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Preface

ISC High Performance, formerly known as the International Supercomputing
Conference, was founded in 1986 as the Mannheim Supercomputer Seminar. Origi-
nally organized by Hans Meuer, Professor of Computer Science at the University of
Mannheim and former director of its computer center, the seminar brought together a
group of 81 scientists and industrial partners who shared a common interest in
high-performance computing. Since then, the annual conference has become a major
international event in the high-performance computing community and, accompanying
its growth in size over the years, the conference has moved from Mannheim via
Heidelberg, Dresden, Hamburg, and Leipzig to Frankfurt. With a record-breaking
3,505 attendees in 2018, we were looking forward to further growth in the number of
attendees. Their expertise made ISC High Performance 2019, again, a powerful and
memorable event.

Twelve years ago, in 2007, the scientific part of the conference was strengthened by
having selected talks on research results arising within or relevant to the HPC
community. These research paper sessions were then held on a separate day preceding
the conference, and slides and accompanying papers were made available via the
conference website. The research paper sessions have since evolved into an integral
part of the conference, and the scientific presentations now take place over a period of
three days and culminate in these archival proceedings.

For ISC High Performance 2019, the call for participation was issued in autumn
2018, inviting researchers and developers to submit the latest results of their work to
the Program Committee. In all, 75 papers were submitted from authors all over the
world. The Research Papers Program Committee consisted of 93 members selected
from 20 countries throughout the world. Furthermore, 20 external expert reviewers
from the community were invited to help with specific papers. After initial reviews
were in place, a rebuttal process gave authors an opportunity to respond to reviewers’
questions and help clarify any issues the reviewers might have. To come to a final
consensus on the papers for the program and these proceedings, a face-to-face meeting
was held in Frankfurt in February 2019, where each paper was discussed. Finally, the
committee selected 17 papers for publication and for presentation in the research paper
sessions, out of which four papers had to undergo a shepherding process.

Emerging Technologies was introduced as a track in 2019 and attracted papers this
year touching on the intersection of quantum computing and HPC.

For the past several years, the ISC High Performance conference has presented an
ISC-sponsored award to encourage outstanding research in high-performance
computing and to honor the overall best research paper submitted to the conference.
Two years ago, this annual award was renamed the Hans Meuer Award in memory
of the late Dr. Hans Meuer, general chair of the ISC conference from 1986 through
2014, and a co-founder of the TOP500 benchmark project. From all research papers
submitted, the Research Papers Program Committee nominated two papers as finalists



for the award, and, based on the final presentations during the conference, elected the
best paper.

We would like to express our gratitude to all our colleagues for submitting papers to
the ISC scientific sessions, as well as to the members of the Program Committee and
the external reviewers for organizing this year’s attractive program.

June 2019 Carsten Trinitis
Ponnuswamy Sadayappan

Michèle Weiland
Guido Juckeland
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Evaluating Quality of Service Traffic
Classes on the Megafly Network

Misbah Mubarak1(B), Neil McGlohon3, Malek Musleh2, Eric Borch2,
Robert B. Ross1, Ram Huggahalli2, Sudheer Chunduri4, Scott Parker4,

Christopher D. Carothers3, and Kalyan Kumaran4

1 Mathematics and Computer Science Division, Argonne National Laboratory,
Lemont, IL, USA
mmubarak@anl.gov

2 Intel Corporation, Santa Clara, CA, USA
3 Rensselaer Polytechnic Institute, Troy, NY, USA

4 Argonne Leadership Computing Facility (ALCF), Argonne National Laboratory,
Lemont, IL, USA

Abstract. An emerging trend in High Performance Computing (HPC)
systems that use hierarchical topologies (such as dragonfly) is that the
applications are increasingly exhibiting high run-to-run performance
variability. This poses a significant challenge for application develop-
ers, job schedulers, and system maintainers. One approach to address
the performance variability is to use newly proposed network topologies
such as megafly (or dragonfly+) that offer increased path diversity com-
pared to a traditional fully connected dragonfly. Yet another approach
is to use quality of service (QoS) traffic classes that ensure bandwidth
guarantees. In this work, we select HPC application workloads that have
exhibited performance variability on current 2-D dragonfly systems. We
evaluate the baseline performance expectations of these workloads on
megafly and 1-D dragonfly network models with comparably similar net-
work configurations. Our results show that the megafly network, despite
using fewer virtual channels (VCs) for deadlock avoidance than a dragon-
fly, performs as well as a fully connected 1-D dragonfly network. We then
exploit the fact that megafly networks require fewer VCs to incorporate
QoS traffic classes. We use bandwidth capping and traffic differentiation
techniques to introduce multiple traffic classes in megafly networks. In
some cases, our results show that QoS can completely mitigate appli-
cation performance variability while causing minimal slowdown to the
background network traffic.

1 Introduction

With modern high-performance computing (HPC) systems shifting to hierar-
chical and low-diameter networks, dragonfly networks have become a popular
choice. They have been deployed in multiple high-performance systems including
Cori, Trinity, and Theta systems at NERSC, Los Alamos National Laboratory,

c© Springer Nature Switzerland AG 2019
M. Weiland et al. (Eds.): ISC High Performance 2019, LNCS 11501, pp. 3–20, 2019.
https://doi.org/10.1007/978-3-030-20656-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20656-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-20656-7_1


4 M. Mubarak et al.

and Argonne National Laboratory, respectively [2,11,16]. Dragonfly is a hierar-
chical topology that uses short electrical links to form groups of routers using
a 1-D or 2-D all-to-all interconnect. These groups are then connected all-to-all
via optical links. While this design offers low diameter and cost, it increases
contention for the link bandwidth among multiple applications which introduces
performance variability [5]. For next-generation systems, HPC designers are con-
sidering variations of the dragonfly topology that offer increased path diversity,
fairness, and scalability [17]. One such topology that has been recently proposed
is the dragonfly+, or megafly, which uses a two-level fat tree to form groups
of routers. These groups are then connected all-to-all via optical links. Megafly
networks use the path diversity of a two-level fat tree to alleviate the commu-
nication bottlenecks that can be introduced with standard dragonfly networks.
Megafly networks also have the added advantage of using only two virtual chan-
nels (VCs) for deadlock prevention as opposed to up to four virtual channels
used in a fully connected 1-D dragonfly network. Prior work [8] has shown that
while the design of megafly networks helps mitigate performance variability to
some extent, it does not completely eliminate it.

Although quality of service (QoS) has been investigated and implemented
on TCP/IP networks and data-centers [3], the mechanism remains largely unex-
plored in the context of HPC networks. Our work is one of the early studies
to investigate the role of QoS traffic classes in reducing performance variability
caused by communication interference on the now popular hierarchical networks.
In this work, we use HPC application workloads that demonstrate performance
variability on current dragonfly systems as shown by Chunduri et al. [5]. We
replay the workloads on CODES packet-level interconnect simulations [14,20]
to answer questions about dragonfly and megafly network topologies: How does
the performance of a megafly network compare with a fully connected dragonfly
network? How do traffic classes help with performance variability on a megafly
network?

The contributions of this work are as follows. (1) We evaluate the perfor-
mance variability of HPC application workloads on both a megafly and a 1-D
dragonfly network using similar network configurations. We compare the perfor-
mance of a megafly network with a 1-D dragonfly to determine whether megafly
network is better resistant to perturbation. (2) We exploit the fact that megafly
requires fewer virtual channels for deadlock prevention (as compared to conven-
tional dragonfly), and we use the unused VCs to introduce QoS traffic classes.
We evaluate two mechanisms through which QoS can be introduced in HPC
networks. First, using bandwidth capping and traffic prioritization, we quan-
tify the impact of QoS when an entire high-priority traffic class is dedicated
to an application or set of applications. Second, we dedicate the high-priority
traffic class to latency-sensitive operations such as MPI collectives and observe
the performance improvement. (3) We extend the CODES simulation framework
to perform packet-level simulation of HPC networks in an online mode driven
by the scalable workload models (SWM) [18] for use in the above-mentioned
experiments.
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2 Exploring Quality of Service on HPC Networks

In the past, HPC systems were often constructed with torus networks, and jobs
were allocated onto partitions of the network that reduced resource sharing and
communication interference. With hierarchical networks sharing resources such
as switches and links, partitioning becomes more difficult and introducing traffic
classes becomes an important step to mitigate communication interference. The
slowdown caused by communication interference can significantly impact the
overall application performance as the typical range of communication time in
communication intensive applications is in the range of 50–80% [6]. Significant
performance variability due to communication interference has been reported
in [5], where a slowdown of up to 2x is seen on a production system.

Current 2-D dragonfly networks use up to 4 virtual channels to prevent dead-
locks, which is typically all the VCs available. Megafly networks use only 2 VCs
for deadlock prevention, thus making them a better candidate for enabling mul-
tiple traffic classes. Figure 1 shows one way to implement quality of service on
HPC networks. In this implementation, a bandwidth monitor component in each
switch tracks the bandwidth consumption of each traffic class for every port. The
bandwidth monitoring is done over a static time window tw. Each traffic class is
assigned a certain fraction of maximum available link bandwidth, which serves
as the upper bandwidth cap for that traffic class while the link is oversubscribed.
If the bandwidth consumption of a traffic class reaches the cap and the link is
oversubscribed, the traffic class is designated as inactive for the remaining dura-
tion of the static window tw. An inactive traffic class has the lowest priority and
it gets scheduled only if there are no packets in the remaining higher priority
traffic classes. At the start of the window tw, the bandwidth statistics for each
traffic class are reset to zero, and the traffic class(es) marked as inactive are
activated again. If all the traffic classes are violating their bandwidth cap, then
a round-robin scheduling policy is used for arbitration.

Fig. 1. Enabling quality of service on HPC networks (TC – traffic class, BW – band-
width, QoS – quality of service)
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The implementation of QoS can be beneficial in reducing communica-
tion interference on hierarchical networks. For instance, a common problem
exhibited on such networks is that communication-intensive (or bandwidth-
hungry) applications can “bully” less-communication-intensive applications [20].
With QoS-enabled networks, bandwidth-hungry applications can be prevented
from exceeding their permissible bandwidth limits. This approach allows less-
communication-intensive applications to have their fair share. Alternatively, one
can assign a high-priority traffic class to latency-sensitive operations such as
MPI collectives. We report on experiments with both of these QoS mechanisms
in Sect. 5.

3 Evaluation Methodology

In this section, we discuss the simulation environment, network configurations,
workloads, rank-to-node mapping policies, and routing algorithms used in the
study.

3.1 HPC Simulation Environment

The CODES simulation framework provides high-fidelity, massively parallel sim-
ulations of prototypical next-generation HPC architectures. The framework has
been extensively used for performance analysis of modern interconnect topologies
(fat tree, torus, dragonfly, express mesh and slim fly) [14]. The network mod-
els have been validated against real architectures [15]. Prior to this work, the
CODES simulation framework supported system simulations with post mortem
communication traces. Although traces can illustrate realistic system behavior
(for a given problem size), their use inhibits flexibility and simulation scalabil-
ity as compared to other workload representations. Therefore, we extended the
CODES simulation suite to replay workloads in an online or in situ mode using
the Scalable Workload Models (SWMs) presented in [18].

Scalable workload models are a workload representation approach
that focuses on representing the communication patterns, dependencies,
computation-communication overlap, and algorithms. The SWM code1 is decou-
pled from the original application code as well as from any particular simulator,
enabling use across different simulation environments. The SWM runtime sup-
ports a set of low-level API communication primitives to support a number of
MPI-based communication operations. The primitives used by the SWM closely
resemble those of MPI and SHMEM, but they are not constrained to specific
syntax or semantics. In this paper, we utilize several SWM representations for
multiple HPC codes including Nekbone, LAMMPS and nearest neighbor [18].

1 The Scalable Workload Models code is available at the git repo: https://xgitlab.cels.
anl.gov/codes/workloads.git.

https://xgitlab.cels.anl.gov/codes/workloads.git
https://xgitlab.cels.anl.gov/codes/workloads.git
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3.2 Topology and Routing Description

The dragonfly network topology, proposed by Kim et al. [10], consists of groups
of routers that are connected to each other with one or more optical channels.
Within each group, the routers are directly connected to each other in an all-
to-all manner via electrical links. In this paper, we refer to this configuration as
a 1-D dragonfly. A variation of a dragonfly topology, deployed in the Cray XC
systems, uses a 2-D all-to-all within each group instead of all-to-all connections.
We refer to this configuration as a 2-D dragonfly. A 2-D dragonfly traverses
almost double the number of hops as a 1-D dragonfly. The hop count traversed
in a 1-D dragonfly is close to that of a megafly network. Therefore, we compare
megafly with a 1-D dragonfly to ensure a reasonable comparison. Various forms of
adaptive routing have been proposed for a dragonfly, which detect congestion and
determine whether the packet should take a minimal or non-minimal route. We
use the progressive adaptive routing algorithm (PAR) provided in [19]. The PAR
algorithm in the simulation re-evaluates the minimal path until either the packet
decides to take a nonminimal route or the packet reaches the destination group
on a minimal path. In this work, we use four virtual channels for progressive
adaptive routing in a dragonfly network, as suggested in [19].

What separates various dragonfly topologies from each other is largely based
on the interconnect within a group. Megafly is a topology that belongs to the
Dragonfly class of interconnection networks. At a high level, it is classified as
having groups of routers which are, in turn, connected to each other with at
least one global connection between any two groups. Megafly is characterized by
its connectivity in the form of a two-level Fat Tree network in each group. This
locally defined network is also known as a complete bipartite graph: a graph with
two sub-groups where all nodes within one subgroup are connected to all nodes
in the other subgroup. There are no connections between the routers within the
same subgroup. The two levels in each group have routers that will be referred
to as Leaf Routers, those that have terminal/compute node connections but no
global connections, and Spine Routers, those that have global connections to
other groups but no terminal/compute node connections [8,17]. In this paper,
we use the progressive adaptive routing algorithm proposed in prior studies on
Megafly networks [8]. Megafly requires only two virtual channels (VCs) to avoid
deadlock and none to avoid congestion in the intermediate group.

3.3 Network Configurations

To perform a comparison of the megafly network with a 1-D dragonfly, we main-
tain similar router radix and similar node counts. We used a router radix of
32 ports for both networks. Across the group, the routers are connected via
global channels. The configurations of the 1-D dragonfly and megafly are given
in Table 1.
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Table 1. Configurations of megafly and 1-D dragonfly used for performance compari-
son. Link bandwidth for each network is 25GiB/s (GC - Global Channels)

Radix Groups Nodes/Group Node count GC/Group Nodes per router

Megafly 32 33 256 8448 256 16 (Leaves Only)

1D Dragonfly 32 65 128 8320 128 8
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Fig. 2. Message distributions for Nekbone and LAMMPS application workloads

3.4 Workloads

In order to quantify the slowdown of a particular job due to communication
interference, multiple jobs need to be running in parallel to exhibit interference.
We conduct two types of interference experiments: (i) replay HPC applications
that serve as foreground communication traffic in conjunction with a job that
generates synthetic background communication to understand the interference
in a controlled manner, and (ii) replay multiple HPC applications in parallel to
capture the dynamism of multi-phased communication and quantify the impact
of perturbation.

Foreground Traffic. Previous work demonstrates the performance variability
shown by LAMMPS, Nekbone, and MILC applications on the Cray XC40 sys-
tem [5]. Thus, we use LAMMPS and Nekbone workloads as foreground workloads
for our experimental analysis. We also use a 3-D nearest-neighbor communica-
tion pattern, which is a commonly used pattern in several HPC applications.

LAMMPS is a large-scale atomic and molecular dynamics code that uses MPI
for communication. We use the SWM code that derives its communication pat-
tern from the LAMMPS application. Figure 2(a) shows the message distribution
of LAMMPS SWM per rank in a problem involving 2,048 ranks. The LAMMPS
workload uses MPI AllReduce with small messages as well as blocking sends and
nonblocking receives for point-to-point communication with large messages.

Nekbone is a thermal hydraulics mini-app that captures the structure of the
computational fluids dynamics code Nek5000. Nekbone’s SWM communication
pattern is derived from the Nekbone benchmark. Figure 2(b) shows the message
distribution of the Nekbone SWM on a per rank basis in a problem with 2,197
ranks. Nekbone performs a large number of MPI collective operations with small
8-byte messages. It uses nonblocking sends and receives to transmit medium-
sized messages.
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Cartesian neighborhood communication is a pattern commonly used in mul-
tiple scientific applications including Hardware Accelerated Cosmology Code
(HACC), fast Fourier transform solvers, and adaptive mesh refinement (AMR)
codes. We use a 3-D nearest-neighbor SWM in this work that transmits large
messages (64 KiB and 128 KiB) on a per rank basis with multiple iterations of
MPI nonblocking sends and receives followed by MPI Wait All. A problem size
of 4,096 ranks is used with the nearest neighbor SWM.

Background Traffic. The background communication traffic is needed to inter-
fere with the foreground workloads. To ensure an even distribution of traffic that
covers a significant fraction of the network, we use a uniform random communi-
cation pattern. This is generally considered a benign traffic pattern for dragonfly
networks. However, with large messages randomly sent in the network, uniform
random causes hotspots at multiple network locations and becomes a source
of interference. We varied the amount of data transmitted via uniform random
traffic and observed the effect of different data transmission rates on the fore-
ground traffic. The background traffic generation is modeled as a separate job
that runs in parallel with the foreground traffic and occupies at least 25% to 50%
of the entire network. The background injection rates depend on the available
compute node to router link bandwidth in the network. We inject traffic at a
percentage of the available link bandwidth and vary the injection rates between
2% to 36.5% of the link bandwidth. At the 36.5% rate, each node is injecting
9 GiB/s of background traffic with an aggregate network background interfer-
ence of 18 TiB/s. At this rate, we see significant slowdown (up to 4x for uniform
random and up to 7x for random permutation) in application communication
times for both networks. Therefore, we keep that as the maximum background
injection rate.

We experiment with two different background communication patterns: (i) a
uniform random synthetic pattern where a rank randomly chooses a destination
rank and transmits large messages and (ii) a random permutation traffic where a
pair of ranks communicate and transmit data until a certain threshold is reached.

Multiple Applications. As a specific instance of representative HPC scenarios,
we ran the three foreground workloads in parallel (Nekbone, nearest neighbor,
and LAMMPS). We also ran each of these workloads in isolation on the network
to determine the baseline performance and observed the slowdown introduced
when the workloads are running in parallel.

