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Preface

Statistical methodologies for product quality control, acceptance sampling plans,
and product reliability are essential technologies that ensure product quality to
reduce both consumer and producer risks. Numerous novel statistical technologies
to improve and to evaluate product quality had been developed by many scholars in
the past decades. After we edited the book Statistical Modeling for Degradation
Data (2017; Springer, Singapore), we have seen a great need to bring together
experts engaged in statistical process quality control, acceptance sampling plan,
and reliability testing and designs to present and discuss important issues of recent
advances in product quality technologies and related applications. For this reason,
we edit this book Statistical Quality Technologies: Theory and Practice that focuses
on statistical aspects of product quality technology development.

In this book, we aim to provide theories as well as applications of statistical
techniques for manufacturing quality. This book provides a venue for the timely
dissemination of research on the statistical methodologies of quality improvement
and assessment and to promote further research and collaborative work in this area.
The authors in each chapter have made both the theoretical results and the novel
statistical quality technologies publicly available, thus making it possible for readers
to readily apply these new methodologies in different areas of applications and
research. We believe that the topics covered in the book are timely and have high
potential to impact and influence in statistics, engineering, and manufacturing.

Outline of This Book Volume

This book volume brings together 16 chapters that are categorized as follows:
Statistical Process Control (Part I), Acceptance Sampling Plans (Part II), and
Reliability Testing and Designs (Part III). All the chapters have undergone a
thorough review process.

Part I of this book includes six papers focusing on both theoretical and applied
research in statistical process control. Chapter 1 provides an overview of some
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vi Preface

statistical process control methodologies. Qiu introduces some recent studies on
nonparametric statistical process control, control charts for monitoring dynamic
processes, and spatio-temporal process monitoring. In Chap. 2, Leiva, Marchant,
Ruggeri, and Saulo introduce statistical quality control and reliability tools based on
the Birnbaum-Saunders distribution and its generalizations, which are suitable for
the situations where the distribution of product quality characteristic is asymmetric.
Some possible research related to big data and business intelligence is also
discussed. In Chap. 3, Koppel and Chang propose a system-wise process monitoring
framework called the statistical system monitoring (SSM) for a production process
equipped with thousands of process parameters and hundreds of product character-
istics. The properties of the proposed SSM are studied via simulation and practical
guidelines are provided. In Chap. 4, Abujiya and Lee present several location
and dispersion cumulative sum (CUSUM) control charts based on the ranked set
sampling (RSS) techniques. The proposed CUSUM charts are shown to be more
effective compared to the standard CUSUM charts based on random sampling. In
Chap. 5, Chiang, Ng, Tsai, Lio, and Chen provide a review on statistical process
control for simple linear profile with independent or autocorrelated observations.
Some recent developments of statistical process control on a simple linear profile
model are discussed. In Chap. 6, Potgieter provides a review of some existing
CUSUM procedures for monitoring location and concentration changes in circular
processes. A new sequential changepoint procedure for detecting the changes in
location and/or scale is proposed and the properties and performance are studied.

Part II comprises four chapters that emphasis on the statistical techniques related
to acceptance sampling plans. In Chap. 7, Aslam, Rao, and Albassam present a
generalized multiple dependent state sampling (GMDSS) plan for a time truncated
life test to monitor product quality. Acceptable quality level and limiting quality
level are used to determine the plan parameters. In Chap. 8, Prajapati, Mitra, and
Kundu develop a decision theoretic sampling plan (DSP), which is an acceptance
sampling plan based on Type-I and Type-I hybrid censoring via Bayes’ decision
theory approach with a suitable loss function. An algorithm for obtaining the
optimal DSP is provided. In Chap. 9, Chiang, Ng, Tsai, Lio, and Chen provide
a general structure of an economical design of acceptance sampling plan with
warranty using truncated life test via Bayesian framework to tackle possible lot-
to-lot variation of products. A unified algorithm to reach an optimal sample size and
acceptance number for the sampling plan is established to minimize the respective
expected total costs. In Chap. 10, Kumar investigates the optimal acceptance
sampling plans that minimize the total expected testing cost subject to given upper
bounds for the producer and consumer risks based on Type-II censored partially
accelerated life test. Numerical results for the linear model and Arrhenius model are
provided.

Part III includes six chapters that concentrate on reliability testing and designs.
Chapter 11 deals with traditional accelerate life plan based on the c-optimality for
minimizing the variance of percentile lifetime. In this chapter, Lu, Lee, and Hong
propose a sequential design strategy for life tests based on the dual objectives
to resolve the unknown model parameters to improve the accuracy of predicted
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Preface vii

lifetime. In Chap. 12, Wang, Jiang, and Wang deal with the stress-strength models
for reliability design of systems when both the stress and the strength variables
follow the proportional hazards family or the proportional reverse hazards family.
Statistical inferential methods based on the proposed model are developed. In Chap.
13, Shen, Shen, and Xu consider a Wiener-based degradation model with logistic
distributed measurement errors. Efficient algorithm is provided for the estimation of
parameters. In Chap. 14, Pan and Seo present a generalized linear model approach
to obtain the optimal accelerated life test planning based on the proportional
hazard model. The proposed approach is shown to be flexible for any failure time
distribution. In Chap. 15, Ouyang, Park, Byun, and Leeds provide the background
behind a dual response surface methodology that incorporates a robust design. They
propose different estimation methodologies for remedying the difficulties associated
with data contamination and model departure. This section concludes with Chap. 16
that deals reliability modeling with manufacturing processes of modern ultra-large-
scale integrated circuits. Bae, Yuan, and Kuo discuss some latest development in
modeling the non-homogeneous distributed spatial defect counts.
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Dallas, TX, USA Hon Keung Tony Ng
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Part I
Statistical Process Control



Some Recent Studies in Statistical
Process Control

Peihua Qiu

Abstract Statistical process control (SPC) charts are widely used in manufacturing
industries for quality control and management. They are used in more and more
other applications, such as internet traffic monitoring, disease surveillance, and envi-
ronmental protection. Traditional SPC charts designed for monitoring production
lines in manufacturing industries are based on the assumptions that observed data
are independent and identically distributed with a parametric in-control distribution.
These assumptions, however, are rarely valid in practice. Therefore, recent SPC
research focuses mainly on development of new control charts that are appropriate
to use without these assumptions. In this article, we briefly introduce some recent
studies on nonparametric SPC, control charts for monitoring dynamic processes, and
spatio-temporal process monitoring. Control charts developed in these directions
have found broad applications in practice.

1 Introduction

Since the first control chart suggested by Shewhart [46], statistical process control
(SPC) charts have become a basic and powerful tool for quality control and
management in manufacturing industries. Many different control charts have been
developed in the past more than 80 years. These charts are mainly in the following
four categories: Shewhart charts, cumulative sum (CUSUM) charts, exponentially
weighted moving average (EWMA) charts, and charts based on change-point
detection (CPD). For systematic descriptions about the basics of these control
charts, see books Hawkins and Olwell [17], Montgomery [29], and Qiu [34].

Conventional control charts in the SPC literature are developed under the
routine assumptions that process observations are independent and identically
distributed (i.i.d.) with a parametric in-control (IC) distribution (e.g., normal).

P. Qiu (�)
Department of Biostatistics, University of Florida, Gainesville, FL, USA
e-mail: pqiu@ufl.edu

© Springer Nature Switzerland AG 2019
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4 P. Qiu

These assumptions are rarely valid in practice. For instance, process observations
collected at different time points could be serially correlated. Distributions of certain
quality variables could be skewed and inappropriate to describe by a normal or
another parametric distribution. In manufacturing industries, it might be reasonable
to assume that the IC distribution of process observations does not change over time.
But, in some other applications (e.g., monitoring of incidence rates of influenza
over time), the process IC distribution usually changes over time and space, due
to seasonality and other reasons. It has been well demonstrated in the literature
that the conventional control charts designed under the above routine assumptions
would not be reliable if one or more of their model assumptions are violated (e.g.,
[2, 4, 7, 36, 38, 42, 48]). So, much recent research effort in the SPC community has
been made in developing more flexible control charts. This chapter aims to describe
some of them in the research directions of nonparametric SPC, control charts for
monitoring dynamic processes, and spatio-temporal process monitoring.

SPC can be roughly divided into two phases. In Phase I, we try to adjust a
process under monitoring to make it run stably and satisfactorily (or IC), which
usually happens when the process is first monitored (e.g., a machine for production
is first installed). To know whether the process is IC, a Phase I control chart needs
to be applied to a small dataset collected from the process, and adjust the process
if it is not IC. This control-and-adjustment process usually needs to be repeated
several times until it is certain that the process is IC. Then, a Phase II control chart
can be designed properly, based on an IC dataset collected after Phase I SPC, for
online process monitoring. This chapter mainly introduce methods for Phase II SPC,
although many methods introduced here can be modified easily for Phase I SPC.
Also, in some SPC applications, the process under monitoring cannot be adjusted
easily (e.g., when monitoring incidence rates of influenza or satellite images of earth
surface in a given region). In such cases, traditional Phase I SPC may not be relevant.

The remaining parts of the chapter are organized as follows. In Sect. 2, some
conventional control charts are briefly introduced. Then, nonparametric SPC for
cases when a parametric form is inappropriate or unavailable for describing the
process distributions is discussed in Sect. 3. In Sect. 4, monitoring of processes
with time-varying IC distributions (or dynamic processes) is discussed, followed
by a discussion about spatio-temporal process monitoring in Sect. 5. Finally, some
remarks conclude the chapter in Sect. 6.

2 Basic Control Charts

As mentioned in Sect. 1, early control charts in the SPC literature are in the
framework of Shewhart charts that are described briefly in this section. Assume
that X is a univariate quality variable in a specific process monitoring problem, it
is continuous numerical, and its IC distribution is N(μ0, σ

2). A batch of process
observations obtained at the nth time point is denoted as
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Xn1, Xn2, . . . , Xnm,

where m ≥ 2 is the batch size. To test whether the process is IC at the nth time
point, it is natural to use the following z-test: the process is declared out-of-control
(OC) if

Xn > μ0 + Z1−α/2
σ√
m

or Xn < μ0 − Z1−α/2
σ√
m
,

where Xn is the sample mean of {Xn1, Xn2, . . . , Xnm}, and Z1−α/2 is the
(1 − α/2)th quantile of the N(0, 1) distribution. In practice, both μ0 and
σ could be unknown, and they need to be estimated from an IC dataset
{(X∗

i1, X
∗
i2, . . . , X

∗
im), i = 1, 2, . . . ,M}. Let X

∗
i and R∗

i be the sample mean

and sample range of (X∗
i1, X

∗
i2, . . . , X

∗
im), for i = 1, 2, . . . ,M , and X

∗
and R

∗
be

the averages of {X∗
i , i = 1, 2, . . . ,M} and {R∗

i , i = 1, 2, . . . ,M}, respectively.

Then, it can be checked that X
∗

is an unbiased estimator of μ0 and R
∗
/d1(m) is

an unbiased estimator of σ , where d1(m) is a constant that depends on m. When
m = 2, 3, 4, 5, d1(m) = 1.128, 1.693, 2.059 and 2.326, respectively. See Table 3.1
in [34] for more values of d1(m). After replacing μ0 and σ by their estimates in
the z-test, we obtain the Shewhart chart. So, the Shewhart chart declares a process
mean shift at the nth time point if

Xn > X
∗ + Z1−α/2

R
∗

d1(m)
√
m

or Xn < X
∗ − Z1−α/2

R
∗

d1(m)
√
m
. (1)

In manufacturing industries, we often choose α = 0.0027. In such cases, Z1−α/2
= 3. The popular terminology “six-sigma” in quality control and management is
related directly to the above design of the Shewhart chart. Namely, the performance
of a production process at time n can be considered IC if Xn is within an interval of
six-sigma wide that is centered at μ0, where sigma is the standard deviation of Xn.

There are many different versions of the Shewhart chart (1) for detecting mean
shifts. For instance, instead of using sample ranges for estimating the IC process
standard deviation, we can also use sample standard deviations. The Shewhart
chart (1) is constructed based on batch data with the batch size m ≥ 2. When
m = 1, there is only one observation at each time point. In such cases, the data are
called individual observation data. There are some Shewhart charts suggested in the
literature for monitoring individual observation data, some of which are based on the
moving-window idea that the sample means and sample ranges used in constructing
the Shewhart chart (1) are calculated from batches of observed data in different
windows of observation times. There are many Shewhart charts in the literature
suggested for detecting shifts in process variance, for monitoring binary or count
data, and for many other purposes. See Chapter 3 in [34] for a detailed description.
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The Shewhart chart (1) makes a decision whether a process is IC at a given time
point based on the observed data at that time point only. It is thus ineffective for
Phase II process monitoring in most cases, because the observed data in the past
can also provide helpful information about the process performance at the current
time point and such information is ignored completely by the Shewhart chart. To
overcome this limitation, Page [32] suggested the first CUSUM chart, and then
many different CUSUM charts have been suggested in the literature for different
purposes (cf., [17, 34]). Next, we briefly describe the basic CUSUM chart for
detecting a mean shift of a normal-distributed process. Assume that the IC process
distribution is N(μ0, σ

2), and the process observations for online monitoring are
{Xn, n = 1, 2, . . .}. Then, the CUSUM charting statistics for detecting a mean shift
are defined by

C+
n = max(0, C+

n−1 + (Xn − μ0)/σ − k),
C−
n = min(0, C−

n−1 + (Xn − μ0)/σ + k), for n ≥ 1, (2)

where C+
0 = C−

0 = 0, and k > 0 is an allowance constant. The chart gives a signal
when

C+
n > ρC or C−

n < −ρC, (3)

where ρC > 0 is a control limit. In the above CUSUM chart (2)–(3), the allowance
constant k is usually pre-specified. Then, the control limit ρC is determined so that
the IC average run length (ARL), denoted as ARL0, equals a given value, where
ARL0 is defined as the average number of observation times from the beginning
of process monitoring to a signal when the process is IC. From (2), it can be seen
that (1) the charting statistics C+

n and C−
n make use of the cumulative information

in all available data by the current time point n, and (2) they re-start from 0 each
time when the cumulative information suggests no significant evidence of a mean
shift in the sense that C+

n−1 + (Xn − μ0)/σ < k and C−
n−1 + (Xn − μ0)/σ > −k.

The re-starting mechanism of the CUSUM chart makes it possess a good theoretical
property that it has the smallest value of OC ARL, denoted as ARL1, among all
control charts that have the same ARL0 value (cf., [30]), where ARL1 is defined as
the average number of observation times from the occurrence of a real mean shift to
a signal after the process becomes OC.

Although the CUSUM chart (2)–(3) has good properties for process monitoring,
it is quite complicated to use, especially at the time when computing was expensive
in the 1950s when the chart was first suggested. An alternative but simpler
chart is the EWMA chart, first suggested by Roberts [45] in the first volume of
Technometrics. In the same setup as that for the CUSUM chart (2)–(3), the EWMA
charting statistic is defined as

En = λXn + (1 − λ)En−1, (4)
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where E0 = μ0, and λ ∈ (0, 1] is a weighting parameter. From (4), it is easy to
check that

En = λ
n∑

i=1

(1 − λ)n−iXi + (1 − λ)nμ0, (5)

and when the process is IC up to the current time point n, we have

En ∼ N
(
μ0,

λ

2 − λ
[
1 − (1 − λ)2n

]
σ 2
)
. (6)

Equation (5) implies that En is a weighted average of μ0 and all available
observations up to n, and the weight received by Xi decays exponentially fast when
i moves away from n. So, it is easy to study the IC properties ofEn, including the IC
distribution given in (6). Based on Expression (6), the EWMA chart gives a signal
of process mean shift when

|En − μ0| > ρEσ
√

λ

2 − λ
[
1 − (1 − λ)2n], (7)

where ρE > 0 is a control limit. In the EWMA chart (7), the weighting parameter λ
is usually pre-specified, and the control limit ρE is chosen such that a given ARL0
value is reached.

To use the Shewhart, CUSUM and EWMA charts described above, the IC param-
eters μ0 and σ should be known or estimated in advance, which is inconvenient for
certain applications. To overcome this limitation, Hawkins et al. [19] suggested a
CPD chart described below. For process observationsX1, X2, . . . , Xn, it is assumed
that they follow the following change-point model:

Xi =
{
μ0 + εi, if i = 1, 2, . . . , r,
μ1 + εi, if i = r + 1, r + 2, . . . , n,

where r is a change-point, and {ε1, ε2, . . . , εn} is a sequence of i.i.d. random
variables with the common distribution N(0, σ 2). Then, the likelihood ratio test
statistic for testing the existence of a change-point is

Tmax,n = max
1≤j≤n−1

√
j (n− j)
n

∣∣∣Xj −X′
j

∣∣∣
/
S̃j , (8)

where Xj and X
′
j are sample means of the first j and the remaining n − j

observations in {X1, X2, . . . , Xn}, respectively, and S̃2
j = ∑j

i=1(Xi − Xj)
2 +

∑n
i=j+1(Xi −X′

j )
2. The CPD chart gives a signal of mean shift when

Tmax,n > ρn, (9)
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where ρn > 0 is a control limit that may depend on n. After a signal is given, an
estimate of the change-point r is given by the maximizer found in (8). Hawkins et
al. [19] provided formulas for computing the values of ρn used in (9) for several
commonly used ARL0 values.

The description about the four types of basic control charts given above is for
detecting process mean shifts when process observations are univariate. There are
many different versions of each type for detecting shifts in process mean, variance
and other aspects of the process distribution. There are many control charts for
monitoring multivariate processes as well. See references, such as Crosier [9], Gan
[11], Hawkins [14, 15], Hawkins et al. [18], Healy [20], Lowry et al. [26], Mason et
al. [28], Sparks [47], Woodall and Ncube [49], Zamba and Hawkins [52], Zou and
Qiu [55], and many more.

3 Nonparametric Control Charts

The basic control charts discussed in Sect. 2 are all based on the assumption
that IC process observations follow a parametric (e.g., normal) distribution. In
practice, this assumption is rarely valid and distributions of quality variables are
often skewed and difficult to describe well by any parametric distributions. It
has been well demonstrated in the literature that conventional control charts are
unreliable to use in cases when their distributional assumptions are invalid (e.g.,
[4, 6, 7, 13, 33, 36, 38, 39]). Thus, distribution-free or nonparametric SPC is under
rapid development in the past 20 years. Some fundamental nonparametric SPC
charts are described below in this section.

The first type of nonparametric SPC charts makes use of the ordering or ranking
information in process observations collected at different time points. Let us first
discuss univariate cases when there is only one quality variable X involved in
process monitoring. Assume that the batch of observed data at the nth time point
is {Xn1, Xn2, . . . , Xnm}, for n ≥ 1. Let ξ0 be the median of the IC process
distribution, and Rnj be the rank of |Xnj − ξ0| in the sequence {|Xn1 − ξ0|, |Xn2 −
ξ0|, . . . , |Xnm − ξ0|}. Then, the sum of the Wilcoxon signed-ranks within the nth
batch of observations is defined as

ψn =
m∑

j=1

sign(Xnj − ξ0)Rnj , (10)

where sign(u) = −1, 0, 1, respectively, when u < 0,= 0,> 0. The absolute value
of ψn should be small when the process is IC, because the positive and negative
values in the summation of (10) will be mostly canceled out in such cases. On
the other hand, the value of ψn will be positively (negatively) large if there is an
upward (downward) mean shift. Therefore, ψn can be used for detecting process
mean shift. Also, it can be checked that the IC distribution of ψn does not depend
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on the original IC process distribution as long as that distribution is symmetric. In
that sense, control charts constructed based on ψn are distribution-free. As a matter
of fact, a number of distribution-free control charts based onψn have been suggested
in the literature. See, for instance, Bakir [3], Chakraborti and Eryilmaz [5], Graham
et al. [12], Li et al. [25], and Mukherjee et al. [31]. For instance, the EWMA charting
statistic suggested in Chapter 8 of Qiu [34] is defined as

En = λψn + (1 − λ)En−1, for n ≥ 1, (11)

where E0 = 0 and λ ∈ (0, 1] is a weighting parameter. When the process
distribution is symmetric, it can be checked that the IC mean and variance of En
are 0 and m(m+ 1)(2m+ 1)/6, respectively. So, the chart gives a signal when

|En| > ρW
√[
m(m+ 1)(2m+ 1)

6

] [
λ

2 − λ
] [

1 − (1 − λ)2n], (12)

where ρW > 0 is a parameter chosen to reach a given ARL0 value.
Besides ψn, there are some alternative rank-based statistics used for constructing

nonparametric control charts. These include the ones based on the sign test statistic
(e.g., [27]), the Cucconi test statistic (e.g., [8]), the nonparametric likelihood ratio
test (e.g., [56]), the Mann-Whitney two-sample test (e.g., [16]), and more. For
multivariate SPC problems, Qiu and Hawkins [38, 39] suggested CUSUM charts for
detecting process mean shifts using antiranks of different quality variables, Zou and
Tsung [57] suggested an EWMA chart using spatial signs, and Zou et al. [58] and
Holland and Hawkins [21] suggested different nonparametric control charts using
spatial ranks. See Qiu [36] for a discussion about other rank-based control charts.

The second type of nonparametric SPC charts is based on data categorization. In
multivariate cases, the major difficulty in describing a process distribution when it
is non-Gaussian is that the association among different quality variables can have
infinitely many possibilities and it is hard to describe such association properly in
general. However, if the quality variables are all categorical, then there are some
mature statistical methodologies in the area of categorical data analysis (cf., [1]) for
describing the association among categorical variables. Based on this observation,
Qiu [33] suggested a general framework for constructing nonparametric control
charts based on data categorization and categorical data analysis. Assume that
process observations are

Xn = (Xn1, Xn2, . . . , Xnp)
′, for n ≥ 1,

where p is the dimension of the quality vector X. Let the IC median of Xnj be μ̃j ,
for j = 1, 2, . . . , p, which can be estimated from an IC data. Define

Ynj = I (Xnj > μ̃j ), for j = 1, 2, . . . , p, (13)
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and Yn = (Yn1, Yn2, . . . , Ynp)
′, where I (a) is an indicator function that equals 1

if a is “true” and 0 otherwise. Then, Yn is the categorized version of Xn. The IC
distribution of Yn, can be described by a log-linear model which can be estimated
from the IC data. The estimated IC distribution of Yn is denoted as

{
f
(0)
j1j2...jp

, j1, j2, . . . , jp = 1, 2
}
,

where j1, j2, . . . , jp are indices of the p-way contingency table associated with the
categorized data Yn and its distribution (note that each dimension of the contingency
table has two categories). For j1, j2, . . . , jp = 1, 2, define

gnj1j2...jp = I (Yn1 = j1 − 1, Yn2 = j2 − 1, . . . , Ynp(i) = jp − 1),

gn is a vector of all gnj1j2...jp values, and f(0) is the vector of all f (0)j1j2...jp . Then, gn
and f(0) are vectors of the observed and expected counts of the contingency table at
the time point n, respectively. Let Uobs0 = Uexp0 = 0 be two 2p-dimensional vectors,
and

⎧
⎨

⎩

Uobsn = Uexpn = 0, if Bn ≤ k
Uobsn = (

Uobsn−1 + gn
)
(1 − k/Bn) , if Bn > k

Uexpn = (
Uexpn−1 + f(0)

)
(1 − k/Bn) ,

where

Bn =
{(

Uobsn−1 − Uexpn−1

)
+
(

gn − f(0)
)}′ (

diag(Uexpn−1 + f(0))
)−1

{(
Uobsn−1 − Uexpn−1

)
+
(

gn − f(0)
)}
,

k ≥ 0 is an allowance constant, diag(a) denotes a diagonal matrix with its diagonal
elements equal to the corresponding elements of the vector a, and the superscripts
“obs” and “exp” denote the observed and expected counts, respectively. Define

Cn =
(

Uobsn − Uexpn
)′ [

diag(Uexpn )
]−1

(
Uobsn − Uexpn

)
. (14)

Then, a location shift in Xn is signaled if

Cn > h, (15)

where h > 0 is a control limit chosen to achieve a given ARL0 level.
A chart similar to the one defined in (13)–(15) was suggested in univariate cases

by Qiu and Li [40], where the number of categories in categorizing the quality vari-
able can be larger than 2. From the large comparative studies in Qiu and Li [40, 41],
it can be seen that the chart based on data categorization has some advantages in
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terms of the ARL1 metric over certain alternative nonparametric control charts in
various cases considered, although it still has much room for possible improvement.
For instance, data categorization would lose information in the original data. It is
thus important to study how to make the lost information as small as possible while
keeping the favorable properties of the related nonparametric control charts. In this
regard, one possible improvement is to make use of the ordering information among
the categories of the categorized data when constructing control charts, which has
been discussed recently by Li [22].

4 Charts for Monitoring Dynamic Processes

The conventional control charts discussed in Sect. 2 usually require the assumption
that process observations have an identical distribution at different time points when
the related process is IC. This assumption is not valid in certain applications. One
example mentioned in Sect. 1 is about monitoring of disease incidence rates. In this
example, the distribution of disease incidence rates would change over time because
of seasonality and other reasons, even in cases when there are no disease outbreaks.
In such cases, the disease incidence rate process has a time-varying IC distribution.
Such processes are called dynamic processes in this paper. For monitoring dynamic
processes, the conventional control charts would be unreliable to use, and new
monitoring charts are needed. Recently, we developed several control charts for
monitoring dynamic processes, which are introduced below in this section.

Qiu and Xiang [42] suggested a so-called dynamic screening system (DySS)
for monitoring dynamic processes with a single quality/performance variable. The
DySS method consists of three main steps described below.

Step I The regular longitudinal pattern of the performance variable y is first
estimated from an IC dataset containing longitudinal observations of a group
of m well-functioning subjects.

Step II For a new subject to monitor, his/her observations are first standardized
using the estimated regular longitudinal pattern obtained in Step I.

Step III The standardized observations of the new subject are then monitored
by a conventional control chart and a signal is given as soon as all available
data suggest a significant shift in the longitudinal pattern of the subject under
monitoring from the estimated regular pattern.

Assume that the observed longitudinal data of them well-functioning subjects in
the IC dataset follow the model

y(tij ) = μ(tij )+ σ(tij )ε(tij ), for j = 1, 2, . . . , ni, i = 1, 2, . . . , m, (16)

where tij ∈ [0, T ] are observation times, y(tij ) is the j th observation of the ith
subject, μ(tij ) and σ(tij ) are the mean and standard deviation of y(tij ), and ε(tij )
is the standardized random error with mean 0 and variance 1. Qiu and Xiang
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[42] suggested a four-step procedure for estimating μ(t) and σ 2(t) using the local
linear kernel smoothing procedure. The estimators are denoted as μ̂(t) and σ̂ 2(t),
respectively. For a subject to monitor, when his/her performance is IC, his/her
observations should follow model (16), although the observation times, denoted
as t∗j , for j = 1, 2, . . ., could be different from those in model (1). So, his/her
observations {y(t∗j ), j ≥ 1} can be standardized by

ε̂(t∗j ) = y(t∗j )− μ̂(t∗j )
σ̂ (t∗j )

, for j ≥ 1, (17)

where μ̂(t) and σ̂ (t) are estimated from the IC data. Obviously, the standardized
observations {̂ε(t∗j ), j ≥ 1} in (17) would have mean 0 and variance 1 when the
subject under monitoring is IC. To detect an upward mean shift in the original
performance variable y for the given subject, Qiu and Xiang [42] suggested using
the CUSUM charting statistic defined as

C+
j = max(0, C+

j−1 + ε̂(t∗j )− k), for j ≥ 1, (18)

where C+
0 = 0 and k > 0 is an allowance constant. Then, the chart gives a signal

when

C+
j > hC, (19)

where hC > 0 is a control limit. For detecting a downward or arbitrary shift, a
downward or two-sided CUSUM chart can be used.

As discussed in Sect. 2, the performance of a control chart is usually measured by
ARL0 and ARL1. However, in many dynamic process monitoring applications, the
observation times are often unequally spaced. In such cases, ARL0 and ARL1 are
irrelevant any more. Instead, Qiu and Xiang [42] suggested using the average time
to signal (ATS), defined below. Let ω be a basic time unit so that all observation
times are its integer multiples. Then, we define n∗

j = t∗j /ω, for j = 1, 2, . . ., where
n∗

0 = t∗0 = 0. For a subject whose longitudinal performance is IC, assume that a
signal is given at the sth observation time. Then,E(n∗

s ) is called the IC ATS, denoted
as AT S0. Similarly, for a subject whose longitudinal performance starts to deviate
from the regular longitudinal pattern at the time point τ , the value E(n∗

s |n∗
s ≥ τ)−τ

is called OC ATS, denoted as AT S1. For the chart (18)–(19), the value of AT S0 can
be specified beforehand, and it performs better for detecting a shift of a given size
if its AT S1 value is smaller.

The DySS method discussed above is for monitoring univariate dynamic pro-
cesses only. Its multivariate version has been developed in Qiu and Xiang [43].
Li and Qiu [23, 24] suggested univariate and multivariate DySS methods that
were effective in cases when process observations were serially correlated. In the
chart (18)–(19), the fact that process observations are often unequally spaced is
considered in the performance measures AT S0 and AT S1 only, and it is not taken
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into account in the construction of the chart. This limitation was lifted in the EWMA
chart proposed by Qiu et al. [44].

In many applications, especially those outside the manufacturing industries,
longitudinal processes for monitoring often have time-varying IC distributions.
Therefore, dynamic process monitoring is an important research topic. Although
we have developed a number of control charts for that purpose, there are still
many open research problems. For instance, the DySS method described above
depends heavily on the estimated regular longitudinal pattern obtained from an
IC dataset. However, it is often challenging to choose an appropriate IC dataset
in practice. Proper estimation of the regular longitudinal pattern is challenging as
well, especially in cases when the size of the IC dataset is quite small.

5 Charts for Monitoring Spatio-Temporal Processes

We experienced SARS and many other damaging infectious diseases (cf., [10]). To
monitor their incidence rates, some global, national and regional reporting systems
have been developed. For instance, Florida Department of Health (FDOH) has built
the Electronic Surveillance System for the Early Notification of Community-based
Epidemics at Florida (ESSENCE-FL) recently, which is a syndromic surveillance
system for collecting near real-time pre-diagnostic data from participating hospitals
and urgent care centers in Florida. Figure 1 presents the observed incidence rates
of influenza-like illness (ILI) for all 67 counties of Florida on 06/01/2012 (a
summer time) and 12/01/2012 (a winter time). One important feature of these
disease incidence data is that observed data collected at different places and different
times are usually correlated: with the ones closer in space or time being more
correlated. This kind of spatio-temporal (ST) correlation, however, is hidden in the
observed data, and cannot be observed directly. Also, the disease incidence data
have the seasonality and other temporal variation, and their temporal patterns could
be different at different places (i.e., the spatial variation), as seen in Fig. 1.

The conventional SPC charts described in Sect. 2 require the assumptions
that process observations are independent and identically distributed when the
underlying process is IC. These assumptions are all violated in the ST process
monitoring problem discussed above, because of the ST data correlation and the
fact that disease incidence rates would have time- and space-varying distribution
even in cases when no disease outbreaks are present. Therefore, specific control
charts for handling ST processes are needed.

In a case study for analyzing a foot, hand and mouth disease dataset, Zhang
et al. [53] suggested a procedure consisting of three steps: detrend, decorrelation,
and sequential monitoring, which are briefly described below. (1) Seasonality in the
observed disease incidence data is first described by a nonparametric longitudinal
model, which can be estimated from an IC dataset and then eliminated from all
observed data. (2) Temporal autocorrelation in the detrended data is modeled by
an ARIMA model, and then eliminated from the detrended data. (3) The detrended
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Fig. 1 Observed ILI incidence rates in Florida on 06/01/2012 (top) and 12/01/2012 (bottom).
Stronger colors denote larger values
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and decorrelated data obtained in step (2) are then sequentially monitored by an SPC
chart. A similar procedure was used for analyzing an AIDS data in Zhang et al. [54].
This three-step method, however, can monitor the disease incidence rates at a single
location only, and it cannot monitor the data at multiple locations simultaneously
while accommodating ST data correlation properly.

To overcome the limitation of the three-step method by Zhang et al. [53], Yang
and Qiu [50] suggested a flexible approach for spatio-temporal data modeling,
briefly described below. Let � and [0, T ] be a 2-D region and a given time interval.
The observed disease incidence rates in�×[0, T ] are assumed to follow the model

y(ti , sij ) = λ(ti, sij )+ ε(ti , sij ), for j = 1, 2, . . . , mi, i = 1, 2, . . . , n, (20)

where ti ∈ [0, T ] is the ith observation time point, sij ∈ � is the j th observation
location at time ti , ε(ti , sij ) is a zero-mean random error, mi is the number of
observation locations at time ti , and n is the number of time points in the dataset.
The correlation structure in the observed data can be described by the covariance
function

V (u; v) = E [ε(u)ε(v)] = σ(u)σ (v)Cor(ε(u), ε(v)), for u, v ∈ [0, T ] ×�,
(21)

where σ 2(·) is the variance function and Cor(·, ·) is the correlation function. The
mean function λ(t, s) is then estimated by a spatio-temporal local linear kernel
smoothing procedure. The estimator is denoted as λ̂(t, s). To accommodate the
ST data correlation, the bandwidths used in estimating λ(t, s) should be chosen
carefully. To this end, a modified cross-validation procedure was proposed in Yang
and Qiu [50]. After λ̂(t, s) is obtained, V (u, v) can be estimated by moment
estimation from the residuals. The resulting estimator is denoted as V̂ (u, v).

Based on the above ST data modeling approach, Yang and Qiu [51] suggested a
CUSUM chart for monitoring ST processes, which consists of several steps. First,
the regular longitudinal pattern of the spatial disease incidence rates in cases when
no disease outbreaks are present can be described by λ(t, s) and V (u, v) in (20)
and (21), which can be estimated from an IC dataset by the ST modeling procedure
discussed above. Then, they can be used for online monitoring of the disease
incidence rates y(t∗i , s∗

ij ) observed at locations {s∗
ij , j = 1, 2, . . . , m∗

i } and times
t∗i , for i = 1, 2, . . .. Define y(t∗i ) = (y(t∗i , s∗

i1), y(t
∗
i , s

∗
i2), . . . , y(t

∗
i , s

∗
im∗
i
))′, for all

i. When the process is IC, the observed data are assumed to follow model (20) in the
sense that y(t∗i , s∗

ij ) = λ(t∗i , s∗
ij )+ ε(t∗i , s∗

ij ), for j = 1, 2, . . . , m∗
i and i = 1, 2, . . .,

and the mean function λ(t, s) is assumed periodic in time with the period T . Namely,
λ(t∗i , s∗

ij ) = λ(t∗∗
i , s

∗
ij ), where t∗i = t∗∗

i + �T for all i, t∗∗
i ∈ [0, T ], and � ≥ 1 is

an integer. Second, decorrelate and standardize all observed data up to the current
time point i: {y(t∗1 ), y(t∗2 ), . . . , y(t∗i )}. The decorrelated and standardized data are
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denoted as ̂̃e(t∗1 ),̂̃e(t∗2 ), . . . ,̂̃e(t∗i ). Then, the suggested CUSUM charting statistic
for detecting upward shifts in the disease incidence rates is

C+
i = max

(
0, C+

i−1 +
̂̃e(t∗i )′̂̃e(t∗i )−m∗

i√
2m∗

i

− k
)
, for i ≥ 1, (22)

where C+
0 = 0 and k > 0 is an allowance constant. The chart gives a signal when

C+
i > γ, (23)

where γ > 0 is a control limit. To determine γ in (23) so that the chart (22)–(23)
has a specific ARL0 value, Yang and Qiu [51] suggested using a block bootstrap
procedure.

6 Concluding Remarks

In the previous sections, we have briefly introduced some recent research in
SPC, after an introduction of four types of basic SPC charts. The recent research
introduced is mainly on nonparametric SPC, dynamic process control, and spatio-
temporal process monitoring. These research topics aim to handle cases when
the regular assumptions in SPC that IC process observations are independent and
identically distributed with a specific parametric distribution are violated. In each of
these research topics, there are still many open questions that need to be addressed
in our future research. For instance, in the nonparametric SPC area, there have
been many nonparametric control charts proposed. Systematic comparison of these
charts should be important for them to be used in real-data applications. Also, both
ranking and data categorization would lose information in the original observed
data. It should be important to study how to minimize the lost information while
keep all the favorable properties of nonparametric control charts. For dynamic
process monitoring, accurate estimation of the regular longitudinal pattern from
the IC data is critically important. Usually, the size of IC data is limited. In such
cases, self-starting procedures to expand the initial IC dataset, by combining it with
observed data during procedure monitoring after it is confirmed that the process
under monitoring is IC at the current time point, might be one way to overcome
the difficulty, which needs to be further studied in the future. Proper monitoring
of spatio-temporal processes is important but challenging. The chart (22)–(23)
represents our first research effort on that topic, and many issues, including proper
accommodation of important covariates, need to be addressed in future research.

In the big data era, SPC will find more and more applications (cf., [35, 37]). In
these new applications, the related process monitoring problems could become more
complicated. For instance, sequential monitoring of images has broad applications
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in manufacturing industries, traffic monitoring, medical diagnostics, and more. But,
images often have edges and other complicated structures. Also, images obtained
at different times should be geometrically aligned properly for meaning analysis
of the image sequence. These features of image data, however, would make proper
monitoring of an image sequence extremely challenging. So, new SPC methods are
needed for handling such new applications.
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Statistical Quality Control and Reliability
Analysis Using the Birnbaum-Saunders
Distribution with Industrial Applications

Víctor Leiva, Carolina Marchant, Fabrizio Ruggeri, and Helton Saulo

Abstract Quality improvement has been an important aspect considered by com-
panies since the last century. However, today it is even more relevant in business
and industry, particularly for production and service companies. Statistical quality
control is the quantitative tool for quality improvement. The Gaussian distribution
was the main ingredient of this quantitative tool, but nowadays new distribu-
tions are being considered, some of them taking into account asymmetry. The
Birnbaum-Saunders model is one of these distributions and has recently received
considerable attention because of its interesting properties and its relationship with
the Gaussian distribution. Since its origins and applications in material science,
the Birnbaum-Saunders distribution has found widespread uses in several areas,
including quality control, with now well-developed methods that allow in-depth
analyses. In this work, statistical quality control and reliability tools based on the
Birnbaum-Saunders distribution are introduced. Implementation of those tools is
presented using the R software. For the internal quality of companies, control charts
for attributes and variables, as well as their multivariate versions and capability
indices, are presented, discussed and illustrated with real data. For external quality,
acceptance sampling plans are also presented and discussed. The main aspects

V. Leiva (�)
School of Industrial Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
e-mail: victorleivasanchez@gmail.com
URL: http://www.victorleiva.cl

C. Marchant
Faculty of Basic Sciences, Universidad Católica del Maule, Talca, Chile
e-mail: carolina.marchant.fuentes@gmail.com

F. Ruggeri
CNR-IMATI, Milano, Italy
e-mail: fabrizio@mi.imati.cnr.it

H. Saulo
Department of Statistics, Universidade de Brasilia, Brasilia, Brazil
e-mail: heltonsaulo@gmail.com

© Springer Nature Switzerland AG 2019
Y. Lio et al. (eds.), Statistical Quality Technologies, ICSA Book Series in Statistics,
https://doi.org/10.1007/978-3-030-20709-0_2

21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20709-0_2&domain=pdf
mailto:victorleivasanchez@gmail.com
http://www.victorleiva.cl
mailto:carolina.marchant.fuentes@gmail.com
mailto:fabrizio@mi.imati.cnr.it
mailto:heltonsaulo@gmail.com
https://doi.org/10.1007/978-3-030-20709-0_2


22 V. Leiva et al.

of reliability, sometimes defined as ‘quality over time”, is discussed using the
Birnbaum-Saunders distribution, illustrating them with data on nanotechnologies.

Keywords Acceptance sampling plans · Capability indices · Control charts for
attribute · Control charts for variables · Multivariate control charts · Reliability ·
R software

1 Introduction

The Birnbaum-Saunders distributions are a family of probabilistic models originat-
ing from the law on cumulative damage related to fatigue and strength of materials;
see [11]. Its origins allow the Birnbaum-Saunders model to be interpreted as a
life distribution, because it describes the time spent until the extension of a crack
exceeds a threshold leading to a failure. This family of distributions is unimodal,
positively skewed and useful for modeling data that take values greater than zero;
see [4]. The Birnbaum-Saunders family has two parameters, which modify shape
and scale of the distribution; see [10]. Birnbaum-Saunders distributions have been
extensively studied because of their good properties and relation with the Gaussian
distribution. In particular, a random variable following the Birnbaum-Saunders dis-
tribution can be considered as a transformation of a random variable with (standard)
Gaussian distribution; see [7, pp. 651–663] and [10, p. 18]. Although the main
applications of the Birnbaum-Saunders distribution lie naturally in engineering, this
model has also been successfully applied to several other areas of knowledge such as
agriculture, air contamination, bioengineering, business, economics, environment,
finance, food and textile industries, forestry, human and tree mortality, informatics,
insurance, inventory management, medicine, nutrition, pharmacology, psychology,
neurology, queueing theory, toxicology, water quality, and wind energy; see details
in [10]. However, there is no compendium gathering tools for statistical quality
control based on the Birnbaum-Saunders distribution.

The current work plans (i) to introduce methodologies about control charts
for attributes and variables using Birnbaum-Saunders distributions; (ii) to develop
multivariate control charts based on these distributions and the Hotelling statistic;
(iii) to present a methodology based on capability indices for Birnbaum-Saunders
processes; (iv) to derive acceptance sampling plans when the lifetimes of the test
units follow the Birnbaum-Saunders distribution; and (v) to use these distributions
to analyze reliability in the hardness of materials when incorporating nanotechnolo-
gies.

The remainder of the work is organized as follows. Sections 2 and 3 present
a background on univariate and multivariate Birnbaum-Saunders distributions. In
Sects. 4 and 5, we introduce methodologies about control charts for attribute
and variables, respectively, using Birnbaum-Saunders distributions. In Sect. 6,
multivariate quality control charts based on such distributions and the Hotelling
statistic are developed. Section 7 presents, discusses and applies a methodology
based on capability indices for Birnbaum-Saunders processes. In Sect. 8, we provide
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acceptance sampling plans when the lifetimes of the test units follow a Birnbaum-
Saunders distribution. In Sect. 9, the use of the Birnbaum-Saunders distribution to
analyze the effect on hardness when incorporating nanotechnology is presented and
illustrated with real data. Section 10 provides the main results of the work and a
guidance on possible future research.

2 Univariate Birnbaum-Saunders Distributions

In this section, univariate Birnbaum-Saunders distributions are presented, along
with their features, properties, logarithmic version and the sum of random variables
following the Birnbaum-Saunders distribution.

2.1 Features and Properties

The cumulative distribution function (CDF) of the univariate Birnbaum-Saunders
distribution with shape parameter α ∈ R+ and scale parameter β ∈ R+ is given by

FT (t;α, β) = Φ(A(t;α, β)), t ∈ R+, (1)

where Φ is a standard Gaussian CDF and

A(t;α, β) = 1

α

[(
t

β

) 1
2 −

(
β

t

) 1
2
]
.

The notation T ∼ BS(α, β) is used for a random variable or quality characteristic T
with the CDF defined in (1). Such a random variable is a transformation of a random
variable with standard Gaussian distribution. In fact, T ∼ BS(α, β) can be written
as

T = T (V ;α, β) = β
⎧
⎨

⎩
α V

2
+
[(
α V

2

)2

+ 1

] 1
2

⎫
⎬

⎭

2

, (2)

where V is a random variable with standard Gaussian distribution. Then,

V = 1

α

(√
T

β
−
√
β

T

)
∼ N(0, 1).

Thus, the probability density function (PDF) of T ∼ BS(α, β) is expressed as

fT (t;α, β) = φ(A(t;α, β)) a(t;α, β), t ∈ R+, (3)
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where φ is the standard Gaussian PDF and a(t;α, β), the derivative of A(t;α, β)
defined below (1), is given by

a(t;α, β) = 1

2αβ

[(
β

t

) 1
2 +

(
β

t

) 3
2
]
. (4)

Let T ∼ BS(α, β). Then, we have the following three properties:

(P1) k T ∼ BS(α, k β), with k ∈ R+;
(P2) 1/T ∼ BS(α, 1/β);
(P3) V 2 = (T /β + β/T − 2)/α2 ∼ χ2(1), that is, V 2 follows a χ2 distribution

with one degree of freedom.

Maximum likelihood (ML) estimators for the Birnbaum-Saunders model parameters
are unique and can be easily obtained, solving numerically the ML equations. For
details about this ML estimation, see [3, 10].

2.2 Log-Birnbaum-Saunders Distribution

If T follows a Birnbaum-Saunders distribution as defined in (2), then its logarithm,
Y = log(T ), follows a log-Birnbaum-Saunders distribution. Specifically, if T ∼
BS(α, β), then Y = log(T ) ∼ log-BS(α, μY ), where μY = log(β). Thus, the
corresponding PDF of Y is expressed as

fY (y;α,μY ) = φ(B(y;α,μY )) b(y;α,μY ), y ∈ R, (5)

with shape parameter α ∈ R+ and mean μY ∈ R, where b(y;α,μY ) is expressed as

b(y;α,μY ) = 1

α
cosh

(
y − μY

2

)
,

which is the derivative of

B(y;α,μY ) = 2

α
sinh

(
y − μY

2

)
.

Let Y ∼ log-BS(α, μY ). Then, we have the following three properties:

(P4) Y = μY + 2 arcsinh(α W/2) ∼ log-BS(α, μY ), with W ∼ N(0, 1), that is,
a random variable with log-Birnbaum-Saunders distribution can be obtained
directly from a random variable with standard Gaussian distribution;

(P5) W = B(Y ;α,μY ) = (2/α) sinh((Y − μY )/2) ∼ N(0, 1);
(P6) W 2 = B2(Y ;α,μY ) ∼ χ2(1).
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2.3 The BSsum Distribution

Two approaches have been proposed to obtain the distribution of the sum of
random variables with Birnbaum-Saunders distribution. The first approach is due
to Raaijmakers [22, 23], whereas the second one is due to Fox et al. [5].

Approach 1
Let Ti ∼ BS(α, β = 1), for i = 1, . . . , k. Then, according to Raaijmakers [22,

23], the PDF and CDF of the sum of k random variables with Birnbaum-Saunders
distribution, S = ∑k

i=1 Ti , are given respectively by

fS(s;α, β = 1, k) = a

2k
exp(2ka(1 − s))

k∑

i=0

(
k

i

)
(2ka)i−2ςi

( s

4k2 a

)
,

FS(s;α, β = 1, k) = 1

2k
exp(2ka(1 − s))

k∑

i=2

li ςi(s/(4k2a))

(2ka)2−i +Φ
(
ϕ(s; k)
α

)
,

where s > 0, α > 0, k = 1, 2, . . ., a = 1/(2α2), li = li+2 − (
k
i

)
, with lk+2 =

lk+1 = 0, for i = 2, . . . , k, ϕ(s; k) = √
s − k/√s, and ςi is a function as defined

in Raaijmakers [22, 23]. The notation S ∼ BSsum(α, β, k) is used in this case. The
quantile function of S is given by

QS(q;α, β, k) = F−1
S (q;α, β, k), 0 < q < 1, (6)

which must be solved numerically.

Approach 2
The exact expression for the PDF of the sum of random variables with Birnbaum-

Saunders distribution was proposed by Fox et al. [5] for modeling count data. Let Ti ,
for i = 1, . . . , n, be independent random variables following Birnbaum-Saunders
distributions with parametersΔTi , μTi and σTi . Fox et al. [5] derived the distribution
of S = ∑n

i=1 Ti assuming that a positive constant v exists, such that σTi /μTi = v,
for all i. Then, the random variable S corresponds to a mixture distribution with
PDF given by

fS(s;ΔS,μS, σS, n) = 1

2n
f0(s)+

n∑

j=1

1

2n

(
n

j

)
fj (s),

where

fj (s) = ΔSμ
j
S√

2π2j/2σ j+1
S

exp

(
−1

2

(
ΔS − sμS√

sσS

)2
)
sj/2−3/2K2

(
j

2
,

3

2
,
ΔS

2

2sσ 2
S

)
, s > 0,
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with K2(0, 3/2,ΔS2/(2sσ 2
S )) = 1 for j = 0, K2(1/2, 3/2, ΔS2/(2sσ 2

S )) =√
2sσS/ΔS for j = 1, μS =

√∑n
i=1 μTi , σS =

√∑n
i=1 σTi and ΔS =

∑n
i=1ΔTi /μTi .

3 Multivariate Birnbaum-Saunders Distributions

In this section, multivariate Birnbaum-Saunders distributions are presented, along
with their features, properties, logarithmic version, associated Mahalanobis distance
and random number generator.

3.1 Features and Properties

The random vector T = (T1, . . . , Tm)
	 ∈ R

m+ follows an m-variate Birnbaum-
Saunders distribution with parameters α = (α1, . . . , αm)

	 ∈ R
m+, β =

(β1, . . . , βm)
	 ∈ R

m+ and scale matrix Σ = (σkl) ∈ R
m×m, if Ti = T (Vi;αi, βi),

for i = 1, . . . , m, where T is given in (2) and V = (V1, . . . , Vm)
	 ∈ R

m ∼
Nm(0m×1,Γ ), with Γ = (ρkl) ∈ R

m×m being a correlation matrix. Furthermore,
the Birnbaum-Saunders case implies the diagonal elements of Σ are equal to one,
that is, σkk = 1, for all k = 1, . . . , m. Then

Σ =

⎛

⎜⎜⎜⎝

1 ρ12 · · · ρ1m

ρ12 1 · · · ρ2m
...

...
. . .

...

ρ1m ρ2m · · · 1

⎞

⎟⎟⎟⎠ = Γ . (7)

The m-variate Birnbaum-Saunders distribution is denoted by T ∼ BSm(α, β,Γ ).
The CDF and PDF of T are, respectively, defined as

FT (t;α, β,Γ ) = Φm(A;Γ ),

fT (t;α, β,Γ ) = φm(A;Γ ) a(t;α, β), t = (t1, . . . , tm)	 ∈ R
m+,

where Φm and φm are the m-variate standard Gaussian CDF and PDF, respectively
A = A(t;α, β) = (A1, . . . , Am)

	, with Aj = A(tj ;αj , βj ),

a(t;α, β) =
m∏

j=1

a(tj ;αj , βj ),
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and both A(tj ;αj , βj ) and a(tj ;αj , βj ) are as given in (3). Let T ∼ BSm(α, β,Γ ).
Then, three properties of the m-variate Birnbaum-Saunders distribution are the
following:

(P7) k T ∼ BSm(α, k β,Γ ), with k ∈ R+;

(P8) T ∗ = (1/T1, . . . , 1/Tm)	 ∼ BSm(α, β∗,Γ ), with β∗ = (1/β1, . . . , 1/βm)	;

(P9) A	(T ;α, β)Γ −1A(T ;α, β) ∼ χ2(m).

Unlike parameter estimation for the univariate Birnbaum-Saunders distribution,
where uniqueness is guaranteed, (see [3]) in the multivariate case there is no
certainty that the system of ML equations has a unique solution. Therefore, care
must be taken to ensure that numerical procedures yield a global maximum.

3.2 Log-Birnbaum-Saunders Distribution

Let T = (T1, . . . , Tm)
	 ∼ BSm(α, β,Γ ). Then, Y = (Y1, . . . , Ym)

	 =
(log(T1), . . . , log(Tm))	 follows an m-variate log-Birnbaum-Saunders distribu-
tion with shape parameters α = (α1, . . . , αm)

	, mean vector μ
Y

= E[Y ] =
(E[Y1], . . . ,E[Ym])	 = (log(β1), . . . , log(βm))	 ∈ R

m, and correlation matrix
Γ ∈ R

m×m given in (7). This is denoted by Y ∼ log-BSm(α,μY ,Γ ). The CDF of
Y is defined as

FY (y;α,μY ,Γ ) = Φm(B;Γ ), y = (y1, . . . , ym)
	 ∈ R

m,

where B = B(y;α,μ
Y
) = (B1, . . ., Bm)	, with Bj = B(yj ;αj , μYj ), for j =

1, . . . , m, as given in (5). The PDF of Y is expressed as

fY (y;α,μY ,Γ ) = φm(B;Γ )b(y;α,μ
Y
), y ∈ R

m,

where b(y;α,μ
Y
) = ∏m

j=1 b(yi;αj , μYj ), with b(yj ;αj , μYj ) as given in (5), for
j = 1, . . . , m. If Y ∼ log − BSm(α,μY ,Γ ), then from (P5) and (7), the following
two properties hold:

(P10) D(α) B(Y ;α,μ
Y
) ∼ Nm(0m×1,D(α)Γ D(α)), where D(α) = diag(α1,

. . . , αm)

and

D(α)Γ D(α) =

⎛

⎜⎜⎜⎝

α2
1 α1α2ρ12 · · · α1αmρ1m

α1α2ρ12 α2
2 · · · α2αmρ2m

...
...

. . .
...

α1αmρ1m α2αmρ2m · · · α2
m

⎞

⎟⎟⎟⎠ .

(P11) (B(Y ;α,μ
Y
))	Γ −1B(Y ;α,μ

Y
) ∼ χ2(m), that is, a χ2 distribution with

m degrees of freedom.
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3.3 Mahalanobis Distance and Number Generation

The Mahalanobis distance for observation i, using Property (P10), is given by

MDi (θ) = (B(Y i;α,μY ))	Γ −1B(Y i;α,μY ), i = 1, . . . , n,

with θ = (α	, μ	
Y
, svec(Γ )	)	, where ‘svec’ denotes vectorization of a symmetric

matrix. The Mahalanobis distance is used to identify multivariate outliers and to
assess the goodness of fit in multivariate log-Birnbaum-Saunders distributions.
Random vectors from multivariate log-Birnbaum-Saunders distributions can be
generated using Algorithm 1; see [15] for details of the generation of numbers
following Birnbaum-Saunders and log-Birnbaum-Saunders distributions.

Algorithm 1 Generator of random vectors from multivariate log-Birnbaum-
Saunders distributions
1: Make a Cholesky decomposition of Γ as Γ = LL	, where L is a lower triangular matrix with

real and positive diagonal entries.
2: Generate m independent standard Gaussian random numbersW = (W1, . . . ,Wm)

	.
3: Compute Z = (Z1, . . . , Zm)

	 = LW .
4: Obtain the vector Y with components Yj = μYj + 2 arcsin(αj Zj /2) for j = 1, . . . , m.
5: Repeat Steps 1 to 4 until the required vector of data is generated.

4 Control Charts for Attributes

In this section, a criterion for monitoring production processes based on an
attribute control chart for the number of defective items is designed and discussed.
The defective aspect to be monitored is evaluated by a quality variable which
follows a Birnbaum-Saunders distribution. The control coefficient and the minimum
inspection level for the designed criterion are determined to yield the specified
in-control average run length (ARL), while the out-of-control case is obtained
according to a shift in the target mean. This criterion is implemented in the R
software. An application with real-world data is carried out; see details in [12].

4.1 Formulation

An np-chart is an adaptation of the control chart for non-conforming fraction when
samples of equal size (n) are taken from the process. The np-chart is based on the
binomial distribution as detailed below. In quality monitoring processes, one could
be concerned about the random variable corresponding to the number (D) of times
that the quality variable (T ) exceeds a fixed value (t) established for the process,
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given an exceedance probability (p). Here, p can be computed by means of the
continuous distribution of the quality variable T as p = P(T > t) = 1 − FT (t),
where FT is the CDF of T . Thus,D follows a binomial distribution with parameters
n and p and then

P(D = d) =
(
n

d

)
pd(1 − p)n−d , d = 0, 1, . . . , n, (8)

where E[D] = np and Var[D] = np(1 − p). Based on (8), an np-chart is proposed
with lower control limit (LCL), central line (CL) and upper control limit (UCL)
given by

LCL = max
{

0, np0 − k√np0(1 − p0)
}
, CL = np0, UCL = np0 + k√np0(1 − p0),

(9)

where k is a control coefficient such that k = 2 indicates a warning level and
k = 3 a dangerous level, p0 is the non-conforming fraction corresponding to a
target mean μT0 of the quality variable T , when the process is in-control, and n is
the size of the subgroups. Note that the non-conforming fraction is the probability
that the random variable exceeds a value (t0) and, therefore, this probability is
P(T > t0) = 1−FT (t0). The Birnbaum-Saunders distribution can be reparametrized
from (α, β) to (α, μT ), switching from the median β in the original Birnbaum-
Saunders parametrization to its mean given by μT = β(2 + α2)/2. Consider t0 as
proportional to μT0 , that is, t0 = aμT0 , relating them to establish the monitoring
criterion, where a > 0 is a proportionality constant. Note that the target mean
μT0 and dangerous level t0 can be taken from process specifications. Then, the
Birnbaum-Saunders CDF can be reparametrized in terms of its mean and expressed
in function of t0 and a as

FT (t0;α, a, μT ) = Φ
(

1

α
ξ

(
a(1 + α2/2)

μT /μT0

))
. (10)

Note that ξ(y) = y1/2 − 1/y1/2. Thus, when a monitoring process is in-control
(μT = μT0 ) for a quality variable following a Birnbaum-Saunders distribution,
from (10), the non-conforming fraction is given by

p0 = 1 − FT (t0;α, a) = Φ
(

− 1

α
ξ
(
a(1 + α2/2)

))
. (11)

Note that the specification of the point t0 is equivalent to specifying the inspection
point a > 0, because t0 = aμT0 , where μT0 is the target mean, which is assumed
to be known. Algorithm 2 provides a criterion for monitoring processes using an
np-chart for a quality variable T ∼ BS(α, μT ).

Consider a shift in the process mean and assume that the new (shifted) process
mean becomes μT1 = aμT0 , for a shift constant a > 0. Assume that the value of
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Algorithm 2 np control chart based on the Birnbaum-Saunders distribution
1: Take N subgroups of size n.
2: Collect n data t1, . . . , tn of the random variable of interest T for each subgroup.
3: Fix the target mean μT0 , the inspection constant a and the control coefficient k.
4: Count in each subgroup of n data the number d of times that ti exceeds t0 = aμT0 , for i =

1, . . . , n.
5: Compute LCL = max{0, np̂0 − k√np̂0(1 − p̂0)} and UCL = np̂0 + k√np̂0(1 − p̂0), which

are obtained from (9), where p̂0 = Φ(−(1/α̂)ξ(a(1 + α̂2/2))) is given as in (11), with α̂ =√
2(

√
s/r − 1) being the modified moment estimate of α (see [10]), for s = (1/n)

∑n
i=1 ti

and r = [
(1/n)

∑n
i=1(1/ti )]−1.

6: Declare the process as out-of-control if d ≥ UCL or d ≤ LCL, or as in-control if LCL ≤ d ≤
UCL.

the shift constant a is greater than one, because of the interest in the case where
the mean of the quality variable to be monitored becomes greater than the target
mean. Note that μT0 and μT1 are different means corresponding to in-control and
out-of-control processes, respectively, but both of them are means of the Birnbaum-
Saunders distribution. Hence, the non-conforming fraction corresponding to the new
mean of the random variable T is obtained from (10) as

p1 = 1 − FT (t0;α, a) = Φ
(

− 1

α
ξ
( a
α

(
1 + α2/2

)))
. (12)

As mentioned, in general, a process is said in-control if LCL ≤ D ≤ UCL. Thus,
when the process is actually in-control, the probability to be in-control is given by

P 0
in = P(LCL ≤ D ≤ UCL|p0) =


UCL�∑

d=
LCL�+1

(
n

d

)
pd0 (1 − p0)

n−d , (13)

whereas, if the process mean has shifted to the new mean μT1 , the probability given
in (13) is expressed as

P 1
in = P(LCL ≤ D ≤ UCL|p1) =


UCL�∑

d=
LCL�+1

(
n

d

)
pd1 (1 − p1)

n−d , (14)

where 
x� denotes the integer part of the number x. Efficiency of the proposed
criterion can be evaluated by using ARL0 and ARL1. ARL0 is defined as the
expected number of observations taken from an in-control state until the chart falsely
signals an out-of-control case. ARL0 is regarded as acceptable if it is large enough to
keep the level of false alarms at a reasonable value. ARL1 is defined as the expected
number of observations taken from an out-of-control state until the chart correctly
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signals an out-of-control. The ARL1 value should be as small as possible. In-control
and out-of-control ARLs are respectively given by

ARL0 = 1

1 − P 0
in

, ARL1 = 1

1 − P 1
in

,

where P 0
in and P 1

in are given in (13) and (14), respectively. The control coefficient k
is selected such that ARL0 is close to a specified ARL denoted by r0. Then, with the
selected value of k, it is possible to obtain the value of ARL1 for the shift constant
a given in (12).

4.2 Illustration

Fuchs and Kenett [6] considered measurements (in centimeters, cm) of six quantities
related to aluminum pins carved from aluminum blocks using a numerically
controlled machine. The variables in the data set are: diameter in three different
locations on the main part of the pin (T1, T2 and T3), diameter at the cap (T4), length
without cap (T5) and length with cap (T6). In this illustration, only the variable T6
is considered and the target value for this variable is set at 60.05; see [6]. Table 1
provides descriptive statistics for T6, including central tendency statistics, standard
deviation (SD) and coefficients of variation (CV), skewness (CS) and kurtosis (CK).
Figure 1a shows a histogram and an adjusted boxplot for asymmetric data; see
[24]. Table 1 and Fig. 1a show a distribution with positive skewness, moderate
kurtosis and some univariate atypical data, suggesting that the Birnbaum-Saunders
distribution is appropriate for these data.

The assumption that the data follow a Birnbaum-Saunders distribution is sup-
ported by the quantile-quantile (QQ) plot with its envelope shown in Fig. 1b. The
application of the Kolmogorov-Smirnov (KS) goodness-of-fit (GOF) test provides
a p-value = 0.2091, from which is possible to conclude that the Birnbaum-Saunders
distribution is a good model for these data at 5% of significance.

The criterion based on the Birnbaum-Saunders np-chart, proposed in Sect. 4.1,
is now applied. Specifically, this chart is used to monitor the number of non-
conforming length measurements in N subgroups of size n: in this case they are
N = 14 and n = 5. The control chart is constructed following Algorithm 2. Figure 2
shows the Birnbaum-Saunders np-chart for the data under analysis. In this figure,

Table 1 Summary statistics for length with cap (T6) data

n Minimum Median Mean Maximum SD CV CS CK

70 59.910 60.020 60.027 60.150 0.047 7.90% 0.568 0.734
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Fig. 1 Histogram with adjusted boxplot (a) and QQ plot with its envelope (b) for length with cap
(T6) data

0
1

2
3

4
5

6
7

sample index

nu
m

be
r o

f n
on

−c
on

fo
rm

in
g

1 2 3 4 5 6 7 8 9 10 12 14

UCLwa

LCLwa LCLda

UCLda

Fig. 2 Birnbaum-Saunders np chart with t0 = 60.05, where index “wa” denotes warning (k = 2,
solid line) and index “da” dangerous (k = 3, dashed line) situations

the limits with k = 2 and k = 3 are plotted, indicating warning (UCLwa) and
dangerous (UCLda) levels, respectively. From Fig. 2, note that subgroups 2 and 4
are above the UCLwa and also subgroup 2 is above the UCLda, indicating that the
length measurement exceeds the value t0 three and two times, respectively.
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5 Control Charts for Variables

In this section, X-bar control charts are presented in the context of Birnbaum-
Saunders models, that is, the quality characteristic has a Birnbaum-Saunders
distribution, which in this section is denoted by X instead of T , as used in others
sections, to be coherent with the X-bar concept; see details in [25]. In Sect. 2.3, two
approaches are described to obtain the distribution of the sum of Birnbaum-Saunders
random variables; those results are now useful to derive X-bar control charts.

5.1 Formulation

X-bar control charts based on the Birnbaum-Saunders and BSsum distributions have
been proposed by Saulo et al. [25]. These charts are used to monitor the process
average or mean quality level when the quality characteristic follows a Birnbaum-
Saunders distribution. Particularly, LCL and UCL are obtained by using the BSsum
quantile function defined in (6). The steps presented in [25] to construct a Birnbaum-
Saunders X-bar control charts are summarized in Algorithm 3.

5.2 Illustration

The Birnbaum-Saunders X-bar control chart is now used to analyze a process for
producing 6061-T6 aluminum coupons at the Boeing Aircraft Company; see [17].
They used simulated data from a Birnbaum-Saunders distribution with parameters
fixed at the estimates based on a data set corresponding breaking strength (in
hundreds of thousands of cycles) of 6061-T6 aluminum coupons. The aim is to

Algorithm 3 Birnbaum-Saunders X-bar control chart
1: Collect m samples, each containing n observations, on the quality characteristic following a

Birnbaum-Saunders distribution.
2: Compute the mean of each sample x1, . . . , xm, where xi = (xi1 + · · · + xin)/n, for i =

1, . . . , m.
3: Estimate the parameters of the BSsum distribution α and β based on the sample s1, . . . , sm,

where si = xi1 + · · · + xin, for i = 1, . . . , m.
4: Set the value for γ corresponding to the desired false alarm rate (FAR) –out-of-control

probability– when the process is actually under control.
5: Compute the LCL and UCL as the (γ /2) × 100-th and (1 − γ /2) × 100-th quantiles of

the estimated BSsum quantile function divided by n, with parameters fixed at the estimates
obtained in Step 2. Add a CL to the chart by using the median of the data as reference.

6: Insert the points x1, . . . , xm to the control chart and if xi ≥ UCL and/or xi ≤ LCL, for
i = 1, . . . , m, and/or the chart exhibits non-random pattern, then declare the process as out of
control, otherwise it is under control.
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Table 2 Summary statistics for breaking strength data

m N = m× n Minimum Median Mean Maximum SD CV CS CK

1–20
(in-control)

100 0.738 1.402 1.443 2.625 0.361 25.04% 0.655 0.597

21–40 (out-
of-control)

100 0.219 1.256 1.804 8.532 1.599 88.66% 1.808 3.330

mimic a process for producing these coupons. The original data set was transformed
into units of hundreds of thousands of cycles to failure and its sample size is equal to
N = 100 = m×n; see [3]. Initially, [17] generatedm = 20 in-control samples each
containing n = 5 observations with Birnbaum-Saunders parameters α = 0.2795
and β = 1.358. Then, they assumed that the process had shifted to an out-of-control
state by generating additional m = 20 samples of size n = 5, setting a different
shape parameter, that is, α = 0.8782. Table 2 provides descriptive statistics for the
in-control and out-of-control process data sets, including central tendency statistics,
SD, CV, CS and CK. The histograms with adjusted boxplots for asymmetric data
in Fig. 3 confirm the skewness noticed in Table 2. The QQ plots with simulated
enveloped shown in Fig. 3 confirm the good agreement between the Birnbaum-
Saunders distribution and the data.

Figure 4 displays the Birnbaum-Saunders X-bar control chart, constructed
according to Algorithm 3, to monitor the average breaking strength of the aluminum
material. The control limits are based on 20 sample average values from the
in-control process. In addition, 20 additional sample mean values from the out-of-
control process are plotted on the control chart. From Fig. 4, note that several points
outside the control limits are detected, suggesting that the process is out-of-control,
as expected.

6 Multivariate Control Charts

In this section, multivariate control charts for monitoring the quality of a process
are presented. Multivariate monitoring is carried out taking into account correlated
quality characteristics and simultaneously determining whether these characteristics
are in control or out of control. A methodology using multivariate quality control
charts for subgroups based on Birnbaum-Saunders distributions and an adapted
Hotelling statistic is introduced and applied. The corresponding parameters are
estimated with the ML method and the parametric bootstrapping is used to obtain
the distribution of the adapted Hotelling statistic. Furthermore, the Mahalanobis
distance is considered to detect multivariate outliers and used to assess the adequacy
of the distributional assumption. The methodology is implemented in the R software.
An illustration is given with real-world data; see details in [18, 19].
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Fig. 3 Histograms with adjusted boxplots for in-control (a) and out-of-control (c) processes; and
QQ plots with their envelopes for in-control (b) and out-of-control (d) processes with breaking
strength data

6.1 Formulation

Suppose that one is interested in modeling a dynamic process with p quality
characteristics and that for each there is a sample of n observations from the
evolving process. Let Y i = (Yi1, . . . , Yip)

	 ∈ R
p denote a random vector

associated with measured log-values corresponding to subset i, for i = 1, . . . , n.
Assume that Y i follows a p-variate log-Birnbaum-Saunders distribution, that is,
Y i ∼ log-BSp(α, μY ,Γ ), with the vectors Y i being independent over time
and μ

Y0
being the mean vector of the in-control process. To confirm that the

process is in control it is necessary to test the hypothesis: H0: μ
Y

= μ
Y0

=
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Fig. 4 Birnbaum-Saunders
X-bar control chart for the
mean with breaking strength
data
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, . . . , μYp0

)	 versus H1: μ
Y

�= μ
Y0
. These hypotheses can be contrasted

by using a modified Hotelling T 2 statistic constructed as follows. Using Property
(P11) and considering that

bi =
(

2 sinh

(
Yi1 − μ10

2

)
, . . . , 2 sinh

(
Yip − μp0

2

))	
∼ Np(0p×1,D(α)Γ D(α)),

for i = 1, . . . , n, a Hotelling T 2 statistic adapted for multivariate log-Birnbaum-
Saunders distributions can be obtained as

T 2 = n(n− 1)b
	
C−1b, with b =

n∑

i=1

bi/n, and C =
n∑

i=1

bib
	
i . (15)

Note that, if Y ∼ log-BSp(α, μY ,Γ ), then T 2 has a Fisher distribution with p

and n − p degrees of freedom, that is, T 2 ∼ F (p, n − p); see [9]. Algorithm 1
can be used to construct the bootstrap distribution of the T 2 statistic using random
vectors generated from the p-variate log-Birnbaum-Saunders distribution, and then,
Algorithm 4 may be used to construct the corresponding control limits. Once
constructed, the multivariate Birnbaum-Saunders control chart can be used to
identify if the evolving process remains in control. Consider a new vector of values
of the quality characteristics, and let T 2

new be the corresponding Hotelling statistic
calculated using (15). As the process evolves, a sequence of values T 2

new is produced.
Algorithm 5 details how to construct p-variate control charts based on Birnbaum-
Saunders distributions for process monitoring.
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Algorithm 4 Computation of multivariate Birnbaum-Saunders control limits

1: Collect k samples (y
1h
, . . . , y

nh
)	 of size n for an in-control process, with h = 1, . . . , k,

assuming that the p-variate vector with the logarithms of the data follows a log-BSp(α, μY ,Γ )
distribution.

2: Compute the ML estimates of α, μ
Y

and Γ using the data of the pooled sample of size N =
k × n collected in Step 1, and check the distributional assumption using GOF tools.

3: Generate a parametric bootstrap sample (y∗
1
, . . . , y∗

n
)	 of size n from a p-variate log-BS

distribution using the ML estimates obtained in Step 2 as the distribution parameters.
4: Compute T 2 defined in (15) with (y∗

1
, . . . , y∗

n
)	, which is denoted by T 2∗, assuming a target

μ
Y0

.
5: Repeat Steps 3 and 4 a sufficiently large number of times (for example, B = 10,000) and

obtain B bootstrap statistics of T 2, denoted by T 2∗
1 , . . . , T

2∗
B .

6: Fix γ as the FAR of the chart.
7: Use the B bootstrap statistics obtained in Step 5 to find the 100(γ /2)-th and 100(1 − γ /2)-

th quantiles of the distribution of T 2, which are the LCL and UCL for the chart of FAR γ ,
respectively.

Algorithm 5 Process monitoring using the multivariate Birnbaum-Saunders chart
1: Collect a sample of size n, y

1
, . . . , y

n
, from the process.

2: Calculate the T 2
new statistic from the sample obtained in Step 1.

3: Declare the process as in control if T 2
new falls between LCL and UCL obtained in Algorithm 4;

otherwise, the chart indicates an out-of-control state.
4: Repeat Steps 1 to 3 for each sample collected at regular time intervals.

Table 3 Summary statistics for length without cap (T5) and with cap (T6) data

Variable n Minimum Median Mean Maximum SD CV CS CK

T5 70 49.810 49.910 49.911 50.070 0.044 8.90% 0.907 2.206

T6 70 59.910 60.020 60.027 60.150 0.047 7.90% 0.568 0.734

6.2 Illustration

In Sect. 4.2 a data set, about measurements of aluminum pins carved from aluminum
blocks using a numerically controlled machine, is presented and one variable (T6),
out of six, is considered. Now the variables T5 and T6 are considered and, for
illustrative purposes, their target values are set at 49.91 and 60.05, respectively;
see [6]. Table 3 provides descriptive statistics for these variables, including central
tendency statistics, SD, CV, CS and CK. Figure 5a, b shows histograms with
adjusted boxplots for asymmetric data. Table 3 and Fig. 5a, b show that distributions
with positive skewness, different degrees of kurtosis and some univariate atypical
data, are appropriate, suggesting the use of Birnbaum-Saunders distributions. In
addition, the scatter-plot in Fig. 5c indicates a moderate to high correlation (0.626)
between T5 and T6, which confirms the need to use a multivariate control chart for
monitoring production based on this data set.

The assumption that this data set follows a Birnbaum-Saunders distribution is
supported by the probability-probability (PP) plot with KS acceptance regions at 5%
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Fig. 5 Histograms with adjusted boxplots for T5 (a) and T6 (b) and their scatter-plot (c) for length
data
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Fig. 6 PP plots with 5% KS acceptance regions for the Mahalanobis distance using the BS2
distribution (a) and Mahalanobis distance index plot (b) with length data of T5 and T6

shown in Fig. 6a. The modified Mahalanobis distance is used with data transformed
by the Wilson-Hilferty approximation to obtain a Gaussian distribution, which can
be verified by the GOF methods as described in Step 2 of Algorithm 4. This figure
indicates that the BS2 distribution has a good fit to the data, which is supported by
the p-value of 0.495 from the corresponding KS test.

The multivariate Birnbaum-Saunders control chart is used to monitor T5 and
T6. The data set is partitioned into m = 14 new subgroups, each of size n =
5, giving 70 observations. The index plot of the modified Mahalanobis distance
presented in Fig. 6b does not identify multivariate atypical data in this data set.
Using Algorithm 5, a bivariate Birnbaum-Saunders control chart is constructed for
monitoring this process with a FAR fixed at γ = 0.027. Figure 7 displays the
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Fig. 7 Bivariate
Birnbaum-Saunders control
chart for without cap (T5) and
with cap (T6) data
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bivariate Birnbaum-Saunders control chart, which indicates an in-control state since
all T 2

new of this process fall between LCL and UCL obtained with Algorithm 4.

7 Process Capability Indices

In this section, process capability indices (PCIs) for Birnbaum-Saunders distribu-
tions are introduced and a real data set is analyzed to illustrate the methodology; see
details in [13]. In general, standard versions of capability indices are employed for
processes whose quality characteristics have a Gaussian distribution. However, non-
Gaussianity is usually present in productive processes. Therefore, misinterpretation
of the process capability can be conducted if non-Gaussianity is ignored, possibly
leading to inaccurate business decisions.

7.1 Formulation

A PCI represents the ratio between specification and process statistical variability
ranges. This quantity is useful for analyzing the process variability related to
product requirements or specifications. When a random variable X has a Gaussian
distribution, denoted by X ∼ N(μ, σ 2), the PCIs Cp, Cpl, Cpu and Cpk are defined,
respectively, as

Cp = USL − LSL

6σ
,Cpl = μ− LSL

3σ
,Cpu = USL − μ

3σ
,Cpk = min{Cpl,Cpu},

(16)
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where USL is the upper specification limit and LSL is the lower specification limit.
Note that 6σ is a range such that the output percentage of the process falling outside
the μ ± 3σ limits is 0.27%. Moreover, Cpl, Cpu are one-sided PCIs and Cpk is the
corresponding one-sided PCI for the specification limit closer to the process mean.

Under non-Gaussianity, the PCIs established in (16) are not adequate; see [8].
There have been attempts to modify the PCIs in (16) by substituting 6σ by a range
t (0.99865) − t (0.00135), where t (0.00135) and t (0.99865) are the 0.135-th and
99.865-th quantiles of the corresponding non-Gaussian distribution, respectively.
Note that the range t (0.99865)− t (0.00135) covers a 99.73% of the distribution of
the monitored process data. Then, a general method to calculate non-Gaussian PCIs
is defined as

C′
p = USL − LSL

t (q2)− t (q1)
,C′

pl = 2(t (0.5)− LSL)

t (q2)− t (q1)
,

C′
pu = 2(USL − t (0.5))

t (q2)− t (q1)
,C′

pk = min{C′
pl,C

′
pu},

where t (qi) is the qi × 100-th quantile of the non-Gaussian distribution, which is
assumed for the quality characteristic of the process to be monitored, with i = 1, 2.

Based on (16) and the Birnbaum-Saunders distribution discussed in Sect. 2, [13]
proposed Birnbaum-Saunders PCIs given by

CBS
p = USL − LSL

t (q2)− t (q1)
= USL − LSL

βα
{
z2

[
α z2

2 +
√(

α z2
2

)2 + 1
]

− z1

[
α z1

2 +
√(

α z1
2

)2 + 1
]} ,

CBS
pl = 2(β − LSL)

t (q2)− t (q1)
= 2(β − LSL)

βα
{
z2

[
α z2

2 +
√(

α z2
2

)2 + 1
]

− z1

[
α z1

2 +
√(

α z1
2

)2 + 1
]} ,

CBS
pu = 2(USL − β)

t (q2)− t (q1)
= 2(USL − β)
βα

{
z2

[
α z2

2 +
√(

α z2
2

)2 + 1
]

− z1

[
α z1

2 +
√(

α z1
2

)2 + 1
]} .

CBS
p = 2(USL − LSL)/β[

α2 z2
2 + α z2

√
(α z2)2 + 4

]
−
[
α2 z1

2 + α z1

√
(α z1)2 + 4

] ,

and CBS
pk = min{CBS

pl ,C
BS
pu}, where z1 = z(q1) and z2 = z(q2), with z(qi) being the

qi × 100-th quantile of Z ∼ N(0, 1), for i = 1, 2. Leiva et al. [13] used the ML
method to estimate the model parameters, and the normal and quantile bootstrap
methods to obtain confidence intervals (CIs) for the PCIs. Values of q1 and q2 are



Birnbaum-Saunders Quality Control 41

Table 4 Summary statistics for the warping data

n Minimum Median Mean Maximum SD CV CS CK

100 0.282 2.607 2.923 8.091 1.786 61.09% 0.687 0.008

warp measurement (in mm)
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Fig. 8 Histogram with adjusted boxplot (a) and QQ plot with its envelope (b) for warping data

obtained by minimizing the variance of the corresponding Birnbaum-Saunders PCI
estimator.

7.2 Illustration

A data set containing warp measurements (in millimeters, mm) in a tiles factory
is analyzed. The aim is to ensure the production quality. The engineers obtained
n = 100 observations on the warping. The USL for the warping measurement is 8
mm. This data set is available in the qAnalyst package of the R software; www.R-
project.org. Table 4 provides descriptive statistics for the warping data set, including
central tendency statistics, SD, CV, CS and CK. From this table, the right skewed
nature of the data distribution can be noted, as confirmed by the histogram with
adjusted boxplot for asymmetric data shown in Fig. 8a. The assumption that the
data follow a Birnbaum-Saunders distribution is supported by the QQ plot with
its envelope displayed in Fig. 8b. The application of the KS GOF test provides
a p−value = 0.05264, from which is possible to conclude that the Birnbaum-
Saunders distribution is a good model for these data at 5% of significance.

The ML estimates of the Birnbaum-Saunders parameters α and β are given
by α̂ = 0.791 and β̂ = 2.208, respectively. Table 5, about Birnbaum-Saunders
PCI based on a process with only the USL, presents the estimate of CBS

pu and its
corresponding bootstrap CIs, along with sample median and mean. Note that the

www.R-project.org
www.R-project.org


42 V. Leiva et al.

Table 5 USL, sample median and mean, and point and interval estimates for PCIs CBS
pu with

warping data

USL t̄ t (0.5) ĈBS
pu Normal bootstrap CI Quantile bootstrap CI

8 mm 2.923 2.607 3.914 (2.964; 4.668) (3.299; 4.941)

Table 6 Minimum values recommended for PCIs

Two-sided One-sided
Type of process Sigma level specifications specifications

Existing process 4.0 1.33 1.25

New process 4.5 1.50 1.45

Existing process including
safety, strength, or critical parameters

4.5 1.50 1.45

New process including
safety, strength, or critical parameters

5.0 1.67 1.60

Six-sigma process 6.0 2.00 2.00

Source: see [20, p.776]

estimated capability index ĈBS
pu = 3.914 is greater than the generally accepted

industry guideline of 1.45 (see Table 6), which indicates that the tiles manufacturing
process is meeting the specification. Therefore, one can conclude that the process is
capable and does meet the requirements.

8 Acceptance Sampling Plans

In this section, acceptance sampling plans are provided as an important aspect to
consider when validating the external quality of a company. Acceptance sampling
plans are presented and discussed when the life test is truncated at a pre-fixed
time. The minimum sample size needed to ensure the specified median life is
obtained assuming that the lifetimes of the test units follow a Birnbaum-Saunders
distribution. The operating characteristic values of the sampling plans, as well as the
producer risk, are analyzed; see details in [1].

8.1 Formulation

The lifetime of the product under study (T ) is assumed to follow a Birnbaum-
Saunders distribution. A common practice in life experiments is to stop the life test
at a pre-fixed time (t) and record the number of failures. In these tests, one often sets
a (lower) confidence limit on the mean or median life (or any other quantile of the
distribution). It is therefore desired to establish a specified mean or median life with
a probability of at least P ∗ (consumer’s risk). Normally, the mean life is used if the
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life distribution is symmetric, whereas the median life is preferred if the distribution
is skewed. The decision to accept the specified mean or median life occurs if the
number of failures at the end of the pre-fixed time t does not exceed a given number
c. Thus, the test terminates at time t or at the (c + 1)-th failure, whichever occurs
first. For a truncated life test and the associated decision rule, it is important to find
a sampling plan, that is, the minimum sample size needed to achieve the goal.

