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Abstract. An emerging trend in High Performance Computing (HPC)
systems that use hierarchical topologies (such as dragonfly) is that the
applications are increasingly exhibiting high run-to-run performance
variability. This poses a significant challenge for application develop-
ers, job schedulers, and system maintainers. One approach to address
the performance variability is to use newly proposed network topologies
such as megafly (or dragonfly+) that offer increased path diversity com-
pared to a traditional fully connected dragonfly. Yet another approach
is to use quality of service (QoS) traffic classes that ensure bandwidth
guarantees. In this work, we select HPC application workloads that have
exhibited performance variability on current 2-D dragonfly systems. We
evaluate the baseline performance expectations of these workloads on
megafly and 1-D dragonfly network models with comparably similar net-
work configurations. Our results show that the megafly network, despite
using fewer virtual channels (VCs) for deadlock avoidance than a dragon-
fly, performs as well as a fully connected 1-D dragonfly network. We then
exploit the fact that megafly networks require fewer VCs to incorporate
QoS traffic classes. We use bandwidth capping and traffic differentiation
techniques to introduce multiple traffic classes in megafly networks. In
some cases, our results show that QoS can completely mitigate appli-
cation performance variability while causing minimal slowdown to the
background network traffic.

1 Introduction

With modern high-performance computing (HPC) systems shifting to hierar-
chical and low-diameter networks, dragonfly networks have become a popular
choice. They have been deployed in multiple high-performance systems including
Cori, Trinity, and Theta systems at NERSC, Los Alamos National Laboratory,
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and Argonne National Laboratory, respectively [2,11,16]. Dragonfly is a hierar-
chical topology that uses short electrical links to form groups of routers using
a 1-D or 2-D all-to-all interconnect. These groups are then connected all-to-all
via optical links. While this design offers low diameter and cost, it increases
contention for the link bandwidth among multiple applications which introduces
performance variability [5]. For next-generation systems, HPC designers are con-
sidering variations of the dragonfly topology that offer increased path diversity,
fairness, and scalability [17]. One such topology that has been recently proposed
is the dragonfly+, or megafly, which uses a two-level fat tree to form groups
of routers. These groups are then connected all-to-all via optical links. Megafly
networks use the path diversity of a two-level fat tree to alleviate the commu-
nication bottlenecks that can be introduced with standard dragonfly networks.
Megafly networks also have the added advantage of using only two virtual chan-
nels (VCs) for deadlock prevention as opposed to up to four virtual channels
used in a fully connected 1-D dragonfly network. Prior work [8] has shown that
while the design of megafly networks helps mitigate performance variability to
some extent, it does not completely eliminate it.

Although quality of service (QoS) has been investigated and implemented
on TCP/IP networks and data-centers [3], the mechanism remains largely unex-
plored in the context of HPC networks. Our work is one of the early studies
to investigate the role of QoS traffic classes in reducing performance variability
caused by communication interference on the now popular hierarchical networks.
In this work, we use HPC application workloads that demonstrate performance
variability on current dragonfly systems as shown by Chunduri et al. [5]. We
replay the workloads on CODES packet-level interconnect simulations [14,20]
to answer questions about dragonfly and megafly network topologies: How does
the performance of a megafly network compare with a fully connected dragonfly
network? How do traffic classes help with performance variability on a megafly
network?

The contributions of this work are as follows. (1) We evaluate the perfor-
mance variability of HPC application workloads on both a megafly and a 1-D
dragonfly network using similar network configurations. We compare the perfor-
mance of a megafly network with a 1-D dragonfly to determine whether megafly
network is better resistant to perturbation. (2) We exploit the fact that megafly
requires fewer virtual channels for deadlock prevention (as compared to conven-
tional dragonfly), and we use the unused VCs to introduce QoS traffic classes.
We evaluate two mechanisms through which QoS can be introduced in HPC
networks. First, using bandwidth capping and traffic prioritization, we quan-
tify the impact of QoS when an entire high-priority traffic class is dedicated
to an application or set of applications. Second, we dedicate the high-priority
traffic class to latency-sensitive operations such as MPI collectives and observe
the performance improvement. (3) We extend the CODES simulation framework
to perform packet-level simulation of HPC networks in an online mode driven
by the scalable workload models (SWM) [18] for use in the above-mentioned
experiments.
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2 Exploring Quality of Service on HPC Networks

In the past, HPC systems were often constructed with torus networks, and jobs
were allocated onto partitions of the network that reduced resource sharing and
communication interference. With hierarchical networks sharing resources such
as switches and links, partitioning becomes more difficult and introducing traffic
classes becomes an important step to mitigate communication interference. The
slowdown caused by communication interference can significantly impact the
overall application performance as the typical range of communication time in
communication intensive applications is in the range of 50–80% [6]. Significant
performance variability due to communication interference has been reported
in [5], where a slowdown of up to 2x is seen on a production system.