3.5 Rank-to-Node Mappings

Ranks are placed on network nodes in a manner similar to that for production
HPC systems, where clusters of available network nodes are assigned to a job.
Therefore, we use a geometric job placement policy in which multiple clusters
of network nodes are assigned to jobs. In the simulation, the clusters are formed
by using the inverse transform sampling method for creating random samples
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from a given distribution. The experiments in the paper were performed with
three different rank to node mappings; however, we did not observe a noticeable
difference between the statistics reported by each mapping.

4 Quantifying Interference on 1-D Dragonfly and Megafly
Networks

In this section, we analyze the communication interference on both 1-D dragon-
fly and megafly networks following the methodology described in Sect. 3. Each
simulation experiment was conducted three times with different geometric job
allocation policies and the performance difference observed between each run was
less than 2%. The communication latency of an application is determined by the
rank that incurs the maximum latency across all the participating ranks. Given
that the distribution of the latencies of ranks potentially contain long tails [13]
corresponding to ranks that are effected by congestion, using maximum latency
across the ranks is the appropriate metric. Before discussing the QoS exper-
iments, we compare the baseline communication performance of megafly and
1-D dragonfly networks and further quantify the performance degradation with
QoS disabled. We then incorporate QoS mechanisms in the megafly networks to
evaluate the performance with and without such mechanisms enabled.

Uniform Random Background Traffic. Figure 3(a) shows the communica-
tion time of LAMMPS SWM with varying degrees of background traffic, starting
from no background traffic, on both megafly and 1-D dragonfly. LAMMPS uses
a mix of point-to-point and collective communication as shown in Fig. 2. The
performance results in the figure show that megafly performs better than a 1-D
dragonfly in most of the background traffic injection rates. For the worst case
background injection rate, 1-D dragonfly outperforms megafly.

Figure 3(b) shows the communication time of Nekbone SWM with and with-
out uniform random background traffic on both megafly and 1-D dragonfly net-
works. Nekbone uses a large number of 8-byte MPI collectives as shown in Fig. 2.
Additionally, of the studied workloads, Nekbone is the most communication vol-
ume intensive application: it transmits 4x more data than the LAMMPS or
nearest-neighbor SWM workloads do. The performance results in the figure show
that megafly performs up to 60% better than a 1-D dragonfly in all except one
background traffic injection rates. For the worst case background injection rate,
1-D dragonfly outperforms megafly.

Figure 3(c) shows the performance of nearest-neighbor communication on
both 1-D dragonfly and megafly networks. Since we are using geometric job
mapping that allocates cluster of network nodes, the nearest-neighbor pattern
involves extensive communication between two groups. In this case, megafly
consistently outperforms the dragonfly network because of multiple reasons: (i)
megafly has larger group sizes (more nodes available within a group), which
increases locality of communication within a group. The locality of communi-
cation is beneficial for nearest neighbor traffic, and (ii) Dragonfly has a single
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(a) LAMMPS communica-
tion times comparison

(b) Nekbone communica-
tion times comparison

(c) Nearest-neighbor com-
munication times compari-
son

Fig. 3. Performance of megafly vs. 1-D dragonfly with (a) geometrically allocated
2048/2048 ranks for LAMMPS/uniform random workloads and (b) geometrically allo-
cated 2197/2197 ranks for Nekbone/uniform random workloads, and (c) geometrically
allocated 4096/4096 ranks for nearest-neighbor/uniform random workloads. The inten-
sity of the background traffic was scaled at a percentage of the maximum link capacity.

minimal path between two routers within a group whereas megafly has 16 differ-
ent minimal path options for this route, which reduces intra-group congestion.
Since nearest-neighbor communication exchanges are based exclusively on point-
to-point operations between two groups, it is less impacted by the background
traffic.

Random Permutation Background Traffic. While uniform random traffic
with large message sizes can cause dynamic hotspots in the network, we also
considered random permutation traffic to introduce more persistent network
interference. Similar to uniform random, the random permutation background
traffic pattern sends packets to a randomly selected node in the network. We
use a rotating random permutation pattern that will send continually to the
same randomly selected destination (on a per node basis) until a certain num-
ber of bytes have been transmitted before choosing a new random destination.
Figures 4 shows the performance of megafly and dragonfly networks. The fore-
ground workloads see a slowdown in communication time as the number of bytes
exchanged in the background traffic is increased. Since nearest neighbor traffic
involves point to point operations (mostly to the neighboring group), it is not
significantly impacted by the rotating random background traffic. While the
performance of LAMMPS workload is comparable on both networks, the Nek-
bone workload is less perturbed on a megafly network than a 1-D dragonfly. Our
conjecture is that the better performance of megafly can be attributed to the
additional path diversity of its minimal routes. The results demonstrate that
there is nearly a linear slowdown in the performance of the foreground job as
the number of bytes exchanged in the background traffic increases.



12 M. Mubarak et al.

(a) LAMMPS communica-
tion times comparison

(b) Nekbone communica-
tion times comparison

(c) Nearest-neighbor com-
munication times compari-
son

Fig. 4. Performance of megafly vs. 1-D dragonfly with (a) geometrically allocated
2048/2048 ranks for LAMMPS/random permutation workloads (b) geometrically allo-
cated 2197/2197 ranks for Nekbone/random permutation and (c) geometrically allo-
cated 2197/2197 ranks for nearest-neighbor/Random Permutation workloads. The
amount of data exchanged between two nodes in a rotating random permutation was
scaled from 250KiB to 8 MiB.

Multiple Applications in Parallel. In the third case, as a specific instance
of representative HPC scenarios, we run the three workloads (LAMMPS, Nek-
bone, and nearest neighbor) in parallel without any synthetic communication
traffic. This scenario clearly mimics a common system state, with multiple jobs
completing for shared resources. Figure 5 shows the communication time of the
three applications when running in parallel and in isolation on both dragon-
fly and megafly networks. We can see that with both LAMMPS and Nekbone,
the applications are much less perturbed on a megafly network than on a 1-D
dragonfly network.

Fig. 5. Communication times of LAMMPS (2,048 ranks), Nekbone (2,197 ranks), and
nearest neighbor (2,048 ranks) when running in parallel on 1-D dragonfly and dragon-
fly+ networks. Baseline indicates the application runs in isolation.

After introducing different forms of background communication traffic
with foreground workloads, our analysis shows that in maximum cases, the
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performance of megafly network is comparable to a 1-D dragonfly network.
In majority of the cases, Megafly performs better than a 1-D dragonfly. For
LAMMPS and Nekbone workloads with worst case background traffic, a 1-D drag-
onfly gets relatively less perturbed than a megafly. On both networks, however,
HPC applications see a significant slowdown in communication ranging up to
700% in the presence of intense background communication traffic.

5 Evaluating Quality of Service on Megafly Networks

Enabling quality of service on HPC networks requires that each traffic class
have its own set of virtual channels. Megafly networks require a fewer number
of virtual channels for deadlock prevention. When a fixed, limited number of
VCs are available in the switch hardware, megafly needs half as many VCs
as a dragonfly and has the opportunity to use the extra VCs for QoS. The
mechanism for quality of service was introduced in Sect. 2. In this section, we
perform experiments to analyze the impact of QoS on traffic interference and
application slowdown that was seen in Sect. 4. Due to space constraints, the
results shown are for Megafly networks even though a 1-D dragonfly network
performs in a similar manner with QoS turned on. Since there can be a large
number of permutations for bandwidth caps, we performed a sensitivity analysis
by sweeping different bandwidth values and picked the values that were most
effective. The static window over which the bandwidth statistics were monitored
was kept to 5 ms throughout these experiments. We explore two configurations
through which QoS can be introduced in megafly networks:

5.1 QoS Mechanism I: Prioritizing Entire Applications

With our first QoS mechanism, a higher priority and high bandwidth are assigned
to the entire application (or set of applications) so that they face minimal slow-
down relative to other traffic. We use uniform random background traffic and
both LAMMPS and Nekbone foreground workloads that exhibited slowdown
on megafly networks in Sect. 4 (Nearest neighbor was not getting significantly
perturbed). To understand the impact on background traffic, we measure the
performance of both foreground workload and background traffic. The back-
ground traffic performance is measured by the maximum time to complete a
message (all messages have the same size in the synthetic workload).

The benefit of using this QoS approach is that if the foreground application
is not utilizing the full bandwidth allocated to it, then the background workload
can consume the unutilized bandwidth. Figure 6 compares the performance of
LAMMPS workload with and without QoS enabled on a megafly network. It
also shows the slowdown to background communication traffic. The LAMMPS
workload is not as communication intensive because it involves point-to-point
messages along with a small number of MPI AllReduce messages. Therefore, the
perturbation to background traffic is not significant. Because of the high priority
given to LAMMPS, it does not see any slowdown even though it is running
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in parallel with intense background traffic. Additionally, while we observe a
significant speedup with LAMMPS, the background traffic observes only a small
degree of slowdown as compared with the no-QoS case.

(a) LAMMPS communication times (b) Background traffic performance

Fig. 6. QoS Mechanism I (Application Priority): performance of LAMMPS and back-
ground traffic on megafly network with QoS enabled and disabled. The entire LAMMPS
application is given a high priority and high bandwidth (70%).

Nekbone SWM is a communication-intensive workload that transmits 4x
more data than does LAMMPS SWM, and a majority of the communication
involves collectives. Figure 7 shows the performance of the Nekbone SWM when
QoS is enabled. Once again we see Nekbone having minimal slowdown when QoS
is enabled while causing minimal slowdown to background communication traf-
fic. The primary reason for the improved performance is that both Nekbone and
LAMMPS are given high priority and high bandwidth yet they do not consume
all the bandwidth assigned to them. Therefore, the background traffic is able to
get the required bandwidth that it needs while observing little slowdown.

Both these results demonstrate that traffic differentiation with bandwidth
shaping and prioritization can mitigate (or eliminate) communication interfer-
ence to HPC workloads while causing minimal slowdown to the background traf-
fic. Assigning a high priority to an application can eliminate the perturbation
to that application while experiencing a reasonable slowdown in the remaining
network traffic.

5.2 QoS Mechanism II: Prioritizing and Guaranteeing Bandwidth
to Latency-Sensitive Operations

Several HPC applications rely on the performance of MPI collective operations.
In a majority of the cases, collectives comprise small messages, and the applica-
tion performance suffers when heavy background network traffic interferes with
the transmission of these messages. An alternative application of QoS is to assign
a high priority and guaranteed bandwidth to collective operations.
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(a) Nekbone communication times (b) Background traffic performance

Fig. 7. QoS Mechanism I (Application Priority): performance of Nekbone and back-
ground traffic on megafly network with QoS enabled and disabled. The entire Nekbone
application is given a high priority and high bandwidth (70%).

(a) LAMMPS communication times (b) Background traffic performance

Fig. 8. QoS Mechanism II (Collective Priority): performance of LAMMPS and back-
ground traffic on megafly network with application-based QoS enabled and 10% band-
width guaranteed to collectives.

Figure 8 shows the performance of LAMMPS when high priority is given to
collectives and compares it with the case where no QoS is enabled. In this case,
we are assigning a high priority but a small fraction of bandwidth to collective
operations; the point-to-point operations and background traffic are given a lower
priority and higher bandwidth cap (90%). We see that although there is some
slowdown in foreground traffic when the background traffic becomes intense, the
foreground workload is still 10% faster than the case where no QoS is enabled
(specifically in the case of 15% background traffic injection). LAMMPS uses
more point-to-point operations and has fewer collective operations, which is why
the speedup is not as significant as Nekbone that relies heavily on collective
performance.

Figure 9 shows the performance of Nekbone when given high priority and
a guaranteed bandwidth to collectives. Nekbone relies heavily on collective
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(a) Nekbone communication times (b) Background traffic performance

Fig. 9. QoS Mechanism II (Collective Priority): performance of Nekbone and back-
ground traffic on megafly network with application-based QoS enabled and 10% band-
width guaranteed to collectives.

operations. Therefore, we see a significant performance improvement of up to
60% speedup in communication time compared with the case where no QoS is
enabled. The background communication traffic does not show a slowdown in
message communication times; instead it shows a slight performance improve-
ment compared to no-QoS options in one case.

5.3 Applying QoS Mechanisms to Multiple Application Workloads
in Parallel

In this section, we examine both QoS mechanisms in the case where multiple
applications are running in parallel, which is a specific instance of a represen-
tative HPC system. We compare the QoS-enabled performance with the case
where there are multiple applications running without any QoS. For the first
QoS mechanism, since Nekbone is more communication intensive than LAMMPS
and nearest neighbor (shown in Fig. 2) we assign it a separate traffic class with
a bandwidth cap of 30% and a high priority. The rest of the bandwidth is avail-
able to both LAMMPS and nearest neighbor. For the second QoS mechanism,
we assign a higher priority to all collective communication in both LAMMPS
and Nekbone and then see the impact on application performance.

Figure 10 shows the performance of multiple applications running in parallel
with and without QoS enabled. In short, both schemes are beneficial, and lead
to reduced communication time. With the QoS Mechanism I, we give a high
priority and assign one third of link bandwidth as a cap to Nekbone. Nekbone
is communication intensive; and with a high priority and the bandwidth cap, it
does not get any slowdown due to background communication traffic. In contrast,
LAMMPS and nearest neighbor have a lower priority, and they still see a perfor-
mance improvement compared with the case where there was no QoS enabled.
Adding bandwidth caps on Nekbone (which is a bandwidth-intensive application)
helps improve the performance of LAMMPS and nearest neighbor as well.
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Fig. 10. Communication times of Nekbone, LAMMPS, and nearest-neighbor workloads
when running in parallel. Both mechanisms of application-based QoS were enabled. The
comparison is done with (i) the worst case when no QoS is enabled (Multi No QoS)
and (ii) the best case when the workload is running in isolation with no interference
(baseline).

With the QoS Mechanism II, where collective communication is given pri-
ority, both LAMMPS and Nekbone benefit by seeing a 10% and 20% speedup,
respectively, compared with the case where QoS is not enabled. One interesting
observation is the performance of the nearest-neighbor workload, which is much
faster with QoS enabled than when the workload is running in isolation. Look-
ing at the adaptive routing statistics, we see that the nearest-neighbor workload
when running in isolation takes the maximum number of minimal routes because
of the bias toward minimal routes. With QoS enabled, nearest-neighbor traffic
has a lower priority with QoS mechanisms enabled, which causes it to take more
nonminimal routes, coincidentally helping with the congestion points. Thus the
workload sees improved performance. A similar phenomena is observed with
Nekbone when it is running with QoS Mechanism I.

These experiments demonstrate the effectiveness of applying QoS to reduce
or eliminate communication interference. With both mechanisms, Nekbone, being
more bandwidth intensive, sees a 20% to 350% speedup in communication time
compared with the case where QoS is not enabled. LAMMPS sees a 10% to 200%
improvement in communication time compared with the case where QoS is not
enabled. Nearest neighbor is indirectly impacted by bandwidth capping and sees
a performance improvement of 25%. Additionally, all applications (both fore-
ground and background traffic) benefit from QoS; the low priority applications
are guaranteed to get a share in bandwidth which avoids performance degrada-
tion. The takeaway is that adding traffic differentiation in HPC networks can
bring performance improvement to all traffic classes.
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6 Related Work

There are different approaches to address run-to-run variability on HPC sys-
tems. One approach is based on partitioning the networks and providing an
isolated partition for a job. While this approach has successfully worked for low-
radix networks such as torus [21], it is a challenge to implement partitioning
on networks such as dragonfly or megafly, due to their hierarchical nature. The
other approach is QoS, which can be enforced through various mechanisms on
data centers and HPC networks. Flow control [7,12] is a high-level approach for
avoiding interference in large-scale and datacenter-scale networks which takes a
coarser-grained look at data within the network. Alizedah et al. [1] studied the
impacts of sacrificing a portion of the total bandwidth while lowering the thresh-
old for congestion sensing to provide a buffer zone within links in an attempt
to reduce the overall latency of applications in a datacenter environment. On
the algorithmic routing side of QoS implementation, many different approaches
exist, from centralized global information methods to distributed routing algo-
rithms with limited or incomplete network information and hierarchical algo-
rithms that bridge the gap between globally and locally available information
when making routing decisions. Chen and Nahrstedt [3] presented an overview
of various routing algorithms solving different QoS problems for both unicast
and multicast applications. Most of the literature available on quality of service
is intended for data-centric and TCP/IP networks and does not explore HPC
workloads, routing, and flow control mechanisms. Cheng et al. [4] provided high-
level details about implementing quality of service on data-centric and HPC
networks. Jakanovic et al. [9] provided an efficient QoS policy for HPC systems
with InifiBand network (fat tree topology).

7 Discussion and Conclusion

With HPC applications showing performance variation on recent hierarchical
interconnects, we analyze communication interference for both megafly and drag-
onfly networks. We extend the CODES parallel simulation framework to replay
the communication pattern of HPC applications using the Scalable Workload
Models (SWM). We introduce moderate to intense background communication
traffic during the execution of these communication workloads and compare the
slowdown on megafly network with a 1-D dragonfly network. We demonstrate
that performance variability is experienced in both topologies, while observing
that in several experiments the performance implication is less severe for megafly.

To further mitigate the variability, we introduce traffic differentiation and
quality of service mechanisms and show the results on a megafly network. We
explore two different QoS mechanisms for HPC workloads (i) prioritizing and
bandwidth capping entire HPC applications (ii) prioritizing and guaranteeing
bandwidth to latency sensitive collective operations with small messages. With
the first mechanism, performance results show that when a high priority and a
bandwidth cap is given to entire HPC applications, it can eliminate performance
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variability while the rest of the background traffic also sees minimal impact. For
the second mechanism, we show that when a small fraction of bandwidth is guar-
anteed to latency sensitive operations like the MPI collectives, it can mitigate the
performance variability by 10% to 60% depending upon the intensity of collec-
tive communication in the application. This dramatic performance improvement
from QoS on megafly can make up for its shortcomings in high-interference runs
with no additional hardware cost. In both cases, we saw that both high and low
priority applications have a better performance with QoS than the case with no
QoS, which implies that having traffic differentiation is beneficial for all appli-
cations on a HPC network as it allows a fair share of bandwidth to each traffic
class.

