes in the presence of within-
profile autocorrelation. These charts are simple to detect process shifts in SLP
processes. The simulation results in Soleimani et al. [16] showed that among many
competitive methods, EWMA-type control charts are the most effective in detecting
shifts in the intercept or slope of a SLP model. Three EWMA control charts are
obtained for EWMA-3 charts by re-parameterizing the SLP model in terms of its
intercept and slope. The intercept of the transformed SLP model being monitored
is a linear combination of the intercept and slope in the original SLP model. The
EWMA-3 charts of Soleimani et al. [16] are less sensitive if the original intercept
and slope shift simultaneously in opposite directions. Chiang et al. [3] investigated
an operational and effective Phase II monitoring method for a SLP model with
error terms follow an AR(1) within-profile. In Chiang et al. [3], a new multivariate
MEWMA control chart, namely MEWMA-SLP chart, was developed on the basis
of the design of Lowry et al. [9] for quickly detecting process shifts associated with
the original intercept or slope in the presence of within-profile autocorrelation.

In this chapter, we survey the work of SLP model with AR(1) autocorrelation
for the error terms. The rest of this chapter is organized as follows. A SLP model
with between-profile autocorrelation and EWMA-3 charts are reviewed in Sect. 2.
In Sect. 3, a SLP model with within-profile autocorrelation is introduced along with
the Hotelling T 2, EWMA-3 and MEWMA-SLP control charts for this SLP model.
In Sect. 4, we present the construction of the two process capability indices studied
by Chiang et al. [3]. In Sect. 5, Monte Carlo simulations are conducted to explore the
performance of the MEWMA-SLP chart are discussed, and the applications of the
proposed process capability indices are illustrated. Finally, conclusions are provided
in Sect. 6.
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2 SLP Model with Between-Profile Autocorrelated
Error Terms

When the error terms in a SLP model satisfy the following autocorrelation structure

εi,j = ρεi,j−1 + ai,j , i = 1, 2, · · · , n, j = 1, 2, · · · ,m, (3)

where ai,j , i = 1, 2, · · · , n, j = 1, 2, · · · ,m are independent and identically
distributed normal random variables with mean 0 and variance σ 2 and the random
error terms εi,j for i = 1, 2, · · · , n within the j -th profile are independent, then the
SLP model is a SLP model with between-profile autocorrelation [12]. Based on the
autocorrelation structure between errors defined in Eq. (3), Noorossana et al. [12]
provided the following autocorrelation structure between two different profiles at
the same level of xi :

yi,j − (γ0 + xiγ1) = ρ(yi,j−1 − (γ0 + xiγ1)) + ai,j , (4)

and the prediction equation, ŷi,j = ρyi,j−1 + (1 − ρ)(γ0 + xiγ1). Although there
exists an AR(1) structure between errors corresponding to each level of predictor
in different profiles in Eq. (4), Noorossana et al. [12] showed that the residual
ei,j = yi,j − ŷi,j equates to ai,j , for i = 1, 2, · · · , n and j = 1, 2, · · · ,m and
the residuals are independent random variables with the expected value E(ei,j ) = 0
and variance var(ei,j ) = σ 2. Hence, ei,j can be monitored using traditional control
charts. Noorossana et al. [12] proposed three methods to monitor the residuals ei,j

for i = 1, 2, · · · , n and j = 1, 2, · · · ,m. Let ēj = ∑n
i=1 ei,j /n for the j -th

profile. The three methods are reviewed as follows. When the model parameters are
unknown, the corresponding maximum likelihood estimates can be used to replace
the values of the model parameters to establish the control charts.

Method 1: EWMA Chart Combining with R-Chart for Monitoring the Error
Variance
The first method is EWMA in combining with R-chart, which is the same as
the control charts used by Kang and Albin [7]. The EWMA chart procedure is
constructed as follows:

Step 1: Define the EWMA sequence using residuals, ei,j for i = 1, 2, · · · , n and
j = 1, 2, · · · ,m, as zj = θ ēj + (1 − θ)zj−1 with 0 < θ < 1 as a smoothing
constant and z0 = 0

Step 2: Define the lower control limit (LCL) and the upper control limit (UCL) for

EWMA chart as LCLEWMA = −Lσ
√

θ
(2−θ)n

and UCLEWMA = Lσ
√

θ
(2−θ)n

,

where L is a positive constant selected to give a specified in-control ARL, ARL0.