An acceptance sampling plan based on truncated life tests consists of: (i) the
number of units on test (n); (ii) the acceptance number (c), such that the lot is
accepted if at most c failures out of n occur at the end of the pre-fixed time t ;
and (iii) the ratio t/μ0, where μ0 is the specified mean or median life and t is
the maximum test duration. Hence, β is the lot quality parameter for a random
variable T ∼ BS(α, β), since β is the median life as well as the scale parameter
of the Birnbaum-Saunders distribution. Thus, an acceptance sampling plan based
on truncated life tests for the Birnbaum-Saunders distribution is (n, c, t/β0).

The probability of accepting a bad lot (consumer’s risk), that is, when the true
median life β is below the specified β0, is fixed not to exceed 1 − P ∗. The lot
size (N ) is assumed large enough to be considered infinite (for example, n/N ≤
0.10), so that the binomial distribution can be used. Thus, the acceptance and non-
acceptance criteria for the lot are equivalent to the decisions of accepting or rejecting
the hypothesis β ≥ β0. The minimum sample size (n) is sought such that

c∑

x=0

(
n

x

)
px(1 − p)n−x ≤ 1 − P ∗, (17)

where p = FT (t;α, β), given in (1), is monotonically increasing in t/β and
decreasing in β, for t fixed; this can be easily established for the Birnbaum-Saunders
distribution. Thus, p = FT (t;α, β) = FT (t/β, α, 1) depends only on the ratio
t/β, once α is fixed. Hence, it is sufficient to specify just this ratio. Therefore, if
the number of observed failures is at most c, from (17), it can be established with
probability P ∗ that FT (t/β) ≤ FT (t/β0), which implies that β ≥ β0. The minimum
values of n satisfying (17) for P ∗ = 0.75, 0.9, 0.95, 0.99 and t/β0 = 0.628, 0.942,
1.257, 1.571, 2.356, 3.141, 3.927, 4.712 are presented in Table 3 of [1], for α fixed.
The operating characteristic function of the plan (n, c, t/β0) gives the probability
that the lot can be accepted. For the plan under analysis, this probability is given by

L(p) =
c∑

x=0

(
n

x

)
px(1 − p)n−x, (18)

where p, given in (17), is a monotonically decreasing function of β ≥ β0, for t fixed,
while L(p) is decreasing in p. Based on (18), the operating characteristic values,
as a function of β/β0, for α fixed, are presented in Table 4 of [1] regarding the
plan (n, c, t/β0), with c also being fixed and assuming different values of P ∗. For
given P ∗ and t/β0, the choice of c and n can be made on the basis of the operating
characteristic function.
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The producer’s risk is defined as the probability of rejecting a lot when β ≥ β0.
For the sampling plan under consideration and a given value for the producer’s risk
ω, one may be interested in knowing the value of β/β0 that ensures this risk to be at
most ω. Note that (4) can be written as

a(t, α, β) = 1

α

( √
t/β0√
β/β0

−
√
β/β0√
t/β0

)
, (19)

which is denoted by a(t, α, β/β0), for α fixed. Based on (19), the probability p =
FT (a(t;α, β))may be obtained as function of β/β0, that is, p = FT (a(t, α, β/β0)).
Then, β/β0 is the smallest positive number for which p = FT (a(t, α, β/β0))

satisfies

c∑

x=0

(
n

x

)
px(1 − p)n−x ≥ 1 − ω.

For a given plan (n, c, t/β0), at a specified confidence level P ∗, the minimum values
of β/β0 satisfying (17) are presented in Table 5 of [1], with α being fixed. For
extensions and approximations of the acceptance plan presented above, see [1].

8.2 Illustration

Consider a problem associated with software reliability; see details in [1] and
references therein. Failure times T (in hours) of a software are collected from its
release. Use of the software might imply the development of intangible cumulative
degradation, worsening its performance. A typical example is provided by the
efficiency of an operating system which is worsening because of many causes,
for example, malwares, badly installed programs, fragmented files. Then, it is
reasonable to suppose that T follows a Birnbaum-Saunders distribution and can
be used to classify units of the software as defective or non-defective.

Let the specified median life be β0 = 1000 hours and the testing time be t =
1257 hours, so the ratio t/β0 is 1.257. Thus, for an acceptance number c = 2 and
a confidence level P ∗ = 0.95, the required n is found; in the case of truncated
life tests from the Birnbaum-Saunders distribution, the acceptance sampling plan is
(n = 9, c = 2, t/β0 = 1.257).

Consider the ordered sample ti for i = 1, . . . , 9, of size n = 9 from T (in hours):
519, 968, 1430, 1893, 2490, 3058, 3625, 4422, and 5218. Based on these data, a
decision has to be made whether to accept or reject the lot, which is accepted if the
number of failures before 1257 h is greater than two.

Since the confidence level is assured by this sampling plan only if T ∼ BS(α, β),
then a preliminary test is needed to check if the given sample comes from such
distribution. The Birnbaum-Saunders model is fit to the data and its parameters
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Fig. 9 PP plots with 5% KS
acceptance regions using
software reliability data
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KS p−value = 0.8808

α and β are estimated using the ML method. Figure 9 shows the PP plots of the
data. Based on this figure and in the KS p-value 0.8808, the Birnbaum-Saunders
distribution fits the data very well.

Note that, in the given sample of n = 9 observations, there are only c = 2
failures at 519 and 968 h before t = 1250 h. Therefore, the lot is accepted, assuring
a median life β0 = 1000 h with a confidence level of P ∗ = 0.95.

9 Reliability Analysis

In this section, the Birnbaum-Saunders distribution is used to analyze the effect
on hardness when incorporating nanotechnology. In biomaterials, one can study
the effect of nanoparticles on the reliability of the mechanical response. Hardness
is modeled by the Birnbaum-Saunders distribution and Bayesian inference is
performed to derive a methodology about reliability, which allows us to evaluate
the effect of the use of nanotechnology at different loadings; see details in [14].

9.1 Formulation

Materials can be compared considering the reliability function of T given by

P(T > t |t) ≈ 1

N

N∑

i=1

Φ

(
1

α(i)

(√
β(i)/t −

√
t/β(i)

))
. (20)
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For details about the approximation given in (20), see Appendix B of [14]. Consider
two materials with hardness T1 ∼ BS(α1, β1) and T2 ∼ BS(α2, β2), respectively,
and the corresponding observed samples t1 and t2. Let T1 and T2 be independent
random variables. The reliability function of T1 is denoted as R1(t |α1, β1), whereas
f2(t |α2, β2) denotes the PDF of T2. The materials can be compared by

P(T1 > T2|t1, t2) ≈ 1

N1N2

N1∑

i=1

N2∑

j=1

∫
R1(t |α(i)1 , β

(i)
1 )f2(t |α(j)2 , β

(j)

2 )dt, (21)

where N1 and N2 are the sizes of the posterior samples for the first and second
material, respectively. For details about the approximation given in (21), see
Appendix B of [14]. The proper Bayesian estimator of P(T1 > T2|t1, t2) is given
by (21), which has the drawback of requiring N1N2 integrations. The Monte Carlo
method can be used for carrying out this integration. An alternative estimator, easier
to compute, is provided by

P̂(T1 > T2|t1, t2) ≈
∫
R1(t |̂α1, β̂1)f2(t |̂α2, β̂2)dt, (22)

where the parameter estimates are plugged in and so just one integral is computed.
Although the error incurred when considering (22) instead of (21) cannot be
quantified, one may consider only the former for practical reasons. This alternative
estimator is also used in other situations, for example, when estimating the mean
value function of a non-homogeneous Poisson process; see [21].

Consider the hardness of two materials and model their medians (β in the
Birnbaum-Saunders distribution) with exp(μT ) and exp(μT + δ), respectively.
Therefore, the effect of two treatments can be detected through δ. A negative
(positive) value for δ implies a decrease (increase) of the median, denoting a smaller
(larger) hardness. No significant difference between the two materials is detected
when δ = 0. Suppose that the materials share the same α in the Birnbaum-
Saunders distribution. To compare the hardness of two materials, data are arranged
as t = (t1, . . . , tm, tm+1, . . . , tn)

	, where the firstm values refer to the material with
median exp(μT ) and the remaining n − m to the other material. A Gibbs sampling
with Metropolis-Hastings steps is considered by obtaining the PDFs of the posterior
distribution of (α, μT , δ)	 through their corresponding conditional distributions;
see details in Appendix B of [14]. There is interest in assessing if a positive effect
exists when considering the second material. Thus, one could look at the posterior
distribution of δ, and particularly at P(δ > 0|t). Given a sample {α(i), μ(i)T , δ(i)}Ni=1
from the posterior distribution, it is possible to estimate P(δ > 0|t) simply counting
the frequency of positive values of δ in the sample. Therefore, P(δ > 0|t) can be
compared to P(δ ≤ 0|t) and then one can decide that a positive effect exists if
P(δ > 0|t) > P(δ ≤ 0|t). The comparison corresponds to contrast the hypotheses

H0: δ > 0 versus H1: δ ≤ 0. (23)
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One could also be interested in the test

H0: δ = 0 versus H1: δ �= 0. (24)

Then, a first approach considers a test as in (24), which relies on a prior PDF π(δ)
as a mixture of a continuous PDF π0(δ) and a Dirac ξ0 (a point mass) at zero, that is,
π(δ) = (1 − ε)π0(δ)+ ε ξ0(δ), where ε denotes the prior probability P(δ = 0). The
posterior PDF is given by π∗(δ) = (1−ε∗)π∗

0 (δ)+ε∗ξ0(δ), where ε∗ is the posterior
probability P(δ = 0|t). Here, H0: δ = 0 is accepted if P(δ = 0|t) > 0.5. The second
approach modifies the test given in (24) into H0: |δ| ≤ η versus H1: |δ| > η, with
η sufficiently close to zero. In this case, a continuous prior PDF π(δ) could be
considered and the null hypothesis is accepted if P(|δ| ≤ η|t) > 0.5. Unilateral
tests as given in (23) could be performed similarly. Bayesian credible intervals
(BCIs) may be obtained either in closed form or from a sample from the Markov
chain Monte Carlo method. The BCIs provide the probability for the parameter(s)
(random variables on the Bayesian framework) to be in predetermined intervals,
unlike the confidence intervals (random variables in the frequentist framework)
providing a procedure which should contain the parameter (constant and unknown)
with a predetermined frequency, upon repeated experiments. A summary of the
presented reliability methodology is provided in Algorithm 1 of [14].

9.2 Illustration

The data correspond to hardness (in megaPascal units, MPa) of a bone cement called
Palacos R, treated with low-loadings of mesoporous silica nanoparticles (MSNs).
Three types of MSNs are used in loading ratios of 0.1 and 0.2 related to the
powder of the Palacos R bone cement, defined as: (i) plain unmodified (SiO2); (ii)
propylamine functionalized (NH2); and (iii) propylcarboxylic acid functionalized
(COOH). The plain cement (Palacos) is used as a control and six treatments
containing MSNs (three particle types and two loading ratios): 0.1/SiO2, 0.2/SiO2,
0.1/NH2, 0.2/NH2, 0.1/COOH and 0.2/COOH. For the control and each treatment,
hardness is measured after micro-indentation testing in the material. The goal is to
verify whether an addition of MSNs increases hardness or not. For more details
about this biomaterial-related problem and the data, see [14]. Table 7 provides the
median, mean, SD, CV, CS and CK for hardness data. Note that the Birnbaum-
Saunders distribution can be reasonably assumed to model all those data sets due
to their asymmetric nature and kurtosis level; see also the histograms and boxplots
in Fig. 10. The choice of the Birnbaum-Saunders distribution for modeling the data
under analysis is supported by the results of the descriptive statistics.

Figure 10 provides the histogram with adjusted box-plot for asymmetric data. In
addition, this figure displays the Mahalanobis distance plot and PP plot with 95%
acceptance bands for hardness data in the control and treatment groups under study.
From Fig. 10, it is possible to note that the PP plots, and the KS p-values, support
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Table 7 Descriptive statistics for the indicated hardness data set

Data set n Minimum Median Mean Maximum SD CV CS CK

Palacos 20 171.15 177.87 178.59 190.49 4.82 2.70% 0.79 3.02

0.1/SiO2 20 176.92 180.80 181.00 187.55 2.67 1.48% 0.60 2.7

0.2/SiO2 20 177.40 185.05 185.09 198.79 5.18 2.80% 0.68 3.19

0.1/NH2 20 168.61 178.52 178.97 189.54 4.18 2.34% 0.01 4.20

0.2/NH2 20 174.45 180.04 181.60 193.83 4.48 2.46% 0.91 3.53

0.1/COOH 20 170.63 178.69 179.08 193.71 4.79 2.67% 1.07 5.15

0.2/COOH 20 156.10 170.56 169.78 193.66 9.64 5.68% 0.38 2.70

the use of the Birnbaum-Saunders model. A notable influence of atypical data on
the estimated model is not detected using the Mahalanobis distance.

Table 8 reports posterior summaries of the model parameters for each treatment.
The results are obtained using a Gibbs sampling with a sample size of 10,000; see
more details about this procedure in [14]. The hardness of the six treatments related
to standard Palacos and percentage of MSN loading ratio is compared. Tables 8
and 9 provide the posterior summaries from which is possible to conclude that:

(i) The hardness of 0.2/SiO2 is clearly the largest, according to both estimate of
the median β provided by Table 8 and estimate of δ in the “Palacos versus
0.2/SiO2” case of Table 9.

(ii) The estimates are very accurate as shown by the small SDs and the correspond-
ing very narrow BCIs; see Tables 8 and 9.

(iii) Related to standard Palacos, the probability P(δ > 0|t) shows that the
addition of MSNs significantly increases the hardness with 0.1/SiO2, 0.2/SiO2,
0.1/NH2, 0.2/NH2 and 0.1/COOH. A significant hardness decrease is verified
with 0.2/COOH; see Table 9. However, it is worth noting that the 95% BCI
does not include the value zero only in the case of 0.2/SiO2.

(iv) The small values of the estimates of P(T1 > T2|t1, t2), for the 0.1/SiO2,
0.2/SiO2, 0.1/NH2, 0.2/NH2 and 0.1/COOH treatments, support the results
mentioned above in item (iii); see Table 9. These estimates indicate that the
hardness related to the mentioned treatments are much larger than the hardness
associated with Palacos.

(v) The probability P(δ > 0|t) suggests that increasing the MSN content from 0.1
to 0.2 significantly increases the hardness for SiO2 and NH2 treatments, but
not for COOH; see Table 9. The estimates of P(T1 > T2|t1, t2) also support
this result.
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Fig. 10 Histogram with adjusted boxplot, Mahalanobis distance plot and PP plot with 95%
acceptance bands for the Palacos (1st line), 0.1/SiO2 (2nd line), 0.2/SiO2 (3rd line), 0.1/NH2 (4th
line), 0.2/NH2 (5th line), 0.1/COOH (6th line) and 0.2/COOH (7th line) using hardness data sets
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Table 8 Bayesian estimates, SDs and 95% BCIs of the indicated Birnbaum-Saunders parameter
and hardness data set

α β

Data set Mean SD 95% BCI Mean SD 95% BCI

Palacos 0.101 0.034 (0.055,0.186) 178.536 0.497 (177.28,179.79)

0.1% SiO2 0.100 0.033 (0.054,0.182) 180.984 0.492 (179.71,182.22)

0.2% SiO2 0.101 0.034 (0.055,0.184) 185.029 0.492 (183.79,186.30)

0.1% NH2 0.101 0.034 (0.055,0.185) 178.924 0.495 (177.68,180.19)

0.2% NH2 0.100 0.033 (0.055,0.182) 181.554 0.490 (180.35,182.82)

0.1% COOH 0.101 0.033 (0.055,0.184) 179.027 0.492 (177.76,180.25)

0.2% COOH 0.103 0.034 (0.056,0.185) 169.521 0.497 (168.26,170.78)

10 Conclusions and Future Research

In the dawn of statistics, techniques were linear and based mainly on the Gaussian
distribution. These techniques were attractive due to ease of calculation, but lacked
flexibility. Then, the use of such techniques was restrictive. For practical purposes,
several statistical methods, constructed on varied distributions, are needed. Each
use requires a suitable model. The Birnbaum-Saunders model is one of these
distributions and has recently received considerable attention due to its interesting
properties and its relationship with the Gaussian distribution. It has now been 50
years since the origins of the Birnbaum-Saunders distribution, but since then, it
went a long way. Its origins were as a model for the cumulative damage describing
fatigue and failure of materials. As a unimodal and skewed to the right distribution,
it has found widespread use as a life distribution in many applications, even outside
material science. Extensions and variations conducted at multivariate Birnbaum-
Saunders and logarithmic Birnbaum-Saunders distributions, allowing several other
applications. In the last decades, there have been many advances and applications.
Therefore, the Birnbaum-Saunders distribution provides another opportunity in
modeling. This has already proven to be sharp, giving reliable and insightful
results. The study of Birnbaum-Saunders distributions is now a mature topic, with a
substantial literature, which has had significant impact in important and interesting
fields, for example, in business and industry. The methods are rigorously defined
with well understood and developed theoretical results. This work has provided a
part of these theoretical results in a unified and consistent notation to enable a major
appreciation.

In the quality setting, the Gaussian distribution was also the most relevant ingre-
dient of statistical quality tools, but nowadays new models are considered, mainly in
asymmetric frameworks. To this end, procedures based on the Birnbaum-Saunders
distribution have been presented, discussed and applied to quality improvement
through statistical quality control, acceptance sampling and reliability analysis.
Such tools have been implemented in the R software. For the internal quality of the
company, the control charts for attributes and variables, as well as their multivariate
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Table 9 Estimates, SDs, 95% CIs, P(δ > 0|t) and P(T1 > T2|t1, t2) for the indicated
comparison with hardness data sets

Parameter Mean SD 95% CI P(δ > 0|t) P(δ ≤ 0|t) P(T1 > T2|t1, t2)
Palacos versus 0.1% SiO2

α 0.116 0.025 (0.077,0.175)

μ 5.185 0.010 (5.160,5.210)

δ 0.014 0.012 (−0.018,0.044) 0.932 0.068 0.186

Palacos versus 0.2% SiO2

α 0.117 0.026 (0.077,0.178)

μ 5.185 0.010 (5.158,5.210)

δ 0.036 0.012 (0.004,0.067) 0.982 0.018 0.206

Palacos versus 0.1% NH2

α 0.117 0.026 (0.076,0.176)

μ 5.185 0.011 (5.157,5.210)

δ 0.002 0.013 (−0.031,0.034) 0.888 0.112 0.221

Palacos versus 0.2% NH2

α 0.117 0.025 (0.076,0.175)

μ 5.185 0.010 (5.159,5.211)

δ 0.017 0.012 (−0.015,0.048) 0.939 0.061 0.198

Palacos versus 0.1% COOH

α 0.117 0.026 (0.077,0.177)

μ 5.185 0.010 (5.160,5.211)

δ 0.003 0.013 (−0.029,0.034) 0.886 0.046 0.205

Palacos versus 0.2% COOH

α 0.118 0.026 (0.077,0.180)

μ 5.185 0.010 (5.159,5.210)

δ −0.052 0.013 (−0.084,−0.020) 0.006 0.994 0.426

0.1% SiO2 versus 0.2% SiO2

α 0.117 0.026 (0.076,0.177)

μ 5.198 0.010 (5.173,5.223)

δ 0.022 0.013 (−0.010,0.053) 0.954 0.046 0.162

0.1% NH2 versus 0.2% NH2

α 0.117 0.026 (0.077,0.176)

μ 5.187 0.011 (5.161,5.214)

δ 0.015 0.012 (−0.014,0.046) 0.941 0.059 0.235

0.1% COOH versus 0.2% COOH

α 0.118 0.026 (0.078,0.180)

μ 5.188 0.010 (5.162,5.213)

δ −0.055 0.013 (−0.087,−0.023) 0.005 0.995 0.433

versions and capability indices, were presented and illustrated with real data. For
external quality, acceptance sampling plans were also treated and illustrated. Finally,
reliability models based on the Birnbaum-Saunders distribution have been presented
and illustrated with data on nanotechnologies.
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Some distributions may be expressed as a mixture of Gaussian distributions,
which may be useful for performing Bayesian analysis using Markov chain Monte
Carlo methods; see, for example [26]. Generalizations of Birnbaum-Saunders
distributions can be represented as a mixture of Gaussians, so that these ideas
on Bayesian analysis can be more explored, and this work presented a possible
approach; see [2, 16].

In summary, with more sophisticated and appropriate statistical models, quality
monitoring can be assessed more reliably and inaccurate decisions avoided. New
tools have been presented to explore further investigations within this important
application field of quality improvement. Other researchers are encouraged to begin
this exploration in the belief that it can have a positive impact.
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Statistical System Monitoring (SSM)
for Enterprise-Level Quality Control

Siim Koppel and Shing I Chang

Abstract The rapid development and adoption of sensors and data storage solutions
such as IOT (Internet of Things) has enabled the collection of a large amount
of data in production facilities. The data may come from different sources such
as process parameters and quality characteristics. However, traditional statistical
process control (SPC) tools were not built to take the full advantages of the
data provided. Traditional SPC tools such as control charts are often applied to
critical quality characteristics (QCs) on a product rather than incorporating process
parameters associated with the critical QCs. This chapter proposes a method that
is capable of monitoring all process and quality data simultaneously. The proposed
method adopts precontrol and group control chart ideas to pinpoint change location
and timeframe in a production system. After the change location and timeframe
have been identified, more elaborate models or data analytics methods can be used
to identify potential assignable causes. Simulation studies are conducted to establish
the properties of the proposed method. Guidelines are provided to help users how
to implement the proposed method in any production facility including those facing
big data issues.

Keywords Statistical system monitoring · Statistical process monitoring ·
Change detection · Big data · Continuous variable · Production

1 Introduction

Statistical process control (SPC) approaches were first introduced by Water She-
whart in 1924 [1]. The use of statistical methods such as hypothesis testing in
graphic forms coupled with the Central Limit Theorem has served numerous
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applications well especially in manufacturing to achieve desirable product quality.
The core concept is the use of a set of historical data deemed in control to set up
a pair of control charts. This process is usually called Phase I SPC. Then during
Phase II SPC, statistics of future observations of a quality characteristic are plotted
for continuous monitoring. If any point plots outside control limits, then the process
under monitoring is deemed out of control. Process engineers are then informed for
fault diagnoses.

This basic framework remains unchanged till this day although multiple revisions
such as CUSUM and EWMA charts have been proposed to improve the sensitivity
of detecting small process shifts [2–4]. Hotelling T2 [5] was proposed to extend
univariate quality characteristic to multivariate quality characteristics. However, the
combinational development of omnipresence of sensors and cloud computing often-
called Industrial 4.0 or cyber-physical systems [6] has opened up opportunities
to rethink implementation strategies of SPC for manufacturing. Traditional SPC
methods, often restricted to product quality characteristics, cannot take advantage
of big data generated from a production process equipped with thousands of
process parameters and hundreds of product characteristics scattered throughout a
production system.

We propose a system-wise process monitoring framework to answer this chal-
lenge. The proposed framework is called statistical system monitoring or SSM
in that all process parameters and QCs are considered simultaneously for change
detection. A system is composed of multiple processes that may be hierarchical.
This chapter provides the SSM framework that adopts parts of collection of
monitoring methods such as pre-control and group control chart algorithms. The
core concept of SSM is to, first, quantify the performance of a system or subsystem
composed of process parameters and product quality characteristics over time into
three zones (green, yellow, and red zone in Fig. 1). Then, only those segments of
time series that exhibits changes in terms of the statistics reflecting green, yellow,
and red zones are to be analyzed. A small manufacturing example with three
departments is used to demonstrate the use of the proposed method. The goal is
to monitor the full system, not just the individual parts. Simulated data sets are
generated to demonstrate the properties of the proposed method.

Unlike the traditional methods where measurement is restricted to physical
products or work in progress, the proposed SSM framework integrates process
parameters associated with products or work in process for process monitoring
and defect prevention. Since the number of parameters is usually very large, high
dimensional problem often confronts traditional control charts. For example, the
production of semi-conductor wafers includes hundreds of processes and thousands
of process parameters. The proposed SSM framework contains multiple techniques
for dimension reduction and feature selection. The following section briefly outlines
some of these methods in the content of statistical process control or monitoring.
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Fig. 1 The basic set-up of pre-control chart

2 Background

2.1 Traditional Multivariate SPC

Much research has been generated on the topic of statistical process monitoring over
the last decades. Most work focuses on a univariate quality characteristic.

2.1.1 Hotelling T2

Hotelling T2 is one of the oldest SPC methods for monitoring multivariate processes.
This method is monitoring the mean vector of the process. The monitoring is done
by plotting a chi-squared control chart [7].

The statistic plotted is calculated based on the vector of variable means over
some time. Then covariance matrix is used to calculate the statistic. There also lies
the biggest issue of the method—the estimation of the elements in a covariance
matrix. It is possible to calculate the covariance matrix when there is about
ten variables, but anything over that, the task becomes very difficult or next to
impossible to implement. Also, Hotelling T2 is often applied to several QCs. Usually
process parameters associated with the QCs are not considered in the same vector.
Multivariate versions of Exponentially Weighted Moving Average (EWMA) and
cumulative sum (CUSUM) charts [3, 8, 9] suffer the same drawbacks. These control
charts were merely used to enhance the chart performance of catching small shifts.

2.1.2 PCA

When a large number of multiple quality characteristics are encountered, Principal
Component Analysis (PCA) is often used for dimension reduction. PCA uses an
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orthogonal transformation to convert a set of observations of possibly correlated
variables into a set of values of linearly uncorrelated variables called principal com-
ponents [7]. Jiang and Yan [10] proposed a tool to monitor multi-mode plant-wide
processes by using mutual information-based multi-block PCA, joint probability
and Bayesian inference. Tong and Yan [11] studied a modified multiblock PCA
algorithm for decentralized Statistical Process Monitoring. In another study, Liu
et al. [12] explored statistical process monitoring with integration of data projection
and one-class classification using PCA. In a different study, Zheng et al. [13] studied
a time series model coefficients monitoring approach for controlled processes. Jiang
et al. [14] proposed distributed PCA process with the help of fault-relevant variable
selection and Bayesian interference. In another study, Gajjar et al. [15] proposed
to detect faults with the help of Sparse Principal Component Analysis. Gajjar
and Palazoglu [16] also proposed a data driven multidimensional visualization
technique to process fault detection and diagnosis. Yan et al. [17] proposed a robust
multivariate process monitoring via stable principal component pursuit. Their goal
was to increase the PCAs robustness against gross outliers. In a different study, Jiang
et al. [18] investigated Gaussian mixture model and optimal principal component
based Bayesian method for multimode fault diagnostics.

Most of these studies showed that their methods work well with Tennessee-
Eastman process that has 52 process variables. Tennessee-Eastman process is a
benchmark process that consists of five main process units: a two-phase reactor
where an exothermic reaction occurs, a separator, a stripper, a compressor, and a
mixer. This is a nonlinear open-loop unstable process that has been used in many
studies as a case study for plant-wide control, statistical process monitoring, sensor
fault detection, and identification of data-driven network models. However, it is
unclear whether these methods are capable of scaling up for a production facility
with more than a thousand process parameters.

2.2 Group Control Charts

The control charting methods reviewed so far often focus on a single product with
one or multiple quality characteristics. Boyd [19], recognizing the need for applying
process monitoring for multiple-stream processes, proposed the use of group control
charts. A multiple stream is defined as multiple input sources of the same product.
Any chart in a group is based on a pair of average (i.e. X-bar) and range (i.e. R)
charts. All streams are sampled and each is monitored by a pair of X-bar and R
charts. The group control chart framework only records the largest, smallest mean,
and the maximum range of the streams with the understanding that if these are
within the control limits, the other streams must be too. Specifically, this group
control chart method adopts the idea of monitoring the worst-case scenarios [7].
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2.3 Precontrol

Precontrol is a technique used to detect shifts or upsets in the process that may
result in the production of nonconforming units [7]. The technique differs from
a statistical process control in that conventional control charts are designed for
real-time monitoring while precontrol is mainly used to assure process capability.
Precontrol uses the normal distribution in determining changes in the process mean
or standard deviation that could result in increased production of nonconforming
units. Only three statistics related to green, yellow, and red zones are required to
provide control information as shown in Fig. 1.

The original precontrol method assumes that the process is normally distributed
and the natural tolerance limits (μ ± 3σ ) exactly coincide with the specification
limits. Therefore, this process produces 0.27% of fallout in the red zone. The
control works by setting an upper and lower process control limit at ¼ and ¾ of
the specification limits. Two consequent samples are drawn and compared to the
UPCL and LPCL. If they fall within the green zone, the process as not changed.
If two samples fall to the same side of between control limit and specification
limit (i.e. the yellow zone), the mean might have changed. If the samples are on
the opposite sides between control and specification limits, the standard variation
might have changed. If they are outside the specification limits (i.e. the red zone),
the process has produced non-conforming parts. Comparing the traditional control
charts, precontrol needs to be executed at the beginning of a shift and about six times
during a shift for quality assurance purposes. In addition, traditional control charting
usually requires a pair of charts—one for mean shift and the other for variance
changes while precontrol only requires one chart. It is not an emphasis in precontrol
chart to connect the dots of consecutive samples like tradition control chart do.
This proposed work uses the color scheme of precontrol to classify samples, while
defining different limits for determining the classification of each sample. The upper
and lower control limit on the proposed method are set at 1 sigma from the mean
rather than 1.5 as in the traditional method. Users can set their desired limits when
dealing with cases where more precision is required such as 6 sigma processes.

3 A Proposed Framework for System/Enterprise-Level
Monitoring

The following framework is a proposed method for enterprise-level system mon-
itoring. Note that existing SPC methods such as PCA are usually limited to
approximately 50 variables at once or need to solve large variance-covariance matrix
(Hotelling T2). There are also possibilities of using machine learning algorithms,
artificial neural networks or other methods, which are usually computer-time
consuming. The proposed method can be used as a tool to reduce the size of the
dataset before it is analyzed with machine learning algorithms.
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An enterprise-level system monitoring method should possess that following
properties:

1. Able to detect there is a change in the system of interest
2. Able to detect changes in both QCs and their corresponding process parameters
3. Able to detect the location of the change
4. Able to detect the timing of the change
5. Able to work with different types of data: continuous, profile and binary data
6. Able to be easily modeled (or model free) and implemented
7. Able to be scaled up for big data applications

Enterprise level system monitoring is assumed to aid different levels of managers.
The department head is interested if all machines in the department are performing
as expected or on the same level as previously, the factory manager is interested if all
the departments are performing on needed levels, the area manager is interested if all
the factories are performing on the needed level etc. Therefore, the monitoring does
not focus on finding the cause of the change, but simply on detecting it. The machine
operator or process engineer is also expected to correct any deviations promptly. The
monitoring system allows to detect changes on the level that particular manager or
investigator is interested in and gives a starting point for further analysis.

With the growth of sensors in a system, all the process parameters and quality
characteristics can be monitored and treated as variables. This method takes into
account all variables and monitors all of them. It is data driven. No knowledge of
distribution is needed as the basis of the proposed method is to compare results
of period currently under investigation to results from previous periods. Two main
strategies are followed to maintain the scale of the problem formulated. First, only
the variables that exhibit changes according the precontrol rules are flagged for
further investigation. Second, values of all variables in different data types are
transformed into a standard scale so that changes are easy to identify with familiar
units.

The proposed method is a two-layer method: first layer is the bottom-level enti-
ties such as individual machine performance and the second layer is the aggregation
of results over all bottom-level entities such as machines at the department level
or factory level. The same application can be applied to department and factory
level and so on. The machine level layer looks at all of the variables connected to
the particular machine (process parameters, quality characteristics) and categorizes
them based on “distance from target”. This can be used with both continuous data
and profile data. Then the output of the variables is categorized. Summarization is
done by using group control chart idea. The base here is to look at all the variables
for each timeframe, that is, samples are taken (ten per second, every second, or
every minute, etc.), and then the worst outcome is chosen to represent the status of
the machine at that timepoint.

The higher level generates summary statistic values over time periods and
machine groups that the user has identified. These statistic values are then compared
with similar values from previous time periods and conclusions are made based on
the results of the comparison.
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When change is detected on a higher level, indexing is used to change the
resolution of the report to identify the location of the change (machine, department)
and the timing of the change. More precise analysis with much smaller dataset can
then be started to identify cause of the change.

3.1 Formulation of the Proposed Method

Consider a small production system of nj departments each containing nk machines.
The machines generate raw data on quality characteristics and process parameters.
Each machine generates nl variables. Assume that the system produces two different
products that have different process paths and different target values for each quality
characteristic and process parameter.

The proposed method consists of five steps (Fig. 2). The main purpose is to
identify if there has been a change, when the change occurred and where the change
occurred. This is achieved by using the indexing method and different resolutions
of time and space. The indexing method uses the timestamps associated with each
measurement to assign time and location identification (machine ID, department ID
and factory ID) to all measurements.

The first step is to transform all the raw data into a distance measure from the
target. The assumptions are that all the process parameters are continuous variables
and quality characteristics have target values. The calculation of the target is as
follows

djklt =
∣∣xjkltp − T ajklp

∣∣
/

sjklp
(1)

where
d—distance
x—raw continuous data measurement
Ta—target value
s—target standard deviation
j—index for departments in each factory (j = 1,2, . . . , nj)
k—index for machines in each department (k = 1,2, . . . , nk)
l—index for variables in each machine (l = 1,2, . . . , nl)
t—index for count of measurement (t = 1,2, . . . , nt)
p—product identifier

Transformation to 
distance

Precontrol color 
classification of 

distances 

Group control color 
classification of machine

Summarization of 
different colors 

Change detection based 
on comparison with 
another timeframe

Fig. 2 The flowchart of the proposed method
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The second step is to classify each distance from the measurement using
precontrol idea. The classification assigns one of four colors to each distance based
as follows:

cjklt =

⎧
⎪⎨

⎪⎩

green, if the djklt is within one target standard deviation f rom 0 f or product
yellow, if the djklt is between 1 and 3 target standard deviations f rom 0 f or product
red, if the djklt is more than 3 t imes the target standard deviation or machine is down

white, if the machine is scheduled to be down

The setup of the limits can be done using different principles. In the presented
case higher value was assigned to more precision, so anything under one sigma shift
was rewarded with green in the proposed method. The classification limits could
also be set up based on the original precontrol charts, where the “acceptable” area is
divided equally between green and yellow; and the division is at 1.5 times standard
deviation.

The third step uses the group control chart idea to offset within machine variable
dependency. The worst classification will be reported. The machine will be assigned
into category for each sample row ti based on the following rules.

Green count

t i
g
jkt =

{
1, when all the cjklt = green

0, otherwise
(2)

Yellow count

t i
y
jkt =

{
1, when at least one of the cjklt = yellow and none in red

0, otherwise
(3)

Red count

t irjkt =
{

1, when at least one of the cjklt = red or unexpexted stop
0, otherwise

(4)

White count

t iwjkt =
{

1, when the machine has a scheduled stop
0, otherwise

(5)

The fourth step is to summarize all color counts and generate a statistic that is
used for comparison and detection of changes. The summarization is completed as
follows:

All the available counts:

T =
n∑

t=1

nj∑

j=1

nk∑

k=1

t ijkt (6)
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Count of each color category:

T c =
n∑

t=1

nj∑

j=1

nk∑

k=1

t icjkt (7)

where c is the index of the color, either g for green, y for yellow, r for red, or w for
white.

The statistic is ratio between the counts of each color category divided by the
overall available count of samples. Based on the calculations following table is
created for each period under investigation.

Green T g
/
T

Yellow T y
/
T

Red T r
/
T

White T w
/
T

Step 4—the final step is to detect changes. The previous four steps are used on
the period under investigation and also on two other periods, for example average
values of the ratios over year-to-date and average values of the ratios over historical
data from the same periods over the previous years. When the change is detected
(i.e. the percentages of colors are different between the periods), the location and
the period of change can be pin pointed by segmenting the data further and running
the same method. For example, if the time frame under investigation was week, the
segmentation would be to generate the same table for each day of that week and
for each department of the system. Comparison would show when and where the
change occurred.

Change Detection Criteria The selection of the criteria depends on many aspects,
such as availability of historic data, the distributions of variables etc. In the case
of historic data, the user can choose timeframe that is known to be acceptable and
generate acceptable thresholds based on those timeframes and compare the results
with the results under investigation. This process is very similar to Phase I operation
of control charting. The examples in this chapter were generated by assuming
normal distribution for each variable. The results showed that the percentage of red
was the best indication of change. Depending on if there were ten or 20 variables
grouped together in the third step, the threshold for change was 3.417% and 6.305%
of red respectively. The process behind these suggestions can be found in the
simulation study section of this chapter (Sect. 4). In practice, these thresholds should
come from the computation based on a historical data set with the considerations of
both Type I and Type II errors.
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3.2 Examples

The following samples are presented to show how the proposed method works. First
example shows the step-by-step process of how to locate the change and the second
example shows how to pin-point the timeframe of the change.

3.2.1 Example 1

Assume there is a small system of three departments that are producing two
products. Each department has three machines which have six critical process
variables each. The goal is to detect if the system is operating on the same level 1 day
as it did on the previous day. The proposed system-wide monitoring framework is
implemented for the assessment.

An example of one machine from one department of raw data and target value
is in Table 1. Process variables x1 . . . x6 are raw data for each of the six variables.
TA1 . . .TA6 are the target values for each variable. Ten sample periods are shown in
this table. The measurements are assumed to be recorded at the same time for each
variable in this case for the sake of simplicity, but in real life that does not have to
be the case. This will be addressed in the discussion section (Sect. 5).

The distance for each variable is calculated based on the equation in the first step
of the proposed method. The results are listed in Table 2.

The distances are classified based on the logic presented in the second step of the
proposed method using the pre-control methodology. In this example case, all the
values for all process variables for Machine 1 are within one standard deviation from
the target except for variable 1 at row 9 in which three or more standard deviations
is away from the target. Table 3 show the color classifications c1, c2, . . . , c6 for
corresponding process variables of Machine 1.

In the next step—the third step of the proposed method, each machine is given
an overall color classification based on the group control chart idea. The worst
classification across all process variables of a machine is chosen as the performance
for a machine. Table 4 show the overall color classification for machine one for each
sample.

Next the overall available number of samples is calculated based on the Eq.
(2) in the fourth step of the proposed method as well as the count of each color
classification found in the sample list. In this case for Machine 1:

∑
t i
g
jkt = 9and∑

t irjkt = 1. The results for Machine 1 are then summarized according to Eqs. (6)
and (7) shown in Table 5.

Note that Table 4 is the result of one machine while the overall system would
generate the following Table 6.
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Table 2 The results of distance calculations based on the first step of the proposed method.
d1 . . . d6 are the distance values for each variable

Sample period no. d1 d2 d3 d4 d5 d6

1 0.645 18.509 1.341 79.103 0.732 5.991
2 0.938 6.121 1.037 39.937 0.172 0.385
3 0.310 1.773 1.288 21.800 0.790 2.343
4 0.441 5.794 3.557 60.937 0.641 1.117
5 0.654 13.126 0.609 27.769 1.059 0.404
6 0.403 12.266 0.472 37.427 1.952 3.753
7 0.475 6.151 0.284 66.999 0.144 2.795
8 1.967 8.333 1.327 10.222 0.139 3.004
9 5.047 16.983 0.976 39.758 1.692 0.851
10 0.532 17.300 2.047 70.887 0.254 0.333

Table 3 Pre-control
classification for Machine 1

Sample 
period c1 c2 c3 c4 c5 c6

1
2
3
4
5
6
7
8
9

10

Table 4 Overall color code
for Machine 1

Sample 
period ti

1
2
3
4
5
6
7
8
9

10

3.2.2 Example on Detecting the Time and Location of Change

The proposed method is also designed to identify the location and the time of
changes by changing the resolution of the output. Let’s assume there is a department
with 10 machines that are producing different products. The goal is to determine if
the department is producing on the similar level as previous day. Over an 8 h shift
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Table 5 The final results in
term of percentage of samples
in each color zone

Level Statistic
10.0%

0.0%
90.0%

IDLE 0.0%

Table 6 The system-wide look at the performance

Sample 
period Machine 1 Machine 2 Machine 3 Machine 4 Machine 5 Machine 6 Machine 7 Machine 8 Machine 9

1
2
3
4
5
6
7
8
9

10

Table 7 Comparison of 2 days of production of the department overall

previous
daytoday Level Statistic Level Statistic

RED 4.15% RED 3.20%

YELLOW 85.22% YELLOW 86.72%

GREEN 10.63% GREEN 10.08%

IDLE 0% IDLE 0%

Table 8 Hour-to-hour production of the whole department to provide higher resolution

8:00-9:00 Level Statistic 9:00-10:00 Level Statistic 10:00-11:00 Level Statistic 11:00-12:00 Level Statistic
%05.3%59.2%51.3%0.3
%006.68%058.68%077.68%071.68
%09.9%02.01%80.01%36.01

IDLE 0% IDLE 0% IDLE 0% IDLE 0%

12:00-13:00 Level Statistic 13:00-14:00 Level Statistic 14:00-15:00 Level Statistic 15:00-16:00 Level Statistic
%00.7%02.7%04.3%71.3
%051.28%009.18%040.68%080.78
%58.01%09.01%65.01%57.9

IDLE 0% IDLE 0% IDLE 0% IDLE 0%

the data is collected, targets are deducted from the raw data, all the variables and
time points are classified into color classes with the help of pre-control part of the
proposed method. Then the machines are assigned to color classes based on the
group control part. All the data is summarized and the output for the department is
reported in Tables 7, 8, and 9.

In Table 7, the red percentage has changed from 3.2% to 4.15% which means
more measurements were beyond three times the deviation from the target value.
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Table 9 Time 14:00–15:00 based on individual machines to provide higher resolution

Machine 1 Level Statistic Machine 2 Level Statistic Machine 3 Level Statistic Machine 4 Level Statistic Machine 5 Level Statistic
%01.54%22.3%04.3%81.3%38.2
%031.54%018.58%087.68%087.680%04.68
%77.9%79.01%28.9%40.01%77.01

IDLE 0% IDLE 0% IDLE 0% IDLE 0% IDLE 0%

Machine 6 Level Statistic Machine 7 Level Statistic Machine 8 Level Statistic Machine 9 Level Statistic Machine 10 Level Statistic
%76.2%56.2%81.3%71.3%06.2
%081.78%034.68%017.68%023.78%097.68
%51.01%29.01%11.01%15.9%16.01

IDLE 0% IDLE 0% IDLE 0% IDLE 0% IDLE 0%

The recommendations for the decision criteria will be discussed under the simu-
lation portion of this chapter. Obviously there has been a change somewhere and
some time. To determine when the change happened, the results are viewed in higher
resolution. Specifically, the categorized machine output is divided into hourly blocks
with the help of timestamps and presented in the series of outputs.

In Table 8, it is clear that the changed happened somewhere between 14:00 and
15:00 in the department. The next step would be to identify the machine/machines
that are responsible for the change. Since the time of the change is known, the time
is limited only to that slot and the categorized machine output is summarized over
that time slot. The machines are not summarized into department level to identify
the culprit. The results are presented in series of outputs.

In Table 9, the results show that machine 5 has started to produce higher
percentages of signals that are classified as red and now more thorough analysis
of the reasons behind that can start with much smaller time window.

4 Simulation Studies

Three simulation studies were carried out to identify different characteristics of the
proposed method. The goal of the first study is to determine what threshold should
be used for making a decision if there has been a change. The second study aims
to determine the maximum number of variables that can be grouped together in
the third step of the method. Finally, the third study determines how sensitive this
method is. All the simulation studies were carried out with an assumption that the
data was normally distributed for simplicity and demonstration purposes. In real life
applications the distribution does not have to be predetermined and the decisions
would be made based on the comparison with historic data.

4.1 Determining Threshold for Decision Making

Let’s assume there is a machine with ten variables. Each variable measures different
parameter of the machine. There are 3600 data points in each variable. For
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Fig. 3 Boxplots red zone percentages from various out-of-control situations at machine level

Fig. 4 Percentage of red
zone percentages of processes
N(0,1), N(0.5,1), and N(1,1)
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simplicity, all the variables have been normalized so that the unchanged variable
would be normally distributed with N(0,1). In order to determine the threshold for
change detection and Type II errors for different scenarios all but one variable were
left at N(0,1) and one was changed according to series of parameter changes. The
changes introduced were mean shifts of 0, 0.5, 1, 2 and 3 while standard deviations’
changes of 1, 1.5, 2 and 3, and the combination of both. After each iteration of the
simulation, the proposed method was applied to the new dataset and the results
of the color percentages were recorded. Each combination was repeated 10,000
times. One of the additional findings of this simulation was that in this case the red
percentage was the best indicator of change. The green and yellow percentages were
more random and together mirroring the red color percentage. The results of the red
color percentages on the machine level are presented in the following box-plots.

Figure 3 shows all the scenarios on the same graph. As can be seen, most of
the scenarios have not overlapping results with the unchanged scenario, which is
the process is at N(0,1). The only overlapping scenarios to N(0,1) are N(0.5,1) and
N(1,1). Figure 4 shows more detailed look at the results of those three scenarios.

More detailed look reveals that scenario N(1,1) has much less overlaps than
N(0.5,1). The smaller change results are much closer to the unchanged variable
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Table 10 Type II errors for
different scenarios

Mean
St.Dev 0 0.5 1 2 3

1 0.914 0.0001 0 0
1.5 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0

N(0,1) N(0,1.5) N(0,2) N(0,3) N(0.5,1) N(0.5, 1.5) N(0.5,2) N(0.5,3) N(1,1) N(1,1.5) N(1,2) N(1,3) N(2,1) N(2,1.5) N(2,2) N(2,3) N(3,1) N(3,1.5) N(3,2) N(3,3)
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Fig. 5 Boxplots red zone percentages from various out-of-control situations with 20 variables

results. To determine what threshold should be use in the decision making, the
overall Type I error will be set at 0.0027. In the case of 10 variables, the threshold
of red color percentage would be 3.417%. Anything over that would be considered
as changed variable.

Table 10 shows the Type II errors of different scenarios when considering the set
threshold. The results are drawn from the 10,000 repetition results.

The table confirms the previous finding that only N(0.5,1) and N(1,1) have
overlaps with the unchanged variable and therefore are also the only ones with Type
II error. Given the overall type I error at 0.0027, the proposed monitoring method is
not capable of detecting a very small process mean shift.

The second part of this simulation study was to determine if the threshold will
change when the number of variables in each machine is different. The simulation
steps and scenario parameters stayed the same, only this time the machine was
assumed to have 20 variables with 3600 data points each and one of those is
responsible for changed based on the scenario. Each scenario was repeated 10,000
times. Similarly to the first part, the red color percentage was found to be the best
indicator of change. The overall results of the study are in the box-plot of Fig. 5.

Once again only the small mean shifts of N(0.5, 1) and N(1, 1) have seem to
have overlapping parts with unchanged variable. More detailed boxplot of the three
is provided in Fig. 6.

The threshold in this case is again based on the Type I error being 0.0027. When
the machine uses 20 variables and is assumed to be normally distributed, the red
percentage threshold for change is 6.305%. Additionally there were two revelations.
First, the unchanged variable produces much more “red” colored signals which is
explained with Bonferroni curse of dimensions. The threshold is almost two times
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Fig. 6 Percentage of red zone percentages of processes N(0,1), N(0.5,1), and N(1,1) with 20
variables

Table 11 Type II errors of
different scenarios with 20
variables

Mean
St.dev 0 0.5 1 2 3

1 0.9664 0.0411 0 0
1.5 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0

larger than on the ten variable case. The second is that there is less difference or
more overlapping between scenarios.

Table 11 shows the Type II errors of the scenarios based on the 10,000 repetitions
and the threshold set previously at 6.305%.

As can be seen, the Type II error for both N(0.5,1) and N(1,1) has increased. The
larger changes are detected with 100% accuracy, while small mean shift is virtually
undetectable.

4.2 Determining the Max Number of Variables in One
Machine

This simulation study was inspired by the first study. The purpose of this study was
to determine how many variables can be grouped together in the group control part
of the proposed method without losing too much detection power.

For this simulation, the statistics monitored was the percentage of “red” clas-
sifications as the previous study indicated to be the best indicator. The scenarios
were based on 30–100 variables in 10 variable step. Each number of variables was



72 S. Koppel and S. I Chang

Table 12 Type II errors of different combinations of scenarios and numbers of variables with
Type I error 0.0027

No of variable Threshold N(0,1.5) N(0.5,1) N(0.5,1.5) N(1,1) N(1,1.5)

30 0.0905 0 0.9735 0 0.0496 0
40 0.1175 0.0002 0.9878 0 0.3711 0
50 0.1417 0 0.9821 0 0.2756 0
60 0.164 0.0085 0.992 0 0.6904 0
70 0.193 0.008 0.993 0 0.574 0
80 0.222 0.03 0.989 0 0.776 0
90 0.24 0.017 0.99 0 0.571 0
100 0.255 0.036 0.986 0.001 0.742 0

Table 13 Type II errors of different combinations of scenarios and numbers of variables with
Type I error 0.05

No of var Threshold N(0,1.5) N(0.5,1) N(0.5,1.5) N(1,1) N(1,1.5)

30 0.0852 0 0.7796 0 0.0021 0
40 0.1113 0 0.8445 0 0.0659 0
50 0.136 0 0.8556 0 0.0568 0
60 0.1565 0.0002 0.888 0 0.2274 0
70 0.1844 0 0.866 0 0.137 0
80 0.2119 0.001 0.897 0 0.217 0
90 0.2315 0 0.863 0 0.261 0
100 0.248 0.003 0.907 0 0.353 0

simulated with variable changing N(0,1), N(0.5,1), N(1,1), N(0,1.5), N(0.5,1.5) and
N(1,1.5), because the previous study showed that smaller changes are more suspect
to be overlapping with the unchanged variable. For 30, 40, 50 and 60 variables, each
combination of mean and standard deviation was recorded 10,000 times. For 70, 80,
90 and 100 variables, each combination was recorded 1000 times due to the high
demand in computational time.

Tables 12 and 13 show the results for this simulation. Both Type I and Type II
errors are considered to reach a balance performance in setting the threshold values.
Table 12 shows the threshold values in the second column Type II errors of different
number of variables when the Type I error is set at 0.0027 while Table 13 shows the
results of Type I errors when the Type II error is set at 0.05.

As shown in Tables 12 and 13, the more variables is used during the group control
part of the proposed method, the higher the threshold is for keeping the type I error
at 0.0027 and 0.05 respectively. Again, this is explained by the Bonferroni curse of
dimensions. What also can be seen is that in each combination there is a trend for
Type II error to grow when the number of variables inclines. The more variables is
used, the less obvious the difference between unchanged and changed variable is.
For the recommendation of how many variables could be used in the group control
part of the proposal, a decision criteria must be established. The proposal is to base
the decision on the N(1,1) scenario, because in the previous simulation study that
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scenario showed small Type II error and it is important change that needs to be
captured. The second side of the decision criteria is where to draw the line of what is
acceptable. The recommendation here would be to use 5% of Type II error, because
at that level, a lot of changes are still detected. Based on the decision criteria, the
recommended maximum number of variables to be used in the group control part
of the algorithm would be 30 variables for the proposed method to be effective with
the consideration of both Type I and Type II errors.

4.3 Determining the Sensitivity of the Proposed Method

This simulation study on the sensitivity of the proposed method aims to determine
how sensitive it is by leveraging the knowledge gained from the previous two
studies. Assume that there is a factory with ten departments. Each department
consists of ten machines and each machine monitors ten variables. Overall, there
are 1000 variables to monitor. Each variable has 3600 data points or rows. The
simulation is done with a small mean shift of N(1,1), because that was used in
the number of variables simulation study decision criteria. In first scenario 1% of
random variables changed by N(1,1). This means ten random variables out of 1000.
The selection was made with uniformly distributed random number generator. Each
variable had an equal chance of being selected. Also the changed variables could
have appeared in the same machine. The selected variables changed from iteration
to iteration. After each dataset was generated, the proposed method was applied.
First the pre-control part of the algorithm classified each data point into either red,
yellow or green color. Then the group control part grabbed the worst classification
for each row and assigned that classification to the machine for that row. The next
steps were to sum the results up on the machine, department and factory level and
report the percentages for each color. This was repeated 1000 times. The red color
percentage was used for the identification statistic. The same process was carried
out with 5% of variables (50 random variables out of 1000) and 10% of variables
(100 random variables out of 1000) experiencing changes.

Two thresholds were used for alpha: 3.417% for 0.0027 and 3.111% for 0.05. The
results can be found in Table 14. The Type I error reported in this table represents
the amount of machines/departments/factory that were labelled as changed but in
fact they did not have the changed variable in them. On the other hand, the Type II
error are machines/departments/factory that was labelled unchanged but there was a
changed component in them.

Table 14 shows that the proposed method is capable of detecting changes at the
machine level well. The proposed method failed to detect changes in department
and factory level when Type I is 0.0027 in the 1% case. In the case of 5% variables
change case, the departmental detection is getting much better. In the 10% case, the
factory level and the department level are almost always labelled as changed. The
revelation is that on any managerial level the change is brought to attention if it
either large change or a lot of small changes.
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Table 14 The sensitivity of the proposed method

Alpha = 0.05 Alpha = 0.0027
N(1,1) Type I Type II Type I Type II

1% variables changed Factory (1) 0.0000 1.0000 0.0000 1.0000
Department (10) 0.0000 0.6613 0.0000 0.9585
Machine (100) 0.0612 0.0000 0.0047 0.0010

5% variables changed Factory (1) 0.00000 0.00000 0.00000 0.00000
Department (10) 0.00000 0.02536 0.00000 0.14874
Machine (100) 0.00897 0.00002 0.00074 0.00052

10% variables changed Factory (1) 0.0000 0.0000 0.0000 0.0000
Department (10) 0.0000 0.0001 0.0000 0.0009
Machine (100) 0.0084 0.0000 0.0006 0.0004

5 Discussions

The proposed method is capable of practical implementation in many different
environments. The example given in the previous chapter was when all the samples
were taken at the same time point. In most real life cases that might not be possible.
For example, the measurement of each part in height might happen ten times a
second, but temperature is measured only in every 2–3 s. The recommendation
would be to assign the less frequent measurement to each row of the sample that
is between the less frequent sampling times. In cases where there is so much
data that the traditional computational tool cannot handle the data, the use of big
data applications might be useful. Another facet of the proposed method worth
mentioning is that it is not in-time monitoring method where the sample in hand is
the item under investigation. The proposed method can be used as near-time, since
the focus is on the results from a period of time.

5.1 Implementation in Enterprise Environment

The proposed method is scalable and can be adapted to a system ranging from
a factory to a supply chain. The recommendation of the implementation of the
proposed method in a real-world enterprise would consist of following steps:

1. Determine the target value for each variable in the system for each product
produced in the facility to calculate the distances from target:

(a) If the targets can be set by requirements, those could be used
(b) If not, the historical data must be used to calculate the targets
(c) Not all process variables are continuous. Some may be discrete and the others

may be in a form of a profile. The proposed method introduced in Sect. 3.1 is
based on the fraction of time as shown in Eqs. (2), (3), (4), and (5) computed
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by the number of samples falling into each color zone. Discrete variables can
be easily accommodated using the same set of equation. However, profile
variables require additional procedures to convert. It will be introduced in
another study.

2. Determine the standard deviations to be used in the pre-control part of the
algorithm

(a) If the standard deviations be set by requirements, those should be used
(b) If not, the historical data of “good” products should be used. This is often

referred as the Phase I of control charting.

3. Group variables together for the group control part of the proposed method:

(a) If there is more than 30 variables in the machine, then the variables should
be separated and grouped together to form subgroups. For example, if the
machine has 10 variables that are connected to temperature measurements,
20 connected to speeds and ten connected to the shape of the product, then
40 variables together will not produce good output. However grouping them
according to function within the machine would give the desired result.

(b) While it would be advisable to keep the variable groups similar size, it is not
required

4. Run the proposed method on the full set of historic data. This step might help
with solving problems in the future. The data should be analyzed for both “good”
parts as well as “bad” parts. If in the future a certain set of changes has been
detected, then comparing it to historical data and finding similar set of changes
with the current issue might help solving the problem and also predicting the
quality of the products or even predicting an eminent failure.

5. Start the real time monitoring using the target values from step 1 and deviations
from step2

6. For reporting purposes, the recommendation would be to have three output
charts side-by-side that show the current period, averages of year-to-date and
averages of historical data from similar timeframe (for example: all the Julys
in history). This might help understanding trends and also helps in the case of
autocorrelated data

7. Different levels of management are assumed to be interested in different level
of data. The department head is interested in the machine level report in their
department. The factory manager is interested in department level report and
CEO is interested in the factory level report. Each level can dig deeper if more
precise analysis is needed.

8. Prior knowledge of the distributions of the variables is not required, because the
decisions are based on the comparison with the historical data that can be chosen
on the basis of “good” products.

The addition of new machines is not an issue, because all the statistics are
generated based on all the available time and they are percentage of that. New
machines adds to the total time.
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5.2 Implementation in Big Data Environment

MapReduce is a framework for executing highly parallelizable and distributable
algorithms across large datasets using hundreds or thousands of commodity com-
puters [20]. A MapReduce algorithm does parts of the calculations in the server that
the data segment is stored in parallel (hence the name “parallel computing”).

MapReduce consists of two procedures that the user must develop: mapping and
reducing. The system manages the parallel execution, coordination of tasks that
execute mapping or reducing and also deals with possible failures of some of the
tasks execution. In the mapping procedure, the data segment in each server is split,
sorted and filtered. If needed, other calculations are also carried out. Users must
define two critical parameters that are used as the input and output of each server:
key and value. The key is the identification parameter that depends on the goal of
the algorithm and the value is the output of the segment in that server. All the key-
value pairs are collected by master controller and divided among all Reduce tasks
in a way that all the pairs with same key end up in the same Reduce task [21].

In the reducing procedure, the outputs of the mapping procedures are shuffled
and sorted based on the key defined in the mapper and then reduced by combining
the values defined previously in some manner defined by the user.

The proposed method could be turned into MapReduce function using following
logic. The assumption is that all the targets and standard deviations are stored in the
top-level computer so they can be accessed by the program at any time. The data is
assumed to have timestamp and variable identification for each measurement. In the
mapper function the distances are calculated, colors are assigned, the machine level
is assigned. The output is timestamp, machine ID and the color assignment.

In the reducer function the summarization of the colors are made based on the
level on interest of the user. This is where the resolution of the report is set. The
output would be the traffic light for the timeframe and location under investigation.
Details of MapReduce algorithm applied to the proposed method will be reported in
another study.

6 Conclusions

An enterprise-level monitoring system is proposed. All the raw data is transformed
into distances from target. The distances are then classified into colored groups
with the help of the precontrol chart idea. All the variables associated with a
machine are then used to classify the machine into a color class according to
the group control chart idea. The resulting counts are turned into percentages of
time and that statistic is used to determine if the process is changed or not. The
simulation studies show that the proposed method is capable of handling 1000
variables per department and produce good results with different scenarios. A
recommendation for implementation of it in real-life situation is proposed as well as
a recommendation for Big Data application with the help of the MapReduce method.
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The proposed method has following characteristics:

1. It is capable of detecting changes, also identify the spatial and temporal space of
the change

2. It does not use covariance matrix, which makes the calculation much easier
3. It is easily scalable from a few to 1000 process variables
4. It can be extended in Big Data format
5. It does not require previous knowledge of distributions

Future studies include implementation of the proposed method on different types
of data, such as profile data and binary data. In addition, the proposed method may
be able to be integrated into a maintenance planning—usually a topic traditionally
studied from the field of reliability. Finally, the proposed method may be applied to
supply chain applications.
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Enhanced Cumulative Sum Charts Based
on Ranked Set Sampling

Mu’azu Ramat Abujiya and Muhammad Hisyam Lee

Abstract The cumulative sum (CUSUM) control charts are widely used for
the monitoring of normal processes for changes in the location and dispersion
parameters. This study presents several CUSUM charts designed structures based
on the ranked set sampling (RSS) data for overall efficient detection of changes
in the process mean and variance. The run-length properties of these charts are
examined and compared to the classical CUSUM location and dispersion charts.
Results show that the application of RSS technique has significantly improved upon
the standard CUSUM chart. Using real RSS data set, we present a practical example
of the implementation of the CUSUM schemes.

Keywords Average run length · CUSUM · Quality control chart · Ranked set
sampling · Statistical process control

1 Introduction

The history of quality control goes back to the beginning of manufacturing and
competition associated with the manufactured products. The scientific foundation
of quality control as per how many random samples of products from a production
line to inspect and what conclusions to draw from the sampled products gave birth to
the statistical process control (SPC). A control chart is a well-known SPC tool used
in modern industries to monitor the quality characteristics of processes effectively.
It has also found applications in non-manufacturing sectors. The Shewhart control
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chart proposed by Shewhart [1] is the first control chart and is still very popular
among the practitioners of quality control. The chart is based on the most-recent
information in the sampled products and completely ignores all the past information
and as such only sensitive to large changes in a process. To detect small changes,
alternative control charts that put its weight on both the past and the current
information in the sampled products, such as the cumulative sum (CUSUM) chart
by Page [2] were introduced. The CUSUM charts have been accepted, widely, for
monitoring production processes because of their effectiveness in detecting small to
moderate changes in a process. Moreover, the Shewhart chart is a special case of the
CUSUM chart obtained by setting the decision interval or the control limits equal
to zero [3].

To construct a classical two-sided CUSUM control chart, let x1j, x2j, x3j, . . . , xnj;
j = 1, 2, 3, . . . , m be independent and identically distributed random samples of
the quality characteristic of interest of subgroup size n. Suppose that the in-control
process follows a normal distribution with a known mean μ0 and standard deviation
σ 0. For example, if changes in the process location parameter is of interest, define
the mean of the jth sample as xj = (1/n)

∑n
i=1xij and the standardized statistic of

xij to be zj = √
n
(
xj − μ0

)
/σ0. Then the upper and lower sided CUSUM statistics

for monitoring the process mean are defined as:

CUSUM+
j = max

[
0,CUSUM+

j−1 + zj − k
]

(1)

CUSUM−
j = max

[
0,CUSUM−

j−1 − zj − k
]

(2)

where max[a, b] is the maximum of a and b. The constant k is the control chart
allowance popularly called the reference value and is determined based on the
anticipated shift δ in the process mean level of a quality characteristic. The initial
values CUSUM+

0 and CUSUM−
0 are usually set equal to zero. If either CUSUM+

0
or CUSUM−

0 exceeds the control limit h > 0, then the process is assumed to have
shifted from μ0 to μ0 + δ (σ0/

√
n
)
. That is, the process is out-of-control. Several

modifications have been made in the literature to improve the sensitivity of a
standard CUSUM chart introduced by Page [2]. However, most of the recommended
design strategies are based on random sampling [4].

Recently, the ranked set sampling (RSS) technique has found applications in the
development of quality control charts. The scheme is gaining popularity among
some investigators in monitoring the process mean and variance of a normal
process. See, for example, Muttlak and Al-Sabah [5], Abujiya and Muttlak [6],
Al-Nasser and Al-Rawwash [7], Al-Sabah [8], Al-Omari and Al-Nasser [9], Jafari
and Mirkamali [11], Al-Omari and Haq [11], Mehmood et al. [12], Haq et al.
[13], Mehmood et al. [14], Abujiya et al. [15], Abujiya et al. [16], Abujiya et
al. [17], Abujiya et al. [18], Abid et al. [19], Abujiya et al. [20] among others.
The RSS procedure suggested by McIntyre [21] in the estimation of population
mean of pasture yields uses inexpensive judgment ranking. The samples produce
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by the RSS scheme are more representative of a population than the classical
random sampling. Particularly, when the exact measurement of variable of interest
is expensive, difficult or time-consuming but could readily be ranked visually or
by some cost-effective methods that do not require the precise measurements of
the variables. The mathematical foundation for the RSS method was developed
by Takahasi and Wakimoto [22]. This study presents the construction of several
CUSUM location and dispersion charts based on RSS technique and its variations
for monitoring normal processes.

2 Designing CUSUM Charts Based on RSS Data

To improve the classical design of some control charts, RSS has achieved some
remarkable enhancements. The scheme has particularly been used to increase the
sensitivity of a basic CUSUM control chart to monitor the process location parame-
ter as can be seen in Al-Sabah [8], Haq et al. [13], Abujiya et al. [16] among others.
Furthermore, Abujiya et al. [15], Abujiya et al. [17] and Abujiya et al. [18] have also
used the method to improve the performance of the basic CUSUM dispersion charts.
Below is brief background information on RSS technique followed by CUSUM
design structure based on the RSS schemes.

2.1 RSS Technique

The RSS methodology has established itself as an efficient data collection method in
major research areas, including process monitoring. For a comprehensive review on
the theory and applications of RSS, see Chen et al. [23]. More recent contributions
can be found in Wolfe [24] and Al-Omari and Bouza [25], and the references therein.

2.1.1 The Setup

The procedure for collecting ranked set samples as suggested by McIntyre [21] can
be summarized as outlined below:

(a) Identify n2 samples from the target population.
(b) Randomly allocate these samples into n sets, each of size n units.
(c) Rank the n units in each set by judgement or any cost-effective method,

concerning a variable of interest.
(d) The unit with the lowest rank is selected from the first set, the unit with the

second lowest rank is selected from the second set, and so on, until the unit with
the highest rank is selected from the last nth set.

(e) The steps (a) through (d) may be repeated m times to collect a balanced RSS
sampled data of nm units.
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Fig. 1 Design of a ranked set sample on a bottle filling process with set size of n = 3

The above procedure is illustrated in Fig. 1, as we consider an example on the
filling up of a bottle in a production line of a bottling company. In this example,
the variable of interest is the amounts of the liquid inside a bottle, and this could
be a soft drink, mineral water, vegetable oil, milk, honey, paint, etc. Considering
a sample size is three, randomly collect nine bottles from the production line and
divide them into three sets, each of size three. Using the level of the liquid, visually
rank the bottles in each of the three sets from the least to the highest filled. Repeat
the process and the main diagonal bottles, of each cycle, constitute the RSS data.
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2.1.2 Location and Dispersion Parameters

Let X11, X12, . . . , X1n, X21, X22, . . . , X2n, . . . , Xn1, Xn2, . . . , Xnn be
independent random samples each of size n and assume that all samples have the
same cumulative distributive function F(x), with mean μ and variance σ 2. Suppose
Xi(1 : n), Xi(2 : n), . . . , Xi(n : n) is the corresponding order statistic of Xi1, Xi2, . . . , Xin

for i = 1, 2, . . . , n. Then X(1 : 1), X(2 : 2), . . . , X(n : n) is the RSS data for one cycle.
For m repeated cycle, denote the ith order statistic of the ith sample of size n in the
jth cycle by X(i : n)j. The RSS estimate for the location parameter μ, is an unbiased
estimator regardless of the judgement ranking errors [22]. It is defined by

Xrss = 1

nm

∑m

j=1

∑n

i=1
X(i:n)j , (3)

and its variance is given to be

Var
(
Xrss

) = 1

nm

[
σ 2 − 1

nm

∑m

j=1

∑n

i=1

(
μ(i:n)j − μ)2

]
. (4)

Here, μ(i : n) is the mean of the ith ranked set X(i : n) which is defined as

μ(i:n) =
∫ ∞

−∞
x

n!
(i − 1)! (n− i)!F

i−1(x)[1 − F(x)]n−1f (x) dx, (5)

where f (x) is the probability density function of the random samples Xi1, Xi2, . . . ,
Xin; i = 1, 2, . . . , n [26].

For the measure of variation, the RSS estimate for the process standard deviation
σ , is an unbiased estimator [27], and is given by

Srss =
√

1

nm− 1 + γn
∑m

j=1

∑n

i=1

[
X(i:n)j −Xrss

]2
, (6)

where γn = (1/n)
∑n
i=1v

2
(i:n) is a correction constant and υ(i : n) = [μ(i : n) − μ]/σ .

The numerical values of υ(i : n) for set sizes n = 2, 3, 4, 5, 6 and 10 can be found in Yu
et al. [28]. The expectation and standard deviation of Srss are defined as E (Srss ) =
c∗4σ and σ (Srss) = c∗5σ , respectively, where c∗4 and c∗5, are the S chart constants
[15] which are sample size dependent.

Many researchers have shown that the use of sample range as a measure of
variation is equally effective but probably not as effective as the standard deviation
which is the natural measure of process dispersion. The choice of range is because
of its simplicity to compute. Thus, we define

Rrssj = ∣∣X(n:n)j −X(1:1)j
∣∣ , (7)
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to be the sample range of set size n in the jth cycle of RSS data, and the average as

Rrss = 1

m

∑m

j=1
Rrssj . (8)

We also define the mean and the standard deviation of Rrss to beE
(
Rrssj

) = d∗
2σ

and σ
(
Rrssj

) = d∗
3σ , respectively, where d∗

2 and d∗
3 are the R chart parameters [15].

Like c∗4 and c∗5, the constants d∗
2 and d∗

3 are also sample size n dependent.

2.1.3 Imperfect Ranking

In RSS setup, the ranking of the variable of interest X may not always be perfect as
a result of wrong human judgments. Thus, an imperfect ranking of units or ranking
based on the auxiliary variable, denoted by Y, may be unavoidable. In such case, the
values of the auxiliary variable Y are used to rank the values of the main variable X.
The usual practice is to use an auxiliary variable that is highly correlated with the
variable of interest as the accuracy of the ranking depends on the linear relationship
between X and Y. To study the effect of imperfect ranking, assume that the pair
(X, Y) follows a bivariate normal distribution and that the regression of X on Y is
linear. Thus, by Stokes [29] we have

X = μX + ρXY (σX/σY ) (Y − μY )+ ε, (9)

where μX , μY are the process means of X and Y; σX , σ Y are the process standard
deviations of X and Y; ρXY is the correlation between X and Y; and ε is the error term
which is independent of Y. Here, ε is assumed to have a mean of zero and standard

deviation σX
√

1 − ρ2
XY . For the corresponding RSS model, let X[i : n]j denotes the

ith judgment order statistic of the study variable X based on auxiliary variable Y,
then the above equation can be written as

X[i:n]j = μX + ρXY σX
σY

[
Y(i:n)j − μY

]+ εij , (10)

where Y(i : n)j are the perfectly ranked ordered statistics on Y. Thus, we can replace
X(i : n)j in Eqs. (3), (6) and (7) by X[i : n]j to obtain the corresponding imperfect RSS
estimators for the process mean, standard deviation and range. Note that imperfect
ranking is a special case of perfect ranking when ρXY = 1.

2.1.4 RSS Variants

In practice, an increase in the relative efficiency of RSS scheme is achievable when
the variations such as the median RSS (MRSS), and the extreme RSS (ERSS) are
used instead of the balanced scheme. These variants of RSS are easier to execute and
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have fewer errors associated with ranking of units. The MRSS scheme suggested by
Muttlak [30] involves the measurement of the middle-most value (for odd set size)
or two middle-most values (for even set size) in step d of Sect. 2.1.1. MRSS is
an outlier-resistant scheme that gives a better and more robust location estimator
than the balanced RSS, particularly for samples that contain outliers. The MRSS
estimators for the population mean for odd and even set sizes are respectively given
by:

Xmrss o = 1

nm

∑m

j=1

∑n

i=1
X(i:(n+1)/2)j (11)

Xmrss e = 1

nm

∑m

j=1

[∑n/2

i=1
X(i:n/2)j +

∑n

i=n/2+1
X(i:(n+2)/2)j

]
, (12)

where X(i : (n + 1)/2) is the ith median for an odd set size and, X(i : n/2) and X(i : (n + 2)/2)
are the middle-most values for the ith set of an even set size. For more information,
see Muttlak [30].

The ERSS is also a variant of RSS that was suggested by Samawi et al. [31].
Like the MRSS, the ERSS does not require complete ranking of units. The scheme
involves the quantification of the smallest and largest ranked units in step d of
Sect. 2.1.1 (for even set size). If the set size is odd, the median observation is
measured from one set in addition to the extreme values from the other sets. Shaibu
and Muttlak [32] reported that if the underlying distribution normal, the ERSS is
more efficient in estimating the process variance than the balanced RSS scheme.
Sinha and Purkayastha [27] define the unbiased estimator for the process standard
deviation as

Serss =
√

1

n− 1 + γn
∑m

j=1

∑n

i=1

[
X(i:e)j −Xerss

]2
, (13)

where X(i : e)j is the ith ERSS observation in the jth cycle and Xerss =
(1/n)

∑m
j=1

∑n
i=1X(i:e)j is the ERSS estimator for the process mean. The

constant γn = (1/n)
∑n
i=1v

2
(i:e), is a known constant, with the values of

υ(i : e) = [μ(i : e) − μ]/σ presented in Yu et al. [28].

2.2 CUSUM Location Charts Based on RSS

In constructing a CUSUM chart to monitor the process location parameter, it is
normally assumed that the process is initially stable (in-control) with mean μ0 and
standard deviation σ 0, and becomes unstable (out-of-control) at some point in time
with a shift in mean from μ0 to μ1 = μ0 + δσ0/

√
n. Here, δ = √

n |μ1 − μ0| /σ0
is the amount of shift in the process mean. Define the standardized RSS location
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parameter to beZrss j = (
Xrss j − μ0

)
/σXrss , and the two-sided CUSUM statistics

for monitoring increases and decreases in the process mean level [6, 16] are
respectively, given by

L+
rssj = max

[
0, L+

rssj−1 + Zrssj − k
]

(14)

L−
rssj = max

[
0, L−

rssj−1 − Zrssj − k
]
, (15)

where k = (μ1 − μ0)/2 is called the reference value. It is customary to set the
initial values of the CUSUM statistics L+

rss 0 and L−
rss 0 equal to zero. Whenever

L+
rss j or L−

rss j exceed the pre-determined control limit denoted by h, the CUSUM
control chart signals. The h is often selected to give a specified in-control run length
property.

2.3 CUSUM Dispersion Charts Based on RSS

In monitoring changes in the process variability, we assume that the process is
initially in-control with mean μ0 and standard deviation σ 0. After some time, the
process goes out-of-control with a change in process standard deviation from σ 0 to
σ 1 = τσ 0, where τ = σ 1/σ 0 is the amount of shift in the process standard deviation.
The measure of variation considered in this study, includes the sample range and
standard deviation. Let Vrss j denote the either of the RSS based variation measure
Rrssj or Srssj. We define the standardized two-sided CUSUM statistics to monitor the
process dispersion [15] as

D+
rssj = max

[
0,D+

rssj−1 + (
Vrssj /σ0

)− k
]

(16)

D−
rssj = max

[
0,D−

rssj−1 − (
Vrssj /σ0

)+ k
]
, (17)

where D+
rss 0 = D−

rss 0 = 0. Here, we have k = dn(1 + τ )/2 with dn = Rerss/σ0 for
the R chart and k = cn(1 + τ )/2 where cn = (1/σ 0)E(Srss) for the S chart. Thus, the
RSS CUSUM dispersion chart gives a signal when either D+

rssj > h or D−
rssj > h.

Using simulation of 106 replicated iterations, Abujiya et al. [15] gave the estimated
values of d∗

2 , d∗
3 , c∗4 and c∗5 for different sample sizes and RSS schemes which are

partly re-produced in Table 1.
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Table 1 R and S chart constants for RSS and ERSS of normal order statistics

d∗
2 d∗

3 c∗4 c∗5
Sample size n RSS ERSS RSS ERSS RSS ERSS RSS ERSS

2 1.327 1.327 0.937 0.937 0.817 0.817 0.577 0.577
3 1.929 1.929 0.907 0.907 0.906 0.906 0.422 0.422
4 2.305 2.850 0.855 0.861 0.941 0.958 0.339 0.288
5 2.574 3.090 0.813 0.819 0.958 0.969 0.286 0.248
6 2.781 3.640 0.781 0.754 0.969 0.982 0.249 0.191
7 2.949 3.779 0.757 0.736 0.975 0.985 0.220 0.174
8 3.090 4.139 0.738 0.695 0.980 0.990 0.199 0.144
9 3.210 4.236 0.722 0.684 0.983 0.991 0.182 0.136
10 3.315 4.498 0.708 0.657 0.986 0.993 0.167 0.117

3 Performance Measure

Statistical performance of control charts is usually evaluated using the average
run length (ARL). The ARL is the mean of the run-length distribution which
is the average number of samples taken until an out-of-control signal is given.
The standard deviation of the run length (SDRL) distribution is also often used
as a supplementary measure of performance. Together, the two metrics measures
how quickly a control chart to respond to changes is a process. The run-length
properties of a CUSUM chart can be computed either by the approximation of an
integral equation, Markov Chain or Monte Carlo simulation. Following Hawkins
[33], Chang and Gan [34], Mehmood et al. [12], Haq [35] among others, this
study uses the Monte Carlo simulation approach through an algorithm developed
in FORTRAN.

3.1 Measuring Indices

An efficient CUSUM control chart is one that has sufficiently large in-control ARL
(ARL0) and SDRL (SDRL0) values and small out-of-control ARL (ARL1) and
SDRL (SDRL1) values when a shift in the process parameter occurs. The large
value of ARL0 is required to guide against unnecessary false alarms, while a chart
with smaller ARL1 and SDRL1 at more shift values is considered more efficient. In
addition to the computations of ARLs and SDRLs, which measure performance of
a control chart at only some specific points, we have calculated the Extra Quadratic
Loss (EQL) to measure the overall effectiveness of the CUSUM charts (cf. Wu et
al. [36] and Wu et al. [37]). The EQL measures the performance of a control chart
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over some shift intervals rather than at some specific shift values. If ϕ denotes either
δ mean shift or τ shift in standard deviation, then

EQL = 1

ϕmax − ϕmin

∫ ϕmax

ϕmin

ϕ2ARL (ϕ) dϕ (18)

where ϕmax and ϕmin are respectively, the upper and lower bounds of the desired
shift, while ARL(ϕ) is the ARL value of a particular chart at ϕ. The EQL of a
CUSUM chart can be calculated using numerical integration or approximated by
the summation EQL = (1/r)

∑r
i=1ϕ

2ARL (ϕ), where r is the number of equally
divided shifts from ϕmin to ϕmax. A control chart with the smallest EQL value is
considered the most efficient chart.

3.2 Evaluating CUSUM Location Charts

The evaluate the CUSUM location chart, we assume that for a fixed standard devi-
ation σ 0, both the in-control and out-of-control processes are normally distributed
with mean μ0 and μ1 = μ0 + δ (σ0/

√
n
)
, respectively. Thus, the mean shift δ is

equal to zero when the process is in-control and a value of δ > 0 is an indication
that the process is out-of-control. Without loss of generality, we assume μ0 = 0 and
σ 0 = 1. Using simulation of 105 iterations for each mean shift δ level in a process,
we compute the run length properties of the RSS CUSUM charts and its median
variation. Using a set size of n = 5, k = 0.25, 0.5, 0.75 and 1.0, the control limit h
is adjusted to obtain the desired in-control ARL0 values of 100, 300 and 500.

For the other choices of ARL0 values, the pair (h, k) can easily be worked out.
Tables 2, 3, and 4 presents the ARL (cf. Al-Sabah [8], Abujiya et al. [16]) and EQL
values for the classical, RSS and MRSS based CUSUM location control charts. We
have presented only the SDRL values for ARL0 = 100 in Table 5, since others have
similar conclusion [16].

3.3 Evaluating CUSUM Dispersion Charts

To measure the performance of CUSUM dispersion chart, we assume that both the
in-control and the out-of-control processes are both normally distributed with mean
μ0 but with different standard deviation σ 0 and σ 1 = τσ 0, respectively. Here, the
process is said to be in-control if the shift in standard deviation τ = 1, while an
out-of-control condition is indicated by τ �= 1. Unlike the value of δ, here τ could
either be greater or less than one, i.e., τ > 1 or τ < 1, which represents an increase
and decease in process standard deviation, respectively. Like the location chart, we
assume without loss of generality that the stable process has μ0 = 0 and σ 0 = 1.
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Considering only the case when the in-control ARL0 = 200, we have evaluated
the run length properties of the CUSUM dispersion charts using RSS and its extreme
variation via simulation study of 105 iterations for each shift τ in the process
variability.

Using a set size of n = 5 and setting k = dn(1 + τ )/2 (CUSUM R chart) or
k = cn(1 + τ )/2 (CUSUM S chart) to the required percentage of detection, the
control limit h is adjusted to obtain the target ARL0 value of 200. All the dispersion
charts were designed to detect upward shifts (τ > 1) and downward shifts (τ < 1)
of 20%, 30%, 40% and 50% in the process standard deviation. Tables 6, 7, 8, 9, 10,
and 11 presents the ARL and SDRL values for the classical, RSS and ERSS based
CUSUM R and S charts for different shift value τ . The approximated EQL values
are also displayed in Tables 6, 8, 9 and 10.

4 Results and Discussion

4.1 Performance of CUSUM Location Charts

Based on the ARL, SDRL and EQL values for the classical, RSS and MRSS
CUSUM control charts presented in Tables 2, 3, 4, and 5, we summarize our findings
below. We have reported only the SDRL values for ARL0 = 100 (cf. Table 5) since
the resulting pattern is the same for other ARL0 values.

1. The low values of ARL1 shows that the use of RSS and its median variant has
greatly enhanced the sensitivity of CUSUM chart in the quick detection of small,
moderate and large shifts in the process mean (cf. Tables 2, 3, and 4).

2. With in-control ARL0 fixed, and given reference value k, there is no significant
difference between the control limits h of the RSS scheme and those of the
classical CUSUM control charts (cf. Tables 2, 3, and 4). Observe that h is
indirectly proportional to k.

3. In the out-of-control cases when δ > 0, the values of ARL1 and SDRL1 for the
RSS and MRSS based CUSUM charts decreases more rapidly than the classical
charts, as the shift in mean value δ increases (cf. Tables 2, 3, 4, and 5).

4. The in-control SDRL0 values of the three CUSUM control charts appeared to be
in agreement, and relatively very close to the corresponding ARL0 values except
when k < 0.5. The difference is very minimal as k gets larger (cf. Table 5).

5. Similar to the classical chart, the ARL1 and SDRL1 values reveal that the RSS
and MRSS CUSUM charts are very effective in detecting small changes δ ≤ 0.5,
in the process mean when k is small. However, the charts are more sensitive to
larger shifts when the value of k is large.