While this work is aimed to provide a proof of concept that QoS is effective
in mitigating communication interference for realistic HPC workloads, there are
a number of avenues that need to be further explored. First, real HPC systems
have tens to hundreds of jobs running. Giving a high priority to more than
one HPC application (as shown in QoS mechanism I) can introduce interference
within the traffic class, which can slowdown high priority applications. Secondly,
one would need to explore how to expose the traffic classes to the MPI interfaces
and the job scheduler.
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Abstract. Neural machine translation - using neural networks to trans-
late human language - is an area of active research exploring new neuron
types and network topologies with the goal of dramatically improving
machine translation performance. Current state-of-the-art approaches,
such as the multi-head attention-based transformer, require very large
translation corpuses and many epochs to produce models of reasonable
quality. Recent attempts to parallelize the official TensorFlow “Trans-
former” model across multiple nodes have hit roadblocks due to excessive
memory use and resulting out of memory errors when performing MPI
collectives.

This paper describes modifications made to the Horovod MPI-based
distributed training framework to reduce memory usage for transformer
models by converting assumed-sparse tensors to dense tensors, and sub-
sequently replacing sparse gradient gather with dense gradient reduction.
The result is a dramatic increase in scale-out capability, with CPU-only
scaling tests achieving 91% weak scaling efficiency up to 1200 MPI pro-
cesses (300 nodes), and up to 65% strong scaling efficiency up to 400
MPI processes (200 nodes) using the Stampede2 supercomputer.

1 Introduction

Neural Machine Translation (NMT) [1,2,19] offers numerous improvements and
advantages in translation quality compared to traditional machine translation
systems, such as statistical phrase-based systems [10]. NMT also paved the
way to translate multiple languages using a single model [9]. Continued active
research interest in the field of NMT has created many interesting architectures
which produce models of high translation quality [22]. Recent research also shows
c© Springer Nature Switzerland AG 2019
M. Weiland et al. (Eds.): ISC High Performance 2019, LNCS 11501, pp. 23–39, 2019.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20656-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-20656-7_2


24 D. Cavdar et al.

how reduced precision and large batch training could speed-up the training while
maintaining translation quality [12].

There are several challenges when scaling out Deep Neural Network (DNN)-
based models, such as efficiently exchanging gradients across multiple nodes,
scaling up the batch size while maintaining generalized performance, and select-
ing appropriate hyper-parameters which efficiently train the model while pre-
venting divergence and over-fitting. NMT approaches such as the transformer
model [22], which shares the weight matrix between the embedding layer and
linear transformation before the softmax layer, must ensure that the gradients
from these two layers are updated appropriately without causing performance
degradation or out-of-memory (OOM) errors.

In this paper, we begin by understanding the basics of a NMT model, and
try to explore the reasons that restrict it’s scalability. We then show how our
current solution of forcibly densifying assumed-sparse tensors achieves high scal-
ing efficiency – both weak and strong – when trained with up to 300 nodes
on both the Zenith supercomputer at Dell EMC and the Stampede2 supercom-
puter at TACC. We also illustrate that even when trained with very large batch
sizes (402k, 630k and 1 Million tokens), we are still able to achieve comparable
or slightly better translation quality when compared to the official TensorFlow
benchmark results.

The software changes which we discuss in this paper have been incorporated
into Horovod 0.15.2 and later, providing other researchers the opportunity to
apply this approach on any models that may benefit.

2 Background

NMT models work much like source-to-source compilers, taking input from a
source language (e.g., Fortran) and converting it to a target language (e.g.,
binary machine code). An NMT model first reads a sentence in a source language
and passes it to an encoder, which builds an intermediate representation. This
intermediate representation is then passed to the decoder, which processes the
intermediate representation to produce the translated sentence in the target
language.

Fig. 1. Encoder-decoder architecture
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Figure 1 shows an encoder-decoder architecture. The English source sentence,
“Hello! How are you?” is read and processed by the architecture to produce
a translated German sentence “Hallo! Wie sind Sie?”. Traditionally, Recurrent
Neural Networks (RNN) were used in encoders and decoders [2], but other neural
network architectures such as Convolutional Neural Networks (CNN) [4] and
attention mechanism-based models [16] are also used.

The transformer model [22] is one of the interesting architectures in the field
of NMT, which is built with variants of attention mechanism in the encoder-
decoder part, eliminating the need for traditional RNNs in the architecture [3].
This model was able to achieve state of the art results in English-German and
English-French translation tasks.

Fig. 2. Multi-head attention block [22]

Figure 2 illustrates the multi-head attention block used in the transformer
model. At a high-level, the scaled dot-product attention can be imagined as
finding the relevant information, values (V) based on Query (Q) and Keys (K)
and multi-head attention could be thought as several attention layers in parallel
to get distinct aspects of the input.

3 Issues with Scaling the Transformer Model

Encoder-decoder models for NMT make use of an attention mechanism to help
the decoders obtain the vital information from the source tokens while discarding
irrelevant information. The main structure of the transformer model is the multi-
head attention, which provides a way to get different linear transformations of all
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the inputs. These components allow an NMT model to learn more robustly. But
a particular design consideration that needs to be looked at for improving the
scaling capabilities is the weight matrix that is shared between the embedding
layer and the projection matrix. This type of similar design is also seen in other
NMT models such as [4]. Hence, understanding the cause and effect of these
specific design considerations is vital for the NMT research community.

This particular design would cause performance degradation or OOM errors
if the gradients from these layers are not accumulated correctly. Specifically,
gradients from the embedding layer are sparse whereas the gradients from the
projection matrix are dense. In TensorFlow both gradients are updated together
as a sparse IndexedSlices objects. This has a dramatic effect on TensorFlow’s
determination of a gradient accumulation strategy, and subsequently on the total
size of the accumulated gradient tensor.

Algorithm 1. Tensor Accumulation Strategy in TensorFlow [20]
1: if |GRADin| < 2 then
2: GRADout ← GRADin � Pass-through
3: else if type(g) = Tensor ∀g ∈ GRADin then
4: GRADout ← ∑

GRADin � Output is a dense Tensor (reduce)
5: else

6: GRADout ←
�

GRADin � Output is a sparse IndexedSlice (gather)
7: end if

Algorithm 1 describes the algorithm used in TensorFlow to accumulate gradi-
ents, based on the assumed type and shape of the gradients being accumulated
(see [20]). At present, TensorFlow will either: (1) do nothing if there are less
than 2 output gradients, (2) accumulate gradients by reduction if all gradients
are expressed as dense tensors with defined shapes, or (3) convert everything to
indexed slices and accumulate by concatenation (performing a gather operation).

In this particular use case, the embedding lookup is performed using
tf.gather, which returns an IndexedSlice object. This forces TensorFlow
(based on the accumulation algorithm - Algorithm1) to convert the remaining
dense tensors to indexed slices, even though all the gradients being accumulated
are dense.

The result of this decision to convert and assume that the gradient tensors are
sparse is to accumulate by gathering, rather than reduction. This applies not only
to single-node tensor accumulation, but to multi-node accumulation through
Horovod due to the use of the main TensorFlow graph in determining which
collective operations Horovod will perform using MPI. The result is extremely
large message buffers (exceeding 11 GB - see Fig. 3a), which cause segmentation
faults or out-of-memory (OOM) errors.

Because of the message buffer sizes, we were unable to scale beyond 32 MPI
processes, and saw quickly diminishing scaling efficiency, or fraction of ideal
scaled speedup. Figure 4 shows the scaled speedup of the training process up



Densifying Assumed-Sparse Tensors 27

(a) Before: tf.gather/MPI Gather

(b) After: tf.reduce/MPI Reduce

Fig. 3. Horovod timelines for 64 MPI process tests before and after modification
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Fig. 4. Scaled speedup with sparse tensor accumulation strategy (gather)

to the maximum achievable 32 MPI processes (8 nodes with 4 processes per
node). Scaling efficiency – which is visually expressed as distance from the ideal
line – declines rapidly, going from 84% with 4 nodes to 75% for 8 nodes. Even-
tually scaled speedup would (if the training could be parallelized further) reach
an asymptotic limit where additional resources do not further accelerate the
algorithm.

4 Densifying Assumed-Sparse Tensors

In order to correct for the issue of assumed-sparse tensors in TensorFlow, we
have implemented a forced-conversion of all gradient tensors to dense represen-
tation inside of Horovod’s DistributedOptimizer method. This will then force
TensorFlow to accumulate those tensors via reduction, rather than aggregation
(see Listing 1).

Listing 1. Horovod code for converting IndexedSlices to Tensors [5]

for grad , var in gradients:

if grad is not None:

if self._sparse_as_dense and

isinstance(grad , tf.IndexedSlices ):

grad = tf.convert_to_tensor(grad)

The result is an 82x reduction in the amount of memory required (from
11.4 GB to 139 MB - see Fig. 3a and b, respectively) when using 64 nodes (1
MPI process per node, batch size 5000 tokens). Additionally, the time needed to
perform the accumulate operation drops from 4320 ms to 169 ms, which is a 25x
reduction (see Fig. 5 for a comparison of accumulate size and time).
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Fig. 5. Space/time for tensor accumulate (sparse gather vs. dense reduce)

These small changes reduce the memory footprint per process to a degree
that we can both scale up the batch size per MPI process and increase the
number of MPI processes per run. They also reduce the tensor exchange time
significantly enough to maintain near-linear scaling when running in a multi-
node environment.

This algorithmic change can be made in Horovod 0.15.2 or later by setting
the sparse as dense option when initializing DistributedOptimizer:

opt = hvd.DistributedOptimizer(opt, sparse_as_dense=True)

5 Experimental Results

The models were trained using the WMT-17 English-German parallel corpus
with 4.5M sentence pairs. The newstest2014 dataset was used as unseen test
data to capture the translation quality. All the pre-processing and BLEU [13]
calculations were in accordance with TensorFlow’s official benchmarks in order
to compare performance and translation quality. We also used hyper parameter
settings based on best practices in [12,15]. Model training experiments were run
on the Zenith cluster in the Dell EMC HPC & AI Innovation Lab, as well as
the Stampede2 cluster at the Texas Advanced Computing Center (TACC) in
Austin, Texas.

Each Zenith node contains dual Intel R©Xeon R©Scalable Gold 6148/F proces-
sors, 192 GB of memory, and an M.2 boot drive to house the operating system
that does not provide user-accessible local storage. Nodes are interconnected by
a 100 Gbps Intel R©Omni-path fabric, and shared storage is provided by a combi-
nation of NFS (for HOME directories) and Lustre [17] filesystems.

For our Zenith tests, we used Python 2.7, with Intel’s MKL-optimized version
of TensorFlow (1.12). The version of Horovod used for these experiments was
a private branch for testing purposes, but all of these optimizations have now
been made a part of Horovod 0.15.2. Table 1 gives a complete breakdown of the
software environment used for the Zenith experiments, while Listing 2 provides
the runtime settings for the experiments.
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Listing 2. Runtime settings for Zenith Experiments

OMP_NUM_THREADS =10

KMP_BLOCKTIME =0

KMP_AFFINITY=granularity=fine ,verbose ,compact ,1,0

HOROVOD_FUSION_THRESHOLD =134217728

We also ran scaling tests on the Stampede2 cluster at the Texas Advanced
Computing Center (TACC) at The University of Texas at Austin [18]. Stam-
pede2 has two partitions, each with a different set of processors. Our tests were
performed on the SKX partition, which consists of 1,736 nodes, each with dual
Intel R©Xeon R©Scalable Platinum 8160 processors, 192 GB of memory, and 200 GB
internal SSD drive for the operating system and local /tmp. The second KNL
partition consists of 4,200 nodes, each with a single Intel R©Xeon PhiTM 7250
processor with 16 GB of on-package MCDRAM, 94 GB of main memory, and a
200 GB SSD for the operating system and local /tmp. All nodes are intercon-
nected with 100 Gbps Intel R©Omni-path fabric and connected to Lustre-based
shared filesystems.

For our Stampede2 tests, we used Python 2.7, with Intel’s MKL-optimized
version of TensorFlow (1.12). The version of Horovod used for these experiments
was a private branch for testing purposes, but all of these optimizations have
now been made a part of Horovod 0.15.2. Table 2 gives a complete breakdown
of the software environment used for the Zenith experiments.

Table 1. Software environment for Zenith experiments

Package Version

Python 2.7.13

TensorFlow Anaconda TensorFlow 1.12.0 with IntelR©MKL

Horovod 0.15.2

MPI MVAPICH2 2.1

5.1 Weak Scaling Performance

The difference in reducing the output gradient size can be seen when comparing
the scaling efficiency – the ratio between observed scaled speedup and ideal –
between the default sparse tensor accumulation strategy (gather) and the dense
tensor accumulation strategy (reduce). Dense tensor accumulations show signif-
icantly better scaling efficiency out to 32 MPI processes (95%) than the default
sparse tensor accumulation (75%) (see Fig. 6).

The reduced output gradient size and improved scaling efficiency mean that
we can scale to larger process counts than was previously possible. Additional
weak scaling experiments on Zenith using 4 processes per node (PPN) on up to
300 compute nodes (1200 MPI processes) show near-linear scaling, with efficiency
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Table 2. Software environment for Stampede2 experiments

Package Version

Python 2.7.13

TensorFlow Anaconda TensorFlow 1.12.0 with IntelR©MKL

Horovod 0.15.2

MPI MVAPICH2 2.3

Fig. 6. Comparison of weak scaling on Zenith up to 8 nodes (4PPN) between sparse
and dense tensor accumulation strategies

dropping from 95% for 8 nodes to 91.5% for 300 (see Figs. 7 and 8). For these
particular experiments on Zenith, batch size per process was held constant at
5000 tokens, or 20000 tokens per node. This means in the largest case (1200 MPI
processes) we are training with a global batch size of 6M tokens.

The ability to maintain very high weak scaling efficiency above 90% sug-
gests that continued scale-out is worthwhile. We will seek to perform additional
experiments on systems larger than Zenith.

5.2 Strong Scaling

Besides good weak scaling efficiency, the reduced output gradient size also gives
us the possibility to perform strong scaling experiments. For this purpose, we
have selected a global batch size of 819,200 that allows us to produce a near-
state-of-the-art model in terms of translation quality (as measured by BLEU
score [13]), and as discussed in the following section. Obtaining good strong
scaling efficiency is significantly more challenging compared to the weak scaling
case, as the effective batch size per worker decreases when increasing the node
count.
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Fig. 7. Weak scaling on Zenith cluster from 1 to 300 nodes (4 PPN) using dense tensor
accumulation strategy (reduce)

Fig. 8. Weak scaling efficiency on Zenith up to 300 nodes (1200 processes)

We have performed strong scaling experiments on both on the Zenith cluster
and on the Stampede2 supercomputer from TACC. We have used up to 200
nodes on Zenith, and up to 512 nodes on Stampede2, both systems showing
significant reductions in terms of time to solution.

Figures 9 and 10 illustrate the strong scaling behavior that can be expected
on the Zenith system. When going from 16 nodes up to 200 nodes, we can
improve the throughput by a factor exceeding 8 (out of a maximum of around
12). In all these strong scaling cases, we only use 2 processes per node, each
being scheduled to run on one socket and exploiting the NUMA affinity. This
setting is more appropriate in this scenario, as the batch size that can be used
per worker is double compared to the case when using 4 processes per node.



Densifying Assumed-Sparse Tensors 33

Fig. 9. Strong scaling throughput on up to 200 nodes of Zenith (Dell EMC) and 256
nodes of Stampede2 (TACC) with global batch size of 819,200 tokens

Fig. 10. Scaled speedup (strong scaling) up to 200 nodes on Zenith (Dell EMC) and
256 nodes on Stampede2 (TACC) with a global batch size of 819,200 tokens

The impact of having good strong scaling efficiency is that training times
can be dramatically reduced. This can be best visualized in Fig. 11, where the
time to solution drops from around one month when using a single node, down
to slightly over 6 h when using 200 nodes (121 times faster), therefore signifi-
cantly increasing the productivity for NMT researchers when using CPU-based
HPC infrastructures. The results observed were based on the models achieving
a baseline BLEU score (case-sensitive) of 27.5.
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Fig. 11. Time to solution (strong scaling) on up to 200 Zenith nodes

For the single node case, we have used the largest batch size that could fit in
a node’s memory, 25,600 tokens per worker. For all other cases we use a global
batch size of 819,200, leading to per-worker batch sizes of 25,600 in the 16-node
case, down to only 2,048 in the 200-node case. The number of training iterations
is similar for all experiments in the 16–200 node range, and is increased by a
factor of 16 for the single-node case (to compensate for the larger batch).

On Stampede2, the behavior is similar to zenith up to 200 nodes. Since Stam-
pede2 is a larger system, we performed larger strong scaling experiments. How-
ever, we noticed that using a 819,200 batch size would limit the scaling efficiency
when using over 256 nodes. The 200 to 256 node range show improvements in
time-to-solution, but when using 400 nodes we have reached the limits of strong
scaling, and begin to observe performance degradation. This is due to the fact
that a small (1,024) per-worker batch size is used in the 400 nodes experiment.
To test that this is the case, we performed a larger experiment using a per-worker
batch size of 1,536, and a total of 1,024 workers divided across 512 nodes. This
leads to a global batch size of 1,572,864, and requires further attention to in
order to reach the translation accuracy performance targets. However, from a
throughput perspective, this run is 56% faster compared to a similar 256-node
run. This shows that there will be performance improvements as we increase the
per-worker batch size to a reasonably large size (>1536).

5.3 Model Accuracy

Scaling out transformer model training using MPI and Horovod improves
throughput performance, while producing models of similar translation quality
(see Fig. 12). Models of comparable quality can be trained in a reduced amount
of time by scaling computation over many more nodes, and with larger global
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batch sizes (GBZ). Our experiments on Zenith demonstrate ability to train mod-
els of comparable or higher translation quality (as measured by BLEU score [13])
than the reported best for TensorFlow’s official model [21], even when training
with batches of a million or more tokens.

Fig. 12. Translation quality (BLEU) when trained with varying batch size on Zenith
(Color figure online)

6 Discussion

Our experiments have demonstrated that converting assumed-sparse tensors
to dense tensors improves memory utilization as well as time to accumulate,
thanks to a switch from gathering to reduction (see Fig. 5). Unlike similar solu-
tions implemented directly within optimized NMT models, such as NVIDIA’s
OpenSeq2Seq package [11], our approach does not limit usability strictly to one
specific package repository or model implementation. Instead, our approach pro-
vides greater generalized use and potential applicability to other models.