Current 2-D dragonfly networks use up to 4 virtual channels to prevent dead-
locks, which is typically all the VCs available. Megafly networks use only 2 VCs
for deadlock prevention, thus making them a better candidate for enabling mul-
tiple traffic classes. Figure 1 shows one way to implement quality of service on
HPC networks. In this implementation, a bandwidth monitor component in each
switch tracks the bandwidth consumption of each traffic class for every port. The
bandwidth monitoring is done over a static time window tw. Each traffic class is
assigned a certain fraction of maximum available link bandwidth, which serves
as the upper bandwidth cap for that traffic class while the link is oversubscribed.
If the bandwidth consumption of a traffic class reaches the cap and the link is
oversubscribed, the traffic class is designated as inactive for the remaining dura-
tion of the static window tw. An inactive traffic class has the lowest priority and
it gets scheduled only if there are no packets in the remaining higher priority
traffic classes. At the start of the window tw, the bandwidth statistics for each
traffic class are reset to zero, and the traffic class(es) marked as inactive are
activated again. If all the traffic classes are violating their bandwidth cap, then
a round-robin scheduling policy is used for arbitration.

Fig. 1. Enabling quality of service on HPC networks (TC – traffic class, BW – band-
width, QoS – quality of service)



6 M. Mubarak et al.

The implementation of QoS can be beneficial in reducing communica-
tion interference on hierarchical networks. For instance, a common problem
exhibited on such networks is that communication-intensive (or bandwidth-
hungry) applications can “bully” less-communication-intensive applications [20].
With QoS-enabled networks, bandwidth-hungry applications can be prevented
from exceeding their permissible bandwidth limits. This approach allows less-
communication-intensive applications to have their fair share. Alternatively, one
can assign a high-priority traffic class to latency-sensitive operations such as
MPI collectives. We report on experiments with both of these QoS mechanisms
in Sect. 5.

3 Evaluation Methodology

In this section, we discuss the simulation environment, network configurations,
workloads, rank-to-node mapping policies, and routing algorithms used in the
study.

3.1 HPC Simulation Environment

The CODES simulation framework provides high-fidelity, massively parallel sim-
ulations of prototypical next-generation HPC architectures. The framework has
been extensively used for performance analysis of modern interconnect topologies
(fat tree, torus, dragonfly, express mesh and slim fly) [14]. The network mod-
els have been validated against real architectures [15]. Prior to this work, the
CODES simulation framework supported system simulations with post mortem
communication traces. Although traces can illustrate realistic system behavior
(for a given problem size), their use inhibits flexibility and simulation scalabil-
ity as compared to other workload representations. Therefore, we extended the
CODES simulation suite to replay workloads in an online or in situ mode using
the Scalable Workload Models (SWMs) presented in [18].

Scalable workload models are a workload representation approach
that focuses on representing the communication patterns, dependencies,
computation-communication overlap, and algorithms. The SWM code1 is decou-
pled from the original application code as well as from any particular simulator,
enabling use across different simulation environments. The SWM runtime sup-
ports a set of low-level API communication primitives to support a number of
MPI-based communication operations. The primitives used by the SWM closely
resemble those of MPI and SHMEM, but they are not constrained to specific
syntax or semantics. In this paper, we utilize several SWM representations for
multiple HPC codes including Nekbone, LAMMPS and nearest neighbor [18].