6. The RSS and MRSS have both maintained all the properties of the classical
chart, including its advantage for early detection of small changes in the process.
Moreover, the RSS schemes have improved the monitoring of large shifts in the
process mean (cf. Tables 2, 3, 4, and 5).
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7. On the overall, the smaller EQL values of RSS and MRSS show the immediate
benefit of using the schemes in constructing CUSUM charts. As expected, the
outlier-resistant MRSS is the most efficient with the ability to detect a wide range
of shifts in the process mean than the RSS and classical charts (cf. Tables 2, 3,
and 4).

4.2 Performance of CUSUM Dispersion Charts

To access the performance of the CUSUM R chart and CUSUM S chart using RSS
schemes, we refer to the ARL, SDRL and EQL values presented in Tables 6, 7, 8, 9,
10, and 11. We have reported only two tables for SDRL values (cf. Tables 7 and 11)
to save space. In addition to Tables 6, 7, 8, 9, 10, and 11, we have also presented the
ARL and EQL values for the classical, RSS and ERSS CUSUM R and S charts when
ARL0 = 500 with 30% σ increase and decrease in Table 12, for a quick comparison
of the dispersion charts. Hence, we summarize our findings as follows:

1. The in-control SDRL0 values of the classical, RSS and the ERSS are very
similar with no significant differences from the corresponding ARL0 values.
Interestingly, SDRL0 values of the ERSS CUSUM charts are closer to the target
value of 200 (cf. Tables 7 and 11).

2. The ARL1 and SDRL1 values of RSS and ERSS decreases more rapidly than the
classical case when the shift in standard deviation increases (τ > 1), (cf. Tables
6, 7, and 9), or decreases (τ < 1), (cf. Tables 8, 10, and 11). If τ < 1, the h value
is directly proportional to k and indirectly proportional when τ > 1.

3. There appear to be no much difference between the CUSUM R chart and
CUSUM S chart when changes in the downward shifts if of interest. However,
the ERSS CUSUM S chart is more effective in detecting decreases in the process
standard deviation than others (cf. Tables 6, 7, 8, 9, 10, and 11).

4. Small values of EQL for the RSS and ERSS CUSUM R and CUSUM S charts
over the classical chart, shows the significant improvements on the overall
effectiveness of the scheme in monitoring the process variability (cf. Tables 6,
7, 8, 9, 10, and 11).

5. The ERSS CUSUM dispersion charts are more efficient, regarding ARL, SDRL
and EQL values than its RSS counterpart. Furthermore, the ERSS CUSUM S
chart dominates all the other scale charts in detecting increases and decreases in
the process standard deviation (cf. Table 12). The charts are arranged from left
to right based on their overall effectiveness.
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4.3 Effect of Imperfect Ranking

The ranking of units based on the auxiliary variable discussed in Sect. 2.1.3, may
affect the efficiency of RSS estimators and could have a negative impact on the
performance of control charts based on RSS techniques. To access the performance
of the imperfect RSS schemes, namely, imperfect RSS (IRSS), imperfect MRSS
(IMRSS) and imperfect ERSS (IERSS), we follow the corresponding perfect
ranking procedure where bivariate random samples are generated from a standard
normal distribution. Using Monte Carlo simulation, we set n = 5, in-control
ARL0 = 740, correlation coefficients ρXY = 0.25, 0.50, 0.75 and 0.90 and compute
the run length properties for the two-sided CUSUM control charts based on IRSS,
IMRSS and IERSS when k = 0.5 for different shift values. In RSS technicality, both
the traditional random sampling and perfect ranking are special cases of imperfect
ranking with of ρXY = 0 and ρXY = 1, respectively. Tables 13 and 14 presents
the ARL, SDRL and EQL values for the IRSS and IMRSS based location charts.
Graphical displays of ARL curves for the IERSS CUSUM dispersion charts are also
given in Fig. 2.

Observations from the obtained results shows that ranking errors does have
negative impact on the performance RSS schemes based control charts but very
negligible particularly as ρXY gets larger. Both the IRSS and IMRSS CUSUM
location charts have smaller ARL1 and SRDL1 values than their corresponding
classical chart irrespective of the errors associated with ranking of the variables.
That is, regardless of the imperfectness in the ranking of units, the RSS schemes
are more effective in detecting changes in the process mean level. This point is
also supported by the EQL as its value decreases from left to right, with IMRSS
dominating others. Interestingly, the ARL0 and SRDL0 values are also in agreement
and approximately close to the target value.

The log ARL curves designed to detect 20% upward shift in standard deviation
and presented in Fig. 2, shows that both the R and S CUSUM control charts based
on IERSS procedure is doing great despite the presence of ranking errors. All the
IERSS curves are lower in terms of the log ARL values than the classical charts.

4.4 An Application Example on the Filling of Bottles

This application example is based on an industrial data on filling up of the bottle
problem, obtained from a production line of the Pepsi-Cola production company,
Al-Khobar, Saudi Arabia (cf. Muttlak and Al-Sabah [5], Abujiya et al. [16], Abujiya
et al. [15]). Following Takahasi and Wakimoto [22], we re-sampled the original data
set to obtain thirty MRSS and ERSS samples each of set size n = 5, of which the last
ten data points were contaminated. The statistics of CUSUM X and S charts were
computed and using the in-control ARL0 of 200. We used k = 0.5 for the location
chart and the dispersion chart was designed to detect a 20% increase in the process
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Fig. 2 ARL curves for IERSS vs. classical CUSUM R and CUSUM S charts for detecting 1.2σ
(n = 5, ARL0 = 740)
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Fig. 3 Classical CUSUMX chart vs. RSS and MRSS CUSUMX chart for monitoring the process
mean

variability following Hawkins and Zamba [38]. For more details, see Abujiya et al.
[15] and Abujiya et al. [17]. Figures 3 and 4 present graphic control charts of the
classical versus RSS based CUSUM chart.

From the location chart in Fig. 3, it is observed that the RSS and MRSS CUSUM
X charts gives earlier signals than the classical chart based on random sampling.
Observe that even though the contamination was introduced after the 20th data
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Fig. 4 Classical CUSUM S chart vs. ERSS CUSUM S chart for monitoring the process variability

point, the classical chart gives only two off-target point as compared to the four
and five out-of-control signals of RSS and MRSS schemes, respectively. The use of
RSS scheme in the construction of CUSUM S chart is also not doing badly as can be
seen in Fig. 4. Based on the used data, the classical chart gives four out-of-control
signals while the corresponding ERSS gave six off-target points. In both the figures,
all control charts signify adrift in the process right from the 21st data point, but the
classical chart appears to be dragging feet to signal in Fig. 3, while in Fig. 4, the
tighter control limit of the ERSS scheme puts it at an advantage over the classical
chart with a wider limit.

5 Conclusions

This study examines the performance of several CUSUM location and dispersion
charts based on RSS and its variations for effective monitoring of changes in
a normal process. From the run length properties obtained via simulation, we
observed a great deal of improvements in the sensitivity of the CUSUM charts
using RSS schemes over the standard CUSUM charts based on random sampling.
For location chart, the outlier-resistant MRSS CUSUM X chart is more effective
in monitoring the process mean than its corresponding balanced RSS and classical
counterparts. Hence, the use of the median variation of RSS technique to enhance
the sensitivity of basic location charts structure is recommended to quality control
engineers.

The run length performance of the CUSUM R chart and CUSUM S chart for
monitoring the process standard deviation were also evaluated. The structures were
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based on the classical, RSS and ERSS data collection techniques. We found the
ERSS CUSUM S chart more efficient than other dispersion control charts. This
point is equally supported by the real data application example in the problem of
filling the bottles. Thus, we recommend the use of the extreme variation of RSS
to improve the performance of classical charts for quick detection of changes in
the process variability. The scope of study be extended to the design strategies of
multivariate control charts.
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A Survey of Control Charts for Simple
Linear Profile Processes
with Autocorrelation

Jyun-You Chiang, Hon Keung Tony Ng, Tzong-Ru Tsai, Yuhlong Lio,
and Ding-Geng Chen

Abstract In quality control, the quality of process or product can be characterized
by a profile that defines as a functional relationship between a quality response
variable and one or more explanatory variables. Many research works have been
accomplished on statistical process control for simple linear profile with indepen-
dent or autocorrelated observations. This chapter will serve as a review of some
recent works on statistical quality control on autocorrelated simple linear profiles.

1 Introduction

In many statistical process control (SPC) applications, the quality of a product can
be characterized by a functional relationship between a response variable and one
or more independent variables. This functional relationship is often called profile.
The profile that links a response variable to the explanation variables can be linear
and nonlinear in nature. In statistical quality control, Jensen et al. [6] considered a
general linear profile model withm profiles. We assume that there are n observations
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in each of the j -th profile, j = 1, 2, . . . , m. The general linear profile model is
defined as

yj = γ 0,j + Xjγ j + Zjbj + εj , (1)

where yj is a n×1 vector of responses, Xj is a n×pmatrix of the regressor variables
associated with the fixed effects, γ j is a p × 1 parameter vector of coefficients
for the fixed effects, Zj is a n × q matrix of predictors associated with random
effects, bj ∼ MN(0,D) is a q × 1 vector of random effect coefficients,MN(0,D)
denotes a multivariate normal distribution with zero mean vector 0 and positive
definite variance-covariance matrix D, εj ∼ MN(0,Rj ) is a n× 1 vector of errors,
and MN(0,Rj ) is a multivariate normal distribution with zero mean vector 0 and
positive definite variance-covariance matrix Rj for j = 1, 2, · · · ,m. If the errors
are assumed to be independent, then Rj = σ 2I where I is the identity matrix.
If the errors are correlated, Rj is often assumed as a simple form such as the
autoregressive (AR) model in order to reduce the number of covariance parameters
needed to be estimated. When Eq. (1) is reduced to the model that has only one fixed
effect regressor variable and no random effect terms, the profile model is called a
simple linear profile (SLP) model. The currently developed SPC on SLP models
have been focused on the same levels of fixed effect regressor for all the profiles.
Therefore, the SLP model can be defined as

yi,j = γ0 + xiγ1 + εi,j , (2)

where yi,j is the response in the j -th profile at the i-th level of predictor, xi ,
γ0 is the intercept, γ1 is the model parameter for the predictor and εi,j are
N(0, σ 2) distributed for i = 1, 2, · · · , n and j = 1, 2, · · · ,m. SPC methods
that involve monitoring a SLP process have drawn considerable attention over the
past two decades because a SLP model is easy to handle and can be applied to
many production processes. Process monitoring using control charts is a two-stage
process, which has Phase I and Phase II. Phase I is to evaluate the stability of the
process and estimate the in-control values of the process parameters, and Phase
II is to monitor the future online data obtained after Phase I and detect shifts in
the process parameters. In phase I, it is important to confirm the process stability
under a given false alarm rate, i.e., a type-I error probability. In Phase II, the
emphasis is on detecting process change as soon as possible. Both stages are usually
measured by parameters, mean and standard deviation, of the run length distribution,
where run length is the number of samples taken before an out-of-control signal
is occurred. Therefore, the average run length (ARL1) when the process out-of-
control during the Phase II monitoring is often used to compare the performance
of competing control chart methods under a given average run length ARL0 for
in-control Phase I. Numerous studies have been conducted on the use of profile
monitoring methods, for example, Mestek et al. [11], Stover and Brill [17], Kang and
Albin [7], Kim et al. [8], and Mahmoud et al. [10] studied some Phase I monitoring
methods for SLP processes in order to set and evaluate the stability of a process and
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to estimate process parameters. Kang and Albin [7], Kim et al. [8], Noorossana
[13], Gupta et al. [5], Zou et al. [19], and Saghaei et al. [14] studied Phase II
monitoring methods for SLP processes to detect shifts in the process parameters
as soon as possible. Woodall et al. [18] reviewed the research papers related to
SPC using profiles, provided examples of profile monitoring methods, identified
some weaknesses in existing methods and proposed some new research directions.
All the aforementioned studies have assumed that all the m profile models have
the same n values of one fixed effect regressor variable, and the error terms in the
models are independent and follow a normal distribution. When the error terms are
not independent, Noorossana et al. [12] studied a SLP model with error terms that
have a first-order autocorrelation structure between profiles and showed the impact
on the ARL performance of the T 2 control chart proposed by Kang and Albin [7].
In Noorossana et al. [12], three methods based on exponentially weighted moving
average/range (EWMA/R) and T 2 [7] and EWMA-3 [8] were provided to eliminate
the effect of autocorrelation between profiles and the ARL. When the response
variables are produced at set of points over time, the response of a profile are very
often autocorrelated. In this case, Soleimani et al. [16] considered a SLP model with
error terms that follow a first-order autoregressive model (AR(1)) within profile and
suggested the use of Hotelling T 2 control charts and EWMA-type control charts,
namely EWMA-3 charts, for monitoring SLP processes in the presence of within-
profile autocorrelation. These charts are simple to detect process shifts in SLP
processes. The simulation results in Soleimani et al. [16] showed that among many
competitive methods, EWMA-type control charts are the most effective in detecting
shifts in the intercept or slope of a SLP model. Three EWMA control charts are
obtained for EWMA-3 charts by re-parameterizing the SLP model in terms of its
intercept and slope. The intercept of the transformed SLP model being monitored
is a linear combination of the intercept and slope in the original SLP model. The
EWMA-3 charts of Soleimani et al. [16] are less sensitive if the original intercept
and slope shift simultaneously in opposite directions. Chiang et al. [3] investigated
an operational and effective Phase II monitoring method for a SLP model with
error terms follow an AR(1) within-profile. In Chiang et al. [3], a new multivariate
MEWMA control chart, namely MEWMA-SLP chart, was developed on the basis
of the design of Lowry et al. [9] for quickly detecting process shifts associated with
the original intercept or slope in the presence of within-profile autocorrelation.

In this chapter, we survey the work of SLP model with AR(1) autocorrelation
for the error terms. The rest of this chapter is organized as follows. A SLP model
with between-profile autocorrelation and EWMA-3 charts are reviewed in Sect. 2.
In Sect. 3, a SLP model with within-profile autocorrelation is introduced along with
the Hotelling T 2, EWMA-3 and MEWMA-SLP control charts for this SLP model.
In Sect. 4, we present the construction of the two process capability indices studied
by Chiang et al. [3]. In Sect. 5, Monte Carlo simulations are conducted to explore the
performance of the MEWMA-SLP chart are discussed, and the applications of the
proposed process capability indices are illustrated. Finally, conclusions are provided
in Sect. 6.
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2 SLP Model with Between-Profile Autocorrelated
Error Terms

When the error terms in a SLP model satisfy the following autocorrelation structure

εi,j = ρεi,j−1 + ai,j , i = 1, 2, · · · , n, j = 1, 2, · · · ,m, (3)

where ai,j , i = 1, 2, · · · , n, j = 1, 2, · · · ,m are independent and identically
distributed normal random variables with mean 0 and variance σ 2 and the random
error terms εi,j for i = 1, 2, · · · , n within the j -th profile are independent, then the
SLP model is a SLP model with between-profile autocorrelation [12]. Based on the
autocorrelation structure between errors defined in Eq. (3), Noorossana et al. [12]
provided the following autocorrelation structure between two different profiles at
the same level of xi :

yi,j − (γ0 + xiγ1) = ρ(yi,j−1 − (γ0 + xiγ1))+ ai,j , (4)

and the prediction equation, ŷi,j = ρyi,j−1 + (1 − ρ)(γ0 + xiγ1). Although there
exists an AR(1) structure between errors corresponding to each level of predictor
in different profiles in Eq. (4), Noorossana et al. [12] showed that the residual
ei,j = yi,j − ŷi,j equates to ai,j , for i = 1, 2, · · · , n and j = 1, 2, · · · ,m and
the residuals are independent random variables with the expected value E(ei,j ) = 0
and variance var(ei,j ) = σ 2. Hence, ei,j can be monitored using traditional control
charts. Noorossana et al. [12] proposed three methods to monitor the residuals ei,j
for i = 1, 2, · · · , n and j = 1, 2, · · · ,m. Let ēj = ∑n

i=1 ei,j /n for the j -th
profile. The three methods are reviewed as follows. When the model parameters are
unknown, the corresponding maximum likelihood estimates can be used to replace
the values of the model parameters to establish the control charts.

Method 1: EWMA Chart Combining with R-Chart for Monitoring the Error
Variance
The first method is EWMA in combining with R-chart, which is the same as
the control charts used by Kang and Albin [7]. The EWMA chart procedure is
constructed as follows:

Step 1: Define the EWMA sequence using residuals, ei,j for i = 1, 2, · · · , n and
j = 1, 2, · · · ,m, as zj = θ ēj + (1 − θ)zj−1 with 0 < θ < 1 as a smoothing
constant and z0 = 0

Step 2: Define the lower control limit (LCL) and the upper control limit (UCL) for

EWMA chart as LCLEWMA = −Lσ
√

θ
(2−θ)n and UCLEWMA = Lσ

√
θ

(2−θ)n ,

whereL is a positive constant selected to give a specified in-control ARL,ARL0.

The R-chart to detect shifts in the process variance is constructed as follows:

Step 1: Define the R sequence as Rj = maxi(ei,j ) − mini(ei,j ) for the j -th
profile.
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Step 2: Define the lower control limit (LCL) and the upper control limit (UCL)
for the R chart as LCLR = σ(d2 − Ld3) and UCLR = σ(d2 + Ld3), where L
is a positive constant chosen to give a specified in-control ARL0 and the values
of d2 and d3 are constants depending on the sample size n.

Method 2: Modified Hotelling T 2 Control Chart
The second method proposed by Noorossana et al. [12] is a modified Hotelling T 2

control chart studied by Kang and Albin [7]. The modified Hotelling T 2 control
chart is described as follows:

Step 1: Define T 2
j = (ej − 0)�−1(ej − 0)T where ej = (e1,j , e2,j , · · · , en,j ), 0

is a n× 1 zero vector, � = σ 2I and I is a n× n identity matrix.
Step 2: Define the upper control limit as UCLT = χ2

n,α , which is the 100(1 − α)
percentile of the chi-square distribution with n degree of freedom.

Method 3: Modified EWMA-3
The third method proposed by Noorossana et al. [12] is a modified EWMA-3
studied by Kim et al. [8] which was designed to deal with the autocorrelation
between profiles. Noorossana et al. [12] proposed the scaling of the x-variable such
that the average x-value is zero and the transformed SLP model of Eq. (2) with
autocorrelation in Eq. (3) is

yi,j = b0 + x∗
i b1 + εi,j , εi,j = ρεi,j−1 + ai,j , i = 1, 2, · · · , n, j = 1, 2, · · · ,m,

(5)

where x∗
i = (xi − x̄), b0 = γ0 + γ1x̄ and x̄ = ∑n

i=1 xi/n. Noorossana et al.
[12] showed that the AR(1) structure between observations can be transformed into
the intercept and the slope estimators in the successive profiles. Let b̂0,j be the
least squared estimate for b0 and b̂1,j be the least squared estimate for b1 using
the sample from the j -th profile. Noorossana et al. [12] calculated the residual for
the intercept as e0(j) = b̂0,j − ρb̂0,j−1 − (1 − ρ)b0, the residual for the slope
as e1(j) = b̂1,j − ρb̂1,j−1 − (1 − ρ)b1, and the residual as ei,j = yi,j − ŷi,j =
yi,j−ρyi,j−1 −(1−ρ)(b0 +b1x

∗
i ), then the mean squared error (MSE) is defined as

MSEj = ∑n
i=1 e

2
i,j /n for the j -th profile. The process of EWMA-3 that contains

three control charts is described as follows:

Step 1: EWMA-3 for monitoring the intercept b0 is established as follows:

1.1 Define EWMA0(j) = θe0(j)+ (1 − θ)EWMA0(j − 1), where 0 < θ ≤ 1
is a smoothing constant and EWMA0(0) = 0.

1.2 Define the lower control limit (LCL) and upper control limit (UCL) respec-
tively as LCL1 = −L0σ

√
θ/[(2 − θ)n] and UCL1 = L0σ

√
θ/[(2 − θ)n],

where L0 > 0 is chosen to give a specified in-control ARL0.
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Step 2: EWMA-3 for monitoring the slop b1 is established as follows:

2.1 Define EWMA1(j) = θe1(j)+ (1 − θ)EWMA1(j − 1), where 0 < θ ≤ 1
is a smoothing constant and EWMA1(0) = 0.

2.2 Define the lower control limit (LCL) and upper control limit (UCL) respec-

tively as LCL2 = −L1σ

√
θ/[(2 − θ)∑n

i=1 x
∗2
i ] and

UCL2 = L1σ

√
θ/[(2 − θ)∑n

i=1 x
∗2
i ], where L1 > 0 is chosen to give

a specified in-control ARL0.

Step 3: EWMA-3 for monitoring the error variance is established as follows:

3.1 Define EWMAE(j) = max{θ(MSEj − 1)+ (1 − θ)EWMAE(j − 1), 0}
with 0 < θ ≤ 1 as a smoothing constant and EWMAE(0) = 0

3.2 Define the upper control limit as UCL3 = LE
√
θV ar(MSEj )/(2 − θ)

where V ar(MSEj ) = V ar(
∑n
i=1 e

2
i,j /n) = 2σ 4/n and LE > 0 is chosen

to give a specified in-control ARL0.

3 SLP Model with Within-Profile Autocorrelated
Error Terms

When the error terms in a SLP model satisfy the following autocorrelation structure

εi,j = ρεi−1,j + ai,j , i = 1, 2, · · · , n, j = 1, 2, · · · ,m, (6)

where ai,j , i = 1, 2, · · · , n, j = 1, 2, · · · ,m are independent and identically
distributed normal random variables with mean 0 and variance σ 2 and the random
error terms εi,j for j = 1, 2, · · · ,m between any two different profiles are indepen-
dent, then the SLP model is a SLP model with within-profile autocorrelation. Let
y′
i,j = yi,j − ρyi−1,j , then the model based on Eqs. (2) and (6) can be expressed as

y′
i,j = γ ′

0 + γ ′
1x

′
i + ai,j , i = 2, 3, · · · , n, j = 1, 2, · · · ,m, (7)

where γ ′
0 = γ0(1 − ρ), γ ′

1 = γ1, and x′
i = xi − ρxi−1. If the model parameters

are unknown, they are replaced with their corresponding maximum likelihood
estimates. In the Phase II monitoring, the model parameters γ0, γ1, σ 2, and ρ
are treated as known constants. We define the residuals for the j -th profile as
ei,j = y′

i,j − γ ′
0 − γ ′

1x
′
i , i = 1, 2, · · · , n. Following the approach proposed by

Kang and Albin [7] for monitoring independent SLP processes, Soleimani et al. [16]
proposed the four control charts, T 2 method, T 2 based on the residuals, EWMA/R
and EWMA-3, based on the residuals from the transformed model in Eq. (7) to
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monitor SLP processes with within-profile autocorrelation. The first two Hotelling
T 2 charts are stated as follows:

Hotelling T 2 Method for the Transformed Model
Step 1: Let γ̂ ′

0,j and γ̂ ′
1,j be the respective estimators of γ ′

0 and γ ′
1 based on the

j th profile sample.
Step 2: Define T 2

j = [γ̂ ′
0,j , γ̂

′
1,j ] − [γ ′

0,j , γ
′
1,j ]T S−1[γ̂ ′

0,j , γ̂
′
1,j ] − [γ ′

0,j , γ
′
1,j ],

where

S =
[
σ 2(1/(n− 1)+ x̄′2/sx′x′) −σ2x̄

′/sx′x′
−σ2x̄

′/sx′x′ σ2/sx′x′

]
.

Step 3: Under in-control process, T 2 has a central chi-square distribution of two
degree freedom. Therefore, the upper control limit (UCL) for the chart isUCL =
χ2

2,α , where χ2
2,α is the 100(1−α)-th percentile of the chi-square distribution with

two degree of freedom.

Hotelling T 2 Method Based on the Residuals from the Transformed Model
Step 1: Define T 2

j = (ej − 0)�−1(ej − 0)T where ej = (e1,j , e2,j , · · · , en,j ), 0

is a n× 1 vector of zeros, � = σ 2I and I is a n× n identity matrix.
Step 2: Define upper control limit as UCL = χ2

n−1,α , which is the 100(1 − α)-th
percentile of the chi-square distribution with n− 1 degree of freedom.

The EWMA-3 charts for the intercept, slope, and the variance of error terms [16]
can be respectively constructed using the following three charting processes:

Control Chart 1: EWMA-3 Chart for Monitoring the Intercept
The first EWMA-3 chart, namely the EWMA-3I chart, is constructed using the
following steps:

Step 1: Let B0 = γ ′
0 + γ ′

1x̄
′, B1 = γ ′

1, x′′
i = (x′

i − x̄′), and express the model in
Eq. (7) as

y′
i,j = B0 + B1x

′′
i + ai,j , i = 1, 2, · · · , n, j = 1, 2, · · · ,m. (8)

Step 2: Derive the EWMA sequence of the B0 estimates from the equation

ωI (j) = θb0,j + (1 − θ)ωI (j − 1), j = 1, 2, · · · ,m,

where b0,j is the least squares estimate obtained based on the observations in the
j -th subgroup. Furthermore, ωI (0) = B0, and θ (0 < θ ≤ 1) is a smoothing
constant. The control limits can be represented as

LCLI = B0 − LIσ
√

θ

(2 − θ)(n− 1)
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and

UCLI = B0 + LIσ
√

θ

(2 − θ)(n− 1)
,

where LI (> 0) is a control chart parameter.

Control Chart 2: EWMA-3 Chart for Monitoring the Slope
The second EWMA-3 chart, namely the EWMA-3S chart, is constructed using the
following steps:

Step 1: On the basis of the transformations of B0, B1, and x′′
i in Eq. (8), the

EWMA sequence of the B1 estimates can be derived through

ωS(j) = θb1,j + (1 − θ)ωS(j − 1), j = 1, 2, · · · ,m,

where ωS(0) = B1, and b1,j is the least squares estimate obtained based on the
observations in the j -th subgroup.

Step 2: The control limits can be obtained as

LCLS = B1 − LSσ
√

θ

(2 − θ)Sxx
and

UCLS = B1 + LSσ
√

θ

(2 − θ)Sxx ,

where Sxx = ∑n
i=2 x

′′2
i and LS(> 0) is a control chart parameter.

Control Chart 3: EWMA-3 Chart for Monitoring the Error Variance
The third chart, namely the EWMA-3e chart, is constructed using the following
steps:

Step 1: Evaluate the MSE for each profile as

MSEj =
∑n
i=2 e

2
i,j

n− 1
, j = 1, 2, · · · ,m.

Step 2: The EWMA sequence ofMSEj can be derived through

ωE(j) = max{θ(MSEj − 1)+ (1 − θ)ωE(j − 1), 0}, j = 1, 2, · · · ,m,
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where ωE(0) = 0. The upper control limit can be obtained as

UCL = LE
√
θV ar(MSEj )

2 − θ ,

where

V ar(MSEj ) = 2σ 4

n− 1

and LE(> 0) is a control chart parameter.

The control chart parameters LI , LS , and LE in the three EWMA-3 charts can be
determined numerically such that a specified in-control average run length ARL0 is
reached.

3.1 MEWMA-SLP Chart

For the SLP model defined in Eqs. (2) and (6), the variance-covariance matrix of the
error terms can be represented as σ 2�, where

� = 1

1 − ρ2
[ψi,j ], (9)

ψk,l = 1 for k = l, and ψk,l = ρ(l−k) for k < l. For each subgroup of
size n, the SLP model in Eqs. (2) and (6) can be represented by Y = Xγ + ε,
where YT = (y1, y2, · · · , yn), X = (1, x), 1 is a n × 1 vector with entries 1,
xT = (x1, x2, · · · , xn), γ T = (γ0, γ1), and εT = (ε1, ε2, · · · , εn). Because of �
is a positive definite matrix, the linear model can be expressed as Y∗ = X∗γ + ε∗,
where Y∗ = �−1/2Y, X∗ = �−1/2X and ε∗ = �−1/2ε. Chiang et al. [3] mentioned
that E(ε∗) = 0 and Cov(ε∗) = σ 2I , where 0 is an order n column vector with
entries 0 and I is an order n identity matrix. The generalized least squares (GLS)
estimator of the model parameters γ0 and γ1, γ TG = (γ̂G0, γ̂G1), of γ T , can be
obtained as

γ̂G = (XT∗ X∗)−1XT∗ Y = (XT �−1X)−1XT �−1Y. (10)

Chiang et al. [3] constructed the MEWMA-SLP chart based on the design of Lowry
et al. [9] using the GLS estimates obtained from the Phase I samples of SLP process.
The control chart procedure can be described as follows:

MEWMA-SLP Chart
Step 1: Obtain the GLS estimates γ̂G,j for j = 1, 2, · · · ,m using Eq. (10) and

the Phase I samples of SLP process.
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Step 2: Compute ¯̂γG = ∑m
j=1 γ̂G,j /m = ( ¯̂γG0, ¯̂γG1)

T . Let S0 and S1 denote the
sample standard deviation of γ̂G0,j and γ̂G1,j , j = 1, 2, · · · ,m, respectively, and
let Uj be the rescaled vector of γ̂G,j for j = 1, 2, · · · ,m, where the rescaling

involves the use of ¯̂γG, S0, and S1. The sample variance-covariance matrix of
Uj ’s, denoted by SU, can be obtained as

SU = 1

m− 1

m∑

j=1

(Uj − Ū)(Uj − Ū)T ,

where Ū is the sample mean of Uj , j = 1, 2, · · · ,m.
Step 3: Derive the chart parameters κ (0 < κ ≤ 1), and UCL(= H) from the

values suggested by Lowry et al. [9] for an in-control ARL0 = 200. Useful
parameter combinations are outlined as (κ , H) = (0.2, 9.65), (0.4, 10.29), (0.6,
10.53) and (0.8, 10.58). Other chart parameters can be obtained from the study
of Lowry et al. [9] or through Monte Carlo simulations.

Step 4: Compute the EWMA series of Uj from

Zj = κUj + (1 − κ)Zj−1, j = 1, 2, · · · ,m,

and the test statistics from

T 2
i = ZTi S−1

Zi
Zi , j = 1, 2, · · · ,m,

where

SZj = κ

2 − κ [1 − (1 − κ)2j ]SU → κ

2 − κ SU as j goesto ∞.

4 Process Capability Indices

The process capability indices CP and CPK are widely used to evaluate the
capability of a univariate process. These indices are defined as CP = (U − L)/6σ
and CPK = min{U − μ,μ − L}/3σ , where L and U are the lower and upper
specification limits of the univariate process characteristic quality and μ and σ are
the mean and standard deviation of the process, respectively. For two-dimensional
processes, CP and CPK are denoted by BCP and BCPK , respectively. The
evaluations of BCP and BCPK for SLP processes are described as follows.

Let γ̂G,j , j = 1, 2, · · · ,m be the GLS estimators of the of the model parameters
γ = (γ0, γ1) obtained by using the j -th in-control subgroups of the SLP process
and the specification limits of γ0 and γ1 be labeled as (L′

1, U
′
1) and (L′

2, U
′
2),

respectively. Chiang et al. [3] improved the method proposed by Castagliola and
Garcia Castellanos [2] through the following two steps:
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Step 1: Let Uj be the bivariate vectors defined in the Step 2 of MEWMA-SLP,
and let L1 = (L′

1 − ¯̂γG0)/S1, U1 = (U ′
1 − ¯̂γG0)/S1, L2 = (L′

2 − ¯̂γG1)/S2, and
U2 = (U ′

2 − ¯̂γG1)/S2. Derive the bivariate process capability indices from Uj ,
j = 1, 2, · · · ,m, L1, U1, L2, and U2.

Step 2: Use an orthogonal decomposition method to obtain the variance-
covariance matrix of Uj , j = 1, 2, · · · ,m. The variance-covariance matrix
is given by

SU = RΛRT , (11)

where Λ is a diagonal matrix of rank two with eigenvalues λ1 < λ2 of SU as
the diagonal elements. Furthermore, R = [rT1 , rT2 ], where rT1 = (r1,1, r2,1) and
rT2 = (r1,2, r2,2) are the eigenvectors corresponding to λ1 and λ2, respectively.

Let D1 and D2 be two lines passing through the point G(γ̂G0, γ̂G1) in the
directions of the eigenvectors r1 and r2, respectively. The lines D1 and D2 split
the (γ̂G0, γ̂G1)-plane into four disjoint areas, which are denoted by A1, A2, A3, and
A4 (see, Fig. 1). Because of γ̂G follows a bivariate normal (BVN) distribution which
is symmetric about its mean β, we can show that P(γ̂G ∈ Ai) = 1/4, i = 1, 2, 3,
and 4. Let

A = {(γ̂G0, γ̂G1)|L1 ≤ γ̂G0 ≤ U1, L2 ≤ γ̂G1 ≤ U2} = Q1 ∪Q2 ∪Q3 ∪Q4,

where Qi = A ∩ Ai for i = 1, 2, 3, and 4. Let q = P(γ̂G ∈ A) and p = 1 − q,
where p is the proportion of non-conformity. Furthermore, let qi = P(γ̂G ∈ Qi)
and pi = P(γ̂G ∈ Ai) − qi = 1/4 − qi for i = 1, 2, 3, and 4. Hence, q =

Fig. 1 The lines D1 and D2, and polygonsQi for i = 1, 2, 3, 4
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Fig. 2 The probabilities of pi and qi for i = 1, 2, 3, 4

q1 + q2 + q3 + q4 and p = p1 + p2 + p3 + p4 (Fig. 2). When the means of γ̂G0
and γ̂G1 are considered as the midpoints of their respective specification limits, then
p1 = p2 = p3 = p4 = p/4 and q1 = q2 = q3 = q4 = q/4. According to the
method presented in [2], the process capability indices for the GLS estimator γ̂G
can be defined as

BCP = −1

3
Φ−1(p/2)

and

BCPK = min{−Φ−1(2p1),−Φ−1(2p2),−Φ−1(2p3),−Φ−1(2p4)},

where Φ(·) is the cumulative distribution function of the standard normal distri-
bution. Chiang et al. [3] suggested that the probabilities pi and qi , i = 1, 2, 3,
and 4, can be obtained using the R packages mvtnorm:pmvnorm [4] and
pracma:triquad [1] and they proposed the following two algorithms to obtain
BCP and BCPK .

Algorithm A: Evaluation of BCPK
Step 1: Obtain Uj , L1, U1, L2, and U2, then evaluate the sample variance-

covariance matrix SU from Uj , j = 1, 2, · · · ,m.
Step 2: Find the diagonal matrix Λ of eigenvalues and the matrix of eigenvectors

R from the orthogonal decomposition SU = RΛRT .
Step 3: Let c1, c2, · · · , c� be the vertices of the polygon Qi , then obtain the

transformed vertices ofQi through c′
l = RΛ−1/2RT cl for l = 1, 2, · · · , �.

Step 4: Determine the probabilities q̂i and pi(= 1/4 − qi) for i = 1, 2, 3, and 4.
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Step 5: Estimate BCPK as

ˆBCPK = 1

3
min{−Φ−1(2p̂1),−Φ−1(2p̂2),−Φ−1(2p̂3),−Φ−1(2p̂4)}.

Algorithm B: Evaluation of BCP
Step 1: Let γ̂G,j for j = 1, 2, · · · ,m follow a BVN(μB,Sγ ) distribution with

mean μB = ((L′
1 + U ′

1)/2, (L
′
2 + U ′

2)/2) and variance-covariance matrix

Sγ = 1

m− 1

m∑

j=1

(γ̂G,j − μB)(γ̂G,j − μB)
T ,

and denote the probability density function of BVN(μB,Sγ ) distribution as
f (γ̂0, γ̂1).

Step 2: Evaluate the probability

q̂ =
∫ U ′

1

L′
1

∫ U ′
2

L′
2

f (t1, t2)dt1dt2,

and p̂ = 1 − q̂.
Step 3: Estimate BCP as

ˆBCP = −1

3
Φ−1(p̂/2).

5 Monte Carlo Simulation Study and Numerical Example

5.1 Monte Carlo Simulation Study

To evaluate the performance of the MEWMA-SLP chart, Chiang et al. [3] used
the model settings as described in [15]. Let γ0 = 3 and γ1 = 2 for the models in
Eqs. (2) and (6). The points set for Eq. (2) are xi = 2, 4, 6, and 8. Because Soleimani
et al. [16] revealed that the EWMA-3 charts outperform other competitive methods,
we only compare the performance of the EWMA-3 charts with the MEWMA-SLP
chart.

The EWMA-3 charts use EWMA-3I, EWMA-3S and EWMA-3e charts to
simultaneously monitor the intercept, slope, and error variance of a SLP model.
The overall false alarm rate of EWMA-3 charts can be determined as

αEWMA = 1 − (1 − α′
1)(1 − α′

2)(1 − α′
3),
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where α′
1, α′

2 and α′
3 are the false alarm rates for EWMA-3I, EWMA-3S and

EWMA-3e, respectively. Chiang et al. [3] used the MEWMA-SLP chart and the
EWMA-3e chart simultaneously to monitor the intercept, slope, and error variance
of a SLP model. The overall false alarm rate of can be obtained as

αMEWMA = 1 − (1 − α1)(1 − α2),

where α1 and α2 are the false alarm rates of the MEWMA-SLP and EWMA-
3e charts, respectively. Because the EWMA-3e chart is used to monitor the error
variance for both approaches, the performance of the EWMA-3e chart is omitted in
the comparison. Specifically, the error variance was assumed to be in a statistical
control state in the simulation study. Hence, Chiang et al. [3] only compared the
performance of monitoring SLP process based on the EWMA-3I and EWMA-3S
charts with the performance of monitoring SLP process based on the MEWMA-
SLP chart.

In the simulation study, the correlation coefficient between the adjacent error
terms, ρ, is set to be 0.1, 0.7 or 0.9, and the overall ARL0 is set to be 200 (i.e.,
the overall false alarm rate α = 0.005). Without loss of generality, let α′

1 = α′
2 =

1 − √
1 − α ∼= 0.0025 for the EWMA-3I and EWMA-3S charts, and let α1 = α2 =

0.005 for the MEWMA-SLP chart. The chart parameters of the MEWMA-SLP chart
are set as κ = 0.2 and H = 9.65.

In Phase I monitoring for the model parameter, estimation of the parameters
is involved in using the EWMA-3I and EWMA-3S charts and 10,000 in-control
SLP processes were prepared. A simulation with 10,000 iterations was conducted
to obtain the chart parameters, which are LI = 2.889 and LS = 2.895, for using
the EWMA-3I and EWMA-3S simultaneously to achieve an approximated overall
ARL0 of 200. The EWMA-3 charts and the MEWMA-SLP chart were constructed
in Phase I. The out-of-control average run length, denoted by ARL1, was evaluated
for different parameter shifts in the Phase II monitoring.

Two scenarios were considered for the parameter shift. Scenario I (SI) was set to
be same as the simulation setting of Soleimani et al. [16]. In SI, the shift in either
the intercept or the slope of a SLP model was considered, and the other parameter
kept unchanged. In scenario II (SII), the shifts in both the intercept and the slope of
a SLP model were considered simultaneously. Assume that the intercept shifts from
γ0 to γ ′

0 = γ0 +λσ and the slope shifts from γ1 to γ ′
1 = γ1 +βσ when an assignable

cause is introduced. Here, λ and β are two constants. The parameter combinations
for SI are (1) λ = 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8 and 2, and β = 0; and (2) β
= 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225 and 0.25, and λ = 0.

In many practical applications, an intercept shift often accompanies with a slope
shift for a SLP process. Figure 3 presents an example, in which the nominal
regression line is characterized by the conditional expected value of y, given x,
as follows:

μ(y|x) = γ0 + γ1x. (12)
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Fig. 3 An example of an intercept shift accompanies a slope shift for a SLP

When the profile parameters shift because of an assignable cause, the nominal
regression line shifts to

μ′(y|x) = γ ′
0 + γ ′

1x. (13)

In Fig. 3, both μ(y|x) and μ′(y|x) pass through the point (Px, Py),= (x̄, μ(y|x̄)).
Using (Px, Py) = (x̄, μ(y|x̄)) in Eqs. (12) and (13), we can obtain

Py = γ0 + γ1x̄

and

γ ′
0 = (γ0 + γ1x̄)− γ ′

1x̄. (14)

Because γ0 = 3, γ1 = 2, and xi = 2, 4, 6, 8, Eq. (14) reduces to

γ ′
0 = 13 − 5γ ′

1. (15)

To present the process shifts on the σ scale, Chiang et al. [3] obtained γ ′
0 =

γ0 + λσ = 3 + λ and γ ′
1 = γ1 + βσ = 2 + β. Subsequently substituting

γ ′
0 = 3 + λ and γ ′

1 = 2 + β into Eq. (15) yields the relationship between
λ and β as λ = −5β. In the study conducted by Chiang et al. [3], β =
−0.50,−0.46,−0.44,−0.42,−0.40,−0.38,−0.36,−0.34,−0.32,−0.30,−0.28,
−0.26,−0.24,−0.22,−0.20,−0.18,−0.16,−0.14,−0.12,−0.10,−0.08,−0.06,
−0.04, and −0.02 in the simulation for determining the speed of control charts
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for detecting process shifts. The values of λ can be obtained using the relation
λ = −5β. The out-of-control ARL, denoted by ARL1, was evaluated through
a simulation with 10,000 realizations. A single alarm of the EWMA-3I or the
EWMA-3S indicates that the process is out of control for EWMA-3. The value of
ARL1 obtained from this charting procedure is labeled as ARL1-E3, and the value
of ARL1 determined from MEWMA-SLP is labeled as ARL1-ME.

The Monte Carlo simulation study presented in [3] clearly showed that the
MEWMA-SLP chart outperforms EWMA-3I and EWMA-3S simultaneous chart-
ing. The MEWMA-SLP chart is faster than the combined EWMA-3I and EWMA-
3S charts in detecting the process shift for the two scenarios considered. In
particular, the simulation results show that the MEWMA-SLP chart improves the
performance of the combined EWMA-3I and EWMA-3S charts considerably when
ρ is close to 1. When ρ = 0.9, the sensitivity of the combined EWMA-3I and
EWMA-3S charts in detecting a process shift engendered by an intercept shift
was low. More detail information, interested readers are suggested to read Chiang
et al. [3].

5.2 Numerical Example

When a SLP process is identified as in-control, the process capability should be
evaluated. To illustrate the application of the two new process capability indices,
Chiang et al. [3] generated data sets of sizem = 200 with ρ =0.1, 0.7, and 0.9 based
on the model in Eqs. (2) and (6) with γ0 = 3 and γ1 = 2. Let the lower and upper
specification limits of the response variable y be LSLy and USLy , respectively. If
the mean of y, given x = x̄, is the midpoint of the specification limits, then LSLy
and USLy can be expressed as

LSLy = E(y|x = x̄)− kσ = γ0 + γ1x̄ − k1σ (16)

and

USLy = E(y|x = x̄)+ kσ = γ0 + γ1x̄ + k2σ, (17)

respectively. Using Eqs. (16) and (17), Chiang et al. [3] obtained

γ0 = LSLy + USLy − (k2 − k1)σ

2
− γ1x̄,

γ1 =
LSLy+USLy−(k2−k1)σ

2 − γ0

x̄
,
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LSLy − (k2 − k1)σ/2 − γ1x̄ ≤ γ0 ≤ USLy − (k2 − k1)σ/2 − γ1x̄ and (LSLy −
(k2 − k1)σ/2 − γ0)/x̄ ≤ γ1 ≤ (USLy − (k2 − k1)σ/2 − γ0)/x̄. On the basis of
the specification limits of the response variable, the specifications limits of γ̂G0 and
γ̂G1 can be expressed as

LSLG0 = LSLy − γ1x̄,

USLG0 = USLy − γ1x̄,

and

LSLG1 = LSLy − γ0

x̄
,

USLG1 = USLy − γ0

x̄
.

When the parameters γ0 and γ1 are unknown, the parameters γ0 and γ1 can be
replaced with the sample means of γ̂G0,j and γ̂G1,j , respectively.

In the numerical examples, let k1 = 4, k2 = 3.5, LSLy = 9, USLy = 16.5,
LSLG0 = LSLy − γ1x̄ = −0.75, USLG0 = USLy − γ1x̄ = 6.75, LSLG1 =
LSLy − γ0/x̄ = 1.25, and USLG1 = USLy − γ0/x̄ = 2.75. Chiang et al. [3]
studied the relationship between ρ and the process capability indices BCp and
BCpk . The study showed that BCp and BCpk were influenced by the with-profile
correlation and they are overestimated if the with-profile correlation was ignored.
Furthermore, the maximal values of BCp and BCpk were attained for ρ = 0. The
value of BCpk decreases as ρ increases and the values of BCp and BCpk were
closed because the mean of γ̂G,j for j = 1, 2, · · · ,m were closed to the midpoint
of the specification limits. For more information, interested readers are suggested to
read Chiang et al. [3].

6 Conclusion

The main purpose of this chapter is to review the recent developments on the SPC
to monitor SLP processes with correlated error terms; specially, SLP processes
with within-profile autocorrelation. The common skill is to transform the SLP
model with autocorrelated error terms to a SLP model with independent error terms
and independent residuals so that the control charts for independent errors can
be applied. Interested readers are suggested to read Chiang et al. [3] for potential
research directions.
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Sequential Monitoring of Circular
Processes Related to the von Mises
Distribution

Cornelis J. Potgieter

Abstract The sequential monitoring of circular processes related to the von Mises
distribution are considered. More specifically, methods for detecting changes in
location and/or scale are considered when a process has in-control and out-of-
control behavior following a von Mises distribution. Results on existing cumulative
sum (cusum) charts are reviewed, and new sequential changepoint methods are
developed. These are compared using Monte Carlo simulations. Finally, the sequen-
tial monitoring of a process with in-control distribution that is circular uniform is
considered. An existing nonparametric cusum is reviewed and is compared to a new
sequential changepoint method designed for a von Mises alternative.

1 Introduction

Circular data arise in a variety of settings. One of the obvious examples of data that
can be expressed as a point on the circumference of circle is angular direction from
a reference point, say the direction of the wind measured at a weather station, or the
direction an animal is moving in. In astrophysics, the arrival times of radio pulses
from neutron stars are used to study the interior physics of these stars. The pulsar
data are “folded” relative to the instantaneous pulse period [10, Chapter 7]. The
resulting data are points on a circle. Another example is in the study of biological
systems where many processes follow a circadian rythm. For example, the time of
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day that systolic blood pressure attains a maximum on a given day is called the
acrophase. This acrophase data are also circular.

The geometry of the circle poses some unique challenges when analyzing data.
Methods for linear data can fail. Consider the hypothetical example of observing
angles 5◦ and 355◦ on a circle [0◦, 360◦). The linear average of these two points
is 180◦, while the circular average is 0◦. For circular data X1, . . . , Xn ∈ [−π, π),
define

C̄ = 1

n

n∑

i=1

cos(Xi) and S̄ = 1

n

n∑

i=1

sin(Xi),

then the mean direction is given by X̄ = atan2(S̄, C̄) where atan2 is the two-
argument arctan function with range (−π, π ]. Similarly, the circular variance is

V = 1 − R̄ with R̄ = (
S̄2 + C̄2

)1/2
the mean resultant length. For comprehensive

overviews of the analysis of circular data along with many commonly encountered
parametric models, see the monographs by Fisher [1] and Mardia & Jupp [11].

The analysis of sequential circular data has received limited attention in the
literature. The retrospective analysis of circular data to identify changepoints was
considered by Fisher [1, Chapter 7] and Ghosh et al. [3], with Lombard [6] taking a
nonparametric approach, and Sengupta & Laha [14] deriving a Bayesian solution.

However, with data arriving sequentially, and having as objective the detect of a
change soon after it has occurred, the changepoint methodology referenced above is
not adequate. Solutions for sequential data for an underlying von Mises distribution
were proposed by Gadsen & Kanji [2], who developed a sequential probability
ratio test for a location parameter, and by Hawkins & Lombard [4], who developed
cusum procedures for location and concentration changes. Lombard & Maxwell [7]
developed a nonparametric cusum to detect a deviation from angular uniformity. A
rank-based cusum procedure was developed by Lombard et al. [9], and Lombard et
al. [8] developed self-starting cusums for location and concentration changes.

In the present setting, a parametric approach will be considered. Specifically,
methodology will be developed for an underlying von Mises distribution. However,
extensions to other distributions such as the cardioid and wrapped Cauchy will also
be discussed. In Sect. 2, sequential monitoring for a location change is considered
when both the in-control and out-of-control distributions are von Mises. The existing
cusum of Hawkins & Lombard [4] is reviewed and a new sequential changepoint
(SCP) procedure is also developed. Section 3 extends the SCP methodology to
monitoring for both a location and concentration change. The power and robustness
properties of the procedures are also considered. Section 4 considers sequential
monitoring of a process that follows a circular uniform distribution when in control.
The nonparametric cusum of Lombard & Maxwell [7] is reviewed, and a parametric
SCP is designed for out-of-control behavior following a von Mises distribution.
Some concluding remarks are contained in Sect. 5.
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2 Monitoring for a Location Change

Assume sequential observationsX1, X2, X3, . . . arise from a von Mises distribution
which has density function

f (x|μ, κ) = exp [κ cos(x − μ)]
2πI0(κ)

, −π ≤ x < π (1)

where μ and κ denote the location and concentration parameters, and Ip(κ) denotes
the modified Bessel function of the first kind of order p,

Ip(t) =
∞∑

k=0

(t/2)p+2k

k!�(p + k + 1)
.

Small values of κ indicate that the distribution is very diffuse around the mean
direction μ. On the other hand, large values of κ indicate that the distribution is
concentrated around the mean direction. The special case κ = 0 corresponds to the
uniform distribution on the circle for which the mean direction is undefined.

In this section, methods for monitoring the sequence to detect a change in the
location parameter μ will be considered. Specifically, an existing cusum procedure
will be reviewed, and a new sequential changepoint procedure will be developed.
The two procedures will also be compared for various out-of-control states.

2.1 A Cusum Procedure

Cumulative sum (cusum) procedures are popular for sequential process monitoring.
This popularity stems in part from their computational ease. Whenever a new data
point Xn is collected, the new value of the cusum at time n can be expressed as the
value of the cusum at time n− 1 plus a function of the data point Xn.

Consider now the task of monitoring a process with sequential observations
arising from a von Mises distribution. When monitoring this process to determine
if/when it goes out of control, the in-control parameters, in this case (μ, κ), are
generally known. It can be assumed without loss of generality that the in-control
mean is μ = 0. The cumulative sum (cusum) control chart proposed by Hawkins &
Lombard [4] is then defined by C0 = 0 and

Cn = max

[
0, Cn−1 + log

f (Xn|δ, κ)
f (Xn|0, κ)

]

= max [0, Cn−1 + κ cos(Xn − δ)− κ cos(Xn) ] , n ≥ 1. (2)
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Here, δ is a pre-specified minimal change in location that needs to occur before
the process is considered to be out of control. The stopping time is defined as N =
min {n|Cn ≥ h}, the first time the process exceeds the control limit h. The in-control
average run-length is given by ICARL = E0[N ] where the subscript 0 indicates
that the expectation is evaluated using in-control parameter values. In practice, the
cusum is calibrated in such a way that the control limit h corresponds to a desired in-
control run-length. The resulting control limit also depends on the minimal change
δ and the concentration parameter κ .

Note that the defined cusum Cn is one-sided, meaning that it is designed to
detect either only an upward or downward shift in location, depending on the sign
of δ. Now assume δ > 0 and that it is desirable to detect a shift of size δ in
either direction, a two-sided cusum should be used. To this end, define upward and
downward cusums with C+

0 = C−
0 = 0, and for n ≥ 1,

C+
n = max

[
0, C+

n−1 + κ cos(Xn + δ)− κ cos(Xn)
]
,

C−
n = max

[
0, C−

n−1 + κ cos(Xn − δ)− κ cos(Xn)
]
.

The stopping time for the two-sided procedure is defined as the first time n such that
one of the two cusums signals, N = min

{
n| max(C+

n , C
−
n ) ≥ h}.

Hawkins & Lombard [4] calibrated the one-sided cusum for a range of δ and κ
values and tabulate the resulting control limits. To calibrate the two-sided cusum,
they recommended using the one-sided control limits along with the conventional
equation

ARLtwo-sided =
(

1

ARLup
+ 1

ARLdown

)−1

(3)

where ARLproc denotes the average run-length for the “proc” cusum. However,
application of (3) requires that the upward and downward cusums satisfy the
necessary and sufficient non-interference condition of [16]. Specifically, if one of
the two cusums signals that the process is out of control, it is required that the
companion cusum has value 0. This does not hold for the von Mises distribution.
Specifically, interference is present for circular data as an upward shift of δ can
also be characterized as a downward shift of 2π − δ. Provided here in Table 1 are
control limits for the two-sided cusum procedure for κ ∈ {0.5, 1, 2}, ICARL ∈
{100, 500, 1000} and a variety of δ-values.

The values in Table 1 were found using 100,000 simulated realizations of C+
n

and C−
n for each set of parameter configurations. It should also be noted that the

two-sided control limits in Table 1 are generally very close to the control limits
found using (3). This suggests that the von Mises location cusum is robust against
departure from the von Dobben de Bruyn non-interference conditions.
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Table 1 Monte Carlo control
limits for the two-sided von
Mises location cusum

ICARL

κ δ 100 500 1000

0.5 π/8 1.325 2.413 2.979

π/4 2.081 3.428 4.072

3π/8 2.546 3.998 4.662

π/2 2.825 4.337 5.016

1 π/8 2.050 3.393 4.031

π/2 2.905 4.403 5.075

3π/8 3.343 4.896 5.580

π/2 3.592 5.162 5.850

2 π/8 2.759 4.238 4.907

π/4 3.528 5.089 5.774

3π/8 3.846 5.408 6.093

π/2 3.895 5.488 6.179

2.2 A Sequential Changepoint Procedure

Cusum procedures such as those discussed in Sect. 2.1 are generally computation-
ally expedient, as they are based on single-step updating as each new data point is
observed. However, with increased computational abilities, alternative monitoring
procedures should also be considered. Let f0(x) and f1(x) denote, respectively, the
density functions of data under in-control and out-of-control conditions and define
stopping rule

N = min

{
n

∣∣∣∣∣ max
0≤k<n

n∑

i=k+1

log [f1(Xi)/f0(Xi)] ≥ hn
}

(4)

where hn is some sequence of control limits. When the density function f1 is
fully specified and hn is constant for all n, this stopping rule simplifies to the
traditional cusum procedure. On the other hand, one might try to use this stopping
rule in a setting where the density f1 is not fully known. For example, Siegmund
& Venkatraman [15] considered (4) in the case of normal data with f1 representing
a change in location of unknown magnitude. Their developed test is equivalent to
the sequential application of a fixed-sample changepoint detection procedure. This
sequential changepoint approach is explored in this section for a location change of
unknown size in the case of a von Mises distribution.

As the in-control parameters are assumed known, let μ = 0 without loss of
generality, and let f0(x) denote the corresponding von Mises density as in (1) with
known concentration κ . Furthermore, let f1(x) = f0(x − δ) where δ ∈ (−π, π)
is unknown. The stopping rule (4) is based on the logarithm of density-ratios, for
which the individual components in this setting can be written as
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θi(δ) = log
f0(Xi − δ)
f0(Xi)

= κ [cos(Xi − δ)− cos(Xi)] .

These terms have cumulative sum Tn(δ) = ∑n
i=1 θi(δ). When δ is unknown, the

stopping rule can be evaluated by maximizing over δ, giving

N = min

{
n

∣∣∣∣ max
0≤k<n sup

δ

[Tn(δ)− Tk(δ)] ≥ hn
}
. (5)

It is easily shown that the value of δ that maximizes the difference Tn(δ) − Tk(δ)
is the maximum likelihood estimator of the von Mises location parameter based on
the sample Xk+1, . . . , Xn. Specifically, letting Ci = cos(Xi) and Si = sin(Xi) for
all i, the estimator has closed-form expression

δ̂k,n = atan2

(
n∑

i=k+1

Si,

n∑

i=k+1

Ci

)

where atan2 is the two-argument arctangent function. Some algebraic simplification
gives

Dk,n := sup
δ

[Tn(δ)− Tk(δ)]

= κ

[(
cos(δ̂k,n)− 1

) n∑

i=k+1

Ci + sin(δ̂k,n)
n∑

i=k+1

Si

]
. (6)

Evaluating the stopping rule can be done by tracking the statistic

Dmax,n = max
0≤k<nDk,n.

While Dmax,n is easily evaluated, it is associated with an increasing computational
burden as the sample size grows. However, it does have an advantage over the cusum
procedure in that no minimum location shift δ needs to be specified a priori for the
process to be considered out of control.

The sequential changepoint (SCP) formulation described here is inherently two-
sided. It eliminates the need to run two simultaneous cusums monitoring for upward
and downward shifts. However, if the out-of-control state is inherently one-sided
(for example, only an upward shift would case the process to be out of control), the
SCP can be adjusted accordingly. Assume that an upward shift needs to be detected.
The associated stopping rule looks a lot like (5), but with the supremum evaluated
over the region δ > 0. Here, the difference Tn(δ) − Tk(δ) has range-restricted
maximizer δ+k,n = max{0, δk,n}. No further evaluation of this one-sided SCP is
considered here, and any further reference to SCP is assumed to be the unrestricted
(two-sided) version thereof.
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The SCP procedure as formulated allows for the control limit hn to depend
on the sample size. While one could choose to calibrate the procedure to a fixed
control limit h, both Margavio et al. [12] and Hawkins et al. [5] advocate for using a
sequence of control limits hn,α such that the probability of a false alarm is constant
for all n. Specifically, when the sequence of control limits {h1,α, h2,α,...} satisfy

P
[
Dmax,n > hn,α|Dmax,j ≤ hj,α ∀j < n] = α, n ≥ 1, (7)

the in-control ARL is given by ARL = 1/α. Theoretical evaluation of the
sequence of control limits is problematic. Specifically, even if one can evaluate the
marginal distribution ofDmax,n for a given n, the required control limits depends on
sequential values of Dmax,n that are highly correlated. On the other hand, Hawkins
et al. [5] noted that the sequence of control limits can easily be obtained using
Monte Carlo methods. In the present setting, sequences of control limits were
obtained using Monte Carlo sampling using 1,000,000 simulated realizations of[
Dmax,n ≥ hn,α|Dmax,j < hj,α ∀j < n] for each n = 1, . . . , 500. This was done

for von Mises concentration parameters κ ∈ {0.5, 1, 2} and exceedance probabilities
α = {0.01, 0.002, 0.001}. The values of α correspond to in-control ARL values of
100, 500 and 1000. The Monte Carlo control limits were then “smoothed” by fitting
a rational quadratic function to the resulting sequence. The simulated and smoothed
control limit sequences are illustrated for the case κ = 1 in Fig. 1. A summary of
some control limits are given in Table 2.

0525210
n

3

4

5

6

7

 = 0.010
 = 0.002
 = 0.001

Monte Carlo h
n,

Fig. 1 Control limits for sequential changepoint method for a von Mises distribution with κ = 1.
The markers indicate the Monte Carlo estimates for a subset of n-values, and the lines correspond
to the rational quadratic fits
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Table 2 Control limits for the von Mises sequential changepoint model for detecting location
changes

κ = 0.5 κ = 1 κ = 2

n, α

α =
0.01

α =
0.002

α =
0.001

α =
0.01

α =
0.002

α =
0.001

α =
0.01

α =
0.002

α =
0.001

2 1.787 1.988 2.040 3.165 3.796 3.965 3.934 5.359 6.007

5 2.773 3.432 3.667 3.979 5.239 5.735 4.345 6.112 6.836

10 3.281 4.331 4.745 4.228 5.751 6.393 4.539 6.344 7.068

15 3.453 4.702 5.210 4.289 5.899 6.586 4.579 6.415 7.139

20 3.528 4.893 5.458 4.310 5.959 6.666 4.591 6.447 7.172

25 3.564 5.003 5.605 4.318 5.988 6.706 4.594 6.464 7.191

50 3.600 5.180 5.859 4.318 6.018 6.757 4.594 6.488 7.224

100 3.585 5.204 5.919 4.306 6.011 6.762 4.590 6.489 7.233

150 3.572 5.189 5.915 4.300 6.004 6.760 4.588 6.486 7.233

200 3.564 5.175 5.905 4.296 5.999 6.758 4.587 6.484 7.233

300 3.555 5.155 5.888 4.292 5.994 6.755 4.586 6.480 7.231

400 3.549 5.143 5.877 4.290 5.990 6.753 4.585 6.478 7.230

500 3.546 5.135 5.870 4.288 5.988 6.752 4.585 6.476 7.229

The choice of a rational quadratic fit was motivated by noting that (for the
cases considered) the sequence of control limits increases rapidly for n small, has
a maximum in the range 50 ≤ n ≤ 100, and then has a very slights decrease
over the remaining range of n considered. Full tables of both the Monte Carlo and
smoothed control limit are available from the author. The code to generate control
limit sequences is also available for calibrating control sequences for values of κ
and α different from those included here.

Note that the computational time required to simulate control sequences grows
with the sample size. At time n, it is necessary to simulate sequences of random vari-
ables from the conditional distribution

[
X1, . . . , Xn|Dmax,j ≤ hj,α, j ≤ n− 1

]
.

This is not particularly difficult, but the probability that a random sample
X1, . . . , Xn satisfies the required constraints is (1 − α)n−1, which goes to 0 quite
rapidly. Fortunately, the observed asymptotes in the control sequence suggest that
it is possible to evaluate control limits hn,α for all n up to some moderate large
sample size denoted N . In practice, one can then carry forward this last value, i.e.
use hn,α = hK,α for n > K . In the present application, the value K = 500 was
used.

2.3 Comparison of Methods

Given the two-sided location cusum in Sect. 2.1 and the sequential changepoint
procedure developed in Sect. 2.2, a question of interest is how these compare when
a process goes out of control. In general, it is desirable that a monitoring procedure
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has a small out-of-control run length. In other words, a good monitoring procedure
is one that signals fast once the underlying process has gone out of control.
One measure of performance is the out-of-control ARL (OOCARL). Assume that
observationsX1, . . . , Xτ−1 occur under in-control conditions, and that observations
Xτ ,Xτ+1, . . . occur under out-of-control conditions. For a process that goes out of
control at time τ , the out-of-control average run-length is defined as

OOCARLτ = Eτ [N − τ |N > τ ] (8)

where N denotes the stopping time.
A simulation study was done to compare the cusum and SCP procedures

using OOCARL as criterion. The out-of-control time was taken to be τ = 0
and location shifts δ ∈ {jπ/8, j = 1, . . . , 8} were considered. Four different
cusums were evaluated. Each cusum was calibrated to optimally detect a differ-
ently sized deviation from the in-control conditions. These deviation values were
Δ ∈ {π/8, π/4, π/2, π}. The SCP was also evaluated and did not require an
equivalent calibration. Both the cusums and the SCP were evaluated for control
limits corresponding to in-control average run length ICARL ∈ {100, 500, 1000}.
This was done for von Mises distributions with concentration parameters κ ∈
{0.5, 1, 2}. For each configuration of simulation parameters (δ, κ, ICARL), a total of
100,000 sample paths were simulated. For each simulated path, the run length was
evaluated using the four differently sized cusums described above as well as the
SCP. These results corresponding to concentrations κ = 0.5 and κ = 1 are reported,
respectively, in Tables 3 and 4. In these tables, ICARL denotes the in-control average
run length, cusumΔ indicates the cusum has been calibrated to detect a shift of size
Δ, SCP is the sequential changepoint procedure, and Max SE denotes the maximum
standard error of the estimated ARLs for a specific shift δ. The results corresponding
to concentration κ = 2 are plotted in Fig. 2.

Consider now the results in Tables 3 and 4. When the true location shift is
small, here corresponding to values δ = π/8 and π/4, the cusum optimally
calibrated to detect that shift has the best performance by far. However, when the
cusum is not optimally calibrated, it can perform much worse than the SCP. As the
magnitude of the change δ increases, the SCP starts outperforming all the cusums
considered, including the optimally calibrated cusum. The cusums also have the
curious behavior in that the OOCARL initially decreases as a function of δ, but then
starts increasing again. This same behavior was noted by [4] in the one-sided cusum
case. On the other hand, the OOCARL of the SCP is decreasing as a function of δ.
Generally, when monitoring for a location change and the expected change is small,
it is possible to select a cusum that outperforms the SCP procedure. However, this
is in part dependent on optimally calibrating the cusum for the true change. On the
other hand, the SCP does not require any calibration and has superior performance
when the true change is large. In fact, the SCP has out-of-control performance that
also holds up favorably when compared the optimal cusum even when the size of
the change is small. Inspection of Fig. 2 further illustrates this point. For δ small, the
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Table 3 Monte Carlo ARL for κ = 0.5

ICARL δ cusumπ/8 cusumπ/4 cusumπ/2 cusumπ SCP max SE

100 π/8 68 69 74 88 85 0.26

π/4 42 39 42 61 45 0.18

3π/8 31 27 26 37 27 0.10

π/2 27 22 19 23 18 0.06

5π/8 27 21 15 16 14 0.04

3π/2 30 21 14 12 11 0.04

7π/8 36 22 13 10 10 0.05

π 39 23 13 10 10 0.05

500 π/8 175 188 257 399 233 1.22

π/4 84 76 94 217 91 0.65

3π/8 59 48 47 99 48 0.28

π/2 51 38 31 48 31 0.13

5π/8 51 36 25 28 22 0.06

3π/4 59 38 23 20 18 0.07

7π/8 79 43 22 17 16 0.10

π 97 46 22 16 15 0.12

1000 π/8 175 263 417 763 324 1.26

π/4 84 94 124 368 112 0.32

3π/8 59 58 57 144 58 0.12

π/2 51 46 37 63 36 0.07

5π/8 51 43 30 35 26 0.07

3π/4 59 45 27 24 21 0.09

7π/8 79 53 27 20 19 0.13

π 97 58 27 19 18 0.15

SCP performance closely tracks the best-performing cusum. Then, as δ increases,
the SCP becomes the best-performing monitoring procedure.

3 Monitoring for Concentration and Location-Concentration
Changes

The focus of Chap. 2 is the detection of a change in location in the underlying
process. Of course, the out-of-control behavior can take many forms different from
a simple change in location. In this chapter, two other scenarios are considered.
Firstly, procedures to monitor for a change in concentration are discussed. There-
after, the more interesting problem of monitoring for a change in both location and
concentration is considered. The methods discussed are developed specifically for
an underlying von Mises distribution, but robustness against departure from this
parametric model are considered at the end of the chapter.
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Table 4 Monte Carlo ARL for κ = 1

ICARL δ cusumπ/8 cusumπ/4 cusumπ/2 cusumπ SCP max SE

100 π/8 41 43 56 82 51 0.25

π/4 20 19 23 47 21 0.14

3π/8 14 12 12 23 11 0.07

π/2 12 10 8 12 7 0.03

5π/8 12 9 6 7 5 0.02

3π/4 14 9 6 5 4 0.02

7π/8 19 10 6 4 4 0.02

π 23 11 6 4 4 0.03

500 π/8 79 92 169 367 106 1.15

π/4 34 30 42 158 34 0.49

3π/8 24 18 18 54 18 0.16

π/2 20 14 11 21 11 0.05

5π/8 20 13 9 11 8 0.02

3π/4 24 14 8 8 6 0.02

7π/8 33 17 8 6 6 0.04

π 46 19 8 6 5 0.05

1000 π/8 79 119 260 698 133 0.79

π/4 34 35 52 265 40 0.13

3π/8 24 21 21 76 20 0.04

π/2 20 16 13 26 13 0.02

5π/8 20 15 10 13 9 0.02

3π/4 24 16 9 9 7 0.03

7π/8 33 20 9 7 6 0.05

π 46 23 10 7 6 0.06

3.1 Detecting a Change in Concentration

Assume again that the data X1, X2, . . . are from a von Mises distribution which
(without loss of generality) has mean direction 0. Assume the in-control concentra-
tion is given by κ0. The one-sided cusum for detecting a change from in-control
concentration κ0 to a specified out-of-control concentration κ1 as developed by
Hawkins & Lombard [4] is given by C0 = 0 and

Cn = max

[
0, Cn−1 + log

f (Xn|0, κ1)

f (Xn|0, κ0)

]

= max

[
0, Cn−1 − log

I0(κ1)

I0(κ0)
+ (κ1 − κ0) cos(Xn)

]
, n ≥ 1.

These authors also tabulate control limits for the one-sided concentration cusum for
select values of κ0 and κ1.
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Fig. 2 Monte Carlo ARL for a von Mises distribution with κ = 2 and location shift δ. Cusums
calibrated to three different shifts are shown, along with the SCP method

Now, if it is desired to detect either an increase or a decrease in concentration,
say from κ0 to κ0e

±β with β > 0, two one-sided cusums can be used to monitor the
process, say

C+
n = max

[
0, C+

n−1 − log
I0(κ0e

β)

I0(κ0)
+ κ0(e

β − 1) cos(Xn)

]
,

C−
n = max

[
0, C−

n−1 − log
I0(κ0e

−β)
I0(κ0)

− κ0(1 − e−β) cos(Xn)

]
.

These two cusums are run simultaneously until one of them exceeds the control
limit. Tabulated control limits are not included here, as these depend on the in-
control concentration κ0, as well as the values of β and the in-control run length.
These are easily calculated for a specific set of parameters. Software for the
calculation of control limits is available at the author’s github page (link provided at
the end of this chapter).

It is again possible to develop a sequential changepoint procedure for detecting a
change in concentration. Let f (x|κ) denote a von Mises density function with mean
direction 0 and concentration parameter κ . Based on stopping rule (4), define

θi(κ0, κ1) = log [f (Xi |κ1)/f (Xi |κ0)]

= log I0(κ1)− log I0(κ0)+ (κ1 − κ0) cos(Xi)

with associated cumulative sum Tn(κ0, κ1) = ∑n
i=1 θi(κ0, κ1). When the out-of-

control concentration κ1 is unknown, an appropriate stopping rule is given by
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N = min

{
n

∣∣∣∣ max
0≤k<n sup

κ1

[Tn(κ0, κ1)− Tk(κ0, κ1)] ≥ hn
}
. (9)

The value of κ1 that maximizes the difference Tn(κ0, κ1) − Tk(κ0, κ1) is the
maximum likelihood estimator of the von Mises concentration parameter (with
known location) based on the sample Xk+1, . . . , Xn. Specifically, it is the solution
of the equation

I1(κ̂k,n)

I0(κ̂k,n)
= 1

n− k
n∑

i=k+1

cos(Xi)

where Ij denote the modified Bessel function of the first kind of order j . Note that
the value of this maximizer does not depend on the in-control concentration κ0.
However, the distribution of N in (9) does depend on the in-control value. Now,
given the solution κ̂k,n, define

Kk,n := sup
κ1

[Tn(κ0, κ1)− Tk(κ0, κ1)]

= (n− k) log
[
I0(κ̂k,n)/I0(κ0)

]+ (κ̂k,n − κ0)

n∑

i=k+1

cos(Xi),

and let Kmax,n = max0≤k<n Kk,n. The stopping rule can now be written as

N = min{n|Kmax,n ≥ hn}.

The sequence of control limits can be evaluated using (7) as described in Sect. 2.2
to give a constant hazard rate α which has associated ICARL= 1/α.

3.2 Detecting a Change in Location and Concentration

If a process would be considered out of control if either a change in location or
a change in concentration takes place, one could monitor separately for these two
types of changes. For example, it is fairly standard in practice to run simultaneously
two cusums, one to detect a change in location and the other to detect a change
in concentration. Of course, one would not expect this approach to work well if
there were a simultaneous change in location and concentration of small magnitude.
In this instance, a procedure that simultaneously monitors for a location and
concentration change is preferred. A cusum can be constructed for the latter
situation. Let the in-control location and concentration parameters be 0 and κ0,
and assume that the out of control parameters to be detected are location δ and
concentration κ1. The associated cusum is of the form C0 = 0 and
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Cn = max

[
0, Cn−1 + log

f (Xn|δ, κ1)

f (Xn|0, κ0)

]

= max

[
0, Cn−1 − log

I0(κ1)

I0(κ0)
+ κ1cos(Xn − δ)− κ0 cos(Xn)

]
, n ≥ 1.

Note that if the direction of changes in location and concentration are not specified,
the cusum procedure will require monitoring four one-directional cusums. This
seems rather unwieldy. The sequential changepoint procedure is a very attractive
alternative here, as it only requires running one monitoring scheme. Specifically,
the log-ratio of density functions is given by

θi(δ, κ0, κ1) = log I0(κ1)− log I0(κ0)+ κ1 cos(Xi − δ)− κ0 cos(Xi)

with cumulative sum Tn(δ, κ0, κ1) = ∑n
i=1 θi(δ, κ0, κ1). With both δ and κ1

unknown, an appropriate stopping rule is

N = min

{
n

∣∣∣∣∣ max
0≤k<n−1

sup
δ,κ1

[Tn(δ, κ0, κ1)− Tk(δ, κ0, κ1)] ≥ hn
}
. (10)

Note that stopping rule (10) has a maximum evaluated over indices 0 ≤ k < n −
1, whereas the stopping rules associated with only a change in location or only a
change in concentration was evaluated over indices 0 ≤ k < n. The reason for this
difference in definition is that at least two observations are required to estimate both
the location and concentration parameters from data. Now, define

Lk,n := sup
δ,κ1

[Tn(δ, κ0, κ1)− Tk(δ, κ0, κ1)]

= (n− k) log
[
I0(κ̂k,n)/I0(κ0)

]

+κ̂k,n
n∑

i=k+1

cos(Xi − δ̂k,n)− κ0

n∑

i=k+1

cos(Xi). (11)

where (δ̂k,n, κ̂k,n) denote the maximum likelihood estimators of the von Mises
location and concentration parameters based on sampleXk+1, . . . , Xn. The stopping
rule can now be expressed as

N = min{n|Lmax,n ≥ hn}

with Lmax,n = max0≤k<n−1 Lk,n.
The sequence of control limits using (7) for hazard rates α ∈ {0.01, 0.002, 0.001}

with associated ICARL= {100, 500, 1000} are given in Table 5 for a selection of
sample sizes n and for in-control concentration parameter κ ∈ {0.5, 1, 2}. As in
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Table 5 Control limits for the von Mises sequential changepoint model for simultaneous detection
of location and concentration changes assuming in-control parameters μ = 0 and κ

κ = 0.5 κ = 1 κ = 2

n
α =
0.01

α =
0.002

α =
0.001

α =
0.01

α =
0.002

α =
0.001

α =
0.01

α =
0.002

α =
0.001

2 7.752 8.795 9.053 7.435 8.887 9.464 6.887 8.453 9.114

5 8.217 9.690 10.616 8.071 9.920 10.471 7.804 9.579 10.374

10 8.288 9.904 10.792 8.168 10.021 10.590 7.928 9.769 10.576

15 8.306 9.954 10.829 8.195 10.046 10.621 7.960 9.814 10.628

20 8.314 9.974 10.845 8.207 10.057 10.636 7.974 9.833 10.651

25 8.319 9.986 10.853 8.215 10.064 10.644 7.983 9.844 10.664

50 8.327 10.005 10.869 8.229 10.076 10.659 7.998 9.865 10.690

100 8.331 10.013 10.875 8.236 10.082 10.664 8.005 9.874 10.702

150 8.333 10.015 10.878 8.238 10.084 10.664 8.008 9.877 10.706

200 8.333 10.016 10.879 8.239 10.085 10.663 8.009 9.879 10.708

250 8.334 10.017 10.879 8.240 10.085 10.662 8.010 9.879 10.709

Table 6 OOCARL for SCP
with in-control concentration
κ0 = 0.5, out-of-control
location shift δ and
concentration change
κ1 = γ κ0

γ

ICARL δ 1.25 1.50 1.75 2.00

100 π/8 87 78 66 54

π/4 58 50 43 37

3π/8 38 33 28 25

π/2 27 23 20 18

500 π/8 273 189 131 95

π/4 125 97 75 60

3π/8 70 56 46 38

π/2 46 38 32 27

1000 π/8 387 250 165 116

π/4 154 117 90 70

3π/8 82 66 54 44

π/2 53 44 36 31

Sect. 2.2, the Monte Carlo control limits obtained using 1,000,000 samples for each
n were “smoothed” by fitting a rational quadratic function to the sequence.

The out-of-control behavior of the SCP procedure is illustrated in Tables 6 and 7.
Here, the run length was evaluated for 100,000 sequences simulated with a selection
of out-of-control parameters (δ, κ1) where κ1 = γ κ0. The simulated OOCARLs are
reported for in-control run lengths ICARL∈ {100, 500, 1000}.

When comparing the results in Tables 6 and 7, it is clear that it takes longer to
detect a change for smaller concentration (κ) values. Intuitively, it is more difficult
to detect a change in location when the distribution has large spread. Even so, in both
instances the SCP signals fairly quickly, even for the minimal change in location and
scale. Consider the setting with an ICARL of 500. Even when the location change is
π/8 and the concentration is increased by 25%, the OOCARL is 273 for in-control
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Table 7 OOCARL for SCP
with in-control concentration
κ0 = 1, out-of-control
location shift δ and
concentration change
κ1 = γ κ0

γ

ICARL δ 1.25 1.50 1.75 2.00

100 π/8 58 46 36 29

π/4 26 22 19 16

3π/8 15 12 11 10

π/2 9 8 7 7

500 π/8 122 83 59 45

π/4 43 35 29 24

3π/8 22 19 16 14

π/2 14 12 11 9

1000 π/8 144 95 66 50

π/4 48 39 32 26

3π/8 24 21 18 16

π/2 15 13 12 10

concentration κ = 0.5, and 122 for κ = 1. For an ICARL of 1000, the SCP signals
even faster (relative to the ICARL). Overall, the location-concentration SCP appears
to have good performance.

3.3 Power and Robustness Considerations

In Sects. 2.2 and 3.2, SCP procedures for, respectively, only a change in location and
a change in location and concentration are considered. Denote by SCPL and SCPLC
the location-only and location-concentration sequential changepoint procedures.
Intuitively, if there is only a location change, SCPLC can still be used to monitor
the process. However, it may not work as well as SCPL. Here, the question is how
much detection power is sacrificed when only a location change occurs, but SCPLC
is used. The reduction in detection power manifests in an increase in OOCARL
compared to SCPL. A Monte Carlo study was performed to compare the average run
length of the two SCP procedures. A single run of the simulation study consisted
of generating sequential observations from a von Mises distribution with location
δ ∈ [π/32, π/2] uniformly generated (and fixed for the run) and κ = 1. Both (5)
and (10) calibrated to an in-control run length of 500 were used to monitor the
process until both signaled that a change had occurred. The run lengths for both SCP
procedures were then recorded. This was done for 100,000 simulated process paths.
In Fig. 3, the estimated OOCARL curves are shown as a function of the location
change δ. SCP(δ) denotes the procedure monitoring for a location change only,
while SCP(δ, κ) denotes the procedure monitoring for a location and concentration
change. The concentration was fixed at κ = 1 and the in-control ARL was 500.

Visual inspection of Fig. 3 reveals that SCPL on average detects the change in
location faster than SCPLC . This is as anticipated. When considering the difference
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Fig. 3 ARLs as a function of δ for the two SCP procedures. ICARL = 500 and κ = 1

between the two OOCARL curves, it becomes evident that detection power is
dramatically impacted by also monitoring for a concentration change which does
not occur. For example, when a location change of π/16 occurs, the SCPL has
average run length 267, while SCPLC has average run length 361, an increase of
around 35%. Similarly, for a location change of π/4, the respective average run
lengths are 33 and 51, an increase of nearly 54%. Across the range of δ values
considered, SCPLC generally has run length more than 50% larger than SCPL. This
conclusion carries over to scenarios with other concentration parameter values, and
for SCP procedures calibrated to different ICARLs.

Another question of interest is whether the SCP procedures designed for von
Mises data are robust against departures from this assumption. While it is possible
to set up and calibrate monitoring procedures for other circular distributions, no
distribution is likely to perfectly describe the true data generating mechanism in
practice. For this reason, the behavior of the location and location-concentration
SCPs were investigated with data generated from two other symmetric distributions
on a circle, namely a cardioid distribution and a wrapped Cauchy distribution. The
cardioid distribution has density

f (x) = 1 + 2ρ cos(x − μ)
2π

, −π < x < π

with |ρ| < 0.5. Here, μ denotes the mean direction and the concentration is given
by κ = A−1(p) where A−1 is the inverse of the function A(κ) = I1(κ)/I0(κ). The
wrapped Cauchy distribution has density

f (x) = 1

2π

1 − ρ2

1 + ρ2 − 2ρ cos(x − μ), −π < x < π
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Fig. 4 ARLs of the two SCP procedures as a function of δ for cardioid distribution (left) and
wrapped Cauchy distribution (right) both with κ = 1 and using a von Mises distribution calibration

with mean direction μ and concentration κ = A−1(ρ). When the von Mises,
cardioid, and wrapped Cauchy distributions have common mean direction and
concentration, the cardioid distribution has lighter tails and the wrapped Cauchy
has heavier tails than the von Mises distribution.

Illustrated in Fig. 4 is the performance of the SCPL and SCPLC designed for
an underlying von Mises distribution, but when the data are in fact from either a
cardioid distribution (left figure) or a wrapped Cauchy distribution (right figure).
The ARLs in these figures were evaluated using Monte Carlo methods. For the
figure on the left, observations were generated from a cardioid distribution with
location parameter δ fixed at 0 with probability 0.15 or uniformly generated on the
interval [0, π/4] with probability 0.85. This method of choosing δ for a given run
of the simulation was used to ensure accurate estimation of ARL values close to the
boundary of the δ-space. The concentration parameter was fixed at κ = 1. The SCPL
and SCPLC procedures calibrated to an ICARL of 500 (for a von Mises distribution)
were used to monitor the process until both signaled a change had occurred. The
run lengths were then recorded. This was done for 100,000 simulated process paths.
A cubic spline model was then fit to the (δ,ARL) pairs to obtain the figure. An
analogous process was used for the figure on the right by sampling from a wrapped
Cauchy distribution.