The R-chart to detect shifts in the process variance is constructed as follows:

Step 1: Define the R sequence as Rj = maxi(ei,j ) − mini(ei,j ) for the j -th
profile.
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Step 2: Define the lower control limit (LCL) and the upper control limit (UCL)
for the R chart as LCLR = σ(d2 − Ld3) and UCLR = σ(d2 + Ld3), where L

is a positive constant chosen to give a specified in-control ARL0 and the values
of d2 and d3 are constants depending on the sample size n.

Method 2: Modified Hotelling T 2 Control Chart
The second method proposed by Noorossana et al. [12] is a modified Hotelling T 2

control chart studied by Kang and Albin [7]. The modified Hotelling T 2 control
chart is described as follows:

Step 1: Define T 2
j = (ej − 0)�−1(ej − 0)T where ej = (e1,j , e2,j , · · · , en,j ), 0

is a n × 1 zero vector, � = σ 2I and I is a n × n identity matrix.
Step 2: Define the upper control limit as UCLT = χ2

n,α , which is the 100(1 − α)

percentile of the chi-square distribution with n degree of freedom.

Method 3: Modified EWMA-3
The third method proposed by Noorossana et al. [12] is a modified EWMA-3
studied by Kim et al. [8] which was designed to deal with the autocorrelation
between profiles. Noorossana et al. [12] proposed the scaling of the x-variable such
that the average x-value is zero and the transformed SLP model of Eq. (2) with
autocorrelation in Eq. (3) is

yi,j = b0 + x∗
i b1 + εi,j , εi,j = ρεi,j−1 + ai,j , i = 1, 2, · · · , n, j = 1, 2, · · · ,m,

(5)

where x∗
i = (xi − x̄), b0 = γ0 + γ1x̄ and x̄ = ∑n

i=1 xi/n. Noorossana et al.
[12] showed that the AR(1) structure between observations can be transformed into
the intercept and the slope estimators in the successive profiles. Let b̂0,j be the
least squared estimate for b0 and b̂1,j be the least squared estimate for b1 using
the sample from the j -th profile. Noorossana et al. [12] calculated the residual for
the intercept as e0(j) = b̂0,j − ρb̂0,j−1 − (1 − ρ)b0, the residual for the slope
as e1(j) = b̂1,j − ρb̂1,j−1 − (1 − ρ)b1, and the residual as ei,j = yi,j − ŷi,j =
yi,j −ρyi,j−1 −(1−ρ)(b0 +b1x

∗
i ), then the mean squared error (MSE) is defined as

MSEj = ∑n
i=1 e2

i,j /n for the j -th profile. The process of EWMA-3 that contains
three control charts is described as follows:

Step 1: EWMA-3 for monitoring the intercept b0 is established as follows:

1.1 Define EWMA0(j) = θe0(j) + (1 − θ)EWMA0(j − 1), where 0 < θ ≤ 1
is a smoothing constant and EWMA0(0) = 0.

1.2 Define the lower control limit (LCL) and upper control limit (UCL) respec-
tively as LCL1 = −L0σ

√
θ/[(2 − θ)n] and UCL1 = L0σ

√
θ/[(2 − θ)n],

where L0 > 0 is chosen to give a specified in-control ARL0.
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Step 2: EWMA-3 for monitoring the slop b1 is established as follows:

2.1 Define EWMA1(j) = θe1(j) + (1 − θ)EWMA1(j − 1), where 0 < θ ≤ 1
is a smoothing constant and EWMA1(0) = 0.

2.2 Define the lower control limit (LCL) and upper control limit (UCL) respec-

tively as LCL2 = −L1σ

√
θ/[(2 − θ)

∑n
i=1 x∗2

i ] and

UCL2 = L1σ

√
θ/[(2 − θ)

∑n
i=1 x∗2

i ], where L1 > 0 is chosen to give
a specified in-control ARL0.

Step 3: EWMA-3 for monitoring the error variance is established as follows:

3.1 Define EWMAE(j) = max{θ(MSEj − 1) + (1 − θ)EWMAE(j − 1), 0}
with 0 < θ ≤ 1 as a smoothing constant and EWMAE(0) = 0

3.2 Define the upper control limit as UCL3 = LE

√
θV ar(MSEj )/(2 − θ)

where V ar(MSEj ) = V ar(
∑n

i=1 e2
i,j /n) = 2σ 4/n and LE > 0 is chosen

to give a specified in-control ARL0.