1 The Scalable Workload Models code is available at the git repo: https://xgitlab.cels.
anl.gov/codes/workloads.git.

https://xgitlab.cels.anl.gov/codes/workloads.git
https://xgitlab.cels.anl.gov/codes/workloads.git
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3.2 Topology and Routing Description

The dragonfly network topology, proposed by Kim et al. [10], consists of groups
of routers that are connected to each other with one or more optical channels.
Within each group, the routers are directly connected to each other in an all-
to-all manner via electrical links. In this paper, we refer to this configuration as
a 1-D dragonfly. A variation of a dragonfly topology, deployed in the Cray XC
systems, uses a 2-D all-to-all within each group instead of all-to-all connections.
We refer to this configuration as a 2-D dragonfly. A 2-D dragonfly traverses
almost double the number of hops as a 1-D dragonfly. The hop count traversed
in a 1-D dragonfly is close to that of a megafly network. Therefore, we compare
megafly with a 1-D dragonfly to ensure a reasonable comparison. Various forms of
adaptive routing have been proposed for a dragonfly, which detect congestion and
determine whether the packet should take a minimal or non-minimal route. We
use the progressive adaptive routing algorithm (PAR) provided in [19]. The PAR
algorithm in the simulation re-evaluates the minimal path until either the packet
decides to take a nonminimal route or the packet reaches the destination group
on a minimal path. In this work, we use four virtual channels for progressive
adaptive routing in a dragonfly network, as suggested in [19].

What separates various dragonfly topologies from each other is largely based
on the interconnect within a group. Megafly is a topology that belongs to the
Dragonfly class of interconnection networks. At a high level, it is classified as
having groups of routers which are, in turn, connected to each other with at
least one global connection between any two groups. Megafly is characterized by
its connectivity in the form of a two-level Fat Tree network in each group. This
locally defined network is also known as a complete bipartite graph: a graph with
two sub-groups where all nodes within one subgroup are connected to all nodes
in the other subgroup. There are no connections between the routers within the
same subgroup. The two levels in each group have routers that will be referred
to as Leaf Routers, those that have terminal/compute node connections but no
global connections, and Spine Routers, those that have global connections to
other groups but no terminal/compute node connections [8,17]. In this paper,
we use the progressive adaptive routing algorithm proposed in prior studies on
Megafly networks [8]. Megafly requires only two virtual channels (VCs) to avoid
deadlock and none to avoid congestion in the intermediate group.

3.3 Network Configurations

To perform a comparison of the megafly network with a 1-D dragonfly, we main-
tain similar router radix and similar node counts. We used a router radix of
32 ports for both networks. Across the group, the routers are connected via
global channels. The configurations of the 1-D dragonfly and megafly are given
in Table 1.
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Table 1. Configurations of megafly and 1-D dragonfly used for performance compari-
son. Link bandwidth for each network is 25 GiB/s (GC - Global Channels)

Radix Groups Nodes/Group Node count GC/Group Nodes per router

Megafly 32 33 256 8448 256 16 (Leaves Only)

1D Dragonfly 32 65 128 8320 128 8
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Fig. 2. Message distributions for Nekbone and LAMMPS application workloads

3.4 Workloads

In order to quantify the slowdown of a particular job due to communication
interference, multiple jobs need to be running in parallel to exhibit interference.
We conduct two types of interference experiments: (i) replay HPC applications
that serve as foreground communication traffic in conjunction with a job that
generates synthetic background communication to understand the interference
in a controlled manner, and (ii) replay multiple HPC applications in parallel to
capture the dynamism of multi-phased communication and quantify the impact
of perturbation.

Foreground Traffic. Previous work demonstrates the performance variability
shown by LAMMPS, Nekbone, and MILC applications on the Cray XC40 sys-
tem [5]. Thus, we use LAMMPS and Nekbone workloads as foreground workloads
for our experimental analysis. We also use a 3-D nearest-neighbor communica-
tion pattern, which is a commonly used pattern in several HPC applications.

LAMMPS is a large-scale atomic and molecular dynamics code that uses MPI
for communication. We use the SWM code that derives its communication pat-
tern from the LAMMPS application. Figure 2(a) shows the message distribution
of LAMMPS SWM per rank in a problem involving 2,048 ranks. The LAMMPS
workload uses MPI AllReduce with small messages as well as blocking sends and
nonblocking receives for point-to-point communication with large messages.