The performance of the SCP procedures for underlying cardioid and wrapped
Cauchy distributions can be described as “fair” under in-control conditions. For the
cardioid distribution, the average ICARL for SCPL and SCPLC are approximately
612 and 482, respectively. For the wrapped Cauchy distribution these same values
are around 446 and 433. However, even though their ICARLs are not all that close to
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the nominal value, the procedures do perform well under out-of-control condition,
signaling when a location change occurs fairly quickly.

The conclusions above also held for other symmetric circular distributions
considered. However, when asymmetric distributions are considered, for example
the wrapped skew-normal distribution of Pewsey [13], neither the location nor
location-concentration SCP procedures performed well under in-control or out-of-
control conditions. Generally, it would seem that the methods developed for a von
Mises distribution may perform well enough to satisfy many practitioners when the
underlying distribution is symmetric but not von Mises. On the other hand, these
SCP procedures do not perform well when the underlying distribution deviates from
symmetry.

4 Monitoring Uniformity

In Sects. 2 and 3, the general problem of interest considered is detecting a change in
location and/or concentration when the underlying distribution is von Mises. In this
section, the problem of monitoring for deviation from a circular uniform distribution
is considered. Even though the uniform distribution can be considered a special case
of the von Mises distribution with κ = 0, the problem of monitoring for deviations
from uniformity is worth exploring in its right. The circular uniform distribution has
density f (x) = (2π)−1, −π < x < π , and is interesting in that the mean direction
does not exist. There are many examples of processes that are uniformly distributed,
see Lombard & Maxwell [7] for examples. These authors also developed a cusum
procedure for detecting deviations from the uniform distribution. An overview of
their methodology, which is nonparametric in nature, will be provided. A sequential
changepoint method against a parametric alternative will also be developed. These
two procedures will finally be compared in a simulation study.

4.1 A Nonparametric Cusum for Uniformity

Consider iid random variables X1, X2, . . . having uniform distribution on the circle
and define

cj = √
2 cosXj and sj = √

2 sinXj ,

for j = 1, 2, . . .. Under uniformity, these random variables have E(cj ) = E(sj ) =
0, Var(cj ) = Var(sj ) = 1, and are uncorrelated with one another. The Raleigh
statistic is commonly used to test uniformity of a sample of circular random
variables X1, . . . , Xn. Specifically, defining
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Ck =
k∑

j=1

cj and Sk =
k∑

j=1

Sj ,

the Raleigh statistic is proportional to

R2
k = C2

k + S2
k .

Towards defining the cusum proposed by Lombard & Maxwell [7], set

ξk = R2
k − R2

k−1 − 2

2Rk−1
, k ≥ 2, (12)

with ξk equal to 0 if Rk−1 = 0. Some algebra shows that (12) can equivalently be
expressed as

ξk = Ck−1ck + Sk−1sk

C2
k−1 + S2

k−1

. (13)

Both Eqs. (12) and (13) show how ξk can be updated sequentially. Under the in-
control hypothesis of uniformity,

E[ξk|X1, . . . , Xk−1] = 0 and Var[ξk|X1, . . . , Xk−1] = 1.

One can also show that the ξk are uncorrelated with one another. These facts,
together with noting that the |ξk| ≤ √

2 for all k, were used by Lombard & Maxwell
[7] to prove that for n0 large, the joint distribution of the sums

∑n
k=1 ξk, n ≥ n0

will approximate those of the sums
∑n
k=1 Zk, n ≥ n0 for Zk iid standard normal

random variables. The cusum procedure then follows by setting V0 = 0 and

Vk = max (0, Vk−1 + ξk − ζ )

with stopping rule

N = min{n|Vn ≥ h}.

Here, ζ denotes the reference value of the cusum, and can be thought of as a
minimum detection limit. If the out-of-control distribution of Xi is known to have
mean μ, a good choice for the reference value is ζ = μ/2. However, this is not
always known and one can use ζ = 0 for the cusum.

Assume now that random variable X is not uniform. Defining

α = E[cosX] and β = E[sinX]
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Table 8 Control limits h for
the uniformity cusum
corresponding to an reference
value ζ

ICARL

ζ 100 500 1000

0 8.879 21.201 30.476

0.25 4.418 7.267 8.585

and θ =
√

2
(
α2 + β2

)
. By the law of large numbers, ξk → θ > 0 as k → ∞ when

the process goes out of control. When this happens, one will expect the cusum Vk to
start increasing and eventually signal as out of control.

Reported in Table 8 are the control limits h as determined by Lombard &
Maxwell [7]. These values were obtained using results for cusums following a
normal distribution and hold for small values of ζ . If a cusum with a larger reference
value is desired, Monte Carlo methods can be employed to calibrate the cusum.

4.2 Monitoring Against a von Mises Alternative

The cusum considered in the previous section is nonparametric, in that no parametric
distribution is specified for the out-of-control behavior of the process. It is possible
to construct a cusum for deviation from uniformity against a parametric alternative.
The increments for this cusum can be based on the log-ratio log [f1(x)/f0(x)] where
f0 is the uniform density and f1 is the parametric alternative. When f1 is the von
Mises distribution, the log-ratio becomes

θi(μ, κ) = κ cos(Xi − μ)− log I0(κ) (14)

with cusum given byC0 = 0 andCn = max [0, Cn−1 + θn(μ, κ)]. While this cusum
is easy to calculate, it has the undesirable property that the out-of-control mean μ
needs to be specified. Even so, the control limits only depend on the out-of-control
concentration parameter κ . If the value for μ is mis-specified, the ability of the
cusum to signal fast once the process is out of control is dramatically impacted.
For this reason, the parametric cusum for deviation from uniformity is not further
explored here.

On the other hand, it is possible to use (14) to specify a sequential changepoint
procedure. The control limits of this SCP depend only on the null distribution, and
does not require the specification of out-of-control parameters. Defining Tn(μ, κ) =∑n
i=1 θi(μ, κ), the stopping rule for the SCP procedure is given by

N = min

{
n

∣∣∣∣ max
0≤k<n−1

sup
μ,κ

[Tn(μ, κ)− Tk(μ, κ)] ≥ hn
}
. (15)

The difference Tn(μ, κ) − Tk(μ, κ) is maximized by μ̂k,n and κ̂k,n the maximum
likelihood estimators of the von Mises mean and concentration parameters based
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on the sample Xk+1, . . . , Xn. The control limits hn were calculated using (7). A
selection of these control limits smoothed in a manner similar to that described in
Sect. 2.2 are given in Table 9 for hazard rates α ∈ {0.01, 0.002, 0.001}. The largest
value in the table corresponds to n = 150. For an SCP running longer than this, the
last value can be carried forward.

A small simulation study was done to compare the above SCP procedure
against the nonparametric cusum defined in Sect. 4.1. Data were simulated from
a von Mises distribution with location μ = 0 and concentration parameter κ ∈
{0.125, 0.25, 0.5, 1}. For each simulated dataset, the cusums with reference values
ζ = 0 and 0.25 as well as the SCP procedure were using to find the run length
until the process signals. For each value of κ and each ICARL∈ {100, 500, 1000},
a total of 100,000 datasets were simulated. The average run-lengths across these
simulations are reported in Table 10.

When inspecting Table 10, it is surprising to note that the nonparametric cusum
generally signals much faster than the SCP procedure. The only instances in which
the SCP is seen to outperform a cusum is for the case κ = 1, a rather strong
deviation from uniformity. Even then, the SCP only performs better than the cusum
with reference value ζ = 0. When comparing the two cusums, their performance
is very comparable for ICARL= 100. For larger ICARL, the cusum with reference

Table 9 Control limits hα,n
for the SCP procedure to
detect deviation from
uniformity

n α = 0.01 α = 0.002 α = 0.001

2 8.084 8.228 8.233

5 8.192 9.711 10.804

10 8.203 9.931 10.980

15 8.206 9.975 11.014

20 8.207 9.993 11.028

25 8.208 10.002 11.036

50 8.209 10.016 11.050

100 8.210 10.022 11.056

150 8.210 10.024 11.057

Table 10 OOCARL for
cusums SCP procedure
monitoring for deviation from
angular uniformity

κ

ICARL Method 0.125 0.25 0.50 1.00

100 cusumζ=0 82 58 33 18

cusumζ=0.25 81 58 31 15

SCP 97 83 51 23

500 cusumζ=0 265 144 72 38

cusumζ=0.25 295 151 59 23

SCP 425 263 103 35

1000 cusumζ=0 397 203 101 54

cusumζ=0.25 482 215 73 27

SCP 759 385 128 41
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value ζ = 0 is seen to perform better for smaller values of κ , while the cusum with
reference value ζ = 0.25 is seen to perform better for larger values of κ .

5 Concluding Remarks

Sequential changepoint (SCP) procedures are develop for the monitoring of circular
process data with the data assumed to follow a von Mises distribution. In the
context of monitoring for a location change, the SCP method is seen to compare
very favorably to a cusum procedure developed by Hawkins & Lombard [4]. To
implement the cusum, it is necessary to specify a location shift at which point
the process would be considered out of control. No such specification is needed
to implement the SCP method.

The SCP methodology is also extended to the simultaneous monitoring for a
location and concentration change. If only a location change occurs, it is seen that
the use of a joint location-concentration procedure can result in a substantial loss
of power. Finally, an SCP procedure to monitor for departures from uniformity is
developed. Here, a nonparametric cusum developed by Lombard & Maxwell [7] is
demonstrated to be superior to the SCP procedure.
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Part II
Acceptance Sampling Plans



Time Truncated Life Tests Using
the Generalized Multiple Dependent
State Sampling Plans for Various Life
Distributions

Muhammad Aslam, Gadde Srinivasa Rao, and Mohammed Albassam

Abstract This chapter presents the designing of the generalized multiple depen-
dent state sampling (GMDSS) plans for the various statistical distributions. We
will present the design of GMDSS sampling when the failure time follows the
gamma distribution, Burr type XII distribution and the Birnbaum-Saunders (BS)
distribution. The necessary measures including the operating characteristics (OC)
function are derived. The plan parameters of the proposed test plans are determined
through the non-linear optimization solution. The proposed sampling plan is studied
for a minimal sample size subject to specified requirements of the consumer and
producer’ risks. The efficiency of the proposed plans in terms of sample sizes are
discussed over the existing sampling plans using the same level of all parameters.
The advantages of the proposed plans are discussed through simulated data and real
data from the industry.

Keywords Acceptable quality level · Limiting quality level · Multiple deferred
state sampling plan · Producer’s risk · Consumer’s risk · Mean lifetime ratio

1 Introduction

The high quality is the main target of all companies in the world. There is a race
among industries in producing a high-quality product. To manufacture the high
quality of the product, the producers are very careful in purchasing the raw material
and testing or the inspection of the product at each stage of the manufacturing of
the product. Therefore, the inspection of the raw material to the finished product is
an important activity to maintain the high quality of the product. For inspecting the
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product, it is not possible to check each item at every stage of the production process.
Therefore, inspection in the industry is done through a well-defined acceptance-
sampling plan. A sampling plan plays a role like a guide to select a suitable random
sample and acceptance number at specified parameters. As, for the lot sentencing
purpose, a random sample is selected from a lot of the product, there is a chance
that a good lot is rejected (producer’s risk) and a bad lot is accepted (consumer’s
risk). The sampling schemes are designed which minimize both risks during the
inspection of a lot of the product.

Mostly, the sampling plans are designed using the single sampling scheme, which
is simple to inspect a lot of the product. However, the use of single sampling needs
a larger sample size for the inspection of the product. Several authors designed the
sampling plans using the single sampling in various circumstances, for example,
Rosaiah and Kantam [1] proposed a sampling plan for the Rayleigh distribution
under the time truncated life test. They determined the minimum sample size and
discussed the OC curve for various specified parameters. Chen et al. [2] discussed
the single and double sampling using the Bayesian approach under the type-II
censoring. They showed the efficacy of the double sampling plan over the single
sampling plan in the cost required for the testing of the product. Vijayaraghavan et
al. [3] designed a single acceptance sampling plan under the conditions of gamma
prior and the Poisson distribution. They proved the efficiency gamma-Poisson
sampling plan over the traditional sampling plan in terms of sample size. Lio et
al. [4] proposed the sampling plan under the assumption that the failure time of
the product follows the BS distribution. They determined the minimum sample size
using the percentile of the BS distribution. Rao [5] designed the group sampling
plan when the failure time follows the Marshall-Olkin extended Lomax distribution
with known or unknown shape parameters. He determined the minimum group
size through the non-linear optimization solution and discussed the results with
the help of some examples. Aslam et al. [6] designed a double sampling plan
and group sapling plan for the BS and determined the parameters by satisfying
the producer’s risk and the consumer’s risk. They discussed the efficiency of the
plans with the help of some examples. Al-Nasser and Al-Omari [7] worked on the
sampling plan using the exponentiated Fréchet distribution. They derived the OC
function for this distribution and presented an example to illustrate the plan. Aslam
et al. [8] designed the attribute sampling plan using the exponentially weighted
moving average (EWMA) statistics for the Weibull distribution and Burr type X
distribution. They compared the plan using EWMA statistics with the traditional
sampling plans for the same distribution. Al-Omari [9] proposed time truncated
the double sampling plan when the lifetime follows the transmuted generalized
inverse Weibull distribution. He compared the double sampling plan with the single
sampling plan at the same levels of all parameters.

The inspection cost is directly affected by the change in the sample size.
Larger the sample size means the more inspection cost for the lot sentencing.
The various sampling schemes such as the double sampling, repetitive sampling
and multiple dependent state sampling (MDSS) are more economical than the
single sampling scheme. In MDSS, in case of indecision at the results of the first
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sample, the previously accepted lots are considered to make a final decision about
the lot. Therefore, several authors worked on the double sampling plan. Aslam
et al. [10, 11] designed the double sampling using the Burr type XII distribution
percentiles. They determined the smaller sample sizes for the double sampling from
the optimization. Ramasamy and Sutharani [12] proposed the double sampling plan
using the minimum angle method when the lifetime of the product follows the
Rayleigh distribution. They concluded that double sampling using the minimum
angle method is helpful in reducing the inspection cost. The half exponential
power distribution in the area of the sampling plan is considered by Gui and Xu
[13]. They determined smaller samples for zero and one failure scheme. Al-Omari
and Zamanzade [14] worked on the designing of the double sampling plan under
transmuted generalized inverse Weibull distribution and Gui and Lu [15] designed
a double sampling plan for the Burr type X distribution. For the repetitive sampling
plans, Aslam et al. [10, 11] developed the decision-making framework for the
repetitive sampling under the Weibull distribution and the generalized exponential
distribution median life. Yen et al. [16] worked on the sampling plan based on the
one-sided process capability index for the lot having the one-sided specification.
Balamurali et al. [17] designed repetitive sampling plans for the gamma distribution
and the Weibull distribution. They discussed the application and compared these
distributions with the BS distribution. Saminathan and Mahalingam [18] proposed
the mixed repetitive sampling plan using the process capability index. For the MDSS
plans, Balamurali and Jun [19] designed the MDSS plan for the normal distribution.
Yan et al. [20] worked for this sampling using the coefficient of variation (CV)
under the normal distribution. Balamurali et al. [21, 22] proposed MDSS plan for
the Weibull distribution. Balamurali et al. [21, 22] used the generalized inverted
exponential distribution to proposed MDSS plan. Wu et al. [23] worked for the
MDSS plan for the one-sided process capability index and Balamurali et al. [21, 22]
designed MDSS to reduce the inspection cost.

In this chapter, our objective is to propose a GMDSS plan for various statistical
distributions. According to the best of our knowledge, there is no work on GMDSS
for the gamma, Burr type XII and BS distributions. We expect that the GMDSS
plan will improve the efficacy of the sampling plans by reducing the sample size
is required for the lot sentencing. We will present the design of the proposed plan
under these distributions and compare the performance with the existing plans using
the MDSS. The rest of the book chapter is organized as: a brief introduction about
the distributions is given in Sect. 2, the perforce measures and algorithm are given
in Sect. 3. The illustration using the real data is given in Sect. 4. A simulation study
is given in Sect. 5 and some concluding remarks are given in the last Section.
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2 Some Continuous Distributions

2.1 Gamma Distribution

Let T be a lifetime random variable of the product follows a gamma distribution
with shape parameter η and scale parameter λ. The cumulative distribution function
(cdf) of the gamma distribution is given by

F(t) = 1

�η
γ

(
η,
t

λ

)
; t ≥ 0, η > 0, λ > 0, (1)

where γ
(
η, t
λ

)
is the lower incomplete gamma function.

It is assumed that the shape parameter η is known. The mean lifetime of the
product using gamma distribution is given as μ = ηλ. The failure probability is
a probability of a product failure before the time t0, that is p = F(T ≤ t0) and is
expressed as given below:

p = 1

�η
γ

(
η,
t0

λ

)
. (2)

It is convenient to determine the termination time t0 as a multiple of the specified
mean life μ0, that is t0 = aμ0. The scale parameter λ can be written in terms of
mean μ.

Hence, the failure probability given in Eq. (2) can be expressed as follows:

p = 1

�η
γ

(
η, aη/

μ

μ0

)
. (3)

2.2 Burr Type XII Distribution

According to Lio et al. [4] and Lio et al. [24], Burr Type XII distribution is widely
used in the areas of quality control and reliability analysis. Burr [25] was initially
introduced the Burr Type XII distribution and subsequently, many researchers
applied to different environments. Assume that the lifetime of items follows a Burr
type XII distribution whose probability density function (pdf) and cdf are given
below:

f (t) = bc

σ

(
t

σ

)b[
1 +

(
t

σ

)b]−c−1

; t ≥ 0, σ > 0, b > 0, c > 0, (4)

F(t) = 1 −
[

1 +
(
t

σ

)b]−c
; t ≥ 0, σ > 0, b > 0, c > 0, (5)
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where σ is scale parameter, b and c are shape parameters of Burr type XII
distribution, assume that shape parameters are known. The median lifetime of the
product using Burr type XII distribution is given as μ = σ (21/c − 1)1/b. The failure
probability of the product when experiment time t0 is denoted by p and as follows:

p = 1 −
[

1 +
(
t0

σ

)b]−c
(6)

It is convenient to determine the termination time t0 as a multiple of the specified
mean life μ0, that is t0 = aμ0. The scale parameter σ can be written in terms of
mean μ.

Hence, the failure probability given in Eq. (6) can be expressed as follows:

p = 1 −
⎡

⎣1 +
(
a
(
21/c − 1

)1/b

μ/μ0

)b⎤

⎦
−c

(7)

2.3 Birnbaum: Saunders Distribution

The cdf of the two-parameter BS distribution is given by

F(t) =  
⎡

⎢⎣
1

ν

⎧
⎪⎨

⎪⎩

(
t

δ

)1/
2 −

(
δ

t

)1/
2

⎫
⎪⎬

⎪⎭

⎤

⎥⎦ ; t ≥ 0, δ > 0, ν > 0, (8)

where ν is the shape parameter, δ is a scale parameter of BS distribution and  (.) is
cdf of the standard normal distribution. Birnbaum and Saunders [26] were proposed
a life distribution for fatigue failures under cyclic loading distribution known as
BS distribution. The density function of the BS distribution is unimodal and it is a
family member of the normal distribution. Lemonte et al. [27] has derived the mean

life of the BS distribution and is given by μ = δ
(

1 + ν2

2

)
. The probability of the

failure of the product when experiment time t0 is denoted by p and as follows:

p =  
⎡

⎢⎣
1

ν

⎧
⎪⎨

⎪⎩

(
t0

δ

)1/
2 −

(
δ

t0

)1/
2

⎫
⎪⎬

⎪⎭

⎤

⎥⎦ (9)
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It is convenient to determine the termination time t0 as a multiple of the specified
mean life μ0, that is t0 = aμ0. The scale parameter δ can be written in terms of
mean μ. Hence, the failure probability given in Eq. (9) can be written as follows:

p =  

⎡

⎢⎢⎢⎣
1

ν

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎝
a
(

1 + ν2

2

)

μ/μ0

⎞

⎠

1/
2

−
⎛

⎝ μ/μ0

a
(

1 + ν2

2

)

⎞

⎠

1/
2

⎫
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⎪⎪⎪⎭

⎤

⎥⎥⎥⎦ (10)

3 Designing of Proposed Generalized Multiple Dependent
State Sampling Plan

3.1 Designing Methodology

The functioning procedure of the GMDSS plan for a time truncated life test is given
as follows:

• Step 1: Select a random sample of n items from a lot. Then put them on life test
for specified time t0.

• Step 2: Observe the number of failures before the experiment time t0 and denote
it as d.

• Step 3: If the number of failures d is smaller than or equal to ca, then accept the
lot.

• Step 4: Reject the lot if the number of failures is larger than cr (i.e. d > cr)
• Step 5: If ca < d ≤ cr, then accept the lot if at least k out of m preceding lots were

all accepted with the number of failures before the experiment time t0 is less than
or equal to ca (i.e. d ≤ ca). Otherwise, reject the lot.

The proposed plan is described by five parameters; namely, sample size (n),
the maximum number of allowable failure items for unconditional acceptance
(ca ≥ 0), the maximum number of additional failure items for conditional accep-
tance (cr > ca), k and m are the number of successive (preceding) lots needed for
making a decision. Our proposed GMDSS plan is the general for MDSS and it
becomes MDSS Plan when m = k, furthermore, GMDSS plan become the single
sampling plan when either (m, k) → ∞ and/or ca = cr = c.
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3.2 Performance Measures

The performance of any sampling plan can be disclosed by its probability of
acceptance, known as OC function. The OC function of the GMDSS plan for a
lifetime-truncated test is given by the following.

PA(p) = Pa +
⎛

⎝
cr∑

d=ca+1

(
n

d

)
pd(1 − p)n−d

⎞

⎠

⎡

⎣
m∑

j=k

(
m

j

)
P
j
a (1 − Pa)m−j

⎤

⎦

(11)

where Pa = p (d ≤ ca|p) =
ca∑
d=0

(
n

d

)
pd(1 − p)n−d .

The plan parameters of the GMDSS plan can be determined by the optimization
the following non-linear problem.

Minimize n (12)

Subject to

PA (p1) = Pa (p1)+
(

cr∑
d=ca+1

(
n

d

)
pd1 (1 − p1)

n−d
)[

m∑
j=k

(
m

j

)
P
j
a (p1) (1 − Pa (p1))

m−j
]

≥ 1 − α
(13)

PA (p2) = Pa (p2)+
(

cr∑
d=ca+1

(
n

d

)
pd2 (1 − p2)

n−d
)[

m∑
j=k

(
m

j

)
P
j
a (p2) (1 − Pa (p2))

m−j
]

≤ β
(14)

cr > ca ≥ 0

In order to find the design parameters of the proposed GMDSS plan, the quality
is represented in terms of the ratio of true mean life and specified mean life. In this
approach, the quality level is measured through the ratio of its mean lifetime to the
true mean lifetime, μ/μ0. To ensure and improve the quality of the products, the
producer may use the mean ratios. The probability (α) of rejecting a good lot is
called the producer’s risk and the probability (β) of accepting a bad lot is known as
the consumer’s risk. At the interest of both producer and consumer, the inference is
drawn from a GMDSS plan so developed may fulfil their specified risks. Producer
requires the lot acceptance probability of at least 1 − α at the acceptable reliability
level (ARL), p1, i.e., the producer wants the lot to be accepted at different values of
mean ratios say for the values ofμ/μ0 = 2, 2.5, 3, 3.5, 4, another hand, the consumer
wants the lot tolerance reliability level (LTRL), p2, i.e., consumer may reject the lot
if μ/μ0 = 1.
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3.3 Algorithm

A grid search method is used to obtain a non-linear optimization solution. This
methodology requires setting up grids in the decision space. The non-linear
objective function values are evaluated at the grid points. The point which corre-
sponding to the best objective function value is considered as an optimum solution
for the non-linear function. The below algorithm can be applied to obtain the optimal
parameters of the proposed plan for specified values of α, β and a.

Step 1: For a given values of α, β, a and the known shape parameter of gamma, Burr
XII and BS distributions.

Step 2: Initiate the values as n, ca, cr as n = 2, ca = 0, cr = ca + 1.
Step 3: For fixed values α, β, aand the known shape parameter of gamma, Burr XII

and BS distributions with the specified mean ratio, obtain the failure probability
by using Eq. (3) for gamma distribution or using Eq. (7) for Burr XII distribution
and using (10) for BS distribution at p1 and p2.

Step 4: Determine the acceptance probabilities of the lot at p1 and p2 using Eqs. (13)
and (14), respectively which are denote as PA(p1) and PA(p2), respectively.

Step 5: Obtain the parameters for both the conditions in Eqs. (13) and (14) are
satisfied such that the minimum value of n.

Step 6: If there exists a value of n satisfies step 5 then the desired optimal parameters
are n, ca, cr for fixed values of m and k. Otherwise, repeat the Steps 4–5 till to
get desired optimum values of parameters.

Using the above algorithm, results are computed for m = 3 and the values of k
considered as 3, 2 and 1. Tables 1, 2, 3, and 4 are given for gamma distribution with
shape parameter η = 2 and 3 at a = 0.5 and a = 1.0 respectively. Tables 5, 6, 7, 8, 9,
and 10 are provided for Burr type XII distribution with shape parameters b = 0.85,
2.0 and c = 5.49, 2.0, 1.0 at a = 0.5 and a = 1.0 respectively. Tables 11, 12, 13, 14,
15, and 16 are displayed for BS distribution with shape parameter ν = 1.0, 1.5, 2.0
when a = 0.5 and a = 1.0 respectively.

From Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16, we conclude
the following significant facts in the proposed Sampling Plans:

1. Result shows that the ratio of its mean lifetime to the true mean lifetime, μ/μ0
increases from 2.0 to 4.0 values the sample size (n), decreases as expected.

2. It is observed from tables that ca and crvalues shows decreasing tendency while
μ/μ0 increases from 2.0 to 4.0 when the remaining combinations are fixed.

3. Further, pointed out that as k increases the values of sample size also decreases.
Similar observed for various parametric combinations considered in this work.

4. It is important to note that sample size value is small when k = m − 2 as
compared with other values of k for fixed value of m. Furthermore, noticed that
when k = m the value of sample size is higher than at k = m − 1 and k = m − 2
(since when k = m, proposed scheme reduced to MDS scheme). It show that the
GMDS sampling plans is more effective than MDS sampling plans to obtain the
optimum plan parameters.
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4 Industrial Application of the GMDSS Plan

In this section, to illustrate the proposed sampling plan, consider a dataset contains
the 19 times in minutes to oil breakdown of an insulating fluid under high-test
voltage (34 kV). The reliability application of Burr XII was studied by Zimmer
et al. [28] for this data whereas this dataset was originally given by Nelson [29].
Lio et al. [24] discussed the application of this data for the sampling plan when the
lifetime of the product follows the Burr XII. They have also tested Kolmogorov–
Smirnov test to examine the goodness-of- fit of this data for Burr XII and showed
that reasonable well fitted to Burr XII with maximum likelihood estimates of shape
parameters are b = 0.85 and c = 5.49 respectively. We have also constructed tables
for our proposed GMDSS plan at these estimated shape parametric values and are
reported in Tables 5 and 6. The breakdown times of insulating fluids at 34 kV, which
are as follows.

0.19, 0.78, 0.96, 0.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.50, 7.35, 8.01, 8.27,
12.06, 31.75, 32.52, 33.91, 36.71 and 72.89.

To demonstrate the proposed sampling plan, assume that the specified mean time
to breakdown of an insulating fluid is 2 min (i.e., μ0 = 2). The experiment time t0
is 1 min. Thus we get the termination ratio of life test is a = 0.5. Also, assume that
producer’s risk α is 5% and consumer’s risk β is 25% and the mean ratio is used as
μ/μ0 = 4. From Table 5, the optimal parameters of the GMDSS plan are given as
n = 12, ca = 2, cr = 4, m = 3 and k = 2 for the aforementioned specified values.
Thus the proposed GMDSS plan can be implemented as follows:

From the current lot (L3), 12 electrical insulating fluids are selected randomly
and put on life test. The breakdown times of each fluid are recorded. Suppose that
the breakdown times of 12 insulating fluids are as follows:

CL : 0.07, 0.23, 0.32, 1.19, 1.54, 1.88, 2.12, 2.19, 5.47, 5.80, 5.96 and 8.39.

Let d denoted as the number of failed insulating fluids. From simulated data, it
is noticed that three insulating fluids broke down before 1 min of time (i.e. d = 3).
Hence, the current lot (CL) is accepted in a condition that the preceding tow lots out
of three lots were accepted with at most two failed item (since m = 3, k = 2). Since
m = 3, consider the preceding three lot and accept the current lot (CL) if two lots
out of three lots were at most two fluids will fail before 1 min of time. Suppose that
the breakdown times of 12 insulating fluids which are selected from preceding lot
(L3) are as follows.

L3 : 0.36, 0.62, 1.09, 1.47, 1.70, 1.96, 2.02, 2.49, 2.93, 3.45, 8.38 and 13.48.

From the above data, it is observed that there are two electrical insulating fluids
that broke down before 1 min and it is equal to ca (i.e. d = ca). Therefore, the
preceding one lot satisfied the condition out of three lots. Now at this stage, at
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least one more preceding lot accepts then the CL will be accepted. Suppose that
the breakdown times of 12 insulating fluids which are selected from preceding lot
(L2) are as follows.

L2 : 0.25, 0.75, 1.29, 1.36, 1.51, 1.59, 1.76, 1.81, 2.96, 3.88, 4.45 and 6.12.

From this data, it is noticed that there are two electrical insulating fluids that
broke down before 1 min and it is equal to ca (i.e. d = ca). Therefore, one of the
preceding lots satisfied the condition of acceptance out of three lots. Hence we stop
checking the lots and decided that the CL is accepted since out of the preceding
three lots two lots were accepted. This is an advantage of our proposed GMDSS
plan, instead of testing preceding three lots we are testing only preceding two lots
(Table 7).

5 Simulation

In this subsection, a simulated data is used to demonstrate the execution of the
proposed plan. We explain the implementation of the proposed GMDSS plan using
the simulated data for assuring that the mean life of the product when the lifetime
of the product follows Burr XII distribution. In this work, we generate a data set
which follows Burr XII distribution. To execute this plan, we assume the following
circumstances. The shape parameters of Burr XII distribution are assumed to be
b = 2 and c = 2. Consider the experiment termination time t0 is 1000 min and
specified mean life μ0 is 1000 min. Thus, the experiment mean ratio becomes
a = 1.0. The producer’s risk and consumer’s risk are respectively considered to
be α = 5% and β = 25% and the ratio of true mean life and specified mean life is
μ/μ0 = 2.

For the aforesaid particular values, from Table 8 we get the optimal parameters
of the GMDSS plan as n = 8, ca = 1, cr = 4, m = 3 and k = 1. The GMDSS plan
can be applied as follows:

A random sample of size 8 is selected from the CL. Conduct life test experiment
for the sample items for 1000 min. Suppose that the failure times of sample items
of current lot recorded are as follows:

CL : 106, 566, 982, 1037, 1568, 1651, 1941 and 2156.

From these data, we can observe that there are three sample items that failed
before the experiment time, 1000 min. Hence, the current lot is accepted in a
condition that the preceding one lots out of three lots were accepted with at most
one failed item (since m = 3, k = 1). Select a random sample of eight items from the
preceding lot (say L3) and put for life testing these samples for 1000 min. Suppose
that the recorded failure times of the preceding lot sample times are as follows:

L3 : 626, 1008, 1290, 1541, 1792, 2176, 2919 and 3102.



Time Truncated Life Tests Using the Generalized Multiple Dependent State. . . 179

Accept the lot L3 since it contains one failed items (i.e. d = ca). Hence our
conditions satisfied, so stop checking and conclude that the current lot is accepted
since k = 1 means out of three preceding lot at least one lot accepted then the current
lot is accepted in this sampling plan. Therefore, our proposed GMDSS plan saves
checking of two preceding lots, that is an advantage of saving cost and time(Tables
9, 10, 11, 12, 13, 14, 15, and 16).

6 Comparative Study

In this section, the proposed sampling plan is compared with the existing MDSS
plan. A plan is considered as better if it has a smaller sample size. The proposed
plan has a smaller sample size than the existing sampling plans for various plan
parameters for three distributions as shown in Table 17. We compared the different
distributions for proposed and existing sampling plan for shape parameter is 2 and
the termination ratio of the experiment is considered as a = 1.0. It is observed that
from Table 17, the proposed plan has a smaller sample size as compared to the
existing sampling plans. As an illustration, if α = 0.05, β = 0.25 andμ/μ0 = 2 for
m = 3, the sample size from the proposed sampling plan for Burr XII is 5 whereas

Table 17 Sample size for proposed and existing MDSS plans when m = 3 and shape parameter
is 2 for three distributions

Burr XII Gamma BS
β μ/μ0 MDSS Proposed MDSS Proposed MDSS Proposed

0.25 2.0 7 5 8 6 43 29
0.25 2.5 5 5 6 4 27 17
0.25 3.0 5 3 4 2 18 14
0.25 3.5 5 3 4 2 15 11
0.25 4.0 5 3 4 2 12 8
0.10 2.0 14 9 14 10 72 47
0.10 2.5 9 7 10 8 41 29
0.10 3.0 7 7 8 5 29 20
0.10 3.5 7 4 5 5 23 17
0.10 4.0 7 4 5 3 20 14
0.05 2.0 18 13 17 13 90 65
0.05 2.5 11 8 13 9 53 38
0.05 3.0 11 8 9 6 38 29
0.05 3.5 8 8 9 6 32 21
0.05 4.0 8 5 6 6 24 18
0.01 2.0 27 19 26 20 141 107
0.01 2.5 19 14 18 13 83 63
0.01 3.0 14 11 13 11 60 43
0.01 3.5 14 11 11 8 46 35
0.01 4.0 11 11 11 8 38 27
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Table 18 Sample size of the
GMDSS plan for three
lifetime distributions with
shape parameter 2 and
a = 1.0

β μ/μ0 BS Burr XII Gamma

0.25 2.0 29 5 6
0.25 2.5 17 5 4
0.25 3.0 14 3 2
0.25 3.5 11 3 2
0.25 4.0 8 3 2
0.10 2.0 47 9 10
0.10 2.5 29 7 8
0.10 3.0 20 7 5
0.10 3.5 17 4 5
0.10 4.0 14 4 3
0.05 2.0 65 13 13
0.05 2.5 38 8 9
0.05 3.0 29 8 6
0.05 3.5 21 8 6
0.05 4.0 18 5 6
0.01 2.0 107 19 20
0.01 2.5 63 14 13
0.01 3.0 43 11 11
0.01 3.5 35 11 8
0.01 4.0 27 11 8

it is 7 for the MDSS plan, proposed sampling plan for gamma distribution is 6
whereas it is 8 for the MDSS plan and proposed sampling plan for BS distribution is
29 whereas it is 43 for the MDSS plan. We know that if the sample size is small then
that sampling plan shows better performance. Thus, the proposed plan is performed
better than existing plans in terms of sample size.

In addition, we made a comparison of the sample size of the proposed GMSDS
plan for different distributions considered in our study, namely gamma distribution,
Burr XII distribution and BS distribution. To compare the different distributions,
we obtain the optimal parameters of the proposed sampling plan for the specified
parametric values as follows. The shape parameter is 2 and the termination ratio of
the experiment is considered as a = 1.0. The optimal parameters are determined
so that both the producer and consumer risks are satisfied with a minimum average
of ASN at AQL and ASN at LQL. We consider the ratio of true mean life to the
specified mean life, μ/μ0 values from 2 to 4. The sample size of the GMDSS
plan for three- lifetime distributions are presented in Table 18. From this table, we
can notice that the sample size for the proposed plan for BS distribution shows a
larger sample size than compared with the other two distribution considered in this
study. Furthermore, gamma and Burr XII distributions have a small sample size and
performing well as compared with BS distribution. Also, the sample size obtained
for gamma distribution is more cases smaller than the corresponding sample size
obtained for the Burr XII distribution.
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7 Conclusions

We presented the designing of the GMDSS for the three popular distributions in
this chapter. The performance measures, algorithm, real example and the simulation
study is added. The comparative study showed that the proposed plan significantly
reduced the sample for the inspection of the product as compared to the existing
sampling plans. The inspection of the product using the proposed sampling plan will
be helpful in reducing the inspection cost in the industry. As we presented sampling
plans for three different lifetime distributions that are the Gamma, Burr type XII and
BS distributions. The selection of the three distributions can be done on the nature
of the data. The practitioners need to fit the data for the three distributions first and
choose that distribution which is the best fit to the data. After the selection of the
distribution, they can apply the proposed sampling plan for the inspection of the
product. If the data is well fitted to three distribution, the practitioners can choose
the gamma distribution among the three distribution as sample size under the gamma
distribution are smaller than the Burr type XII distribution and the BS distribution.
The proposed plan can be applied in any electronic industry for the testing of the
product. The proposed sampling plan using some cost model can be extended for
future research.
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Decision Theoretic Sampling Plan
for One-Parameter Exponential
Distribution Under Type-I and Type-I
Hybrid Censoring Schemes

Deepak Prajapati, Sharmistha Mitra, and Debasis Kundu

Abstract In this paper, we design a decision theoretic sampling plan (DSP)
based on Type-I and Type-I hybrid censored lifetime data from a one-parameter
exponential distribution. The Bayes estimator of the mean lifetime is used to define
a decision function. A suitable loss function is considered to derive the Bayes risk
of this DSP. A finite algorithm is provided to obtain the optimum DSP and the
corresponding Bayes risk. It has been observed numerically that the optimum DSP
is better than the sampling plan proposed by Lam (Ann Stat 22:696–711, 1994)
and Lin et al. (Commun Stat Simul Comput 37:1101–1116, 2008; Commun Stat
Simul Comput 39:1499–1505, 2010) and it is as good as the Bayesian sampling
plan (BSP) of Lin et al. (Ann Inst Stat Math 54:100–113, 2002) and Liang and Yang
(J Stat Comput Simul 83: 922–940, 2013). It is observed that the Bayes risk of the
optimum DSP is approximately equal to the Bayes risk of the BSP. In case of higher
degree polynomials and for a non-polynomial loss function the DSP can be obtained
without any additional effort as compared to BSP.

1 Introduction

In reliability life testing experiments, manufacturers usually choose a suitable
acceptance sampling plan and do inspection to make decision on the reliability of the
experimental items in the batch. If we can find the optimal acceptance sampling plan
then we make a better decision on batch of items. So acceptance sampling plan plays
an important role in reliability life testing or quality control. In the vast literature of
acceptance sampling plans, various approaches have been discussed. The approach
based on decision theory has become more popular because here the sampling plan
is obtained by making an optimal decision on some economic considerations such
as maximizing the return or minimizing the loss. Many researchers have widely
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used this approach to obtain the optimal sampling plan. See, for example, Hald [6],
Fertig and Mann [5], Lam [10–12], Lam and Choy [13], Lin et al. [18], Huang and
Lin [8, 9], Chen et al. [3], Lin et al. [16, 17], Liang and Yang [14] and the references
cited therein.

In life testing experiments, usually we collect a censored or incomplete data.
The experimenter does not observe the failure of all items because inspection cost
increases with time, items may be expensive, etc. So, to save time or resources we
try to get the optimal result based on censored or incomplete data. If the inspection
cost increases with time, then we put n items on test and terminate the test at a
preassigned time τ . This type of censoring is called Type-I censoring. In Type-I
hybrid censoring, the experiment is terminated at time of rth failure or at time τ ,
which ever occurs first. It is useful when items are expensive and the inspection
cost also increases with time. In this paper it is assumed that the lifetimes of
the experimental units follow one parameter exponential distribution. If M is the
number of failures in the experiment, then in both the censoring schemes forM = 0,
the maximum likelihood (ML) estimator of the mean lifetime does not exist. Lam
[12] has obtained the Bayesian sampling plan for Type-I censoring where decision
function is based on an estimator which is equal to the ML estimator of the mean
lifetime when M ≥ 1 and at M = 0, the estimator is equal to nτ . Lin et al. [18]
has observed that the loss function used by Lam [12] does not involve any cost
on duration of the experiment. So if we extend the duration of the experiment,
we can observe complete sample to get a better decision on the batch of items.
Therefore, the sampling plan of Lam [12] is “ neither optimal, nor Bayes ”. Lin et
al.[16, 17] proposed optimal sampling plans for Type-I and Type-I hybrid censoring
schemes using a decision function based on the ML estimator of the mean lifetime
conditioning on the event thatM ≥ 1.

In this study, we consider the case where life tests are Type-I and Type-I hybrid
censored. To avoid the non-existence of the ML estimator of the mean lifetime,
we use its Bayes estimator which exists for all values of M . We find the decision
theoretic sampling plan (DSP) using the Bayes estimator of the mean lifetime in
the decision function. A loss function which includes the sampling cost, the cost on
per unit duration of the experiment, the salvage value and the decision loss are used
to determine the optimal sampling plan by minimizing the Bayes risk. Numerical
results for quadratic loss function show that the optimum DSP is a better plan than
the sampling plans proposed by Lam [12] and Lin et al. [16, 17], and as good as the
Bayesian sampling plan (BSP) given by Lin et al. [18] and Liang and Yang [14].
Theoretically, for fifth or higher degree polynomial and for a non-polynomial loss
function, the optimum DSP is quite easy to derive but BSP cannot be obtained very
conveniently.

The rest of the paper is organized as follows. In Sect. 1.1 we introduce the
decision function based on the Bayes estimator of the mean lifetime. All necessary
theoretical results and algorithm to obtain the optimum DSP are provided in Sect. 2.
In Sect. 3 we compare the proposed DSP and the BSP for higher degree polynomial
and for a non-polynomial loss function. Numerical comparisons and results on
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DSP are given in Sect. 4. Finally we conclude the paper in Sect. 5. All necessary
derivations are provided in the Appendix.

1.1 Model Formulation, Assumptions and DSP

Let X1, X2, . . . , Xn denote the lifetime of n items put to test in an experiment. It
is assumed that these lifetimes of components are mutually independent and follow
the exponential distribution with probability density function (PDF)

f (x) =
{
λe−λx, if x > 0, λ > 0
0, otherwise.

(1)

Let θ denote the mean lifetime of an item and for the above distribution, the mean
lifetime of an item is θ = 1

λ
. So use of λ is equivalent to the use of θ . Henceforth,

we will use whichever is more convenient. Let X(1) < . . . < X(n) be the ordered
observations from the given sample of n lifetimes X1, . . . , Xn. For Type-I and
Type-I hybrid censoring schemes, if τ ∗ denotes the duration of the experiment,
then τ ∗ = τ in a Type-I censoring and τ ∗ = min{X(r), τ } in a Type-I hybrid
censoring schemes. Here τ denotes the pre-fixed time and r is a pre-fixed integer,
1 ≤ r ≤ n. We observe that τ ∗ is fixed in Type-I censoring and random for Type-I
hybrid censoring. DefineM = max{i : X(i) ≤ τ ∗}, i.e.,M is the number of failures
among the n items put on the life test, before time τ ∗. For Type-I censoring the joint
PDF of X = (X(1), X(2), . . . , X(M)) is as follows:

fX(1),...,X(M)(x1, . . . , xm,M = m|λ) = n!
(n−m)! λ

me
−λ
[∑m

i=1 xi+(n−m)τ
]
;

0 < x1 < . . . < xm <∞, (2)

and for Type-I hybrid censoring the joint PDF is given as follows:

fX(1),...,X(M) (x1, . . . , xm,M = m|λ) =
⎧
⎨

⎩

n!
(n−m)!λme

−λ
[∑m

i=1 xi+(n−m)τ
]
, if xr ≥ τ

n!
(n−r)!λre

−λ
[∑r

i=1 xi+(n−r)xr
]
, if xr < τ.

(3)

Lam [12] proposed the Bayesian sampling plan for Type-I censoring using a
decision function

δ(X) =
{

1, if θ̂ ≥ ξ
0, if θ̂ < ξ,

(4)
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where ξ(> 0) denotes the minimum acceptable surviving time to take a decision
on a batch, i.e., whether to accept it with an action 1 or reject it with an action 0.
Estimator θ̂ is given by

θ̂ =
{
θ̂M, if M ≥ 1
nτ, if M = 0,

where θ̂M is the ML estimator of the mean lifetime θ and is defined as:

θ̂M =
{ ∑M

i=1 X(i)+(n−M)τ
M

, if M ≥ 1
does not exist, if M = 0.

Similarly, for Type-I hybrid censoring also the ML estimator of the mean lifetime
does not exist for M = 0. Therefore, in place of ML estimator, we propose to use
the Bayes estimator of θ in decision function because it exists for all values of M .
The Bayes estimator with respect to the squared error loss function (see Berger[2])
when λ has a prior distribution G(a, b), with PDF

π(λ; a, b) = ba

Γ (a)
λa−1e−λb; λ > 0, a, b > 0, (5)

is as follows:

1. Type-I Censoring:

θ̂B = b +∑M
i=1X(i) + (n−M)τ
M + a ,

2. Type-I Hybrid Censoring:

θ̂B =
{
b+∑M

i=1 X(i)+(n−M)τ
M+a , if X(r) ≥ τ

b+∑r
i=1 X(i)+(n−r)X(r)

r+a , if X(r) < τ.

Based on the observed sample, we define our decision function as:

δ(X) =
{

1, if θ̂B ≥ ξ
0, if θ̂B < ξ,

(6)

where θ̂B is the Bayes estimator of θ , ξ(> 0) is the minimum acceptable surviving
time to take a decision on a batch, i.e., whether to accept it with an action 1 or reject
it with an action 0. We consider the loss function:

L(δ(X), λ) =
{
nCs − (n−M)rs + τ ∗Cτ + g(λ), if δ(x) = 1
nCs − (n−M)rs + τ ∗Cτ + Cr, if δ(x) = 0,

(7)
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which depends on various costs. Cr is the cost due to rejecting the batch, Cs is
the cost due to inspection of each item and Cτ is the cost per unit duration of the
experiment. Cost due to accepting the batch is denoted by g(λ), so that g(λ) has to be
positive and increasing in λ. In general, g(λ) will be determined by the inspection
requirement or experience before designing a sampling plan. Hence, the form of
g(λ) can vary and accordingly, form of the loss function also varies. If an item does
not fail, then this item can be reused with a salvage value rs such that Cs > rs ≥ 0,
see, Liang and Yang [14] or Liang et al. [15].

Any sampling plan consists of the sampling parameters and the decision
parameter ξ . Therefore, (n, τ, ξ) and (n, r, τ, ξ) are the sampling plans for Type-
I censoring and Type-I hybrid censoring, respectively, and we denote these by DSP.
To determine the optimum DSP namely, (n0, τ0, ξ0) and (n0, r0, τ0, ξ0) for Type-
I censoring and Type-I hybrid censoring, respectively, we determine that decision
function in (6) which minimizes the Bayes risk of the DSP under the given loss
function in (7) among all possible DSPs.

2 Computation of Bayes Risk and Optimum DSP

In this section we compute the Bayes risk of the DSP and an algorithm is presented
for obtaining the optimum DSP. First, we derive the general expression of the Bayes
risk for any given sampling plan and the distribution of θ̂B . In Sects. 2.1 and 2.3
we derive the exact expressions of the Bayes risks for Type-I and Type-I hybrid
censoring schemes.

2.1 Computation of Bayes Risk and Distribution of θ̂B

A number of authors used a quadratic loss function to obtain the Bayesian sampling
plans (for example see, Lam [11, 12], Lam and Choy [13], Lin et al. [18], Huang
and Lin [8, 9], Lin et al. [16, 17], Liang and Yang [14], Liang et al. [15], etc). They
use this functional form because computation becomes easier and g(λ) = a0 +a1λ+
a2λ

2 is a reasonable approximation of the true acceptance cost. However, a higher
degree polynomial may be a better approximation of the true acceptance cost. So
we consider the functional form of the loss function defined as

L(δ(X), λ) =
{
nCs − (n−M)rs + τ ∗Cτ + a0 + a1λ+ . . .+ akλk, if δ(X) = 1

nCs − (n−M)rs + τ ∗Cτ + Cr, if δ(X) = 0,

(8)
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where a0, a1, . . . and ak are fixed positive constants. Based on the decision rule
in (6) and the loss function in (8), the Bayes risk takes the form

RB(S) = E
{
L(δ(X), λ)

} = EλEX/λ
{
L(δ(X), λ)

}

= EλEX/λ
{
nCs − (n−M)rs + τ ∗Cτ + a0 + a1λ+ . . .+ akλk

+(1 − δ(X))(Cr − a1λ− . . .− akλk)
}

= n(Cs − rs)+ rsE(M)+ CτE(τ ∗)+ a0 + a1μ1 + . . .+ akμk
+Eλ

{
(Cr − a0 − a1λ− . . .− akλk)P (θ̂B < ξ |λ)}, (9)

where S is the sampling plan under Type-I or Type-I hybrid censoring and μi =
E(λi) for i = 1, 2, . . . , k. Therefore, in order to derive the Bayes risk of the DSP
from (9), it is clear that we need the distribution of θ̂B given λ for Type-I and Type-I
hybrid censoring schemes.

So, first we compute the distribution of θ̂B for a given λ, which is

P(θ̂B ≤ x|λ) = P(M = 0|λ)P (θ̂B ≤ x|M = 0, λ)

+P(M ≥ 1|λ)P (θ̂B ≤ x|M ≥ 1, λ)

= pSλ(x)+ (1 − p)Hλ(x), (10)

where p = P(M = 0|λ) = e−nλτ and

Sλ(x) = P(θ̂B ≤ x|M = 0, λ) =
{

1, if x ≥ b+nτ
a

0, otherwise.

Hλ(x) = P(θ̂B ≤ x|M ≥ 1, λ) =
{∫ x

0 h(u|λ)du, if 0 < x < b+nτ
a

0, otherwise,

where h(u|λ) is the PDF of the absolutely continuous part of θ̂B given λ.

2.2 Type- I Censoring

When the samples are Type-I censored, then as mentioned above, evaluation of the
Bayes risk of DSP requires the PDF h(.|λ). The following lemma provides the PDF
of the absolutely continuous part of the distribution.

Lemma 1 The PDF h(.|λ) of θ̂B given λ under a Type-I censoring scheme is
given by

h(x|λ) = 1

1 − p
n∑

m=1

m∑

j=0

(
n

m

)(
m

j

)
(−1)j e−λ(n−m+j)τ π

(
x − τj,m,a,b;m, (m+ a)λ),

for τj,m,a,b < x <
b+nτ
a

, where τj,m,a,b = b+(n−m+j)τ
m+a and π(·) is as defined in (5).
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Proof The PDF can be easily obtained using the result of Bartholomew [1]. ��
Hence, using the distribution function of θ̂B and the prior density in (5) of λ, the
following theorem provides the Bayes risk of the DSP (n, τ, ξ) for the loss function
in (8).

Theorem 1 The Bayes risk of the DSP (n, τ, ξ) w.r.t the loss function in (8) is given
as

RB(n, τ, ξ) = n(Cs − rs)+ rsE(M)+ τCτ + a0 + a1μ1 + . . .+ akμk +
k∑

l=0

Cl
ba

Γ (a)

×
[Γ (a + l)I

( b+nτ
a
<ξ)

(b + nτ)(a+l) +
n∑

m=1

m∑

j=0

(−1)j
(
n

m

)(
m

j

)Γ (a + l)IS∗
j,m,a,b

(m, a + l)
((m+ a)τj,m,a,b)a+l

]
,

where I
( b+nτ

a
<ξ)

is an indicator function and the exact expressions forE(M), Cl and

IS∗
j,m,a,b

(m, a + l) are provided in the proof of the theorem.

Proof See Appendix. ��
Based on the explicit expression of the Bayes risk RB(n, τ, ξ), an optimum DSP
(n0, τ0, ξ0) can be determined by

RB(n0, τ0, ξ0) = min
n

{min
τ,ξ

[RB(n, τ, ξ)]}. (11)

The explicit expression of the Bayes risk is very complicated and hence, it is not
possible to obtain optimal values of n, τ and ξ analytically. Lam [12] has given a grid
search algorithm for obtaining an approximate optimal sampling plan. Following
that approach, we present a similar algorithm to find the optimum DSP:

Algorithm A

1. Fix n and τ , minimize RB(n, τ, ξ) with respect to ξ using grid search method
and denote the minimum Bayes risk by RB(n, τ, ξ0(n, τ )).

2. For fixed n, minimize RB(n, τ, ξ0(n, τ )) with respect to τ , using grid search
method and denote the minimum Bayes risk by RB(n, τ0(n), ξ0(n, τ0(n))).

3. Choose sample size n0 such that

RB(n0, τ0(n0), ξ0(n0, τ0(n0))) ≤ RB(n, τ0(n), ξ0(n, τ0(n))) ∀ n ≥ 0.

The choice of the number of grid points for τ and ξ depends on the Bayes risk
function RB(n, τ, ξ). If RB(n, τ, ξ) has a unique minimum then the algorithm
works very well to find the optimum DSP. In relation to Algorithm A, the following
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theorem can significantly reduce the effort in the search for the optimum DSP and
also ensures that it will be obtained in a finite number of search steps.

Theorem 2 Assuming 0 < ξ ≤ ξ∗, let us denote RB(n, τ, ξ ′) = min0<ξ≤ξ∗RB
(n, τ, ξ) for some fixed n (≥ 1) and τ . Further, let n0 and τ0 be the optimal sample
size and censoring time. Then,

n0 ≤ min

{
Cr
Cs−rs ,

a0+a1μ1+...+akμk
Cs−rs ,

RB(n,τ,ξ
′)

Cs−rs

}
,

τ0 ≤ min

{
Cr
Cτ
,
a0+a1μ1+...+akμk

Cτ
,
RB(n,τ,ξ

′)
Cτ

}
.

Proof See Appendix. ��

2.3 Type-I Hybrid Censoring

When the random sample is coming from a Type-I hybrid censoring scheme, the
PDF of the absolutely continuous part of the Bayes estimator θ̂B given λ is h(.|λ),
which is given in the following lemma.

Lemma 2 The PDF h(.|λ) of θ̂B given λ under a Type-I hybrid censoring scheme
is given by

h(x|λ) = 1

1 − p
[ r−1∑

m=1

m∑

j=0

(
n

m

)(
m

j

)
(−1)j e−λτ(n−m+j)π

(
x − τj,m,a,b;m, (m+ a)λ)

+π
(
x − b

r + a ; r, (r + a)λ
)

+ r
(
n

r

) r∑

j=1

(
r − 1

j − 1

)
(−1)j e−λτ(n−r+j)

n− r + j

×π(x − τj,r,a,b; r, (r + a)λ)
]
,

for 0 < x < b
a
+ nτ

a
, where τj,m,a,b = b

m+a + (n−m+j)τ
m+a and π(·) is as defined in (5).

Proof It can be easily obtained using the result of Childs et al. [4]. ��
Then in the expression (9), the distribution of θ̂B given λ and prior density (5) of λ
is used to obtain the Bayes risk of DSP (n, r, τ, ξ). The following theorem provides
the Bayes risk of DSP.
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Theorem 3 The Bayes risk of DSP (n, r, τ, ξ) w.r.t the loss function (8) is given as
follows

RB(n, r, τ, ξ) = n(Cs − rs)+ E(M)rs + E(τ ∗)Cτ + a0 + a1μ1 + . . .+ akμk

+
k∑

l=0

Cl
ba

Γ (a)

{
Γ (a + l)

(b + nτ)(a+l) I( b+nτa <ξ)
+
r−1∑

m=1

m∑

j=0

(
n

m

)(
m

j

)
(−1)jRl,j,m

+Rl,r−n,r +
r∑

j=1

(
n

r

)(
r − 1

j − 1

)
(−1)j

r

(n− r + j)Rl,j,r
}
,

where I
( b+nτ

a
<ξ)

is an indicator function as defined before, and the expressions for

E(M), E(τ ∗), Cl and Rl,j,m are provided in the proof of the theorem.

Proof See Appendix. ��
Based on the explicit expression of the Bayes risk, an optimum DSP (n0, r0, τ0, ξ0)

can be determined by

RB(n0, r0, τ0, ξ0) = min
n

{min
r≤n{min

τ,ξ
[RB(n, r, τ, ξ)]}}. (12)

In this case also the Bayes risk expression is very complicated. So we present a
similar algorithm as given in Sect. 2.2 to obtain the optimum DSP (n0, r0, τ0, ξ0).

Algorithm B

1. Fix n, r and τ , minimize RB(n, r, τ, ξ) with respect to ξ using a grid search
method. Denote the minimum Bayes risk by RB(n, r, τ, ξ0(n, r, τ )).

2. For fixed n and r , minimize RB(n, r, τ, ξ0(n, r, τ )) with respect to τ using the
grid search method and denote the minimum Bayes risk by

RB(n, r, τ0(n, r), ξ0(n, r, τ0(n, r))).

3. For fixed n, choose r ≤ n for which RB(n, r, τ0(n, r), ξ0(n, r, τ0(n, r))) is
minimum and denote it by

RB(n, r0(n), τ0(n, r0(n)), ξ0(n, r0(n), τ0(n, r0(n)))).

4. Choose sample size n0 such that

RB(n0, r0(n0), τ0(n0, r0(n0)), ξ0(n0, r0(n0), τ0(n0, r0(n0))))

≤ RB(n, r0(n), τ0(n, r0(n)), ξ0(n, r0(n), τ0(n, r0(n)))) ∀ n ≥ 0.

For each sample size n and for given values of r and ξ , Bayes risk RB(n, r, τ, ξ) is
a function of τ . If we have to find an optimum DSP, we need an upper bound of τ .
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Tsai et al. [19] suggested to choose suitable range of τ , say [0, τα], where τα is such
that

P(0 < X < τα) = 1 − α
∫ ∞

0

∫ τα

0

ba

Γ (a)
λa−1e−λbλe−λxdxdλ = 1 − α

1 −
(

1 + τα

b

)−a
= 1 − α,

hence

τα = b
(
α− 1

a − 1

)
, (13)

where α is a preassigned number satisfying 0 < α < 1. The choice of α depends
on the prescribed precision. Higher the precision required, smaller the value of α
should be chosen. In the range [0, τα] we use grid search to find the optimal value
of τ . The next theorem shows that Algorithm B is finite, i.e., we can find an optimal
sampling plan in a finite number of search steps.

Theorem 4 Assuming 0 < ξ ≤ ξ∗, let us denote RB(n, r, τ, ξ
′) =

minξ≤ξ∗RB(n, r, τ, ξ) for some fixed n (≥ 1) and τ . Further, let n0 be the optimal
sample size. Then,

n0 ≤ min

{
Cr
Cs−rs ,

a0+a1μ1+...+akμk
Cs−rs ,

RB(n,r,τ,ξ
′)

Cs−rs

}

and r0 ≤ n0.

Proof Proof is similar to Theorem 2. ��

3 Comparisons with Existing Bayesian Sampling Plan

Lin et al. [18] proposed the BSP (nB, τB, δB) for Type-I censoring and Liang
and Yang [14] proposed BSP (nB, rB, τB, δB) for Type-I hybrid censoring using a
quadratic loss function. In this section we show that for more general loss functions,
the optimum DSP can be obtained without any additional effort as compared to BSP.

3.1 Higher Degree Polynomial Loss Function

In Sect. 3 we have shown that for a higher degree polynomial loss function, Bayes
risk of the DSP can be easily computed for Type-I and Type-I hybrid censoring. In
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this section we show that the Bayes risk of BSP for higher degree polynomial loss
function cannot be expressed in explicit form. The optimal sampling plans obtained
are “approximate optimal” plans if g(λ), cost due to acceptance, is an approximation
of the true acceptance cost. So it is necessary to have a better approximation of the
true cost for better results. Therefore, it is meaningful to study what happens when
g(λ) is a higher degree polynomial loss function. Bayes decision function (see, Lin
et al. [18] and Liang and Yang [14]) for BSP is given as

δB(x) =
{

1, if φπ
(
m, z

) ≤ Cr
0, otherwise,

where for Type-I censoring

z =
m∑

i=1

xi + (n−m)τ,

and for Type-I hybrid censoring

z =
{∑m

i=1 xi + (n−m)τ, if m = 1, 2, . . . , r − 1∑r
i=1 xi + (n− r)xr , if m = r,

with

φπ
(
m, z

) =
∫ ∞

0
g(λ)π

(
λ|m, z)dλ.

Since the prior distribution of λ is G(a, b), it is well known that the posterior
distribution of λ is also gamma, viz.,

π
(
λ|m, z) ∼ G(m+ a, z+ b).

Now when g(λ) = a0 + a1λ+ . . .+ akλk in the loss function (7), then,

φπ
(
m, z

) =
∫ ∞

0
g(λ)π

(
λ|m, z)dλ = a0 +

k∑

j=1

aj
(m+ a) . . . (m+ a + j − 1)

(z+ b)j .

Thus to find the closed form of the decision function we need to obtain the set

A = {z; z ≥ 0, φπ
(
m, z

) ≤ Cr},
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and to construct A, we need to obtain the set of z ≥ 0, such that

h1(z) = a0 +
k∑

j=1

aj
(m+ a) . . . (m+ a + j − 1)

(z+ b)j ≤ Cr, (14)

which is equivalent to finding z ≥ 0, such that,

h2(z) = (Cr − a0)
(
z+ b)k −

k∑

j=1

aj (m+ a) . . . (m+ a + j − 1)
(
z+ b)k−j ≥ 0.

(15)

Note that for k = 2,

h2(z) = (Cr − a0)
(
z+ b)2 − a1(m+ a)(z+ b)− a2(m+ a)(m+ a + 1) ≥ 0.

It can easily be shown that if Dn(m) is the only real root or Dn(m) is the maximum
real root of h2(z) = 0, then the Bayes decision function will take the following
form:

δB(x) =
{

1, if z ≥ Dn(m)− b
0, otherwise.

(16)

It is well known that there is no algebraic solution to polynomial equations of degree
five or higher (see chapter 5, Herstein [7]). So closed form of the Bayes risk of
BSP cannot be determined for five or higher degree polynomial loss functions. This
difficulty does not arise in computation of the proposed optimum DSP, because the
decision function does not depend on the form of loss function. So for higher degree
polynomial loss functions, applying the DSP is easier than the BSP.

3.2 Non-polynomial Loss Function

In Sect. 3.1 we discussed the limitations of BSP for polynomial loss function where
DSP can be obtained quite easily. In this section, we discuss that if we have a non-
polynomial loss function, then obtaining DSP is easier as compared to BSP. To
illustrate this, we consider a very simple non-polynomial loss function

L(δ(X), λ) =
{
nCs − (n−M)rs + τ ∗ Cτ + a0 + a1λ+ a2λ

5/2, if δ(X) = 1
nCs − (n−M)rs + τ ∗ Cτ + Cr, if δ(X) = 0,

(17)
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where g(λ) = a0 + a1λ + a2λ
5/2, which is an increasing function in λ. The Bayes

risk of DSP for the non-polynomial loss function (17) is computed by a similar
approach as in Sect. 2 and is given by:

For Type -I censoring

RB(n, τ, ξ) = n(Cs − rs)+ rsE(M)+ τCτ + a0 + a1μ1 + a2
Γ (a + 5

2 )

Γ (a)b
5
2

+
2∑

l=0

Cl
ba

Γ (a)

×
[Γ (a + pl)I( b+nτ

a
<ξ)

(b + nτ)(a+pl) +
n∑

m=1

m∑

j=0

(−1)j
(
n

m

)(
m

j

)Γ (a + pl)IS∗
j,m,a,b

(m, a + pl)
((m+ a)τj,m,a,b)a+pl

]
,

where the expression of E(M) and IS∗
j,m,a,b

(m, a + pl) are given in the proof of the
Theorem 1 in the Appendix. For Type -I hybrid censoring,

RB(n, r, τ, ξ) = n(Cs − rs)+ E(M)rs + E(τ∗)Cτ + a0 + a1μ1 + a2
Γ (a + 5

2 )

Γ (a)b
5
2

+
2∑

l=0

Cl
ba

Γ (a)

[
Γ (a + pl)

(b + nτ)(a+pl) I
( b+nτ

a
<ξ)

+
r−1∑

m=1

m∑

j=0

(
m

n

)(
m

j

)
(−1)jRpl,j,m

+Rpl,r−n,r +
r∑

k=1

(
n

r

)(
r − 1

k − 1

)
(−1)k

r

(n− r + k)Rpl,k,r
]
,

where the expressions for E(M), E(τ ∗), Cl and Rpl,j,m are defined in the proof of
the Theorem 3 in the Appendix and

pl =
⎧
⎨

⎩

0, if l = 0
1, if l = 1
5
2 , if l = 2.

Now, in case of BSP, when g(λ) = a0 + a1λ+ a2λ
5/2, then by Sect. 3.1

φπ
(
m, z

) =
∫ ∞

0
g(λ)π

(
λ|m, z)dλ = a0 + a1(m+ a)

(z+ b) + a2Γ (m+ a + 5
2 )

Γ (m+ a)(z+ b) 5
2

.

So to find a closed form of the decision function we need to obtain the set A as
defined in Sect. 3.1. Note that to construct A, we need to obtain the set of z ≥ 0,
such that

h1(z) = a0 + a1(m+ a)
(z+ b) + a2Γ (m+ a + 5

2 )

Γ (m+ a)(z+ b) 5
2

≤ Cr,
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which is equivalent to finding z ≥ 0, such that,

h2(z) = (Cr − a0)Γ (m+ a)(z+ b) 5
2 − a1(m+ a)Γ (m+ a)(z+ b) 3

2

−a2Γ (m+ a + 5

2
) ≥ 0.

It is obvious that finding the closed form solution of the non-polynomial equation
h2(z) = 0 is not possible. So, for the given very simple non-polynomial loss
function the Bayes risk of BSP cannot be obtained analytically but the Bayes risk of
DSP is obtained quite easily.

Hence, we see that in general BSP cannot be obtained easily for all type of
functional forms of the loss function but we can obtain the DSP for such cases quite
easily because we have to compute just the expected value of the loss function.

4 Numerical Results

In this section, we focus on comparing the optimum DSP with the sampling plans
of Lam [12], Lin et al.[16, 17] and with the BSP proposed by Lin et al. [18] and
Liang and Yang [14]. We also obtain the optimum DSP for fifth degree polynomial
loss function and for non-polynomial loss function proposed in Sect. 3.2. Let n∗

1, τb,
ξ∗ from Theorem 2, denote the upper bound for optimal values of n, τ and ξ , under
Type-I censoring, i.e.,

0 ≤ n0 ≤ n∗
1, 0 ≤ τ0 ≤ τb and 0 < ξ0 ≤ ξ∗.

Since τ and ξ are continuous and n is an integer, therefore, to obtain numerical
results we take a grid size of 0.0125 for τ and 0.0015 for ξ . Then by applying the
Algorithm A, we obtain the optimum DSP (n0, τ0, ξ0) for Type-I censoring.

Similarly, let n∗
2 and ξ∗ from Theorem 4 denote the upper bound for optimal

value of n and ξ under Type-I hybrid censoring, i.e.,

0 ≤ n0 ≤ n∗
2, r0 ≤ n0, 0 ≤ ξ0 ≤ ξ∗

and optimal values of τ ∈ [0, τα] where τα is determined by (13) for given value of
a and b. Here we use α = 0.01. To obtain numerical results we take a grid size of
0.0015 for ξ and for τ we take the grid size of 0.0125. Then we apply Algorithm B
to obtain the optimum DSP for Type-I hybrid censoring. The results presented in
Tables 1, 2, 3, 4, 5, 6, and 7 are obtained by using a program written in R.
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Table 4 Minimum Bayes risk and corresponding optimum DSP for fifth degree polynomial loss
function for Type-I censoring

a b RB(n0, τ0, ξ0) n0 τ0 ξ0 Cs RB(n0, τ0, ξ0) n0 τ0 ξ0

1.5 0.8 12.7301 3 1.1875 0.9750 0.4 24.2273 7 1.6750 0.8525

3.0 2.5 24.8613 6 1.7125 0.8650 0.7 25.8920 4 1.9875 0.9000

3.0 3.0 22.4152 6 1.5750 0.8650 1.0 26.9562 3 2.1125 0.9125

Cτ Cr

0.3 24.4827 6 2.1125 0.8625 30 24.8613 6 1.7125 0.8650

1.0 25.6103 6 1.3500 0.8750 50 33.0079 8 1.7375 0.7300

1.5 26.2238 6 1.0750 0.8850 100 45.7463 12 1.6000 0.5900

4.1 Numerical Results for Quadratic Loss Function

In Sect. 2 we have obtained the Bayes risk of DSP for a kth order polynomial loss
function. For comparison with Lam [12], Lin et al. [16, 17], Lin et al. [18] and Liang
and Yang [14] we assume k = 2. They choose this value of k because a quadratic
polynomial makes computation easy and straightforward.

For comparison with Lam [12] and Lin et al. [16, 17] we fix the coefficients as:
a0 = 2, a1 = 2, a2 = 2, Cs = 0.5, Cτ = 0, rs = 0 and Cr = 30, which they
have used to obtain the sampling plan and we take ξ∗ = 3. In Table 1, comparison
is shown by varying the hyper-parameters a and b and keeping others fixed. From
Table 1 it is clear that Bayes risk of the optimum DSP is less than or equal to the
Bayes risk of the sampling plan of Lam [12] and Lin et al.[16, 17].

For comparison with the BSP proposed by Lin et al. [18] and Liang and Yang [14]
we choose the same set of parameter values and coefficients used by Lin et al. [18]
and Liang and Yang [14], which are as follows, for Type-I censoring, a = 2.5, b =
0.8, a0 = 2, a1 = 2, a2 = 2, Cs = 0.5, rs = 0, Cτ = 0.5, Cr = 30, ξ∗ = 3 and
for Type-I hybrid censoring, a = 2.5, b = 0.8, a0 = 2, a1 = 2, a2 = 2, Cs =
0.5, rs = 0.3, Cτ = 0.5, Cr = 30, ξ∗ = 3. Comparison of the Bayes risk of the
BSP and the optimum DSP is given in Tables 2 and 3 by varying a, b, Cs , Cτ and
Cr one at a time and keeping others fixed.

In Table 2, RB(nB, τB, δB) denotes the Bayes risk of the BSP and RB(n0, τ0, ξ0)

denotes the Bayes risk of the optimum DSP (n0, τ0, ξ0). Similarly, in Table 3 the
Bayes risk of the BSP is denoted by RB(nB, rB, τB, δB) and RB(n0, r0, τ0, ξ0)

denotes the Bayes risk of the optimum DSP (n0, r0, τ0, ξ0). In case of Type-I hybrid
censoring, the Bayes risk of BSP includes a complicated integral which is computed
by simulation techniques. So the Bayes risk for BSP in case of Type-I hybrid
censoring is an approximation of the exact Bayes risk. From Tables 2 and 3 it is
clear that performance of the optimum DSP is as good as the BSP.

In Type-I censoring, the Bayes risk of the DSP is a function of the sampling
plan (n, τ, ξ) in which n takes discrete values and others are continuous. Theorem 2
states that the optimal value of n is bounded above, so it is sufficient to provide the
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Table 6 Minimum Bayes risk and corresponding optimum DSP for non-polynomial loss function
for Type-I censoring

a b RB(n0, τ0, ξ0) n0 τ0 ξ0 Cs RB(n0, τ0, ξ0) n0 τ0 ξ0

2.5 0.8 27.5536 4 1.0625 0.4185 0.3 26.6463 6 0.9250 0.4110

2.5 1.0 24.9524 4 1.0000 0.4185 0.7 28.1649 3 1.0875 0.4245

3.0 0.8 29.6926 2 1.0750 0.4275 2.0 29.9411 1 0.7250 0.6000

Ct Cr

0.1 27.0722 4 1.3875 0.4170 30 27.5536 4 1.0625 0.4185

0.7 27.7546 4 0.9500 0.4200 50 38.4987 6 0.9250 0.3225

2.0 28.6323 4 0.5625 0.4230 100 54.6498 9 0.7250 0.2325
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0.5, rs = 0, Cτ = 0.5, Cr = 30, and a = 2.5, b = 0.8 for Type-I censoring
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Fig. 2 Contour plot of the Bayes risk with set of coefficients a0 = 2, a1 = 2, a2 = 2, Cs =
0.5, rs = 0.3, Cτ = 0.5, Cr = 30, and a = 2.5, b = 0.8 for Type-I hybrid censoring

contour plot of the Bayes risk with respect to τ and ξ in Fig. 1 for different values
of n to show that it has a unique minimum. We provide the plots for which the
minimum Bayes risk is RB(3, 0.7250, 0.3285) = 25.2777. It is clear from the plots
that Bayes risk first decreases then increases as n increases which ensures that the
Bayes risk has a unique minimum w.r.t n, τ and ξ .

For Type-I hybrid censoring, the Bayes risk is a function of the sampling
plan (n, r, τ, ξ) in which n and r take discrete values and others are continuous.
Since optimal values of n and r are bounded above (Theorem 4), so for different
values of n and r , we provide the contour plot of Bayes risk with respect to
τ and ξ in Fig. 2. We provide the plots for which the minimum Bayes risk is
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RB(4, 4, 0.7500, 0.3255) = 24.9678. In this case also the Bayes risk has unique
minimum and as n increases the Bayes risk first decreases then increases. The
contour plot can also be used for predicting the range which includes the optimal
values of τ and ξ by which we can reduce significantly the effort in the search for
the optimum plan.

4.2 Numerical Results for Fifth Degree Polynomial
and Non-polynomial Loss Function

For a better approximation of the optimal sampling plan we assume that the loss
function is of order k = 5 in (8). To obtain the optimum DSP, the following
parameter and coefficient values are used: a = 3.0, b = 2.5, a0 = 2, a1 = 2, a2 =
2, a3 = 2, a4 = 2, a5 = 2, Cs = 0.5, rs = 0, Cτ = 0.5, Cr = 30, ξ∗ = 3 for
Type-I censoring. For Type-I hybrid censoring, we use following sets of coefficients:
a = 3.0, b = 2.5, a0 = 2, a1 = 2, a2 = 2, a3 = 2, a4 = 2, a5 = 2, Cs =
0.5, rs = 0.3, Cτ = 0.5, Cr = 30, ξ∗ = 3. Then varying the parameters a and b
or one coefficient out of Cs , Cτ and Cr at a time, and setting others fixed, we obtain
the minimum Bayes risk and the optimum DSP which is given in Tables 4 and 5. We
observe in Tables 4 and 5 that as costs Cs, Cτ and Cr increase, the minimum Bayes
risk increases. It is also observed that as cost per unit inspection Cs increases the
optimal value of n0 and r0 decreases and the optimal values of τ0 and ξ0 increases.
If the rejection cost Cr increases then n0 and r0 increases and the optimal values
of τ0 and ξ0 decreases. Therefore, for fifth degree polynomial loss function results
presented in Tables 4 and 5 have similar behaviour with those obtained from the
quadratic loss function and they are quite acceptable in terms of n0, r0, τ0 and ξ0.

To obtain the optimum DSP for non-polynomial loss function given in Sect. 3.2,
we use the following set of parameter values and coefficients for Type-I censoring:
a = 2.5, b = 0.8, a0 = 2, a1 = 2, a2 = 2, Cr = 30, Cs = 0.5, rs = 0, Cτ =
0.5, ξ∗ = 3. Similarly, for Type-I hybrid censoring: a = 2.5, b = 0.8, a0 =
2, a1 = 2, a2 = 2, Cr = 30, Cs = 0.5, rs = 0.3, Cτ = 0.5, ξ∗ = 3, i.e.,
the set of parameter values and coefficients are used. The minimum Bayes risk and
optimum DSP are obtained in Tables 6 and 7 by varying parameters a and b or one
coefficient out of Cs , Cτ and Cr at a time and setting others fixed. It is observed
from Tables 6 and 7 that as costs Cs, Cτ and Cr increase, the minimum Bayes risk
increases. The optimal values of n0 and r0 decrease when Cs increases and when Cr
increases, then n0 and r0 increase. The value of ξ0 increases when cost Cs increases
and decreases when cost Cr increases. So, for given non-polynomial loss function
also, the results in Tables 6 and 7 are quite reasonable and acceptable.
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5 Conclusion

In this paper, we have shown that a sampling plan can be obtained using the Bayes
estimator of the mean lifetime θ . This estimator always exists for both Type-I and
Type-I hybrid censoring. We have developed a methodology for finding the DSP
using a decision function which is based on the Bayes estimator of θ . We propose
an algorithm to find the optimum DSP. It is shown numerically that the optimum
DSP is better than the sampling plans of Lam [12] and Lin et al. [16, 17] and as
good as the BSP proposed by Lin et al. [18] and Liang and Yang [14] for Type-I
censoring and Type-I hybrid censoring. Further, we have generalized the existing
work for higher degree polynomial loss function and for a specific choice of the
non-polynomial loss function, which cannot be handled easily by the BSP. Thus, we
see that the DSP is applicable to a wider class of loss functions than the BSP.

Acknowledgements The authors would like to thank the reviewers for their careful review and
valuable suggestions which led to the improvement of the presentation of the paper.

Appendix

Proof of Theorem 1

To derive the Bayes risk we consider the decision function (6) and loss function (8)
with τ ∗ = τ . Then from (9) Bayes risk under Type-I censoring is,

RB(n, τ, ξ) = n(Cs − rs)+ rsE(M)+ τCτ + a0 + a1μ1 + . . .+ akμk

+
k∑

l=0

Cl
ba

Γ (a)

∫ ∞

0
λa+l−1e−λbP (θ̂B < ξ |λ) dλ, (18)

where Cl is defined as

Cl =
{
Cr − al, if l = 0
−al, if l = 1, 2, . . . , k.

(19)

Using (10) and Lemma 1 we get

∫ ∞

0
λa+l−1e−λbP (θ̂B < ξ |λ) dλ

=
∫ ∞

0
λa+l−1e−λbpSλ(ξ) dλ+

∫ ∞

0
λa+l−1e−λb(1 − p)Hλ(ξ) dλ
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=
∫ ∞

0
λa+l−1e−λbe−nλτ I

( b+nτ
a
<ξ)
dλ+

n∑

m=1

m∑

j=0

(
n

m

)(
m

j

)
(−1)j

× (m+ a)m
Γ (m)

∫ ∞

0

∫ ξ

τj,m,a,b

λa+l+m−1e−λ{(m+a)x}(x − τj,m,a,b
)m−1

dx dλ

= Γ (a + l)
(b + nτ)(a+l) I( b+nτa <ξ)

+
n∑

m=1

m∑

j=0

(
n

m

)(
m

j

)
(−1)j

× Γ (a + l +m)
Γ (m)(m+ a)(a+l)

∫ ξ−τj,m,a,b

0

ym−1

{τj,m,a,b + y}a+l+m dy.

= Γ (a + l)
(b + nτ)(a+l) I( b+nτa <ξ)

+
n∑

m=1

m∑

j=0

(
n

m

)(
m

j

)
(−1)j

× Γ (a + l)
((m+ a)τj,m,a,b)(a+l)

Γ (a + l +m)
Γ (m)Γ (a + l)

∫ ξ−τj,m,a,b
τj,m,a,b

0

zm−1

(1 + z)a+l+m dz.

Now taking a transformation z = u/(1 − u), we have

∫ C∗
j,m,a,b

0

zm−1

(1 + z)a+l+m dz =
∫ S∗

j,m,a,b

0
um−1(1 − u)a+l−1du = BS∗

j,m,a,b
(m, a + l),

where C∗
j,m,a,b = ξ−τj,m,a,b

τj,m,a,b
, S∗

j,m,a,b = C∗
j,m,a,b

1+C∗
j,m,a,b

and

Bx(α, β) =
∫ x

0
uα−1(1 − u)β−1du, 0 ≤ x ≤ 1, (20)

is the incomplete beta function. Let us denote the cumulative distribution function
of beta as Ix(α, β) = Bx(α, β)/B(α, β). Then Bayes risk is finally obtained as

RB(n, τ, ξ) = n(Cs − rs)+ rsE(M)+ τCτ + a0 + a1μ1 + . . .+ akμk +
k∑

l=0

Cl
ba

Γ (a)

×
[Γ (a + l)I

( b+nτ
a
<ξ)

(b + nτ)(a+l) +
n∑

m=1

m∑

j=0

(−1)j
(
n

m

)(
m

j

)Γ (a + l)IS∗
j,m,a,b

(m, a + l)
((m+ a)τj,m,a,b)a+l

]
, (21)

where

E(M) = Eλ{E(M|λ)}.

Since for each m = 1, 2, . . . , n, the probability mass function ofM given λ is
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P(M = m|λ) =
(
n

m

)
(1 − e−λτ )m(e−λτ )n−m =

m∑

j=0

(
n

m

)(
m

j

)
(−1)j e−(n−m+j)λτ ,

therefore,

E(M) =
n∑

m=1

m∑

j=0

m

(
n

m

)(
m

j

)
(−1)j

ba

(b + (n−m+ j)τ )a .

Proof of Theorem 2

Note that the Bayes risk can be written as,

RB(n, τ, ξ) = n(Cs − rs)+ τCτ + E(M)rs
+Eλ

{
(a0 + a1λ+ . . .+ akλk)P (θ̂B ≥ ξ |λ)+ CrP (θ̂B < ξ |λ)

}
.