3 SLP Model with Within-Profile Autocorrelated
Error Terms

When the error terms in a SLP model satisfy the following autocorrelation structure

εi,j = ρεi−1,j + ai,j , i = 1, 2, · · · , n, j = 1, 2, · · · ,m, (6)

where ai,j , i = 1, 2, · · · , n, j = 1, 2, · · · ,m are independent and identically
distributed normal random variables with mean 0 and variance σ 2 and the random
error terms εi,j for j = 1, 2, · · · ,m between any two different profiles are indepen-
dent, then the SLP model is a SLP model with within-profile autocorrelation. Let
y′
i,j = yi,j − ρyi−1,j , then the model based on Eqs. (2) and (6) can be expressed as

y′
i,j = γ ′

0 + γ ′
1x

′
i + ai,j , i = 2, 3, · · · , n, j = 1, 2, · · · ,m, (7)

where γ ′
0 = γ0(1 − ρ), γ ′

1 = γ1, and x′
i = xi − ρxi−1. If the model parameters

are unknown, they are replaced with their corresponding maximum likelihood
estimates. In the Phase II monitoring, the model parameters γ0, γ1, σ 2, and ρ

are treated as known constants. We define the residuals for the j -th profile as
ei,j = y′

i,j − γ ′
0 − γ ′

1x
′
i , i = 1, 2, · · · , n. Following the approach proposed by

Kang and Albin [7] for monitoring independent SLP processes, Soleimani et al. [16]
proposed the four control charts, T 2 method, T 2 based on the residuals, EWMA/R
and EWMA-3, based on the residuals from the transformed model in Eq. (7) to
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monitor SLP processes with within-profile autocorrelation. The first two Hotelling
T 2 charts are stated as follows:

Hotelling T 2 Method for the Transformed Model
Step 1: Let γ̂ ′

0,j and γ̂ ′
1,j be the respective estimators of γ ′

0 and γ ′
1 based on the

j th profile sample.
Step 2: Define T 2

j = [γ̂ ′
0,j , γ̂

′
1,j ] − [γ ′

0,j , γ
′
1,j ]T S−1[γ̂ ′

0,j , γ̂
′
1,j ] − [γ ′

0,j , γ
′
1,j ],

where

S =
[

σ 2(1/(n − 1) + x̄′2/sx′x′) −σ2x̄
′/sx′x′

−σ2x̄
′/sx′x′ σ2/sx′x′

]

.

Step 3: Under in-control process, T 2 has a central chi-square distribution of two
degree freedom. Therefore, the upper control limit (UCL) for the chart is UCL =
χ2

2,α , where χ2
2,α is the 100(1−α)-th percentile of the chi-square distribution with

two degree of freedom.

Hotelling T 2 Method Based on the Residuals from the Transformed Model
Step 1: Define T 2

j = (ej − 0)�−1(ej − 0)T where ej = (e1,j , e2,j , · · · , en,j ), 0

is a n × 1 vector of zeros, � = σ 2I and I is a n × n identity matrix.
Step 2: Define upper control limit as UCL = χ2

n−1,α , which is the 100(1 − α)-th
percentile of the chi-square distribution with n − 1 degree of freedom.

The EWMA-3 charts for the intercept, slope, and the variance of error terms [16]
can be respectively constructed using the following three charting processes:

Control Chart 1: EWMA-3 Chart for Monitoring the Intercept
The first EWMA-3 chart, namely the EWMA-3I chart, is constructed using the
following steps:

Step 1: Let B0 = γ ′
0 + γ ′

1x̄
′, B1 = γ ′

1, x′′
i = (x′

i − x̄′), and express the model in
Eq. (7) as

y′
i,j = B0 + B1x

′′
i + ai,j , i = 1, 2, · · · , n, j = 1, 2, · · · ,m. (8)

Step 2: Derive the EWMA sequence of the B0 estimates from the equation

ωI (j) = θb0,j + (1 − θ)ωI (j − 1), j = 1, 2, · · · ,m,

where b0,j is the least squares estimate obtained based on the observations in the
j -th subgroup. Furthermore, ωI (0) = B0, and θ (0 < θ ≤ 1) is a smoothing
constant. The control limits can be represented as

LCLI = B0 − LIσ

√
θ

(2 − θ)(n − 1)
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and

UCLI = B0 + LIσ

√
θ

(2 − θ)(n − 1)
,

where LI (> 0) is a control chart parameter.