Nekbone is a thermal hydraulics mini-app that captures the structure of the
computational fluids dynamics code Nek5000. Nekbone’s SWM communication
pattern is derived from the Nekbone benchmark. Figure 2(b) shows the message
distribution of the Nekbone SWM on a per rank basis in a problem with 2,197
ranks. Nekbone performs a large number of MPI collective operations with small
8-byte messages. It uses nonblocking sends and receives to transmit medium-
sized messages.
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Cartesian neighborhood communication is a pattern commonly used in mul-
tiple scientific applications including Hardware Accelerated Cosmology Code
(HACC), fast Fourier transform solvers, and adaptive mesh refinement (AMR)
codes. We use a 3-D nearest-neighbor SWM in this work that transmits large
messages (64 KiB and 128 KiB) on a per rank basis with multiple iterations of
MPI nonblocking sends and receives followed by MPI Wait All. A problem size
of 4,096 ranks is used with the nearest neighbor SWM.

Background Traffic. The background communication traffic is needed to inter-
fere with the foreground workloads. To ensure an even distribution of traffic that
covers a significant fraction of the network, we use a uniform random communi-
cation pattern. This is generally considered a benign traffic pattern for dragonfly
networks. However, with large messages randomly sent in the network, uniform
random causes hotspots at multiple network locations and becomes a source
of interference. We varied the amount of data transmitted via uniform random
traffic and observed the effect of different data transmission rates on the fore-
ground traffic. The background traffic generation is modeled as a separate job
that runs in parallel with the foreground traffic and occupies at least 25% to 50%
of the entire network. The background injection rates depend on the available
compute node to router link bandwidth in the network. We inject traffic at a
percentage of the available link bandwidth and vary the injection rates between
2% to 36.5% of the link bandwidth. At the 36.5% rate, each node is injecting
9 GiB/s of background traffic with an aggregate network background interfer-
ence of 18 TiB/s. At this rate, we see significant slowdown (up to 4x for uniform
random and up to 7x for random permutation) in application communication
times for both networks. Therefore, we keep that as the maximum background
injection rate.

We experiment with two different background communication patterns: (i) a
uniform random synthetic pattern where a rank randomly chooses a destination
rank and transmits large messages and (ii) a random permutation traffic where a
pair of ranks communicate and transmit data until a certain threshold is reached.

Multiple Applications. As a specific instance of representative HPC scenarios,
we ran the three foreground workloads in parallel (Nekbone, nearest neighbor,
and LAMMPS). We also ran each of these workloads in isolation on the network
to determine the baseline performance and observed the slowdown introduced
when the workloads are running in parallel.

3.5 Rank-to-Node Mappings

Ranks are placed on network nodes in a manner similar to that for production
HPC systems, where clusters of available network nodes are assigned to a job.
Therefore, we use a geometric job placement policy in which multiple clusters
of network nodes are assigned to jobs. In the simulation, the clusters are formed
by using the inverse transform sampling method for creating random samples
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from a given distribution. The experiments in the paper were performed with
three different rank to node mappings; however, we did not observe a noticeable
difference between the statistics reported by each mapping.

4 Quantifying Interference on 1-D Dragonfly and Megafly
Networks

In this section, we analyze the communication interference on both 1-D dragon-
fly and megafly networks following the methodology described in Sect. 3. Each
simulation experiment was conducted three times with different geometric job
allocation policies and the performance difference observed between each run was
less than 2%. The communication latency of an application is determined by the
rank that incurs the maximum latency across all the participating ranks. Given
that the distribution of the latencies of ranks potentially contain long tails [13]
corresponding to ranks that are effected by congestion, using maximum latency
across the ranks is the appropriate metric. Before discussing the QoS exper-
iments, we compare the baseline communication performance of megafly and
1-D dragonfly networks and further quantify the performance degradation with
QoS disabled. We then incorporate QoS mechanisms in the megafly networks to
evaluate the performance with and without such mechanisms enabled.

Uniform Random Background Traffic. Figure 3(a) shows the communica-
tion time of LAMMPS SWM with varying degrees of background traffic, starting
from no background traffic, on both megafly and 1-D dragonfly. LAMMPS uses
a mix of point-to-point and collective communication as shown in Fig. 2. The
performance results in the figure show that megafly performs better than a 1-D
dragonfly in most of the background traffic injection rates. For the worst case
background injection rate, 1-D dragonfly outperforms megafly.