Applicability to Other Models. We believe the solution that is now implemented
in Horovod will prove useful to most neural network model classes, including var-
ious language translation models, image segmentation models, voice/text trans-
lation models across multiple voice datasets, time-series models, etc. Future work
will quantify the impact of the current solution to these use cases. We also fore-
see this as a potential workaround for issues in custom architectures, such as
multi-branch neural networks [7,23–25]. These architectures are typically recol-
lecting gradient data from multiple “separated” neural network branches, which
would be likely to encounter similar sparse tensor encoding issues.
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Specificity to TensorFlow. While we have identified a specific edge case within
the TensorFlow code base, we do not believe that this particular edge case is
common to other deep learning frameworks, such as Caffé2 [8] and PyTorch [14].
However, TensorFlow’s current and continuing popularity and the abundance
of pre-built models in TensorFlow mean that any performance benefits we can
communicate back to that community are important.

Incorporating Changes into TensorFlow. Long-term, we believe that the ideal
solution is to add additional logic into TensorFlow’s gradient accumulation algo-
rithm to convert and reduce tensors when any of the tensors is dense (see
Algorithm 2), rather than only when all of the tensors are dense (as is the case
in Algorithm 1).

Algorithm 2. Proposed Tensor Accumulation Strategy for TensorFlow
1: if |GRADin| < 2 then
2: GRADout ← GRADin � Pass-through
3: else if type(g) = Tensor ∀g ∈ GRADin then
4: GRADout ← ∑

GRADin � Output is a dense Tensor (reduce)
5: else if ∃g ∈ GRADin type(g) = Tensor then
6: GRADconv ← {conv to tensor(g), ∀g ∈ GRADin} � Convert all to Tensor
7: GRADout ← ∑

GRADconv � Output is a dense Tensor (reduce)
8: else

9: GRADout ←
�

GRADin � Output is a sparse IndexedSlice (gather)
10: end if

In the case of Algorithm 2, we propose the addition of an extra conditional
block (lines 5–7), which would handle the case that there exists at least 1 ten-
sor which is dense, in which case all of the tensors to be accumulated would
be converted to dense and accumulated by reduction. More research has to be
done in order to ensure that incorporating this conditional block into the Ten-
sorFlow accumulation strategy would not adversely effect other well-behaved
tensor accumulations, and we will be testing this inclusion and proposing back
to TensorFlow in the future.

7 Future Work and Conclusion

Scaling Neural Machine Translation (NMT) models to multiple nodes can be
difficult due to the large corpuses needed for reasonable translation, and the
all-to-all mapping nature of the intermediate representation encodings. If tensor
accumulation is not performed in a memory and compute-optimized fashion,
excessively large tensors can cause buffer overruns which prevent scaling beyond
a few MPI processes. These models can take weeks or months to train at low
node counts, making it all the more critical that they can be efficiently scaled
to hundreds or thousands of MPI processes.
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We have identified an edge case in TensorFlow’s tensor accumulation strategy
which leads to sub-optimal memory and compute utilization, which prevents
scaling of multi-head attention-based transformer models beyond a relatively
small number of processes without very large memory buffers. We have proposed
and implemented a fix via the Horovod MPI-based framework for distributed
memory scaling of TensorFlow models by forcibly converting – through the use
of an option to DistributedOptimizer – all tensors to be accumulated to dense
and subsequently reducing tensors rather than aggregating them. The result is
a more than 82x reduction in memory needed and 25x reduction in time to
complete the accumulation step at 64 MPI processes, and the enabled ability to
scale the translation model to a thousand MPI processes or more with batches
of millions of word part tokens.

These modifications have been incorporated into Horovod, and are available
as of version 0.15.2 [6], so that other teams can scale neural machine transla-
tion tasks or any other tasks which use similar topologies. We have proposed
a potential fix within TensorFlow as a more long-term solution to this issue,
and we will be pursuing this going forward once we have determined that there
are no additional side-effects from the addition of the new tensor accumulation
strategy.

Going forward, we intend to investigate whether other neural network archi-
tectures besides multi-head attention can benefit from being able to expressly
densify sparse tensor encodings, as well as whether custom architectures could
potentially benefit from this solution.

Acknowledgement. The authors acknowledge the Texas Advanced Computing Cen-
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have contributed to the research results reported within this paper http://www.tacc.
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Abstract. The graphic processing units (GPUs) have become a primary
source of heterogeneity in today’s computing systems. With the rapid
increase in number and types of GPUs available, finding the best hard-
ware accelerator for each application is a challenge. For that matter, it is
time consuming and tedious to execute every application on every GPU
system to learn the correlation between application properties and hard-
ware characteristics. To address this problem, we extend our previously
proposed collaborating filtering based modeling technique, to build an
analytical model which can predict performance of applications across
different GPU systems. Our model learns representations, or embed-
dings (dense vectors of latent features) for applications and systems and
uses them to characterize the performance of various GPU-accelerated
applications. We improve state-of-the-art collaborative filtering approach
based on matrix factorization by building a multi-layer perceptron. In
addition to increased accuracy in predicting application performance,
we can use this model to simultaneously predict multiple metrics such
as rates of memory access operations. We evaluate our approach on a
set of 30 well-known micro-applications and seven Nvidia GPUs. As a
result, we can predict expected instructions per second value with 90.6%
accuracy in average.

Keywords: Performance prediction · GPU · Collaborative filtering ·
Matrix factorization · Multi-layer perceptron

1 Introduction

Graphics Processing Units (GPUs) are today the de-facto source of performance
in High-Performance Computing (HPC), and the vast majority of current top
supercomputers [24] include them in their system setup. These powerful devices
are explicit vector machines, whose programming model allows the program-
mer to leverage the large amount of parallelism they offer. Unlike general-
purpose processors, which focus on exploiting instruction-level parallelism (and
c© Springer Nature Switzerland AG 2019
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focus on latency), GPUs focus on thread-level parallelism, masking/hiding long-
latency operations (e.g. external memory accesses) by time-sharing computa-
tional resources. Despite their similar programming model, GPUs are constantly
undergoing architectural changes across generation (e.g. mixed-precision Arith-
metic Logic Units, per thread program counters, diverse amount of floating-point
units), which makes their performance non-trivial to reason around and predict.

Performance prediction is (and will continue to be) a core pillar in computer
science, and is used to assess the performance (or other metrics such as power-
consumption) of a (non-) fictional system prior to acquisition. The usage of
predicting system performance ranges from users’ reasoning around which cloud
solution fits their performance and budget requirements the best, to HPC system
administrators understanding what components to expand their system with,
all the way to researchers attempting to map and reason around performance
trends and directions. And with the end of Moore’s law near [8], prediction and
understanding performance is more crucial than ever before.

Predicting GPU performance is a challenging and hard task. Despite sharing
a programming model (CUDA [7] and OpenCL [21]), their architectural differ-
ences between generations can be substantial. Furthermore, with the advent and
popularity of Deep-Learning, the type and target audience of GPUs is diversify-
ing. As a result, GPUs specialized in inference, training, gaming, and scientific
computing are emerging [19]. Given this vast array of current and emerging GPU
types, how do users choose which to invest in? Today, most users blindly buy
the fastest next-generation accelerator for their workload, which is more than
likely not the most optimal choice. The Nvidia’s Maxwell vs. Kepler architecture
is one such example where the older generation has an order of magnitude higher
double-precision performance. Thus, there is a need for a simple and effective
performance model that assists users in choosing accelerators suitable for their
workloads.

Existing methods to predict GPU performance are either constrained by the
programming environment (and the necessity of mapping algorithms to existing
GPU features) [10,15], or based on compiler-based approaches [2] to extract
GPU-specific micro-architectural features. Such methods often work well on the
targeted GPU, but are inapplicable across GPU types and architectures as these
methods are system-specific. We focus on building a prediction model that does
not burden users to needlessly execute an application on all target systems.
We recently proposed a collaborative filtering (CF) based prediction model and
showed that it worked well on general-purpose processors (CPUs) that were
diverse in both instruction set architecture (ISA) and architecture, even when the
sampling data was sparse [22]. In this paper, we extend our CF-based prediction
method to GPU-based systems and propose a new model which further improves
the prediction accuracy.

The main contributions of this work are as follows:

1. We show that CF can be used to capture and predict performance for GPUs.
2. We introduce a neural network architecture to learn representations of appli-

cations and systems and test whether using auxiliary training objectives can
further improve its predictive power.
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3. We evaluate and analyze our performance model empirically on a large and
diverse set of well-known benchmarks and multiple generations of Nvidia
GPUs, quantifying the prediction accuracy.

2 Background and Motivation

2.1 Related Work

Many modeling methods have been proposed to estimate the performance of
codes on GPUs. Low-level simulators, such as GPGPU-Sim [3] are relatively
accurate but they are many orders of magnitude slower than other methods.
Abstract analytical models like the roofline model [25] provide fast estimation
but are difficult to use without in-depth knowledge of the algorithm (or, in worse
case, the micro-architecture) at hand.

Baghsorkhi et al. proposed a compiler-based approach to develop a work
flow graph based prediction model that heavily relies on extracting micro-
architectural features of a target GPU [2]. Luo and Suda proposed a GPU
power and performance model based on analyzing PTX codes to calculate mem-
ory accesses and execution time [16]. They showed good accuracy on two older
GPUs presented in their study but it would not deal well with advances like
multi-level caches.

Kerr et al. presented a framework for automating the generation of GPU
performance models using PCA-based statistical method [14]. They profiled 12
benchmarks using a simulator and used PCA to find groups of similar workloads
in order to build their models. They evaluated their framework using 3 Nvidia
GPUs corresponding to Fermi micro-architecture. It is however not known how
this approach will work with different micro-architectures.

Wu et al. predicted power and performance across hardware configurations
corresponding to AMD Graphics Core Next micro-architecture [26], while we
predicted performance across different generations of GPU micro-architectures.
They used only one real GPU in their work and 448 hardware configurations
were obtained by varying its compute units, memory and core frequencies. We
used seven Nvidia GPUs from four different generations ranging from Kepler
to Volta. They used 22 performance counters to capture AMD Graphics Core
Next micro-architecture features and it is likely that this number will change
considerably as we consider another micro-architecture; e.g. we can record 81
hardware events using Nvidia Pascal but 139 using Kepler. In such case, finding
an optimal set of features becomes a new challenge which is the main motivation
behind using latent features in our work.

The number of different GPU micro-architectures and accelerators per archi-
tecture available in today’s market brings new challenges towards projecting an
application’s performance across different systems. Our prediction model can
help in pruning this search space resulting to a few systems, which can then
be studied for architectural insights using any other complementary modeling
approach. In this way, we are complementing (not replacing) existing techniques.
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2.2 Explicit Features

The performance of a program on a given system is guided by the complex inter-
actions between the program’s properties and system’s characteristics. The most
common approach taken towards building analytical models is to first perform
a detailed characterization of applications on systems and collect various per-
formance metrics such as execution time, hardware counters [12,27]. Second, it
needs to explicitly list all the features that can capture the inter-dependencies
between the application and system at hand such as clock rate, cache size, float-
ing point operations per second (FLOPS) etc. Most previous works use an intu-
itive approach when selecting the number of features in order to determine a
set of good explanatory features. However, missing just one crucial feature from
these carefully handpicked features can greatly (and negatively) affect the pre-
diction accuracy. Third, we need to test each possible subset of those features
finding the one which minimizes the error. This is an exhaustive search of the
feature space, and is computationally expensive and unfeasible for all but the
smallest of feature sets. Feature selection algorithms come handy when it comes
to finding the most impactful feature subsets but it comes with an extra effort
of selecting the appropriate algorithm and its parameters.

While considering tens or more of applications and systems, manually defin-
ing features for each set of application and system is practically impossible. For
building a cross-architecture predictive model, such as the one we are targeting,
we focus on two things: (1) We do not want to manually define feature for each
application and system (2) we want our model to learn the features automat-
ically from the known performance of a subset of applications executed on a
subset of systems and leverage this information to predict performance.

2.3 Representation Learning

The concept of representation learning is grounded in the idea that often the
information needed to characterize or classify high dimensional data can be found
in a low-dimensional manifold, or mapped into a dense vector. For instance,
natural language processing systems use word embeddings to represent (embed)
words in a continuous vector space where semantically similar words have similar
vector representations (embeddings) [17]. Recommender systems employ similar
representations to describe its entities (e.g. users and items) and call them as
latent features.

We assume that there is a number of important features, called latent fea-
tures, which characterize systems and applications. We use a machine learning
model to learn these features as a by-product of predicting known runtime met-
rics. In our model, we have application and system feature vectors. Two or more
applications can be similar in one latent feature (they both benefit from high
memory bandwidth) but different in others (only one benefits from high core
clock frequency).
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2.4 Collaborative Filtering

Collaborative filtering [1] is considered to be the most popular and widely imple-
mented technique in recommender systems. It automatically generates predic-
tions (filtering) about the interests of a user by collecting preferences or infor-
mation from many users (collaborating) present in the system. One of its most
publicized applications is the Netflix challenge for improving Netflix’s movie
recommender system, Cinematch, by providing valid movie recommendations to
its users. The prize was won by using a combination of different collaborative
filtering techniques.

Model-based CF methods transform both users and items to the same latent
feature space. The latent space is then used to explain ratings by characterizing
both products and users in terms of factors automatically inferred from user
feedback.

Fig. 1. Mapping of applications and systems into a shared latent space using matrix
factorization.

We recently investigated different CF-based methods to predict performance
across different processor architectures [22]. We used a model-based CF method
called matrix factorization (MF) to model the interactions between applications
and systems. While training, MF associates each of m applications and n systems
with real-valued vectors of latent features of size r as shown in Fig. 1. It infers
these latent features automatically by uncovering hidden patterns in performance
observed on systems. In order to predict performance of a benchmark a on system
s, MF calculates the predicted score by taking the dot product of their latent
features.

3 Prediction Model

We first discuss the limitations of matrix factorization and then present a neural
network architecture that can learn complex application-system representations
using additional training objectives.
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3.1 Multi-layer Perceptron Model

MF models the two-way interactions of applications and systems as a dot prod-
uct of their latent features in a latent space. However, the linear combination
of latent features with the same weight can limit its capability to model all
application-system interactions in the low-dimensional latent space. Also, using
a large number of latent features in order to capture both linear and non-linear
interactions may affect the generalization of the model by overfitting the data.
We address this limitation of MF by learning latent features using a feedforward
neural network.

Fig. 2. Multi-layer perceptron model using latent features

We propose a multi-layer perceptron (MLP) to learn the correlation between
application and system latent features as shown in Fig. 2. Each application and
system in dataset is identified by a sparse vector with one-hot encoding. For
example, representing two applications or systems using one-hot encoding would
result in two vectors i.e. [1, 0] and [0, 1]. These sparse representations are used
to create dense vectors called embeddings. The size of each application (system)
embedding vector is determined by the number of features to be used by the
model. In the beginning, each embedding vector is initialized with a scaled uni-
form distribution. These embeddings are fed into a multi-layer neural network
to learn the interaction between the corresponding application and system from
a training dataset. For that purpose, an optimizer is used to iteratively optimize
these embeddings vectors based on training losses. The obtained application (sys-
tem) embedding can be seen as the latent feature vector for application (system)
in the context of matrix factorization model.
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Let xa and ys denote the embeddings for application a and system s, respec-
tively. Then, the MLP model is defined as:

l1 = (xa, ys) = [xa ys]
φ(l1) = a1(W 1l1 + b1),

.......

φ(ln) = an(Wnln + bn),

(1)

where Wx, bx, ax and (xa, ys) denote the weight matrix, bias vector, activation
function for the xth’s layer perceptron and concatenation of xa and ys embed-
dings respectively.

3.2 Multiple Training Objectives

In our study, we focus on predicting instructions per second (IPS) metric as
the most reasonable proxy to application performance; however we can easily
collect additional runtime metrics and use them for training. We choose loads
per second (LPS) and stores per second (SPS).

Predicting multiple metrics is useful by itself for gaining better insight into
application behavior. Additionally, we want to investigate if additional train-
ing objectives can improve performance prediction itself. Auxiliary losses have
been used in machine learning models in various domains to improve statistical
efficiency and to build better representations [13,18,28].

As with IPS, we use root mean squared error (RMSE) as an actual loss
function for each of the additional metrics. We sum all losses for backpropagation
and report only IPS component of total loss for fair comparison with the model
which is trained with single metric.

3.3 Automated Architecture Search

We assume that a neural network that works better in the case of training with
a single metric would not necessarily be the same as for training with multiple
objectives. Although our model is elegantly simple and it is not uncommon to
develop such models manually, we would like to avoid possible pitfall of sub-
consciously dedicating more attention to fine-tuning a model. As if it performs
better, it would support our hypothesis of handpicking features. Additionally,
because the problem is relatively small, we can afford to train and evaluate mul-
tiple architectures in a short time. For these reasons we perform a grid search
for the best model architectures for cases of training with single and auxiliary
objectives. We constrain the model to be a multi-layer feed forward network with
an arbitrary number of layers and neurons in each layer.

4 Experiment Setup

4.1 Machine Specification

To demonstrate robustness of our approach, we selected GPUs as shown in
Table 1. These hardware accelerators are commonly used in both HPC and
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cloud systems. The heterogeneity of these accelerators are with respect to micro-
architecture1 (Kepler, Maxwell, Pascal and Volta) and the number of streaming
multiprocessors (SM), L2 cache size, core frequency and memory bandwidth
within accelerators having similar micro-architectures. We also show the type of
Intel Xeon processor used along with each GPU in our experiments.

Table 1. Specifications of the GPUs used in our experiments.

GPU arch SMs cores/SM L2a memb corefreq.c bandwidthd cpu used

K20m Kepler 13 192 1.5 5 706 208 E5-2670v3

K20X Kepler 14 192 1.5 6 732 250 E5-2650

K40c Kepler 15 192 1.5 12 745 288 E5-2699v3

GTX-980Ti Maxwell 22 128 3 6 1225 337 E5-2650v3

P100-PCIE Pascal 56 64 4 16 1329 721 E5-2650v3

P100-SXM2 Pascal 56 64 6 16 1480 721 E5-2630v4

V100-SXM2 Volta 80 64 6 16 1530 897 Gold 6140
aL2 size in MiB.
bMemory size in GiB.
cCore frequency in MHz.
dPeak memory bandwidth in GB/s.

4.2 Benchmarks

We selected a diverse set of benchmarks from a variety of domains, as shown in
Table 2. These workloads are from two well-known benchmark suites: Rodinia
benchmark suite [6] version 3.3.1 and Polybench GPU version 1.0 [11].

The benchmarks were compiled using CUDA version 9.2.88 on P100-PCIE,
V100-SXM2 and CUDA version 9.1.85 on all the other systems. We used
nvprof [20] to collect three performance metrics which are inst executed (instruc-
tions executed), gld transactions (global load transactions) and gst transactions
(global store transactions). We executed each benchmark in isolation and
recorded the total execution time for each benchmark.