Control Chart 2: EWMA-3 Chart for Monitoring the Slope
The second EWMA-3 chart, namely the EWMA-3S chart, is constructed using the
following steps:

Step 1: On the basis of the transformations of B0, B1, and x′′
i in Eq. (8), the

EWMA sequence of the B1 estimates can be derived through

ωS(j) = θb1,j + (1 − θ)ωS(j − 1), j = 1, 2, · · · ,m,

where ωS(0) = B1, and b1,j is the least squares estimate obtained based on the
observations in the j -th subgroup.

Step 2: The control limits can be obtained as

LCLS = B1 − LSσ

√
θ

(2 − θ)Sxx

and

UCLS = B1 + LSσ

√
θ

(2 − θ)Sxx

,

where Sxx = ∑n
i=2 x′′2

i and LS(> 0) is a control chart parameter.

Control Chart 3: EWMA-3 Chart for Monitoring the Error Variance
The third chart, namely the EWMA-3e chart, is constructed using the following
steps:

Step 1: Evaluate the MSE for each profile as

MSEj =
∑n

i=2 e2
i,j

n − 1
, j = 1, 2, · · · ,m.

Step 2: The EWMA sequence of MSEj can be derived through

ωE(j) = max{θ(MSEj − 1) + (1 − θ)ωE(j − 1), 0}, j = 1, 2, · · · ,m,
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where ωE(0) = 0. The upper control limit can be obtained as

UCL = LE

√
θV ar(MSEj )

2 − θ
,

where

V ar(MSEj ) = 2σ 4

n − 1

and LE(> 0) is a control chart parameter.

The control chart parameters LI , LS , and LE in the three EWMA-3 charts can be
determined numerically such that a specified in-control average run length ARL0 is
reached.

3.1 MEWMA-SLP Chart

For the SLP model defined in Eqs. (2) and (6), the variance-covariance matrix of the
error terms can be represented as σ 2�, where

� = 1

1 − ρ2
[ψi,j ], (9)

ψk,l = 1 for k = l, and ψk,l = ρ(l−k) for k < l. For each subgroup of
size n, the SLP model in Eqs. (2) and (6) can be represented by Y = Xγ + ε,
where YT = (y1, y2, · · · , yn), X = (1, x), 1 is a n × 1 vector with entries 1,
xT = (x1, x2, · · · , xn), γ T = (γ0, γ1), and εT = (ε1, ε2, · · · , εn). Because of �

is a positive definite matrix, the linear model can be expressed as Y∗ = X∗γ + ε∗,
where Y∗ = �−1/2Y, X∗ = �−1/2X and ε∗ = �−1/2ε. Chiang et al. [3] mentioned
that E(ε∗) = 0 and Cov(ε∗) = σ 2I , where 0 is an order n column vector with
entries 0 and I is an order n identity matrix. The generalized least squares (GLS)
estimator of the model parameters γ0 and γ1, γ T

G = (γ̂G0, γ̂G1), of γ T , can be
obtained as

γ̂ G = (XT∗ X∗)−1XT∗ Y = (XT �−1X)−1XT �−1Y. (10)

Chiang et al. [3] constructed the MEWMA-SLP chart based on the design of Lowry
et al. [9] using the GLS estimates obtained from the Phase I samples of SLP process.
The control chart procedure can be described as follows:

MEWMA-SLP Chart
Step 1: Obtain the GLS estimates γ̂ G,j for j = 1, 2, · · · ,m using Eq. (10) and

the Phase I samples of SLP process.