Figure 3(b) shows the communication time of Nekbone SWM with and with-
out uniform random background traffic on both megafly and 1-D dragonfly net-
works. Nekbone uses a large number of 8-byte MPI collectives as shown in Fig. 2.
Additionally, of the studied workloads, Nekbone is the most communication vol-
ume intensive application: it transmits 4x more data than the LAMMPS or
nearest-neighbor SWM workloads do. The performance results in the figure show
that megafly performs up to 60% better than a 1-D dragonfly in all except one
background traffic injection rates. For the worst case background injection rate,
1-D dragonfly outperforms megafly.

Figure 3(c) shows the performance of nearest-neighbor communication on
both 1-D dragonfly and megafly networks. Since we are using geometric job
mapping that allocates cluster of network nodes, the nearest-neighbor pattern
involves extensive communication between two groups. In this case, megafly
consistently outperforms the dragonfly network because of multiple reasons: (i)
megafly has larger group sizes (more nodes available within a group), which
increases locality of communication within a group. The locality of communi-
cation is beneficial for nearest neighbor traffic, and (ii) Dragonfly has a single
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(a) LAMMPS communica-
tion times comparison

(b) Nekbone communica-
tion times comparison

(c) Nearest-neighbor com-
munication times compari-
son

Fig. 3. Performance of megafly vs. 1-D dragonfly with (a) geometrically allocated
2048/2048 ranks for LAMMPS/uniform random workloads and (b) geometrically allo-
cated 2197/2197 ranks for Nekbone/uniform random workloads, and (c) geometrically
allocated 4096/4096 ranks for nearest-neighbor/uniform random workloads. The inten-
sity of the background traffic was scaled at a percentage of the maximum link capacity.

minimal path between two routers within a group whereas megafly has 16 differ-
ent minimal path options for this route, which reduces intra-group congestion.
Since nearest-neighbor communication exchanges are based exclusively on point-
to-point operations between two groups, it is less impacted by the background
traffic.

Random Permutation Background Traffic. While uniform random traffic
with large message sizes can cause dynamic hotspots in the network, we also
considered random permutation traffic to introduce more persistent network
interference. Similar to uniform random, the random permutation background
traffic pattern sends packets to a randomly selected node in the network. We
use a rotating random permutation pattern that will send continually to the
same randomly selected destination (on a per node basis) until a certain num-
ber of bytes have been transmitted before choosing a new random destination.
Figures 4 shows the performance of megafly and dragonfly networks. The fore-
ground workloads see a slowdown in communication time as the number of bytes
exchanged in the background traffic is increased. Since nearest neighbor traffic
involves point to point operations (mostly to the neighboring group), it is not
significantly impacted by the rotating random background traffic. While the
performance of LAMMPS workload is comparable on both networks, the Nek-
bone workload is less perturbed on a megafly network than a 1-D dragonfly. Our
conjecture is that the better performance of megafly can be attributed to the
additional path diversity of its minimal routes. The results demonstrate that
there is nearly a linear slowdown in the performance of the foreground job as
the number of bytes exchanged in the background traffic increases.
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(a) LAMMPS communica-
tion times comparison

(b) Nekbone communica-
tion times comparison

(c) Nearest-neighbor com-
munication times compari-
son

Fig. 4. Performance of megafly vs. 1-D dragonfly with (a) geometrically allocated
2048/2048 ranks for LAMMPS/random permutation workloads (b) geometrically allo-
cated 2197/2197 ranks for Nekbone/random permutation and (c) geometrically allo-
cated 2197/2197 ranks for nearest-neighbor/Random Permutation workloads. The
amount of data exchanged between two nodes in a rotating random permutation was
scaled from 250 KiB to 8 MiB.

Multiple Applications in Parallel. In the third case, as a specific instance
of representative HPC scenarios, we run the three workloads (LAMMPS, Nek-
bone, and nearest neighbor) in parallel without any synthetic communication
traffic. This scenario clearly mimics a common system state, with multiple jobs
completing for shared resources. Figure 5 shows the communication time of the
three applications when running in parallel and in isolation on both dragon-
fly and megafly networks. We can see that with both LAMMPS and Nekbone,
the applications are much less perturbed on a megafly network than on a 1-D
dragonfly network.

Fig. 5. Communication times of LAMMPS (2,048 ranks), Nekbone (2,197 ranks), and
nearest neighbor (2,048 ranks) when running in parallel on 1-D dragonfly and dragon-
fly+ networks. Baseline indicates the application runs in isolation.