Now we know that a0 + a1λ + . . . + akλ
k ≥ 0 and Cr the rejection cost

is non negative. Therefore, if (n0, τ0, ξ0) is the optimal sampling plan then the
corresponding Bayes risk is

RB(n0, τ0, ξ0) ≥ n0(Cs − rs)+ τ0Cτ . (22)

Now when ξ = ∞ we reject the batch without sampling and the corresponding
Bayes risk is given by RB(0, 0,∞) = Cr . When ξ = 0 we accept the batch without
sampling and corresponding Bayes risk is given by RB(0, 0, 0) = a0 +a1μ1 + . . .+
akμk . Then the optimal Bayes risk is

RB(n0, τ0, ξ0) ≤ min{RB(0, 0, 0), RB(0, 0,∞), RB(n, τ, ξ ′)
}
. (23)

Hence, from Eqs. (22) and (23) we have

n0(Cs − rs)+ τ0Cτ ≤ min{RB(0, 0, 0), RB(0, 0,∞), RB(n, τ, ξ ′)
}
,

from where it follows that

n0 ≤ min
{

Cr
Cs−rs ,

a0+a1μ1+...+akμk
Cs−rs ,

RB(n,τ,ξ
′)

Cs−rs

}
,

τ0 ≤ min
{
Cr
Cτ
,
a0+a1μ1+...+akμk

Cτ
,
RB(n,τ,ξ

′)
Cτ

}
.
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Proof of Theorem 3

To derive the Bayes risk for Type-I hybrid censoring, we consider the decision
function (6) and loss function (8) with τ ∗ = min{X(r), τ }. Then from (9)

RB(n, r, τ, ξ) = n(Cs − rs)+ E(M)rs + E(τ ∗)Cτ + a0 + a1μ1 + . . .+ akμk

+
k∑

l=0

Cl
ba

Γ (a)

∫ ∞

0
λa+l−1e−λbP (θ̂B ≤ ξ |λ)dλ, (24)

where μi and Cl are defined earlier. Let ξ∗ = min{ b
a

+ nτ
a
, ξ}, then define

Rl,j,m =
∫ ∞

0

∫ ξ∗

0
λa+l−1e−λ(b+τ(n−m+j))π

(
y − τj,m,a,b;m, (m+ a)λ

)
dy dλ

= (m+ a)m
Γ (m)

∫ ∞

0

∫ ξ∗

τj,m,a,b

λa+l+m−1e−λ{(m+a)y}(y − τj,m,a,b
)m−1

dy dλ

= (m+ a)m
Γ (m)

∫ ξ∗−τj,m,a,b

0

vm−1Γ (a + l +m)
(
(m+ a)τj,m,a,b + (m+ a)v)a+l+m

dv

= Γ (a + l +m)
Γ (m)(m+ a)a+lτ a+l+mj,m,a,b

∫ ξ∗−τj,m,a,b

0

vm−1

(
1 + v

τj,m,a,b

)a+l+m dv

= Γ (a + l)
((m+ a)τj,m,a,b)a+l

Γ (a + l +m)
Γ (m)Γ (a + l)

∫ ξ∗−τj,m,a,b
τj,m,a,b

0

zm−1

(1 + z)a+l+m dz.

Taking similar transformation as in Type-I censoring and using the incomplete beta
function, we obtain

Rl,j,m = Γ (a + l)
((m+ a)τj,m,a,b)a+l IS

∗
j,m,a,b

(m, a + l). (25)

Using (10), Lemma 2 in (24) and relation (25) we get

∫ ∞
0
λa+l−1e−λbP (θ̂B ≤ ξ |λ)dλ

=
∫ ∞

0
λa+l−1e−λbpSλ(ξ) dλ+

∫ ∞
0
λa+l−1e−λb(1 − p)Hλ(ξ) dλ

=
∫ ∞

0
λa+l−1e−λbe−nλτ I

( b+nτ
a
<ξ)

dλ+
r−1∑

m=1

m∑

j=0

(
n

m

)(
m

j

)
(−1)j
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×
∫ ∞

0

∫ ξ∗

0
λa+l−1e−λ{b+τ(n−m+j)}π

(
y − τj,m,a,b;m, (m+ a)λ

)
dy dλ

+
∫ ∞

0

∫ ξ∗

0
λa+l−1e−λbπ

(
y − b

r + a ; r, (r + a)λ
)
dy dλ+

r∑

j=1

(
n

r

)(
r − 1

j − 1

)

× (−1)j r

(n− r + j)
∫ ∞

0

∫ ξ∗

0
λa+l−1e−λ{b+τ(n−r+j)}π

(
y − τj,r,a,b; r, (r + a)λ

)
dy dλ

= Γ (a + l)
(b + nτ)(a+l) I

( b+nτ
a
<ξ)

+
r−1∑

m=1

m∑

j=0

(
n

m

)(
m

j

)
(−1)jRl,j,m + Rl,r−n,r

+
r∑

j=1

(
n

r

)(
r − 1

j − 1

)
(−1)j

r

(n− r + j)Rl,j,r .

Thus Bayes risk of DSP (n, r, τ, ξ) under Type-I hybrid censoring is given by

RB(n, r, τ, ξ) = n(Cs − rs)+ E(M)rs + E(τ ∗)Cτ + a0 + a1μ1 + . . .+ akμk

+
k∑

l=0

Cl
ba

Γ (a)

{
Γ (a + l)

(b + nτ)(a+l) I
( b+nτ

a
<ξ)

+
r−1∑

m=1

m∑

j=0

(
n

m

)(
m

j

)
(−1)jRl,j,m + Rl,r−n,r

+
r∑

j=1

(
n

r

)(
r − 1

j − 1

)
(−1)j

r

(n− r + j)Rl,j,r
}
, (26)

where

E(M) =
r−1∑

m=1

m∑

j=0

m

(
n

m

)(
m

j

)
(−1)j ba

(b + (n−m+ j)τ )a

+
n∑

i=r

i∑

j=0

r

(
n

i

)(
i

j

)
(−1)j ba

(b + (n− i + j)τ )a ,

E(τ ∗) = r

(
n

r

) r−1∑

j=0

(
r − 1

j

)
(−1)r−1−j

{
b

(n− j)2(a − 1)
− tba

(n− j)((n− j)τ + b)a

− ba

(n− j)2(a − 1)((n− j)τ + b)a−1

}
+

n∑

i=r

i∑

j=0

τ

(
n

i

)(
i

j

)
(−1)j

ba

(b + (n− i + j)τ )a .

For computation of E(M) and E(τ ∗) see Liang and Yang [14].
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Economical Sampling Plans
with Warranty

Jyun-You Chiang, Hon Keung Tony Ng, Tzong-Ru Tsai, Yuhlong Lio,
and Ding-Geng Chen

Abstract Designing a proper life test plan to evaluate the quality of a lot of products
in order to decide on accepting or rejecting the lot between the manufacturer
and customers is an important objective in quality control studies. Most existing
life test plans are developed based on the mean time to failure (MTTF) of the
products in which a lot is acceptable if the MTTF of products is higher than
a given threshold and is rejected otherwise. To save the time and cost of a life
test, truncated life test with a prefixed upper limit of the test time can be used in
acceptance sampling plan. Instead of life test plans based on MTTF, we consider
here life test plans simply based on the number of product failures. Nowadays,
to make products more competitive in the market, providing product warranty is
a common strategy for manufacturers. Therefore, the development of acceptance
sampling plans with warranty considerations is desired. In this chapter, the general
structure of an economical design of acceptance sampling plan with warranty using
truncated life test is studied. To take into account the uncertainty of the underlying
model of the product lifetimes, Bayesian approach using prior information and/or
preliminary samples is used to design acceptance sampling plan. Methodologies
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and algorithms to obtain the optimal sampling plan that minimizes the expected
total cost with warranty considerations are discussed. The proposed methodologies
are illustrated with two flexible lifetime distributions, the Burr type XII and the
generalized exponential distributions, along with real data examples.

1 Introduction

In quality control, designing a proper life test plan to evaluate the quality of
a lot of products in order to decide on accepting or rejecting the lot between
the manufacturer and customers is an important issue. Nowadays, due to the
development of quality technology, products are highly reliable and it could be time
consuming to collect product lifetime information. Truncated life testing scheme,
a scheme that prefixed the upper limit of the experimental time and evaluate the
product quality based on number of failed items, is one of the competitive schemes
to collect lifetime information that can save the test time and cost. On the other hand,
to make products more competitive in the market, it is common for manufacturer to
provide product warranty when selling the products. Therefore, it is desire to design
acceptance sampling plans that takes the cost of warranty into account.

Numerous research papers on acceptance sampling plans have been written in the
past few decades, for example, Sobel and Tischendrof [32], Goode and Kao [10],
Gupta and Groll [11], Kantam and Rosaiah [17], Vintr [42], Kantam et al. [18], Wu
and Tsai [45], Wu and Yu [46], Tsai and Wu [40], Tsai et al. [37], Lio et al. [24, 25],
Aslam and Jun [4] and Aslam et al. [5]. Among those, Aslam and Jun [4], Aslam
et al. [5], Goode and Kao [10], Gupta and Groll [11], Kantam and Rosaiah [17],
Kantam et al. [18], Lio et al. [24, 25], Sobel and Tischendrof [32], Tsai and Wu [40],
Wu and Tsai [45] and Wu and Yu [46] constructed acceptance sampling plans via
using truncated censoring schemes. Acceptance sampling plans developed under the
Bayesian framework can be found in AL-Hussaini and Jaheen [3], AliMousa [1],
Kwon [20], Tsai [36] and Tsai et al. [37]. Acceptance sampling plans with warranty
considerations have been developed by, for example, Menke [27], Blischke and
Scheuer [6], Kwon [20], Thomas and Rao [35], Murthy and Blischke [29], Tsai
et al. [37], Huang et al. [16] and Tsai et al. [38, 39].

Following the developments of the work on economical sampling plan, the
main objective of this chapter is to provide a general structure of an economical
design of acceptance sampling plan with warranty using truncated life test. Bayesian
approach using prior information and/or preliminary samples is used to incorporate
the uncertainty of the underlying model of the product lifetimes when designing the
acceptance sampling plan. The rest of this chapter is organized as follows. In Sect. 2,
the general economical design of sampling plan is discussed under the truncated
life test. Methodologies and algorithms to obtain the optimal sampling plan that
minimizes the expected total cost with warranty considerations are presented. In
Sects. 3 and 4, the proposed methodologies are illustrated with the Burr type
XII and the generalized exponential distributions, respectively, along with real
data examples. Some concluding remarks and information related to the computer
programs for the proposed methodologies are given in Sect. 5.
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2 Economical Sampling Plan

A truncated acceptance sampling plan is defined by the sample size, n, the
acceptance number rb and the preassigned upper bound of the termination time,
τ , and it is denoted by (n, rb, τ ). Suppose a sample of size n is randomly drawn
from a lot with N items and put on a life test, the life test is terminated when either
more than rb failed items are observed or the test time reaches the preassigned upper
bound τ . If there are more than rb items failed before time τ , then the lot is rejected;
otherwise, the lot is accepted. Because of the destructive nature for the life testing
procedure, engineers are often interested in using a truncated acceptance sampling
plan to ensure the quality of the product in terms of the mean time to failure (MTTF)
or a specified lifetime percentile of the product. In this case, an acceptance sampling
plan is determined based on the customer risk and (or) the producer risk. When only
the customer risk is under protection, for a given value of rb and the upper bound
of the probability of accepting a bad lot (i.e., the MTTF or a specified lifetime
percentile of products is lower than the respective thresholds), the minimum sample
size n can be determined such that the customer risk is controlled. When both the
customer and producer risks are under protection, the sample size n and acceptance
number rb are determined simultaneously based on controlling the probability
of accepting a bad lot and the probability of rejecting a good lot. However, for
economical sampling plan, it is determined through a different principle. Given a
preassigned upper bound of termination time, τ , the optimal economical sampling
plan with sample size n∗ and acceptance number r∗b are determined such that the
expected total cost of the life test is minimized. Therefore, to develop an economic
sampling plan, the total cost for the life test must be established. Let the cost of a
unit on the life test be cs , the operating cost per unit time for the life test be cτ , the
cost per unit of a rejecting lot be cr and the cost per unit of an accepted lot be ca ,
which is associated with the failure of a unit in an accepted lot during the warranty
period.

Suppose the lifetime of an item in a lot, T , is a random variable that follows a
two-parameter probability distribution with cumulative distribution function (cdf)
FT (x|θ, δ) and probability density function (pdf) fT (x|θ, δ), where θ and δ are the
model parameters. It is assumed that all the units in an accepted lot are sold under
a general rebate warranty policy, and all the units in a rejected lot are scrapped or
reprocessed after the rejection. The general rebate warranty policy to be a mixture
of free replacement policy and prorated warranty policy. Specifically, suppose w1 is
the warranty period of free replacement warranty and from w1 to w2(> w1) is the
warranty period of prorated warranty for item sold. Therefore, the overall warranty
cost of each item in an accepted lot can be defined by

c∗a(T ) =

⎧
⎪⎨

⎪⎩

ca if T < w1,
ca(w2−T )
w2−w1

if w1 ≤ T < w2,

0 if T ≥ w2,

(1)
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and the expected warranty cost per item in an accepted lot is defined as

#(θ, δ) = ca
∫ w1

0
fT (t |θ, δ)dt + ca

w2 − w1

∫ w2

w1

(w2 − t)fT (t |θ, δ)dt (2)

The warranty policy in Eq. (1) has been studied by many authors including
Kwon [20], Huang et al. [16], Tsai [36], and Tsai et al. [37–39]. For N > n, the
warranty cost of selling an accepted lot can be expressed as

W(θ, δ) = (N − n)#(θ, δ),

and the cost of rejecting a lot is (N − n)cr . Let the probability of accepting a lot
based on the economical sampling plan be PA,

PA =
rb∑

i=0

(
n

i

)
piτ (1 − pτ )n−i ,

where pτ = FT (τ |θ, δ), then the total cost for the sampling plan (n, rb, τ ), given
the model parameters θ and δ, can be expressed as

Ψ (n, rb, τ |θ, δ) = ncs + cτ T ∗(θ, δ, τ )+W(θ, δ)PA + (N − n)cr(1 − PA),
= ncs + cτ T ∗(θ, δ, τ )+ (N − n)[(#(θ, δ)− cr )PA + cr ], (3)

where T ∗(θ, δ, τ ) = E[min{τ, Trb+1}] = ∫ τ
0 tfTrb+1(t |θ, δ)dt + τ

∫∞
τ
fTrb+1

(t |θ, δ)dt , Trb+1 is the (rb + 1)th order failure time, and

fTrb+1(t |θ, δ) = (rb+1)

(
n

rb+1

)[
FT (t |θ, δ)

]rb[
1 − FT (t |θ, δ)

]n−rb−1

fT (t |θ, δ), t > 0. (4)

If Trb+1 ≤ τ , then the life test is terminated at Trb+1; otherwise, the life test is
terminated at τ . When the lifetime distribution and its parameters θ and δ are known,
Eq. (3) can be used to find the optimal economical sampling plan, n∗ and r∗b , that
minimizes the expected total cost, i.e.,

Ψ (n∗, r∗b , τ |θ, δ) = min
n∈A , 0≤rb≤n−1

Ψ (n, rb, τ |θ, δ),

where A is the space of sample sizes and a subset of positive integers. For example,
the producer may want to set the smallest and largest sample sizes to be nl and nu,
respectively, then A = {nl, nl+1, . . . , nu}.

In practice, however, the parameters of the lifetime distribution are usually
unknown. For a given two-parameter distribution with unknown parameters θ and
δ, if prior information on θ and δ is available, then the Bayesian decision method
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can be implemented by using Eq. (3) as a loss function in order to reduce the
subjectivity of specifying the model parameters. Suppose that the joint prior pdf,
denoted by π(θ, δ|Θ), is available from prior experience where Θ is the vector of
hyper-parameters. The expected total cost to conduct the economical sampling plan
(n, rb, τ ), using the priori, is given by

ΨB(n, rb, τ ) = Eπ(θ,δ|Θ)[Ψ (n, rb, τ |θ, δ)]

= ncs +
∫ ∞

0

[
cτ T

∗(θ, δ, τ )+ (N − n)[(#(θ, δ)− cr)PA + cr ]
]

π(θ, δ|Θ) dθdδ. (5)

When the hyper-parameter, Θ , is specified based on prior experience or expert
opinion, Eq. (5) can be used as the expected total cost of the sampling plan. Hence,
the optimal sampling plan, (n∗, r∗b , τ ), can be obtained by minimizing ΨB(n, rb, τ ),
i.e.,

ΨB(n
∗, r∗b , τ |θ, δ) = min

n∈A , 0≤rb≤n−1
ΨB(n, rb, τ |θ, δ),

where A is the space of sample sizes and a subset of positive integers. When the
hyper-parameter, Θ , is unknown, an empirical estimate, Θ̂ , of the hyper-parameter
based on a preliminary sample is needed. Then, we can consider

ΨM(n, rb, τ ) = E
π(θ,δ|Θ̂)[Ψ (n, rb, τ |θ, δ)]

= ncs +
∫ ∞

0

[
cτ T

∗(θ, δ, τ )+ (N − n)[(#(θ, δ)− cr)PA + cr ]
]

π(θ, δ|Θ) dθdδ, (6)

as the expected total cost. In this situation, the optimal sampling plan, (n∗, r∗b , τ ),
can be obtained by minimizing ΨM(n, rb, τ ), i.e.,

ΨM(n
∗, r∗b , τ |θ, δ) = min

n∈A , 0≤rb≤n−1
ΨM(n, rb, τ |θ, δ).

Let Ψ (n, rb, τ ) be Ψ (n, rb, τ |θ, δ), ΨB(n, rb, τ ) or ΨM(n, rb, τ ), then the afore-
mentioned optimal sampling plan, (n∗, r∗b , τ ), for each corresponding loss function
can be obtained by the following searching algorithm:

Step 1: Provide the preassigned upper bound of the termination time τ ;
Step 2: For each (n, τ ), the optimal acceptance number, r∗b (n), can be determined

by searching over the space B = {0, 1, . . . , n− 1} such that

Ψ (n, r∗b (n), τ ) = min
rb(n)∈B

Ψ (n, rb(n), τ );
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Step 3: The economical sampling plan (n∗, r∗b , τ ) can be obtained by searching
over the space A such that

Ψ (n∗, r∗b , τ ) = min
n∈A

Ψ (n, r∗b (n), τ ).

3 Burr Type XII Distribution

The Burr type XII distribution, denoted by Burr(θ, δ), was originally introduced
by Burr [8]. Tadikamalla [34] discovered the connections of the Burr type XII
distribution with many other useful lifetime distributions and concluded that the
Burr type XII distribution could be used to model different kinds of data sets due to
its flexibility with two shape parameters. Since then, the Burr type XII distribution
has gained much attention for its potential applications in the reliability studies by
many authors, such as Wingo [43, 44], Aslam et al. [5], AliMousa [1], AliMousa
and Jaheen [2], Gupta et al. [12], Lio and Tsai [23], Upadhyay et al. [41], Wu and
Yu [46], Wu et al. [47], Zimmer et al. [49], Wu et al. [48] and Soliman et al. [33].
The pdf and cdf of the Burr(θ, δ) distribution are given by

fT (t) = f (t |θ, δ) = θδtθ−1(1 + tθ )−δ−1, t > 0,

and

FT (t) = F(t |θ, δ) = 1 − (1 + tθ )−δ, t > 0,

respectively, where θ > 0 and δ > 0 are shape parameters. Hence, the expected
total time for the life test is

T ∗(θ, δ, τ ) = (rb + 1)

(
n

rb + 1

){∫ τ

0
tθ θδ(1 − (1 + tθ )−δ)rb (1 + tθ )−δ(n−rb)−1dt

+τ
∫ 1

pτ

yrb (1 − y)n−rb−1dy

}
. (7)

3.1 Bayesian Approach

Since there is no conjugate priors for the two shape parameters of the Burr XII
distribution, using the procedure suggested by Tsai et al. [38], we let θ be a known
constant θ∗ and consider the conjugate prior denoted by π2(δ|Θ) for the shape
parameter δ, where Θ = (α, β) is the vector of hyper-parameters. Here, the prior
distribution of δ is given by
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π2(δ|α, β) = βα+1

Γ (α + 1)
δαe−βδ, δ > 0, (8)

where α > −1 and β > 0. Then, the expected total cost presented in Eq. (5) can be
expressed as

ΨB(n, rb, τ ) = Eg(k|Θ)[Ψ (n, rb, τ |θ, δ)]

= ncs +
∫ ∞

0
{cτ T ∗(θ, δ, τ )+ (N − n) [(#(θ, δ)− cr)PA + cr ]}

π2(δ|Θ) dδ, (9)

and the optimal sampling plan, (n∗, r∗b , τ ), can be obtained as

ΨB(n
∗, r∗b , τ ) = min

n∈A , 0≤rb≤n−1
ΨB(n, rb, τ ). (10)

To specify the hyper-parameters of the prior distribution of δ, an empirical Bayesian-
moment method proposed by Ali Mousa [1] can be applied. Suppose t1 < t2, · · · ,<
tm is a preliminary type II censored sample of items that follow the Burr type XII
distribution and we let

X =
m∑

i=1

log(1 + tθ∗
i )+ (n−m) log(1 + tθ∗

m ).

It can be shown that the conditional distribution of the statistic X with a specific
value of θ∗ is a gamma distribution with pdf

fX|δ(x|δ) = δm

Γ (m)
xm−1e−δx, x > 0.

The posterior pdf of δ, given the value of the statistic X based on the data, i.e.,
X = x, is also a gamma distribution with pdf

g(δ|x, α, β) = (β + x)m+α+1

Γ (m+ α + 1)
δm+αe−(β+x)δ, δ > 0. (11)

The marginal pdf of X can be obtained as

fX(x) = Γ (m+ α + 1)

Γ (m)Γ (α + 1)

βα+1xm−1

(β + x)m+α+1
, x > 0, (12)

which is the pdf of an inverted beta distribution with parameters m and α + 1. Let
L(α, β|x) = log(fX(x)), then
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L(α, β|x) ∝ m log(Γ (m+ α + 1))− log(Γ (α + 1))+ (α + 1) log(β)

− (m+ α + 1) log(β + x). (13)

Based on a simulation study, Tsai et al. [38] mentioned that it could be difficult
to estimate the parameters α and β precisely with a truncated sample using the
maximum likelihood estimation method which maximizes Eq. (13) with respect to
the parameters. For the hyper-parameters α and β, based on the priori in Eq. (8), the
mean of the prior distribution can be obtained as

η0 = α + 1

β
. (14)

Let ∂L(α, β|x)/∂β = 0, we can obtain

β = x(α + 1)

m
. (15)

From Eqs. (14) and (15), an estimate of η0 can be obtained as η̂0 = m/x.
Suppose we place an upper bound, γU , as the variance of the prior distribution,

γ = η0/β, then based on Eq. (14) and setting γU = η̂0/β̂M , the estimates of α and
β can be obtained, respectively, as

α̂M = η̂2
0

γU
− 1 (16)

and

β̂M = η̂0

γU
. (17)

Then, the posterior pdf of Eq. (11) can be replaced by gM(δ) = g(δ|x, α̂M, β̂M),
and the posterior expected total cost of the sampling plan can be expressed as

ΨM(n, rb, τ ) = EgM(δ)[Ψ (n, rb, τ |θ∗, δ)]

= ncs +
∫ ∞

0

{
cτ T

∗(θ∗, δ, τ )+ (N − n)[(#(θ∗, δ)− cr)PA + cr ]
}

gM(δ) dδ. (18)

The optimal sampling plan, (n∗, r∗b , τ ), can be obtained by searching over the space
of sample sizes, A , such that

(n∗, r∗b , τ ) = arg min
n∈A , 0≤rb≤n−1

ΨM(n, rb, τ ) (19)
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If the value of θ∗ is unknown, then it can be replaced by the maximum likelihood
estimate of θ , denoted by θ̂ML, based on the preliminary type II censored sample
t1 < t2, · · · ,< tm.

3.2 Illustrative Example

In this subsection, one of the numerical examples in Tsai et al. [39] is used to
illustrate the methodologies. The first failure times (in months) from 20 small
electric carts, which are used for internal transportation and delivery in a large
manufacturing facility, are used to develop the proposed sampling plan. It has been
shown that the Burr type XII distribution can be used to model this data set [25, 49].
Lio et al. [25] demonstrated that the Burr type XII distribution is a suitable model
for this data set using a Kolmogorov-Smirnov goodness-of-fit test with a p-value
0.1008 at the maximum likelihood estimates θ̂ML = 5.47 and δ̂ML = 0.08.

In order to save the cost of the life test, the producer set the smallest sample
size and the largest sample size for the sampling plan as nl = 5 and nu = 20,
respectively and the life test is terminated after 3 months (i.e., τ = 3). For the
warranty policy after sale, the values of w1 and w2 are set as the 20th and 50th
percentiles of the Burr type XII distribution with some pre-specified parameter
values, respectively. To investigate the optimal economic sampling plan and the
sensitivity of the cost components on the optimal sampling plan, we consider cs = 1,
cr = p1 × cs , ca = p2 × cs and cτ = p3 × cs , where (p1, p2, p3) = (1, 1, 1), (0.1,
0.1, 1), (0.1, 0.5, 1), (0.1, 0.5, 0.5).

First, suppose the lifetime distribution is known as the Burr type XII distribution
with θ = 5.47 and δ = 0.08, then the values of w1 and w2 are set as the 20th and
50th percentiles of Burr(θ = 5.47,δ = 0.08), i.e., w1 = 1.65 and w2 = 4.87. The
optimal economical sampling plans can (n∗, r∗b , τ ) can be obtained by searching
over the space n ∈ A = {5, 6, . . . , 20} and rb ∈ 0, 1, . . . , n− 1 through the
algorithm described in Sect. 2 such that the expected total cost is being minimized,
i.e.,

Ψ (n∗, r∗b , τ |θ, δ) = min
n∈A ,0≤rb≤n−1

{
ncs +

cτ T
∗(θ, δ, τ )+ (N − n)[(#(θ, δ)PA + (1 − cr)PA]

}
.

(20)

Table 1 shows the smallest expected total cost for economical sampling plan
(n, r∗b (n)) given n ∈ A and Table 2 shows the expected total costs under the
optimal sampling plans (n∗, r∗b , τ ) from different settings of (p1, p2, p3). From
Table 1, we observe that for setting (p1, p2, p3), the smallest expected total cost
Ψ (n, r∗b (n), τ ) decreases monotonically to the minimum with n increases and then
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Table 2 Optimal test plans
for τ = 3 and N = 500

(p1, p2, p3) (n∗, r∗b ) Ψ (n∗, r∗b , τ |θ, δ)
(1, 1, 1) (6, 5) 201.13

(0.1, 0.1, 1) (5, 4) 27.4

(0.1, 0.5, 1) (7, 0) 59.21

(0.1, 0.5, 0.5) (7, 0) 58.55

Table 3 Simulated type II censored sample from Burr(θ = 5.47, δ = 0.08), censored rate 1/7

0.460 0.627 0.645 0.673 0.685 0.756 0.759 0.768 0.789 0.789

0.865 0.885 0.890 0.897 0.947 0.952 0.972 0.994 1.005 1.026

1.030 1.032 1.033 1.059 1.063 1.112 1.119 1.130 1.159 1.171

1.171 1.184 1.191 1.193 1.232 1.233 1.240 1.268 1.277 1.299

1.301 1.315 1.344 1.389 1.400 1.401 1.411 1.413 1.423 1.439

increases monotonically with n afterward. It means that the smallest expected total
cost, Ψ (n, r∗b (n), τ |θ, δ), is a convex function of n given a setting of (p1, p2, p3).
Therefore, the expected total cost for the optimal sampling plan (n∗, r∗b ) over
5 ≤ n ≤ 20 can be obtained and they are presented in Table 2. In view of Table 2,
when the cost of accepting the lot is higher than the cost for rejecting a lot, the
optimal acceptance number r∗b would be forced to be close to or equal to zero;
otherwise, r∗b would be close to the sample size n∗.

When the parameters of the two-parameter lifetime population distribution are
unknown, we consider obtaining a preliminary type II censored sample in order
to get the information related to the parameters. Following the simulation study
conducted by Tsai et al. [39], we consider a type II censored sample with r = 50
observed failures of small electric carts from a sample of size 350 presented in
Table 3. The parameter θ and the hyper-parameters α and β for the prior distribution
of δ can be estimated based on the preliminary type II censored sample. Based on the
type II censored sample presented in Table 3, the maximum likelihood estimate of
θ and δ are θ̂ML = 5.03 and δ̂ML = 0.078, respectively, and the upper variation
bound of δ is set to be γU = 3 × 0.078 = 0.234. Suppose that the values of
w1 and w2 for the warranty setting are set as the 20th and 50th percentiles of
Burr(θ = 5.03, δ = 0.078), respectively, i.e., w1 = 1.72 and w2 = 5.60. The
optimal economic sampling plan n∗, r∗b , τ can be obtained by searching over the
space n ∈ A = 5, 6, · · · , 20 and rb ∈ 0, 1, · · · , n− 1 through the algorithm
described in Sect. 2 such that the posterior expected total cost in Eq. (18) is being
minimized, i.e.,

ΨM(n
∗, r∗b , τ ) = min

n∈A ,0≤rb≤n−1
ΨM(n, rb, τ ), (21)

Table 4 shows the smallest expected total costs for economical sampling plan,
(n, r∗b (n)), where n ∈ A under different settings of (p1, p2, p3). Table 5 displays
the corresponding smallest expected total cost for the optimal sampling plan,
(n∗, r∗b ), for different settings of (p1, p2, p3). From Table 4, the behavior of the
smallest expected total cost, ΨM(n, r∗b , τ ), is similar to the behavior of the smallest
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Table 5 Optimal test plans
for τ = 3 and N = 500 when
the model parameters are
unknown

(p1, p2, p3) (n∗, r∗b ) ΨM(n
∗, r∗b , τ )

(1, 1, 1) (6, 5) 201.53

(0.5,0.1,0.5) (5, 4) 27.05

(0.1, 0.1, 1) (5, 4) 27.40

(0.1, 0.5, 1) (7, 0) 59.94

(0.1, 0.5, 0.5) (7, 0) 59.25

expected total cost, Ψ (n, r∗b , τ ) in Table 1. Furthermore, the optimal sampling plans
in Table 5 are the same as the optimal sampling plans in Table 2. If the accept cost
is larger than the reject cost, it needs a large sample size with a small acceptance
number; otherwise, the optimal sampling plan requires a small sample size and a
large acceptance number for the truncated life test.

4 Generalized Exponential Distribution

The generalized exponential distribution was originally introduced by Gupta and
Kundu [13], which has the pdf and cdf, respectively,

fT (t) = δθ(1 − e−θt )δ−1e−θt , t > 0, (22)

and

FT (t) = (1 − e−θt )δ, δ > 0, θ > 0, t > 0, (23)

where δ is the shape parameter and θ is the rate parameter. When δ = 1,
the generalized exponential distribution reduces to the conventional exponential
distribution. The pdf in (22) is a decreasing function if δ < 1, and it is a
unimodal function if δ > 1. Similar to the Weibull distribution, the hazard function
of generalized exponential distribution can be increasing, decreasing or constant
depending on the value of δ. Mudholkar and Srivastava [28] commented that the
generalized exponential distribution can be an alternative to the commonly used
lifetime distributions such as gamma and Weibull distributions. Gupta and Kundu
[14, 15] showed that the generalized exponential distribution can be used to model
many types of lifetime data effectively.

When the lifetime distribution of the items is generalized exponential distribu-
tion, the expected total time for the life test is

T ∗(θ, δ, τ ) =
n−rb−1∑

k=0

(−1)kn!
k!rb!(n− rb − 1 − k)!

{
δ

∫ τ

0
θt (1 − e−θt )δ(k+rb+1)−1e−θt dt

+ τ

k + rb + 1
[1 − (1 − e−θτ )δ(k+rb+1)]

}
. (24)
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4.1 Bayesian Approach

When both θ and δ are unknown, Kundu and Gupta [19] suggested independent
gamma distributions for the generalized exponential distribution parameters, θ
and δ to be used for Bayesian inference. Following the suggestion in Kundu and
Gupta [19], we consider the prior distributions of θ and δ as

π1(θ) ∝ θb−1e−aθ , θ > 0, (25)

and

π2(δ) ∝ δd−1e−cδ, δ > 0. (26)

Therefore, the joint prior distribution, π(θ, δ|Θ), is given by

π(θ, δ|Θ) = π1(θ)π2(δ), θ > 0, δ > 0, (27)

where Θ = (a, b, c, d). Then Eq. (5) can be represented as

Ψ1(n, rb, τ ) = Eπ(θ,δ|Θ)[Ψ (n, rb, τ |θ, δ)]

= ncs +
∫ ∞

0

∫ ∞

0

[
cτ T

∗(θ, δ, τ )+W(θ, δ)+ R(θ, δ)
]

π(θ, δ)dθdδ, (28)

and the optimal sampling plan, (n∗, r∗b , τ ), can be obtained by using the algorithm
described in Sect. 2 with Ψ (n, rb, τ ) replaced by Ψ1(n, rb, τ ), i.e.,

Ψ1(n
∗, r∗b , τ ) = min

n∈A , 0≤rb≤(n−1)
Ψ1(n, rb, τ ), (29)

where A denotes the space of sample size.
If additional information about the hyper-parameters is available, for example,

a preliminary type II censored sample, t = (t1, t2, · · · , tr ), from the generalized
exponential distribution is observed, then the likelihood can be expressed as

L(θ, δ|t) = δrθr exp
{

− θ
r∑

i=1

ti + (δ − 1)
r∑

i=1

ln(1 − e−θti )
}
. (30)

Using the joint prior distribution in Eq. (27), the joint posterior pdf is

π(θ, δ|t) ∝ δr+d−1θr+b−1e−θ(a+
∑r
i=1 ti )

×e−δ(c−
∑r
i=1 ln(1−e−θti ))e−

∑r
i=1 ln(1−e−θti ), (31)
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and it can be represented as

π(θ, δ|t) ∝ gθ
(
r + b, a +

r∑

i=1

ti

)

×gδ|θ
(
r + d, c −

r∑

i=1

ln(1 − e−θti )
)
e−

∑r
i=1 ln(1−e−θti ), (32)

where gθ (r + b, a+∑r
i=1 ti ) and gδ|θ (r + d, c−∑r

i=1 ln(1 − e−θti )) are posterior
gamma pdfs for θ and δ, respectively. The posterior model is essentially an updated
version of the prior knowledge on θ and δ in the light of the preliminary sample
data. Then, the marginal posterior pdf of θ is

π(θ |t) ∝ gθ
(
r + b, a +

r∑

i=1

ti

)

×
(
c −

r∑

i=1

ln(1 − e−θti )
)−(r+d)

e−
∑r
i=1 ln(1−e−θti ), (33)

and the conditional posterior pdf of δ, given θ , is

gδ|θ
(
r + d, c −

r∑

i=1

ln(1 − e−θti )
)

∝ δr+d−1e−δ(c−
∑r
i=1 ln(1−e−θti )), (34)

which is a gamma pdf with shape parameter r + d and rate parameter (c −∑r
i=1 ln(1 − e−θti )). Replacing π(θ, δ) in Eq. (28) by the joint pdf in Eq. (32), the

posterior expected total cost for determining the sampling plan (n, rc, τ ) is given by

Ψ2(n, rb, τ ) = Eπ(θ,δ|t)[Ψ (n, rb, τ |θ, δ)]

= ncs +
∫ ∞

0

∫ ∞

0

[
cτ T

∗(θ, δ, τ )+W(θ, δ)+ R(θ, δ)
]
π(θ, δ|t)dθdδ. (35)

Then, Eq. (35) can be formulated as

Ψ2(n, rb, τ ) = ncs

+
Egδ|θ gθ

[
(cτ T

∗(θ, δ, τ )+W(θ, δ)+ R(θ, δ))e−
∑r
i=1 ln(1−e−θti )

]

Egθ

[
e−

∑r
i=1 ln(1−e−θti )

] , (36)
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where the expected value Egδ|θ gθ [·] in the numerator is taken with respect to the
joint pdf

gδ|θ
(
r + d, c −

r∑

i=1

ln(1 − e−θti )
)
gθ

(
r + b, a +

r∑

i=1

ti

)
, (37)

and the expected value Egθ [·] in the denominator is taken with respect to the
distribution gθ (r + b, a + ∑r

i=1 ti ). The optimal sampling plan (n∗, r∗b , τ ) can be
determined by using the algorithm described in Sect. 2 with Ψ (n, rb, τ ) replaced by
Ψ2(n, rb, τ ), i.e.,

Ψ2(n
∗, r∗b , τ ) = min

n∈A , 0≤rb≤(n−1)
Ψ2(n, rb, τ ). (38)

4.2 Illustrative Example

The numerical example related to integrated circuit (IC) manufacturing provided by
Huang et al. [16] and revisited by Tsai et al. [38] is used here for illustration. In this
example, the IC manufacturer needs establishing a cost-saving life test procedure
to make a decision of accepting or rejecting the submitted lots. Huang et al. [16]
modeled the IC lifetime data with the Weibull distribution and Tsai et al. [38]
used the generalized exponential distribution in Eqs. (22) and (23) to model the IC
lifetime. In this case, each submitted lot hasN = 1000 IC products and the sampling
cost is cs = $25 per unit. The total rebate warranty is within 300 h (i.e.,w1 = 0.3, in
1000 h), and the time limit of prorated warranty is 750 h (i.e.,w2 = 0.75, in 1000 h).
The cost of rejecting a unit is cr = 5cs , the cost associated with an external failure
in an accepted lot is ca = 10cs , and the cost per unit of test time is cτ = 2cs . The
life test will last at most τ 1000 h or it will be terminated when rb + 1 failure items
are observed within τ 1000 h.

The optimal sampling plan in the range of A = {n|6 ≤ n ≤ 20} using Bayesian
approach need to establish with the joint prior pdf and joint posterior pdf. If there
is no prior information available, then the optimal sampling plan can be established
by minimizing Ψ1(n, rb, τ ) in Eq. (29). The hyper-parameters are conjectured to be
a = 5, b = 3, c = 4 and d = 2 for the priori. Note that this selection of hyper-
parameters could be subjective in the initial stage, however, the prior assumption
can be modified after additional lifetime information is collected from the life test.

Using the proposed algorithm described in Sect. 2, the optimal sampling plan,
r∗b (n), for different sample sizes in A and different values of τ , are obtained and
the results for τ = 0.35 1000 h are displayed in Table 6. It can be seen that
the expected total cost, Ψ1(n, r

∗
b (n), τ ), for economic sampling plan is again a

convex function of n for different settings. The patterns of the smallest expected
total cost Ψ1(n, r

∗
b (n), τ ) for the rest cases for different τ are similar to the results

shown in Table 6. The optimal sampling plans (n∗
1, r

∗
b1, τ ) for different τ and the
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Table 6 Economic sampling plans for generalized exponential distribution with τ = 350 1000 h
and N = 1000

Optimal sampling plan using priors Optimal sampling plan using posteriors

n r∗b (n) Ψ1(n, r
∗
b (n), τ ) r∗b (n) Ψ2(n, r

∗
b (n), τ )

6 2 109816.72 2 117342.54

7 2 109405.19 2 117029.29

8 3 108990.86 3 116563.32

9 3 108589.97 3 116216.25

10 4 108552.10 4 116058.87

11 4 108373.42 4 115825.26

12 5 108701.57 5 115909.86

13 5 109278.62 5 116086.82

14 6 110415.41 6 116502.23

15 8 112013.91 7 117269.24

16 9 113558.75 8 118254.75

17 10 115239.79 9 119356.43

18 11 117035.24 10 120500.75

19 13 118147.29 12 121585.41

20 14 119205.81 13 122281.06

Table 7 Optimal sampling
plans for generalized
exponential distribution with
different values of τ (in
1000 h)

τ (n∗
1, r

∗
b1) Ψ1(n

∗
1, r

∗
b1, τ ) (n∗

2, r
∗
b2) Ψ2(n

∗
2, r

∗
b2, τ )

200 (11, 3) 108079.15 (12, 3) 112820.89

250 (11, 3) 108265.99 (12, 4) 115131.51

300 (11, 4) 108325.84 (12, 4) 115892.23

350 (11, 4) 108373.42 (11, 4) 115825.26

400 (10, 4) 108466.18 (12, 5) 115133.76

corresponding expected total cost values, Ψ1(n
∗1, r∗b1, τ ), are shown on Table 7.

Table 7 indicates Ψ1(n
∗
1, r

∗
b1, τ ) increases with respect to τ .

Huang et al. [16] reported a type II censored life test for 10 IC products that
can provide additional information for adjusting the prior distribution. The first 6
lifetimes reported by Huang et al. [16] were 187.56, 212.88, 266.55, 326.55, 395.19,
420.82 in 1000 h. To implement the economical sampling plan, the products that
have lifetimes shorter than τ 1000 h will be used to adjust the prior distribution
in this case study. Based on those IC lifetimes smaller than τ 1000 h, the joint
posterior pdf in Eq. (36) can be established and it is applied in Ψ2(n, rb, τ ) to obtain
the revised optimal life test plan. Table 6 also provides the expected total cost,
Ψ2(n, r

∗
b (n), τ ), under τ = 0.35 1000 h for all the sampling plans considered here.

Comparing Ψ1(n, r
∗
b (n), τ ) with Ψ2(n, r

∗
b (n), τ ), it can be seen that both functions

are convex and Ψ2(n, r
∗
b (n), τ ) ≥ Ψ1(n, r

∗
b (n), τ ) in this example. Therefore, the

optimal sampling plan (n∗
2, r

∗
b2, τ ) that minimizes Ψ2(n, r

∗
b (n), τ ) can be obtained

and the optimal sample plans for different values of τ are presented in Table 7.
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Based on the aforementioned type II censoring sample with 6 failure times, the
termination time for τ = 200, 250, 300, 350 and 400 h are selected to assess the
sensitivity of the optimal test plan on τ . Table 7 shows the optimal life test plans
for different values of τ via the prior and posterior distributions. It can be noticed
that the optimal sample size n∗ for the life test and optimal acceptance number, r∗b
are insensitive to the value of τ . The optimal sample size is around 10–12 and the
acceptance number is about 3–5.

5 Concluding Remarks

In this chapter, a review of the essential techniques for constructing economical
sampling plans for acceptance or rejection of a product lot is provided. Bayesian
approach is used to incorporate the uncertainty of the underlying lifetime distribu-
tion of the product. The proposed methodologies and algorithms are illustrated with
the Burr type XII and the generalized exponential distributions.

Note that the proposed methodologies can be extended to other lifetime dis-
tributions with suitable modifications. Moreover, since the maximum likelihood
estimators do not possess a closed form and numerical methods are needed to
obtain the estimates, instead of using maximum likelihood estimation method
in determining the hyper-parameters of the prior distributions in the Bayesian
approach, other estimation methods can be adopted to simplify the algorithm to
obtain information from a preliminary sample. Another issue on the methodologies
proposed here is that there are several multi-dimensional integrals need to be
evaluated in order to compute the expected total cost and most of these multi-
dimensional integrals cannot be obtained explicitly mathematically. In this study,
we applied a suitable transformation to convert the infinite integral interval, [0, ∞]
to [0, 1] and then Riemann sum approximation with larger number of subintervals
over [0, 1] is used to evaluate the integral numerically. It will be interesting to apply
other numerical or Monte Carlo integration methods and compare the accuracy as
well as the effect to the optimal sampling plan for these methods. For the detailed
computations related to the economical sampling plans presented this chapter,
computer programs written in R [30] can be obtained at http://faculty.smu.edu/ngh/
R_program_ESP.zip.
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Design of Reliability Acceptance
Sampling Plans Under Partially
Accelerated Life Test

M. Kumar

Abstract In this chapter, constant-stress Partially Accelerated Life Tests (PALT)
are considered for products with the assumption that the lifetimes of products follow
Weibull distribution with known shape parameter and unknown scale parameter.
Based on data obtained using Type-II censoring, the maximum likelihood estimates
(MLEs) of the Weibull parameters and acceleration factor are obtained assuming
linear and Arrhenius relationships with the lifetime characteristics and stress.
Exact distributions of the MLEs of the parameters of Weibull distribution are also
obtained. Optimal acceptance sampling plans are developed using both linear and
Arrhenius relationships. Some numerical results are also presented to illustrate the
resulted test plans.

Keywords Reliability · Partially accelerated life test · Linear life-stress model ·
Arrhenius life-stress model · Optimal test plan

1 Introduction

In life testing, acquiring a test data at a specified normal use condition requires
long period of time. This problem makes life testing a difficult, time consuming
and costly procedure. Under such circumstances accelerated life tests (ALTs) or
partially accelerated life tests (PALTs), which can shorten the lives of test units are
used. ALT and PALT differ on the conditions at which they are applied. The test
units are run only at accelerated conditions in an ALT, whereas test units are run
both at accelerated and normal use conditions in a PALT.

Usage of ALT can often be seen in reliability prediction. Here, in order to
induce early failures, specimens are tested at high stress levels. Then through an
existing stress dependent model, the failure information is related to specimens at an
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operational stress level. In the absence of such a model, the ALT can’t be conducted.
In such conditions PALT, which is a combination of both ordinary and accelerated
life tests, becomes suitable option. Reliability analysis using PALT helps to save
time and money needed in ordinary or traditional life tests. The time at which a test
unit can be switched from the standard stress conditions to higher stresses is under
the control of the experimenter. This assumption was made by authors in [5]. They
also assumed that, in accelerated life testing, it will be possible to choose various
levels of higher stresses. Therefore, they restricted themselves to problems in which
higher stress levels were fixed in advance.

Bai and Chung [3] studied optimal designs for two partially accelerated life
tests (PALTs), in which units were run at both use and accelerated conditions
for a predetermined time. In constant PALT, each test unit runs only at either
use or accelerated condition and in the step PALT, at a specified time, testing
can be changed from use to accelerated condition. For units having exponentially
distributed lives, maximum likelihood estimators (MLEs) of failure rates at use
condition were obtained. Also, they have obtained the ratios of the failure rates
at accelerated condition to that at use condition. The change-time for the step PALT
is determined to minimize the generalized asymptotic variance of MLEs of the
acceleration factor and the failure rate at use condition. The sample proportion
allocated to accelerated condition for the constant PALT is determined to minimize
the asymptotic variance of MLE of the acceleration factor. Bai et al. [4] extended the
work of Bai and Chung [3] to units having log normally distributed lives. Ismail [8]
considers the estimation of parameters of Weibull distribution based on hybrid cen-
sored data. The parameters are estimated by the maximum likelihood method under
step-stress partially accelerated test. The maximum likelihood estimates (MLEs)
of the unknown parameters are obtained by Newton-Raphson algorithm. Also,
an approximate Fisher information matrix is obtained for constructing asymptotic
confidence bounds for the model parameters. The biases and mean square errors
of the maximum likelihood estimators are computed to assess their performances
through a Monte Carlo simulation study.

Abd-Elfattah et al. [1] consider step-stress partially accelerated life tests, when
the lifetime of a product follows a Burr type XII distribution. Based on Type
I censoring, the maximum likelihood estimates (MLEs) are obtained for the
distribution parameters and acceleration factor. In addition, asymptotic variance
and covariance matrix of the estimators are given. An iterative procedure is used
to obtain the estimators numerically. Furthermore, confidence intervals of the
estimators are presented. Simulations are carried out to study the precision of MLEs
of the parameters involved.

Assuming Weibull distribution as a lifetime model, Ismail and Aly [10] consider
optimum plans for failure step-stress partially accelerated life tests with two stress
levels under Type-II censoring. The optimum proportion of test units failing at each
stress, according to certain optimality criterion, is determined by the optimum test
plans. Here, the D-optimality criterion is considered and some numerical results are
provided for illustrating the proposed procedure. Ismail [9] discussed maximum
likelihood estimators of parameters of Weibull distribution and the acceleration
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factor, based on two different types of progressively hybrid censoring schemes under
step-stress partially accelerated life test. Using two progressively hybrid censoring
schemes, the performances of estimators of the model parameters are evaluated
and compared in terms of biases and mean squared errors through a Monte Carlo
simulation study.

Aly and Ismail [2] discuss step-stress partially accelerated life tests (PALT) under
Type-I censoring, and obtained MLEs of the parameters of a simple (only two
stresses) time step-stress model. Further, the confidence intervals for the estimators
are constructed. Also, optimum time step-stress test plans are obtained. The optimal
stress switching point is obtained from the optimum test plan. These plans minimize
the generalized asymptotic variance of the maximum likelihood estimators of the
model parameters.

Ismail [7] applied the Bayesian approach to the estimation problem in the case
of step stress partially accelerated life tests with two stress levels under Type-I cen-
soring. Here, Gompertz distribution is considered as a lifetime model. The authors
have not obtained Bayes estimates in closed forms. Using the method of Lindley
[11], approximate Bayes estimates are computed. In addition to this, using Monte
Carlo simulation, approximate Bayes estimates are obtained under the assumption
of non-informative priors. The results are compared with corresponding maximum
likelihood estimates. The optimal design of step-stress partially accelerated life tests
(PALTs) under censoring is described by Srivastava and Mittal [12]. It is assumed
that the lifetimes of units follow truncated logistic distribution truncated at point
zero. This is because, when sample selection is not possible in some sub-region of
the sample space, truncated distribution becomes a natural choice. Also, the support
of logistic distribution contains negative values (which could conceivably results in
modeling negative times-to-failure), it becomes inappropriate for modeling lifetime
data. This demands the use of truncated logistic distribution truncated at point zero
for modeling lifetime data. The optimal change-time for the step PALT is resolved
by minimizing either the generalized asymptotic variance of maximum likelihood
estimates (MLEs) of the acceleration factor and the hazard rate at use condition, or
the asymptotic variance of MLE of the acceleration factor. Inferential procedure
involving model parameters and acceleration factor are studied, and sensitivity
analysis is performed as well.

Even though there exists a number of research work related with PALT, the
optimal test plan for a product with Weibull lifetime under PALT is not addressed,
satisfying the requirements of Type I and Type II errors constraints. The purpose
of this chapter is to explore the optimum expected total testing costs incurred in
conducting a life test plan for Weibull distribution using linear and Arrhenius life-
stress relationships. The test plans are obtained minimizing the expected total testing
cost satisfying the constraints of Type I and Type II errors. The exact distribution of
the MLE of scale parameter of Weibull distribution is obtained for constructing the
reliability acceptance sampling plan.

The rest of the chapter is organized in section wise as follows: Sect. 2 discusses
the estimation of Weibull parameters under linear stress-lifetime relationship. An
optimal test plan which minimizes the total expected testing cost satisfying the
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constraints of Type I and Type II errors, is designed as well. In Sect. 3, estimation
of Weibull parameter and optimal test plan are discussed by assuming an Arrhenius
life-stress model. Some numerical results are presented in Sect. 4 and concluding
remarks are made in Sect. 5.

2 Acceptance Sampling Plan for Weibull Distribution Using
Linear Model in PALT

In this section, we derive acceptance sampling plan for Weibull distribution using
data from PALT that uses a linear life-stress relation namely, X = T

λ
, where X

denotes the lifetime of units under accelerated stress condition, and T is the lifetime
under normal stress condition.

2.1 Procedure of PALT

Consider a sample of n independent and identically distributed (iid) units from a
lot. Let p be the proportion of units allocated to accelerated stress condition and
1 − p be the proportion of units allocated to normal stress condition. Then np is
the number of randomly chosen units from n iid units to be allocated to accelerated
stress condition and n(1 − p) is the number of units randomly chosen from n units
to be allocated to normal stress condition. Each unit under normal stress condition
is run until the occurrence of r1 number of failures and each unit under accelerated
stress condition is run until the occurrence of r2 number of failures.

2.2 Distribution of Lifetime Under Normal Stress Condition

Let T be the lifetime of units under normal stress condition, having Weibull
distribution with known shape parameter α and unknown scale parameter θ . Then
the probability density function of T is given by

f1(t, θ, α) = α

θ

(
t

θ

)α−1

e−(
t
θ )
α

, t ≥ 0, α > 0, θ > 0, (1)

where t is the value of the random variable T .
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2.3 Distribution of Lifetime Under Accelerated Stress
Condition

Let X be the lifetime of units under accelerated stress condition with acceleration
factor λ. Assume that, at accelerated stress condition, the lifetime of an unit is X =
T
λ

with cumulative distribution function

F2(X) = P(X ≤ x) = P
(
T

λ
≤ x

)
= P (T ≤ λx) = 1 − e−

(
λx
θ

)α
, (2)

and probability density function

f2(x, α, λ, θ) = d

dx
(F2(x)) = αλ

θ

(
λx

θ

)α−1

e
−
(
λx
θ

)α
, α > 0, θ > 0, λ > 0.

(3)

From (2) and (3), it is clear thatX follows Weibull distribution with shape parameter
α and scale parameter θ

λ
.

2.4 An MLE of Weibull Parameter Using Transformed Data

In this section, to derive the MLE of Weibull parameter, we use the transformation
Z = T α . Since the shape parameter α is constant and known in the probability
density function of T , the probability density function of Z is given by

f3(z, θ, α) = 1

θα
e−

z
θα = 1

δ
e−

z
δ , δ > 0, (4)

where δ = θα , and the cumulative density function is

F3(z) = 1 − e− z
δ . (5)

Also, X = T
λ

implies Xα = (
T
λ

)α = T α

λα
. Let Z′ = Xα , then the cumulative

distribution function of Z′ is given by

F4(z
′) = P (Z′ ≤ z′) = P (Xα ≤ z′) = P

(
T α

λα
≤ z′

)
(6)

= P (T α ≤ z′λα) = F3(xλ
α) = 1 − e− xλα

δ , (7)

and the probability density function of Z′ is

f4(z
′, θ, α, λ) = λα

δ
e−

xλα

δ , λ > 0, δ > 0. (8)
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That is, Z′ = Xα follows Exponential distribution with parameter λ
α

δ
having mean

lifetime δ
λα

.
Let Tj , j = 1, 2, · · · , n(1 − p) be the lifetime of j -th unit under normal stress

condition and Xj , j = 1, 2, · · · , np be the lifetime of j -th unit under accelerated
stress condition. Then Zj = T αj , j = 1, 2, · · · , n(1 − p) follows Exponential
distribution with parameter δ and Z′

j = Xαj , j = 1, 2, · · · , np follows exponential

distribution with parameter λ
α

δ
. Now, consider the likelihood function for the joint

probability density function of Z′
j , j = 1, 2, · · · , np and Zj , j = 1, 2, · · · , n(1 −

p) as

L = 1

δ
e−

z1
δ

1

δ
e−

z2
δ · · · 1

δ
e−

zr1
δ

(
e−

zr1
δ

)n(1−p)−r1 λα

δ
e−

z′1λα
δ
λα

δ
e−

z′2λα
δ · · ·

λα

δ
e−

z′r2 λ
α

δ

(
λα

δ
e−

z′r2 λ
α

δ

)np−r2
.

That is,

L =
(

1

δ

)r1 (λα

δ

)r2
e
− 1
δ

r1∑
j=1

zj

e−(n(1−p)−r1) zr1δ e
− λα

δ

r2∑
j=1

z′j
e−(np−r2)

z′r2 λ
α

δ .

Then the log likelihood function ln(L) is given by

ln(L) = −r1 ln(δ)+ r2 ln(λα)− r2 ln(δ)− 1

δ

r1∑

j=1

zj − (n(1 − p)− r1)zr1
δ

−

λα

δ

r2∑

j=1

z′j − (np − r2)
z′r2λ

α

δ
.

To find the maximum likelihood estimator of δ and λα , equate ∂ln(L)
∂δ

and ∂ln(L)
∂λ

to
zero. Thus,

∂ln(L)

∂δ
= 0 ⇒ − r1

δ
− r2
δ

+

r1∑
j=1
zj

δ2
+ (n(1 − p)− r1)zr1

δ2
+
λα

r2∑
j=1
z′j

δ2
+ (np − r2)z′r2

δ2
= 0.

This implies

−(r1 + r2)+

r1∑
j=1
zj

δ
+ (n(1 − p)− r1)zr1

δ
+
λα

r2∑
j=1
z′j

δ
+ (np − r2)z′r2

δ
= 0.
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Then, after simplification, we get

δ̂ =

r1∑
j=1
zj + (n(1 − p)− r1)zr1 + λα

[
r2∑
j=1
z′j + (np − r2)z′r2

]

r1 + r2 .

Let P1 =
r1∑
j=1
zj + (n(1 − p)− r1)zr1 and P2 =

r2∑
j=1
z′j + (np − r2)z′r2 .

Then, we see that

δ̂ = P1 + λαP2

r1 + r2 . (9)

Now

∂ln(L)

∂λ
= 0 ⇒ α r2

λ
−
α λα−1

r2∑
j=1
z′j

δ
− (np − r2)z′r2αλα−1

δ
= 0.

This implies

r2

λ
− λα−1

⎛

⎜⎜⎜⎝

r2∑
j=1
z′j

δ
+ (np − r2)z′r2

δ

⎞

⎟⎟⎟⎠ = 0 ⇒ r2

λ
− λα−1

(
P2

δ

)
= 0,

where

P2 =
r2∑

j=1

z′j + (np − r2)z′r2 .

Then from Eq. (8), we have

λα = r2 δ

P2
= r2 P1 + r2 λα P2

P2(r1 + r2) ⇒ λα
(

1 − r2

r1 + r2
)

= r2 P1

P2(r1 + r2) .

Thus

λ̂α = r2 P1

r1 P2
. (10)
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Using the above equation, the maximum likelihood estimator of δ can be rewritten
as

δ̂ = P1 + λαP2

r1 + r2 =
P1 +

(
r2 P1
r1 P2

)
P2

r1 + r2 = P1

r1
. (11)

Since θα = δ, we have θ̂ α = P1
r1

.

2.5 The Distribution of δ̂ and λ̂α

From the above discussions, we have

δ̂ =

r1∑
j=1
zj + (n(1 − p)− r1)zr1

r1
⇒ δ̂

1
α =

⎛

⎜⎜⎜⎝

r1∑
j=1
zj + (n(1 − p)− r1)zr1

r1

⎞

⎟⎟⎟⎠

1
α

.

Since δ = θα and δ̂ is a maximum likelihood estimator of δ,

θ̂ = δ̂ 1
α =

⎛

⎜⎜⎜⎝

r1∑
j=1
zj + (n(1 − p)− r1)zr1

r1

⎞

⎟⎟⎟⎠

1
α

is a maximum likelihood estimator of θ = δ
1
α . The probability density function of

the random variable Y1 = δ̂ is given by (see [6] for proof)

f5(y1) = 1

Γ (r1)

(
1

δ

)r1
y
r1−1
1 e−

r1 y1
δ , y1 > 0. (12)

We have θ̂ = δ̂
1
α . Let Y2 = Y

1
α

1 , then the probability density function of θ̂ is given
by

f6(y2) = α

Γ (r1)

( r1
δ

)r1
y
r1α−1
2 e−

r1 y
α
2

δ , y2 > 0. (13)
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Note that one can rewrite

λ̂α = r2

r1

P1

P2
=
(
P1
r1

)

(
P2
r2

) .

From Eq. (11), we have P1
r1

follows f5(y1) with parameter (δ, r1) and P2
r2

follows

f5(y1) with parameter
(
δ
λα
, r2

)
.

A simple straight forward calculation shows that 2r1 δ̂
δ

∼ χ2(2r1) and
2r2

(
δ̂

λ̂α

)

δ
λα

∼
χ2(2r2) (see, [6]).

To find the distribution of λ̂α =
(
P1
r1

)

(
P2
r2

) , let W = λ̂α = W1
W2

, where W1 = δ̂ = P1
r1

and W2 = P2
r2

. The probability density function of W1 is given by Eq. (11) and the
probability density function ofW2 is given by

f7(w2) = 1

Γ (r2)

(
r2λ

α

δ

)r2
w
r2−1
2 e−

r2λ
αw2
δ , w2 > 0. (14)

Let f8(w) be the probability density function of W and F(w) be the cumulative
distribution function ofW . Assume thatW1 andW2 are independent, then

F(w) = P
(
W1

W2
≤ w

)
= P (W1 ≤ W2w) = Fw1(w2w) =

∞∫

0

Fw1(ww2)f7(w2)dw2,

where

Fw1(ww2) =
ww2∫

0

1

Γ (r1)

( r1
δ

)r1
w
r1−1
1 e−

r1w1
δ dw1

= 1

Γ (r1)
e−

r1ww2
δ

( r1ww2

δ

)r1 ∞∑

n=0

(
r1ww2
δ

)n

r1(r1 + 1) · · · (r1 + n) .

That is,

F(w) =
∞∑

n=0

1
Γ (r1)

(
r1w
δ

)r1 1
Γ (r2)

(
r2λ

α

δ

)r2 ( r1w
δ

)n

r1(r1 + 1) · · · (r1 + n)
∞∫

0

e−
r1w2w
δ w

r1+n
2 w

r2−1
2 e−

r2λ
αw2
δ dw2.
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This implies

F(w) =
∞∑

n=0

1
Γ (r1)

1
Γ (r2)

(
r1w
δ

)r1+n ( r2λα
δ

)r2

r1(r1 + 1) · · · (r1 + n)
∞∫

0

w
r1+r2+n−1
2 e

−w2

(
r1w
δ

+ r2λ
α

δ

)

dw2.

Hence

F(w) =
∞∑

n=0

1
Γ (r1)

1
Γ (r2)

(
r1w
δ

)r1+n ( r2λα
δ

)r2

r1(r1 + 1) · · · (r1 + n)
Γ (r1 + r2 + n)
(
r1w
δ

+ r2λ
α

δ

)2 . (15)

As w → ∞, F(w) → ∞. That is, F(w) is not a cumulative distribution function.
Hence our assumption that W1 and W2 are independent, is not valid and hence
W1 and W2 must be dependent. Since the joint density function of W1 and W2
is unknown, one cannot get a closed-form expression for the probability density
function ofW , that is, closed-form expression for probability density function of λ̂α

cannot be obtained.

2.6 Optimal Sampling Plan Using Linear Life-Stress Relation

Consider a lot of units having Weibull failure time with probability density function
given in Eq. (1). We construct a statistical testing procedure to assess whether
the lifetime characteristics δ = θα adheres to the required level. The proposed
acceptance sampling plan is given in following steps.

1. Take a random sample of size n and test np units under accelerated stress
condition and n(1 − p) units are put under normal stress condition.

2. Under Type-II censoring, observe r1 failures from n(1 − p) units and r2 failures
from np units.

3. From observed data under Type-II censoring, calculate the MLE δ̂ of δ.
4. If δ̂ ≥ k, where k is a constant to be determined, accept the units in the lot,

otherwise reject the lot. Observe that our acceptance rule is based on the fact
that, the lot will be accepted only when the mean lifetime under normal stress
level exceeds some constant, say k, which is to be determined.

Let δ∗ denote the acceptable quality level (AQL) and δ∗∗ denote the unacceptable
quality level (UQL) of a unit in the lot. The decision on the lot as to accept or reject
will be based upon the following probability requirements:

P(Reject the lot | δ ≥ δ∗) ≤ α1, (16)

P (Accept the lot | δ ≤ δ∗∗) ≤ α2, (17)
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where α1 is the producer’s risk and α2 is the consumer’s risk. The unknown quan-
tities of the test plan (p, r1, r2, k) are determined by formulating an optimization
problem, which minimizes the total expected testing cost (ETC) subjecting to the
conditions in (16) and (17). The total cost of testing involves cost associated with
the testing time and cost of failed units. Since the testing time is random, we consider
expected testing time and which results into the computation of total expected
testing cost. Next, we consider the following theorem to proceed further.

Theorem 1 Let G(t) be the CDF of chi-square distribution with 2r degrees of
freedom then G(t) can be written as

G(t) = 1 − e−t/2
r−1∑

j=0

(t/2)j

j ! , t > 0.

Now, we define the acceptance rule for accepting the entire lot as Pa = P(δ̂ ≥ k),

where k is a constant to be determined. Using 2r1 δ̂
δ

∼ χ2(2r1) and t = 2r1k
δ

in
Theorem 1, we have

Pa = P
(

2r1δ̂

δ
≥ k 2r1

δ

)
= 1 − P

(
2r1δ̂

δ
≤ k 2r1

δ

)
= e−t/2

r−1∑

j=0

(t/2)j

j ! . (18)

Let S1 =
r1∑
i=1
T αi + (n(1 − p)− r1) T αr1 be the total time of testing under normal

stress condition after transformation, and S2 =
r2∑
i=1
Xαi + (np − r2)X

α
r2

be the

total time of testing under accelerated stress condition after transformation. Then
by Epstein and Sobel [6], one can see that

E (S1) = δ
r1∑

i=1

1

n(1 − p)− i + 1
, (19)

E (S2) = δ

λα

r2∑

i=1

1

np − i + 1
. (20)

Hence the total expected testing time using transformed data is

E(S1)+ E(S2) = δ
(
r1∑

i=1

1

n(1 − p)− i + 1
+ 1

λα

r2∑

i=1

1

np − i + 1

)
. (21)

Let C1 be the cost of testing a unit for unit time and C2 be the cost of a failed unit,
then the total expected testing cost (ETC) involved in conducting the experiment
(after transformation) is
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ETC = (E(S1)+ E(S2)) C1 + (r1 + r2) C2.

That is (by using above expressions in (21)), the ETC can be written as

ETC = δ
(
r1∑

i=1

1

n(1 − p)− i + 1
+ 1

λα

r2∑

i=1

1

np − i + 1

)
C1 + (r1 + r2)C2. (22)

Now we formulate an optimization problem which minimizes the total expected
testing cost at acceptable quality level δ∗. Hence using (16), (17), (18) and (21), the
optimization problem to find (p, r1, r2, k) can be written as

min
p,r1,r2,k

δ∗
(
r1∑

i=1

1

n(1 − p)− i + 1
+ 1

λα

r2∑

i=1

1

np − i + 1

)
C1 + (r1 + r2) C2

such that

e
−r1k
δ

r1−1∑

j=0

(
r1k
δ

)j

j ! ≥ 1 − α1, δ ≥ δ∗,

e
−r1k
δ

r1−1∑

j=0

(
r1k
δ

)j

j ! ≤ α2, δ ≤ δ∗∗.

Since δ is an unknown parameter, we rewrite the above optimization problem as

min
p,r1,r2,k

δ∗
(
r1∑

i=1

1

n(1 − p)− i + 1
+ 1

λα

r2∑

i=1

1

np − i + 1

)
C1 + (r1 + r2) C2

such that

min
δ
e

−r1k
δ

r1−1∑

j=0

(
r1k
δ

)j

j ! ≥ 1 − α1, δ ≥ δ∗, (23)

max
δ
e

−r1k
δ

r1−1∑

j=0

(
r1k
δ

)j

j ! ≤ α2, δ ≤ δ∗∗. (24)
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Note that as δ increases e
−r1k
δ increases. Hence the minimum with respect to δ in (23)

occurs at δ = δ∗ and the maximum with respect to δ in (24) occurs at δ = δ∗∗. Hence
the above optimization problem becomes

min
p,r1,r2,k

δ∗
(
r1∑

i=1

1

n(1 − p)− i + 1
+ 1

λα

r2∑

i=1

1

np − i + 1

)
C1 + (r1 + r2) C2

such that

e
−r1k
δ∗

r1−1∑

j=0

(
r1k
δ∗
)j

j ! ≥ 1 − α1,

e
−r1k
δ∗∗

r1−1∑

j=0

(
r1k
δ∗∗
)j

j ! ≤ α2.

This optimization problem can be solved using genetic algorithm solver in MAT-
LAB.

3 Acceptance Sampling Plan for Weibull Distribution Using
Arrhenius Model in PALT

Consider a sample of n independent and identically distributed units from a lot.
Let p be the proportion of units allocated to accelerated stress condition and 1 −
p be the proportion of units allocated to normal stress condition. Then np is the
number of randomly chosen units from n iid units to be allocated to accelerated
stress condition and n(1 − p) is the number of units randomly chosen from n units
to be allocated to normal stress condition. Each unit under normal stress condition is
run until occurrence of r1 number of failures and each unit under accelerated stress
condition is run until the occurrence of r2 number of failures. In this section, we
consider the Arrhenius life-stress relationship and which is given by

A(ζ ) = a0e
a1
ζ , (25)

where A is a quantifiable life measure, ζ is the stress level and a0 > 0, a1 are the
model parameter to be determined.
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3.1 Maximum Likelihood Estimation of a0 and a1

Let T be the lifetime of a unit under normal stress condition, where the probability
density function of T follows Weibull distribution with parameters α and θ1. Then
the probability density function of T is given by

f8(t, θ1, α) = α

θ1

(
t

θ1

)α−1

e
−
(
t
θ1

)α
, t ≥ 0, α > 0, θ1 > 0. (26)

Let X be the lifetime of a unit under accelerated stress condition and let X follow
Weibull probability density function with parameters α and θ2. Then the probability
density function of X is given by

f9(x, θ2, α) = α

θ2

(
x

θ2

)α−1

e
−
(
x
θ2

)α
, x ≥ 0, α > 0, θ2 > 0. (27)

As considered in Sect. 2.4, use the transformation Zi = T αi and Z′
i = Xαi , then each

Zi follows exp(δ1) and each Z′
i follows exp(δ2), where δ1 = θα1 and δ2 = θα2 .

Let ζ1 be the normal stress level and ζ2 be the accelerated stress level. Under
Arrhenius life-stress model, assume that

θα1 = a0e
a1
ζ1 and θα2 = a0e

a1
ζ2 . (28)

The likelihood function obtained from the observed data under normal stress level
ζ1 is given by

L1(z1, z2, · · · , zr1 , δ1) ≈
(

1

δ1

)r1
e
− S1
δ1 =

(
1

a0e
a1
ζ1

)r1
e
− S1
δ1 ,

where S1 =
r1∑
i=1
zi + (n(1 − p)− r1) zr1 .

The likelihood function obtained from the observed data under accelerated stress
level ζ2 is given by

L2(z
′
1, z

′
2, · · · , z′r2 , δ2) ≈

(
1

δ2

)r2
e
− S2
δ2 =

(
1

a0e
a1
ζ2

)r2
e

− S2

a0e

a1
ζ2 ,

where S2 =
r2∑
i=1
z′i + (np − r2)z′r2 .
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Now the joint likelihood function obtained using normal and accelerated stress
levels is given by

L ≈ L1L2 =
(

1

δ1

)r1
e
− S1
δ1

(
1

δ2

)r2
e
− S2
δ2 .

Then the log likelihood function is given by

lnL = −r1 (ln δ1)− S1

δ1
− r2 (ln δ2)− S2

δ2
.

The normal equations, which are obtained by differentiating L partially with respect
to δ1 and δ2 respectively, are given by

∂ lnL

∂δ1
= 0 and

∂ lnL

∂δ2
= 0.

This implies

−r1
δ1

+ S1

δ2
1

= 0 and
−r2
δ2

+ S2

δ2
2

= 0.

Now MLE of δ1 and δ2 are given by the following equations:

δ̂1 = S1

r1
and δ̂2 = S2

r2
. (29)

From (28) we have

â0e
â1
ζ1 = S1

r1
and â0e

â1
ζ2 = S2

r2
.

By taking logarithm, we have

ln â0 + â1

ζ1
= ln

(
S1

r1

)
, (30)

ln â0 + â1

ζ2
= ln

(
S2

r2

)
. (31)

By subtracting (30) from (31), we have

â1 = ζ1ζ2

ζ2 − ζ1
[

ln

(
S1

r1

)
− ln

(
S2

r2

)]
= ζ1ζ2

ζ2 − ζ1 ln

(
δ̂1

δ̂2

)
. (32)
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Adding (30) and (31), we get

â1

[
1

ζ1
+ 1

ζ2

]
+ 2 ln â0 = ln

(
S1S2

r1r2

)
.

That is,

ζ1ζ2

ζ2 − ζ1
ζ1 + ζ2
ζ1ζ2

[
ln

(
S1

r1

)
− ln

(
S2

r2

)]
+ 2 ln â0 = ln

(
S1S2

r1r2

)
.

This implies

2

ζ1 − ζ2
[
ζ1 ln

(
S1

r1

)
− ζ2 ln

(
S2

r2

)]
= 2 ln â0.

This implies

ln

⎡

⎢⎢⎣

(
S1
r1

) ζ1
ζ1−ζ2

(
S2
r2

) ζ2
ζ1−ζ2

⎤

⎥⎥⎦ = ln â0.

Hence,

â0 =
(
S1
r1

) ζ1
ζ1−ζ2

(
S2
r2

) ζ2
ζ1−ζ2

=
(
δ̂1

) ζ1
ζ1−ζ2

(
δ̂2

) ζ2
ζ1−ζ2

. (33)

Thus â0 and â1 represent MLE of a0 and a1 respectively, by using invariance
property of MLE. Then MLE’s of Weibull scale parameters θ1 and θ2 can be
obtained by using the same invariance property of MLE, by using equations in (28).

Let h0 = ζ1
ζ1−ζ2 and h1 = ζ2

ζ1−ζ2 .

Define U1 = e
ζ2−ζ1
ζ1ζ2

(
â1 − a1

)
and U2 = (2r1)h0(2r2)−h1 â0

a0
. Using (30) and (31),

U1 and U2 can be rewritten as

U1 =
(

2S1
δ1

)

(
2S2
δ2

)
(

2r2
2r1

)
and U2 =

(
2S1
δ1

)h0

(
2S2
δ2

)h1
,

where U1 and U2 are pivotal quantities. We state the following theorem which will
be useful for obtaining intended result.
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Theorem 2 If S1 and S2 are as defined in Sect. 3, then S1 and S2 are independent,
and the distribution of 2Si

δi
∼ χ2(2ri), i = 1, 2.

Proof For proof one can refer [6]. ��
Next, we give following theorem for obtaining the distribution of U1 and U2.

Theorem 3 The cumulative density functions of the pivotal quantities U1 and U2
are given by

1. F(u1, r1, r2) = I r1u1
r1u1+r2

(
r1
2 ,

r2
2

)
, where I is the regular incomplete beta function.

2. F(u2, r1.r2) = 1 −
∞∫

0
g1(t)e

−w/2 r−1∑
j=0

(w/2)j

j ! dt .

Proof Let V1 = 2S1
δ1

and V2 = 2S2
δ2

.

1. The cumulative distribution function of U1 is obtained as follows.
Since U1 is the ratio of two independent Chi-square random variables with

degrees of freedom 2r1 and 2r2, U1 ∼ F(2r1, 2r2).
2. The cumulative distribution function of U2 is obtained as follows.

FU2(u) = P (U2 ≤ u) = P
(
V
h0
1

V
h1
2

≤ u
)

= P
(
V
h0
1 ≤ uV h1

2

)
= P

(
V1 ≤ (uV h1

2 )
1
h0

)

= E
(
P

(
V1 ≤ (uV h1

2 )
1
h0

) ∣∣∣V2

)
=

∞∫

0

P

(
V1 ≤ (uV h1

2 )
1
h0

∣∣∣V2 = t
)
g1(t)dt

=
∞∫

0

G(y)g1(t)dt = 1 −
∞∫

0

g1(t)e
−w/2

r−1∑

j=0

(w/2)j

j ! dt,

where G(y) is the cumulative distribution function of χ2(2r1), g1(t) is the

probability density function of χ2(2r2) and w = (uV h1
2 )

1
h0 .

��

3.2 Optimal Sampling Plan Using Arrhenius Life-Stress
Relation

Consider a lot of units having Weibull failure time with probability density function
given in Eq. (1). We construct a statistical testing procedure to assess whether
the lifetime characteristics δ1 = θ1

α adheres to the required level. The proposed
acceptance sampling plan is stated as follows:
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1. Take a random sample of size n and test np units under accelerated stress
condition and n(1 − p) units are put under normal stress condition.

2. Under Type-II censoring, observe r1 failures from n(1 − p) units and r2 failures
from np units.

3. From observed data under Type-II censoring, calculate the MLE δ̂1 of δ1.
4. If δ̂1 ≥ k, where k is a constant to be determined, accept the units in the lot,

otherwise reject the lot. Observe that our acceptance rule is based on the fact
that, the lot will be accepted only when the mean lifetime under normal stress
level exceeds some constant, say k, which is to be determined.

Let δ1∗ denote the acceptable quality level (AQL) and δ1∗∗ denote the unaccept-
able quality level (UQL) of a unit in the lot. The decision on the lot as to accept or
reject will be based upon the following probability requirements:

P(Reject the lot | δ1 ≥ δ1∗) ≤ α1, (34)

P (Accept the lot | δ1 ≤ δ1∗∗) ≤ α2, (35)

where α1 is the producer’s risk and α2 is the consumer’s risk. The unknown
quantities of the test plan (p, r1, r2, k) are determined using an optimization
problem, which minimizes the total expected testing cost (ETC) subjecting to
conditions in (34) and (35). The ETC that we have considered here is the same
as which is defined in Sect. 3.

Hence, the acceptance rule for accepting the entire lot is defined as Pa = P(δ̂1 ≥
k), where k is a constant to be determined later. Using 2r1 δ̂1

δ1
∼ χ2(2r1) and t = 2r1k

δ1
in Theorem 1, we have

Pa = P
(

2r1δ̂1
δ1

≥ k 2r1
δ1

)
= 1 − P

(
2r1δ̂1
δ1

≤ k 2r1
δ1

)
= e−t/2

r−1∑

j=0

(t/2)j

j ! . (36)

Also we have,

E (S1) = δ1
r1∑

i=1

1

n(1 − p)− i + 1
, (37)

E (S2) = δ2
r2∑

i=1

1

np − i + 1
. (38)

Hence the total expected testing time using transformed data is

E(S1)+ E(S2) = δ1
r1∑

i=1

1

n(1 − p)− i + 1
+ δ2

r2∑

i=1

1

np − i + 1
.
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Let C1 be the cost of testing a unit for unit time and C2 be the cost of a failed unit,
then the total expected testing cost (ETC) involved in conducting the experiment
(after transformation) is

ETC =
(
δ1

r1∑

i=1

1

n(1 − p)− i + 1
+ δ2

r2∑

i=1

1

np − i + 1

)
C1+(r1 + r2) C2. (39)

Since δ1 and δ2 are there in the expression for ETC and δ1 and δ2 are unknown,
we minimize ETC at δ∗1 and δ∗2 (that is, for fixed values of δ1 and δ2 at normal and
accelerated stress level respectively). Hence using Eqs. (36)–(39), the optimization
problem to find (p, r1, r2, k) can be written as

min
p,r1,r2,k

(
δ∗1

r1∑

i=1

1

n(1 − p)− i + 1
+ δ∗2

r2∑

i=1

1

np − i + 1

)
C1 + (r1 + r2) C2

such that

e
−r1k
δ1

r1−1∑

j=0

(
r1k
δ1

)j

j ! ≥ 1 − α1, δ1 ≥ δ1∗,

e
−r1k
δ1

r1−1∑

j=0

(
r1k
δ1

)j

j ! ≤ α2, δ1 ≤ δ1∗∗.

Since δ1 and δ2 are unknown parameters, we rewrite the above optimization problem
as

min
p,r1,r2,k

(
δ∗1

r1∑

i=1

1

n(1 − p)− i + 1
+ δ∗2

r2∑

i=1

1

np − i + 1

)
C1 + (r1 + r2) C2

such that

min
δ1
e

−r1k
δ1

r1−1∑

j=0

(
r1k
δ1

)j

j ! ≥ 1 − α1, δ1 ≥ δ1∗, (40)

max
δ1

e
−r1k
δ1

r1−1∑

j=0

(
r1k
δ1

)j

j ! ≤ α2, δ1 ≤ δ1∗∗. (41)
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Note that as δ1 increases e
−r1k
δ1 increases. Hence the minimum with respect to δ1

given in (38) occurs at δ1 = δ1
∗ and the maximum with respect to δ1 given in (39)

occurs at δ1 = δ1∗∗. Hence the above optimization problem becomes

min
p,r1,r2,k

(
δ∗1

r1∑

i=1

1

n(1 − p)− i + 1
+ δ∗2

r2∑

i=1

1

np − i + 1

)
C1 + (r1 + r2) C2

such that

e
−r1k
δ1

∗
r1−1∑

j=0

(
r1k
δ1

∗
)j

j ! ≥ 1 − α1,

e
−r1k
δ1

∗∗
r1−1∑

j=0

(
r1k
δ1

∗∗
)j

j ! ≤ α2.

This optimization problem can be solved using genetic algorithm solver in MAT-
LAB.

4 Numerical Results and Discussions

In this section, we present the numerical results obtained for the optimal test plan
discussed in Sects. 2 and 3.

First, we consider the case of acceptance sampling plan for Weibull distribution
using linear model discussed in Sect. 2. Consider an example, which is included
in Table 1 given below. For a set of values, the cost of testing a unit for unit time
(C1 = 1), the cost of a failed unit (C2 = 1) and the value of the shape parameter
of the Weibull distribution α = 2, for the choices of producer’s risk α1 = 0.1,
consumer’s risk α2 = 0.1, acceptable quality level δ∗ = 900, unacceptable quality
level δ∗∗ = 200, number of samples n = 40 and for the value of acceleration
factor λ = 2, the optimal values of total expected testing cost (ETC) is 1079.5, the
number of failures r1 = 5, r2 = 2 and the lot acceptance constant k = 329.2345
are obtained. Thus the test plan is to accept the lot whenever δ̂ exceeds 329.2345,
otherwise reject the lot.

Next, we discuss some examples in Table 2 to illustrate acceptance test plan using
Arrhenius model. Consider an example, which is included in Table 2. For a set of
values, C1 = 1, C2 = 1 and α = 1, for α1 = 0.05, α2 = 0.05, acceptable quality
level δ∗1 = 270, unacceptable quality level δ∗∗

1 = 50, n = 50 and the acceleration
factors ζ1 = 1, ζ2 = 2, the optimal values of total expected testing cost (ETC) is
43.7748, the number of failures r1 = 6, r2 = 1 and the constant k = 80.1196 are
obtained. Thus the lot will be rejected whenever δ̂1 < 0.801196.
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Table 3 Optimal ASP using linear and Arrhenius model with fixed α1 = 0.1

Linear model Arrhenius model

α2 p r1, r2 k ET C α2 p r1, r2 k ET C %R

0.1 0.7360 4,1 670.2815 4009.1 0.1 0.0687 4,1 711.891 297.2392 92.5

0.01 0.711 6,2 930.8076 6547.7 0.01 0.0494 6,1 866.5972 444.6027 93.21

0.001 0.6818 8,2 987.26 9661 0.001 0.0463 8,1 982.5218 604.2052 93.74

0.0005 0.7 8,3 1033.4 9699 0.0005 0.0333 9,1 918.0819 684.3313 92.94

0.0001 0.6 10,5 1048.5 13,693 0.0001 0.0334 11,1 959.8846 771.0734 94.36

Table 4 Optimal ASP using linear and Arrhenius model with fixed α2 = 0.1

Linear model Arrhenius model
α1 p r1, r2 k ET C α1 p r1, r2 k ET C %R

0.1 0.7364 4,1 671.5725 4009.1 0.1 0.0687 4,1 698.7491 297.2392 92.5

0.01 0.6818 8,3 592.7106 9662 0.01 0.0361 8,1 598.0348 601.471 93.77

0.001 0.6291 11,3 561.2797 16,247 0.001 0.0425 11,1 537.2504 865.8627 94.67

0.0005 0.6 12,3 555.6039 19,408 0.0005 0.0337 12,1 542.9913 957.9362 95.06

0.0001 0.5 15,5 537.7993 42,873 0.0001 0.0346 15,1 540.2972 1281.8 97.01

4.1 Comparative Study and Discussion on Linear
and Arrhenius Life-Stress Models

Let C1 = 1, C2 = 1, Weibull shape parameter α = 2, acceptable quality level
δ∗1 = 1800, unacceptable quality level δ∗∗

1 = 400, n = 40 (sample size), λ = 3
(acceleration factor). Table 3 given below presents optimal test plans and associated
expected testing costs in linear model and Arrhenius model, for fixed producer’s risk
(α1) and various values of consumer’s risk (α2). The last column in the Table (%R)
denote the percentage of reduction in testing costs in Arrhenius model as compared
to that in linear model. Similar results are presented in Table 4, for fixed consumer’s
risk (α2) and various values of producer’s risk (α1).