118 J.-Y. Chiang et al.

Step 2: Compute ¯̂γ G = ∑m
j=1 γ̂ G,j /m = ( ¯̂γG0, ¯̂γG1)

T . Let S0 and S1 denote the
sample standard deviation of γ̂G0,j and γ̂G1,j , j = 1, 2, · · · ,m, respectively, and
let Uj be the rescaled vector of γ̂ G,j for j = 1, 2, · · · ,m, where the rescaling

involves the use of ¯̂γ G, S0, and S1. The sample variance-covariance matrix of
Uj ’s, denoted by SU, can be obtained as

SU = 1

m − 1

m∑

j=1

(Uj − Ū)(Uj − Ū)T ,

where Ū is the sample mean of Uj , j = 1, 2, · · · ,m.
Step 3: Derive the chart parameters κ (0 < κ ≤ 1), and UCL(= H) from the

values suggested by Lowry et al. [9] for an in-control ARL0 = 200. Useful
parameter combinations are outlined as (κ , H) = (0.2, 9.65), (0.4, 10.29), (0.6,
10.53) and (0.8, 10.58). Other chart parameters can be obtained from the study
of Lowry et al. [9] or through Monte Carlo simulations.

Step 4: Compute the EWMA series of Uj from

Zj = κUj + (1 − κ)Zj−1, j = 1, 2, · · · ,m,

and the test statistics from

T 2
i = ZT

i S−1
Zi

Zi , j = 1, 2, · · · ,m,

where

SZj
= κ

2 − κ
[1 − (1 − κ)2j ]SU → κ

2 − κ
SU as j goesto ∞.

4 Process Capability Indices

The process capability indices CP and CPK are widely used to evaluate the
capability of a univariate process. These indices are defined as CP = (U − L)/6σ

and CPK = min{U − μ,μ − L}/3σ , where L and U are the lower and upper
specification limits of the univariate process characteristic quality and μ and σ are
the mean and standard deviation of the process, respectively. For two-dimensional
processes, CP and CPK are denoted by BCP and BCPK , respectively. The
evaluations of BCP and BCPK for SLP processes are described as follows.

Let γ̂ G,j , j = 1, 2, · · · ,m be the GLS estimators of the of the model parameters
γ = (γ0, γ1) obtained by using the j -th in-control subgroups of the SLP process
and the specification limits of γ0 and γ1 be labeled as (L′

1, U
′
1) and (L′

2, U
′
2),

respectively. Chiang et al. [3] improved the method proposed by Castagliola and
Garcia Castellanos [2] through the following two steps:
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Step 1: Let Uj be the bivariate vectors defined in the Step 2 of MEWMA-SLP,
and let L1 = (L′

1 − ¯̂γG0)/S1, U1 = (U ′
1 − ¯̂γG0)/S1, L2 = (L′

2 − ¯̂γG1)/S2, and
U2 = (U ′

2 − ¯̂γG1)/S2. Derive the bivariate process capability indices from Uj ,
j = 1, 2, · · · ,m, L1, U1, L2, and U2.

Step 2: Use an orthogonal decomposition method to obtain the variance-
covariance matrix of Uj , j = 1, 2, · · · ,m. The variance-covariance matrix
is given by

SU = RΛRT , (11)

where Λ is a diagonal matrix of rank two with eigenvalues λ1 < λ2 of SU as
the diagonal elements. Furthermore, R = [rT

1 , rT
2 ], where rT

1 = (r1,1, r2,1) and
rT

2 = (r1,2, r2,2) are the eigenvectors corresponding to λ1 and λ2, respectively.

Let D1 and D2 be two lines passing through the point G(γ̂G0, γ̂G1) in the
directions of the eigenvectors r1 and r2, respectively. The lines D1 and D2 split
the (γ̂G0, γ̂G1)-plane into four disjoint areas, which are denoted by A1, A2, A3, and
A4 (see, Fig. 1). Because of γ̂ G follows a bivariate normal (BVN) distribution which
is symmetric about its mean β, we can show that P(γ̂ G ∈ Ai) = 1/4, i = 1, 2, 3,
and 4. Let