After introducing different forms of background communication traffic
with foreground workloads, our analysis shows that in maximum cases, the
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performance of megafly network is comparable to a 1-D dragonfly network.
In majority of the cases, Megafly performs better than a 1-D dragonfly. For
LAMMPS and Nekbone workloads with worst case background traffic, a 1-D drag-
onfly gets relatively less perturbed than a megafly. On both networks, however,
HPC applications see a significant slowdown in communication ranging up to
700% in the presence of intense background communication traffic.

5 Evaluating Quality of Service on Megafly Networks

Enabling quality of service on HPC networks requires that each traffic class
have its own set of virtual channels. Megafly networks require a fewer number
of virtual channels for deadlock prevention. When a fixed, limited number of
VCs are available in the switch hardware, megafly needs half as many VCs
as a dragonfly and has the opportunity to use the extra VCs for QoS. The
mechanism for quality of service was introduced in Sect. 2. In this section, we
perform experiments to analyze the impact of QoS on traffic interference and
application slowdown that was seen in Sect. 4. Due to space constraints, the
results shown are for Megafly networks even though a 1-D dragonfly network
performs in a similar manner with QoS turned on. Since there can be a large
number of permutations for bandwidth caps, we performed a sensitivity analysis
by sweeping different bandwidth values and picked the values that were most
effective. The static window over which the bandwidth statistics were monitored
was kept to 5 ms throughout these experiments. We explore two configurations
through which QoS can be introduced in megafly networks:

5.1 QoS Mechanism I: Prioritizing Entire Applications

With our first QoS mechanism, a higher priority and high bandwidth are assigned
to the entire application (or set of applications) so that they face minimal slow-
down relative to other traffic. We use uniform random background traffic and
both LAMMPS and Nekbone foreground workloads that exhibited slowdown
on megafly networks in Sect. 4 (Nearest neighbor was not getting significantly
perturbed). To understand the impact on background traffic, we measure the
performance of both foreground workload and background traffic. The back-
ground traffic performance is measured by the maximum time to complete a
message (all messages have the same size in the synthetic workload).

The benefit of using this QoS approach is that if the foreground application
is not utilizing the full bandwidth allocated to it, then the background workload
can consume the unutilized bandwidth. Figure 6 compares the performance of
LAMMPS workload with and without QoS enabled on a megafly network. It
also shows the slowdown to background communication traffic. The LAMMPS
workload is not as communication intensive because it involves point-to-point
messages along with a small number of MPI AllReduce messages. Therefore, the
perturbation to background traffic is not significant. Because of the high priority
given to LAMMPS, it does not see any slowdown even though it is running
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in parallel with intense background traffic. Additionally, while we observe a
significant speedup with LAMMPS, the background traffic observes only a small
degree of slowdown as compared with the no-QoS case.

(a) LAMMPS communication times (b) Background traffic performance

Fig. 6. QoS Mechanism I (Application Priority): performance of LAMMPS and back-
ground traffic on megafly network with QoS enabled and disabled. The entire LAMMPS
application is given a high priority and high bandwidth (70%).

Nekbone SWM is a communication-intensive workload that transmits 4x
more data than does LAMMPS SWM, and a majority of the communication
involves collectives. Figure 7 shows the performance of the Nekbone SWM when
QoS is enabled. Once again we see Nekbone having minimal slowdown when QoS
is enabled while causing minimal slowdown to background communication traf-
fic. The primary reason for the improved performance is that both Nekbone and
LAMMPS are given high priority and high bandwidth yet they do not consume
all the bandwidth assigned to them. Therefore, the background traffic is able to
get the required bandwidth that it needs while observing little slowdown.

Both these results demonstrate that traffic differentiation with bandwidth
shaping and prioritization can mitigate (or eliminate) communication interfer-
ence to HPC workloads while causing minimal slowdown to the background traf-
fic. Assigning a high priority to an application can eliminate the perturbation
to that application while experiencing a reasonable slowdown in the remaining
network traffic.

5.2 QoS Mechanism II: Prioritizing and Guaranteeing Bandwidth
to Latency-Sensitive Operations

Several HPC applications rely on the performance of MPI collective operations.
In a majority of the cases, collectives comprise small messages, and the applica-
tion performance suffers when heavy background network traffic interferes with
the transmission of these messages. An alternative application of QoS is to assign
a high priority and guaranteed bandwidth to collective operations.
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(a) Nekbone communication times (b) Background traffic performance

Fig. 7. QoS Mechanism I (Application Priority): performance of Nekbone and back-
ground traffic on megafly network with QoS enabled and disabled. The entire Nekbone
application is given a high priority and high bandwidth (70%).