1 We tried adding Nvidia RTX 2070 and RTX 2080Ti GPUs from Turing micro-
architecture in our study however we faced two issues: (1) nvprof profiling is not
supported on these devices and a new profiling tool, Nsight Compute is recently
introduced. However, some nvprof metrics (such as global load and store transac-
tions) can’t be recorded using Nsight Compute when SM < 7.0. (2) Also, Nsight
Compute records global load transactions in sector while nvprof records the same
performance metric in bytes.
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Table 2. Workloads used in our experiments along with their domains.

Domain Benchmark

Linear algebra gaussian, 2mm, 3mm, atax, bicg, gemm,
gesummv, gramschmidt, mvt, syrk, syr2k

Data mining & pattern recognition correlation, covariance, nearest neighbor
(nn), back-propogation (backprop)

Stencils 2dconvolution, 3dconvolution, fdtd-2d

Signal processing discrete wavelet transform 2D (dwt2d)

Image processing heartwall, srad, particlefilter

Simulation hotspot2D, hotspot3D, myocyte

Graph traversal breadth-first search (bfs), b+tree,
pathfinder

Fluid and molecular dynamics lavamd

Bioinformatics needleman-wunsh (nw)

4.3 Methodology

Problem Formulation. Let M and N denote the number of applications and
systems, respectively. We construct an application-system interaction matrix,
Y ∈ R

M×N . Each cell in the matrix Y has value as:

yas =

{
pas, if application a was executed on system s
0, otherwise

(2)

Here pas indicates the observed performance score when application a was
executed on system s. Our goal is to predict all the zero entries of Y .

Datasets. We constructed three datasets with IPS, LPS and SPS values respec-
tively for our experiments. In order to map these scores to a continuous scale,
we performed z-score normalization of scores in each of the datasets. For each
application a, we obtained mean score, p̄a and standard deviation, σa in perfor-
mance exhibited by the application on all the systems. The normalization of a
performance score, pas can be obtained as:

zscore(pas) =
pas − p̄a

σa
(3)

Evaluation. We used Chainer [23] to construct the MLP with Rectifier Linear
Units (ReLU) [9] as the activation function. The network was trained to mini-
mize RMSE and the optimizations were done by performing stochastic gradient
descent (SGD) [4].

Let p̂as be the predicted performance score of application a corresponding
to system s. We divide the performance scores into a training set ytrain, which
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is used to learn, and a test set ytest, which is used to calculate the prediction
accuracy. 80% of the dataset was used for training and 20% was used for testing in
out study. RMSE [5] is a de-facto method to measure accuracy of CF algorithms.
We used RMSE to evaluate the accuracy of our models as:

RMSE =
√

1
|ytest|

∑
pas∈ytest

(p̂as − pas)
2 (4)

5 Results and Discussions

In this section, we conduct experiments with the aim of answering the following
research questions:

R1 Does collaborative filtering based matrix factorization approach work with
GPUs?

R2 Can we improve the prediction quality by using deep neural networks?
R3 Does training with other performance metrics alongside IPS improve the

prediction accuracy?

5.1 Performance of Matrix Factorization (R1)

Figure 3a shows the performance of MF with respect to the number of latent
features on the IPS dataset. When we use one latent feature to represent each
benchmark as well as system, the RMSE is 0.57. As we increase the features, MF
projects each benchmark and system as data points in a higher dimensional space
that describes the correlations between benchmarks and systems. As a result,
the prediction improves by analyzing the linear associations between benchmarks
and systems. The best RMSE is 0.40 when each benchmark and system is defined
by five features. As we further increase the number of latent features to six, MF
starts over-fitting the training data that performs poorly on the test dataset
thereby increasing the error.

We show the training and test losses when using five latent features in Fig. 3b.
We can see that with more epochs, the training and test RMSE gradually
decrease. The most effective updates are observed in the first 100 iterations
for the training dataset. Although for the test dataset, the loss keeps decreasing
and it starts saturating after 175 iterations at a RMSE of 0.4.

Figure 3c shows the scatter plot of actual vs predicted normalized IPS scores.
Ideally, all the points in the plot should lie on or close to the regressed diagonal
line. First, this plot tells us that the normalized actual scores lie within the
range of −1.6 to 2.3. Second, MF make predictions close to the diagonal line
when the actual value is greater than −1.5 and less than 1.5. While some of
the values lie on the diagonal line showing accurate predictions, many fall close
to the line. There are two cases when the actual score is near 1.0, that are
estimated rather incorrectly. Third, when the actual value is greater than 2.0, MF
underestimates the actual scores. On further inspection, we found that the three
of these underestimated predictions are related to benchmarks mvt, pathfinder
and backprop on K20m.
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Fig. 3. Prediction performance of matrix factorization using latent features with IPS
dataset.

Table 3 shows the accuracy of MF on 42 pairs of benchmarks and GPUs
selected from the test set. We can see that our model is able to predict a wide
range of IPS values (with a minimum of 95.33 and a maximum of 6.9×108). The
minimum IPS value corresponds to gaussian elimination application (gaussian)
from the Rodinia benchmark using data file as matrix4.txt. We also measured
the prediction accuracy for each benchmark and GPU pair and reported the
average accuracy across all those pairs. We used the absolute value of the relative
error (Actual−Predicted

Actual ∗ 100) to evaluate the accuracy. MF achieves an average
(relative) error of 15.8% and geometric mean (Gmean) of 7.4%, with minimum
error of 0.02% and maximum error of 52.31%.
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Answer to R1: We extended collaborative filtering based matrix factorization
approach to seven GPUs using 30 benchmarks. Overall, MF achieves predictions
with an average error of 15.8% (84.2% accuracy) and geometric mean of 7.4%.

5.2 Performance of Multi-layer Perceptron (R2)

We constructed MLPs with one hidden layer (MLP-1) as well as two hidden
layers (MLP-2) to predict IPS as described in Sect. 3.1. We tested each network
with number of neurons in each layer as [2, 4, 8, 16, 32, 64], the embedding size
of 1 to 15.

Fig. 4. Test loss and the scattered plot of actual vs predicted normalized IPS scores
using MLP.

We present the findings of our experiments in Table 4. MF serves as the
baseline performance with an RMSE of 0.40 with 5 latent features. MLP-1 with
one hidden layer of 4 neurons and embedding size of 11 results in 20% decrease
in RMSE thereby increasing prediction accuracy. While, MLP-2 with 32 and 8
neurons in the first and second hidden layer respectively (32→8) achieves the
best RMSE of 0.25 which accounts for 37.5% improvement over the baseline.

Figure 4 shows the test loss and actual vs. predicted normalized IPS scores
for both MLP-based models. We can see that MLP-1 test loss decreases with
more epochs and it starts predicting better than MF after 130 epochs in Fig. 4a.
Whereas, for MLP-2 the prediction performance on test dataset starts improving
after 25 epochs. The above findings w.r.t prediction performance i.e. MLP-2 >
MLP-1 > MF provide empirical evidence for the effectiveness of using deeper
layers to improve prediction accuracy.

We show the advantage of using a deep network to predict IPS in Fig. 4b.
MLP-2 plots data points closer to the diagonal line than MLP-1. It is to be noted
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Table 3. Accuracy of the matrix factorization model.

Benchmark Suite GPU Actual IPS Predicted IPS Relative error%

mycoyte rodinia V100-SXM2 12362329.33 12440673.99 0.63

hotspot2d rodinia V100-SXM2 628213.33 707013.49 12.54

mvt polybench K20m 2446784.0 1465271.07 40.11

gaussian rodinia K20m 95.33 92.74 2.72

srad1 rodinia K40c 169454.77 184485.42 8.87

mvt polybench K40c 699081.14 914765.62 30.85

2mm polybench K20m 685834240.0 699268041.2 1.96

atax polybench P100-PCIE 1204320.0 1254020.08 4.13

pathfinder rodinia K20m 651904.0 574757.98 11.83

gemm polybench K20X 6277120.0 5636040.41 10.21

backprop rodinia K40c 805745.29 1123610.02 39.45

gesummv polybench P100-PCIE 1557440.0 1572621.1 0.97

backprop rodinia GTX980Ti 1395922.2 1397639.04 0.12

atax polybench K20m 1631189.33 1630874.66 0.02

bicg polybench V100-SXM2 941926.4 1142419.5 21.29

heartwall rodinia P100-SXM2 97238507.25 87104974.98 10.42

nn rodinia K20X 9102.8 9657.58 6.09

mvt polybench P100-PCIE 963456.0 1322472.2 37.26

covariance polybench V100-SXM2 70272888.89 57696629.18 17.9

gesummv polybench P100-SXM2 2076629.33 2076142.74 0.02

gramschmidt polybench P100-PCIE 2316.76 3166.81 36.69

fdtd2d polybench K20X 110436.15 135592.53 22.78

covariance polybench K20X 47624371.2 59948517.91 25.88

backprop rodinia K20m 1880072.33 1569359.24 16.53

3dconvolution polybench K20X 4145.14 5518.12 33.12

syrk polybench K20X 39819673.6 35606924.25 10.58

3dconvolution polybench P100-PCIE 4204.9 4497.67 6.96

mycoyte rodinia K20m 12547497.2 14798852.29 17.94

gramschmidt polybench K20m 7524.22 6787.84 9.79

b+tree rodinia V100-SXM2 2646457.0 2541856.97 3.95

3dconvolution polybench GTX980Ti 5667.48 4943.69 12.77

heartwall rodinia GTX980Ti 54529707.29 56063846.0 2.81

syr2k polybench V100-SXM2 526275925.33 333587189.11 36.61

syrk polybench V100-SXM2 37499699.2 41851043.74 11.6

gesummv polybench K20m 2054570.67 1936674.13 5.74

syrk polybench P100-PCIE 44900352.0 43516292.35 3.08

mvt polybench GTX980Ti 963481.6 1203747.72 24.94

2dconvolution polybench K40c 3294354.29 3665771.31 11.27

syrk polybench GTX980Ti 30632618.67 39903543.09 30.26

backprop rodinia V100-SXM2 1186206.2 1144560.7 3.51

covariance polybench P100-PCIE 48332996.27 61818140.88 27.9

syr2k polybench K20X 268763136.0 409358367.43 52.31

Average 15.8

Gmean 7.4



Learning Neural Representations for Predicting GPU Performance 53

Table 4. Results of grid search for MLP-1 and MLP-2 parameters.

Model Network Features Epoch RMSE ↓ in RMSE

MF - 5 199 0.40 -

MLP-1 4 11 194 0.32 20%

MLP-2 32→ 8 3 154 0.25 37.5%

Fig. 5. Accuracy of MF, MLP-1 and MLP-2 using IPS dataset

that for all the actual values underestimated by MLP-1 such as when the actual
values are between 0.5 and 1.0 and also greater than 2.0, MLP-2 with just one
more layer learns better and make predictions near to their actual values.

Table 5 shows the relative errors using MLP-1 and MLP-2 models. For fair
comparison, we selected the same pairs of benchmarks and GPUs as evaluated
for MF and presented the accuracy of all the three models. First, the average
error as well as geometric mean show the same trend that MLP-2 > MLP-1 >
MF. Second, overall, MLP-1 predicts better than MF specially when the relative
error when using MF is greater than 20%. However, there are a few corner cases
where MLP-1 underestimates the actual value when MF has an error of less
than 1%. This can be attributed to those cases when a simple model is enough
to describe the linear correlation between benchmark and system properties. In
that case, using linear layers with ReLU as an activation unit may cause some
irregularities in prediction performance. Since the main point of focus of this
work is not to reason on how many and what features are important to model
performance across benchmarks and systems, a model like MLP-1 which caters
to the many of the cases is a better choice.

MLP-2 further decreases the large errors seen in MF and achieves the lowest
average error across all the predictions. It is to note that the maximum error
seen in MF is 51%, while in MLP-1 and MLP-2 are 49.26% and 34.45%. We
summarize our results for MF, MLP-1 and MLP-2 in Fig. 5. An outlier which
is common to MLP-1 and MLP-2 in the box plot corresponded to a simulation
application, myocyte from the Rodinia benchmark suite on V100-SXM2.



54 S. Salaria et al.

Table 5. Relative error using MF, MLP-1 and MLP-2 on the test set.

Benchmark Suite GPU Error MF% Error MLP-1% Error MLP-2%

srad1 rodinia K40c 8.87 8.09 5.51

b+tree rodinia V100-SXM2 3.95 0.86 1.79

backprop rodinia GTX980Ti 0.12 19.44 4.52

gaussian rodinia K20m 2.72 1.96 9.25

backprop rodinia V100-SXM2 3.51 2.03 8.09

mycoyte rodinia K20m 17.94 22.69 19.99

mvt polybench P100-PCIE 37.26 23.04 26.55

mycoyte rodinia V100-SXM2 0.63 49.26 34.45

heartwall rodinia P100-SXM2 10.42 9.97 6.36

mvt polybench GTX980Ti 24.94 8.5 8.86

gesummv polybench K20m 5.74 3.08 7.42

gramschmidt polybench P100-PCIE 36.69 0.02 16.58

syr2k polybench K20X 52.31 1.19 15.98

syrk polybench P100-PCIE 3.08 3.46 6.95

gesummv polybench P100-SXM2 0.02 2.95 2.18

nn rodinia K20X 6.09 20.82 6.43

backprop rodinia K40c 39.45 28.29 13.3

pathfinder rodinia K20m 11.83 3.27 3.71

atax polybench P100-PCIE 4.13 0.41 4.63

covariance polybench V100-SXM2 17.9 8.42 3.82

3dconvolution polybench GTX980Ti 12.77 7.56 11.29

syrk polybench V100-SXM2 11.6 6.51 2.33

gramschmidt polybench K20m 9.79 12.51 2.31

mvt polybench K20m 40.11 18.82 16.11

2dconvolution polybench K40c 11.27 15.5 10.61

atax polybench K20m 0.02 2.39 3.65

3dconvolution polybench P100-PCIE 6.96 1.55 8.69

heartwall rodinia GTX980Ti 2.81 5.62 2.51

mvt polybench K40c 30.85 22.86 3.29

gesummv polybench P100-PCIE 0.97 1.35 9.38

syrk polybench K20X 10.58 8.0 10.93

syrk polybench GTX980Ti 30.26 41.17 10.62

bicg polybench V100-SXM2 21.29 20.23 8.97

covariance polybench P100-PCIE 27.9 9.15 6.33

fdtd2d polybench K20X 22.78 9.66 0.83

hotspot2d rodinia V100-SXM2 12.54 15.31 3.35

3dconvolution polybench K20X 33.12 17.73 26.46

covariance polybench K20X 25.88 7.34 0.15

syr2k polybench V100-SXM2 36.61 31.29 15.3

2mm polybench K20m 1.96 13.4 0.09

gemm polybench K20X 10.21 1.26 21.93

backprop rodinia K20m 16.53 11.58 12.17

Average 15.8 11.9 9.4

Gmean 7.4 6.3 6.0
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Fig. 6. Evaluation of MF, MLP-1 and MLP-2 on V100-SXM2 GPU

Fig. 7. Performance of MF, MLP-1 and MLP-2 on K40c GPU

We show the prediction performance of MF, MLP-1 and MLP-2 on V100-
SXM2 GPU and K40c in Figs. 6 and 7 respectively. MLP-2 predicted the best
in all the cases except for benchmarks myocyte and backprop on V100-SXM2.
We executed myocyte with the default parallelization mode 0, which, based
on the benchmark author’s description, has issues with performance scaling on
GPUs to the point that the overhead of host to device memory transfer and
kernel launch become non-negligible. Hence, other components of the system like
CPU, motherboard and memory also become involved in the final performance
which are not considered in our model. Thus, myocyte’s performance can be
highly variable across different GPUs which affects the construction of its latent
features, thereby affecting the prediction accuracy.

Answer to R2: We investigated MLP with a curiosity to see whether using a
deep network structure is beneficial to the prediction. The MLP-1 (MLP with
one hidden layer) predicted with an average error of 11.9% (88.1% accuracy)
and geometric mean of 6.3%. While the MLP-2 (MLP with two hidden layers)
predicted with an average error of 9.4% (90.6% accuracy), geometric mean of
6% as compared to 84.2% accuracy, geometric mean of 7.4% achieved with MF.
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5.3 Training with Additional Metrics (R3)

We augmented training data (IPS) with two additional performance metrics,
LPS and SPS to determine if using multiple training objectives improve the
predictions. We performed a grid search for the best neural architectures for
training with additional objectives.

Table 6. Performance of MLP when using additional training metrics, LPS and SPS.

Metric MLP-1 MLP-2

Network Features RMSE Error% Network Features RMSE Error%

IPS 4 11 0.32 11.9% 32→8 3 0.25 9.4%

IPS+LPS 32 9 0.32 12% 16→32 5 0.28 11.5%

IPS+LPS+SPS 32 12 0.33 12.2% 32→32 8 0.28 10.7%

Table 6 show the results of the grid search in order to find the best model
corresponding to different training metrics. Training MLP-1 with IPS and LPS,
we find that a network with 32 neurons and embedding size of 9 shows the sim-
ilar predictive performance as with training MLP-1 with IPS. When we look at
three metrics case using MLP-1, there is a slight increase in RMSE and the aver-
age error across all predictions. Overall, we can say that augmenting additional
performance metrics with IPS using MLP-1 results in a similar performance.

We repeated the grid search to find the best parameters using MLP-2 as well.
First, when training the model with IPS+LPS, the number of neurons increases
from 16 to 32. So, it seems to be trading off the number of training metrics for
depth as it goes through the layers. By using an embedding size greater than
while training with only IPS, the model manages to achieve an average error of
11.5%. Similarly, for 3 metrics case, by increasing the number of neurons in the
first layer and the embedding size, the average error becomes marginally lower
though the RMSE remains the same.

Answer to R3: This shows that IPS is only metric that we need to pre-
dict performance across different benchmarks and GPUs. Using more additional
optimization objectives in the predictive model does not improve accuracy of
predicted IPS values in this study.