A = {(γ̂G0, γ̂G1)|L1 ≤ γ̂G0 ≤ U1, L2 ≤ γ̂G1 ≤ U2} = Q1 ∪ Q2 ∪ Q3 ∪ Q4,

where Qi = A ∩ Ai for i = 1, 2, 3, and 4. Let q = P(γ̂ G ∈ A) and p = 1 − q,
where p is the proportion of non-conformity. Furthermore, let qi = P(γ̂ G ∈ Qi)

and pi = P(γ̂ G ∈ Ai) − qi = 1/4 − qi for i = 1, 2, 3, and 4. Hence, q =

Fig. 1 The lines D1 and D2, and polygons Qi for i = 1, 2, 3, 4
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Fig. 2 The probabilities of pi and qi for i = 1, 2, 3, 4

q1 + q2 + q3 + q4 and p = p1 + p2 + p3 + p4 (Fig. 2). When the means of γ̂G0
and γ̂G1 are considered as the midpoints of their respective specification limits, then
p1 = p2 = p3 = p4 = p/4 and q1 = q2 = q3 = q4 = q/4. According to the
method presented in [2], the process capability indices for the GLS estimator γ̂ G

can be defined as

BCP = −1

3
Φ−1(p/2)

and

BCPK = min{−Φ−1(2p1),−Φ−1(2p2),−Φ−1(2p3),−Φ−1(2p4)},

where Φ(·) is the cumulative distribution function of the standard normal distri-
bution. Chiang et al. [3] suggested that the probabilities pi and qi , i = 1, 2, 3,
and 4, can be obtained using the R packages mvtnorm:pmvnorm [4] and
pracma:triquad [1] and they proposed the following two algorithms to obtain
BCP and BCPK .

Algorithm A: Evaluation of BCPK

Step 1: Obtain Uj , L1, U1, L2, and U2, then evaluate the sample variance-
covariance matrix SU from Uj , j = 1, 2, · · · ,m.

Step 2: Find the diagonal matrix Λ of eigenvalues and the matrix of eigenvectors
R from the orthogonal decomposition SU = RΛRT .

Step 3: Let c1, c2, · · · , c� be the vertices of the polygon Qi , then obtain the
transformed vertices of Qi through c′

l = RΛ−1/2RT cl for l = 1, 2, · · · , �.
Step 4: Determine the probabilities q̂i and pi(= 1/4 − qi) for i = 1, 2, 3, and 4.



A Survey of Control Charts for Simple Linear Profile Processes with Autocorrelation 121

Step 5: Estimate BCPK as

ˆBCPK = 1

3
min{−Φ−1(2p̂1),−Φ−1(2p̂2),−Φ−1(2p̂3),−Φ−1(2p̂4)}.

Algorithm B: Evaluation of BCP

Step 1: Let γ̂ G,j for j = 1, 2, · · · ,m follow a BV N(μB, Sγ ) distribution with
mean μB = ((L′

1 + U ′
1)/2, (L′

2 + U ′
2)/2) and variance-covariance matrix

Sγ = 1

m − 1

m∑

j=1

(γ̂ G,j − μB)(γ̂ G,j − μB)T ,

and denote the probability density function of BV N(μB, Sγ ) distribution as
f (γ̂0, γ̂1).

Step 2: Evaluate the probability

q̂ =
∫ U ′

1

L′
1

∫ U ′
2

L′
2

f (t1, t2)dt1dt2,

and p̂ = 1 − q̂.
Step 3: Estimate BCP as

ˆBCP = −1

3
Φ−1(p̂/2).

5 Monte Carlo Simulation Study and Numerical Example

5.1 Monte Carlo Simulation Study

To evaluate the performance of the MEWMA-SLP chart, Chiang et al. [3] used
the model settings as described in [15]. Let γ0 = 3 and γ1 = 2 for the models in
Eqs. (2) and (6). The points set for Eq. (2) are xi = 2, 4, 6, and 8. Because Soleimani
et al. [16] revealed that the EWMA-3 charts outperform other competitive methods,
we only compare the performance of the EWMA-3 charts with the MEWMA-SLP
chart.

The EWMA-3 charts use EWMA-3I, EWMA-3S and EWMA-3e charts to
simultaneously monitor the intercept, slope, and error variance of a SLP model.
The overall false alarm rate of EWMA-3 charts can be determined as

αEWMA = 1 − (1 − α′
1)(1 − α′

2)(1 − α′
3),
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where α′
1, α′

2 and α′
3 are the false alarm rates for EWMA-3I, EWMA-3S and

EWMA-3e, respectively. Chiang et al. [3] used the MEWMA-SLP chart and the
EWMA-3e chart simultaneously to monitor the intercept, slope, and error variance
of a SLP model. The overall false alarm rate of can be obtained as

αMEWMA = 1 − (1 − α1)(1 − α2),

where α1 and α2 are the false alarm rates of the MEWMA-SLP and EWMA-
3e charts, respectively. Because the EWMA-3e chart is used to monitor the error
variance for both approaches, the performance of the EWMA-3e chart is omitted in
the comparison. Specifically, the error variance was assumed to be in a statistical
control state in the simulation study. Hence, Chiang et al. [3] only compared the
performance of monitoring SLP process based on the EWMA-3I and EWMA-3S
charts with the performance of monitoring SLP process based on the MEWMA-
SLP chart.