(a) LAMMPS communication times (b) Background traffic performance

Fig. 8. QoS Mechanism II (Collective Priority): performance of LAMMPS and back-
ground traffic on megafly network with application-based QoS enabled and 10% band-
width guaranteed to collectives.

Figure 8 shows the performance of LAMMPS when high priority is given to
collectives and compares it with the case where no QoS is enabled. In this case,
we are assigning a high priority but a small fraction of bandwidth to collective
operations; the point-to-point operations and background traffic are given a lower
priority and higher bandwidth cap (90%). We see that although there is some
slowdown in foreground traffic when the background traffic becomes intense, the
foreground workload is still 10% faster than the case where no QoS is enabled
(specifically in the case of 15% background traffic injection). LAMMPS uses
more point-to-point operations and has fewer collective operations, which is why
the speedup is not as significant as Nekbone that relies heavily on collective
performance.

Figure 9 shows the performance of Nekbone when given high priority and
a guaranteed bandwidth to collectives. Nekbone relies heavily on collective
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(a) Nekbone communication times (b) Background traffic performance

Fig. 9. QoS Mechanism II (Collective Priority): performance of Nekbone and back-
ground traffic on megafly network with application-based QoS enabled and 10% band-
width guaranteed to collectives.

operations. Therefore, we see a significant performance improvement of up to
60% speedup in communication time compared with the case where no QoS is
enabled. The background communication traffic does not show a slowdown in
message communication times; instead it shows a slight performance improve-
ment compared to no-QoS options in one case.

5.3 Applying QoS Mechanisms to Multiple Application Workloads
in Parallel

In this section, we examine both QoS mechanisms in the case where multiple
applications are running in parallel, which is a specific instance of a represen-
tative HPC system. We compare the QoS-enabled performance with the case
where there are multiple applications running without any QoS. For the first
QoS mechanism, since Nekbone is more communication intensive than LAMMPS
and nearest neighbor (shown in Fig. 2) we assign it a separate traffic class with
a bandwidth cap of 30% and a high priority. The rest of the bandwidth is avail-
able to both LAMMPS and nearest neighbor. For the second QoS mechanism,
we assign a higher priority to all collective communication in both LAMMPS
and Nekbone and then see the impact on application performance.

Figure 10 shows the performance of multiple applications running in parallel
with and without QoS enabled. In short, both schemes are beneficial, and lead
to reduced communication time. With the QoS Mechanism I, we give a high
priority and assign one third of link bandwidth as a cap to Nekbone. Nekbone
is communication intensive; and with a high priority and the bandwidth cap, it
does not get any slowdown due to background communication traffic. In contrast,
LAMMPS and nearest neighbor have a lower priority, and they still see a perfor-
mance improvement compared with the case where there was no QoS enabled.
Adding bandwidth caps on Nekbone (which is a bandwidth-intensive application)
helps improve the performance of LAMMPS and nearest neighbor as well.
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Fig. 10. Communication times of Nekbone, LAMMPS, and nearest-neighbor workloads
when running in parallel. Both mechanisms of application-based QoS were enabled. The
comparison is done with (i) the worst case when no QoS is enabled (Multi No QoS)
and (ii) the best case when the workload is running in isolation with no interference
(baseline).

With the QoS Mechanism II, where collective communication is given pri-
ority, both LAMMPS and Nekbone benefit by seeing a 10% and 20% speedup,
respectively, compared with the case where QoS is not enabled. One interesting
observation is the performance of the nearest-neighbor workload, which is much
faster with QoS enabled than when the workload is running in isolation. Look-
ing at the adaptive routing statistics, we see that the nearest-neighbor workload
when running in isolation takes the maximum number of minimal routes because
of the bias toward minimal routes. With QoS enabled, nearest-neighbor traffic
has a lower priority with QoS mechanisms enabled, which causes it to take more
nonminimal routes, coincidentally helping with the congestion points. Thus the
workload sees improved performance. A similar phenomena is observed with
Nekbone when it is running with QoS Mechanism I.