5 Conclusions

In this chapter, optimal acceptance sampling plans based on data obtained from
partially accelerated life test are developed using linear and Arrhenius stress-life
relations. Type-II censoring scheme is used to obtain required data. The Maximum
likelihood estimates of unknown parameter of Weibull distribution and acceleration
factor are obtained for linear model. Similarly, MLEs of model parameters are
obtained in case of Arrhenius model as well. Several examples are presented in
Tables 1 and 2 to illustrate our optimal acceptance test plans. It is observed that test
cost involved in constructing acceptance sampling plan is random in nature. Hence
an expression for expected testing cost is given and the same is illustrated through
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several examples. It is observed that when the values of α1 decreases for fixed α2,
expected testing cost increases. The same is true for decreasing values of α2 with
α1 kept fixed. Also the total expected testing cost is less in Arrhenius model as
compared to that in linear model and it is observed that Arrhenius model is more
cost effective than linear model. However the actual cost involved in testing may be
less than that reported in this work. However, we believe that when testing is carried
out, the actual cost may be less than the one (ETC) reported in this work.
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Bayesian Sequential Design Based
on Dual Objectives for Accelerated
Life Tests

Lu Lu, I-Chen Lee, and Yili Hong

Abstract Traditional accelerated life test plans are typically based on optimizing
the C-optimality for minimizing the variance of an interested quantile of the
lifetime distribution. These methods often rely on some specified planning values
for the model parameters, which are usually unknown prior to the actual tests. The
ambiguity of the specified parameters can lead to suboptimal designs for optimizing
the reliability performance of interest. In this paper, we propose a sequential design
strategy for life test plans based on considering dual objectives. In the early stage
of the sequential experiment, we suggest allocating more design locations based
on optimizing the D-optimality to quickly gain precision in the estimated model
parameters. In the later stage of the experiment, we can allocate more observations
based on optimizing the C-optimality to maximize the precision of the estimated
quantile of the lifetime distribution. We compare the proposed sequential design
strategy with existing test plans considering only a single criterion and illustrate the
new method with an example on the fatigue testing of polymer composites.
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1 Introduction

1.1 Background

For many long life products or systems, accelerated lifetime tests (ALTs) [1, 2] are
broadly used to accelerate the failure process by exposing the units under harsher
conditions than usual and to collect timely information for effectively predicting
the lifetime under the normal operating conditions. An ALT plan is often chosen to
minimize the anticipated variance of an estimated reliability metric under the normal
use condition of interest given an assumed ALT model.

This paper considers an example on planning fatigue tests for polymer com-
posites. Polymer composites are broadly used in many fields of industry such as
aircraft, wind turbine, transportation, construction and manufacture, because of
their many desirable features such as light weight, high strength, and long-term
durability. However, the performance of polymer composites can change after long
periods of use due to the fatigue of the materials resulted from being exposed to
varied stress levels. Hence fatigue tests of polymer composites aim to assess the
material’s reliability at some specified normal stress levels. Due to the extreme
long life property of polymer composites, the ALTs are desired to acquire failure
information in a more timely fashion at much higher stress levels than the normal
use conditions.

In a typical ALT setting, n units are tested under some elevated stress conditions.
Let xi represent the stress level at which unit i is tested, and ti represents the
recorded failure time (e.g., the number of cycles for the polymer composite fatigue
test) if a failure was observed during the test or the censoring time if unit i had not
failed by the end of the test. Then an ALT model is fitted to relate the failure time
with the stress level, which is used to predict the product reliability at other stress
levels under the normal use conditions. A particular problem of interest for planning
an ALT is to determine the stress levels at which individual units will be tested given
an affordable sample size. In this case, the number of test units is already determined
based on the available resources and time or budget constraints. The goal of the test
plan is to choose the stress levels, xi for i = 1, . . . , n, that offer the best precision
of the estimated reliability of interest.

ALT plans have been studied extensively in the past few decades. Most of the
methods focus on finding the optimal test plans that maximize some specified
utility functions based on the available information. Since the ALT failure models
are typically non-linear, the associated information matrices usually depend on the
model parameters, and hence the selected optimal designs are dependent on the
values of the model parameters used at the planning stage. Given the true values
of the model parameters are usually unknown precisely at the planning stage, the
resulted ALT plans could be suboptimal for assessing the reliability performance of
interest. Bayesian methods have been utilized to leverage prior knowledge on the
model parameters through carefully specified prior distributions, which allow the
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uncertainty of the prior information to be properly propagated through the statistical
inference and offer more flexibility in combining information from various sources.

In addition, the special challenges for polymer composites tests also involve
the use of expensive test equipment and the lack of prior information on the
performance of new composites materials. Due to the limited test equipment (it is
not uncommon that each test laboratory may only have a couple of testing machines
available), simultaneously testing multiple samples are usually impractical. As a
result, the tests need to be performed sequentially, which offers an opportunity to
improve our limited prior knowledge on the model parameters as more data are
collected. In this case, it is natural to employ a Bayesian sequential design to select
the next design point based on optimizing the expected utility function over the prior
distribution based on the current information of the model parameters updated by
the observed data, which is captured by the posterior distribution conditioned on the
observed failure times from the tested units.

Given the different choices of the utility functions for measuring different
aspects of test performance, the sequential Bayesian design strategy can result
in different test plans. For example, the commonly used D-optimality criterion
focuses on achieving the most precise estimation of the model parameters of an
ALT model by maximizing the determinant of the information matrix. While the C-
optimality criterion aims to maximize the precision of a linear function of the model
parameters by minimizing the its asymptotic variance. In the ALT setting, the C-
optimal designs are often used for obtaining the most precise prediction of some
interesting quantile of the lifetime distribution under the normal use conditions,
which involves extrapolating the stress variable outside the range of observed values
(at the elevated stress levels). The optimal designs based on different objectives will
push in different directions for allocating test units at different stress levels. Hence,
an optimal test plan based on a single criterion may select suboptimal design when
other criteria are also of primary interest. This has motivated us to consider multiple
objectives in the design selection process.

In this paper, we consider dual objectives in the sequential Bayesian design
setting. More specifically at the early stage of the sequential experiment, the
sequential runs will be selected based on considering the D-optimality to quickly
gain most precision in the estimated model parameters. Then in the later stage, more
sequential runs will be selected based on the C-optimality to gain most precision
of the predicted quantile of the lifetime distribution at the normal use conditions.
It is expected that by considering the dual objectives at different stages of the
sequential experiment, we can seek for more balanced performance of design on
both the estimation and prediction. In addition, improving the estimation of the
model parameters at the early stage of the sequential experiment when little prior
information is available can improve our estimation of the anticipated variance of the
quantile of the lifetime distribution, and hence results in selecting a more effective
test plan for optimizing product reliability at the normal use conditions.
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1.2 Related Literature

Traditional non-Bayesian methods for designing an ALT are based on properties
of maximum likelihood (ML) estimators. Meeker and Escobar [1] provided a
general guideline for planning life tests to obtain precise predictions at the normal
use conditions. Several work such as Chernoff [3] and Meeker and Hahn [4, 5]
studied optimum designs and compromise plans and outlined practical guidelines
for planning an efficient ALT. Some recent developments on ALT include Ye et al.
[6], Pan and Yang [7], Tsai et al. [8], and Ng et al. [9]. Escobar and Meeker [2]
provided a review on the accelerated test models. Limon et al. [10] provided a review
on planning and analysis of the accelerated tests for assessing reliability.

Bayesian techniques have been broadly used in design of experiments. Bayesian
methods assume prior distributions for the unknown parameters and the inference of
unknown quantities are based on the posterior distribution of the parameters given
the observed data. Chaloner and Verdinelli [11] provided a comprehensive review
of Bayesian experimental design techniques for linear and non-linear models,
among which Bayesian D-optimal designs and Bayesian C-optimal designs are
popular choices that have been broadly used in reliability test plans. Zhang and
Meeker [12] developed a Bayesian test plan based on minimizing the pre-posterior
expectation of the posterior variance over the marginal distribution of all possible
test data. Hong et al. [13] proposed new Bayesian criteria based on the large-sample
approximations, which offer simplified solutions to the Bayesian test plans.

Sequential test plans have been popular for reliability tests that are either very
expensive or very time-consuming. Instead of determining the design locations (i.e.,
the stress levels) for all test units prior to the experiment, the test in a sequential
design is determined and implemented one at a time given the current information
gained from the previously observed data. At each step, the next optimal design
point is determined by optimizing a design criterion summarized over the posterior
distribution of the parameters given all the data observed prior to the current step.
It was first introduced in the non-Bayesian framework using the ML estimator with
the D- or C-optimality criterion for designing nonlinear experiments [14, 15]. In
the Bayesian framework, sequential designs based on considering the D-optimality
criterion were used often. For example, Dror and Steinberg [16] developed the
Bayesian sequential D-optimal designs for generalized linear models. Roy et al.
[17] and Zhu et al. [18] proved convergence properties of the Bayesian sequential
D-optimal designs for different forms of models.

In planning for the fatigue tests for polymer composites, King et al. [19] proposed
an optimum test plan for the constant amplitude cyclic fatigue testing of polymer
composites material. Lee et al. [20] proposed a sequential Bayesian C-optimal test
plan for the polymer composites fatigue testing, which selected the sequential design
points based on optimizing the posterior asymptotic variance of an quantile life of
interest across a range of normal use conditions.
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1.3 Overview

The remaining of the paper is organized as follows. Section 2 provides the basic
background on the ALT plans. Section 3 discusses the Bayesian sequential design
which helps improve the efficiency of the fatigue testing plan when imprecise prior
knowledge on the planning parameter values is available. Section 4 proposes a
new method based on considering dual objectives in a Bayesian sequential design,
where D-optimality is recommended initially to quickly improve the precision of
the estimated model parameters in the early runs and followed with C-optimal
sequential runs to further improve the precision of the estimated reliability quantile
at the specified normal use conditions. The new method will be illustrated in Sect. 5
using the polymer composites fatigue testing example, and compared with the
Bayesian sequential designs that consider only a single criterion. At the end, Sect. 6
offers additional discussion and conclusions.

2 Accelerated Life Test Plans

In this section, we give an introduction to the general ALT plans. We focus on the
ALT plan with a single accelerating factor such as in the fatigue testing example for
polymer composites. The ALTs involve testing units at different stress levels of the
accelerating factor for quickly obtaining failure information for the product. Hence,
an ALT plan requires the determination of the levels of the accelerating factor to
be implemented in the tests (i.e., the stress levels) and the sample size at each level
(how many units to be tested at each stress level). Similar to the regular design
of experiments, where optimal designs (e.g., D-, A-, G-, or I-optimality [21]) are
often chosen for achieving the best precision of quantities of interest (e.g., model
parameters or predictions throughout the design space) under an assumed response
model, the ALT plans are often based on optimizing the precision of some reliability
metric, such as a quantile of the lifetime, given an assumed ALT model. Because the
data are collected under the elevated stress levels to make inference on reliability
at the normal use conditions, extrapolation on the accelerating factors is naturally
involved in ALT plans and hence requires strong assumptions on the specified ALT
models.

For modeling, the log-location-scale family of distributions (e.g., the Weibull
and Lognormal) is often used to model the accelerated lifetime distribution. The
models often assume a common scale parameter but allow the location parameter
to change at the different stress levels through a parametric model. An optimal ALT
plan is often determined based on minimizing the asymptotic variance of a reliability
metric under the assumed model, which is dependent on the model parameters (e.g.,
the scale and location parameters) that are unknown prior to the data collection.
Hence, the efficiency of the ALT plan is largely dependent on the choice of the
parameter values at the planning stage.
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For the polymer composites fatigue test example, let T denote the cycles to
failure which is assumed to follow a log-location-scale family of distribution with
the cumulative distribution function (cdf) and the probability density function (pdf)
given in the forms below

F(t; θ) = Φ
[

log(t)− μ
ν

]
, and f (t; θ) = 1

νt
φ

[
log(t)− μ

ν

]
.

In the equations above, μ and ν are the location and scale parameters, respectively.
The Φ(·) and φ(·) are the cdf and pdf of the standard normal distribution. Let θ =
(μ, ν) denote the vector of the unknown parameters included in the model. The
scale parameter ν is often assumed to be constant, while the location parameter
μ = μβ(x) is assumed to be dependent on the stress level x through the model
parameters β. A physically motivated nonlinear model [22] is used to model the
relationship between the cycles-to-failure and the stress level as given in the form

μβ(x) = 1

B
log

{(
B

A

)
hB

(σult
x

− 1
) (σult

x

)γ (α)−1
[1 − ψ (R)]−γ (α) + 1

}
. (1)

In Eq. (1), the unknown parameters are β = (A,B), where A is a model parameter
representing the environmental effect on the material fatigue, and B is the material
specific effect. The remaining involved variables that are known for the test planning
include: the stress ratio, R = σm/σM , where σM and σm are the maximum and
minimum stresses, the frequency of the cyclic stress testing, h, the ultimate stress
of the material, σult , and the smallest angle between the testing direction and the
fiber direction, α. In addition, functions of known parameters ψ(R) and γ (α) are
defined as

ψ(R) =
{
R for ∞ < R < 1
1
R

for 1 < R <∞ ,

and γ (α) = 1.6−ψ | sin(α)|, respectively. The empirical model in Eq. (1) is flexible
to be applied to a wide variety of materials with different settings of stress levels,
angles and frequencies. Then, in the assumed ALT model, the unknown parameters
are θ = (A,B, ν).

In reliability analysis, the quantile of the lifetime in the lower tail of the
distribution (p ≤ 0.5) is often of interest for capturing important reliability
characteristics. Let ζp,x denote the pth quantile at the stress level x, which is related
to the ALT model parameters through the following form

log(ζp,x) = μβ(x)+ zpν, (2)

where zp is the pth quantile of the standard log-location-scale distribution, and x is a
specified stress level under the normal use condition. The pth quantile of the lifetime
can be estimated by substituting the model parameters in Eq. (2) by its estimators,
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Fig. 1 An illustration of the
use stress profile
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β̂ and ν̂. The ALT plan can be chosen based on minimizing the asymptotic variance

of the estimated pth quantile life, denoted by AVar
[
log

(
ζ̂p, x

)]
. Considering in

many real applications the stress level can vary across a range of use conditions, a
use stress profile shown in Fig. 1 is considered for the polymer composites fatigue
test plan. The use condition stress levels range between xL = 0.05σult and xU =
0.25σult . Let {x1, . . . , xk} denote all the use stress levels with xi = qiσult for qi ∈
[0.05, 0.25] and {w1, . . . , wk} denote their relative frequencies in the use profile
with

∑K
k=1wk = 1. The total weighted asymptotic variance at all use stress levels

is defined as

K∑

k=1

wkAVar
[
log

(
ζ̂p,xk

)]
, (3)

for capturing the overall asymptotic variance throughout all possible use conditions.
The ML estimation is often used to calculate the weighted total asymptotic

variance given in Eq. (3). The ML approach estimates the parameters based on
maximizing the likelihood function of the parameters given the observed data. For
the polymer composites fatigue test, the failure time data were collected within a
predetermined test duration. Some test units had not failed by the end of the test
period, which were censored observations. Let (xi, ti , δi) represent the observed
data for the ith test unit, where δi is the censoring indicator and δi = 1 if the ith
unit is censored and δi = 0 otherwise, and ti is the failure time when δi = 0
and the censoring time when δi = 1. Given the observed test data (xn, tn, δn),
where xn = (x1, . . . , xn)

′, tn = (t1, . . . , tn)′, and δn = (δ1, . . . , δn)′, the likelihood
function is given by

L (θ |xn, tn, δn) =
n∏

i=1

{
1

νti
φ

[
log(ti )− μβ (xi)

ν

]}(1−δi ) {
1 −Φ

[
log(ti )− μβ (xi)

ν

]}δi
.
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Let zi = [
log(ti)− μβ (xi)

]
/ν, then the log-likelihood function is expressed as

l (θ |xn, tn, δn) =
n∑

i=1

(1 − δi)
[
logφ (zi)− log (ν)− log (ti)

]+ δi log [1 −Φ (zi)] .
(4)

The ML estimate of θ is the solution to the equation ∂l (θ) /∂θ = 0 and the
asymptotic variance of the ML estimator, θ̂ is given by

�θ = I−1
n (θ , xn) =

{
E

[
−∂

2l (θ |xn, tn, δn)
∂θ∂θ ′

]}−1

. (5)

Then the total weighted asymptotic variance in Eq. (3) can be calculated as

K∑

k=1

wkAVar
[
log

(
ζ̂p,xk

)]
=

K∑

k=1

wkc′
k�θck, (6)

where ck = [
∂μβ (xk) /∂A, ∂μβ (xk) /∂B, zp

]′. Note that using the ML estimation
when there is a small number of observed failures with a high censoring rate can
result in unstable estimates. If the censoring time is random, then the expectation-
maximization approach can be used to obtain more stable estimates of the model
parameters (e.g., Park and Lee [23]).

The C-optimal design [11], which minimizes the asymptotic variance of the
estimated quantile of the lifetime distribution at a range of normal use conditions
measured by Eq. (6) can be selected as the best ALT plan for determining the number
of test units at different stress levels. Note the test plan based on minimizing Eq. (6)
should be performed prior to the data collection, and hence heavily depends on the
values of the parameters, which are often unknown or at least not known precisely
at the planning stage. Therefore, when little prior information was available on the
true parameter values, an alternative to the ML approach for estimating the model
parameters was proposed by Lee et al. [20] based on using a Bayesian sequential
design, which selects each single design point based on optimizing Eq. (6) over the
posterior distribution of the parameter θ given the previously observed data.

3 Sequential Bayesian Design

The sequential design framework used in this paper is similar to Lee at al. [20]. Here
we provide a brief description of the general framework within the context of the
fatigue test plan for the polymer composites. Given a use stress profile, the (n+1)th
design point was selected based on minimizing the average posterior asymptotic
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variance over the posterior distribution of the model parameters given the first n
observations, which is calculated by:

φ (xn+1) =
∫

'

[
K∑

k=1

wkc′
k�θ (xn+1) ck

]
π (θ |xn, tn, δn) dθ , (7)

where �θ (xn+1) = [In+1 (θ, xn+1)]−1 = [In (θ, xn)+ I1 (θ, xn+1)]−1. Note in Eq.
(7), the posterior distribution updated by the first n observations, π (θ |xn, tn, δn),
can be considered a prior distribution of parameters prior to selecting the (n+ 1)th
design point. A Markov chain Monte Carlo (MCMC) method was developed in
Lee et al. [20] to approximate the posterior distribution π (θ |xn, tn, δn), where
θ = (A,B, ν), for the selection of sequential optimal design points. Uniform
distributions were assumed for both the environmental and physical parameters A
and B, as in A ∼ Uniform (a1, a2) and B ∼ Uniform (b1, b2), and a1, a2, b1 and b2
are constants specified based on the anticipated ranges of the parameters A and B.
An inverse gamma distribution with the shape parameter κ and the scale parameter
γ was used for ν2 as it is the conjugate prior for the lognormal distribution, which
is one of the commonly used log-location-scale distributions in reliability analysis.

In Lee et al. [20], two algorithms were provided to evaluate the anticipated
asymptotic variance in Eq. (7) and to select the next optimal design location in
the sequential Bayesian design. At each iteration of the sequential Bayesian design,
the two algorithms are used (1) to draw samples from the posterior distribution
π (θ |xn, tn, δn) and use the Monte Carlo integration for approximating Eq. (7), and
(2) to determine the optimal design location that minimizes Eq. (7) over all possible
design points.

To encourage broad applications, an R package named “SeqBayesDesign” [24]
was developed to implement the sequential Bayesian design developed in Lee et al.
[20]. The package can be applied to determine the sequential Bayesian design for
traditional ALTs and the constant amplitude fatigue test based on either the log-
normal distribution or the Weibull distribution. Users can easily implement the
method by providing the inputs on the historical test data, anticipated use condition
levels, the prior information on the model parameters which can be specified in the
form of a uniform or normal distribution, and the candidate design points. After
specifying the input settings, the optimal design point for the next step will be
calculated by the two algorithms.

4 Sequential Design Under Dual Objectives

In this section, we describe a new sequential design strategy based on dual objec-
tives. We first describe the motivation for considering dual objectives. Typically,
the optimal design based on a single criterion can have suboptimal performance
on aspects that are not measured by the chosen criterion. For example, the
D-optimal designs maximize the information gain measured by the determinant
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of the information matrix, |In (θ, xn) |. These designs allocate the design points
to obtain the most precise estimates of the model parameters based on the data
collected at the accelerated stress levels, and may not offer sufficient efficiency
when predicting reliability at the normal use conditions which requires extrapolation
beyond the range of the observed data. On the other hand, the C-optimal design,
which focuses on obtaining the most precise prediction at the specified normal use
condition(s), may be suboptimal for precisely estimating the model parameters.
In recent decades, it has become more desirable to consider multiple aspects for
design selection. The desirability function approach by Derringer and Suich [25]
has been broadly used to choose an optimal design based on combining multiple
criteria through a user-defined desirability function that heavily relies on subjective
user choices on weighting, scaling and metric form prior to understanding the
design performance and potential trade-offs. Lu et al. [26] introduced the Pareto
front approach to design selection and optimization by intentionally separating the
objective and subjective selection stages and allows to make informed decisions
based on quantitatively understanding the trade-offs and robustness to different user
priorities.

We consider dual objectives in the sequential Bayesian design context. Given
the sequential designs are often used in scenarios with small test units and limited
prior knowledge on the model parameters, we propose to use the D-optimality at the
early stage of the sequential experiment for a quick improvement of the precision
of estimated model parameters, and then followed with the C-optimality criterion
for a more effective improvement on the precision of the estimated quantile of the
lifetime at the normal use conditions. Considering the selection of sequential runs
are dependent on the current knowledge of the model parameters (either based on
the assumed planning values or from the observed test data), when the planning
values or the estimated parameters from limited observations are far off the true
values, using the D-optimality for choosing sequential runs is expected to quickly
improve the precision of the estimated parameter values. Then with sufficiently
precise estimates of model parameters, we have more precise estimate of asymptotic
variance of the reliability quantity of interest, and hence can more efficiently allocate
additional runs for directly improving the precision of predictions at the normal
use conditions. When there are essentially sufficient number of runs collected, the
Bayesian sequential design based on considering dual objectives may offer similar
performance as the regular optimal designs based on considering a single criterion.
However, for situations when only limited number of tests could be afforded, the
dual objective sequential test is expected to offer more robustness and balanced
performance between the two objectives on improving both the estimation and
prediction outside the test region.

More specifically, suppose we want to design an N -run sequential Bayesian test
plan and we want to choose the first N1 runs based on the Bayesian D-optimality
and the nextN−N1 runs based on the Bayesian C-optimality. Then, among the first
N1 runs, the (n + 1)th run at xn+1 is selected based on maximizing the expected
D-optimality over the posterior distribution of the model parameters based on the
first n observed test units as given by
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ψ (xn+1) =
∫

'

log {|In+1 (θ, xn+1) |}π (θ |xn, tn, δn) dθ , (8)

where |In+1 (θ, xn+1) | is the determinant of the information matrix based on the
first n + 1 runs which can be updated from the information matrix for the first n
runs, In (θ, xn), by the information gained from the additional observation at xn+1
as in

In+1 (θ, xn+1) = In (θ, xn)+ I1 (θ, xn+1) . (9)

Then the optimal design point for the (n+ 1)th run is selected by

x∗
n+1 = argmaxxn+1∈[xL, xU ]ψ (xn+1) . (10)

Then from the N1 + 1 run on, the remaining design locations will be selected based
on minimizing the total weighted asymptotic variance of the interested quantile of
the lifetime distribution given in Eq. (6) by seeking the optimal design location at
(n+ 1)th observation as

x∗
n+1 = argminxn+1∈[xL, xU ]φ (xn+1) , (11)

until all N runs are selected and executed.
The implementation of the dual objective Bayesian sequential design using the

R package “SeqBayesDesign” [24] is convenient. This package allows the users
to generate the Bayesian sequential optimal design based on a user choice on the
optimization criterion between the D-optimality and C-optimality. By changing
the optimization criterion among the sequential runs, we can easily implement the
dual objective Bayesian sequential design for any desired fraction of the D-optimal
and C-optimal runs. In the next section, we will illustrate the proposed method
using the polymer composites fatigue testing example and compare a few Bayesian
sequential test plans with different fractions of D-optimal runs to the Bayesian
sequential designs considering only a single criterion. The R code for implementing
the proposed method for the polymer composites fatigue test example is available
from the authors upon request.

5 Application in Polymer Composites Fatigue Testing

In this section, we illustrate the sequential Bayesian design considering dual
objectives using the polymer composites fatigue testing example. The original data
consisting of 14 observations from a fatigue testing experiment for glass fibers
were summarized in Lee et al. [20]. Among the 14 existing observations, there
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were 11 failures and 3 right-censored observations. The ML estimates of the model
parameters based on the 14 observations are Â = 0.00157, B̂ = 0.3188 and ν̂ =
0.7259, which are used as the best available estimates of model parameters when
evaluating the performance of the sequential dual objective Bayesian designs. Other
variables that were set as constants for the test plan include h = 2, R = 0.1, α = 0,
and σult = 1339.67.

Considering in many polymer composites fatigue testing, the available historical
data are often limited, we select only three observations (the minimum number
required to estimate all three model parameters) from the 14 observations to rep-
resent the limited existing data. First, we chose to evaluate the same subset of three
observations that were evaluated in Lee et al. [20], namely the Data Set 1, based on
which the ML estimates of model parameters are θ̂1 = (0.0005, 0.7429, 0.1658).
Figure 2 shows the stress-life relationship for all the 14 observations and the subset
of three that are considered as limited existing data in our example. We adapted the
Bayesian sequential algorithms developed in Lee et al. [20] for considering the dual
objectives and implemented using the R package “SeqBayesDesign” [24].

Given the three selected observations shown in Fig. 2 (solid diamonds), we plan
to select 12 additional observations using the Bayesian dual objective sequential
design. Five different design strategies are compared which are summarized in
Table 1. Due to the sampling variation, we simulated 100 test plans based on
each strategy and summarize the average performance across the 100 simulations
to compare the design performance. Figure 3 shows the AVar from Eq. (6) of the 12
sequential runs for the five design strategies. We can see for the first sequential
run, all five designs substantially reduce the AVar by almost the same amount.
Starting from the 2nd run, the sequential C-optimal design (shown in the red line)
achieves the minimum AVar consistently for all remaining runs. The sequential D-
optimal design (shown in the blue line) increases the AVar at the 2nd run and then
starts to reduce the AVar steadily afterwards. However, it has consistently higher
AVar than the sequential C-optimal design since it focuses primarily on obtaining

Fig. 2 Plot shows the three
selected observations from
the original data for Data Set
1 with its fitted stress-life
relationship by θ̂1
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Table 1 Five sequential Bayesian designs for comparison

Design scenarios Description

a: 12 C-opt All 12 sequential runs are generated based on the Bayesian C-optimality
criterion

b: 12 D-opt All 12 sequential runs are generated based on the Bayesian D-optimality
criterion

c: 6 D-opt + 6 C-opt First 6 runs are based on D-optimality and last 6 runs are based on
C-optimality

d: 4 D-opt + 8 C-opt First 4 runs are based on D-optimality and last 8 runs are based on
C-optimality

e: 2 D-opt + 10 C-opt First 2 runs are based on D-optimality and last 10 runs are based on
C-optimality

Fig. 3 Plot of AVar, the
estimated asymptotic
variance of the estimated
quantile life averaged over a
range of specified use
conditions as in Eq. (6), for
the five designs from Table 1
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4 D−Opt + 8 C−Opt
2 D−Opt + 10 C−Opt

the most precise estimates of the model parameters instead of making the most
precise prediction of reliability at the normal use conditions. However, the difference
between the two designs becomes noticeably smaller as more sequential runs are
observed. The other three designs (c–e) from Table 1 achieve AVar values between
those offered by the D-optimal and C-optimal designs. Generally, the more D-
optimal runs generated at the early stage of the sequential experiment, the more
closely the design performs compared to the 12 run sequential D-optimal design
for those early runs that are generated based on the D-optimal criterion. But for
the later runs generated based on the C-optimal criterion, the design usually offers
slightly better AVar than the D-optimal design. On the other hand, the fewer D-
optimal runs the design has in the early runs, the faster the AVar value is improved
and approaching the best AVar offered by the C-optimal design for all the sequential
runs.



270 L. Lu et al.

In addition, we compare the overall precision of the estimated model parameters
among the five design strategies. Particularly, we adopt theM measure for quantify-
ing the relative error of the estimated parameters from Lee et al. [20]. Particularly,
we define

m
(
θj
) = 1

K

K∑

k=1

(
|θ̂j,k − θj |

θj

)2

,

where θj represents the j th parameter in the assumed ALT model, and θ̂j,k repre-
sents the estimated value of θj from the kth simulation trial for k = 1, . . . , K = 100.
Hence, m(θj ) measures the relative mean squared error of the estimate of the j th
parameter. Then the M measure, defined as M = ∑3

j=1m
(
θj
)
, measures the

total relative mean squared error of all the parameters, which quantifies the overall
precision of the estimated model parameters from the ALT model. The smaller M
value indicates more precision of the estimated parameters. Figure 4 shows the M
measure for the five designs shown in Table 1. The sequential C-optimal design
has the largest M and hence the least precision of all the estimated parameters
for all the 12 sequential runs. This is expected as the C-optimal design focuses
more on obtaining the most precise estimation of the quantile lifetime of interest
at the normal use conditions and less on obtaining the most precise estimation of
model parameters. It is interesting that the D-optimal design does not offer the
most precise estimation of parameters at the early runs but does catch up later as
more runs are implemented. Also, some of the sequential dual objective designs
(e.g., design c with 6 D-opt runs followed by 6 C-opt runs) slightly outperform the
D-optimal design at early runs (between the 2nd and the 7th sequential runs). This
could be resulted from sampling variation and the fact of D-optimality being a better

Fig. 4 Comparison of theM
measure, the total relative
mean squared error for all
three model parameters, for
the five designs from Table 1
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Fig. 5 Plot of sample size allocation for the five designs from Table 1

measure of the precision of estimated model parameters for the larger sample cases.
As more sequential runs are obtained (8 or more runs), the D-optimal design offers
the best precision of estimated model parameters. For our case study, when less than
8 sequential runs are allowed, the dual objective sequential designs offer slightly
better precision for both the estimation of model parameters and the prediction at
the normal use conditions.

Figure 5 shows the fraction of sample allocated to different stress levels for the
five designs averaged over the 100 simulation trials. A few patterns can be observed
prominently. First of all, all the test plans allocate majority of the runs to the extreme
stress levels within the range of consideration for q ∈ [0.35, 0.75]. The sequential
C-optimal design places about 2/3 of the total sequential runs to the lowest stress
level at q = 0.35. In contrast, the sequential D-optimal design places about 60% of
the total runs to the highest stress level at q = 0.75. This is intuitive as the C-optimal
aims for improving the estimation at the normal use conditions at much lower stress
levels than the design region, and hence tends to allocation more runs closer to
the region of prediction. On the other hand, the D-optimal design aims to improve
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Fig. 6 Plot of the sample size allocation of the 12 sequential runs for the five designs

the estimated model parameters, which are estimated more precisely when more
failures are observed at the higher stress levels assuming the failure mechanism
does not change under more stressed conditions. Other sequential plans based on
considering dual objectives show slightly more balanced performance between the
two optimal designs considering only a single criterion. But they are consistently
much closer to the C-optimal design by allocating more runs closer to the normal use
considerations. For all the test plans, there are only a small number of runs (≤ 1%)
located at the second lowest stress level at q = 0.4 among the 100 simulation trials.

Figure 6 displays the faction of sample allocation at each of the sequential runs
across the 100 simulation trials for the five designs. The dark-to-light gray shades
indicate large to small frequency of sample allocation at the different stress levels.
We can see there is a large middle region in each panel (for each design) shown
in the lightest gray indicating a rare sample allocation to the middle stress levels
between q = 0.4 and q = 0.7. By contrasting the C-optimal and D-optimal designs,
we can see while the earlier runs are more evenly split between the high and low
stress levels, the D-optimal design seems to allocate more runs at the higher stress
levels for the later runs, while the C-optimal design tends to have more runs at the
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lower stress levels at the later stage of the sequential experiment. And this pattern
matches our understanding that more tests at the higher stress levels can improve
the estimation more efficiently while tests at the lower levels are more helpful for
improving the prediction at the normal use conditions. We also did the comparison
between the several strategies based on other data sets, including the Data Set 2 in
Lee et al. [20], and observed similar patterns. Hence, the results are not shown here.

6 Discussion and Conclusions

In this paper, we extend the Bayesian sequential test plans by considering dual
objectives when selecting the sequential design points. Bayesian sequential tests are
particularly useful when there is little prior information on the lifetime distribution
and also tight constraints on the total number of test units or the number of
units that can be tested simultaneously. In this case, it is helpful to timely update
our understanding as more valuable information is collected during the sequential
experiment. We recommend using D-optimality to guide the early design selection
for quickly improving the precision of the estimated ALT models to help the
planning strategy focus in the right region and then switch to C-optimality to seek
precise prediction when extrapolating into the normal use conditions.

We applied the dual objective Bayesian sequential design to the polymer
composites fatigue test problem, in which case there is limited prior knowledge on
the new composites materials and the testing requires using an expensive equipment
with limited availability and hence there is little chance of testing multiple units
at the same time. Our comparison between the dual objective and single objective
Bayesian sequential designs showed a more robust and balanced performance of
the dual objective design. Especially when very limited test units are possibly to be
considered, the dual objective designs have shown to offer noticeably more precise
estimation of model parameters than the C-optimal design and better prediction
across a range of possible normal use conditions than the D-optimal design. As more
test units are affordable, the dual objective designs have shown to catch up with the
single criterion optimal design more quickly than the optimal design considering
only the other criterion and eventually offer near-optimal performance on both the
estimation and prediction.

The implementation of the method is convenient and straightforward with the
“SeqBayesDesign” R package [24] for the polymer composites fatigue test example
and other applications using similar ALT models. However, the proposed method is
very general to be applied to broad applications with different lifetime distributions,
ALT models, or even different sequential testing strategies involving blocking or
other constraints. The method should also adapt for higher dimensional problems
with more than one accelerating factors.
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The Stress-Strength Models
for the Proportional Hazards Family
and Proportional Reverse Hazards
Family

Bing Xing Wang, Pei Hua Jiang, and Xiaofei Wang

Abstract The stress-strength model has been widely used for reliability design of
systems. The reliability of the model is defined as the probability that the strength
is larger than the stress. This chapter considers the stress-strength model when both
the stress and the strength variables follow the two-parameter proportional hazards
family or the proportional reverse hazards family. These two distribution families
include many commonly-used distributions, such as the Weibull distribution, the
Gompertz distribution, the Kumaraswamy distribution and the generalized expo-
nential distribution, etc. Based on complete samples and record values, we derive
the maximum likelihood estimation for the these stress-strength reliability. We also
present the generalized confidence intervals for these stress-strength reliability. The
simulation results show that the proposed generalized confidence intervals work
well.

1 Introduction

The proportional hazards family (PHF) and proportional reverse hazards family
(PRHF) are two classes important distribution families. The cumulative distribution
functions (CDFs) of the two-parameter PHF and PRHF are given by

F(x;α, β) = 1 − [1 −G(x;α)]β, x > 0 (1)
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and

F(x;α, β) = [G(x;α)]β, x > 0, (2)

respectively. Here, G(x;α) is a cumulative distribution function dependent only on
the parameter α. The two distribution families will be denoted by PHF(α, β) and
PRHF(α, β), respectively. The two distribution families include many commonly-
used lifetime distributions. Examples of the two-parameter proportional hazards
family (1) include the Weibull distribution, the Gompertz distribution, the
Kumaraswamy distribution, etc. The generalized exponential distribution and the
inverse Weibull distribution are two special cases of the two-parameter proportional
reverse hazards family (2).

The stress-strength model is an important reliability model. It was first introduced
by Birnbaum [6] and developed by Birnbaum and McCarty [7]. Since then, it has
been widely used in many fields [9, 10, 28, etc.]. In the classical stress-strength
model, both the stress X1 and the strength X2 of the unit are assumed to be random,
and the stress-strength reliability is defined as δ = P(X1 < X2).

Inference for δ under different stress and strength distributions has been consid-
ered in the literature. When the stress and the strength have the Weibull distributions
with the same but unknown shape parameter, McCool [17], Kundu and Gupta [15]
considered interval estimation for δ. Krishnamoorthy and Lin [13] proposed the
generalized confidence intervals (GCIs) for δ under the Weibull distributions with
the same or different shape parameters. Wang and Ye [22] derived the GCIs for
the Weibull stress-strength model based on the upper record values. Reiser and
Guttman [19] derived the two approximate confidence intervals and an approximate
Bayesian probability interval for δ under normal case. Weerahandi and Johnson
[26] considered hypotheses testing and interval estimation of δ when the stress and
strength variables are independent normally distributed. Guo and Krishnamoorthy
[8] gave some new approximate inferential methods for δ when the stress and
strength are independent normal variables. Guttman et al. [9] and Aminzadeh [1]
considered the estimation for stress-strength models with explanatory variables
under normal and exponential distributions, respectively. Kundu and Gupta [14]
discussed the estimation for δ under the generalized exponential distributions with
the same scale parameter. Baklizi [3] obtained the exact confidence interval and
the Bayesian credible interval for δ based on the lower record values under the
generalized exponential distributions with the known scale parameters. Wang et al.
[25] proposed the GCIs for the generalized exponential stress-strength model with
the same or different scale parameters. Surles and Padgett [20] derived the maximum
likelihood estimation and the approximate confidence interval of δ for a scaled Burr
type X Distribution. Raqab and Kundu [18] compared different estimators of δ for
a scaled Burr type X distribution. Lio and Tsai [16] discussed the estimation of δ
for Burr XII distribution based on the progressively first failure-censored samples.
Wang et al. [24] obtained the GCIs for the stress-strength reliability under the
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Kumaraswamy distributions. When G(x;α) is known, Basirat et al. [4, 5] studied
the estimation for the PHF stress-strength model based on progressive type II
censored samples and record values, respectively. Johnson [11] provided a review
of many results for stress-strength model using parametric as well as nonparametric
approach. Kotz et al. [12] provided some excellent information on past and current
developments in the area.

The reminder of this chapter is organized as follows. Section 2 presents the
estimation for the PHF and PRHF stress-strength models based on complete
samples. Section 3 derived the maximum likelihood estimation and GCIs for δ based
on record values. Finally, Sect. 4 concludes this chapter.

2 Inference for the Stress-Strength Model Based
on Complete Samples

Suppose that the stress X1 and strength X2 are two independent but not identically
distributed random variables with CDF defined in (1). In particular, we assume that
Xi ∼ PHF(αi, βi), i = 1, 2. Then the reliability of the stress-strength model is
given by

δ = P(X1 < X2) =
∫ ∞

0
F(x;α1, β1)dF (x;α2, β2). (3)

In particular, when α1 = α2=̂α, δ is simplified as

δ =
∫ ∞

0
{1 − [1 −G(x;α)]β1}d{1 − [1 −G(x;α)]β2}

=
∫ 1

0

[
1 − (1 − u)β1/β2

]
du = β1

β1 + β2
.

Remark 1 For the PRHF stress-strength model, the expression of the reliability δ
are the same as one in (3) of the PHF stress-strength model. When α1 = α2=̂α, the
reliability δ is given by β2/(β1 + β2).

2.1 Maximum Likelihood Estimation

Let Xi = (Xi,1, Xi,2, . . . , Xi,ni ) be the sample from PHF(αi, βi), i = 1, 2, and
Xi,(1) < Xi,(2) < · · · < Xi,(ni ), i = 1, 2, be the corresponding order statistics.
Then the stress-strength reliability δ can be estimated by the maximum likelihood
method.
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2.1.1 α1 = α2=̂α Case

In this case, the likelihood function is

L(α, β1, β2) =
2∏

i=1

ni∏

j=1

βig(xi,j ;α)[1 −G(xi,j ;α)]βi−1,

where g(x;α) is the corresponding density function ofG(x;α). Then the maximum
likelihood estimates (MLEs) α̂, β̂1, β̂2 for the parameters α, β1, β2 can be obtained
from the following equations.

2∑

i=1

ni∑

j=1

1

gij
· ∂gij
∂α

+
2∑

i=1

ni∑

j=1

[
ni∑ni

j=1 log(1 −Gij ) + 1

]
1

1 −Gij · ∂Gij
∂α

= 0, (4)

β1 = − n1∑n1
j=1 log(1 −G1j )

, β2 = − n2∑n2
j=1 log(1 −G2j )

, (5)

where gij = g(xi,j ;α), Gij = G(xi,j ;α). Therefore, the MLE of δ is given by

δ̂ = β̂1

β̂1 + β̂2
.

Example 1 Weibull distributions with the common shape parameter.

Notice that for the Weibull distribution, G(x;α) = 1 − exp(−xα), x > 0, thus
the Eqs. (4) and (5) can be written as

1

α
+ 1

n1 + n2

2∑

i=1

ni∑

j=1

log(xi,j )−
2∑

i=1

ni

n1 + n2
·
∑ni
j=1 x

α
i,j log(xi,j )

∑ni
j=1 x

α
i,j

= 0, (6)

β1 = n1∑n1
j=1 x

α
1,j

, β2 = n2∑n2
j=1 x

α
2,j

.

Therefore, the MLE of δ is

δ̂ = n1/
∑n1
j=1 x

α̂
1,j

n1/
∑n1
j=1 x

α̂
1,j + n2/

∑n2
j=1 x

α̂
2,j

,

where α̂ is the solution of the Eq. (6).

Example 2 Kumaraswamy distributions with the common shape parameter α.
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Suppose that Xi follows the Kumaraswamy distribution Kum(αi, βi). Its CDF is
given by

F(x;αi, βi) = 1 − (1 − xαi )βi , 0 < x < 1,

where αi(> 0), βi(> 0) are the shape parameters.
Notice that for the Kumaraswamy distribution, G(x;α) = xα, 0 < x < 1, thus

when α1 = α2=̂α, the Eqs. (4) and (5) can be written as

1

α
+ 1

n1 + n2

2∑

i=1

ni∑

j=1

{
log xi,j + ni x

α
i,j log xi,j

∑ni
j=1 log(1 − xαi,j )

}
1

1 − xαi,j
= 0, (7)

β1 = − n1∑n1
j=1 log(1 − xα1,j )

, β2 = − n2∑n2
j=1 log(1 − xα2,j )

.

Therefore, the MLE of δ is

δ̂ = n1/
∑n1
j=1 log(1 − xα̂1,j )

n1/
∑n1
j=1 log(1 − xα̂1,j )+ n2/

∑n2
j=1 log(1 − xα̂2,j )

,

where α̂ is the solution of the Eq. (7).

2.1.2 α1 �= α2 Case

In this case, the likelihood function is

L(αi, βi) =
ni∏

j=1

βig(xi,j ;αi)[1 −G(xi,j ;αi)]βi−1, i = 1, 2.

Then the MLEs α̃i , β̃i for the parameters αi, βi can be obtained from the following
equations.

ni∑

j=1

1

gij
· ∂gij
∂αi

+
ni∑

j=1

[
ni∑ni

j=1 log(1 −Gij ) + 1

]
1

1 −Gij · ∂Gij
∂αi

= 0, (8)

βi = − ni∑ni
j=1 log(1 −Gij ) , i = 1, 2, (9)

where gij = g(xi,j ;αi), Gij = G(xi,j ;αi). Therefore, the MLE for δ is given by

δ̃ =
∫ ∞

0
F(x; α̃1, β̃1)dF (x; α̃2, β̃2).
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Example 3 Weibull distributions with the unequal shape parameters.

In this case, the Eqs. (8) and (9) can be written as

1

αi
+ 1

ni

ni∑

j=1

log(xi,j )−
∑ni
j=1 x

α
i,j log(xi,j )

∑ni
j=1 x

α
i,j

= 0, (10)

βi = ni∑ni
j=1 x

α
i,j

, i = 1, 2. (11)

Notice that when the two Weibull shape parameters are unequal, δ is given by

δ = 1 − β2

∫ ∞

0
exp(−β1x

α1/α2 − β2x)dx,

then the MLE of δ is

δ̃ = 1 − β̃2

∫ ∞

0
exp(−β̃1x

α̃1/α̃2 − β̃2x)dx,

where α̃i , β̃i are the solutions of the Eqs. (10) and (11), respectively.

Example 4 Kumaraswamy distributions with α1 �= α2.

In this case, the Eqs. (8) and (9) can be written as

1

αi
+ 1

ni

ni∑

j=1

{
log xi,j + ni x

αi
i,j log xi,j

∑ni
j=1 log(1 − xαii,j )

}
1

1 − xαii,j
= 0, (12)

βi = − ni∑ni
j=1 log(1 − xαii,j )

, i = 1, 2. (13)

Notice that when α1 �= α2, δ is given by

δ = 1 −
∫ 1

0
[1 − (1 − x1/β2)α1/α2 ]β1dx,

then the MLE of δ is

δ̃ = 1 −
∫ 1

0
[1 − (1 − x1/β̃2)α̃1/α̃2 ]β̃1dx,

where α̃i , β̃i are the solutions of the Eqs. (12) and (13), respectively.
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2.2 Interval Estimation

In this subsection, we derive the GCIs for δ under both α1 = α2 and α1 �= α2
scenarios. In order to derive the GCIs of δ, we need the following lemma (see Wang
et al. [21]).

Lemma 1 Suppose that Z1, Z2, . . . , Zn is a random sample from the exponen-
tial distribution with mean θ . Let Si = ∑i

j=1 Zj , i = 1, . . . , n, and T =
2
∑n−1
i=1 log(Sn/Si). Then (1) T and Sn are independent; (2) T ∼ χ2(2n − 2),

2Sn/θ ∼ χ2(2n).

Let X = (X1, X2, . . . , Xn) be the sample from PHF(α, β) and X(1) < X(2) <
· · · < X(n) be the corresponding order statistics. Then

− log(1 − F(X(j);α, β)) = −β log[1 −G(X(j);α)], j = 1, 2, . . . , n

are the order statistics from the standard exponential distribution.
Let

Sj (α,X) = −
j∑

k=1

log[1 −G(X(k);αi)] − (ni − j) log[1 −G(X(j);αi)],

U(α,X) = 2
n−1∑

j=1

log
Sn(α,X)
Sj (α,X)

, V (α, β,X) = 2βSn(α,X).

Then we have from Lemma 1 that U(α,X), V (α, β,X) are mutually independent,
and that U(α,X) ∼ χ2(2n− 2), V (α, β,X) ∼ χ2(2n).

2.2.1 α1 = α2=̂α Case

In this case, we first construct the pivotal quantities of α, β1 and β2 in order to derive
the generalized pivotal quantities (GPQ) of δ.

Let W(α) = U(α,X1) + U(α,X2). Then W(α) ∼ χ2(2n1 + 2n2 − 4). Notice
that W(α) depends only on the parameter α, thus W(α) is a pivotal quantity. When
W(α) is the strictly monotonic function of α, the equationW(α) = t has the unique
solution for t > 0. This solution is denoted by h1(t,X1,X2). The monotonicity of
W(α) can be verified on a case by case basis. In addition, from Vi = 2βiSni (α,Xi ),
we have βi = Vi/(2Sni (α,Xi )). According to the substitution method given by
Weerahandi [27], the GPQ for δ is given by

Y1 = V1/Sn1(h1(W0,X1,X2),X1)

V1/Sn1(h1(W0,X1,X2),X1)+ V2/Sn2(h1(W0,X1,X2),X2)
, (14)

whereW0 ∼ χ2(2n1 + 2n2 − 4), Vi ∼ χ2(2ni), i = 1, 2.
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If Y1,γ denotes the γ percentile of Y1, then [Y1,γ /2, Y1,1−γ /2] is a 1 − γ GCI for
δ. The percentiles of Y1 can be obtained by the following Monte Carlo algorithm.

Algorithm 1 (The Percentiles for Y1)

(1) For a given data set (n1, n2,X1,X2), generateW0 ∼ χ2(2n1+2n2−4) and Vi ∼
χ2(2ni), i = 1, 2, independently. Using these values, compute h1(W0,X1,X2)

from the equationW(α) = W0.
(2) Compute value of Y1 using the Eq. (14).
(3) Repeat the steps 1-2 B(≥ 10000) times. Then there are the B values of Y1.
(4) Arrange all Y1 values in ascending order: Y1,(1) < Y1,(2) < . . . < Y1,(B). Then

Y1,γ can be estimated by Y1,(Bγ ).

2.2.2 α1 �= α2 Case

In this case, let h2(t,X) be the solution of the equation U(α,X) = t . Using the
substitution method, the GPQ for δ is given by

Y2 =
∫ ∞

0
F(x;h2(W0,1,X1), Y0,1)dF (x;h2(W0,2,X2), Y0,2), (15)

where Y0,i = Vi/(2Sni (h2(W0,i ,Xi ),Xi ), W0,i ∼ χ2(2ni − 2) and Vi ∼
χ2(2ni), i = 1, 2.

If Y2,γ denotes the γ percentile of Y2, then [Y2,γ /2, Y2,1−γ /2] is a 1 − γ GCI
for δ. Similarly, the value Y2,γ can be obtained by Monte Carlo simulation. Some
simulation results show that under some distributions, the coverage probabilities of
the proposed generalized confidence lower limit (GCLL) based on the GPQ (15)
are larger than the nominal coverage probabilities. The following modified GPQ
(MGPQ) is proposed to improve the performance of the GCI for these distributions.
The MGPQ is given by

Y3 = |log[(1 + Y2)/(1 − Y2)] − RZ| , (16)

where RZ = log[(1 + δ̃)/(1 − δ̃)].
If Y3,γ denotes the γ percentile of Y3, then a 1−γ modified GCI for the reliability

δ is given by

[
eRZ−Y3,1−γ − 1

eRZ−Y3,1−γ + 1
,
eRZ+Y3,1−γ − 1

eRZ+Y3,1−γ + 1

]
,

and (eRZ−Y3,1−2γ −1)/(eRZ−Y3,1−2γ +1) is a 1−γ modified GCLL for the reliability
δ. Similarly, the value Y3,γ can be obtained by Monte Carlo simulation.
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Algorithm 2 (The Percentiles for Y2 and Y3)

(1) For a given data set (n1, n2,X1,X2), compute the MLEs α̃i and β̃i , i = 1, 2.
Then compute the value of R̃.

(2) Generate W0,i ∼ χ2(2ni − 2). Then compute h2(W0,i ,Xi ) from the equation
U(αi) = W0,i , i = 1, 2.

(3) Generate Vi ∼ χ2(2ni), i = 1, 2. Then compute Y2 and Y3 on the basis of the
Eqs. (15) and (16).

(4) Repeat the steps (1) and (2) B times. Then there are the B values of Y2 and Y3,
respectively.

(5) Arrange all Yi values in ascending order: Yi,(1) < Yi,(2) < . . . < Yi,(B), i =
2, 3. Then the γ percentile of Yi can be estimated by Yi,(Bγ ).

Remark 2 The proposed procedures can been extended to the proportional reverse
hazards family situation. The details are given as follows.

Let Xi = (Xi,1, Xi,2, . . . , Xi,ni ) be the sample from PRHF(αi, βi), i = 1, 2,
and Xi,(1) < Xi,(2) < · · · < Xi,(ni ), i = 1, 2, be the corresponding order statistics.
Further, let

Sj (αi,Xi ) = −
j∑

k=1

logG(Xi,(ni−k+1);αi)− (ni − j) logG(Xi,(ni−j+1);αi),

U(αi,Xi ) = 2
ni−1∑

j=1

log[Sni (αi,Xi )/Sj (αi,Xi )], Vi = 2βiSni (αi,Xi ), i = 1, 2.

Notice that

Zi = − logF(Xi,(ni−j+1);αi, βi) = −βi logG(Xi,(ni−j+1);αi), j = 1, 2, . . . , ni

are the order statistics from the standard exponential distribution, thus U(αi,Xi )
and Vi are mutually independent, and U(αi,Xi ) ∼ χ2(2ni − 2) and Vi ∼ χ2(2ni).
The remaining steps are the same as those of the PHF stress-strength model.

Remark 3 Similar to the discussion in Wang et al. [21], the proposed procedures
can be extended to the progressively censored samples situation.

Remark 4 The proposed MGPQ has been successfully used in the generalized
exponential distribution situation ([25]).

Example 5 Weibull distributions with the equal or unequal shape parameters.

In the Weibull distribution case, Sj (α,X) = ∑j

k=1X
α
(k)+ (n−j)Xα(j). It is obvi-

ous thatU(α,X) is the strictly increasing function of α and that limα→0+ U(α,X) =
0, limα→∞ U(α,X) = ∞. Thus the equations W(α) = t and U(α,Xi ) = t have
the unique solutions h1(t,X1,X2) and h2(t,Xi ), respectively. Therefore, the GPQs
Y1, Y2 and Y3 can be used to obtain the GCIs for δ.

Tables 1 and 2 report the coverage probabilities and the average lower limits of
the proposed GCLLs for the Weibull stress-strength model with the same or different
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Table 1 The coverage probabilities and the average lower limits (in parentheses) of GCLLs for the
Weibull stress-strength model with the common shape parameter based on the complete samples

(α1, α2, β1, β2) δ (n1, n2) 1 − γ GPQ Y1

(2, 2, 4, 1) 0.8000 (10, 10) 0.90 0.8978 (0.6710)

0.95 0.9476 (0.6295)

(15, 15) 0.90 0.8984 (0.6963)

0.95 0.9498 (0.6638)

(1, 1, 6, 1) 0.8571 (10, 10) 0.90 0.8982 (0.7418)

0.95 0.9460 (0.7030)

(15, 15) 0.90 0.9006 (0.7660)

0.95 0.9492 (0.7364)

(3, 3, 15, 1) 0.9375 (10, 10) 0.90 0.8974 (0.8575)

0.95 0.9466 (0.8279)

(15, 15) 0.90 0.9012 (0.8769)

0.95 0.9506 (0.8555)

Table 2 The coverage probabilities and the average lower limits (in parentheses) of GCLLs for the
Weibull stress-strength model with the unequal shape parameters based on the complete samples

(α1, α2, β1, β2) δ (n1, n2) 1 − γ MGPQ Y3 GPQ Y2

(2, 3, 3, 2) 0.7091 (10, 10) 0.90 0.9014 (0.5455) 0.9336 (0.5367)

0.95 0.9578 (0.4891) 0.9716 (0.4900)

(15, 15) 0.90 0.9006 (0.5773) 0.9232 (0.5713)

0.95 0.9550 (0.5329) 0.9648 (0.5333)

(1, 3, 3, 1) 0.8935 (10, 10) 0.90 0.8914 (0.7698) 0.9378 (0.7456)

0.95 0.9510 (0.7184) 0.9722 (0.6996)

(15, 15) 0.95 0.8894 (0.7978) 0.9266 (0.7820)

0.95 0.9480 (0.7595) 0.9648 (0.7472)

(1, 3, 4, 1) 0.9402 (10, 10) 0.90 0.8982 (0.8382) 0.9420 (0.8130)

0.95 0.9546 (0.7923) 0.9754 (0.7705)

(15, 15) 0.90 0.8902 (0.8636) 0.9334 (0.8476)

0.95 0.9502 (0.8308) 0.9672 (0.8169)

shape parameters when the nominal levels are 0.9, 0.95. All simulation results are
based on 5000 replications with B = 10, 000.

It is observed from Table 1 that the coverage percentages of the proposed GCLL
based on the GPQ Y1 are quite close to the nominal coverage probabilities, even
for small sample sizes in the common parameter case. The simulation results in
Table 2 show that when the shape parameters are unequal, the coverage percentages
of the proposed GCLL based on the MGPQ Y3 are quite close to the nominal
coverage probabilities, even for small sample sizes, but the coverage percentages
of the proposed GCLL based on the GPQ Y2 are larger than the nominal coverage
probabilities. These findings show that the proposed GPQs Y1 and Y3 work well
for the Weibull stress-strength model with the equal and unequal parameters,
respectively.
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Table 3 The coverage probabilities and the average lower limits (in parentheses) of GCLLs for
the Kumaraswamy stress-strength model with the equal α1 and α2 based on the complete samples

(α1, α2, β1, β2) δ (n1, n2) 1 − γ GPQ Y1

(1, 1, 3, 1) 0.7500 (10, 10) 0.90 0.9034 (0.6165)

0.95 0.9490 (0.5749)

(15, 15) 0.90 0.9030 (0.6416)

0.95 0.9522 (0.6087)

(1, 1, 5, 1) 0.8333 (10, 10) 0.90 0.9010 (0.7161)

0.95 0.9510 (0.6772)

(15, 15) 0.90 0.9034 (0.7400)

0.95 0.9510 (0.7101)

(1, 1, 10, 1) 0.9091 (10, 10) 0.90 0.9004 (0.8186)

0.95 0.9518 (0.7862)

(15, 15) 0.90 0.9028 (0.8391)

0.95 0.9502 (0.8152)

Table 4 The coverage probabilities and the average lower limits (in parentheses) of GCLLs for the
Kumaraswamy stress-strength model with the unequal α1 and α2 based on the complete samples

(α1, α2, β1, β2) δ (n1, n2) 1 − γ MGPQ Y3 GPQ Y2

(3, 2, 5, 1) 0.7215 (10, 10) 0.90 0.8928 (0.5697) 0.9206 (0.5616)

0.95 0.9496 (0.5134) 0.9616 (0.5145)

(15, 15) 0.90 0.8938 (0.5961) 0.9134 (0.5912)

0.95 0.9544 (0.5520) 0.9622 (0.5533)

(3, 4, 3, 1) 0.8220 (10, 10) 0.90 0.8996 (0.6837) 0.9326 (0.6653)

0.95 0.9560 (0.6294) 0.9710 (0.6181)

(15, 15) 0.95 0.9008 (0.7104) 0.9304 (0.6984)

0.95 0.9552 (0.6689) 0.9680 (0.6617)

(2, 5, 4, 2) 0.9227 (10, 10) 0.90 0.9012 (0.8171) 0.9418 (0.7941)

0.95 0.9592 (0.7706) 0.9776 (0.7518)

(15, 15) 0.90 0.9002 (0.8414) 0.9338 (0.8267)

0.95 0.9566 (0.8077) 0.9732 (0.7958)

Example 6 Kumaraswamy distributions with the equal or unequal α1, α2.

When the stress and strength variables follow the Kumaraswamy distributions,
Sj (α,X) = ∑j

k=1 log(1 −Xα(k))+ (n− j) log(1 −Xα(j)). It is obvious that U(α,X)
is the strictly increasing function of α and that lim

α→0+U(α,X) = 0, lim
α→∞U(α,X) =

∞. Thus the equations W(α) = t and U(α,Xi ) = t have the unique solutions
h1(t,X1,X2) and h2(t,Xi ), respectively. Therefore, the GPQs Y1, Y2 and Y3 can be
used to obtain the GCIs for δ.

Tables 3 and 4 report the coverage probabilities and the average lower limits of
the proposed GCLLs for the Kumaraswamy stress-strength model with the equal or
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unequal α1 and α2 when the nominal levels are 0.9, 0.95. All simulation results are
based on 5000 replications with B = 10, 000.

The simulation results show that similar to the Weibull stress-strength model
case, the GPQ Y1 works well when α1 = α2, while the MGPQ Y3 works well under
α1 �= α2 for the Kumaraswamy stress-strength model.

3 Inference for the Stress-Strength Model Based on Record
Values

Let {Zn, n = 1, 2, . . . } be a sequence of independent and identical copies of Z. An
observation Zj is called an upper (lower) record value if its value exceeds (is less
than) all previous observations. This means Zj is an upper (lower) record value if
Zj > (<)Zi for all i < j . Based on this fact, the record time sequence {Tn, n ≥ 1} is
defined as: T1 = 1 and Tn = min{j : Zj > (<)ZTn−1} for n ≥ 2. The subsequence
{Rn = ZTn, n = 1, 2, . . . } is then the sequence of upper (lower) record values from
the original sequence {Zn, n = 1, 2, . . . }.

Let Ri = (Ri,1, Ri,2, . . . , Ri,ni ) be the upper record values from the PHF(αi, βi).
From Arnold et al. [2], the likelihood function based on the upper record values is
given by

Li(αi, βi) = βig(ri,ni ;αi)[1 −G(ri,ni ;αi)]βi−1
ni−1∏

j=1

βig(ri,j ;αi)[1 −G(ri,j ;αi)]βi−1

[1 −G(ri,j ;αi)]βi

= β
ni
i

[1 −G(ri,ni ;αi)]βi
ni∏

j=1

λ(ri,j ;αi),

where λ(x;α) = g(x;α)/[1−G(x;α)] is the failure rate function of the distribution
G(x;α).

3.1 Maximum Likelihood Estimation

3.1.1 α1 = α2=̂α

Notice that in this case, the likelihood function is given by

L(α, β1, β2) = L1(α, β1) · L2(α, β2),
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thus the MLEs α̂, β̂1, β̂2 of α, β1, β2 can be obtained from the following equations:

2∑

i=1

⎧
⎨

⎩

ni∑

j=1

1

λi,j

∂λi,j

∂α
+ ni

(1 −Gi,ni ) log(1 −Gi,ni )
∂Gi,ni

∂α

⎫
⎬

⎭ = 0, (17)

β1 = − n1

log(1 −G1,n1)
, β2 = − n2

log(1 −G2,n2)
,

where λi,j = λ(ri,j ;α), Gi,ni = G(ri,ni ;α). Hence, the MLE of δ is given by

δ̂ = n1/ log[1 −G(r1,n1; α̂)]
n1/ log[1 −G(r1,n1; α̂)] + n2/ log[1 −G(r2,n2; α̂)]

,

where α̂ is the solution of the Eq. (17).

3.1.2 α1 �= α2 Case

In this case, the MLEs α̃i , β̃i of αi, βi are given by

ni∑

j=1

1

λi,j

∂λi,j

∂αi
+ ni

(1 −Gi,ni ) log(1 −Gi,ni )
∂Gi,ni

∂αi
= 0, (18)

βi = − ni

log[1 −G(ri,ni ;αi)]
, i = 1, 2. (19)

Thus the MLE of δ is given by

δ̃ =
∫ ∞

0
F(x; α̃1, β̃1)dF (x; α̃2, β̃2).

3.2 Interval Estimation

In order to derive the GCIs for δ, the following lemma is needed.

Lemma 2 LetR1, R2, . . . , Rn be n upper record values observed from the standard
exponential distribution, then R1, R2 − R1, . . . , Rn − Rn−1 are i.i.d. the standard
exponential variables.

Notice that Ri,1, Ri,2, . . . , Ri,ni are the upper record values from the
PHF(αi, βi), then we have that − log[1 − F(Ri,j ;αi, βi)], j = 1, 2, . . . , ni are
the upper record values from the standard exponential distribution. Using Lemma 2,
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we have that Zi,1 = − log[1−G(Ri,1;αi)], Zi,j = log[1−G(Ri,j−1;αi)]−log[1−
G(Ri,j ;αi)], j = 2, 3, . . . , ni are i.i.d. the exponential variables with mean 1/βi .

Since Sj (αi,Ri ) = Zi,1 + Zi,2 + · · · + Zi,j = − log[1 −G(Ri,j ;αi)], we have

from Lemma 1 that U(αi,Ri ) = 2
∑ni−1
j=1 log(Sni (αi,Ri )/Sj (αi,Ri )) and Vi =

2βiSni (αi,Ri ) are mutually independent, and that U(αi,Ri ) ∼ χ2(2ni − 2), Vi ∼
χ2(2ni). Here, we assume that U(αi; Ri ) is the strictly monotonic function of αi .

Let h3(t,R1,R2) is the solution of the equationU(α; R1)+U(α; R2) = t . When
α1 = α2=̂α, along the same line as the derivation of Y1, the GPQ for δ is given by

Y4 = P1

P1 + P2
,

whereW0 ∼ χ2(2n1 + 2n2 − 4), Pi = Vi/ log[1 −G(Ri,ni ;h3(W0,R1,R2))].
When α1 �= α2, the GPQ for δ is given by

Y5 =
∫ ∞

0
F(x;h4(W0,1,R1),Q1/2)dF (x;h4(W0,2,R2),Q2/2),

where W0,i ∼ χ2(2ni − 1), Qi = −Vi/ log[1 − G(Ri,ni ;h4(W0,i ,Ri ))] and
h4(W0,i ,Ri ) is the solution of the equation U(αi; Ri ) = W0,i . Similarly, if the
performance of Y5 is not satisfactory under some distributions, the MGPQ can be
used to improve the performance of the GCI for these distributions. The percentiles
of the GPQs Y4 and Y5 can also be obtained by the Monte Carlo algorithms. These
algorithms are similar to those in the complete samples situation.

Remark 5 Similar to the complete samples case, the proposed procedures in this
section can also be extended to the PRHF situation, as follows.

Let Ri = (Ri,1, Ri,2, . . . , Ri,ni ) be the lower record values from the
PRHF(αi, βi). Notice that F(Ri,1;αi, βi), F (Ri,2;αi, βi), . . . , F (Ri,ni ;αi, βi)
be the lower record values from the standard uniform distribution, we have
from Lemma 1 in Wang et al. [23] that Zi,1 = − logG(Ri,1;αi), Zi,j =
logG(Ri,j−1;αi) − logG(Ri,j ;αi), j = 2, 3, . . . , ni are i.i.d. the exponential
random variables with mean 1/βi .

Let

Sj (αi,Ri ) = Zi,1 + Zi,1 + · · · + Zi,j = − logG(Ri,j ;αi),

U(αi,Ri ) = 2
ni−1∑

j=1

log(Sni (αi,Ri )/Sj (αi,Ri )).

Then U(αi,Ri ) and Vi = 2βiSni (αi,Ri ) are mutually independent, and
U(αi,Ri ) ∼ χ2(2ni − 2), Vi ∼ χ2(2ni). The rest of steps is the same as the
PHF stress-strength model based on upper record values.
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Example 7 Weibull distributions with the equal or unequal shape parameters.
Notice that for the Weibull distribution, G(x;α) = 1 − e−xα and λ(x;α) =

αxα−1, then when α1 = α2=̂α, the MLEs α̂, β̂1, β̂2 of α, β1, β2 are given by

α̂ = n1 + n2
∑2
i=1

∑ni−1
j=1 log(Ri,ni /Ri,j )

, β̂1 = n1

Rα̂1,n1

, β̂2 = n2

Rα̂2,n2

,

respectively. Hence, the MLE of δ is given by

δ̂ = n1/R
α̂
1,n1

n1/R
α̂
1,n1

+ n2/R
α̂
2,n2

.

When α1 �= α2, the MLEs α̃i , β̃i of αi, βi are given by

α̃i = ni
∑ni−1
j=1 log(Ri,ni /Ri,j )

, β̃i = ni

R
α̃i
i,ni

, i = 1, 2,

respectively. Therefore, the MLE of δ is given by

δ̃ = 1 − β̃2

∫ ∞

0
exp(−β̃1x

α̃1/α̃2 − β̃2x)dx.

We now discuss the GCIs for the reliability δ. For the Weibull distribution,
U(αi,Ri ) = 2αi

∑ni−1
j=1 log(Ri,ni /Ri,j ), Vi = 2βiR

αi
i,ni

. Hence when α1 = α2=̂α,
the GPQ for δ is given by

Y4 = V1/R
T
1,n1

V1/R
T
1,n1

+ V2/R
T
2,n2

,

where T = W0/[2∑2
i=1

∑ni−1
j=1 log(Ri,ni /Ri,j )].

When α1 �= α2, the GPQ for δ is given by

Y5 = 1 − V2

R
T2
2,n2

∫ ∞

0
exp

(
− V1

R
T1
1,n1

xT1/T2 − V2

R
T2
2,n2

x

)
dx,

where Ti = W0,i/[2∑ni−1
j=1 log(Ri,ni /Ri,j )]. Hence, the GPQs Y4 and Y5 can be

used to obtain the GCIs for δ. The more details were shown in Wang and Ye [22].

Example 8 Generalized exponential distributions with the equal or unequal scale
parameters.
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Suppose that Xi follows the generalized exponential distribution GED(αi, βi). Its
CDF is given by

F(x;αi, βi) = (1 − e−αix)βi , x > 0,

where αi(> 0), βi(> 0) are the scale and shape parameters, respectively.

Let Ri,1, Ri,2, . . . , Ri,ni be the lower record values from the generalized expo-
nential distribution GED(αi, βi). Then the likelihood function is given by

L(α1, α2, β1, β2) =
2∏

i=1

⎡

⎣f (Ri,ni )
ni−1∏

j=1

f (Ri,j )

F (Ri,j )

⎤

⎦

=
2∏

i=1

α
ni
i β

ni
i e

−αi∑ni
j=1 Ri,j (1 − e−αiRi,ni )/

ni∏

j=1

(1 − e−αiRi,j ).

Therefore, when α1 = α2=̂α, the MLEs α̂, β̂1, β̂2 of the parameters α, β1, β2 are
given by the following equations:

1

α
− 1

n1 + n2

2∑

i=1

⎡

⎣ Ri,ni e
−αRi,ni

(1 − e−αRi,ni ) log(1 − e−αRi,ni ) +
ni∑

j=1

Ri,j

1 − e−αRi,j

⎤

⎦ = 0, (20)

β1 = − n1

log(1 − e−αR1,n1 )
, β2 = − n2

log(1 − e−αR2,n2 )
,

respectively. Thus the MLE of δ is given by

δ̂ = n2/ log(1 − e−α̂R2,n2 )

n1/ log(1 − e−α̂R1,n1 )+ n2/ log(1 − e−α̂R2,n2 )
,

where δ̂ is the solution of the Eq. (20).
When α1 �= α2, the MLEs α̃i , β̃i of the parameters αi, βi are given by the

following equations:

1

αi
− 1

ni

⎡

⎣ Ri,ni e
−αiRi,ni

(1 − e−αRi,ni ) log(1 − e−αiRi,ni ) +
ni∑

j=1

Ri,j

1 − e−αiRi,j

⎤

⎦ = 0,

βi = − ni

log(1 − e−αiRi,ni ) , i = 1, 2,
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respectively. Therefore the MLE of δ is given by

δ̃ = α̃2β̃2

∫ ∞

0
e−α̃2x(1 − e−α̃2x)β̃2−1(1 − e−α̃1x)β̃1dx.

Notice that for the generalized exponential distribution,G(x;α) = 1−e−αx, x >
0, then Sj (αi,Ri ) = − log[1 − exp(−αiRi,ni )]. We have from Lemma 2 in Wang et
al. [25] that

U(αi,Ri ) = 2
ni−1∑

j=1

log
log[1 − exp(−αiRi,ni )]
log[1 − exp(−αiRi,j )]

is the strictly increasing function of αi . In addition, It is easy to verify the following
results:

lim
αi→0+U(αi,Ri ) = 0, lim

αi→∞U(αi,Ri ) = ∞.

Therefore, the equations U(α1,R1)+U(α2,R2) = W0 and U(αi,Ri ) = W0,i have
the unique solutions, respectively. Hence, the GPQs Y4 and Y5 can be used to obtain
the GCIs for δ.

Table 5 reports the coverage probabilities and the average lower limits of the
proposed GCLLs for the generalized exponential stress-strength model with the
equal or unequal α1 and α2 when the nominal levels are 0.9, 0.95. All simulation
results are based on 5000 replications with B = 10, 000. The simulation results
show that the GPQs Y4 and Y5 work well for α1 = α2 and α1 �= α2, respectively.

Table 5 The coverage probabilities and the average lower limits (in parentheses) of GCLLs for
the generalized exponential stress-strength model based on the lower record values

(α1, α2, β1, β2) δ (n1, n2) 1 − γ GPQ Y4 or Y5

(1, 1, 1, 2) 0.6667 (10, 10) 0.90 0.9014 (0.5265)

0.95 0.9500 (0.4853)

(1, 1, 1, 4) 0.8000 (10, 10) 0.90 0.9020 (0.6749)

0.95 0.9488 (0.6357)

(1, 1, 1, 10) 0.9091 (10, 10) 0.90 0.8972 (0.8203)

0.95 0.9486 (0.7889)

(3, 2, 2, 3) 0.7452 (10, 10) 0.90 0.9114 (0.3041)

0.95 0.9548 (0.2067)

(2, 1, 2, 3) 0.8286 (10, 10) 0.90 0.9116 (0.3690)

0.95 0.9560 (0.2585)

(2, 1, 2, 5) 0.9127 (10, 10) 0.90 0.9110 (0.4526)

0.95 0.9558 (0.3246)
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4 Conclusion

The proportional hazards family and the proportional reverse hazards family include
many commonly-used distributions, such as the Weibull distribution, the Gompertz
distribution, the Kumaraswamy distribution and the generalized exponential distri-
bution, etc. In this chapter, we have systematically explored statistical inference
procedures for the proportional hazards family and proportional reverse hazards
family stress-strength models based the complete samples or the record values. In
complete samples case, the maximum likelihood estimators for the stress-strength
reliability δ with the common or different parameters α1 and α2 were derived. To
construct confidence intervals for δ, the method of generalized pivotal quantities was
used. The simulation results validated the satisfactory performance of the proposed
GPQs Y1 and Y3.

We then developed the inference procedures for the stress-strength model when
the samples are the record values. we derived the maximum likelihood estimators
and GCIs for δ with the common or different parameters α1 and α2. The good
performance of the generalized confidence intervals based on the GPQs Y4 and Y5
was verified.
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A Degradation Model Based
on the Wiener Process Assuming
Non-Normal Distributed Measurement
Errors

Yan Shen, Li-Juan Shen, and Wang-Tu Xu

Abstract For highly reliable products whose failure times are scarce, tradi-
tional methods for lifetime time analysis are no longer effective and efficient.
Instead, degradation data analysis that investigates degradation processes of prod-
ucts becomes a useful tool in evaluating reliability. It focuses on the inherent
randomness of products, and investigates the lifetime properties by developing
degradation models and extrapolating to lifetime variables. But degradation data
are often subject to measurement errors, which may have tails and better be
described by non-normal distribution. In this chapter, we consider a Wiener-
based model and assume logistic distributed measurement errors. For parameter
estimation of the model, the Monte-Carlo expectation-maximization method is
adopted together with the Gibbs sampling. Also an efficient algorithm is proposed
for a quick approximation of maximum likelihood value. Moreover the remaining
useful lifetime is estimated and discussed. From the simulation results, we find that
the proposed model is more robust than the model based on the Wiener process
assuming normal-distributed errors. Finally, an example is given to illustrate the
application of the proposed model.
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1 Introduction

For highly reliable products, sufficient failure data are usually difficult to obtain
during a relatively short time period of lifetime testing even if an accelerated
lifetime test is adopted. The scarcity of failure data challenges the traditional
methods for lifetime time analysis, and at the same time booms the development of
degradation data analysis. It is found that most products degrade over time, and their
measurable physical deterioration almost always precedes failure, for example, the
loss of strength for bridge beams, the increase of vibration amplitude for bearings,
the outdoor weathering of coating systems [1–4], etc. Therefore, instead of the
traditional lifetime data analysis that studies the exact failure times, the degradation
data analysis provides a microscopic point of view in understanding the inherent
degradation processes of products and thus their failure mechanisms [5].

Degradation is usually modeled by a stochastic process [6]. Among the degra-
dation models, the Weiner process with a positive drift rate is the most favorite one
because of its mathematical properties and physical interpretations. Suppose that
the degradation of a product {X(t), t ≥ 0} is governed by the following Wiener
process [7]

X(t) = μΛ(t)+ σB(Λ(t)), t ≥ 0, (1)

where μ is the drift rate with μ > 0, σ is the diffusion coefficient, B(t) is a
standard Brownian motion, and Λ(t) is a monotonic increasing function used to
transform time scale. For continence, we often assume Λ(0) = 0. This process has
extensive applications in modeling degradation data of various products. Whitmore
and Schenkelberg [7] used it to describe resistance increase of a self-regulating
heating cable. Hu et al. [8] considered the Wiener process as a suitable model for
light intensity of a light-emitting diode (LED). Zhai and Ye [9] proposed an adaptive
Wiener process model to predict residual useful life of lithium-ion batteries. Wang
et al. [10] proposed a general degradation model based on the Wiener process, which
has several Wiener-based models as its limiting cases.

In practice, degradation data are often noisy as the measurements of degradation
can be affected by imperfect inspections, which include imperfect instruments,
procedures and environments. These imperfect inspections bring extra variation to
the real degradation process, which is referred to ‘measurement error’. Thus it is
necessary to take the measurements errors into account when developing degra-
dation models. Whitmore [11] studied the Weiner process subject to measurement
errors and described the related inference procedures. By allowing the drift rate to be
a random variable, Ye et al. [12] proposed a random effects model with measurement
errors based on the Wiener process. Tang et al. [13] also considered the Wiener
process assuming the existence of measurement errors and applied the model in
the prediction of residual useful life for lithium-ion battery. Recently, Li et al. [14]
concerned a more general Wiener-based degradation model with two transformed
time scales and measurement errors and studied its performances in detail. Zhai and
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Ye [15] proposed a robust model for degradation analysis also based on the Wiener
process but assuming t-distributed measurement errors.

In the above works except [15], the measurement errors are almost all assumed
to follow a normal or a truncated-normal distribution. The normality assumption
is common in most statistical models, as the measurement errors are usually
expected to be the sum of many independent processes and often considered to
have distributions that are nearly normal according to the large sample theory.
However, some fatal errors may be also introduced during the observation process,
which would significantly alter the behavior of degradation observations. Figure 1
depicts the capacity loss of lithium-ion Battery #6 with repeated charge-discharge
cycles, based on the data set provided by [16]. From the figure, several large jumps
are observed, and the data set shows that there were obvious time delays when
measuring those dropped data points. These extraordinary measurements can be
considered to have brought in large errors to degradation data, which may not be
captured by the normal distribution that has low probabilities in large values. In this
case, a distribution with relatively heavy tails may be expected for describing the
measurement errors.

In this work, we consider the Weiner process with logistic distributed mea-
surement errors in the modelling of degradation data. The error assumption is
enlightened by Friedman [17], which claimed that the logistic distribution could
approximate a normal distribution for small values while an exponential distribution
for large values in each of two tails. The excess kurtosis of the logistic distribution
is 1.2, which implies its relatively heavier tails than the normal distribution. Due
to the complicated likelihood function of the proposed model, the Monte Carlo
expectation-maximization (MCEM) algorithm together with the Gibbs sampling is
used to obtain the maximum likelihood estimates (MLE) of the model parameters.
To quickly approximate the likelihood value at the MLE, an algorithm is developed
at the same time. Moreover, the estimation of remaining useful lifetime (RUL)

Fig. 1 The capacity loss of
Battery #6 with operational
cycle
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is discussed. Monte Carlo experiments show that with non-normal measurement
errors, the proposed model could give better performances in estimating both the
real degradation process and the RUL.

This chapter is organized as follows. Section 2 describes the degradation model.
Section 3 presents the detailed MCEM algorithms for parameter estimation as well
as the developed algorithm for the approximation of maximum likelihood value.
The sequent estimation of the RUL is discussed in Sect. 4. Section 5 presents Monte
Carlo simulations and the results. Section 6 presents an illustrative example, and
Sect. 7 concludes the chapter.

2 The Degradation Model

Suppose that the true degradation for a product can be modelled by the Wiener
process {X(t), t ≥ 0} given by (1), which is however not directly observable. When
a measurement is taken at time t , only the observation Y (t) is obtained, which
involves a measurement error εt subject to a logistic distribution with zero mean.
Then the observed degradation process we concern is

Y (t) = X(t)+ εt , t ≥ 0, (2)

where the measurement errors εt ’s are independent and identically distributed (i.i.d.)
and independent of X(t). The εt ’s are assumed to follow a logistic distribution with
location parameter 0 and scale parameter s, Logistic(0, s). The probability density
function (PDF) and some useful properties are, respectively,

fεt (ε) = e−ε/s

s(1 + e−ε/s)2 , −∞ < ε <∞,

E(εt ) = 0, Var(εt ) = s2π2/3, and the mode of the PDF is 0.
Suppose that the process is measured at n ordered inspection times t =

(t1, . . . , tn)
′. The observed degradations are Y = (Y1, . . . , Yn)

′, and the associated
unobservable true degradations are X = (X1, . . . , Xn)

′, where Yi = Xi + εi . Since
the Wiener process has independent and stationary increments that are normally
distributed, we have for complete data {Y,X},

Yi −Xi ∼ Logistic(0, s),

*Xi = Xi −Xi−1 ∼ N(μλi, σ 2λi), (3)

Cov(*Xi,*Xj ) = 0, i �= j,

where Λi = Λ(ti), Λ0 = 0 and λi = Λi − Λi−1, i = 1, . . . , n, j = 1, . . . , n.
Note that the distribution of Y (t) involves integration over either X(t) or εt , thus
direct maximum likelihood estimation based on the observations Y = (Y1, . . . , Yn)

′
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is analytically infeasible and the maximum likelihood estimator cannot be obtained
directly. As an alternative method, the expectation-maximization (EM) algorithm
can be used for parameter estimation. To do this, some density functions between Y
and X are needed.