6 Conclusions

In this work, we demonstrated that it is possible to collect performance met-
rics and use collaborative filtering for GPU-based applications. We evaluated a
set of 30 micro-applications on seven different GPUs. Using the vanilla matrix
factorization method of collaborative filtering resulted in 84.2% accuracy when
the actual IPS has a wide range of values, with a minimum of 95.3 and a maxi-
mum of 6.9 ∗ 108. We then introduced a neural network architecture to further
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improve the prediction accuracy. While for predicting performance, IPS is only
metric that we need, we showed that using additional optimization objectives in
the predictive model (other metrics such as LPS and SPS) results in the similar
accuracy of predicted IPS values. In total, we achieved 90.6% accuracy in aver-
age, with a geometric error mean of 6% with our multi-layer perceptron model.
We showed that the confidence of predictions made varies between different kinds
of applications. We leave it to future work to develop a model which can predict
this uncertainty explicitly.
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Abstract. MapReduce brought on the Big Data revolution. However,
its impact on scientific data analyses has been limited because of funda-
mental limitations in its data and programming models. Scientific data
is typically stored as multidimensional arrays, while MapReduce is based
on key-value (KV) pairs. Applying MapReduce to analyze array-based
scientific data requires a conversion of arrays to KV pairs. This con-
version incurs a large storage overhead and loses structural information
embedded in the array. For example, analysis operations, such as con-
volution, are defined on the neighbors of an array element. Accessing
these neighbors is straightforward using array indexes, but requires com-
plex and expensive operations like self-join in the KV data model. In
this work, we introduce a novel ‘structural locality’-aware programming
model (SLOPE) to compose data analysis directly on multidimensional
arrays. We also develop a parallel execution engine for SLOPE to trans-
parently partition the data, to cache intermediate results, to support
in-place modification, and to recover from failures. Our evaluations with
real applications show that SLOPE is over ninety thousand times faster
than Apache Spark and is 38% faster than TensorFlow.

Keywords: Multidimensional array · Programming model ·
Structural locality · Composable data analysis · User-defined function ·
ArrayUDF · Apache Spark · TensorFlow · MapReduce · Array cache

1 Introduction

The MapReduce (MR) programming model [11] transformed the way of develop-
ing data analysis algorithms and led to advanced data analysis systems, such as
Spark [42]. These systems enable users to compose complex data analysis algo-
rithms without implementing the details of parallel execution, data management,
error recovery, among other challenging tasks. Unfortunately, the MR program-
ming model could not be effectively used for scientific data analysis due to its
lack of support for multidimensional array data model and their limited support
for accessing neighbors in arrays [13,24]. As arrays are prevalent in scientific
data, such as 2D sky survey images [4], we propose a programming model that
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operates directly on arrays and an execution engine to run composite analysis
on massively parallel computing systems efficiently.

A programming model for data analysis conceptually includes an abstract
data type and a set of generic operators. The abstract data type defines input
and output data structures for generic operators. This abstract data model for
the MR programming model is the key-value (KV) pairs and the correspond-
ing generic operators are Map and Reduce. The Map and Reduce execute user
customized procedures on a list of KV instances. To apply MapReduce to a multi-
dimensional array, array elements need to be converted into KV pairs. Common
analysis operations, such as convolution [7,24], access a group of neighboring
array elements to compute a new value. In array representation, these neighbors
are near each other – we refer to this feature as structural locality [13,24]. This
structural locality is lost when the values are represented as KV pairs. Although
there are many ways to improve MapReduce systems [7,42], these intrinsic lim-
itations still exist within its programming model.

Array databases (e.g., SciDB [33] and RasDaMan [2]) use multidimensional
array as the native model. Their built-in operators, such as window, can cap-
ture structural locality, but they only allow performing uniform aggregation on
all window cells, i.e., running non-discriminative operations (e.g., sum) on all
window cells. Moreover, the definition of a window as (starting indices, end-
ing indices) limits its shape to be rectangular bounding boxes. However, data
analysis tasks on scientific data, such as computing gradients or slope [13,22],
need different operations on distinct window cells, which together may form
non-rectangular shapes. Blanas et al. [3] also show that loading scientific array
data from their native file formats (e.g., HDF5 [38]) into array databases is a
time-consuming and error-prone process.

Recent efforts, such as ArrayUDF [13], support user customized data analysis
on array file formats and represent structural locality for the aforementioned data
analysis operations. However, ArrayUDF lacks a formally defined programming
model, which is essential for composing analysis tasks as discussed previously.
ArrayUDF only allows operation on a single array with only one attribute, and
its input and output arrays must have the same dimensions and the data have
to be stored on disk. The lack of caching intermediate data in memory lim-
its its performance with significant I/O overhead. TensorFlow [1] uses tensor
abstraction to represent an array in machine learning applications. However,
it only provides customized operations (e.g., conv2d) for specific tasks. Tuning
existing operations and adding new ones still need non-trivial amount of code
development for data management, parallelization and other tasks.

To address the gaps in composing various data analysis operations for multi-
dimensional arrays, we propose a new “structural locality”-aware programming
model (SLOPE), describe the design and implementation for its parallel execu-
tion engine, and present a thorough evaluation comparing with state-of-the-art
Big Data systems. SLOPE offers a formally defined abstraction for users to cus-
tomize various data analyses directly on multidimensional arrays. Each array, as
an input of SLOPE, can have multiple attributes. The output array may have
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different dimensions from the input array. SLOPE has a distributed DRAM-
based cache layer to stage the intermediate array of the analysis pipeline. In
summary, contributions of this effort include:

– A formally defined structural locality-aware programming model (Sect. 3)
and its parallel execution engine (Sect. 4.1). SLOPE has a novel new data
structure – namely Stencil – and a generic operator (SLApply) to capture
and express structural locality existing in multidimensional array data access
and analysis. SLOPE allows customizable analysis operations directly on mul-
tidimensional array stored in native scientific data formats. A vectorization
interface of SLOPE allows it to compose data analysis involving multiple
attributes of one or more arrays.

– A distributed DRAM-based cache layer (Sect. 4.1) to store intermediate out-
put arrays. SLOPE supports asynchronous checkpoint method for cached
array. SLOPE also has a asynchronous halo exchange algorithm that syn-
chronizes array cached in distributed DRAMs.

– Describe optimization features of SLOPE, such as mirror values and in-place
data modification, to improve performance and semantics of data analysis on
multidimensional array (Sect. 4.1).

We demonstrate the performance of SLOPE by using it to compose real sci-
entific data analysis tasks on a supercomputer with 2, 388 Intel Xeon processors.
These data analysis tasks come from applications: CAM5 [28,40], VPIC [8,22],
and BISICLES [10,44]. We also compare SLOPE with state-of-the-art data anal-
ysis systems, such as Apache Spark [42] and TensorFlow [1]. SLOPE achieves
up to ≈90,000× performance speedup over Apache Spark and ≈38% speedup
over TensorFlow. We show that SLOPE can scale linearly as the data size and
the number of CPU cores increase, achieving 512 GB/sec (≈128 GFLOPs) pro-
cessing bandwidth using 16K CPU cores.

2 Preliminaries

2.1 Multidimensional Array

A d-dimensional array has dimensions D = D1,D2, . . . , Dd and a set of m
attributes A = A1, A2, . . . , Am [5]. Each dimension is a continuous range of
integer values in [0, N − 1]. Each indices [i1, i2, . . . , id] defines an array cell. All
cells have the same data type for an attribute. An array can be expressed as
a function mapping defined over dimensions and taking value attributes tuples:
Array : [D0,D1, . . . , Dd−1] �→< A0, A1, . . . , Am−1 >. In array, cells are stored in
well-defined layouts, such as row-major and column-major orders. The row-major
order is popular in scientific data formats, such as HDF5 [38] and NetCDF [21],
and its last dimension is stored contiguously in storage devices. Offsets from the
beginning to a cell at (i1, i2, . . . , id) is given by

∑d−1
k=0

∏d−1
l=k+1 Dlik.
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2.2 User-Defined Function and Programming Model

User-defined function (UDF) is a classic mechanism in database systems [26] to
extend their query language. With the prevalence of MapReduce (MR), UDF
evolves into a stand-alone programming model [11,32]. The MR has an abstract
KV data model and two generic operators: Map and Reduce. Map and Reduce
accept UDF defined on KV data model from users for different purposes. MR
has achieved a lot of successes since its emergence. MR, however, has several
intrinsic issues in supporting array data analysis:

Fig. 1. An example of using MapReduce to compose convolution computing (CONV )
from array θ1 to θ2. θ1 is first linearized to a 1D KV list. Mappers then unify the key
of KV pairs belonging to the same CONV filters (i.e., blue dashed rectangular boxes).
Based on the index of a cell in original rectangular box, a secondary key (light green) is
added to find corresponding filter weight in later Reducers. Also, KV pairs for Reducer
#1 (denoted as red) are added via duplicating existing values. After shuffle, Reducers
perform a weighted summary to compute CONV ({a0, . . . , a3} are weight). Obviously,
MapReduce is an inefficient programming model for array because of the conversion
between array and KV and the duplication of values for Reducers. We propose a new
programming model that enable users to directly customize and execute operations
from θ1 to θ2 without data model conversion and with negligible duplications. (Color
figure online)

– KV data model makes MapReduce perform poorly on multidimen-
sional arrays. Multidimensional arrays have to be linearized into KV list
before using them as the input of MapReduce. First, this linearization may
need to explicitly handle array index. Second, the linearization breaks the
array structural locality, which exists in many data analysis operations such
as convolution [19] and gradient computing [13]. In Fig. 1, we give an exam-
ple of using MapReduce to compute convolution on a 2D array and dis-
cuss its problems. The discrete convolution [6] is expressed as ∗ operator:
(f ∗g)(n) =

∑∞
m=−∞ f(m)g(n−m), where f , g are two complex-valued func-

tions on the set Z of integers. For a single convolution on array, it needs a
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few neighborhood cells. Linearization breaks the structural locality by scat-
tering these neighborhood cells in different Mappers. The penalty is the extra
cost to rebuild this structural locality though Shuffle and Reduce. Although
using linearization methods (e.g., SFC [35]) may preserve structural local-
ity, developing these methods and converting operations originally defined on
multidimensional array to ones on KV are still cumbersome tasks for users.

– A set of KV pairs processed by a Reducer is independent from the
set of KV pairs processed by another Reducer. Assuming S1 and S2
are two sets of KV pairs belonging to two Reducers, it is common to have
intersection S1 ∩ S2 in use cases, such as convolution [19]. Because MapRe-
duce schedules and executes these two Reducers separately, duplicating KV
pairs in S1∩S2 for two Reducers are required to make parallel processing on
S1 and S2 work properly. As shown in Fig. 1, the input KV pairs for Reduc-
ers #1 are added by MapReduce through duplication. These duplicated KV
pairs consume memory for storing and network bandwidth for shuffling and
therefore degrade overall data analysis performance.

3 SLOPE Programming Model

As discussed above, multidimensional arrays and KV pairs are different data
models. Using the MapReduce to handle multidimensional arrays requires con-
verting them into a KV list. Therefore, it is critical to explore a programming
model with multidimensional arrays as the first-class citizens. Toward that goal,
we focus on addressing the following question: what are the abstract data types
and generic operators for a comprehensive programming model supporting data
analytics on multidimensional arrays? We answer these questions with the pro-
posal of SLOPE that contains a new abstract data type, called Stencil and a
generic operator SLApply. Details are reported in following subsections.

3.1 Abstract Data Type—Stencil

An abstract data type represents both the input and output data structures
of generic data analytic operators in a programming model. In other words,
the abstract data type describes the data structure for the smallest subsets of
array data in composite data analysis. In this work, we present a new abstract
data type, called Stencil, which is inspired by the stencil-based numerical com-
puting [14]. Being different from these existing work, we focuses on general-
izing these ideas for modern data analysis (e.g., convolution neural network).
Conceptually, a Stencil can represent a geometric neighborhood of an array,
which further contains a center cell and a few neighborhood cells at differ-
ent relative offsets from the center. We use the absolute index (c) of an
array cell to refer the center cell and use the relative offsets ( #»o ) to rep-
resent the neighborhood cells, which can be expressed as (c, #»o ). For exam-
ple, in a 2D array, a geometric neighborhood expression using Stencil can be(

(1,1),
(
(0,0), (0,−1), (0,1), (−1,0), (1,0)

))

, where c= (1,1) is the absolute
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index of the center cell and #»o =
(
(0,0), (0,−1), (0,1), (−1,0), (1,0)

)
contains

relative offsets for the center cell itself, the cell on the left, the cell on the right,
the cell on the top, and the cell below. This geometric neighborhood is visually
shown in Fig. 2(b).

In the following description, we use the symbol S to refer an instance of Sten-
cil and use So1,o2,...,od to refer a single cell at the relative offset [o1, o2, . . . , od].
In the above example, S0,0 is the center cell and S0,−1 is the cell at the left.
The value of the cell in a Stencil is represented by dot “.” operator on the sym-
bol S. For example, during an array with multiple attributes Aj (j ∈ [1,m]),
the value of the attribute Aj is represented as So1,o2,...,od .Aj . The value of all
attributes is represented as a vector

#                            »

So1,o2,...,od .A or
#    »

S.A. In the array with a
single attribute, we use So1,o2,...,od to represent its value by omitting the dot
operator and attribute name. We conclude the properties of Stencil as follows:

– A Stencil abstraction provides a new way to logically partition a
large array into subsets. Compared with chunking in array databases [31],
Stencil splits array into even smaller subsets for processing. Stencil obeys the
structure locality of array data access by allowing relative offset from a center
cell, which is important in many data analytic operations [13].

– A Stencil has flexible size. By taking a 2 by 2 array as an exam-

ple, S1=
(

(0,0),
(
(0,0)

))

contains the first cell. S2=
(

(0,0),
(
(0,0), (0,1),

(1,0), (1,1)
))

represents the whole array. Such flexibility enables users to

group any number of desired cells for analysis.
– Cells within a Stencil can form any geometric shape. One can specify

any cell as the center of a Stencil and add any other cell into the Stencil.
So, the cells within a Stencil can form any shape. A few examples of typical
Stencils are visually presented in Fig. 2, which will be further discussed in

Fig. 2. Example of geometric neighborhoods expressed by Stencil on a 2D array: (a) a
single cell neighborhood; (b) a neighborhood containing a center cell and four surround-
ing cells; (c) a neighborhood contains a center cell and its neighbors at right-bottom;
(d) a forward-scan neighborhood (at top) and a backward-scan neighborhood (at bot-
tom). These examples are presented from the point-view of users. The center of each is
ignored and will be automatically handled by the execution engine in following Sect. 4.
Usages of these examples in real applications are presented in Sect. 3.3.
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the following Sect. 3.3. By comparison, window in SciDB is defined as (start
indices, end indices) and it can only represent rectangular shape. Compared
with sliding idea of the Spark [42] on a 1D KV list and the window idea of
SQL database systems [26,41] on relational tables, our Stencil can express
more diverse geometric shapes on top of a multidimensional array.

3.2 SLOPE Programming Model

The Stencil abstract data type provides a flexible way to represent a small set of
array cells with structural locality. We use it as the input and the output data
type of a generic operation in our programming model. Hence, we refer our pro-
gramming model as Structural Locality-aware Programming Model (SLOPE).
Inspired by the Apply primitive in R [15] and in several other languages, our
SLOPE has a generic operator, named Structural Locality Apply, or SLApply
for short. Hence, the SLOPE model can be represented as the following two-
element tuple: (Stencil, SLApply), where Stencil is the generic data type and
SLApply is the generic operator. Given two arrays θ1 and θ2, the generic operator
SLApply is expressed as,

SLApply :
#»

S
f�−→ #»

S′, S ⊂ θ1, S
′ ⊂ θ2, (1)

Semantically, SLApply maps the Stencil instance
#»

S to the result Stencil instance
#»

S′. The
#»

S and
#»

S′ represents geometric neighborhoods from input array θ1 and
output array θ2, respectively. The UDF f defines the desired operation for the
map. Within function f , users can use the Stencil abstraction and its member
cells to describe any desired operation. The #» (hat) symbol on Stencil means
both input and output can be a vector Stencil across all attributes of input and
output arrays. In following parts, we uses θ2 = SLApply(θ1, f) to represent the
execution of function f from θ1 to θ2. Users also control the return value of
function f which is used to initialize output Stencil.

In SLOPE implementation, the SLApply internally executes the function f
on all instances of Stencil abstraction. There are two ways for SLApply to create
Stencil instances and execute function f :

– By default, SLApply creates Stencil instance for each array cell in θ1. Then, it
executes f on each Stencil instance. This default method works for most data
analysis tasks (such as filter) which run an operation on the whole array. The
value of output Stencil is the return value of function f. The output Stencils
inherit the coordinate of the center cell of the input Stencil.

– Additionally, SLApply can create Stencil instances for certain cells and exe-
cute f only on them. For example, users can specify a skipping parameter
on θ1 to avoid creating Stencil instances, i.e., calling function f for certain
cells. One example operation is convolution computing which may run filter
on every two cells on each dimension.
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In most cases, output S′ only has a single cell, but it can also include a set
of neighborhood cells. By default, the semantic of SLApply only allows “read
only” on original array θ1. But SLOPE provide users an option namely “In-
place Modifications” (in Sect. 4.5) to change the semantic to update θ1 as the
propagation of f onto the whole array.

//User customized functions
Gradient(S):

return 4S0,0 − (S−1,0 + S0,−1 + S0,1 + S1,0)

θ2= SLApply(θ1, Gradient)

Interpolation:(S)
return BilinearInter(S0.X, S0.Y , θ2)

SLApply(θ3, Interpolation)

Fig. 3. Gradient computing and interpolation with SLOPE on a 2D field data θ1 and
on a 1D particle data θ3. The θ3 has two attributes X and Y . It first invokes SLApply
to execute Gradient on θ1. Then, the Interpolation is applied onto θ3, which uses θ2
from first SLApply too. For simplicity, we use BilinearInter (omitted) to denote the
interpolation formula. In parallel execution, θ2 can be cached in memory and broadcast
to all processes for performance.

//Three user customized functions
CONV (S):

return
[
S0,0, S0,1, . . . , S2,2

] a0,0 . . . a0,k

.

.

.
.
.
.

.

.