In the simulation study, the correlation coefficient between the adjacent error
terms, ρ, is set to be 0.1, 0.7 or 0.9, and the overall ARL0 is set to be 200 (i.e.,
the overall false alarm rate α = 0.005). Without loss of generality, let α′

1 = α′
2 =

1 − √
1 − α ∼= 0.0025 for the EWMA-3I and EWMA-3S charts, and let α1 = α2 =

0.005 for the MEWMA-SLP chart. The chart parameters of the MEWMA-SLP chart
are set as κ = 0.2 and H = 9.65.

In Phase I monitoring for the model parameter, estimation of the parameters
is involved in using the EWMA-3I and EWMA-3S charts and 10,000 in-control
SLP processes were prepared. A simulation with 10,000 iterations was conducted
to obtain the chart parameters, which are LI = 2.889 and LS = 2.895, for using
the EWMA-3I and EWMA-3S simultaneously to achieve an approximated overall
ARL0 of 200. The EWMA-3 charts and the MEWMA-SLP chart were constructed
in Phase I. The out-of-control average run length, denoted by ARL1, was evaluated
for different parameter shifts in the Phase II monitoring.

Two scenarios were considered for the parameter shift. Scenario I (SI) was set to
be same as the simulation setting of Soleimani et al. [16]. In SI, the shift in either
the intercept or the slope of a SLP model was considered, and the other parameter
kept unchanged. In scenario II (SII), the shifts in both the intercept and the slope of
a SLP model were considered simultaneously. Assume that the intercept shifts from
γ0 to γ ′

0 = γ0 +λσ and the slope shifts from γ1 to γ ′
1 = γ1 +βσ when an assignable

cause is introduced. Here, λ and β are two constants. The parameter combinations
for SI are (1) λ = 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8 and 2, and β = 0; and (2) β

= 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225 and 0.25, and λ = 0.
In many practical applications, an intercept shift often accompanies with a slope

shift for a SLP process. Figure 3 presents an example, in which the nominal
regression line is characterized by the conditional expected value of y, given x,
as follows:

μ(y|x) = γ0 + γ1x. (12)
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Fig. 3 An example of an intercept shift accompanies a slope shift for a SLP

When the profile parameters shift because of an assignable cause, the nominal
regression line shifts to

μ′(y|x) = γ ′
0 + γ ′

1x. (13)

In Fig. 3, both μ(y|x) and μ′(y|x) pass through the point (Px, Py),= (x̄, μ(y|x̄)).
Using (Px, Py) = (x̄, μ(y|x̄)) in Eqs. (12) and (13), we can obtain

Py = γ0 + γ1x̄

and

γ ′
0 = (γ0 + γ1x̄) − γ ′

1x̄. (14)

Because γ0 = 3, γ1 = 2, and xi = 2, 4, 6, 8, Eq. (14) reduces to

γ ′
0 = 13 − 5γ ′

1. (15)

To present the process shifts on the σ scale, Chiang et al. [3] obtained γ ′
0 =

γ0 + λσ = 3 + λ and γ ′
1 = γ1 + βσ = 2 + β. Subsequently substituting

γ ′
0 = 3 + λ and γ ′

1 = 2 + β into Eq. (15) yields the relationship between
λ and β as λ = −5β. In the study conducted by Chiang et al. [3], β =
−0.50,−0.46,−0.44,−0.42,−0.40,−0.38,−0.36,−0.34,−0.32, −0.30, −0.28,
−0.26,−0.24,−0.22,−0.20,−0.18,−0.16,−0.14,−0.12,−0.10, −0.08, −0.06,

−0.04, and −0.02 in the simulation for determining the speed of control charts
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for detecting process shifts. The values of λ can be obtained using the relation
λ = −5β. The out-of-control ARL, denoted by ARL1, was evaluated through
a simulation with 10,000 realizations. A single alarm of the EWMA-3I or the
EWMA-3S indicates that the process is out of control for EWMA-3. The value of
ARL1 obtained from this charting procedure is labeled as ARL1-E3, and the value
of ARL1 determined from MEWMA-SLP is labeled as ARL1-ME.