Denote by x = (x1, . . . , xn)
′ and y = (y1, . . . , yn)

′ realizations of X and Y,
and by (λ1, . . . , λn)

′ the scaled time intervals obtained from the observed times
t = (t1, . . . , tn)′. Also let θ = (μ, σ, s)′. The joint density function for (X,Y) given
the parameters θ is

pX,Y|θ (x, y|θ)

= (2πσ 2)−
n
2

n∏

i=1

λ
− 1

2
i exp

{
− (xi − xi−1 − μλi)2

2σ 2λi

}
e−(yi−xi )/s

s
(
1 + e−(yi−xi )/s)2

, (4)

where −∞ < xi <∞, −∞ < yi <∞, i = 1, . . . , n.
According to the Bayesian theorem, we can obtain the conditional density

function of the true degradations X = (X1, . . . , Xn)
′ given the observations Y =

(Y1, . . . , Yn)
′ based on (4),

pX|Y,θ (x|y, θ) = C
n∏

i

exp

{
− (xi − xi−1 − μλi)2

2σ 2λi

}
e−(yi−xi )/s

(
1 + e−(yi−xi )/s)2 , (5)

where C is the normalisation constant that enables pX|Y,θ (x|y, θ) to be a density
function. The value of C can be computed by

1/C =
∫ ∞

−∞
· · ·

∫ ∞

−∞

n∏

i

exp

{
− (xi − xi−1 − μλi)2

2σ 2λi

}
e−(yi−xi )/s

(
1 + e−(yi−xi )/s)2

dx1 · · · dxn.

Furthermore, the marginal conditional density function for eachXi of X given the
other Xj ’s, denoted by X(i) = (X1, . . . , Xi−1, Xi+1, . . . , Xn), is expressed as

• for i = 1, 2, . . . , n− 1,

p
Xi |X(i),Y,θ (xi |x(i), y, θ)

= Ci exp

{
− (xi − xi−1 − μλi)2

2σ 2λi
− (xi+1 − xi − μλi+1)

2

2σ 2λi+1

}
e−(yi−xi )/s

(
1 + e−(yi−xi )/s)2 ,

(6)

• for i = n,

p
Xn|X(n),Y,θ (xn|x(n), y, θ) = Cn exp

{
− (xn − xn−1 − μλn)2

2σ 2λn

}
e−(yn−xn)/s

(
1 + e−(yn−xn)/s)2

,

(7)

where x0 = 0, and all Ci’s are normalisation constants for the marginal densities.
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3 Algorithms for Parameter Estimation

3.1 Parameter Estimation Based on the EM Algorithm

Suppose that there are observed degradation data from m units, and for the lth unit,
we have observations yl = (yl,1, . . . , yl,nl )′ measured at times tl = (tl,1, . . . , tl,nl )′,
l = 1, . . . , m. Further assume that the unobservable true degradations at times tl are
xl = (xl,1, . . . , xl,nl )

′, l = 1, . . . , m. Also for the lth unit, the transformed time is
Λl,i = Λl(ti) and λl,i = Λl,i − Λl,i−1. For convenience, the drift rate parameters
for different units are assumed homogeneous.

Based on the complete data (yl , xl )’s of all m units, the complete-data log-
likelihood function of θ = (μ, σ, s)′ is given by

�(θ |y1, . . . , ym, x1, . . . , xm) =
m∑

l=1

pX,Y|θ (xl , yl |θ)

= −
∑m
l=1 nl

2
ln(2π)−

∑m
l=1 nl

2
ln σ 2 − 1

2

m∑

l=1

nl∑

i=1

ln λl,i −
m∑

l=1

nl∑

i=1

(xl,i − xl,i−1 − μλl,i )2
2σ 2λl,i

−1

s

m∑

l=1

nl∑

i=1

(yl,i − xl,i )−
(
m∑

l=1

nl

)
ln s − 2

m∑

l=1

nl∑

i=1

ln(1 + e−(yl,i−xl,i )/s ). (8)

Because the observation data include only yl and tl but not xl , the complete-data
log-likelihood cannot be used directly for parameter estimation. Thus instead we
consider the expected value under the posterior distribution of the unobservable
variable Xl , which corresponds to the E step of the EM algorithm. Given the
current parameter values θold, the expectation of

∑m
l=1 pX,Y|θ (xl , yl |θ), denoted

by Q(θ, θold), is given by

Q(θ, θold) = −
∑m
l=1 nl

2
ln(2π)−

∑m
l=1 nl

2
ln σ 2 − 1

2

m∑

l=1

nl∑

i=1

ln λl,i

−
m∑

l=1

nl∑

i=1

EXl
[(Xl,i −Xl,i−1 − μλl,i)2|yl , θold]

2σ 2λl,i

−1

s

m∑

l=1

nl∑

i=1

(yl,i − EXl
[Xl,i |yl , θold])−

(
m∑

l=1

nl

)
ln s

−2
m∑

l=1

nl∑

i=1

EXl

[
ln(1 + e−(yl,i−Xl,i )/s)|yl , θold

]
. (9)
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In the M step, we determine the revised parameter estimate θnew by maximizing the
above function

θnew = arg max
θ

Q(θ, θold),

provided that those expectations in (9) are given.
In our model, the standard EM algorithm cannot be applied, because the

conditional PDF for Xl given by (5) implies that the explicit expressions of the
expectation quantities in (9) are difficult if not impossible to obtain. Alternative
methods are thus desired. In this chapter, we adopt Gibbs sampling together with
rejection method for estimating the expectations, which is described in detail in
next subsection.

Provided that the expectations in (9) can be given in some way, the estimation
procedure based on the EM algorithm is summarized as follows.

1. Choose an initial setting for the unknown parameters θold;
2. E step. With θold, estimate the conditional expectations related to Xl’s;
3. M step. Re-estimate the parameters using

μnew =
∑m
l=1 ÊXl

[Xl,nl |yl , θold]
∑m
l=1Λl,nl

, (10)

σ 2new =
∑m
l=1

∑nl
i=1 ÊXl

[(Xl,i −Xl,i−1 − μnewλl,i)
2|yl , θold]/λl,i

∑m
l=1 nl

, (11)

and snew solves the following equation

m∑

l=1

nl∑

i=1

(yl,i − EXl
[Xl,i |yl , θold])− s

m∑

l=1

nl − 2
m∑

l=1

nl∑

i=1

EXl

[
yl,i −Xl,i

1 + e(yl,i−Xl,i )/s |yl , θ
old
]
= 0;
(12)

4. Check for convergence of either the log-likelihood or the parameter values. If the
convergence criterion is not satisfied, then let θold ← θnew, and return to step 2.

Based on the above procedure, the obtained estimate for θ , denoted by θ̂ , is the
MLE.

If the transformed time scale Λ(t) also contains parameters, the vector θ can be
rewritten to include them. And the M step in the EM algorithm should be modified
so as to involve the estimation of the parameters in Λ(t), which will further affect
μnew and σ 2new

. For example, if we consider Λ(t) = tb, then the parameter vector
is reset as θ = (μ, σ, b, s)′. The M step can be revised in the following way.
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3. M step. Denote

μ(b) =
∑m
l=1 ÊXl

[Xl,nl |yl , θold]
∑m
l=1Λl,nl

,

σ 2(b) =
∑m
l=1

∑nl
i=1 ÊXl

[(Xl,i −Xl,i−1 − μ(b)λl,i)2|yl , θold]/λl,i
∑m
l=1 nl

.

Firstly calculate bnew = arg
b

max{−∑m
l=1 nl ln σ 2(b) − ∑m

l=1
∑nl
i=1 ln λl,i}.

Secondly re-estimate the parameters using μnew = μ(bnew), σ 2new = σ 2(bnew).
And snew solves the same equation as (12).

Note that (i) both Λl,nl and λl,nl are functions of the parameter b; (ii) they are in
fact the second and third terms of Q(θ, θold) used in the M step for getting bnew.

3.2 The Gibbs Sampling Algorithm and the MCEM Method

Gibbs sampling, which is a special Monte Carlo Markov Chain (MCMC) algorithm,
generates random vectors from the marginal conditional PDF of each element. This
means that enough sample data for the unobservable variable Xl could be generated
according to p

Xi |X(i),Y,θ (i = 1, . . . , nl) given by (6) and (7), which are then used
for the estimation of the conditional expectations required in the EM algorithm. This
type of method combining the Gibbs sampling and the EM algorithm is the so-called
MCEM method [18].

Next we present the Gibbs sampling procedure in detail. For convenience, the
case of only one unit is considered, while the case of m units can be dealt with
similarly and separately. The subscript l is omitted for abbreviation. Denote the
generated vector at the qth step for X = (X1, . . . , Xn)

′ by Zq = (Z
q

1 , . . . , Z
q
n)

′,
the generated values for Zq by zq = (z

q

1 , . . . , z
q
n)

′, and the observations of Y (t) by
y = (y1, . . . , yn)

′. The procedure of the Gibbs sampling given the parameter θ is as
follows,

Step 0 Set an initial vector z0 = (z0
1, . . . , z

0
n)

′;
Step 1 Given z0, generate a new vector z1 = (z1

1, . . . , z
1
n)

′ by

1. Generate the value z1
1 based on its marginal PDF

p
X1|X(1),Y,θ (z1|z0

2, . . . , z
0
n, y, θ);

2. Generate the value z1
i based on its marginal PDF

p
Xi |X(i),Y,θ (zi |z1

1, . . . , z
1
i−1, z

0
i+1, . . . , z

0
n, y, θ), 2 ≤ i ≤ n− 1;

3. Generate the value z1
n based on its PDF p

Xn|X(n),Y,θ (zn|z1
1, . . . , z

1
n−1, y, θ);
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Step q Given zq−1, generate a new vector zq = (zq1 , . . . , zqn)′ by

1. Generate the value zq1 based on p
X1|X(1),Y,θ (z1|zq−1

2 , . . . , z
q−1
n , y, θ);

2. Generate the value zqi based on p
Xi |X(i),Y,θ (zi |z

q

1 ,. . ., z
q

i−1, z
q−1
i+1 ,. . ., z

q−1
n ,

y, θ), 2 ≤ i ≤ n− 1;
3. Generate the value zqn based on p

Xn|X(n),Y,θ (zn|z
q

1 , . . . , z
q

n−1, y, θ).

At each step q, the Gibbs algorithm produces the elements of the vector Zq =
(Z
q

1 , . . . , Z
q
n)

′ successively by utilizing Zq−1 obtained in previous step and the
Z
q
i ’s already updated in step q. Since {Zq, q ∈ N} is actually a Markov chain,

the stationary property of an ergodic Markov chain ensures that Zq could be a good
approximation of X = (X1, . . . , Xn) for enough large value of q, i.e. after enough
number of iterations in the Gibbs sampling procedure.

Rejection Method
The main difficulty in the above sampling procedure is to generate each zqi according
to the marginal conditional PDF p

Xi |X(i),Y,θ in (6) or (7), which includes a
normalization constant Ci that is difficult to work out. A feasible approach that
exempts from calculating the constant is the Rejection method [19], which does not
require the exact expression of the PDF p

Xi |X(i),Y,θ , only some p̃ ∝ p and a bound

on p̃/g,where g is a known PDF.
Fortunately, the marginal conditional PDF p

Xi |X(i),Y,θ (i = 1, . . . , n) has two
upper bounds given by the product of a constant and a normal PDF. We firstly
consider the more general case for Xi , i = 1, . . . , n − 1. Since 1 + exp{−(yi −
xi)/s} > 1, the PDF for Xi (i = 1, . . . , n− 1) in (6) can be bounded by

p
Xi |X(i),Y,θ (xi |x(i), y, θ)

≤ Ci exp

{
− (xi − xi−1 − μλi)2

2σ 2λi
− (xi+1 − xi − μλi+1)

2

2σ 2λi+1
− yi − xi

s

}

= Ci ∗M1φ(xi; u1, δ
2
1), (13)

where φ(·) is the PDF of a normal distribution with mean u1 =
xi−1λi+1s+xi+1λis+σ 2λiλi+1

(λi+λi+1)s
and variance δ2

1 = σ 2 λiλi+1
λi+λi+1

, and M1 = √
2πδ1 exp

{− 1
2δ2

1
[ A1
(λi+λi+1)s

− u2
1]} is a constant with A1 = (xi−1 + μλi)2λi+1s + (xi+1 −

μλi+1)
2λis + 2σ 2λiλi+1yi .

Another upper bound can be also obtained by noting that 1+exp{−(yi−xi)/s} >
exp{−(yi − xi)/s}, which is

p
Xi |X(i),Y,θ (xi |x(i), y, θ)

≤ Ci exp

{
− (xi − xi−1 − μλi)2

2σ 2λi
− (xi+1 − xi − μλi+1)

2

2σ 2λi+1
+ yi − xi

s

}

= Ci ∗M2φ(xi; u2, δ
2
2), (14)
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where φ(·) is the PDF of a normal distribution with mean u2 =
xi−1λi+1s+xi+1λis−σ 2λiλi+1

(λi+λi+1)s
and variance δ2

2 = σ 2 λiλi+1
λi+λi+1

, and M2 = √
2πδ2 exp

{− 1
2δ2

2
[ A2
(λi+λi+1)s

− u2
2]}, is a constant with A2 = (xi−1 + μλi)2λi+1s + (xi+1 −

μλi+1)
2λis − 2σ 2λiλi+1yi .

Similarly, the marginal conditional PDF for Xn given by (7) also have two upper
bounds. One is

p
Xn|X(n),Y,θ (xn|x(n), y, θ) ≤ Cn ∗M3φ(xn; u3, δ

2
3), (15)

where φ(·) is the PDF of a normal distribution with mean u3 = xn−1+μλn+σ 2λn/s

and variance δ2
3 = σ 2λn, and M3 = √

2πδ3 exp{− 1
2δ2

3
[(xn−1 + μλn)2 + 2σ 2λnyn

s
−

u2
3]}. The other is

p
Xn|X(n),Y,θ)(xn|x(n), y, θ) ≤ Cn ∗M4φ(xn; u4, δ

2
4), (16)

where φ(·) is the PDF of a normal distribution with mean u4 = xn−1+μλn−σ 2λn/s

and variance δ2
4 = σ 2λn, and M4 = √

2πδ4 exp

{
1

2δ2
4
[(xn−1 + μλn)2 − 2σ 2λnyn

s

−u2
4]
}
.

Since we have obtained the bounds for p
Xi |X(i),Y,θ , the rejection method for gen-

erating Xi (i = 1, . . . , n) can be developed. For convenience, denote the explicitly
expressed part of p

Xi |X(i),Y,θ by p̃
Xi |X(i),Y,θ , i.e. p̃

Xi |X(i),Y,θ = p
Xi |X(i),Y,θ /Ci ,

i = 1, . . . , n. Based on (13) and (14), the procedure for generating one value of Xi
(i = 1, . . . , n− 1) is as follows:

Step 1 Compute u1, δ
2
1,M1 and u2, δ

2
2,M2;

Step 2 If M1 < M2, let M = M1 and g(xi) = φ(xi |u1, δ
2
1), otherwise let M =

M2 and g(xi) = φ(xi |u2, δ
2
2);

Step 3 Generate ξ from the normal distribution g(xi), and U from the uniform
distribution U(0, 1);

Step 4 IfM · U ≤ p̃
Xi |X(i),Y,θ (ξ |·)/g(ξ), let Xi = ξ , otherwise return to step 3.

To generate Xn, the procedure is similar but with u1, δ
2
1,M1 and u2, δ

2
2,M2

replaced by u3, δ
2
3,M3 and u4, δ

2
4,M4 in (15) and (16).

Remark 1 Note that the number of trials before a ξ is accepted has a geometric
distribution with mean M , so the algorithm works best if M is small. That is the
reason why we choose a smaller value betweenM1 andM2 or betweenM3 andM4.

Plugging-in the above procedure in the Gibbs sample allows us to obtain a
sequence of sample zq = (z

q

1 , . . . , z
q
n)

′, denoted by {zq, q ∈ N}. To be used in
E step, the sequence should be taken into the processes of burn-in and thinning.
We discardQ0 = 500 samples for burn-in in the simulation study and the example,
where the predeterminedQ0 is the necessary number for the Markov chain {Zq, q ∈
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N} to get a convergence state and can be determined by graphical checks of the
MCMC trace plot. We use the autocorrelation function (ACF) plot to diagnose the
autocorrelations among the sample sequence. For both the simulation study and the
example, a thinned sequence of every 20 samples is taken based on the ACF plots.
When a thinned sequence composed of Q1 samples is obtained, the estimates of
various expectations in (9) thus are simply the averages of the corresponding Q1
values from the thinned sequence; for example,

ÊX[Xi |y, θold] = 1

Q1

Q1∑

q=1

z̃
q
i ,

where z̃qi is the sample value for Xi in the thinned sequence. The other expectation
quantities can be estimated in a similar way. Note thatQ1 is also predetermined and
we use Q1 = 1500. Once the estimates of all the expectations in (9) are obtained,
the estimation procedure based on the EM algorithm, which is given in the previous
section, could be carried out.

Remark 2 Instead of the MCEM method, the stochastic EM algorithm (SEM) also
can be used for parameter estimation. For example, the method was used by [20] for
the Gamma process with normal distributed measurement errors. More discussions
on MCEM and SEM can be found in [21, 22].

3.3 Approximate Calculation of Maximum Likelihood Value

Theoretically, the maximum likelihood value could be directly obtained by the plug-
in of the obtained estimate θ̂ into the likelihood function. However, the likelihood
function for the proposed model is rather complicated, which takes a form of a
multiple integral. Even for only one unit with n observations, the likelihood function
is an n-fold integral of the joint density (4) over all elements in X. It is equivalently
an n-fold integral over the n measurement errors εi , i = 1, . . . , n, which is after
some algebra,

L(θ |y) = A
∫

· · ·
∫

ε1,··· ,εn

n∏

i=1

exp

{
2Bi(εi − εi−1)− (εi − εi−1)

2

2σ 2λi

}
e−εi/s

s
(
1 + e−εi/s)2

dε1 · · · dεn,

(17)

where A ≡ A(y, θ) = (2πσ 2)− n
2
∏n
i=1 λ

− 1
2

i exp{−(yi − yi−1 − μλi)2/(2σ 2λi)},
Bi ≡ Bi(y, θ) = yi − yi−1 − μλi . If there are m independent units, the likelihood
function becomes a product of m terms, each of which has the form of (17). Hence
a feasible algorithm for the calculation of the likelihood function (17) is desired.

Noting that the measurement errors εi , i = 1, . . . , n, are i.i.d random variables
subject to the logistic PDF fε(ε) = e−ε/s/[s(1 + e−ε/s)2], the likelihood function
(17) can be regarded as an expectation,
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L(θ |y) = A · Eε1,··· ,εn
[
n∏

i=1

exp

{
2Bi(εi − εi−1)− (εi − εi−1)

2

2σ 2λi

}]
(18)

= A · Eε1
[
ϕ(ε1) · Eε2|ε1 · · ·Eεn−1|εn−2

[
ϕ(εn−2, εn−1) · Eεn|εn−1 [ϕ(εn−1, εn)]

]]

where

ϕ(εi−1, εi) = exp

{(
Bi

σ 2λi
− Bi+1

σ 2λi+1

)
εi −

(
1

2σ 2λi
+ 1

2σ 2λi+1

)
ε2
i + εi−1εi

σ 2λi

}
,

ϕ(εn−1, εn) = exp

{
Bn

σ 2λn
εn − 1

2σ 2λn
ε2
n + εn−1εn

σ 2λn

}
,

ϕ(ε1) = exp

{(
B1

σ 2λ1
− B2

σ 2λ2

)
ε1 −

(
1

2σ 2λ1
+ 1

2σ 2λ2

)
ε2

1

}
.

The above formula having successive conditional expectations implies that, in
order to obtain the likelihood value, we need to integrate the functions ϕ(εi−1, εi),
i = 1, . . . , n, inside out based on the given observations y and the MLE θ̂ . The
integration operations are almost impossible, hence an estimation or approximation
method is expected.

Bearing in mind the principle that sample mean is the best estimator for the
expectation, we develop an iterative approximation method for the calculation of
the likelihood function at MLE based on the conditional expectation form (18). The
approximation method takes the following steps:

Step 1 For each εi (i = 1, . . . , n), generate a sample of size K according to the
PDF fε(ε|θ̂ ), denoted by (ei,1, . . . , ei,K);

Step 2 For Eεn|εn−1[ϕ(εn−1, εn)], use (en,1, . . . , en,K) to calculate the sample
mean of ϕ(εn−1, εn) for each en−1,k , k = 1, . . . , K . That is, for a fixed
en−1,k , calculate Êεn|εn−1=en−1,k [ϕ(εn−1, εn)] = 1

K

∑K
j=1 ϕ(en−1,k, en,j );

Step 3 For Eεi |εi−1[·], i = n − 1, . . . , 2, iteratively calculate the sample mean
of ϕ(εi−1, εi) for each ei−1,k , k = 1, . . . , K , but using (ei,1,. . . ,ei,K) and
Êεi+1|εi [·] obtained in the previous step. That is, for a fixed ei−1,k , calculate

Êεi |εi−1=ei−1,k [·] = 1
K

∑K
j=1 ϕ(ei−1,k, ei,j ) · Êεi+1|εi=ei,j [·];

Step 4 For the last expectation, Êε1 [·] = 1
K

∑K
j=1 ϕ(e1,j ) · Êε2|ε1=e1,j [·];

Step 5 The likelihood value at the MLE θ̂ is calculated by L(θ̂ |y) ≈
A(y, θ̂)Êε1[·], and the corresponding log-likelihood is �(θ̂ |y) ≈
log(A(y, θ̂))+ log(Êε1[·]).

Since the observations y and the MLE θ̂ are already known, the above algorithm
is able to yield the maximum likelihood value rather fast. Moreover, the algorithm
can be easily modified and applied to other Wiener-based degradation models with
measurement errors, as long as the step 1 is designed to generate measurement errors
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according to the assumed distribution. Based on a simulation experiment for the
model with Gaussian noises,1 it is found that the sample size K can be chosen to be
1000 or more.

3.4 Statistical Inference

For statistical inference, we need not only the estimates for the unknown parameters,
but also the variance-covariance matrix. As indicated in Bedair et al. [23], the
Louis’s formula in Louis [24] can be used for finding estimates of the variance-
covariance matrix. In this work, for the parameter vector θ ′ = (μ, σ, s) or θ ′ =
(μ, σ, b, s),

I
θ̂

= EX

[
−∂

2�(θ)

∂θ∂θ ′ |Y, θ̂
]

− EX

[
∂�(θ)

∂θ

∂�(θ)

∂θ ′ |Y, θ̂
]
, (19)

where X = (X1, . . . ,Xm) and Y = (Y1, . . . ,Ym). The formulae for the first and the
second derivatives are given in the Appendix. To obtain I

θ̂
, the expectation terms in

(19) can be estimated using samples of the last iteration in the MCEM procedure.
Based on the above matrix, the variance-covariance matrix of θ is obtained as

�
θ̂

= I−1
θ̂

, and the diagonal elements are the estimated variances for the parameter

estimates μ̂, σ̂ , b̂ and ŝ. Due to the asymptotic normality of the MLE θ̂ , we have
θ̂∼̇N(θ,�

θ̂
), which can be used for further statistical inferences for θ , such as

statistical hypothesis testing and construction of confidence interval (CI).
Besides the above asymptotic method, the bootstrap method provides another

approach for statistical inferences. In our work, parametric bootstrapping can be
adopted, which generates samples for Y by treating the MLE θ̂ as the true model
parameter. For each of the samples, a separate estimate of θ can be obtained. Then
all the estimates together will yield the empirical distribution for the MLE θ̂ , and
the upper and lower percentiles of the distribution can be used to test hypothesis and
construct confidence interval.

4 Estimation of Remaining Useful Life

In a degradation process, a so-called soft failure of a product is often as when the
degradation process hits a fixed threshold D. Thus the failure time of the product
can be presented by the first passage time TD of the process, which is,

TD = inf{t : X(t) ≥ D|X(0) < D}. (20)

1This famous model, based on the Wiener process assuming normal distributed measurement
errors, has an explicitly expressed likelihood function [7].
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For the Wiener process, the first passage time is a random variable subject to a
transformed Inverse Gaussian (IG) distribution, that is,Λ(TD) ∼ IG(D/μ,D2/σ 2).
The CDF and PDF of TD are, respectively,

FTD(t)= 
⎛

⎝
√

D2

σ 2Λ(t)

(
μΛ(t)

D
−1

)⎞

⎠+ exp

(
2Dμ

σ 2

)
 

⎛

⎝−
√

D2

σ 2Λ(t)

(
μΛ(t)

D
+ 1

)⎞

⎠

(21)
and

fTD(t) =
√(

D2

2πσ 2Λ(t)3

)
exp

[
− (μΛ(t)−D)

2

2σ 2Λ(t)

]
Λ′(t). (22)

As an important concept, remaining useful life is defined as the length of time
from the current time point until a failure and indicates how long a product could
survive based on the obtained information [25]. The RUL is actually an conditional
random variable and has different expressions from different points of view. If a
product is considered to generally represent a population and its degradations follow
a Wiener process, the RUL can be written as

L1
D(t) = TD − t |TD > t, (23)

and the corresponding PDF can be obtained based on (21) and (22), which is
fL1

D(t)
(l) = fTD(l + t)/(1 − FTD(t)). If the focus is on a particular product with

observable true degradation data x = (x1, . . . , xn)
′ at t = (t1, . . . , tn)

′, the RUL at
tn can be better defined as

L2
D(tn) = inf{t : X(tn + t) ≥ D|x1 < D, . . . , xn < D}. (24)

Since the Wiener process owns the Markov property, L2
D(tn) is equivalent to the

first passage time to the threshold D − xn, i.e. L2
D(tn)

d= TD−xn . If the available
observations are only y = (y1, . . . , yn)

′, which are contaminated by measurement
errors, the RUL at tn should be modified as

L3
D(tn) = inf{t : X(tn + t) ≥ D|y1, . . . , yn}.

In particular, when the Wiener process is the true model, the RUL at tn can be
calculated by

L3
D(tn) = EXn [TD−Xn |y1, . . . , yn], (25)
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with the PDF

fL3
D(tn)

(l) =
∫ D

−∞
fTD−xn (l) pXn|Y,θ (xn|y, θ)dxn, (26)

where p
Xn|Y,θ (xn|y, θ) is the conditional density of Xn, the true degradation at tn.

With the parameter estimate θ̂ , the PDFs of the first two RULs (23) and (24)
can be easily obtained by simply replacing the unknown parameters (μ, σ, b) by
(μ̂, σ̂ , b̂) in the Wiener process. However, for the third RUL (25), the PDF shown in
(26) includes an integral over the product of an IG PDF and a complicated density,
for which a direct computation may be time-consuming. Alternatively we can utilize
the Zn’s already generated from the Gibbs sampling to make an approximation of
fL3

D(tn)
(l), which is

f̂L3
D(tn)

(l) = 1

Q1

Q1∑

q=1

fT
D−z̃qn

(l), (27)

whereQ1 is a predetermined number as the same as the previous.

5 Monte Carlo Simulations

To investigate the performance of the proposed degradation model, Monte Carlo
simulation experiments are conducted based on a Wiener process with the drift rate
μ = 5, the diffusion coefficient σ = 1, the transformed time scale Λ(t) = tb

with b = 1. For illustration purpose, the measurement error is assumed to follow a
mixture of a normal distribution and a logistic distribution,

εt ∼ (1 − w)εt,1 + wεt,2,
εt,1 ∼ N(0, 4), εt,2 ∼ Logistic(0, 2), w ∼ B(p),

where w is a Bernoulli variable with P(W = 1) = p. Set p = 0.5.
In the entire simulation study, we assume thatm units are subject to a degradation

test under the same testing conditions and measured at n time points, t =
(1, . . . , n)′. To show the effect of number of units and number of measurements
for each unit on the estimation efficiency, different combinations of (m, n) are
considered and the degradation data are generated accordingly. For comparison
purpose, two models are used to fit data and estimate the model parameters. One
is the proposed model, Y (t) = X(t)+ εt , εt ∼ Logistic(0, s), and the other is the
traditional one based on the Weiner process with normal distributed measurement
errors or Gaussian noises, Y (t) = X(t)+εt , εt ∼ N(0, γ 2). For all the experiments,
5000 replications are run in each simulation. The convergence criterion adopted to
terminate the EM algorithm is |(θnew − θold)/θold| ≤ 0.005.
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Table 1 reports the estimation results for the three parameters of the Wiener
process, which is the true degradation, as well as the Kullback-Leibler divergence
(KL divergence) between the true and the estimated PDFs of the failure time or first
passage time TD given in (22). That is, if we denote the true parameters by θ0,

KL(fTD(t; θ0) ‖ fTD(t; θ̂ )) = −
∫ ∞

0
fTD(t; θ0) ln

{
fTD(t; θ̂ )
fTD (t; θ0)

}
dt.

A smaller value of the KL divergence implies a better estimation of the PDF.
As described above, the data are generated from the model with mixed measure-

ment errors, while the models used for estimations are assumed to have logistic
distributed and normal distributed measurement errors respectively, both of which
are wrong models. Thus the results in Table 1 tend to indicate the robustness of
different model assumptions.

Table 1 summarizes the empirical mean and root-mean-square-error (rmse) of the
estimated parameters as well as the empirical mean and standard error (se) of the
KL divergence under different combinations of the model and the values of m and
n. From the results in the table, we see that the proposed degradation model, i.e. the
model with logistic distributed measurement errors, is more robust than the model
with normal errors in almost all cases we considered. In terms of the empirical mean,
the estimates of the parameters (μ, σ, b) are comparative under the two models,

Table 1 The estimation results for the two models: mean(rmse) for (μ̂, σ̂ , b̂) and mean(se) for
KL divergence

Logistic error Normal error
(m, n) μ̂ σ̂ b̂ KL μ̂ σ̂ b̂ KL

(1, 25) 5.0888 0.6457 0.9967 29.202 5.0936 0.5262 0.9966 97.902

(0.8030) (0.5345) (0.0488) (66.593) (0.8154) (0.7023) (0.0496) (148.52)

(1, 50) 5.0189 0.7543 1.0010 3.2220 5.0167 0.6458 1.0012 14.329

(0.6333) (0.3767) (0.0319) (7.3366) (0.6392) (0.5393) (0.0323) (29.075)

(2, 10) 5.1367 0.7303 0.9929 79.217 5.3410 0.6006 0.9736 189.61

(0.8541) (0.4307) (0.0756) (214.11) (0.9690) (0.5412) (0.0833) (475.44)

(2, 25) 5.0351 0.8271 0.9994 3.9737 5.0338 0.7963 0.9996 7.5851

(0.5485) (0.3067) (0.0340) (8.9491) (0.5561) (0.3865) (0.0346) (21.616)

(2, 50) 5.0146 0.8988 1.0002 0.6098 5.0134 0.8806 1.0002 0.9798

(0.4387) (0.2010) (0.0219) (1.2783) (0.4409) (0.2476) (0.0220) (3.4132)

(5, 10) 5.0664 0.8891 0.9965 12.287 5.0814 0.8894 0.9954 16.4223

(0.5304) (0.2591) (0.0468) (22.781) (0.5566) (0.3052) (0.0493) (35.112)

(5, 25) 5.0206 0.9292 0.9995 0.7790 5.0231 0.9554 0.9994 0.8438

(0.3481) (0.1585) (0.0213) (1.1583) (0.3544) (0.1889) (0.0217) (1.4650)

(5, 50) 5.0135 0.9653 0.9997 0.1554 5.0146 0.9748 0.9996 0.1549

(0.2795) (0.0881) (0.0141) (0.2099) (0.2802) (0.0944) (0.0141) (0.2115)

aThe true parameters are μ0 = 5, σ0 = 1, and b0 = 1. And σ̂ = √
σ̂ 2
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although the proposed model outperforms the model with normal errors more often.
However, if the rmse is concerned, the assumption of logistic error is clearly superior
to the normality assumption as the former has smaller rmse values. Moreover, except
the case of (5, 50), the KL divergence for the proposed model is generally less than
that with normal errors with respect to both the mean and the standard error. This
means that the failure time distribution obtained from the proposed model could
better represent the true one. So it may be concluded that the proposed model is
robust in dealing with non-normal measurement errors.

To further demonstrate the robustness of the proposed model, the estimation of
the RUL is also considered for a comparison between the two models. Since the
RUL is a random variable, it expectation named ‘mean residual useful life’ (MRUL)
is used for estimation. The MRUL at tn is the expectation of the RUL L3

D(tn), and
can be obtained by integrating the PDF (26), which is

MRUL(tn) =
∫ ∞

0
l · fL3

D(tn)
(l)dl.

The estimated MRUL at tn for the degradation process can be calculated by
substituting the parameter θ by θ̂ , i.e. M̂RUL(tn) = MRUL(tn)|θ=θ̂ . If the PDF
fL3

D(tn)
(l) is complicated, the estimated MRUL also can be given by integrating

over (27), M̂RUL(tn) = ∫∞
0 l · f̂L3

D(tn)
(l)dl = 1

Q1

∑Q1
q=1

∫∞
0 l · fT

D−z̃qn
(l)dl.

With the MLEs of the parameters of the two models, the corresponding MRULs
could be easily estimated. The performances of the two MRUL estimates are
measured by the average relative error to a benchmark RUL,

average relative error = 1

N

N∑

k=1

∣∣∣∣∣
M̂RULk(tn)

RULbm,k
− 1

∣∣∣∣∣

where the subscript k denotes the kth replication of total N replications and N =
5000 in our experiments. For a better comparison, two benchmarks are chosen, the
real RUL, D − xn, and the real MRUL obtained from (22),

∫∞
0 t · fTD−xn (t)dt ,

where xn is the observation at tn and also the last observation for a unit. The average
relative errors of the estimated MRUL’s to the two benchmarks are reported in
Tables 2 and 3. (We set the threshold D = 300 for all cases.)

From both tables, we observe that the proposed model has smaller average
relative errors in all cases than the model with normal errors. This implies that,
in term of the RUL prediction, the assumption of logistic distribution for the
measurement error is better than the assumption of normal distribution, and thus
the proposed degradation model can be considered more robust. In particular,
the robustness of the proposed model is rather significant when the number of
observations for a unit is small, such as the cases with n = 10. So we may conclude
again that the model with logistic distributed measurement errors is preferred when
modelling degradation data with non-normal measurement errors.
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Table 2 The average relative errors of the estimated MRUL’s to the real RUL

(mb, n) Modela Unit 1 Unit 2 Unit 3 Unit 4 Unit 5

(1, 25) 1 0.0543

2 0.0567

(1, 50) 1 0.0720

2 0.0722

(2, 10) 1 0.1304 0.1312

2 0.1633 0.1663

(2, 25) 1 0.0414 0.0412

2 0.0432 0.0432

(2, 50) 1 0.0654 0.0656

2 0.0656 0.0657

(5, 10) 1 0.0787 0.0791 0.0785 0.0786 0.0781

2 0.0827 0.0833 0.0825 0.0829 0.0823

(5, 25) 1 0.0330 0.0332 0.0333 0.0337 0.0336

2 0.0332 0.0335 0.0336 0.0340 0.0340

(5, 50) 1 0.0601 0.0602 0.0596 0.0608 0.0596

2 0.0603 0.0605 0.0598 0.0610 0.0597
a1—The model with logistic errors, 2—the model with normal errors
bThe value of m represents the number of units

Table 3 The average relative errors of the estimated MRUL’s to the real MRUL

(mb, n) Modela Unit 1 Unit 2 Unit 3 Unit 4 Unit 5

(1, 25) 1 0.0490

2 0.0519

(1, 50) 1 0.0512

2 0.0514

(2, 10) 1 0.1292 0.1293

2 0.1621 0.1650

(2, 25) 1 0.0308 0.0308

2 0.0330 0.0329

(2, 50) 1 0.0406 0.0402

2 0.0408 0.0404

(5, 10) 1 0.0753 0.0754 0.0754 0.0751 0.0753

2 0.0796 0.0797 0.0797 0.0795 0.0796

(5, 25) 1 0.0197 0.0195 0.0195 0.0196 0.0193

2 0.0201 0.0200 0.0199 0.0201 0.0197

(5, 50) 1 0.0319 0.0316 0.0314 0.0314 0.0317

2 0.0323 0.0319 0.0318 0.0318 0.0321
a1—The model with logistic errors, 2—the model with normal errors
bThe value of m represents the number of units
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6 An Example

6.1 Model Fitting

In this section, we return to the example on the capacity loss of a lithium-ion battery
mentioned in the introduction. The data collected at 168 time points are fitted by
three models, including the Wiener process without measurement error and the
two models discussed in the previous section, which are the Weiner process with
normal distributed measurement errors and the proposed model. The transformed
time scale is also set as Λ(t) = tb. Since all three models have the Weiner process
describing the true degradations, their expected degradation processes are of a same
form, which is E[Y (t)] = E[X(t)] = μtb.

Table 4 reports the parameter MLEs, the corresponding maximum log-likelihood
values and the Akaike information criterion (AIC) values for the three models. It
is found that the AIC value for the proposed model is the smallest, and the other
two values are slightly larger. This observation implies that the proposed model
outperforms the other two models in fitting the data of battery capacity. Another
interesting thing is that, the Wiener process without measurement error seems to
have a little bit better performance than the model with normal errors, although
their AIC values are rather close to each other.

To intuitively compare the performances of the three models, their estimated
expected degradations are plotted against number of cycles in Fig. 2, together
with the observation data. The expected degradations for the three models are
0.0339t0.6296, 0.0320t0.6413, and 0.0272t0.6738 respectively. The figure shows that
the expected degradation process obtained from the proposed model (red line) is
relatively closer to the path consisting of the observation data and less affected by
the data fluctuation.

For further comparison, three estimated density functions of the failure time or
first passage time TD are plotted in Fig. 3 and some characteristic values are listed
in Table 5. As indicated in [26], a lithium-ion battery is considered to reach the
end-of-life criteria once there is a 20% fade in capacity. Since the original capacity
of Battery #6 is 2.0353 Ahr, the threshold for degradation models is set as D =
2.0353 × 20% = 0.4071. So the associated failure time TD as a random variable
can be represented by its density function (22) withD = 0.4071 and the parameters
given by the estimates in Table 4. As a direct result, we can obtain the estimated
failure time densities for the three models, as well as their mean, mode, media, and
5%-, 95%-percentiles.

Table 4 The fitting results for the three models

Model MLE Log-likelihood AIC

Wiener μ̂ = 0.0339, σ̂ = 0.0609, b̂ = 0.6296 396.2370 −789.474

Wiener + normal μ̂ = 0.0320, σ̂ = 0.0537, b̂ = 0.6413, γ̂ = 0.0065 396.6125 −789.225

Wiener + logistic μ̂ = 0.0272, σ̂ = 0.0334, b̂ = 0.6738, ŝ = 0.0061 403.2261 −802.452



316 Y. Shen et al.

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cycle

C
ap

ac
ity

 lo
ss

 (A
hr

)

Observations
Expected degradation − logistic
Expected degradation − normal
Expected degradation − Wiener

Fig. 2 The estimation results for the expected degradation of the capacity loss
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Fig. 3 The estimated density functions of TD : D = 0.4071

Table 5 Some characteristics of the density functions of TD : D = 0.4071

Mean Mode Media 5%-percentile 95%-percentile

Wiener 57.9 22.1 42.6 12.1 155.5

Wiener + normal 57.6 26.5 44.9 14.4 142.9

Wiener + logistic 57.4 41.3 51.6 24.3 110.3
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As shown in Fig. 3, the density function for the proposed model (red line) is
thinner and taller than the other two density functions. A similar phenomenon is also
observed when comparing the 5%- and 95%-percentiles. Clearly, the 5%-percentile
for the proposed model is larger than those for the other two models, while the 95%-
percentile is smaller. This means that the 5%–95% range of failure time provided
by the proposed model is narrower than the other two ranges. The reason for the
difference in the shape of the three densities is that, the proposed model assumes
the errors following the logistic distribution, which has relatively heavy tails and
is able to absorb the large fluctuations in the data, and thus the true degradations
described the Wiener process has a smaller diffusion parameter, leading to a first
passage time with a smaller variance.

Other interesting findings are that, the density function for the proposed model
moves right forward compared to the other two densities, and the corresponding
mode and media take much larger values. This also can be explained by the
assumption of the logistic measurement error in the proposed model, which reduces
the impact caused by the large drops in capacity loss and then lifts up the lower tail
of the failure time density.

Although the expected degradation paths and the means are rather close for the
three models, the different assumptions on measurement error would undoubtedly
result in different judgments in decision-making. For example, the 95% percentiles
for the Wiener-based models without or with normal errors may tell that, about 5%
of the #6-type batteries would be of low quality with the lifetime less than 15 cycles,
but this judgment may be too pessimistic if the proposed model is used for analysis,
which implies that even the 5% worst batteries could last 24 cycles. In this case
decisions for burn-in, maintenance, etc., should be carefully made.

To make the analysis more complete, the residuals are also computed for
the two models assuming the existence of measurement errors, and tested for
their independence and distribution. As estimates for the measurement errors, the
residuals at the n = 168 time points are calculated by ε̂i = yi−E(Xi |y1, . . . , yn; θ̂ ),
i = 1, . . . , n, where E(Xi |y1, . . . , yn; θ̂ ) is the expected true degradation at the ith
time point given the observed degradations and the MLEs for parameters. We use
the ACF plot and Ljung-Box test to diagnose the autocorrelations in the residual
series. Surprisingly, the error terms for the proposed model, i.e. the model with
logistic distributed measurement errors, exhibit low autocorrelations with absolute
values less than 0.2 for greater than 0 lags. There is not enough evidence to reject the
null hypothesis that the residuals are not autocorrelated since the p-value of the test
is 0.5510. However, for the model assuming normal distributed errors, the test is
rejected as the autocorrelations among the residuals are relatively high especially
when the lag is one. Thus it is more reasonable to treat the error terms for the
proposed model i.i.d.. We further use the Kolmogorov-Smirnov test to test whether
the residuals could be fitted by the logistic or normal distribution. Unfortunately,
both tests are rejected, which indicate that both distributions could not really fit the
error terms well.

Although the logistic distribution and the normal distribution are not ideal in
capturing the feature of the error terms, we may still suggest to adopt the proposed
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model in modeling degradation data with large measurement errors and further
decision-making. This is because the proposed model has a better performance
in model-fitting, which is then likely to yield a more accurate density function of
failure time.

6.2 The Confidence Intervals

Once the proposed model is chosen, further statistical inferences could be made
with the variance-covariance matrix of the unknown parameters. We focus on the
construction of confidence interval here. As discussed in Sect. 3.4, the variance-
covariance matrix can be estimated by either the Louis’s method or the bootstrap
method, which are respectively

�̂
θ̂

=

⎛

⎜⎜⎝

4.2604 2.7454 −27.9223 −0.0331
2.7454 2.0880 −19.6299 −0.0399

−27.9223 −19.6299 199.5917 0.2385
−0.0331 −0.0399 0.2385 0.0064

⎞

⎟⎟⎠× 10−4,

�̂
θ̂,boot

=

⎛

⎜⎜⎝

2.0745 1.1462 −13.8931 −0.0022
1.1462 0.9115 −9.8911 −0.0105

−13.8931 −9.8911 133.9039 0.0025
−0.0022 −0.0105 0.0025 0.0052

⎞

⎟⎟⎠× 10−4,

where �̂
θ̂

is computed based on Q1 = 1500 samples of the last iteration in the

MCEM procedure, and �̂
θ̂,boot

is the sample covariance matrix for 500 separate
estimates of θ , which are obtained from 500 bootstrapped samples. For both
matrices, the root of the diagonal elements are the estimated standard errors for
the MLEs, μ̂, θ̂ , b̂ and ŝ.

Table 6 summarizes the parameter estimates, the estimated se’s as well as the
5% and 95% sample percentiles from the bootstrapped θ̂ ’s. We find that, with the
assumption of asymptotic normality for MLE, the Louis’s se leads to a 90% CI
with a negative left-end-point for μ̂, i.e. (−0.0066, 0.0610). This CI is odd since
either Figs. 1 or 2 evidently indicates a positive drift rate parameter μ. A possible
reason for the negative left-end-point may be that, there is only one battery used
for analysis, which provides only limited information for the drift rate, and thus
results in a large se. Furthermore the limited information would make the normality
assumption not really valid. From the 500 separate estimates of θ , we calculate
out the sample skewness and sample excess kurtosis, which are 0.8367 and 0.5417
respectively. This implies that the distribution of μ̂ is skewed to the right and has
heavier tails than the normal distribution. Therefore it may be improper to use the
common, normal-distribution-based approach to construct CI for μ̂ in this example.
An alternative way for the CI construction is to directly utilize the sample percentiles
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Table 6 Estimation results for the proposed model

Se Se (5%-, 95%-) Sample percentiles
Estimate (Louis) (Bootstrap) (Bootstrap)

μ 0.0272 0.0206 0.0144 (0.0065, 0.0524)

σ 0.0334 0.0144 0.0095 (0.0164, 0.0479)

b 0.6738 0.1413 0.1157 (0.5465, 0.9304)

s 0.0061 0.0008 0.0007 (0.0050, 0.0073)

of the bootstrapped estimates of μ. Since there are 500 estimates, we take the 25th
and 475th smallest estimates as the 5% and 95% sample percentiles and construct a
90% CI with the two sample percentiles as end points; that is (0.0065, 0.0524) for
μ̂ as shown in Table 6. For the other three parameters σ , b and s, the CIs could be
obtained either by the normal approximation or from their bootstrapped estimates
in a similar way as μ. The latter are given in the last column of Table 6.

7 Conclusions

In this chapter, a degradation model based on the Wiener process was developed by
assuming measurement errors subject to the logistic distribution, which has longer
tails than the normal distribution. Considering the complication of the associated
likelihood function, the MCEM method together with the Gibbs sampling were
used for parameter estimation. And an iterative algorithm was developed for a quick
calculation of the likelihood value at the MLE. Besides, the estimation of remaining
useful life was also discussed. The estimation results for the model parameter and
the RUL showed that the proposed degradation model has better performances than
the Wiener process with Gaussian noises, and seems more robust in dealing with
non-normal measurement errors. The robustness of the proposed model was also
demonstrated by an example.

Although only the Wiener process is considered is this work, other traditional
degradation processes, such as the Gamma process and the inverse Gaussian
process, also can be extended by assuming logistic distributed measurement errors.
But it is clear that the parameter estimation would be still a difficult job when
using this type of extended models. As shown in the chapter, a feasible solution
to the parameter estimation problem goes to the combination of the EM algorithm
and a proper sampling method. Once the parameter estimates are attained, the
corresponding likelihood value can be calculated by the algorithm proposed in
this chapter. Furthermore, in simulation experiments, more degradation data with
various measurement error assumptions could be considered for testing, so that the
performances of different models could be better evaluated.

The work in this chapter was motivated by the performance degradation data of
lithium-ion battery, but used only the degradation data itself for modelling. In fact,
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batteries are usually used in time-varying environments, where exist dynamic life-
affecting environmental variables, such as voltage, temperature and humidity. Hence
it must be rather interesting to include these dynamic variables into degradation
models like Hong et al. [2] did so that batteries’ reliability can be predicted more
accurately.
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Appendix 1

This appendix presents the technical details for the inference in Sect. 3.4. Recall the
parameter θ = (μ, σ, s)′. The first and second partial derivatives of the loglikelihood
function in (8) with respect to θ are as follows. Let κl,i = xl,i − xl,i−1 − μλl,i .
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If the time transformation function Λ(t) contains an extra parameters b, i.e. Λ(t) =
Λ(t; b), we also need the first and second partial derivatives of the loglikelihood
function (8) with respect to b.
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Appendix 2

This appendix presents part of codes for Monte Carlo simulations. All codes were
compiled based Matlab software, and the related files are available upon request.

%%
%%%%%%%%%%%%%%% Main file %%%%%%%%%%%%%%%
%%

%% Define parameters and original process

Nrep = 5000; %% number of replications
M = 2; %% number of units
N = 25; %% sample size
NSEM = 1000;
thin = 20;
Nuse = 1500;
Nskip = 500;
Nkeep = 1 + (Nuse - 1)*thin;
NGib = Nkeep + Nskip; %% numbers to control MCMC and Gibbs
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D = 300; %% predetermined threshold

mu = 5; %% drift parameter
sigma = 1; %% diffusion parameter
b = 1;
s = 2;
u = 0;
gamma = 2;
p=0.5;
time = (1:N)’;
log_time = log(time);

for nr = 1:Nrep DATA = cell(M,1);

DATAA = cell(M,1);
ZMAT = cell(M,1);
FPT = zeros(M,1);

for mm = 1:M
index_neg = 1;
while index_neg>0
[dataA,fpt] = BrownM(N,mu,sigma,b,D);
terror1 = -s*log(1./rand(N,1)-1) + u; %% logistic error
terror2 = randn(N,1)*gamma; %% normal error
pp = binornd(1,p,[N,1]);
terror = pp.*terror1+(1-pp).*terror2; %% mixture
data = dataA + terror;
index_neg = sum(data(1:10,:)<0);

end
DATA{mm,1}=data;
DATAA{mm,1} = dataA;
FPT(mm,1) = fpt;

end

%% MLE assuming Gaussian error

theta1 =[mu,sigma,b,s];
theta_1 = mleWienError(N,M,DATA,time,theta1);

%% MLE assuming logistic error

mu0 =data(end)/time(end);
sigma0 = sigma;
b0 = b;
s0 = s;
theta =[mu0,sigma0,b0,s0];
Z = mu0*time.ˆb0;
k=1;
while k<=NSEM
for mm=1:M
data = DATA{mm,1};
Zmat0 = zeros(Nkeep,N);
LAMBDA = time.ˆtheta(3);
lambda = LAMBDA - [0;LAMBDA(1:end-1)];
for i=1:NGib
for j=1:N
if j==1
Z(1) = Gibbs1(0,Z(2),lambda(1),lambda(2),data(1),theta);
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elseif j<N
Z(j) = Gibbs1(Z(j-1),Z(j+1),lambda(j),lambda(j+1),data(j),theta);

else
Z(N) = Gibbs2(Z(N-1),lambda(N),data(N),theta);

end
end
if i>Nskip
Zmat0(i-Nskip,:)=Z’;

end
end
Zmat = zeros(Nuse,N);
for i = 1:Nuse
Zmat(i,:) = Zmat0(1+(i-1)*thin,:);

end
ZMAT{mm,1}=Zmat;

end

theta_new =mleMCEM(N,M,DATA,time,Nuse,ZMAT,theta);
diff = max(abs((theta_new-theta)./theta));
if diff<=0.005
theta = theta_new;
break

end
theta = theta_new;
k = k+1;

end

%% MLE of each parameter for the two models

muh = theta(1);
sigmah = theta(2);
bh = theta(3);
sh = theta(4);

muh1 = theta_1(1);
sigmah1 = theta_1(2);
bh1 = theta_1(3);
gamh1 = theta_1(4);

%% KL divergence

tempfun = (@(t) -sqrt(Dˆ2/2/pi/sigmaˆ2./t.ˆ(3*b)).*exp(-(mu*t.ˆb-D).ˆ2...
/2/sigmaˆ2./t.ˆb)*b.*t.ˆb.*(log(sigma/sigmah) + 1/2*log(t.ˆ(3*b-3*bh))...
-(muh*t.ˆbh-D).2̂/2/sigmahˆ2./t.ˆbh + (mu*t.ˆb-D).ˆ2/2/sigmaˆ2./t.ˆb...
+ log(bh/b) + (bh-b).*log(t)));

tempfun1 = (@(t) -sqrt(Dˆ2/2/pi/sigmaˆ2./t.ˆ(3*b)).*exp(-(mu*t.ˆb-D).ˆ2...
/2/sigmaˆ2./t.ˆb)*b.*t.ˆb.*(log(sigma/sigmah1) + 1/2*log(t.ˆ(3*b-3*bh1))...
-(muh1*t.ˆbh1-D).ˆ2/2/sigmah1ˆ2./t.ˆbh1 + (mu*t.ˆb-D).ˆ2/2/sigmaˆ2./t.ˆb...
+ log(bh1/b) + (bh1-b).*log(t)));

KL = quadgk(tempfun,0,Inf);

KL1 = quadgk(tempfun1,0,Inf);

results = [theta theta_1 KL KL1];
fid = fopen(’estimate.txt’,’a+’);
fprintf(fid,’%4.4f %4.4f %4.4f %4.4f %4.4f %4.4f %4.4f
%4.4f %4.4f %4.4f \r\n’,results’);
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fclose(fid);
end %% end of repetition

%%
%%%%%%%%%%%%%%% Function BrownM %%%%%%%%%%%%%%%
%%

function [data,FPT] = BrownM(Npoints,Mean,Std,b,D)
time = (1:Npoints)’;
time_cont = ((Npoints+0.0001):0.0001:2*Npoints)’;
time_temp = [time;time_cont];
N_temp = length(time_temp);
lambda = time_temp.ˆb;
dt = lambda - [0;lambda(1:N_temp-1)];
temp = normrnd(Mean*dt,Std*sqrt(dt));
data_temp = cumsum(temp);
data = data_temp(1:Npoints);
pos_temp = find(data_temp>=D);
FPT = time_temp(pos_temp(1));
end

%%
%%%%%%%%%%%%%%% Function mleWienError %%%%%%%%%%%%%%%
%%

function f = mleWienError(N,M,DATA,time,theta0)
one1 = ones(N-1,1);
DDATA = cell(M,1);
for nm=1:M
data = DATA{nm,1};
DDATA{nm,1} = data - [0;data(1:end-1)];

end

function f1 = mle2(theta1)
b = theta1(1);
phi = theta1(2);
LAM = time.ˆb;
lam = LAM - [0;LAM(1:end-1)];
D = diag(lam);
P = diag([1;2*one1]) + diag(-one1,-1) + diag(-one1,1);
PHI = phi*D+P;
invPHI = PHIˆ(-1);
temp1 = 0;
temp2 = 0;
temp3 = 0;
for nm = 1:M
Ddata = DDATA{nm,1};
temp1 = temp1 + lam’*invPHI*Ddata;
temp2 = temp2 + lam’*invPHI*lam;

end
mu = temp1/temp2;
for nm = 1:M
Ddata = DDATA{nm,1};
temp = Ddata - mu*lam;
temp3 = temp3 + temp’*invPHI*temp;

end
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gam2 = temp3/N/M;
f1 = -1/2*M*log(det(PHI)) - N*M/2*log(gam2);
f1 = -f1;

end

th10 = [theta0(3),theta0(2)/theta0(4)/1.5];
th1hat = fmincon(@mle2,th10,[0,-1],0);
bh = th1hat(1);
phih = th1hat(2);
LAM = time.ˆbh;
lam = LAM - [0;LAM(1:end-1)];
D = diag(lam);
P = diag([1;2*one1]) + diag(-one1,-1) + diag(-one1,1);
PHI = phih*D+P;
invPHI = inv(PHI);
temp4 = 0;
temp5 = 0;
temp6 = 0;
for nm=1:M
Ddata = DDATA{nm,1};
temp4 = temp4 + lam’*invPHI*Ddata;
temp5 = temp5 + lam’*invPHI*lam;

end
muh = temp4/temp5;
for nm=1:M
Ddata = DDATA{nm,1};
temp = Ddata - muh*lam;
temp6 = temp6 + temp’*invPHI*temp;

end
gam2h = temp6/N/M;
sigma2h = gam2h*phih;
gamh = sqrt(gam2h);
sigmah = sqrt(sigma2h);
f = [muh sigmah bh gamh];
end

%%
%%%%%%%%%%%%%%% Function Gibbs1 %%%%%%%%%%%%%%%
%%

function f = Gibbs1(a1,a2,t1,t2,y1,theta)
mu = theta(1);
sigma = theta(2);
b = theta(3);
s = theta(4);
sigma2 = sigmaˆ2;
u2 = 1;
temp2 = 0;
temp4 = sigma*sqrt(t1*t2/(t1+t2));
temp31 = (a1*t2*s + a2*t1*s - sigma2*t1*t2)/(t1+t2)/s;
A1 = (a1+mu*t1)ˆ2*t2*s + (a2-mu*t2)ˆ2*t1*s - 2*sigma2*t1*t2*y1;
tempM1 = -(A1/(t1+t2)/s - temp31ˆ2);
temp32 = (a1*t2*s + a2*t1*s + sigma2*t1*t2)/(t1+t2)/s;
A2 = (a1+mu*t1)ˆ2*t2*s + (a2-mu*t2)ˆ2*t1*s + 2*sigma2*t1*t2*y1;
tempM2 = -(A2/(t1+t2)/s - temp32ˆ2);
if tempM1 < tempM2
temp3 = temp31;
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M = exp(tempM1/temp4ˆ2/2)*temp4*sqrt(2*pi);
else
temp3 = temp32;
M = exp(tempM2/temp4ˆ2/2)*temp4*sqrt(2*pi);

end
while (u2>temp2)
u1 = normrnd(temp3,temp4);
temp1 = exp(-(y1-u1)/s);
temp2 = (exp(-(u1-a1-mu*t1)ˆ2/(2*sigma2*t1)...
-(a2-u1-mu*t2)ˆ2/(2*sigma2*t2))*temp1/(1+temp1)ˆ2)/normpdf(u1,temp3,temp4);
u2 = M*rand;

end
f = u1;
end

%%
%%%%%%%%%%%%%%% Function Gibbs2 %%%%%%%%%%%%%%%
%%

function f = Gibbs2(a1,t1,y1,theta)
mu = theta(1);
sigma = theta(2);
b = theta(3);
s = theta(4);
sigma2 = sigmaˆ2;
u2 = 1;
temp2 = 0;
temp4 = sigma*sqrt(t1);
temp31 = a1 + mu*t1 - sigma2*t1/s;
A1 = (a1+mu*t1)ˆ2 - 2*sigma2*t1*y1/s;
tempM1 = -(A1-temp31ˆ2);
temp32 = a1 + mu*t1 + sigma2*t1/s;
A2 = (a1+mu*t1)ˆ2 + 2*sigma2*t1*y1/s;
tempM2 = -(A2-temp32ˆ2);
if tempM1 < tempM2
temp3 = temp31;
M = exp(tempM1/temp4ˆ2/2)*temp4*sqrt(2*pi);

else
temp3 = temp32;
M = exp(tempM2/temp4ˆ2/2)*temp4*sqrt(2*pi);

end
while u2 > temp2
u1 = normrnd(temp3,temp4);
temp1 = exp(-(y1-u1)/s);
temp2 = exp(-(u1-a1-mu*t1)ˆ2/(2*sigma2*t1))...

*temp1/(1+temp1)ˆ2/normpdf(u1,temp3,temp4);
u2 = M*rand;

end
f = u1;
end

%%
%%%%%%%%%%%%%%% Function mleMCEM %%%%%%%%%%%%%%%
%%

function f=mleMCEM(N,M,DATA,time,Nuse,ZMAT,theta0)
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one = ones(N,1);
ZMEAN = cell(M,1);
ZEND = zeros(M,1);
DZ2MEAN = cell(M,1);
for nm=1:M
Zmat = ZMAT{nm,1};
Zmean = mean(Zmat)’;
ZMEAN{nm,1} = Zmean;
ZEND(nm,1) = Zmean(N);
DZ = Zmat - [zeros(Nuse,1), Zmat(:,1:end-1)];
DZ2MEAN{nm,1} = mean(DZ.ˆ2)’;

end

function f1 = mles(s)
f1=0;
for nm=1:M
data = DATA{nm,1};
Zmat = ZMAT{nm,1};
Zmean = ZMEAN{nm,1};
temp1 = sum(data-Zmean);
temp2 = repmat(data’,Nuse,1) - Zmat;
temp3 = mean(temp2./(1+exp(temp2/s)))’;
f1 = f1+ temp1 -N*s - 2*one’*temp3;

end
end

sh = fsolve(@mles,theta0(4));

function f2 = mleb(b)
LAM = time.ˆb;
lam = LAM - [0;LAM(1:end-1)];
mu = sum(ZEND)/LAM(end)/M;
f2 = 0;
temp4 = 0;
for nm = 1:M
DZ2mean = DZ2MEANnm,1;
temp4 = temp4 + one’*(DZ2mean./lam)-muˆ2*LAM(end);

end
temp5 = temp4/N/M;
f2 = f2 -M*N*log(temp5) - M*one’*log(lam);
f2 = -f2;

end

bh = fminbnd(@mleb,0,100);

LAM = time.ˆbh;
lam = LAM - [0;LAM(1:end-1)];
muh = sum(ZEND)/LAM(end)/M;
temp6 = 0;
for nm = 1:M
DZ2mean = DZ2MEANnm,1;
temp6 = temp6 + one’*(DZ2mean./lam)-muhˆ2*LAM(end);

end
sigmah2 = temp6/N/M;
sigmah = sqrt(sigmah2);
f = [muh sigmah bh sh];

end
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An Introduction of Generalized Linear
Model Approach to Accelerated Life Test
Planning with Type-I Censoring

Rong Pan and Kangwon Seo

Abstract Accelerated life tests are often expensive and difficult to conduct. Failure
time censoring is anticipated because some test units do not fail over the testing
period even under the accelerated stress condition. Therefore, a test plan must
be carefully designed to maximize its statistical efficiency. This chapter presents
an approach to optimal test planning based on the proportional hazard model of
accelerated life test data. It is shown that this approach can accommodate multiple
stress factors and is applicable to any failure time distribution.

1 Problem Description

Life testing is commonly used for obtaining the lifetime information of a product.
However, the test stress applied on the product needs to be elevated to a higher-
than-normal-use stress level in order to observe test unit failures within a limited
testing period. This is the so-called accelerated life test (ALT), which is, oftentimes,
the only way to obtain a product’s lifetime data beside of its field failure time
observations. ALTs have been used for both production reliability quantification
and product failure analysis. They are typically very expensive, demanding special
testing chambers and a large amount of energy. If a test plan were not well thought-
out before conducting the test, it could be possible that very few failures, even
no failures, were observed during the testing period, thus no useful conclusions
could be drawn on the product. Therefore, conducting an ALT requires a carefully
designed test plan.

The literature on optimal ALT planning is vast. For a comprehensive review
of ALT literature up to early 2000’s, readers may refer to [21, 22, 24]. To briefly
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summarize it, Nelson and his collaborators [13, 25, 26] first introduced the optimal
experimental design theory to planning ALTs in the late 1970’s. Different failure
time distributions were discussed and multiple failure time censoring schemes were
considered. Islam and Ahmad [10] and Yum and Choi [40] developed the optimal
ALT planning with periodic inspection and type-I censoring. Seo and Yum [36]
extended it to intermittent inspection scheme. All of these test plans were for a single
stress factor. Escobar and Meeker [7], Park and Yum [31] and Sitter and Torsney [37]
presented the optimal test plans with two stress factors. In [27], the way of finding
optimal test plans for different optimal criteria by deriving the expected Fisher
information matrix was discussed in detail. This approach was further discussed
in [2, 5, 6, 28]. Other extensions of ALT plans can be found in, e.g., [32, 33].

The optimal test plans aforementioned are developed based on failure time
regression models, which are also referred as failure time acceleration models
in reliability engineering, where a stress factor at some higher-than-normal-use
level is supposed to directly shorten a product’s lifetime. When a Weibull failure
time distribution is in use, the failure time acceleration model becomes a Weibull
regression model. The proportional hazard (PH) regression model for analyzing
censored ALT data, however, assumes that the effect of a stress variable is on
altering the failure rate or hazard function of a failure time distribution. According
to the Cox’s proportional hazard function, this effect is in an exponential function
form, multiplicative to the baseline hazard function [4]. Aitkin and Clayton [1]
showed that the PH regression model with censored survival data can be re-written
in a generalized linear model (GLM) form and this model is applicable to multiple
distributions, including exponential, Weibull, and extreme value distributions. In
addition, [3] analyzed ALT results using a piecewise exponential distribution with
the GLM approach. Finkelstein [8] and Finkelstein and Wolfe [9] considered
the GLM approach to analyzing interval censored survival data. More recently,
researchers started to use this approach for designing optimal ALT test plans.
Monroe et al. [16, 17] provided the formulation and the optimal design process
for type-I censored exponential and Weilbull distributions. Yang and Pan [39]
developed the GLM approach to ALT planning with interval censored data. They
further utilized this approach to planning tests with more than one optimal criterion
and to planning tests for discriminating different acceleration models, respectively
[29, 30]. Seo and Pan [35] considered special constraints to ALT planning such as
test chamber assignments and test unit clusters and modeled them as random effects
in a generalized linear mixed model (GLMM). They also developed an optimal ALT
design tool, an R package named ALTopt, that follows the GLM approach and is able
to handle multiple stress factors and different censoring schemes [34].

In this chapter, we will give a succinct presentation of the GLM approach to
ALT planning. Generally speaking, the design parameters to be considered in an
ALT may include:

• number of test units,
• manufacturing information of test units,
• total test duration,
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• censoring scheme,
• stress factors,
• stress levels,
• testing conditions as stress factor-level combinations,
• allocation of test units to each testing condition,
• number of test chambers and their capacities,
• sequence of ALT experiments.

This list could go even longer to include some managerial and implementational
aspects of the test, such as the logistics in planning a test and the capability of test
chamber; however, we would ignore these considerations at the moment because
they are not directly related to the statistical efficiency of a test plan, which is
the focal point of this chapter. Even with this list, we have to narrow down to
a few key decision variables, while assuming other items are either pre-specified
in advance or can be ignored with sufficient resource available. Here, we will
focus on the selection of testing conditions and the allocation of test units to each
testing condition. This is a typical experimental design problem; i.e., to find the
appropriate experimental factor-level combinations and to decide the sample size
for each factor-level combination.

The problem to be tackled in this chapter has one response variable, which is
the failure time or lifetime of the product being tested, and one or more stress
variables, which are applied to shorten the product’s lifetime by certain chemical
or mechanical failure mechanisms. The type-I censoring scheme is assumed in
this chapter, which implies that the test ends at a predetermined time. Product’s
lifetime is continuously monitored. Exact failure times are collected from the ALT
experiment, although they can be censored because some test units survive the
entire testing period. Denote the response variable as Y and the stress variables
as x1, x2, etc. A regression function can be established between Y and x’s. But,
unlike the standard regression model based on the normality assumption, Y , as
product lifetime, is often modeled by a non-normal distribution, such as exponential,
Weibull, gamma or lognormal distribution. Consequentially, the parameter estima-
tion is done by maximum likelihood estimation (MLE), instead of least squares
estimation (LSE).

2 Accelerated Failure Time Model

Although the PH regression model will be used for ALT planning in this chapter,
for the completeness of ALT modeling, we will first introduce the accelerated failure
time (AFT) model, which is still the most commonly used model in the reliability
engineering field.

The AFT model assumes that the lifetime of a product is changed by a stress
variable by an acceleration factor, AF , when it is subject to an accelerated life test.



334 R. Pan and K. Seo

That is,

Ys = Yu

AF
, (1)

where Ys is the lifetime under the accelerated stress condition and Yu is under
the normal use condition. Therefore, the cumulative distribution function (CDF)
of lifetime is given by

Fs(y) = Pr(Ys ≤ y) = Pr(Yu ≤ (AF × y)) = Fu(AF × y). (2)

Accordingly, the probability density function (PDF) and hazard function of lifetime
under the accelerated stress condition can be derived as, respectively,

fs(y) = AF × fu(AF × y) (3)

and

hs(y) = AF × hu(AF × y). (4)

Assume that a product’s lifetime follows exponential distribution with its CDF as

Fu(y) = 1 − e−( yμu ), (5)

where μu is the mean failure time, or mean-time-to-failure (MTTF), of the product
under its normal use condition. Then, it is easy to see that, under an accelerated
stress condition, this MTTF becomes

μs = μu

AF
. (6)

Equivalently, the failure rate λ of the product, which is the reciprocal of MTTF, is
given by

λs = AF × λu. (7)

Note that acceleration factor is indeed a function of stress variables, thus it can
be written as AF(x), where x is the vector of stress variables. Equation (6) is
used when exponential lifetime distribution is a proper lifetime model. When
Weibull distribution or gamma distribution is in use, their scale parameters (i.e.,
the characteristic life of Weibull distribution or the first parameter of gamma
distribution) will replace μ in Eq. (6). It can be shown that, based on the accelerated
failure time model, only the scale parameter of lifetime distribution is affected by
the acceleration factor (see [38], Ch. 8).
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How can an elevated stress level shorten a product’s lifetime? It is in fact related
to the nature of failure process, or physics of failure, of the product that is affected
by the particular stress factor. These physical models are known as Arrhenius
model, Eying model, Pack model, etc. ([23]). For example, considering a thermal
stress-induced failure process, the following Arrhenius law is typically employed to
explain the effect of thermal stress on a product’s lifetime; that is,

Y ∝ exp

(
Ea

kT

)
, (8)

where Ea is the material’s activation energy, k the Boltzmann constant, and T
the temperature in degrees Kelvin. Combining it with the exponential failure time
distribution, we have

μs = μu exp

(
Ea

k

(
1

Ts
− 1

Tu

))
. (9)

Taking the normal-use condition as a reference and applying natural logarithm on
both sides of Eq. (9), a log-linear regression function appears as

logμ(x) = β0 + β1x, (10)

where β0 and β1 are regression coefficients and they are related to the mean-
time-to-failure under the normal-use condition and the material’s activation energy,
respectively, while x is defined as the natural stress variable. Here, for the thermal
stress, the natural stress variable x is defined as 1/kT .

The log-linear function for failure distribution parameter, as discussed above,
is valid for other stress variables too, as long as some proper transformations of
stress variables are employed. For example, by the Eyring’s law an additional stress
variable (pressure or voltage) can be introduced into Eq. (8) and the log-linear
function of Eq. (10) becomes

logμ(x1, x2) = β1 + β1x1 + β2x2, (11)

where x1 is the natural thermal stress variable as defined above and x2 is the second
natural stress variable, which is defined as x2 = log s and s is pressure or voltage.

In general, the log-linear function is used to model the relationship between a
failure time distribution parameter and natural stress variables, such as

log θ = xT β, (12)

where θ is the scale parameter of failure time distribution, x the vector of natural
stress variables with the first element being 1, and β the vector of regression
coefficients. In particular, when Weibull failure time distribution is in use, θ is the
characteristic life parameter of Weibull distribution and the AFT model is given by
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Y ∼ Weibull(α, θ(x)), or, F (y) = 1 − e−( y
θ(x)

)α (13)

and

log θ(x) = xT β. (14)

This AFT is called the Weibull regression model, which is one of the most popular
failure time regression models. Notice that the exponential regression model is a
special case of Eq. (13) when the shape parameter α equals to 1.

3 Proportional Hazard Model

In contrast to AFT, the PH model assumes the effect of a stress variable will be
applied on the failure rate, or hazard function, of a product, instead of its failure time.
With the PH assumption, the hazard function under a stress condition is given by

hs(y) = h0(y)e
xT β , (15)

where h0(y) is the baseline hazard function and it can be any function of time
y. Specifically, if the baseline hazard function is a constant, then failure time
distribution is an exponential distribution, or, if the function is a power function
of time, then the failure time distribution becomes a Weibull distribution.

The PH model is in fact a semi-parametric model, as the baseline hazard
function needs not to be defined for the estimation of effects of stress variables.
The partial likelihood estimation method is typical inference method for this task.
However, when the failure time distribution is fully defined as Weibull distribution
or exponential distribution, it is easy to see that the PH model is the same as the
Weibull regression model as specified in Eqs. (13) and (14), except that the sign
of coefficient β could be negated. This property is not applicable to other failure
distributions.

By the PH model, the hazard function of Weibull distribution is given by

h(y, x) = λ(x)yα−1 = λ0e
xT βyα−1, (16)

where λ0 is the baseline failure rate and α is the shape parameter, same as in Eq. (13).
The intrinsic failure rate λ(x) can be converted to the characteristic life parameter in
Eq. (13) by λ = α/θα or log λ = logα−α log θ . Therefore, the log-linear equation,
Eq. (14), can be re-written as

log λ = xT β ′. (17)
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Here, the regression coefficient vector β ′ is a reparameterization of β in Eq. (14). To
simplify the notation, later in the chapter when a PH model is in use, the regression
coefficient vector will be simply denoted as β.

4 GLM Formulation

Assume that a type-I censored ALT experiment is conducted, so there are some
test units that have survived at the end of the reliability test; i.e., their failure times
are censored at the test terminal time. The likelihood function of ALT data can
be constructed. The contributions of these censored units to the total likelihood
function is their reliability functions, while for those observed failure times, the
contributions are their PDFs. The total likelihood function is given by

L =
n∏

i=1

(Ri(yi))
1−ci (f (yi))ci =

n∏

i=1

(h(yi))
ciR(ti), (18)

where subscript i represents the index of test unit and ci is an indicator variable with
ci = 1 if the observed time yi is a failure time, or 0 if it is a survival time.

Based on the PH model Eq. (15), the log-likelihood function can be derived as

logL =
n∑

i=1

[ci(logh0(yi)+ xTi β)+ exTi β logR0(yi)]. (19)

Let μi = exTi β(− logR0(yi)), then

logL =
n∑

i=1

[ci logμi − μi + ci(logh0(yi)− log(− logR0(yi)))]. (20)

Note that the first two terms of the right-hand-side of Eq. (20) consist of a Poisson
distribution likelihood function, while the last term is a constant, or invariant
to any stress variable x. Therefore, by considering the first two terms only, the
indicator variable ci can be treated as following a Poisson distribution with mean
μi . By maximizing this Poisson likelihood function, the estimation of stress variable
effects, β’s, can be obtained.

Recasting the whole formula into a GLM fashion ([20]), it becomes

• The response variable, c, are independently Poisson distributed as Poisson(μi);
• The linear predictor is given by ηi = xTi β;
• The link function is a canonical link function given by lnμi = ηi + ai , where
ai = log(− logR0(yi)) is an offset term.
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To substantiate the formulation above, let failure times follow a Weibull distribu-
tion with the hazard function of Eq. (16), then the offset term becomes

ai = log λ0 + α log yi . (21)

Note that this offset term will not affect the estimation of stress variable effects if the
partial likelihood function maximization method is used. However, it does affect the
full likelihood function and is needed for estimating the Weibull shape parameter.
In addition, to design ALT experiments, if the concern is about how to estimate
the stress effects efficiently or how to predict the characteristic life or MTTF at the
normal-use condition more precisely, this offset term becomes a nuisance term and
can be ignored. In the next section, the design problems of ALT will be discussed
based on this GLM formulation.

5 ALT Design Problems

Planning an ALT is a special type of design of experiments (DOE) with the
experimental factors being stress variables and the response being failure time. The
consideration of failure time censoring must be included into ALT planning. The
most common censoring scheme is the type-I censoring, where the test will be
terminated at a pre-specified time. For the test units that do not fail, their failure
times are right censored at the test terminal time. To plan an ALT test, one needs
to keep in mind that this type of test are very expensive and both test units and
testing equipment could be limited; therefore, the test plan should be designed to
extract as much useful information from the test as possible. In general, one should
reduce the chance of generating no failure observations from the test and one should
place one test stress condition as close to the normal-use condition as possible.
Mathematically, an objective function is proposed and the ALT planning problem is
formulated as to find the test plan that can optimize this objective function, thus it is
referred as the optimal test plan or optimal design.

The standard factorial design and classical designs like central composite design
and Box-Behnken design are widely used for product quality and reliability
improvement [18, 19]. However, in some circumstances it is hard or impossible
to apply them in ALTs. First, the design region of an ALT experiment may not
be a regular space. This is particularly true for an ALT that is constrained by
the acceleration factor requirement and the stress chamber’s capability limitation.
Monroe and Pan [15] gave a good example that illustrated these constraints. Second,
an ALT acceleration model can be formulated with engineering domain knowledge,
thus it may not confirm with the regular linear or polynomial models used in regular
DOE. Third, due to the limitation of time and budget, ALT experiments can only
have small number of runs, to which the classical designs may not be applicable. In
order to tackle the design problems with considerations mentioned above, we follow
the idea of optimal design, initially developed by [11, 12].
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An optimal design is computer-generated with respect to a mathematically
optimal criterion. The most commonly used optimal design criterion is the D-
optimal criterion [19], which is defined by

ξ∗ := arg max
ξ
det (X(ξ)TWX(ξ)), (22)

where ξ denotes a test plan and ξ∗ is the D-optimal test plan, X(ξ) is the expanded
design matrix of a test plan, W is the weight matrix. Both X and W can be derived
from the GLM formulation above. In particular, suppose there are n independent
test units, then matrix X is a n× p matrix that includes all regression terms and all
test units, while matrix W is a n×n diagonal matrix with weight elements to be μi .
For a Weibull distribution with known shape parameter, this weight element can be
found to be

wii = μi = 1 − e−λ0 exp(xTi β)tα , (23)

where t is the test termination time.
Matrix XTWX is called the information matrix and the variance-covariance

matrix of GLM parameter estimation is proportional to the inverse of this matrix.
Maximizing the determinant of this matrix is equivalent to minimizing the general
variance of model parameter estimators. Therefore, the D-optimal test plan found
by Eq. (22) is a statistically efficient plan that is most precise at estimating GLM
parameters, or the effects of stress variables, on the product’s failure time.

To maximize the determinant, an optimization algorithm needs to be employed.
The R package, ALTopt, utilizes the function “stats:optim” with the “L-BFGS-B”
method to perform optimization. This function allows box constraints on design
variables. For example, if there are 3 stress variables, a cuboidal design region with
each variable’s range from 0 to 1 can be assigned as the design region, then ALTopt
can find the design points (testing conditions) in this region, as well as the number
of test units for each design point, such that the test plan becomes D-optimal.

The ALTopt package can also derive U-optimal and I-optimal test plans. These
test plans are optimal for minimizing the prediction variance of a reliability
parameter at the product’s normal-use condition and over a range of normal-use
conditions, respectively. For more information of ALTopt, readers may refer to [34].

6 Examples

Let us consider the adhesive bond ALT example from Meeker and Escobar [14] to
demonstrate the generation process of a D-optimal test plan with single stress factor
by the GLM approach. The following information is given for the test.

• Stress factor: Temperature
• Failure time distribution: Weibull
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• Use condition: 50 ◦C
• Highest stress limit: 120 ◦C
• Number of test units: 300 test units
• Testing time (Censoring time): 180 days
• Assumed shape parameter value: α = 1.667
• Assumed regression coefficients: β0 = 27.89, β1 = −1.21 (These values were

obtained by re-parameterization from those in the original example via β0 =
−1.667 × −16.733 = 27.89 and β1 = −1.667 × 0.7265 = −1.21.)

Besides the above information, the lowest stress limit is specified as 80 ◦C in
order to guarantee enough failure time data from the test. Applying the Arrhenius
acceleration model, the natural stress variable is defined as S = 1/kT =
11,605/(273.15 + T ). Accordingly, the use condition and the lowest and highest
stress limits are transformed to be as SU = 11,605/(273.15 + 50) = 35.91,
SL = 11,605/(273.15 + 80) = 32.86, and SH = 11,605/(273.15 + 120) = 29.52,
respectively. In DOE, it is a common practice to use the coded variable instead of
the original one. As such, the natural stress variable is further transformed to the
coded variable via x = (S−SH )/(SL−SH ) so that the design region is constrained
to [0, 1]. Figure 1 illustrates the variable transformation schemes.

The following linear predictor model is obtained in terms of the coded variable,

lnμ = β0 + β1S = β0 + β1{(SL − SH )x + SH } = −7.855 − 4.049x. (24)

Now, run the R package ALTopt to generate the D-optimal design. The software
package basically runs the optimization routine. First, its algorithm assigns each
of 300 design points randomly into the design region, and then the algorithm has
these design points moved in the direction of an improved objective function value
at each iteration. The iterative process stops when the objective function value
has converged. Since the result depends on the initial random assignment, it is

Fig. 1 Variable
transformation
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Table 1 The D-optimal
design for the adhesive bond
ALT

x Number of test units

0.000 173

0.557 127

recommended to run the routine several times and pick the best one. Table 1 shows
the D-optimal design generated by the following lines of code, which has the highest
objective function value among 30 different runs of the optimization routine.

R> library("ALTopt")
R> set.seed(200)
R> altopt.rc("D", N = 300, tc = 180, nf = 1,
+ alpha = 1.667, formula = ~x1, coef =
+ c(-7.855, -4.049), nOpt = 30)

It shows the two distinguished design points and the number of test units allocated
to each point. We can transform the test locations back to the original variable,
which results in 173 test units allocated to 120 ◦C and 127 test units allocated to
96.7 ◦C. We can show that 154 or 155 test units are expected to be failed at 120 ◦C,
and so are 26 or 27 test units at 96.7 ◦C before the end of the testing period if the
assumed parameter values were correct. There numbers are reasonably large enough
for model parameter estimation.

Some readers may have a doubt about the assumed parameter values. Where
do those values come from and why we need those? In fact the weight matrix
W depends on the regression coefficients and the shape parameter, as one can see
from Eq. (23). Therefore, we need some a priori knowledge about these parameters,
which is often obtained from engineering experience, domain experts’ opinions,
previous similar tests and literature. If the assumed model parameter values are in
fact incorrect, we might end up generating a completely different and inefficient test
plan. For example, suppose the linear predictor model in Eq. (24) is true but we have
assumed the following model, with β1 being −2.428 instead of −4.049, incorrectly,

lnμ = −7.855 − 2.428x. (25)

The D-optimal design based on the incorrect model of Eq. (25) is shown in Table 2.
First, a substantial change of the lowest testing stress condition from 0.557 (96.7 ◦C)
to 0.928 (82.6 ◦C) has been suggested. Second, there is a significant difference for
the test unit allocations. In specific, 46 more test units were allocated at the higher
stress level in Table 1, while 22 more test units were allocated at the lower stress
level in Table 2. As a result only 8 test units are expected to be failed at the lower

Table 2 The D-optimal
design based on the incorrect
linear predictor model

x Number of test units

0.000 139

0.928 161
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stress level (i.e., 82.6 ◦C), which might not be enough number of failures for an
accurate parameter estimation.

Expanding the aforementioned example, we now consider an ALT with two stress
factors. We add another (coded) stress factor x2 while the testing time is shortened
to 120 days. Suppose the following linear predictor model.

lnμ = −7.855 − 4.049x1 − 1.217x2. (26)

The design region becomes the square of [0, 1]×[0, 1], where the highest and lowest
stress limits correspond to (0, 0) and (1, 1), respectively. Table 3 shows the output
of ALTopt software package. Similar to the previous example, the optimization
routine of the software package has been run 30 times. It determines the three
distinguished design points which are necessary to estimate the three unknown
regression coefficients. Figure 2 illustrates the generated design in the 2-dimensional
design space, where the areas of the circles are proportional to the number of test
units allocations. The following codes generated the results.