These experiments demonstrate the effectiveness of applying QoS to reduce
or eliminate communication interference. With both mechanisms, Nekbone, being
more bandwidth intensive, sees a 20% to 350% speedup in communication time
compared with the case where QoS is not enabled. LAMMPS sees a 10% to 200%
improvement in communication time compared with the case where QoS is not
enabled. Nearest neighbor is indirectly impacted by bandwidth capping and sees
a performance improvement of 25%. Additionally, all applications (both fore-
ground and background traffic) benefit from QoS; the low priority applications
are guaranteed to get a share in bandwidth which avoids performance degrada-
tion. The takeaway is that adding traffic differentiation in HPC networks can
bring performance improvement to all traffic classes.



18 M. Mubarak et al.

6 Related Work

There are different approaches to address run-to-run variability on HPC sys-
tems. One approach is based on partitioning the networks and providing an
isolated partition for a job. While this approach has successfully worked for low-
radix networks such as torus [21], it is a challenge to implement partitioning
on networks such as dragonfly or megafly, due to their hierarchical nature. The
other approach is QoS, which can be enforced through various mechanisms on
data centers and HPC networks. Flow control [7,12] is a high-level approach for
avoiding interference in large-scale and datacenter-scale networks which takes a
coarser-grained look at data within the network. Alizedah et al. [1] studied the
impacts of sacrificing a portion of the total bandwidth while lowering the thresh-
old for congestion sensing to provide a buffer zone within links in an attempt
to reduce the overall latency of applications in a datacenter environment. On
the algorithmic routing side of QoS implementation, many different approaches
exist, from centralized global information methods to distributed routing algo-
rithms with limited or incomplete network information and hierarchical algo-
rithms that bridge the gap between globally and locally available information
when making routing decisions. Chen and Nahrstedt [3] presented an overview
of various routing algorithms solving different QoS problems for both unicast
and multicast applications. Most of the literature available on quality of service
is intended for data-centric and TCP/IP networks and does not explore HPC
workloads, routing, and flow control mechanisms. Cheng et al. [4] provided high-
level details about implementing quality of service on data-centric and HPC
networks. Jakanovic et al. [9] provided an efficient QoS policy for HPC systems
with InifiBand network (fat tree topology).

7 Discussion and Conclusion

With HPC applications showing performance variation on recent hierarchical
interconnects, we analyze communication interference for both megafly and drag-
onfly networks. We extend the CODES parallel simulation framework to replay
the communication pattern of HPC applications using the Scalable Workload
Models (SWM). We introduce moderate to intense background communication
traffic during the execution of these communication workloads and compare the
slowdown on megafly network with a 1-D dragonfly network. We demonstrate
that performance variability is experienced in both topologies, while observing
that in several experiments the performance implication is less severe for megafly.

To further mitigate the variability, we introduce traffic differentiation and
quality of service mechanisms and show the results on a megafly network. We
explore two different QoS mechanisms for HPC workloads (i) prioritizing and
bandwidth capping entire HPC applications (ii) prioritizing and guaranteeing
bandwidth to latency sensitive collective operations with small messages. With
the first mechanism, performance results show that when a high priority and a
bandwidth cap is given to entire HPC applications, it can eliminate performance
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variability while the rest of the background traffic also sees minimal impact. For
the second mechanism, we show that when a small fraction of bandwidth is guar-
anteed to latency sensitive operations like the MPI collectives, it can mitigate the
performance variability by 10% to 60% depending upon the intensity of collec-
tive communication in the application. This dramatic performance improvement
from QoS on megafly can make up for its shortcomings in high-interference runs
with no additional hardware cost. In both cases, we saw that both high and low
priority applications have a better performance with QoS than the case with no
QoS, which implies that having traffic differentiation is beneficial for all appli-
cations on a HPC network as it allows a fair share of bandwidth to each traffic
class.

While this work is aimed to provide a proof of concept that QoS is effective
in mitigating communication interference for realistic HPC workloads, there are
a number of avenues that need to be further explored. First, real HPC systems
have tens to hundreds of jobs running. Giving a high priority to more than
one HPC application (as shown in QoS mechanism I) can introduce interference
within the traffic class, which can slowdown high priority applications. Secondly,
one would need to explore how to expose the traffic classes to the MPI interfaces
and the job scheduler.
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