.
a8,0 . . . a8,k

POOL(S):
return max(

[
S0,0,0, S0,0,1, ...S0,0,2

]
)

ReLU (S):
return max(0, S0,0,0)

//Execution by chaining three SLApplys on array θ1

SLApply
(
SLApply

(
SLApply(θ1,CONV),ReLU

)
, POOL

)

Fig. 4. Expression of CNN on a 2D array θ1 with SLOPE. The convolution has k
kernels whose parameters are aij , i ∈ [0, 8] and j ∈ [0, k]. The output of each CONV
is a vector, turning θ1 into a 3D array. CONV is applied onto array θ1 at first. Then,
ReLU and POOL are applied onto the result of CONV. Users can define and add more
layers to have a deep architecture.
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3.3 Example Data Analysis Using SLOPE

SLOPE can express various single data analysis operations, such as filter, moving
average, etc. Here we use SLOPE to compose a few advanced data analytic
algorithms with multiple steps:

– Gradient and interpolation computations. Magnetic reconnection is an
important phenomenon in plasma particle acceleration research [22]. Data
analysis pipeline used to study the reconnection phenomenon involves com-
puting gradients on the magnetic field mesh data and then interpolate the
gradient value for all particles scattered in space. An example of using SLOPE
to express this data analysis pipeline on a 2D filed data is shown in Fig. 3.
The gradient procedure uses the Stencil shown in Fig. 2(b). The interpolation
uses the Stencil from Fig. 2(a).

– Convolutional neural network (CNN). CNN [19] is a deep feed-forward
artificial neural network, typically used in recognizing images. A CNN has
been applied to identify extreme weather events [27]. CNN usually includes
three main layers: convolution, ReLU, and pooling. Figure 4 shows expressions
of these three layers with SLOPE. The Stencil for convolution and pooling is
shown in Fig. 2(c). The ReLU uses a single cell Stencil, as shown in Fig. 2(a).

– Connected Component Labeling (CCL). CCL [34] is one fundamen-
tal algorithm in pattern recognition. CCL assigns each connected component
member with a unique label. The standard CCL repeatedly applies an 8-way
connection detection for each point to replace its label with the minimum
label of its neighbors. CCL converges until no such replacement happens. To
accelerate the converge process, advanced CCL algorithms break the con-
nection detection into forward and backward passes, as shown in Fig. 5. The
Stencil in Fig. 2(d) are used during forward and backward passes in advanced
CCL.

4 Parallel Execution Engine

This section introduces a parallel execution engine for SLOPE. We especially
focus on following problems: (1) how to enable the user-defined operation defined
on Stencil to run parallel. (2) how to cache intermediate data of analytic pipeline
in DRAM to avoid expensive I/O operations.

4.1 Overview of Parallel Execution Engine

SLOPE execution engine follows single program and multiple data (SPMD) pat-
tern [16,29,30], where multiple SLOPE processes are launched with the same
analysis program and each process handles different data. Within a process,
an SLApply executes an user-defined operation. An example of SLOPE on three
nodes processing a 2D array in parallel is shown in Fig. 6. The input array is par-
titioned by SLOPE into chunks. SLOPE augments each chunk with halo layers
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//Two user customized functions
ForwardScan(S):

return min(S0,0, S−1,−1, S−1,0, S−1,1, S0,−1)
BackwardScan(S):

return min(S0,0, S0,1, S1,0, S1,1, S1,−1)

//Repeatedly executing two SLApplys on array θ1
do

θ1 = SLApply
(
SLApply(θ1, ForwardScan), BackwardScan

)
while (NOT converged)

Fig. 5. CCL algorithm on a 2D array θ1 expressed with SLOPE. It includes a backward
scan and a forward scan. The converged status is reached when no new label is found
for all cells. For simplification, we omit the functions to detect converged status and
to switch execution direction.

Fig. 6. Example of SLOPE execution for two user customized analysis functions (f1
and f2) on a 2D array θ1. The θ1 is split into 6 (3 × 2) chunks and read into 3
computing nodes for parallel processing. The intermediate array from f1 is cached
locally in memory for f2 to read. Before actual read, a halo exchange algorithm is
executed to augment cached chunks with halo layer. The intermediate array can be
written onto disk for fault tolerance. The final output array is θ2. Both θ1 and θ2 are
stored as scientific data formats, e.g., HDF5, in storage systems.

(or called ghost zones) to avoid possible accessing cells from different nodes dur-
ing execution. The output array of SLApply can be cached in memory. Caching
the output from the previous SLApply allows the following SLApply to quickly
access input data. SLOPE execution engine uses a halo exchange algorithm to
synchronize each cached chunk for cache array. While storing the intermediate
array in memory is prone to software and hardware failures, SLOPE supports
asynchronously checkpointing intermediate arrays to persistent storage system.
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4.2 Data Partitioning and Halo Layer

An array is split into chunks for parallel processing in SLOPE. The chunk in
SLOPE is defined as (starting indices, ending indices), where indices is a vector.
SLOPE augments each chunk with a halo layer. The halo layer eliminates the
need to retrieve cells from other chunks. Users can specify the size of the halo
layer as the maximum offset used by Stencil in the user-defined function f . Note
that the halo layer in SLOPE introduces a small amount of duplicated cells at
boundary. However, these duplications has a negligible performance impact since
halo layer is usually smaller than a chunk. In contrast, MapReduce (as shown
in Fig. 1) duplicates KV instances for each operation across the whole chunk,
which significantly increases data size to be processed.

4.3 Data and Computing Scheduling

The scheduling method in SLOPE assigns chunks among processes with the
structural locality at chunk level to reduce the ghost zone exchanges when the
array is needed by following SLApplys. By default, array chunks are linearized
by the row-major order and the linearized index is used as the ‘ID’ of the chunk
(denoted as idchunk). Given p processes, the chunk idchunk is assigned to the pro-
cess at rank 	idchunk/	 idchunk

p 

. SLOPE also allows users to choose the assign-
ment in the reverse direction, i.e., from the end to the beginning along linearized
order. Within a single chunk, cells are also scheduled by their row-major order.

4.4 Output Array Dimension

Mostly, the output array from a SLApply has the same number of dimensions
and size as the input array. However, the output array may have different number
of dimensions and size. SLOPE detects these attributes for output array based
on information extracted from input array and the user customized function on
it. For example, the convolution operation (in Fig. 4) converts a 4 × 4 2D data
to an 4 × 4 × 8 3D array. In the CONV function, the return value for a single
array cell is a vector with 8 cells. SLApply detects the size of this return vector
and uses it as the size of the third dimension in output array.

4.5 Advanced Features

In SLOPE, we also provide various advanced and optional features that may
apply only to selected data analytic tasks.

Intermediate Array Cache. To support efficient data movement between
multiple SLApply operations, we support caching [43] intermediate data on dis-
tributed memory instead of storing on file systems. The in-memory cache layer
has a metadata table containing array dimensions, cell type, and other array
related attributes [36]. This metadata table is created when the intermediate
array is produced through the output array dimension reasoning method dis-
cussed before. Based on the SPMD pattern of SLOPE, each SLApply can have
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its own copy of metadata table to avoid communication when it writes or reads
data. Intermediate arrays are stored as chunks and each is produced by its corre-
sponding input chunk on the same process. Each chunk does not contain the halo
layer when it is produced. SLOPE builds halo layers for the following SLApply
when needed using an asynchronous halo exchange method. SLOPE uses
classic halo exchange algorithm [18] but we improve it with MPI asynchronous
primitives MPI Isend and MPI Ireceive to improve its performance.

Asynchronous Check Point Method. Caching intermediate arrays in mem-
ory is prone to data loss because of potential hardware or software faults [20].
SLOPE allows to asynchronously checkpoint intermediate arrays [37]. SLOPE
provides interface for users to control the checkpoint frequency, which can be cal-
culated via: V

T×E , where V is the data size, T the bandwidth of storage system,
and E the time of executing a SLApply.

Mirror Value. Invoking a user customized function incurs overhead. In reality,
there are some operations that have defined mapping from the input value to
the output values, e.g., values greater than or equal to zero in ReLU used by
CNN. The SLOPE introduces a mirror value feature to allow SLApply to skip
invoking customized function for these points.

In-Place Modification. During real-world data analysis, computing on a cell
may need the result from previous cells. For example, in CCL, the label of the
previous point can be used to find the label for the current one. To optimize for
these operators, SLOPE allows users to replace input of SLApply with its output.
By contrast, Spark does not allow analysis operation to modify the original data,
which may create lots of RDDs in long pipeline.

Multiple Arrays. SLOPE allows users to compose data analysis on multiple
arrays. For example, the user-defined Interpolation function in Fig. 3 describes
the operations on array θ3 and on array θ2. This operation is similar to the
map-side join in MapReduce.

4.6 Implementation of SLOPE

Based on ArrayUDF [13], we provide an implementation1 of SLOPE in plan C++
with its template feature to support different data types. Specially, it provides
two C++ classes, e.g., Stencil and Array, which are included in header file
“ArrayUDF.h”. The Stencil class implements abstract type Stencil in Sect. 3.1.
The Array contains all functions related to execution engine in Sect. 4. The Array
has a method namely Apply (i.e., SLApply) to run UDF on its data. The UDF
is standard C++ function and is passed to SLApply as function pointer. An
example for using SLOPE to implement CCL code (with a single step and 8-way
check) is presented in Fig. 7. User can use standard C++ compiler to compile
it. MPI is required to run it in parallel for both intra-node and inter-node.

1 https://bitbucket.org/arrayudf/.

https://bitbucket.org/arrayudf/
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#include <ArrayUDF.h>
// Define function to find minimum label for a Cellhood
float ccl_check(Stencil <float > c){

return Min(c(-1,-1), c(-1, 0), c(-1, 1), c(0,-1),\
c( 0 ,0), c( 0, 1), c( 1,-1), c( 0, 1), c(1, 1));

}
// Initialize chunk_size & ghost_size for parallel processing
// Initialize Array instance A with a 2D array "data" from
// a HDF5 file "file.h5"
//Apply ccl_check on array A, output is ignored
void main (){

vector <int > chunk_size {10,10}, ghost_size {1 ,1};
Array <float > A("file.h5", "/data",chunk_size ,ghost_size );
A->Apply(ccl_check );

}

Fig. 7. SLOPE C++ example code for CCL (with a single step and 8-way check).

5 Evaluation

We demonstrate the effectiveness of SLOPE on the Cori supercomputer at The
National Energy Research Scientific Computing Center, or NERSC2 with over
2,400 computing nodes. We compare SLOPE with following systems:

– Apache Spark [42] represents state-of-the-art MapReduce. We use new tech-
nologies including H5Spark [23] and file pooling [9] to realize a fair comparison
between Spark and SLOPE on supercomputer. We also have a test in non-
supercomputer environment to compare Spark and SLOPE.

– ArrayUDF [13] provides a native user-defined function on array. However,
it lacks a clearly defined programming model and supports for multiple
attributes, multiple arrays and in memory cache. We use a few customized
operations to compare ArrayUDF to match its capability.

– TensorFlow [1] includes hand-tuned and public available procedures for data
analytics. The goal to use TensorFlow in tests is to show how fast/slow the
analytic tasks that are expressed through Spark and SLOPE.

– C++ Imp, developed by authors, represents the way users implement data
analytic function without programming model. C++ Imp only implements
the data analytic logics (e.g., convolution) with hand-tuned codes (e.g.,
directly calculating convolution on array in memory). The C++ Imp has
the same data management (e.g., cache) as we have done in SLOPE.

5.1 Evaluation Using Synthetic Data Analysis

Our evaluation in this section uses a two-layer convolutional neural network
(CNN) on a 2D synthetic float typed array with the dimension of 64,000 by
64,000. Specifically, we focus on a single forward pass computing of the CNN.
Unless otherwise noted, all experiments use 256 CPU cores and 4096 by 4096
chunk size. The size of halo layer is set to 1. The two-layer CNN has a convolution
(CONV) layer and a ReLU layer. CONV is configured with a 8 2 by 2 kernels.
ReLU is: f(x) = max(0, x), where x is the input to a neuron.
2 https://www.nersc.gov/.

https://www.nersc.gov/
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Comparing SLOPE with ArrayUDF. We use customized workloads from
CNN described above to match the capability of ArrayUDF. Specifically, we
use a single convolution kernel to keep both input and output arrays have the
same size, which is supported by ArrayUDF. As discussed before, SLOPE allows
input and output arrays to have different sizes. We find out that cache feature of
SLOPE enable it to be at most 10× faster in accessing data. In following parts,
we will focus on comparing SLOPE with Spark and hand-tuned code.

Comparing SLOPE, Spark, TensorFlow, and C++ Imp. This test uses a
2 layered CNN workload. TensorFlow uses tf.nn.conv2d and tf.nn.relu for CONV
and ReLU, respectively. Spark uses a chain of Map and Reduce to express CONV
and ReLU (as shown in Fig. 1). The expression of CONV and ReLU in SLOPE
is presented in Fig. 4. To isolate impact of supercomputer software, such as MPI
and Lustre, we have two separate tests on non-supercomputer environment and
supercomputer environment, as discussed below:

– Non-supercomputer environment. This test uses a single Linux box. For
Spark, in order to clearly measure performance for each step, we test it with-
out its Lazy Evaluation (LE) optimization [42]. We report test results in Fig. 8.
Spark without LE spends 11% of time to read data and 38% of time to shuffle
data. As explained in Fig. 1, the read function accesses data from the disk and
converts the array into KV pairs. The shuffle function aggregates the inputs for
Reduce. Both read and shuffle are expensive. Spark’s LE optimization improves
its performance by 3X. Based on this observation, we test Spark only with the
LE optimization in following sections. The “C++ Imp” has the best perfor-
mance. TensorFlow is ≈15% slower than SLOPE. TensorFlow may implement
CONV as expensive matrix multiplication [1]. Overall, SLOPE has compara-
ble performance as hand-tuned code and is much faster than Spark.

– Supercomputer environment. On a parallel environment with Lustre and
MPI, we scaled above tests from 1 CPU core to 16 CPU cores. Note that, to
be fair, we only consider the computation time of these systems because we
believe TensorFlow and Spark are not originally designed and optimized for
Lustre. For Spark, we force the read operation to complete before Map and
Reduce starts. The results are presented in Fig. 9. The trend in these results
are consistent with the one from non-supercomputer environment. On aver-
age, SLOPE is 13× faster than Spark. SLOPE maintains structural locality
in the assignment of array cells and partitions, eliminating the need for com-
munication. Spark has to shuffle data between Map and Reduce. SLOPE is
38% faster than TensorFlow. As explained in previous paragraph, TensorFlow
may convert CONV into large and expensive matrix multiplications.

Scalability Tests of SLOPE. We evaluated both weak scaling and strong scal-
ing of SLOPE using the number of CPU cores from 256 to 16K. In weak scaling
tests, the data size for each process is fixed at 64 MB, totaling 1 TB at 16K CPU
cores. In strong scaling tests, the file size is fixed at 1 TB. We use the parallel effi-
ciency to measure the result. The parallel efficiency for strong scaling is defined as



SLOPE: Structural Locality-Aware Programming Model 75

Fig. 8. Comparing SLOPE with Spark
and hand-tuned codes to perform
CONV for a 2D array on a Linux
server. The Spark was tested with and
without Lazy Evaluation (LE).

Fig. 9. The computing time (only) for
executing CNN with SLOPE, Spark
and hand-tuned codes (i.e., TensorFlow
and C++ Imp) on a supercomputer.

t1/(N ∗tN )∗100%, where t1 is the time to finish a work unit with 1 process and tN
is the time to finish the same work unit with N process. For weak scaling, its paral-
lel efficiency is t1/tN ∗100%. Results are presented in Fig. 10. Both cases show that
SLOPE has high parallel efficiency. Actually, processing a 1 TB data takes around
2 s, giving around 512 GB/sec throughput at 16K CPU cores. The primary reason
SLOPE can achieve such scalability is that it can maintain structural locality on
processing multiple dimensional array and all computing can happen on a local
node without communication across nodes.

5.2 Evaluation for SLOPE and Spark Using Real Applications

In this section, we compare SLOPE with Spark in executing data analysis opera-
tions for three applications: CAM5 [28,40], VPIC [8,22], and BISICLES [10,44].
All datasets are stored in the HDF5 files. Spark uses H5Spark [23] to read HDF5
data into RDDs. Since H5Spark does not support writing RDDs back to HDF5,
we compare read performance and execution performance.

Fig. 10. Strong and weak scaling test
results for SLOPE with upto 16K CPU
cores.

Fig. 11. Test results of executing
CAM5’s CNN with SLOPE.
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CAM5’s Convolution Encoder. The CAM5 is widely used by the climate
community to study the global climate change and prediction [40]. The dataset
in test is from a simulation run with 25 km spatial resolution for the years span-
ning from 1979 to 2005. Each frame of the global atmospheric state is a 768×1152
image. CNN [28] has been used to predict extreme weather events, such as atmo-
spheric rivers, from this data. We have used SLOPE and Spark to compose three
key steps of CNN: CONV, ReLU, and Pooling. Following the work [28], we con-
sider the layer close to the Earth’s surface and the variables, namely TMQ, for
atmospheric rivers detection. We use the output data for the year 1979, which is
a 768×1152 2D array. Spark uses two sets of Map and Reduce to express CONV
and Pooling layers, respectively. The ReLU is expressed with a Map. The imple-
mentation with SLOPE is shown in Fig. 4. Test results are reported in Fig. 11.
The read time required by Spark is around 94× slower than that of SLOPE. This
performance benefit is because SLOPE directly handles multidimensional array
without flattening it into KV pairs. Spark needs to convert the array into KV
pairs during read. When comparing the execution time, SLOPE is 49× faster
than Spark. Also, as discussed in the previous section, linearization to a 1D KV
causes significant communication overhead for Reduce to gather inputs. SLOPE
reduces communication to synchronize only a small number of halo layers with
the preserved structure locality.

VPIC’s Gradient and Interpolation Operations. VPIC simulates the mag-
netic reconnection phenomenon [22]. Magnetic reconnection study involves two
key steps: calculating gradient on 3D field mesh and finding gradient field value
for each particle via interpolation. These operations involve four arrays, M, X,
Y, and Z, where M is a 3D magnetic field mesh data and X, Y and Z contains
particle locations. The gradient computing for M uses a Laplace operation, i.e.,
3D version of the one in Fig. 3. Using Spark, the gradient on M is expressed with
a Map and a Reduce, where the Map duplicates each cell for its neighbors and the
Reduce operation performs the Laplace calculation. Then, a tri-linear operation
is finished with a map-side join, where the gradient value of M is broadcasted
to each executor and then a Map is used to find the gradient field value of each
particle. Implementation with SLOPE is a 3D version of the algorithm in Fig. 3.
Since Spark has a limit on the size of broadcast data, we have set the test to use
a small 256 MB (512 × 256 × 256) field data. The particle data has 263 GB with
∼23 billion particles. The tests used 128 CPU cores on 16 nodes. A performance
comparison is shown in Fig. 12, where SLOPE performs 106× faster than Spark
to execute the analysis. In reading the input data, SLOPE is 45× times faster.
Since Spark has to duplicate a lot (∼6×) cells to help reduce to calculate the
Laplace operator, its performance is poor. In contrast, SLOPE uses logical parti-
tioning without duplications to finish the Laplace operator. Explicitly processing
and communicating array index for particle data in Spark consumes CPU time
and network bandwidth and therefore degrades its performance.