The Monte Carlo simulation study presented in [3] clearly showed that the
MEWMA-SLP chart outperforms EWMA-3I and EWMA-3S simultaneous chart-
ing. The MEWMA-SLP chart is faster than the combined EWMA-3I and EWMA-
3S charts in detecting the process shift for the two scenarios considered. In
particular, the simulation results show that the MEWMA-SLP chart improves the
performance of the combined EWMA-3I and EWMA-3S charts considerably when
ρ is close to 1. When ρ = 0.9, the sensitivity of the combined EWMA-3I and
EWMA-3S charts in detecting a process shift engendered by an intercept shift
was low. More detail information, interested readers are suggested to read Chiang
et al. [3].

5.2 Numerical Example

When a SLP process is identified as in-control, the process capability should be
evaluated. To illustrate the application of the two new process capability indices,
Chiang et al. [3] generated data sets of size m = 200 with ρ =0.1, 0.7, and 0.9 based
on the model in Eqs. (2) and (6) with γ0 = 3 and γ1 = 2. Let the lower and upper
specification limits of the response variable y be LSLy and USLy , respectively. If
the mean of y, given x = x̄, is the midpoint of the specification limits, then LSLy

and USLy can be expressed as

LSLy = E(y|x = x̄) − kσ = γ0 + γ1x̄ − k1σ (16)

and

USLy = E(y|x = x̄) + kσ = γ0 + γ1x̄ + k2σ, (17)

respectively. Using Eqs. (16) and (17), Chiang et al. [3] obtained

γ0 = LSLy + USLy − (k2 − k1)σ

2
− γ1x̄,

γ1 =
LSLy+USLy−(k2−k1)σ

2 − γ0

x̄
,
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LSLy − (k2 − k1)σ/2 − γ1x̄ ≤ γ0 ≤ USLy − (k2 − k1)σ/2 − γ1x̄ and (LSLy −
(k2 − k1)σ/2 − γ0)/x̄ ≤ γ1 ≤ (USLy − (k2 − k1)σ/2 − γ0)/x̄. On the basis of
the specification limits of the response variable, the specifications limits of γ̂G0 and
γ̂G1 can be expressed as

LSLG0 = LSLy − γ1x̄,

USLG0 = USLy − γ1x̄,

and

LSLG1 = LSLy − γ0

x̄
,

USLG1 = USLy − γ0

x̄
.

When the parameters γ0 and γ1 are unknown, the parameters γ0 and γ1 can be
replaced with the sample means of γ̂G0,j and γ̂G1,j , respectively.

In the numerical examples, let k1 = 4, k2 = 3.5, LSLy = 9, USLy = 16.5,
LSLG0 = LSLy − γ1x̄ = −0.75, USLG0 = USLy − γ1x̄ = 6.75, LSLG1 =
LSLy − γ0/x̄ = 1.25, and USLG1 = USLy − γ0/x̄ = 2.75. Chiang et al. [3]
studied the relationship between ρ and the process capability indices BCp and
BCpk . The study showed that BCp and BCpk were influenced by the with-profile
correlation and they are overestimated if the with-profile correlation was ignored.
Furthermore, the maximal values of BCp and BCpk were attained for ρ = 0. The
value of BCpk decreases as ρ increases and the values of BCp and BCpk were
closed because the mean of γ̂ G,j for j = 1, 2, · · · ,m were closed to the midpoint
of the specification limits. For more information, interested readers are suggested to
read Chiang et al. [3].

6 Conclusion

The main purpose of this chapter is to review the recent developments on the SPC
to monitor SLP processes with correlated error terms; specially, SLP processes
with within-profile autocorrelation. The common skill is to transform the SLP
model with autocorrelated error terms to a SLP model with independent error terms
and independent residuals so that the control charts for independent errors can
be applied. Interested readers are suggested to read Chiang et al. [3] for potential
research directions.
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