R> set.seed(300)
R> d_opt_design <- altopt.rc("D", N = 300, tc = 120,
+ nf = 2, alpha = 1.667, formula = ~x1 + x2,
+ coef = c(-7.855, -4.049, -1.217), nOpt = 30)
R> design.plot(d_opt_design$opt.design.rounded,
+ xAxis = x1, yAxis = x2)

Table 3 The D-optimal
design with two stress factors

x1 x2 Number of test units

0.000 0.000 124

0.528 0.000 60

0.000 1.000 116

Fig. 2 Design plot of the
D-optimal design with two
stress factors
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Fig. 3 Prediction variance contour plot of the D-optimal design

One of possible ways to evaluate a given ALT design or compare two or more
ALT plans is to calculate the prediction variance at the use condition. For the
aforementioned example, let us assume the use condition is given as, for a coded
unit, x1 = 1.912 and x2 = 2.670. We now can evaluate the D-optimal design of
Fig. 2 in terms of the prediction variance at the use condition. The following code
creates the prediction variance contour plot, which is shown by Fig. 3.

R> pv.contour.rc(d_opt_design$opt.design.rounded,
+ xAxis = x1, yAxis = x2, tc = 120, nf = 2,
+ alpha = 1.667, formula = ~ x1 + x2, coef =
+ c(-7.855, -4.049, -1.217), useCond = c(1.912, 2.670))

If one is interested in the prediction variance, the D-optimal design may not
be the best test plan. Instead, we may want to create a design with the minimum
prediction variance at the use condition, which we call the U-optimal design. The
following lines of code generate the U-optimal design and its prediction variance
contour plot, which is shown by Fig. 4. Note that the prediction variance of the U-
optimal design is 1.19 at the use condition, which is smaller than one, 2.29, of the
D-optimal design.

R> u_opt_design <- altopt.rc("U", N = 300, tc = 120,
+ nf = 2, alpha = 1.667, formula = ~x1 + x2,
+ coef = c(-7.855, -4.049, -1.217), useCond =
+ c(1.912, 2.670), nOpt = 30)
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Fig. 4 Prediction variance contour plot of the U-optimal design

R> pv.contour.rc(u_opt_design$opt.design.kmeans,
+ xAxis = x1, yAxis = x2, tc = 120, nf = 2,
+ alpha = 1.667, formula = ~ x1 + x2, coef =
+ c(-7.855, -4.049, -1.217), useCond = c(1.912, 2.670))

7 Conclusions

In this chapter we introduce a GLM approach to ALT planning. This approach is
different from the failure time regression approach in the sense that it is based on
the PH model or accelerated failure rate model, instead of the AFT model. However,
for Weibull or exponential failure time distribution, both models arrive at the same
formulation. The GLM approach takes care of failure time censoring, which is
unique and unavoidable phenomenon in reliability tests, and provides a uniform
way for constructing the information matrix of a test. The D-optimal ALT design
is discussed in this chapter. For readers who are interested in other optimal criteria
and/or other constraints on ALT planning, we suggest the following publications:
[16, 30, 35, 39].
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Robust Design in the Case of Data
Contamination and Model Departure

Linhan Ouyang, Chanseok Park, Jai-Hyun Byun, and Mark Leeds

Abstract In robust design, it is usually assumed that the experimental data are
normally distributed and uncontaminated. However, in many practical applications,
these assumptions can be easily violated. It is well known that normal model
departure or data contamination can result in biased estimation of the optimal
operating conditions of the control factors in the robust design framework. In this
chapter, we investigate this possibility by examining these estimation effects on
the optimal operating condition estimates in robust design. Proposed estimation
methodologies for remedying the difficulties associated with data contamination
and model departure are provided. Through the use of simulation, we show that
the proposed methods are quite efficient when the standard assumptions hold and
outperform the existing methods when the standard assumptions are violated.
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1 Introduction

Robust design is widely used for quality improvement purposes. Many engineering
problems use robust design methods in order to improve product quality, process
performance, etc. in various fields including the automotive, manufacturing, plastic,
and information technology industries. Interested readers are referred to the articles
[1, 2] for more examples. One of the important goals in robust design is to obtain the
optimal operating conditions using a specific and well designed objective function.
In order to achieve such a goal, one can incorporate Taguchi’s methods into the
robust design [3–5] framework. However, this approach has been shown to be
ineffective in certain instances due to various statistical issues. Although there is
no serious disagreement among engineers and practitioners about Taguchi’s basic
philosophy, drawbacks embodied in his approach are addressed by several authors
[6–15]. There has been a great deal of research involved in improving the approach
and eliminating the various drawbacks. Response surface methods for robust design
were eventually developed as a more effective alternative to Taguchi’s methods. The
response surface approach facilitates understanding of the system by modelling the
response functions for process mean and variance separately, and treating them as
dual responses. For more details on the response surface approach, one is referred
to articles [9, 16, 17]. It is noteworthy that the robust design framework based on the
response surface approach has been studied thoroughly by several authors [18–32]
among others. In this chapter, unless otherwise specified, ‘robust design’ refers to
the robust design method based on the response surface approach.

In order to obtain the response functions for process mean and variance in the
robust design framework, the mean and variance need to be estimated at each design
point. The response functions for the process mean and variance are then obtained
using the method of classical linear regression with the mean and variance estimates
at each design point. The two fundamental assumptions in robust design are that
the experimental data are normally distributed and that all of the observations
are uncontaminated. However, these fundamental assumptions may not hold in
practice because the observations can often be collected under volatile operating
conditions, etc. The normality and no contamination assumptions in robust design
are related to the normal model departure and outlier-resistance concepts in the
statistics literature. If either one of the two assumptions is violated in a serious
manner, the estimated optimal operating conditions of the control factors may be
located far from the true optimal operating conditions. Thus, a statistical approach
which is less sensitive to model departure and outliers is clearly warranted.

For the case in which some of the observations are contaminated, Park and Cho
[33] proposed a robust design methodology using outlier-resistant estimators of
location and scale. The authors investigated the effectiveness of the median, the
median absolute deviation (MAD) and inter-quartile range (IQR). These estimators
were incorporated into the robust design and their behavior was shown to be quite
effective in the sense that, when the data were contaminated, the bias and mean
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squared error (MSE) of the estimated optimal operating conditions obtained was
significantly lower than the resulting bias and MSE based on the sample mean and
sample variance.

Although contamination is a frequent problem, the normality assumption can
also be violated in practice. If the normality assumption does not hold in the
sense that the histogram of the observations exhibits skewness or kurtosis or
both, it is quite possible that the estimated optimal operating conditions of the
control factors will be severely biased. Thus, in the same investigation, [33] also
showed that the same estimators were also less sensitive to model departure.
Recently, the research by Park and Leeds [31] and Park et al. [32] extended
the work of [33] by incorporating the mean, median and Hodges–Lehmann (HL)
estimators of the mean response and the standard deviation, MAD, IQR and Shamos
estimators of the response standard deviation into the robust design framework.
Using these estimators, they proposed seven methods which use various pairs of the
aforementioned location and scale estimators. The respective methods were labelled
Method A (the sample mean and the sample variance), Method B (sample median
and the squared MAD), Method C (sample median and the squared IQR), Method D
(HL and the squared Shamos estimator), Method E (sample median and the squared
Shamos estimator), Method F (HL and the squared MAD), and Method G (HL and
the squared IQR). The results in [32] illustrated that, using bias and MSE as the
performance criteria, Method D clearly outperformed the other estimation methods
in the case of data contamination or model departure. Specifically, it was shown that,
among all of the methods considered, the estimated optimal operating conditions
obtained using Method D resulted in the smallest bias and MSE.

One important statistical issue regarding outlier resistance is the concept of
breakdown point [34]. The breakdown point discussion will be taken up in more
detail but, simply speaking, the breakdown point of an estimator represents the
percentage of contaminated observations that can exist before the estimation result
becomes non-sensical and incorrect. It can be shown that Methods A, B, C, D, E,
F, G, which are proposed by Park et al. [32], have 0%, 50%, 25%, 29%, 29%, 29%,
25% as breakdown points respectively. Therefore, even though Method D resulted in
the best performance compared to all the other estimation methods based on the bias
and MSE criterion, Method-D also has a lower breakdown point than Method B.
This motivates the need for the development of another estimation method which
has a higher breakdown point than that of Method D. This method can then be
tested to see if its performance is at least similar to that of Method D. Therefore, in
the estimation method comparison that will follow, we consider a method that uses
two estimators with a 50% breakdown point, namely Huber’s locationM-estimator
[35, 36] for the mean response and Rousseeuw-Croux (RC) estimator [37] for the
response standard deviation.

Note that Method A is known to be optimal under the ideal assumption that
there is no data contamination or normal model departure. Similarly, Method A is
also expected to be inferior to the other methods when the assumption is violated.
The goal of the comparative study that follows is to measure the performance of
the proposed methods relative to the performance of the optimal method under
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ideal assumptions. Thus, we include Method A by Park et al. [32] in the current
investigation. Also, for clarity, in the comparison that follows we re-label Methods
A, C and D by Park et al. [32] to Methods 1, 2 and 3 and label the new method
that uses theM-estimator and the RC estimator as Method 4. Thus, we consider the
following four methods in this chapter.

• Method 1: sample mean and sample variance (baseline. 0% breakdown).
• Method 2: sample median and MAD (50% breakdown, low efficiency).
• Method 3: HL and Shamos (29% breakdown, low efficiency).
• Method 4: Huber location M-estimator and RC estimator (50% breakdown with

high efficiency).

As noted, Method 1 is optimal under ideal conditions and is included in the
comparison for that reason. However, it is also well known that any estimation
method that includes the sample mean or the sample variance will not perform
well in the case of data contamination [31] and normal model departure [32]. Thus,
except from the baseline case (Method 1) where the sample mean and sample
variance estimators are used, it was decided that none of the estimation methods
used in the investigation would involve the sample mean or the sample variance.

2 Robust Design Based on Dual Response Surfaces

In this section, we briefly review the standard robust design framework. Note that
the assumptions, notation and framework used in this study are the same as those
used in [28, 31, 32]. For convenience, the assumptions are summarized below.

(a) The response Y depends on the levels of the k control factors given by x =
(x1, x2, . . . , xk). Y is therefore a function of the control factors x and this is
expressed as Y = F(x1, x2, . . . , xk). The function F(·) is generally unknown
and therefore needs to be estimated.

(b) Each control factor xi for i = 1, 2, . . . , k has levels which are continuous and
quantitative.

(c) The experimenter has the ability to set the levels of each control factor xi where
i = 1, 2, . . . , k.

(d) The robust design framework uses the dual response surface approach to
estimate the process mean response and variance response. The process mean
response and variance response functions can be written as

M(x) = β0 +
k∑

i=1

βixi +
k∑

i=1

βiix
2
i +

k∑

i<j

βij xixj + εM (1)
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and

V (x) = η0 +
k∑

i=1

ηixi +
k∑

i=1

ηiix
2
i +

k∑

i<j

ηij xixj + εV , (2)

respectively. The usual assumption is that the error terms εM and εV in (1) and
(2) are normally distributed [9].

In order to estimate the dual response surfaces, we obtain the process mean
responseM(x) and the process variance response V (x) using the classical regression
model where the control factors, x = (x1, x2, . . . , xk) are the predictors. Clearly,
before we can estimate the regression models for M(x) and V (x), we must first
estimate the mean and variance responses at each design point x = (x1, x2, . . . , xk).
Now, let us assume that there are m replicated response observations at the ith
design point and that Yij represents the j th response observation at the ith design
point where i = 1, 2, . . . , n and j = 1, 2, . . . , m. The usual estimates of the mean
and variance at each design point are the sample mean and sample variance. These
estimates are calculated using the well known relations

Ȳi = 1

m

m∑

j=1

Yij (3)

and

S2
i = 1

m− 1

m∑

j=1

(Yij − Ȳi )2. (4)

at the ith design point, respectively.
Suppose that we denote M̂(x) and V̂ (x) as the estimated dual response functions

of M(x) and V (x) respectively. If we assume a second-order polynomial for the
response functions, we can then construct the dual response surfaces as follows:

M̂(x) = β̂0 +
k∑

i=1

β̂ixi +
k∑

i=1

β̂iix
2
i +

k∑

i<j

β̂ij xixj (5)

and

V̂ (x) = η̂0 +
k∑

i=1

η̂ixi +
k∑

i=1

η̂iix
2
i +

k∑

i<j

η̂ij xixj . (6)
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In order to estimate M(x) and V (x) in (5) and (6), we need to obtain M̂(x) and
V̂ (x). The standard approach for obtaining them is to use the sample mean in (3)
and sample variance in (4) at each design point x = (x1, x2, . . . , xk), respectively.

Although it is straightforward to estimate (5) and (6), the ultimate goal in robust
design is to estimate the optimal operating conditions of the control factors, x =
(x1, x2, . . . , xk). These estimated optimal operating conditions can be obtained by
optimizing the squared-loss model [17] below. That is, we want to

minimize
{
M̂(x)− T0

}2 + V̂ (x) (7)

subject to any constraints on the control factors x = (x1, x2, . . . , xk). In (7), T0 is
the target value for the quality characteristic of interest which is usually defined by
the analyst. Any imposed constraints are used to specify the feasible joint region of
the control factors x = (x1, x2, . . . , xk). Note that in the specific case of factorial
designs where the levels of the k control factors x = (x1, x2, . . . , xk) are used,
the feasibility constraints become xj ∈ [Lj ,Uj ] for j = 1, 2, . . . , k. The control
factors x = (x1, x2, . . . , xk) that result from the optimization problem under the
constraint are the optimal control factor estimates which are often referred to as the
optimal operating conditions. Note that it can be easily shown that the objective
function in (7) is equivalent to the MSE. Therefore, the optimal control factor
estimates obtained also minimize the MSE. It should also be pointed out that there
is also an alternative formulation of the dual-response optimization model [9] which
can be used in the optimization step. This formulation is

minimize V̂ (x) (8)

subject to M̂(x) = T0 and any constraints on the control factors x =
(x1, x2, . . . , xk). However, a drawback of the model formulation in (8) is that
it imposes a zero-bias condition while the squared-loss model in (7) does not.
Therefore, since (7) is more flexible in that it allows for bias, it often results in
less variability and was the chosen formulation used in this chapter. For detailed
information regarding the squared-loss model, the readers are referred to [17].

Finally, we should point out one technical detail associated with the estimation
of the response function in (6). Rather than using the sample variance on the
left hand side of the regression model in (6), we instead used the logarithm-
transformed values of the sample variances (i.e., log S2

i ). By using the log transform
of the variance during estimation and then subsequently transforming the variance
estimates back by using exponentiation, we can be certain that the estimated
variances will always be positive. Note that if such a transformation is not used,
then it is possible for any of the estimated variance responses to be negative which
is clearly nonsensical. For more details regarding the logarithmic transformation,
interested readers are referred to [38] and Example 11.7 of [13]. Finally, after
estimating the logarithm of the process variance, Vlog(x), we obtain the optimal
operating conditions by minimizing
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{M̂(x)− T0}2 + exp
(
V̂log(x)

)
(9)

subject to any constraints on the control factors x = (x1, x2, . . . , xk).

3 The Proposed Methods and Their Properties

3.1 Outlier-Resistant Estimation

In what follows, we briefly review the outlier-resistant estimation procedures used in
[31, 32]. As described in Sect. 2 of this chapter, we assume that there arem replicates
at each design point. Let Yij denote the j th response at the ith design point where
i = 1, 2, . . . , n and j = 1, 2, . . . , m. In the standard robust design approach, the
sample mean and sample variance are calculated at the ith design point using (3) and
(4), respectively, and these are subsequently used to construct the response surfaces,
namely,M(x) and V (x).

Now it is well known that the sample mean and the sample variance estimators
are extremely sensitive to outliers. Therefore, using them as estimators ofM(x) and
V (x) can be problematic when there is the possibility that outliers do exist. Note that
the terms contamination and outlier are often used interchangeably in statistical
robustness studies so their meanings in this study need to be explained in detail.
We define a contaminated observation as a sample observation whose value was
either mis-recorded or whose value was measured under conditions that were not
the usual or normal conditions. Similarly, we define an observation from a sample
as an outlier when its value is unusually large or unusually small relative to the
majority of observations in the sample. One possible reason for the existence of an
outlier is that the particular observation is contaminated. Yet, another possibility is
that the underlying distribution of the sample has heavier tails or a lack of symmetry
due to the fact that the underlying distribution is not that which is assumed. Thus,
an outlier can be due to contamination but there is also the possibility that it is due
to an erroneous distributional assumption. Since it is often assumed that a sample
has a normal distribution, the case where this assumption is assumed yet invalid
is referred to as normal model departure. Section 8.2 of [39] also considers the
delicate concept of extreme observations and outliers. For more details on outliers,
their causes and their impact on statistical inference, the reader is referred to the
articles in [34, 40–43].

In order to illustrate how outliers can effect estimation and inference, sup-
pose that we have a sample, Yi1, Yi2, . . . , Yim. Clearly, the sample mean Ȳi =
(1/m)

∑m
j=1 Yij will go to infinity if even just one of the Yij goes to infinity. This

is the reason why it is said that the mean and variance estimators have zero as
their breakdown point. Fortunately, there exist well known outlier-resistant location
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estimators which can be used in place of the sample mean and sample variance.
As an alternative to the sample mean, outlier-resistant location estimators include
the median and the HL and Huber estimators. Similarly, alternative outlier-resistant
estimators of the variance, often referred to as scale estimators, include the MAD,
IQR, Shamos [44], and the RC estimator [37]. Next, we briefly review some of the
properties of these outlier-resistant estimators.

3.1.1 Outlier-Resistant Location Estimators

We provide a brief review of two well known and outlier-resistant location
estimators, namely the HL and Huber’s M-estimator. First we introduce the HL
estimator. This location estimator is defined as

median
i<j

(Yi + Yj
2

)
.

and is a particularly useful location estimator because it is outlier-resistant and, at
the same time, still nearly as efficient as the sample mean. It should also be noted that
the HL estimator has greater relative efficiency than the median when the normal
distribution assumption holds. In fact, when the normal distribution assumption
holds, the HL estimator is nearly as efficient as the sample mean. For more details
on the concept of efficiency, the readers are referred to Section 6.2 of [45]. The HL
estimator also has a reasonable breakdown point of 29.3% [46]. Finally, it should be
noted that the HL estimator can be viewed as a compromise between the mean and
the median since it is a function of the sample mean of the paired observations and
the median of all the pairs. For more details on the properties of the HL estimator,
see the articles in [47, 48].

Huber’s M-estimator [35] which has a breakdown point of 50%, is also nearly
efficient as the sample mean. A short derivation of the estimator provides useful
insight. Let Y1, Y2, . . . , Ym be independent and identically-distributed from a
location family with the probability density function f (y − μ). We assume that
the function f (·) is symmetric at zero so that μ is the location parameter of the
distribution of Yi . Now suppose that one wants to estimate the location parameter
μ. Let yi be a realization of the random variable Yi . Then it is straightforward to
show that the maximum likelihood estimate (MLE) can be obtained by solving the
following equation for μ:

min
μ

m∑

i=1

{− log f (yi − μ)} = min
μ

m∑

i=1

ρ(yi − μ),

where ρ(·) = − log f (·). The derivative of the negative of the log of the density
function, ψ(·) = ρ′(·), is known as Huber’s ψ function. It easily follows that the
MLE of the log density is the solution of the following estimating equation
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m∑

i=1

ψ(yi − μ) = 0,

withψ(t) = t . In order to obtain an outlier-resistant estimator, Huber [49] suggested
the following bounded monotone ψ function:

ψ(t) =
⎧
⎨

⎩

−c t < −c
x |t | ≤ c
c t > c

,

which is also known as metric Winsorizing [50]. Notice that when c → 0, the
solution of the estimating equation results in the well known median estimate and
when c → ∞, the estimating equation results in the usual mean estimate.

3.1.2 Outlier-Resistant Scale Estimators

In this section we briefly review the MAD, Shamos, and RC estimators of scale.
First, we introduce the median absolute deviation (MAD) estimator. The MAD is a
well known outlier-resistant estimator for the standard deviation and is given by

MAD(Y1, . . . , Ym) = median
1≤i≤m

{|Yi − μ̃|}

where μ̃ = median(Y1, . . . , Ym). Note that the MAD as defined above is not
consistent under the normal distribution. The normal-consistent MAD is easily
derived as

median
1≤i≤m

{|Yi − μ̃|}

Φ−1(3/4)
≈

median
1≤i≤m

{|Yi − μ̃|}

0.6744898
(10)

where Φ−1(·) is the inverse of the normal cumulative distribution function. For
more details on the normal-consistent MAD, see [33]. Going forward, when the
term MAD is used in the current discussion, it will refer to the normal-consistent
MAD in (10).

As an alternative to the MAD estimator, Shamos [44] proposed the estimator

median
i<j

(|Yi − Yj |
)

for the scale. Notice that one can view the Shamos estimator as the scale analogue
of the HL location estimator. As was the case with the MAD estimator, the Shamos
estimator is also not consistent under the normal distribution. A normal-consistent
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Shamos estimator can be obtained by dividing the estimator above by
√

2·Φ−1(3/4)
which results in:

median
i<j

(|Yi − Yj |
)

√
2Φ−1(3/4)

≈
median
i<j

(|Yi − Yj |
)

0.9538726
. (11)

For more details on the normal consistency constant, see Lèvy-Leduc et al. [51].
Just as was the case with the MAD estimator, going forward, when the term
Shamos estimator is used in the current discussion, it will refer to the normal-
consistent version in (11). It should be noted that the Shamos estimator has the
same breakdown point of 29.3% as the HL estimator [37].

Rousseeuw and Croux [37] proposed yet another alternative scale estimator
which is defined as

Quartile1
i<j

(|Yi − Yj |
)
,

where Quartile1 denotes the first quartile. It is straightforward to show that the
normal-consistent version of the RC estimator is defined as

Quartile1i<j
(|Yi − Yj |

)
√

2Φ−1(5/8)
. (12)

For more details on the normal consistency constant, see Equation (3.7) of
Rousseeuw and Croux [37].

3.2 Outlier-Resistance and Breakdown Point

One of the important measures of the robustness of any estimator is its breakdown
point. The finite-sample breakdown point is the maximum proportion of incorrect
observations (i.e., arbitrarily large observations) that an estimator can handle
without leading to an egregiously incorrect estimate. For example, the finite-sample
breakdown point of the sample mean is zero because the sample mean will become
arbitrarily large when any one of the sample observations becomes arbitrarily
large. In what follows, we derive the breakdown points for the various location
and scale estimators discussed previously. In cases where the derivation is either
extremely straightforward or extremely complicated, the breakdown point is only
stated. For more details regarding the finite-sample breakdown point, one is referred
to Definition 2 in Section 2.2 of Hampel et al. [34] and Chapter 11 of Huber [36].
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3.2.1 Location Estimator Breakdown Points

In order to provide more intuition to the concept of breakdown point, we provide
a glimpse into the breakdown point derivations for the median, HL and Huber M-
location estimators.

In the case of the median, if we have m observations, then we can make up
to 
(m − 1)/2� of the observations arbitrarily large and still obtain a reasonable
estimate of the median. The median estimate will not become arbitrarily large. Note
that 
·� denotes the floor function such that 
x� is the largest integer not exceeding
x. Thus, the finite-sample breakdown point of the median is

εm = 
(m− 1)/2�
m

. (13)

In order to avoid confusion, it should be noted that the breakdown point used in
Definition 1 in Section 2.2 of Hampel et al. [34] is obtained by taking the limit of
the finite-sample breakdown point as m → ∞. For example, suppose we have a
total ofm observations and assume that we make 
(m−1)/2� of them observations
arbitrarily large. Then, since 
x� can be rewritten as 
x� = x − δ where 0 ≤ δ < 1,
we have

εm = 
(m− 1)/2�
m

= 1

2
− 1

2m
− δ

m
.

Thus, we obtain the breakdown point, ε = limm→∞ εm = 1/2 = 50%
In the case of the HL estimator, the derivation of the finite-sample breakdown

point is somewhat more complex than that derived for the median. In order to simply
this derivation, we first consider the following variant of the HL estimator where all
pairs are considered:

median
∀(i,j)

(Yi + Yj
2

)
. (14)

The idea is to derive the breakdown point for this estimator and then use a similar
approach to derive the breakdown point for the more standard version of the
HL estimator, mediani<j (Yi + Yj )/2. To begin, suppose we have a total of m
observations and assume that the we makem∗of them observations arbitrarily large.
The critical step in the breakdown point derivation is to notice that this implies that
there are m×m paired average terms:

Yi + Yj
2

where i = 1, 2, . . . , m and j = 1, 2, . . . , m. Because the HL estimator is the
median of the m × m values, the finite-sample breakdown point cannot be greater
than 
(m2 − 1)/2�/m2. This results in the following relation:
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m2 − (m−m∗)2

m2
≤ 1

m2

⌊m2 − 1

2

⌋
.

Now, for convenience, let

m∗∗ = max
{
m∗ : 1 −

(
1 − m∗

m

)2 ≤ 1

m2

⌊m2 − 1

2

⌋}
.

Then the finite-sample breakdown point of the HL estimator is εm = m∗∗/m, which
implies that

1 − (1 − εm)2 ≤ 1

m2

(m2 − 1

2
− δ

)
= 1

2
− 1

2m2
− δ

m2
,

where 0 ≤ δ < 1 again. Next, let ε = limm→∞ εm. Them, taking the limit as
m→ ∞, we obtain

1 − (1 − ε)2 ≤ 1

2
.

Therefore, in order to obtain the breakdown point of this variant of the HL
estimator, we need to find the largest value of ε that satisfies this inequality. It is
straightforward to show that largest value of ε is 1 − 1/

√
2 ≈ 29.3%. Given this

breakdown point derivation, we can derive a similar result for the standard version
of the HL estimator, namely,

median
i<j

(Yi + Yj
2

)
,

Using a similar but more involved argument to that used when all pairs were
considered, it can be shown that the following relation holds:

m(m− 1)/2 − (m−m∗)(m−m∗ − 1)/2

m(m− 1)/2
≤ 1

m(m− 1)/2

⌊m(m− 1)/2 − 1

2

⌋
.

Now, let m∗∗ be the maximum value of m that satisfying this inequality. Clearly,
given m∗∗, the finite-sample breakdown point is given by εm = m∗∗/m. Then,
omitting the details of how one obtains m∗∗, it can again be shown that ε =
1 − 1/

√
2 ≈ 29.3% in the case of the standard version of the HL estimator.

Finally, Huber’sM-estimator turns out to have a breakdown point of 50% but its
derivation is complicated so the details have been omitted. For more information on
the derivation, see [36, 52].
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3.2.2 Scale Estimator Breakdown Points

Using a derivation technique similar to that used for the HL location estimator, it can
be shown that the Shamos estimator also has a breakdown point ε = 1 − 1/

√
2 ≈

29.3%. In the case of the RC estimator, the finite-sample breakdown point can be
obtained by using a similar technique to that used in Theorem 5 of [37]. Notice that
the relation derived earlier for the median, εm = 
(m− 1)/2�/m, also holds for the
MAD which implies that it too has a breakdown point of 50%. The sample standard
derivation estimator is clearly analogous to the mean estimator which implies that
it also has a breakdown point of zero. Finally, using a similar argument to that used
for the median, it is straightforward to show that the breakdown point for the IQR
estimator is 25%.

3.3 Outlier-Resistance and Relative Efficiency

Another important property of an outlier resistant estimator is its efficiency [48].
Relative efficiency is a metric for comparing the effectiveness of the two estimators.
In practice, the usual method for comparing the dispersion of two estimators (say,
θ̂2 and θ̂1), is to calculate the ratio of the variances of the respective estimators. This
ratio is known as the relative efficiency of θ̂2 and θ̂1 (see Section 2.2 of Lehmann
[47]), and is defined as

RE(θ̂2, θ̂1) = Var(θ̂1)

Var(θ̂2)
× 100% (15)

where θ̂1 is often a reference or baseline estimator. The asymptotic relative
efficiency (ARE) is then defined as the limit of the RE as the sample size n→ ∞.

For brevity reasons, we omit the ARE derivations and summarize the AREs of
the outlier-resistant estimators under consideration along with their corresponding
breakdown points in Table 1. For more details, see Section 2.2 of Lehmann [47],
and the studies in [37, 48, 53].

Table 1 Breakdown Points and AREs of the estimators under consideration

Location Scale

Mean Median HL Huber SD IQR MAD Shamos RC

Breakdown 0% 50% 29% 50% 0% 25% 50% 29% 50%

ARE 100% 64% 96% 95% 100% 38% 37% 86% 82%
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4 Estimator Performance Assessment: Two Simulation
Studies

The goal of the study that follows is to assess whether any of the estimation methods,
namely methods 1–4, stands out as far as its effectiveness when dealing with the
issue of outliers. As explained earlier, there are two different causes for the existence
of outliers in the sample observations. One reason for their existence is because
some of the observations have been contaminated. Another possibility is that the
underlying distribution of the sample is actually not that distribution which is being
assumed. Given that the common distributional assumption is that the underlying
distribution is normal, this outlier cause is usually referred to as normal model
departure.

A well known approach for assessing the effect of proposed estimators is Monte
Carlo simulation. Given that there are two possible causes for the existence of
outliers, our investigation into the effectiveness of the outlier-resistant methods
consists of two different large scale simulations.

The first simulation, referred to as simulation A, will assess the performance
of the proposed estimators under two different scenarios. Scenario one is referred
to as the baseline case where the simulated data is normally distributed and not
contaminated. Scenario two is referred to as the contaminated case where the
simulated data is normally distributed but contaminated. Both scenarios need to be
considered because an outlier-resistant estimation method should work well under
both scenarios.

The second simulation, referred to as simulation B, the goal is identical to that
of simulation A except that rather than assuming that the data is contaminated, the
underlying assumption that there is normal model departure. This simulation will
also consider the estimator performance under two different scenarios. Scenario one
is again referred to as the baseline case where there is no model departure in that
the observations are normally distributed. Scenario two is referred to as the normal
departure case where the simulated data exhibits normal model departure in various
ways which will be explained in detail.

Notice that both simulation A and simulation B have the same goals with the
only difference being the manner in which the outliers arise. In what follows, we
describe the various components of the simulations. Unless specified otherwise, the
various components of the description apply to simulation A and simulation B along
with each of the two scenarios in each simulation.

4.1 The Estimation Methods

Although, there were a total of 12 possible combinations of location and scale
estimators, as aforementioned in Sect. 1, each simulation included the following
four methods:
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• Method 1: The sample mean and the sample variance. This is the baseline case
with each estimator having a zero breakdown point. The relative efficiency of
each estimator is obviously 100%.

• Method 2: The sample median and the MAD. Each estimator has a 50%
breakdown point. The median has an ARE of 64% and the MAD has an ARE
of 37%.

• Method 3: The Hodges–Lehmann and Shamos estimators. Each of these estima-
tors has a 29% breakdown point. The Hodges–Lehmann estimator has an ARE
of 96% and the ARE of the Shamos estimator is 86%.

• Method 4: Huber’sM-estimator and the RC estimator. Each estimator has a 50%
breakdown point. Huber’s M-estimator has an ARE of 96% and the ARE of the
Shamos estimator is 82%.

4.2 The Response Functions

When running simulations in which parameters are estimated, it is generally
necessary to view the true underlying parameters as known. We can achieve this
by using a similar approach to that in [31]. Specifically, we make the assumption
that the true process meanM(x) and variance V (x) are known to be the following:

M(x) = T0 + 5(x2
1 + x2

2) (16)

and

V (x) = 1 + (x1 − 1)2 + (x2 − 1)2, (17)

where the target T0 = 50. It is then immediate from (16) and (17) that we have

φ(x) = {
M(x)− T0

}2 + V (x) (18)

= 25(x2
1 + x2

2)
2 + 1 + (x1 − 1)2 + (x2 − 1)2.

We can then obtain the true optimal operating conditions, by finding the solution to
∂φ/∂x1 = 0 and ∂φ/∂x2 = 0. Solving these equations for x1 and x2, we obtain
x1 = x2 = 1/5. For more details, see Section 5 in [31]. Thus, in our simulation
framework x1 = x2 = 1/5 are the true theoretical optimal operating conditions
when the process mean and variance are known and are denoted as xoc

1 = 1/5 and
xoc

2 = 1/5. The goal of the two simulations is to evaluate the performance of the
proposed Methods 1–4 comparing the estimated optimal operating conditions with
the true theoretical optimal operating conditions.
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4.3 Simulation Design Points

In both simulations, the design points used are exactly the same. We considered a
standard 3×3 factorial design with three levels. That is, the design points are located
at (x1i , x2i ) with x1,i = −1, 0, 1 and x2,i = −1, 0, 1. Therefore, nine design points
are used in each simulation. Also, it is assumed that there are m = 50 replicates at
each design point.

4.4 The Optimization Formulation

Note that the estimated operating conditions are obtained using the formulation
described earlier, namely, the minimization of the squared-loss optimization model:{
M̂(x)−T0

}2+exp
(
V̂log(x)

)
where T0 is the customer-identified target value for the

quality characteristic of interest. This formulation results in the optimal operating
conditions which minimize the MSE in (9) for each of Methods 1–4.

We should point out that the “optim” function in R Core Team [54] using the
option for box-constrained optimization along with the Nelder–Mead algorithm
is used to minimize the objective function. In each simulation, the number of
repetitions is set to I = 10,000 so that 10,000 estimated optimal operating
conditions are obtained for each of the proposed Methods 1–4.

4.5 Generating the Sample Observations in Each Simulation

As explained previously, in simulation A, the observations are generated using a
contamination scheme and, in simulation B, the observations are generated based
on a normal model departure scheme. We provide the details of the two approaches
in what follows.

4.5.1 Simulation A: Contamination

Generating the sample observations for the baseline scenario where there is no
contamination is quite straightforward. Recall that, at each design point, the
response functions, M(xi ) and variance V (xi ), are known exactly. Therefore, for
the case of no contamination, a random sample of size m = 50 is generated from
the normal distribution with mean M(xi ) and variance V (xi ) at each design point
xi = (x1i , x2i ) where i = 1, 2, . . . , 9.

Clearly, the goal of the simulation is to investigate the robustness properties
of the proposed estimation methods. One way to achieve this goal is to use an
approach analogous to that often used for studying the robustness properties of the
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empirical influence function [55] and the ε-influence function [42, 56]. Essentially,
our approach assesses how the relative efficiency of the respective estimator is
influenced by the artificial contamination level of the sample.

For the scenario where the data set is assumed to be contaminated, instead of
using the pure normal data set, we contaminate 10% of the responses. Again, since
the response functions are known exactly, we implement the contamination scheme
by using the following mixture model for the observations:

Y ∼ (1 − π) ·N(M(x), V (x))+ π ·N(M∗
c (x), V (x)

)
, (19)

where π = 0.1 (contamination proportion) and M∗
c (x) = T ∗

c + 5(x2
1 + x2

2)

(contaminated mean response) with T ∗
c = 60, 70, 80. In this manner, the mean

response is contaminated by increasing the target value characteristic of T0 = 50
first by 10, then 20 and finally 30.

The contamination scenario was then replicated I = 10,000 times resulting in
10,000 optimal operating conditions for Methods 1–4 at each of the three levels of
contamination: T ∗

c = 60, 70, 80. Notice that the contamination scheme used here is
slightly different from that used in [31] where a delta noise scheme is used rather
than a mixture model.

4.5.2 Simulation B: Normal Model Departure

Since the response functions are identical to those in simulation A, generating the
sample observations for the baseline scenario where there is no model departure is
done exactly in the same way as it was done for the baseline case of simulation A.
A random sample of size m = 50 is generated from the normal distribution with
mean M(xi ) and variance V (xi ) at each design point xi = (x1i , x2i ) where i =
1, 2, . . . , 9.

For the scenario where normal departure is assumed, we consider six alternative
distributions. These are

1. The Student t-distribution with three degrees of freedom,
2. The Student t-distribution with four degrees of freedom,
3. The Student t-distribution with five degrees of freedom,
4. The Laplace distribution,
5. The logistic distribution, and
6. The uniform distribution.

Again, at each design point, the response functions, M(xi ) and variance V (xi ),
are known exactly and are the same as those in simulation A. Therefore, generating
the sample observations such that they come from the respective distributions
is reasonably straightforward aside from one difficulty. Recall that the goal is
to generate a random sample of size m = 50 from the respective distribution
with mean M(xi ) and variance V (xi ) at each design point xi = (x1i , x2i ) where
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i = 1, 2, . . . , 9. Therefore, when generating samples in the normal model departure
simulation, we need to generate each of the samples from the respective non-normal
distribution in such a manner that the mean at the design point xi equals M(xi )
and the variance at the same design point equals V (xi ). Specifically, we need to
determine the parameter values associated with the respective distributions such that
we satisfy

E
(
Yij
) = E[M(xi )+ Uij

] = M(xi ) (20)

and

Var
(
Yij
) = Var

[
M(xi )+ Uij

] = Var
(
Uij

) = V (xi ) (21)

at each design point xi .
An example should clarify the issue. Consider the normal departure scenario

where one wants to generate samples from the Laplace distribution. By definition,
a standard Laplace random variable, Uij , has a mean equal to zero and variance
equal to two. Thus, in the case of the Laplace distribution, if we randomly generate
our samples, Yij , using Yij = M(xi ) + 1/

√
2 · V (xi )1/2 · Uij , we obtain E

(
Yij
) =

M(xi ) and Var
(
Yij
) = V (xi ). Notice that this is exactly what we want the mean and

variance to be at the design point xi as described in (20) and (21).
A similar approach can be used for the other distributions. In the case of the

logistic distribution, a standard logistic random variable, Uij , has a mean equal
zero and variance equal to π2/3. Therefore, if we generate our logistic samples
using Yij = M(xi ) + √

3/π · V (xi )1/2 · Uij , then clearly the mean of Yij will be
equal to M(xi ) and the variance of Yij will be equal to V (xi ). In the case of the
three t-distributions, a similar argument applies. A t-distributed random variable
with ν degrees of freedom, Uij , has mean equal to zero and variance ν/(ν − 2).
Therefore, we obtain the desired mean and variance by generating samples using
Yij = M(xi ) + {(ν − 2)/ν}1/2 · V (xi )1/2 · Uij . Finally, consider the case of
the uniform distribution. If Uij is a uniform random variable in (−1, 1), then it
is straightforward to show that its variance is equal to 1/3. Therefore, by using
Yij = M(xi ) + √

3 · V (xi )1/2 · Uij , we will obtain samples with mean equal to
M(xi ) and variance equal to V (xi ).

4.6 Simulation Performance Results

The two simulations, A and B, were run and the 10,000 optimal operating conditions
were obtained for both the baseline case and non-baseline case. In the next two
sections, we report various results associated with simulation A and simulation B
respectively.
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4.6.1 Simulation A: Contamination

In Fig. 1, we plotted the optimal operating conditions for both the baseline case and
non-baseline case using each of the proposed Methods 1–4. It turned out that the
results in simulation A were quite similar for T ∗

c = 60, 70 and 80 so we only plotted
the results where T ∗

c = 60. Also, only the first 100 out of the 10,000 resulting data
points were included in Fig. 1 because it becomes quite difficult to see the pattern if
one uses the complete set of 10,000 data points.

Also, in Fig. 1, the circles denote the optimal operating conditions without
contamination, the baseline case, while the crosses denote the optimal operating
conditions with contamination, the non-baseline case. Recall that the true opti-
mal operating conditions are located at (xoc

1 , x
oc
2 ) = (1/5, 1/5). Therefore, it

is clear that, under Method 1, the optimal operating conditions obtained under
contamination are shifted away from the true optimal operating condition locations.
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Fig. 1 The optimal operating conditions obtained using Methods 1–4
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Conversely, those obtained using Methods 2–4 do not result in the same shift. This
result is consistent with the fact that the sample mean and the sample variance are
extremely sensitive to contamination while the other methods are less sensitive.

In order to obtain additional insight, in Fig. 1, we also plotted the contours
from the two-dimensional kernel densities [57] of the optimal operating conditions.
Unlike in the case of the scatter plots, we were able to use the complete set of 10,000
optimal operating conditions when drawing the contours. In the case of Method 1,
the contours are clustered more closely than the other methods which is consistent
with the notion that the sample mean and the sample variance are efficient estimators
in the case of no contamination.

Although the plots in Fig. 1 illustrate the utility of Methods 2–4, they do not offer
the ability to discern which methods stand out in terms of their performance. A more
useful approach would be one that expresses the relative performance of Methods 2–
4 to the performance of Method 1 when Method 1 is used in the no contamination
case. This approach would be particularly effective because it is already known that
the performance of Method 1 in the no contamination case is optimal.

Recall that, in Sect. 2, we introduced the concept of relative efficiency as defined
in (15). Unfortunately, the usual relative efficiency measure can be used only
when the estimates being compared are univariate. However, the estimated optimal
operating conditions obtained in our simulations are bivariate. In order to deal
with this multivariate issue, we use the generalized variance of each estimator
which is the determinant of the covariance matrix of the bivariate estimates. For
more details on the generalized variance, one is referred to [58, 59]. The first
step to calculating the generalized variance is to calculate the variance-covariance
matrix associated with each Method � using the true optimal operating conditions,
(xoc

1 , x
oc
2 ) = (1/5, 1/5), as the population location-scale parameters. The variance-

covariance matrix resulting from the estimates using Method � is easily obtained as

S� =

⎛

⎜⎜⎜⎜⎝

1

I

I∑

i=1

(
x̂�,1,i − 1

5

)2 1

I

I∑

i=1

(
x̂�,1,i − 1

5

) (
x̂�,2,i − 1

5

)

1

I

I∑

i=1

(
x̂�,1,i − 1

5

) (
x̂�,2,i − 1

5

) 1

I

I∑

i=1

(
x̂�,2,i − 1

5

)2

⎞

⎟⎟⎟⎟⎠
, (22)

where I is the replication number in the Monte Carlo simulation and (x̂�,1,i , x̂�,2,i )
denotes the estimated optimal operations conditions using Method � in the ith
iteration. Then, using (22), the relative efficiency of Method � to Method 1 based on
the generalized variance [31, 32] is defined as

REGV(Method � | Method 1) = ‖S1‖
‖S�‖ , (23)

where ‖ · ‖ denotes the determinant of a matrix and � = 1, 2, 3, 4. It should be
noted that the variance-covariance matrix, S1, in the numerator of (23) is obtained
by using Method 1 with no data contamination.
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Table 2 Generalized variances (×106)

Method Method 1 Method 2 Method 3 Method 4

No contamination 2.43013 10.11812 2.952882 3.401389

Contamination (T ∗
c = 60) 280.16099 12.38782 7.226525 7.204433

Contamination (T ∗
c = 70) 4643.16815 12.36313 7.073645 7.074748

Contamination (T ∗
c = 80) 26015.40587 12.36313 7.369051 7.074732

Table 3 Relative efficiencies (%) of each method to Method 1 (without contamination) based on
the generalized variance with T ∗

c = 60, 70, 80

Method Method 1 Method 2 Method 3 Method 4

No contamination 100.00% 24.02% 82.30% 71.45%

Contamination (T ∗
c = 60) 0.87% 19.62% 33.63% 33.73%

Contamination (T ∗
c = 70) 0.05% 19.66% 34.35% 34.35%

Contamination (T ∗
c = 80) 0.01% 19.66% 32.98% 34.35%

Method 1 Method 2 Method 3 Method 4

No contamination

0

50

100

150

Contamination (T∗
0 = 60)

Contamination (T∗
0 = 70)

Contamination (T∗
0 = 80)

Fig. 2 Relative efficiencies (%) of each method under consideration to Method 1 (without
contamination)

Using (23), we calculate the generalized variances and provide them in Table 2.
More importantly, the relative efficiencies of all the methods to Method 1 were
calculated and are provided in Table 3. In order to obtain a visual illustration of
the relative efficiencies, we summarize them again using the bar-chart in Fig. 2.
Two narratives emerge from Tables 2, 3 and particularly Fig. 2. The first is that
Methods 2–4 clearly outperform Method 1 in terms of their relative efficiency
when the data is contaminated. In fact, as one would expect, the performance of
Method 1 is extremely poor because of the zero breakdown point of the sample
mean and the sample variance. As expected, when the data is not contaminated,
Method 1 expectedly stands out as the ideal estimation method. Yet, even in the case
of no contamination, Method 3 and Method 4 are quite competitive with relative
efficiencies of 81.30% and 71.45% respectively.
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4.6.2 Simulation B: Normal Model Departure

The scatter plots of the estimated optimal operating conditions using the generated
observations were plotted in Park et al. [32]. Thus, for the scatter plots generated
by Methods 1–3, the reader is referred to Figures 2–8 in [32]. Also, since the shape
of the scatter plot of the estimated optimal operating conditions using Method 4 is
quite similar to those in [32], we decided to omit the Method 4 scatter plot also.
Just as was the case in Simulation A, a single-number representing a performance
metric is generally more objective and useful than the use of scatter plots. Therefore,
we decided to calculate the relative efficiencies of Methods 1–4 resulting from
simulation B.

The generalized variances resulting from the simulations are shown in Table 4.
Notice that the relative efficiency for simulation B is calculated using a slightly
different baseline approach than that used in simulation A. Since simulation B is
a model departure simulation, obviously the concept of contamination versus no-
contamination does not exist. Therefore, the relative efficiency is calculated so that
the same distribution is used in the numerator and the denominator. Using this
approach, only the estimation methods are being compared. An example should
clarify the calculation. Consider the relative efficiency calculation for Method 2
when the underlying distribution is uniform. In this case, the numerator is the
determinant of the generalized variance resulting when Method 1 is used and the
underlying distribution is uniform. Similarly, the denominator is the determinant
of the generalized variance resulting when Method 2 is used and the underlying
distribution is also uniform. Therefore, in general, the simulation B relative
efficiency is calculated so that the same underlying distribution assumption is used
in both the numerator and the denominator. Therefore, the baseline can be viewed
as Method 1 rather than not contaminated (i.e., the normal distribution ) as was the
case in simulation A.

The simulation B relative efficiencies are provided in Table 5 and also sum-
marized using the bar-chart in Fig. 3. By definition, the relative efficiencies in the
Method 1 column of Table 5 are always 100% and therefore provide no additional
information. The key result is that, in the case of model departure, Methods 3 and 4
exhibit superior relative performance when compared with Methods 1 and 2. Notice
that, even in the case of no model departure where the underlying distribution is

Table 4 Generalized
variances (×106) of each
method under consideration

Distribution Method 1 Method 2 Method 3 Method 4

Normal 2.3305 9.6682 2.8258 3.2882

t (df = 3) 24.0699 14.6284 7.2100 8.0266

t (df = 4) 10.1848 12.2450 5.0687 5.7177

t (df = 5) 6.5478 11.3380 4.3306 4.9551

Laplace 6.1039 16.3641 6.1995 8.0322

Logistic 3.6768 10.5310 3.6259 4.2265

Uniform 1.0187 13.8284 1.2664 1.1388
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Table 5 Relative efficiencies (%) of each method using the respective Method 1 distribution in the
numerator

Distribution Method 1 Method 2 Method 3 Method 4 κ − 3 τ4

Normal 100.0% 24.1% 82.5% 70.9% 0 0.1226

t (df = 3) 100.0% 164.5% 333.8% 299.9% ∞ 0.2612

t (df = 4) 100.0% 83.2% 200.9% 178.1% ∞ 0.2168

t (df = 5) 100.0% 57.8% 151.2% 132.1% 6 0.1936

Laplace 100.0% 37.3% 98.5% 76.0% 3 0.2357

Logistic 100.0% 34.9% 101.4% 87.0% 1.2 0.1667

Uniform 100.0% 7.4% 80.4% 89.5% −1.2 0

The kurtosis of each distribution is shown in the last column

Method 1 Method 2 Method 3 Method 4

Normal
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t (df=4)
t (df=5)
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Fig. 3 Relative efficiencies (%) of each method under consideration to Method 1

normal, the performance of Method 3 and Method 4 is still quite reasonable with
resulting relative efficiencies of 82.50% and 70.90% respectively.

The other interesting narrative that Table 5 hints at is the possible systematic
relation between the method estimation performance and the kurtosis of the
respective underlying distribution. Park et al. [32] suggested the use of kurtosis as
means of measuring the degree to which a non-normal distribution signifies normal
model departure. An informal argument is that a positive kurtosis value implies
heavier tails than those of the normal distribution and a negative value implies
lighter tails. Therefore, from a statistical inference point of view, heavier tails tend
to be much more problematic than lighter tails which supports the idea that positive
values of kurtosis can be associated with greater levels of normal departure. For
more detailed discussions regarding the properties of kurtosis, one is referred to
[32, 60, 61].

Notice that we include the kurtosis of each distribution in the sixth column of
Table 5. The pattern that emerges from Table 5 is that, as the kurtosis increases, the
performance of Method 3 and Method 4 improves dramatically. What this means is
that Methods 3 and 4 are extremely efficient in the case where the normal model
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departure is more severe in the sense of heavier tails. This particularly evident in the
case of the Student t-distributions where the kurtosis is extremely large and Method
3 and Method 4 exhibit excellent relative performance.

The one problem with the notion that the kurtosis is positively related to the
performance of Methods 3 and 4 is that the standard kurtosis measure tends to
approach infinity quite quickly. Any distribution with heavier tails than the Student
t-distribution with four degrees of freedom will have a value of kurtosis equal
to ∞. Therefore, using the conventional measure of kurtosis is not an effective
way of measuring the degree of normal model departure, particularly for heavier
tailed distributions. In order to circumvent this problem, we suggest the use of
the L-kurtosis which was originally developed by Hosking [62]. Similar to the
conventional kurtosis measure, the L-kurtosis measures the heaviness of the tails
of a distribution. The advantage of the L-kurtosis is that, although the definition is
somewhat more complex, it does not possess the ∞ behavior of the conventional
kurtosis measure. The L-kurtosis is defined as

τ4 = λ4

λ2
.

Here, λ2 and λ4 are defined as

λ2 = 1

2
E
(
X(2:2) −X(1:2)

)
,

and

λ4 = 1

4
E
(
X(4:4) − 3X(3:4) + 3X(2:4) −X(1:4)

)
,

where X(k:n) is an order statistic representing the kth smallest value in a sample of
size n. For more details, see Hosking [62].

The last column of Table 5, contains the L-kurtosis measure of each respective
distribution. Note that the positive relationship between the L-kurtosis and the
performance of Methods 3 and 4 is still quite evident.

5 Concluding Remarks

In this chapter, we have provided the background behind a dual response surface
methodology that incorporates robust design. We also introduced and described
estimators and procedures that can be used for outlier-resistant location and scale
estimation of the dual response surfaces.

Through the use of two large scale simulations, we provided empirical evidence
that, Method 3, which uses Hodges–Lehmann estimator for scale and the Shamos
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estimator for scale, results in solid estimation performance when contamination
or normal model departure exists in the underlying sample. The same solid
performance also resulted from Method 4 which uses the Huber estimator for
location and the Rousseeuw-Croux estimator for scale.

In the case of normal departure, our simulation indicated a systematic connection
between the level of kurtosis in the true distribution and the performance of Methods
3 and 4. Given that the performance of Methods 3 and 4 were quite similar and
that the breakdown points of the Method 3 estimators and Method 4 estimators
are 29% and 50% respectively, we strongly suggest the use of Method 4 if one
is interested in incorporating a robust design methodology into the dual response
surface framework.
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Defects Driven Yield and Reliability
Modeling for Semiconductor
Manufacturing

Tao Yuan, Suk Joo Bae, and Yue Kuo

Abstract Manufacturing processes of modern ultra-large-scale integrated circuits
are highly complex and costly. Defects generated in the manufacturing processes
are unavoidable and affect not only manufacturing yield but also device reliability.
In this reason, accurate modeling of the spatial defects distribution is imperatively
important for yield and reliability estimation as well as process improvement.
Defects on semiconductor wafers tend to cluster, which introduces excessive zeros,
causing over-dispersion in defect count data. This chapter discusses some latest
development in modeling the non-homogeneously distributed spatial defect counts,
focusing on Bayesian spatial regression approaches based on Poisson models,
negative binomial models, and zero-inflated models. Real wafer map data are used to
evaluate the performance of these models. In addition, the yield models are extended
to build extrinsic reliability models based on a defect-growth concept.

1 Introduction

The semiconductor industry has been flourished along with the development of
smart devices, e.g., smart phones and tablet PCs. Because the price of semiconductor
products decline rapidly throughout the life of a new technology, the ability to ramp
yield quickly after the introduction of new technology is fundamental to earning
high revenues. Yield is usually defined as the ratio of the number of usable items
after completion of production to the number of potentially usable items at the
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beginning of production [15]. It is an important performance measure in semicon-
ductor manufacturing and has been widely used as a key index of profitability and
productivity for business [1]. To secure high revenues in a challenging environment,
the need for accurate yield prediction in order to evaluate productivity and estimate
production costs is essential.

Integrated circuits (ICs) are highly vulnerable to defects generated in the complex
and costly semiconductor fabrication processes. When a defect, defined as a varia-
tion in quality, is located in a defect-sensitive area (called “critical area”), it results in
yield loss and is called a fault (or called “yield defect”). On the other hand, defects
that do not cause immediate yield loss may sometimes cause potential reliability
issues and are called latent defects or reliability defects. Accurate modeling of
the spatial defects distribution is imperatively important for yield and reliability
estimation as well as process improvement.

In general, defective IC chips occur close to one another on a semiconductor
wafer. Similarly, defect-free chips are found adjacent to one another. These defect
patterns cause over-dispersion in defect count data with excess zeros. Models
ignoring such clustered defects patterns may risk grossly underestimating the true
yield. This chapter discusses spatial modeling approaches for IC yield estimation,
mainly via Bayesian regression models. Moreover, the yield models are extended to
build extrinsic reliability models via a defect-growth concept.

1.1 Yield Modeling

To give a brief review on yield models based on statistical modeling of defect
counts, we first define the term of fault probability, which is the probability of
a random defect being a fault. This probability depends on the defect’s size and
location. Let the random variable S denote the random defect size with probability
density function f (s), and let Ac(s) be the critical area of defect size s. The average
critical area is then given by Ac = ∫∞

0 Ac(s)f (s)ds. The fault probability is
defined as Φ = Ac/B, where B is the total area on which a defect can fall. The
conventional Poisson yield model assumes that defects are randomly distributed and
the occurrence of a defect at any location is independent of the occurrence of any
other defects. The probability that a device contains x defects is calculated by the
Poisson distribution

P(X = x) = e−λλx

x! , x = 0, 1, 2, . . . , (1)

where the random variable X denotes the nonnegative defect count on a randomly
selected device and λ > 0 is the average number of defects on a device. The Poisson
yield is the probability of zero faults on a device given by

Y = e−Φλ, (2)
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where Φλ is the average number of faults on a device. However, defects on
semiconductor wafers tend to cluster [8] and as a result the observed defect counts
usually exhibit over-dispersion with an excessive fraction of zeros that exceeds the
Poisson probability of zero. For this reason, the Poisson yield model usually predicts
a yield that is lower than the true yield [15]. To account for the over-dispersed
defect counts, compound Poisson yield models have been developed. A compound
Poisson yield model assumes that the defect density is a random variable instead
of a constant as assumed by the Poisson yield model. Different defect density
distributions lead to various compound Poisson yield models, e.g., the negative
binomial (NB) model, Murphy’s model, and Seed’s model [15]. The widely used
NB yield model is obtained by assuming that the defect density is a gamma random
variable, and the random number of defects on a device follows the NB distribution

P(X = x) = �(α + x)
�(α)�(x + 1)

(
λ

λ+ α
)x (

α

λ+ α
)α
, x = 0, 1, 2, . . . ,

where �(·) is the Gamma function and α > 0 is the clustering coefficient. The
limiting case of α → ∞ becomes the Poisson distribution. The NB yield is given by

Y =
(

α

Φλ+ α
)α

=
(

1 + Φλ

α

)−α
.

Besides the Poisson and NB distributions, other count distributions, e.g., the
generalized Poisson (GP) distribution and generalized double-Poisson distribution,
have been applied to yield modeling [20, 22]. The GP and NB distributions, in
many situations, provide very close results [11]. The generalized double-Poisson
distribution assumes that centers of defect clusters are randomly distributed and the
defects within a cluster are also homogeneously distributions.

To consider the excess zeros in the clustered defect counts, yield models based on
zero-inflated and hurdle-at-zero distributions have been proposed [22]. It has been
found that zero-inflated and hurdle-at-zero distributions always produce maximum
likelihood yield estimates that are equal to the observed yields. Recognizing that
defect distribution exhibits spatial variation, spatial regression yield models have
been developed. Bae et al. [1] proposed Poisson regression, NB regression, and
zero-inflated Poisson (ZIP) regression yield models, including spatial locations
of chips as covariates. Maximum likelihood method was employed to estimate
model parameters and yield. Later, Yuan et al. [23] studied those three regression
models and a new zero-inflated NB (ZINB) regression yield model in a hierarchical
Bayesian modeling framework.

There have been other yield prediction and improvement approaches that utilize
artificial intelligence or machine learning techniques to identify critical process
variables influencing yield [3, 12, 17, 19, 21]. Additionally, Hwang et al. [9] recently
proposed a yield model using the spatial nonhomogeneous Poisson process (NHPP)
to model the spatial distribution of defects. Those yield modeling approaches are
excluded from the discussion in this chapter.
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1.2 Yield-Reliability Relation Modeling

Because defects are responsible for both yield losses and potential early reliability
failures, there have been attempts to directly estimate the device reliability from the
yield information. Note that the focus of the yield-reliability relation modeling is
on the prediction of extrinsic reliability, which is determined by the manufacturing
defects. Huston and Clarke [6] presented a yield-reliability relation by

R = YAR/AY ,

where Y is the Poisson probability of zero yield defects, R is the Poisson probability
of zero reliability defects, and AR and AY are the reliability and yield critical
areas, respectively. Kuper et al. [16] developed a different yield-reliability relation
given by

R = (Y/δ)DR/DY ,

where δ is a parameter for clustering effects and edge exclusions, and DR and DY
are, respectively, the reliability and yield defect densities. The above two definitions
of reliability, however, are not time-dependent. Kim and Kuo [13] later proposed a
time-dependent Poisson yield-reliability relation model given by

R(t) = Y c(t)

where the time-dependent factor c(t) is determined by the defect growth during
[0, t]. That is, the defect size (or severity) increases with time under operation.
When a defect’s size exceeds a failure threshold, a reliability failure occurs. A
similar gamma yield-reliability relation model based on the NB yield model was
also developed [13, 14]. Hwang [7] developed a statistical defect-growth model
and proposed an extrinsic reliability model based on the spatial NHPP yield model
presented in [9]. Recently, Yuan et al. [24] described the defect-growth process by
a random-coefficient degradation model and proposed new Poisson and NB yield-
reliability relation models.

1.3 Organization of This Chapter

The remainder of this chapter is organized as follows. Section 2 presents Bayesian
spatial regression yield models including the Poisson, NB, ZIP, and ZINB regression
models and compares them using two examples. Section 3 presents new spatial
regression yield-reliability relation models and illustrate those models using one
example. Finally, Sect. 4 concludes this chapter.
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2 Yield Modeling via Bayesian Spatial Regression of Defect
Counts

This section presents the Bayesian spatial regression yield models based on the
Poisson and NB distributions, including the Poisson regression, NB regression, ZIP
regression, and ZINB regression models. Section 2.1 introduces those regression
models for individual wafers, and Sect. 2.2 discusses hierarchical Bayesian regres-
sion models for multiple wafers.

2.1 Bayesian Spatial Regression Models for Individual Wafers

This section presents four Bayesian spatial regression models for defect counts on
a single wafer. Suppose that a wafer is partitioned into n mutually exclusive chips.
Let zi and Xi , for i = 1, 2, . . . , n, denote the spatial location of the ith chip’s
center on the wafer and random defect count in the ith chip, respectively. Denote
x = {x1, x2, . . . , xn} the observed defect count dataset on a wafer.

The Poisson regression model assumes that the random defect count Xi follows
the Poisson distribution with a mean λi that is dependent on the location zi , that is,

P(Xi = xi) = e−λi λxii
xi ! , xi = 0, 1, 2, . . . ,

where λi is related to zi via a generalized linear function g(λi) = f (zi )
T β [1].

Herein g(·) denotes a link function and the natural logarithm link is selected for
the positive Poisson mean parameter, i.e., log(λi) = f (zi )

T β [1]. f (zi ) represents
the vector of spatial covariates and β is the vector of regression coefficients. We
choose zi = (ri, φi), the polar coordinates of the ith chip center relative to the
wafer center, and f (zi ) = (1, ri , cosφi, sinφi, ri cosφi, ri sinφi)T [1]. To
complete the Bayesian model specification, prior distributions are needed for the
model parameters, which will be discussed at the end of this section.

The NB regression model computes the probability P(Xi = xi) according to the
NB distribution

P(Xi = xi) = �(α + xi)
�(α)�(xi + 1)

(
λi

λi + α
)xi ( α

λi + α
)α
, xi = 0, 1, 2, . . . ,

where the mean parameter λi is again assumed to be dependent on the spatial
covariates via log(λi) = f (zi )

T β. The unknown parameters of the NB regression
model include β and α.
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The ZIP regression model is specified as

P(Xi = 0) = πi + (1 − πi)e−λi ,

P (Xi = xi) = (1 − πi)e
−λi λxii
xi ! , xi = 1, 2, . . . ,

where the mean parameter λi and probability of extra zeros πi are related to the
spatial covariates via log(λi) = f (zi )

T β and logit(πi) = f (zi )
T γ , respectively.

The ZINB regression model is given by

P(Xi = 0) = πi + (1 − πi)
(

α

λi + α
)α
,

P (Xi = xi) = (1 − πi) �(α + xi)
�(α)�(xi + 1)

(
λi

λi + α
)xi ( α

λi + α
)α
, xi = 1, 2, . . . ,

where, again, log(λi) and logit(πi) are linear combinations of the spatial covariates
f (zi ), i.e., log(λi) = f (zi )

T β and logit(πi) = f (zi )
T γ .

Prior distributions are crucial components of Bayesian models. The prior distri-
butions should accurately reflect one’s prior knowledge on the model parameters.
Non-informative prior distributions would be desired when there is a lack of prior
knowledge. For the regression coefficient vectors β and γ , we assume independent
multivariate normal (MVN) prior distributions, i.e., β ∼ MVNν(μβ , �β) and
γ ∼ MVNν(μγ , �γ ), where ν = 6 is the length of the regression coefficient
vectors, and μ and � are, respectively, the MVN mean vector and variance-
covariance matrix. TheMVNν(0ν, 106I ν) distribution is a proper non-informative
prior for regression coefficient vectors, where 0ν and I ν are a zero vector of length
ν and a ν × ν identity matrix, respectively.

For the positive NB dispersion parameter α, we choose a Gamma prior distri-
bution G(a, b), where the a and b are shape and scale parameters, respectively.
If a non-informative prior is needed for the dispersion parameter, one can choose
G(0.001, 0.001) or G(1, 0.001) [4].

Bayesian inference on the model parameters is based on the posterior distribution
derived according to the Bayes’ theorem

f (θ |x) ∝ f (x|θ)f (θ),

where f (θ |x), f (x|θ) and f (θ) denote the joint posterior distribution, likelihood
function and joint prior distribution, respectively. Herein the vector θ denotes a
model’s parameters. For example, θ ≡ β and θ ≡ (β, γ , α) for the Poisson
and ZINB regression models, respectively. The likelihood function f (x|θ) of the
observed data x for a given model is computed by
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f (x|θ) =
n∏

i=1

P(Xi = xi |θ),

where P(Xi = xi |θ) for different models have been presented above in this section.
The yield estimated by a model conditioning on its model parameters θ is given

by [1]

Y = 1

n

n∑

i=1

P(Xi = 0|θ). (3)

In principal, the posterior distribution of yield, denoted by f (Y |x), can be derived
from f (θ |x) via transformations of random variables according to the relationship
given by Eq. (3).

In theory, marginal posterior distributions for model parameters f (β|x), f (γ |x),
and f (α|x) as well as for yield f (Y |x) can be derived from f (θ |x). However,
the derivation of those marginal posterior distributions involves high-dimensional
integrals. Instead, one may implement Markov chain Monte Carlo (MCMC)
simulation based sampling algorithms, e.g., Gibbs sampling, to obtain random
samples from those marginal posterior distributions [5]. Each iteration of Gibbs
sampling draws a value of one parameter from its conditional posterior distribution
conditioning on the latest values of all other parameters. When the number of
iterations is large enough, the values drawn from one parameter’s conditional
posterior distribution can be regarded as a random sample generated from its
marginal posterior distribution. In each iteration, a yield value can be calculated
using the parameter values drawn in that iteration according to Eq. (3). After the
completion of Gibbs sampling, all the calculated yield values form a random sample
from f (Y |x). Sample statistics can then be used to construct point and interval
estimates.

2.2 Hierarchical Bayesian Spatial Regression Models
for Multiple Wafers

This section extends the regression models presented in Sect. 2.1 to build hierar-
chical Bayesian regression models. We assume that defect count data on m wafers
having identical pattern of n chips on each wafer are available and denote the defect
count data by x = {x1, x2, . . . , xm}, where the defect count data on the j th wafer
xj = {x1j , x2j , . . . , xnj } with xij being the number of defects in the ith chip at
location zij on the j th wafer, for i = 1, 2, . . . , n and j = 1, 2, . . . , m. In addition,
let the random variable Xij denote the random defect count in the ith chip on the
j th wafer.
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We first illustrate how to construct a three-stage hierarchical Bayesian Poisson
regression model. The first-stage model specifies a Poisson regression for each
wafer as

P(Xij = xij |ϑj ) = e−λij λxijij
xij ! , with log(λij ) = f (zij )βj ,

for xij = 0, 1, . . ., i = 0, 1, . . . , n, and j = 1, 2, . . . , m. Each individual wafer is
assumed to have its own Poisson regression parameters ϑj ≡ βj .

In the second stage, the Poisson regression parameters of individual wafers
are assumed to form a random sample from a multivariate distribution f (ϑ |ϕ)
with hyperparameters ϕ, that is, ϑj ∼ f (ϑ |ϕ), for j = 1, 2, . . . , m. The
MVN distribution is usually employed in random-effects and hierarchical Bayesian
models to describe unit-to-unit variations, that is,

ϑj ∼ MVNν(μϑ , �ϑ ), j = 1, 2, . . . , m.

Herein ϕ = (μϑ ,�ϑ ).
The third stage specifies a joint prior distribution for the hyperparameters μϑ

and �ϑ . A MVN prior distribution is assumed for the mean vector μϑ , i.e.,
μϑ ∼ MVNν(u,C), with u and C denoting the mean vector and variance-
covariance matrix, respectively. A scaled-inverse-Wishart prior [2] is employed for
the variance-covariance matrix �ϑ . The �ϑ is first decomposed as

�ϑ = �Q�,

where � is a diagonal matrix with positive diagonal terms denoted by δ1, δ2, . . . , δν ,
and Q is a symmetric positive-definite matrix. Next, independent inverse-Wishart
(IW ) and Gamma prior distributions are specified for the Q matrix and δk terms:

Q ∼ IW(ρ,W ) and δk ∼ G(ak, bk), k = 1, 2, . . . , ν,

where ρ and W are the degrees-of-freedom and scale matrix of IW distribution, and
ak and bk are shape and scale parameters of Gamma distribution. Especially, one can
choose the IW(ν + 1, I ν) andG(0.001, 0.001) priors for Q and δk’s, respectively,
to form a noninformative prior for �ϑ [2].

Three-stage hierarchical Bayesian NB, ZIP, and ZINB regression models can be
similarly constructed. The first stage specifies a regression model for each individual
wafer:

P(Xij = xij |ϑj ), xij = 0, 1, 2, . . . ,

for i = 1, 2, . . . , n and j = 1, 2, . . . , m.
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For the NB regression model

P(Xij = xij |ϑj ) = �(αj + xij )
�(αj )�(xij + 1)

(
λij

λij + αj
)xij ( αj

λij + αj
)αj

, xij = 0, 1, 2, . . . ,

where log(λij ) = f (zij )
T βj and ϑj ≡ (βj , log(αj )) with ν = 7.

For the ZIP regression model

P(Xij = xij |ϑj ) =
⎧
⎨

⎩
πij + (1 − πij )e−λij , xij = 0,

(1 − πij ) e
−λij λ

xij
ij

xij ! , xij = 1, 2, . . . ,

where logit(πij ) = f (zij )
T γ j , log(λij ) = f (zij )

T βj , and ϑj ≡ (αj , βj ) with
ν = 12.

For the ZINB regression model

P(Xij = xij |ϑj ) =
⎧
⎨

⎩
πij + (1 − πij )

(
αj

λij+αj
)αj
, xij = 0,

(1 − πij ) �(αj+xij )
�(αj )�(xij+1)

(
λij

λij+αj
)xij ( αj

λij+αj
)αj
, xij = 1, 2, . . . ,

where logit(πij ) = f (zij )
T γ j , log(λij ) = f (zij )

T βj , ϑj ≡ (αj , βj , log(αj )),
and ν = 13.

The second stage describes the wafer-to-wafer variation by assuming ϑj ∼
MVNν(μϑ , �ϑ ), for j = 1, 2, . . . , m. When constructing the NB, ZIP, and ZINB
regression models, the previous study [23] assumed that βj , γ j , and log(αj ) follow
independent distributions (i.e., MVNs for βj and γ j , and univariate normal for
log(αj )) in the second-stage model; while this study uses one joint MVN for all
stage-one parameters ϑ .

Finally, the third stage specifies theMVN and scaled-inverse-Wishard priors for
μϑ and �ϑ , respectively. The joint posterior distribution of all model parameters
can be derived as

f (ϑ1, . . . ,ϑm,μϑ ,Q, δ1, . . . , δν |x)

∝
⎡

⎣
m∏

j=1

n∏

i=1

P(Xij = xij |ϑj )
⎤

⎦× exp

[
−
∑m
j=1(ϑj − μϑ )

T�−1Q−1�−1(ϑj − μϑ )

2

]

× exp

[
− (μϑ − u)T V −1(μϑ − u)

2

]
× |Q|− ν+ρ+1

2 exp

[
− tr(SQ−1)

2

]

×
ν∏

k=1

δ
−ak−1
k e−bkδk .
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The Gibbs sampling algorithm is employed to obtain random samples from the
marginal posterior distributions f (μϑ |x), f (�ϑ |x), f (ϑj |x) and f (Yj |x), for
j = 1, 2, . . . , m, where Yj is the yield of the j th wafer.

2.3 Illustrative Examples

This section uses two examples to compare the yield models discussed in Sect. 2.
Example 1 involves defect count data on one wafer, and the individual Bayesian
models are implemented and compared with the maximum likelihood method.
Example 2 considers defect counts on three wafers. The maximum likelihood,
individual Bayesian, and hierarchical Bayesian are applied to Example 2. For
convenience, we assume that every defect is a fault in the examples, i.e., Φ = 1.

2.3.1 Example 1

Figure 1 shows the defect-count data on a wafer map in Example 1. Tyagi and
Bayoumi [20] applied the generalized double-Poisson yield model to analyze this
data set. Bae et al. [1] later adopted this wafer map to demonstrate the Poisson
regression, NB regression, and ZIP regression yield models using the maximum
likelihood method. There are n = 400 chips with n0 = 317 defect-free chips.
The observed yield is n0/n = 0.7925. The sample mean and variance of the
defect counts are 0.625 and 2.731, respectively. The conventional Poisson yield is
e−0.625 = 0.5353, which is significantly lower than 0.7925.

Table 1 lists the yield estimates by the Bayesian Poisson, NB, ZIP, and ZINB
regression models presented in Sect. 2.1. Non-informative prior distributions are
used, and the Gibbs sampling algorithm runs for 106 iterations. Sample means of
the posterior samples produced by the Gibbs sampling algorithm are used as point
estimates, and 95% Bayesian intervals are constructed using the 2.5th and 97.5th
sample percentiles. Because defect counts on one wafer are available, only the
individual Bayesian models in Sect. 2.1 are applicable here. Maximum likelihood
estimates (MLEs) and 95% normal-approximation confidence intervals of the yield
are also presented for the purpose of comparison. For a description of the maximum
likelihood method, please refer to Yuan et al. [22] and Bae et al. [1].

Overall, the Bayesian and maximum likelihood methods produce similar yield
estimates for the Poisson and ZIP regression models. However, the Bayesian method
produces noticeably better yield estimation than the maximum likelihood method
for the NB and ZINB regression models. The Poisson regression model significantly
underestimates the yield, while the other three models have much higher the
estimation accuracy.



Defects Driven Yield and Reliability Modeling for Semiconductor Manufacturing 385

Fig. 1 Example 1 defect count data [20]

Table 1 Yield estimates for Example 1 (observed yield 0.7925)

Inference Regression models

Method Estimates Poisson NB ZIP ZINB

Individual Bayesian Posterior mean 0.5597 0.7925 0.7921 0.7921

95% Bayesian (0.5203, (0.7524, (0.7519, (0.7532,
interval 0.5988) 0.8300) 0.8297) 0.8287)

Maximum likelihood MLE 0.5573 0.7906 0.7926 0.7894

95% normal-appx. (0.5175, (0.7483, (0.7507, (0.7487,
confidence interval 0.5963) 0.8274) 0.8290 0.8250)

2.3.2 Example 2

Figure 2 depicts the defect-count data on three wafer maps provided a DRAM
manufacturer. Yuan et al. [23] analyzed these data sets using hierarchical Bayesian
Poisson, NB, ZIP, and ZINB regression models.

Table 2 compares the yield estimates by the maximum likelihood method,
individual Bayesian inference (Sect. 2.1), and hierarchical Bayesian approach
(Sect. 2.2). 95% normal-approximate confidence intervals for the maximum
likelihood method and 95% Bayesian intervals for the Bayesian methods are shown
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Fig. 2 Example 2 defect count data on (a–c) wafer maps [23]

in parentheses. Table 3 compares the relative bias of yield estimation, which is
defined as [23]

estimated yield − observed yield

observed yield
× 100%.

Table 4 compares the average of absolute relative bias of yield estimation by the
three methods.

For the Poisson, NB, and ZINB regression models, the individual Bayesian
method provides more accurate yield estimates than the maximum likelihood
method; while the maximum likelihood method has better yield estimates than the
individual Bayesian method for the ZIP regression models. Between the hierarchical
Bayesian and individual Bayesian methods, the hierarchical Bayesian method tend
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Table 3 Relative bias of yield estimation for Example 2 (%)

Regression models

Wafer Method Poisson NB ZIP ZINB

(a) Maximum likelihood −9.57 −0.20 −1.19 −0.56

Individual Bayesian −9.40 −0.04 −1.61 −0.13

Hierarchical Bayesian −9.64 −1.48 −1.06 −0.83

(b) Maximum likelihood −1.71 −0.11 −1.01 0.24

Individual Bayesian −1.62 −0.12 −1.55 −0.11

Hierarchical Bayesian −1.96 0.07 −0.39 0.09

(c) Maximum likelihood −8.54 −0.29 −1.01 −0.38

Individual Bayesian −8.35 −0.05 −1.43 −0.10

Hierarchical Bayesian −8.30 0.76 0.00 0.25

Table 4 Average of absolute
relative bias of yield
estimation for Example 2 (%)

Regression models

Method Poisson NB ZIP ZINB

Maximum likelihood 6.61 0.20 1.07 0.39

Individual Bayesian 6.46 0.07 1.53 0.11

Hierarchical Bayesian 6.63 0.77 0.48 0.39

to produce less accurate yield estimates than the individual Bayesian method, with
the ZIP regression model as an exception. This is probably due to a so-called “shrink
effect” known for the hierarchical Bayesian approach [18], which tends to bring the
yield estimates of the three wafers close to each other. Among the four hierarchical
Bayesian models, the ZINB regression model tends to produce the most accurate
yield estimates.

3 A Yield-Reliability Relation Modeling Approach

This section discusses a spatial regression yield-reliability relation modeling
approach based on the defect-growth concept. An example based on Example 1
in Sect. 2.3.1 is used to illustrate the proposed approach. We focus on modeling the
extrinsic reliability, which is entirely determined by the manufacturing defects [14].

3.1 Spatial Regression Yield-Reliability Relation Models

Consider a defect whose size at time 0 (i.e., at the end of manufacturing process) is
denoted by s0. Under a set of operating and environmental conditions, the defect size
(or severity) grows and may potentially cause a reliability failure [10]. The expected
defect size at time t , denoted by st , is described by a general degradation-path model
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st = h(t; s0, η),

where h(·) denotes the expected degradation-path function with parameter vector
η to describe the defect-growth process. The defect is not a yield defect if it is not
located in the critical area Ac(s0) at time 0. Similarly, it will not cause a reliability
failure by time t if it is not located in the critical area Ac(st ) determined by its size
at time t . One example of analytical defect-growth models is

st = s0 + V

G
log

t

τ
(4)

for time-dependent dielectric breakdown [7, 14], where V is the voltage stress across
the dielectric film, and G and τ are materials related constants.

Based on the defect-growth concept, we next define a time-dependent fault
probability Φt . The fault probability at time zero is defined as

Φ0 =
∫ ∞

0

Ac(s
0)

B
f (s0)ds0.

Similarly, the fault probability at time t , defined as the probability that an arbitrary
defect will cause device failure by time t , is calculated according to

Φt =
∫ ∞

0

Ac[h(t; s0, η)]
B

f (s0)ds0.

If a non-regression yield model with the defect-count distribution P(X = x) is
assumed, the yield and extrinsic reliability are given by

Y =
∞∑

x=0

(1 −Φ0)xP (X = x)

and

RE(t) = 1

1 − P(X = 0)

∞∑

x=1

(
1 −Φt
1 −Φ0

)x
P (X = x),

respectively [24]. The yield is simply the probability that no defects cause device
failure at time 0, and the reliability at time t is the probability that no defects cause
device failure at time t for those devices with defects that have not failed at time 0.
It can be shown that RE(0) = 1 and RE(∞) = 0.

Assuming a regression yield model with a defect-count distribution P(Xi = xi),
i = 1, 2, . . . , n and xi = 0, 1, . . ., the extrinsic reliability is then computed by
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RE(t) = 1

n

n∑

i=1

RE,i(t) = 1

n

n∑

i=1

⎡

⎣ 1

1 − P(Xi = 0)

∞∑

xi=1

(
1 −Φt
1 −Φ0

)x

i

P (Xi = xi)
⎤

⎦ .

For example, when P(X = x) is given by the Poisson distribution (Eq. (1)) it can
be shown that

RE(t) = e−λ

1 − e−λ · 1 − e−λκ(t)
e−λκ(t)

,

where κ(t) = (1 −Φt)/(1 −Φ0). When P(X = x) is given by the NB distribution
(Eq. (2)), the extrinsic reliability is then given by

RE(t) =
(
α
α+λ

)α

1 −
(
α
α+λ

)α ·
1 −

(
1 − λκ(t)

α+λ
)α

(
1 − λκ(t)

α+λ
)α .

Similarly, it can be shown that the Poisson regression and ZIP regression reliability
models have the same form of

RE(t) = 1

n

n∑

i=1

[
e−λi

1 − e−λi · 1 − e−λiκ(t)
e−λiκ(t)

]
,

where log(λi) = f (zi )
T β. Although the two regression models have the same

form of RE(t) their different β estimates result in different RE(t) estimates. RE(t)
functions for the NB regression and ZINB regression are given by

RE(t) = 1

n

n∑

i=1

⎡

⎢⎣

(
α

α+λi
)α

1 −
(

α
α+λi

)α ·
1 −

(
1 − λiκ(t)

α+λi
)α

(
1 − λiκ(t)

α+λi
)α

⎤

⎥⎦ .

3.2 An Illustrative Example

The Example 1 in Sect. 2.3.1 is employed here to illustrate the proposed spatial
regression reliability models. We assume that device failures are caused by the time-
dependent dielectric breakdown and adopt the defect-growth model given by Eq. (4).
The dielectric thickness is denoted by w. In addition, we assume the following
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Table 5 Parameters in the illustrative example [14]

Defect size distribution Defect-growth model Thickness Voltage

q p s0 τ G w V

3 1 10 Å 1 × 10−11 s 3.5 V/Å 32 Å 1.5 V

Table 6 Reliability prediction by various yield models

“Expected” Poisson regression NB regression ZIP regression ZINB regression

R (1 year) 0.536 0.716 0.571 0.508 0.567

R (10 years) 0.478 0.664 0.516 0.443 0.512

widely cited defect size distribution [14, 15]

f (s) =
{
cs

−q−1
0 sq, 0 ≤ s ≤ s0

cs
p−1
0 s−p, s0 ≤ s ≤ ∞

where p �= 1, q > 0, c = (q + 1)(p − 1)/(p + q), and s0 is a critical size of the
defect with the highest probability of occurrence. Table 5 lists the parameter values
adopted from Kim et al. [14].

When a defect’s size exceeds the thickness of dielectric film, a breakdown failure
occurs. Thus

Φ0 = P(s0 > w) =
∫ ∞

w

f (s)ds

and

Φt = P(st > w) = P [s0 > w − V/G · log(t/τ )].

Table 6 compares the reliability predictions by various yield models. As a
comparison, we define the “expected” reliability based on the observed defect
counts as

R∗
E(t) = 1

np

n∑

i=1

φ(t)xi I{xi>0},

where np = ∑n
i=1 I{xi>0}, i.e., the number of chips with defects. The NB,

ZIP, and ZINB regression models provide more accurate reliability predictions
than the Poisson regression model. This is consistent with the result obtained for
yield prediction in Sect. 2.3.1. Note that this comparison only confirms that those
three models produce more accurate prediction of the defect count distribution
than the Poisson regression model. In order to validate the defect-growth model
given by Eq. (4), the predicted reliability needs to be compared with reliability
obtained from conventional reliability life tests, which will deserve more study and
experimentation in the future.
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4 Conclusion

This chapter discussed some latest development in IC yield models via spatial
regression modeling of clustered defect counts. It focused on the Bayesian modeling
and analysis approach. The spatial regression yield models were extended to create
new yield-reliability relation models for predicting extrinsic device reliability. The
reliability defined by those models is consistent with conventional definition of
reliability. However, more experiments and studies are needed to establish and
validate defect-growth processes for different failure mechanisms of ICs.
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