BISICLES’s CCL Algorithm. Connected component labeling (CCL) has
been used to detect ice calving events on Antarctica, simulated by BISI-
CLES [44]. We have used both Spark and SLOPE to compose CCL. The data size
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Fig. 12. Test results of executing
VPIC’s gradient & interpolation anal-
ysis with SLOPE.

Fig. 13. Test results of executing BISI-
CLES’s connected component labeling
(CCL) with SLOPE.

is 12288 × 12288 and we test it with 16 CPU cores on 4 nodes. We implemented
a standard multi-pass algorithm for CCL with an 8-way connection detection
[34] for both Spark and for SLOPE. We report the execution time in Fig. 13.
The 8-way connection detection based CCL algorithm needs 10868 iterations to
converge and SLOPE is 272× faster than Spark. The main reason for Spark’s
slower performance is that it needs to duplicate a large number of array cells
for neighborhood-based connection detection, while SLOPE needs to duplicate
only a small halo layer. SLOPE also can use advanced features, such as in-place
data modification and back-forward execution, which can accelerate the con-
vergence of the CLL algorithm [34] (in Fig. 5). The CCL algorithm with these
advanced features can not be implemented with Spark as its immutable RDD
concept, where in-place data modification is not allowed. By enabling the fea-
ture in SLOPE, it converges after 8 steps. Comparing the performance of Spark,
SLOPE is 92824× faster.

6 Related Work

Relational [26,41] and array [2,5,24] DBMS provide built-in operators and a
UDF mechanism for customization operations. Our SLOPE shares certain sim-
ilarity with these systems in expressing UDF operation. SLOPE differs from
them in its new abstract data type Stencil and programming model. The Stencil
of SLOPE supports a flexible way to logically subset array into any shapes for
analytic operations. In DBMS, their window operator only subsets array into
rectangular boxes and each member in window operator is treated equally. In
contrast, each member of Stencil can be customized with different operations in
SLOPE.

MapReduce has a KV data type and two generic operations, Map and Reduce.
Spark [42] introduces a memory cache layer for iterative analysis. SciHadoop [7]
provides a scheduling optimization for adopting MapReduce to analyze data
in arrays. Our SLOPE has a structural locality-aware programming model on
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multidimensional array and generalizes both Map and Reduce into a single oper-
ator, SLApply, on array. SLOPE has the similar cache mechanism as the one in
Spark for KV but the cache in SLOPE works for multidimensional array. The
SciHadoop has similar goal as SLOPE. But SciHadoop still uses MapReduce to
compose analysis and SLOPE is a new programming model.

Stencil domain-specific languages (DSL) [12,17,25] are mostly developed to
solve partial differential equation(PDE) problem. Our SLOPE is a data analy-
sis framework that generalizes MapReduce for multidimensional arrays. SLOPE
uses Stencil idea to extend the Map functions (on a single element) to a set
of neighborhood array cells towards composing data analysis tasks, e.g., con-
nected component labeling (CCL). Technologically, SLOPE is implemented by
plain C++ without compiler extension/new language definition. Stencil DSL
may need compiler extension or even new language definition.

SAGA [39] supports aggregator operation on array file formats. R [15] uses
Apply operators and its parallel version dmapply to customize operations over
a list or a vector. But, none of these Apply operators can express the structure
locality on array. ArrayUDF [13] provides a simple API to accept UDF but it
can only run a single UDF on a single array stored on disk. TensorFlow [1]
provides hand-optimized code for machine learning but has not programming
model defined. SLOPE defines programming model and in-memory cache to
compose complex analytic operations with multiple stages and multiple arrays.

7 Conclusions and Future Work

Data analysis operations on multidimensional arrays are typically defined on a
set of neighborhood cells in diverse geometric shapes. This structural locality
is lost in the programming models, such as MapReduce, making them perform
poorly in composing deep data analytic pipeline for multidimensional arrays.
In this work, based on multidimensional array data model, we proposed a new
structure locality-aware programming model (SLOPE) and its implementation.
We also present multiple data analysis examples with SLOPE, such as convolu-
tional neural network, gradient computing, and connected component labeling.
In tests with real scientific data analysis, SLOPE is 49× ∼ 92824× faster than
Spark, which represents state-of-the-art MapReduce programming model. In our
future work, we plan to expand SLOPE to compose diverse operations without
strong locality of reference.
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Abstract. Existing near-data processing (NDP) techniques have
demonstrated their strength for some specific data-intensive applica-
tions. However, they might be inadequate for a data center server, which
normally needs to perform a diverse range of applications from data-
intensive to compute-intensive. How to develop a versatile NDP-powered
server to support various data center applications remains an open ques-
tion. Further, a good understanding of the impact of NDP on data center
applications is still missing. For example, can a compute-intensive appli-
cation also benefit from NDP? Which type of NDP engine is a better
choice, an FPGA-based engine or an ARM-based engine? To address
these issues, we first propose a new NDP server architecture that tightly
couples each SSD with a dedicated NDP engine to fully exploit the data
transfer bandwidth of an SSD array. Based on the architecture, two NDP
servers ANS (ARM-based NDP Server) and FNS (FPGA-based NDP
Server) are introduced. Next, we implement a single-engine prototype
for each of them. Finally, we measure performance, energy efficiency, and
cost/performance ratio of six typical data center applications running on
the two prototypes. Some new findings have been observed.

Keywords: Near data processing · Data center server · FPGA ·
ARM embedded processor · Data-intensive · Compute-intensive

1 Introduction

A spectrum of near-data processing (NDP) work [1,3,6,10,16–18,24,27,29,30]
have been proposed recently. Although they target data at different levels of the
memory hierarchy, they share a common idea: deploying some hardware data
processing accelerators (hereafter, NDP engines) such as FPGAs and embedded
processors in or near memory devices to process data locally. NDP is a one-stone-
two-birds approach. It largely reduces the pressure of data transfer as the size of
processed data is normally smaller than that of raw data. Also, it alleviates the
burden of host CPUs by offloading part or all computations to NDP engines.
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However, existing NDP techniques might not be able to provide a satisfy-
ing solution to a data center server, which usually needs to perform a diverse
range of applications from data-intensive to compute-intensive. This is mainly
because they only aim at improving performance and energy-efficiency for some
specific data-intensive applications such as databases [11,15,17,27], word count
[3], linear regression [3], and scan [3]. It is understandable that they concen-
trate on data-intensive applications. After all, the major incentive of NDP is
to reduce the increasingly heavy data transfer pressure of data-intensive appli-
cations. Recently, the processing power of NDP engines has been substantially
increased [20]. For example, ARM Cortex-A53, a state-of-the-art embedded pro-
cessor, is a quad-core 64-bit processor operating at 1.1 GHz [9]. The Xilinx
VCU1525 FPGA board released in 2017 is equipped with 16 GB DDR4 memory
and a Kintex UltraScale FPGA chip, which has 5k DSP slices, 1M logic cells, and
75.9 Mb block RAM [28]. We argue that NDP now also has a potential to bene-
fit compute-intensive applications by considerably alleviating the computational
burden of host CPUs as well as reducing their data movement. Thus, building
a versatile NDP server that can benefit a wide range of data center applications
becomes feasible. Unfortunately, such NDP server is not available yet. Besides,
a good understanding of the impact of NDP on data center applications is still
missing. For example, whether a compute-intensive application can also benefit
from NDP remains an open question. In addition, FPGAs [6,27,29] and embed-
ded processors (e.g., ARM processors) [3,24] are two main types of NDP engines.
Which type of NDP engine is a better choice for an NDP server? In order to
answer this question, a quantitative comparison between the two types of NDP
engines in terms of performance, energy efficiency, and cost/performance ratio
is required. Still, it cannot be found in the literature.

To address these issues, in this research we first propose a new versatile
NDP server architecture (see Fig. 1a), which employs an array of NDP engines
between host CPUs and an SSD array. Based on the architecture, two NDP
servers called FNS (FPGA-based NDP Server) and ANS (ARM-based NDP
Server) are then introduced. In both ANS and FNS, there are multiple SSDs with
each having its corresponding NDP engine. Next, we implement a single-engine
prototype for each of them based on a conventional data center server (hereafter,
conventional server). While SANS (Single-engine ANS) utilizes an ARM Cortex-
A53 processor [9] as its NDP engine, SFNS (Single-engine FNS) employs FPGA
logic as its NDP engine (see Sect. 4). Further, we measure performance, energy
efficiency, and cost/performance ratio for six typical data center applications
(see Sect. 4.3) on the two prototypes. Finally, we obtain some new findings after
analyzing our experimental results. To the best of our knowledge, this is the first
study that provides a quantitative comparison between the two major types of
NDP engines. Also, this research is the first investigation on the impact of NDP
on compute-intensive applications.

2 Related Work

According to the location of NDP engines in the memory hierarchy, exist-
ing NDP techniques can be generally divided into three groups: in-storage



A Near-Data Processing Server Architecture 83

Fig. 1. (a) NDP server; (b) ARM-based NDP engine; (c) FPGA-based NDP engine.

computing (ISC), in-memory computing (IMC), and near-storage computing
(NSC). Although various ISC and IMC techniques have shown their strength in
the laboratory, so far none of them is publicly available. NSC, however, is more
practical as one can develop an NSC-based computer using some commodity
products (e.g., a server and FPGA). Thus, in this research we employ NSC to
study the impact of NDP on data center applications.

NSC techniques usually insert computing devices on the path between stor-
age devices (e.g., SSDs) and host CPUs to accelerate data processing. Ibex [27]
is developed as an FPGA-based SQL engine that accelerates relational database
management systems, whereas Netezza [5] builds a server equipped with one
FPGA between main memory and storage to extract useful data. Firebox [2] con-
sists of many fine-grained components of SoCs and memory modules connected
with high-radix switches. Hewlett-Packard utilizes configurable fine-grained pro-
cessing cores and memory pools to build a “machine” by connecting them with
a photonic network [26]. Interconnected-FPGAs [29] proposes to build a com-
puter system with one FPGA-based NDP engine to accelerate join operations
in a database. While all existing NSC techniques only utilize one NDP engine in
a server, ANS/FNS adds an NDP engine for each SSD of an SSD array to fully
exploit the parallelism among the SSDs.

3 NDP Server Architecture

In this section, we first introduce the architecture of a conventional server. Next,
we propose a versatile NDP server architecture, which inspires ANS and FNS.

3.1 The Architecture of a Conventional Server

The architecture of a conventional server with all flash storage can be envisioned
from Fig. 1a by removing the NDP engine (i.e., NDPE) array. Its main compo-
nents include one or multiple multi-core CPUs, DRAM, PCIe bus, PCIe switch,
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an array of SSDs, and network interface. The PCIe bus provides a high band-
width data path between the CPUs and SSDs. There are k PCIe lanes (k � 1)
for each SSD. A PCIe switch is in charge of the data path between CPUs and
SSDs. The host CPUs concurrently access all SSDs through the PCIe switch.

Two limitations exist in a conventional server architecture. First, data trans-
fer bandwidth provided by an array of SSDs is underutilized because the number
of PCIe lanes from SSDs to the PCIe switch (i.e., n × k) is usually much larger
than that number from the PCIe switch to CPUs (i.e., m). Consequently, data
transfer may become a performance bottleneck for a data-intensive application
as the full bandwidth of the SSD array cannot be exposed to the CPUs. Another
limitation is that for a compute-intensive application a performance bottleneck
could occur on the CPUs. It seems that allocating engines (e.g., FPGAs) near
host CPUs could also alleviate this limitation. However, doing so would require
all raw data to be transferred from SSDs to the DRAM of host CPUs through
the PCIe bus and PCIe switch (see Fig. 1a), which decreases the performance
and energy-efficiency. Besides, deploying engines close to host CPUs is useless
for a data-intensive application as its data transfer bottleneck cannot be solved.

To address the two limitations, we propose a new NDP server architecture
that employs an NDP engine array between the PCIe switch and the SSD array
so that each SSD is coupled with an NDP engine (see Fig. 1a). The rationale
behind the new architecture is that deploying data processing engines near SSDs
could benefit both data-intensive and compute-intensive applications. In addi-
tion, tightly coupling one SSD with one NDP engine enables an NDP server to
fully exploit the storage bandwidth. Also, it makes the server scale well. Based
on this new architecture, two NDP servers (i.e., ANS and FNS) are introduced.

3.2 The New NDP Server Architecture

Figure 1a shows the architecture of our proposed NDP server. The only difference
between a conventional server and an NDP server based on the new architecture
is that the latter has an extra layer of NDP engines. Each NDP engine consists
of four key components: a processing element (PE), DRAM, an interface to host,
and an interface to SSD. For an ANS, a PE is simply an embedded processor
like an ARM Cortex-A53 (see Fig. 1b). For an FNS, the FPGA logic used by
an application kernel (i.e., a partition of an FPGA chip) serves as a PE (see
Fig. 1c). This is because an FPGA chip is relatively expensive. Multiple SSDs
sharing one FPGA chip is more practical than each SSD owning an FPGA chip.
Note that application kernels generated from one FPGA chip can concurrently
process data from distinctive SSDs. The DRAM stores metadata. Also, it works
as a buffer for data movement among an SSD, an NDP engine, and host CPUs.

A data processing procedure is always launched by host CPUs, which are in
charge of the following tasks: (1) managing the operating system of the server;
(2) monitoring the statuses of all NDP engines; (3) executing the host-side appli-
cation; (4) offloading the application kernel to all NDP engines; (5) writing the
arguments to an application kernel in an NDP engine and then enabling it to
read and process the data from its corresponding SSD.
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Fig. 2. Data transfer in an NDP server.

In the NDP architecture proposed by [29], each server (called computing node
in [29]) only has one NDP engine and NDP engines belong to different servers
are interconnected in order to reduce the communication cost caused by data
exchange between different NDP engines. In our proposed NDP server architec-
ture, however, NDP engines are not directly connected to each other because
doing so will make hardware connection routing very complicated considering
that each NDP server proposed in this research can have dozens of NDP engines.

Instead, when an NDP engine has a need to transfer data to one of its peers,
it leverages a PCIe peer-to-peer (P2P) communication strategy [19], which is a
part of the PCIe specification. The PCIe P2P communication enables regular
PCIe devices (i.e., NDP engines in our case) to establish direct data transfer
without the need to use host memory as a temporary storage or use the host-
CPU for data movement. Thus, data transfer from a source NDP engine to a
destination NDP engine can be accomplished through the PCIe switch in a DMA
(Direct Memory Access) manner. PCIe P2P communication significantly reduces
the communication latency and does not increase hardware design complexity.
The data path 1 shown in Fig. 2 illustrates this process. After all NDP engines
finish their data processing, the results from each NDP engine will be aggregated
at the host-DRAM for a further processing in CPU. The data path 2 shown in
Fig. 2 clarifies this case. Compared to the NDP architecture proposed in [29],
our proposed NDP server architecture lays a burden on the host when an appli-
cation needs to frequently exchange data or messages between different NDP
engines. However, our architecture has two advantages: (1) the design complex-
ity is greatly reduced; (2) it is more compatible with a conventional server. In
addition, the fine-grained coupling of NDP engines with SSDs (i.e., each SSD
has an exclusive NDP engine) in a shared-nothing architecture leads to a very
high degree of parallelism in data transfer and data processing. It also delivers
a very good scalability to the proposed server architecture.
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Fig. 3. (a) The SANS prototype; (b) The SFAN prototype.

4 Implementations

In this section, we first explain our implementation methodology. Next, we
describe how we implement the two single-engine NDP server prototypes SANS
and SFNS, which are all extended from a state-of-the-art server with two 18-core
Intel Xeon CPUs and 36 PCIe SSDs [22]. Finally, we provide implementation
details of six data center applications.

4.1 Implementation Methodology

To develop two NDP servers (i.e., ANS and FNS) based on our proposed architec-
ture shown in Fig. 1a, 36 Fidus Sidewinder-100 boards [9] and 36 Xilinx VCU1525
FPGA boards [28] are needed. In addition, each board needs two separate PCIe
interfaces to connect an SSD and the PCIe switch, respectively. The high hard-
ware cost and massive hardware revision are beyond our capacity. Fortunately,
the major goal of this research is to understand the impact of NDP on data
center applications instead of building two fully-fledged NDP servers. Therefore,
we only build one NDP engine for each of the two proposed NDP servers shown
in Fig. 3. Six applications are executed on the two single-engine NDP server pro-
totypes, and then, the results are extrapolated to the case of the two full-size
NDP servers (i.e., ANS and FNS), respectively.

The procedure of data processing in an NDP server can be divided into
four steps: (1) SSD: data transfer from SSDs to NDP engines; (2) NDP: data
processing in NDP engines; (3) NDP2CPU: data transfer from NDP engines
to host-DRAM; (4) CPU: data processing in host-CPU. These four steps are
organized in a pipelined fashion. If the data throughput bandwidth of each step
is denoted as *BW (* is SSD, NDP, NDP2CPU, or CPU), then the system
performance of the NDP server is determined by:

Min{SSDBW, NDPBW, NDP2CPUBW*α,CPUBW}, (1)

where α is equal to the size of NDP engine input data divided by the size of NDP
engine output data. An example of using this equation can be found in Sect. 5.1.
Based on our tests, the read bandwidth of an SSD is approximately 3 GB/s and
NDP2CPUBW is about 36 GB/s (see Table 1). When all 36 SSDs work con-
currently the SSDBW is equal to 108 GB/s (i.e., 36× 3 GB/s). The NDPBW is
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Table 1. Platform setup

Specifications

Server Two CPU sockets; 36 SSDs
m = 48; n = 36; k = 4 (see Fig. 1a)

CPU [14] Xeon 6154: 64 bit, 3.0 GHz, 18 cores, 36 threads

PCIe 48 lanes attached to host CPUs (36 GB/s)
144 lanes attached to SSDs (108GB/s)

SSD PCIe×4; 3 GB/s

ARM platform Quad-core Cortex-A53: 64-bit, 1.1 GHz [9]

FPGA platform Xilinx VCU1525 platform [28]

equal to NDPEBW×n, where NDPEBW denotes the data processing bandwidth
of one NDP engine and n is the total number of NDP engines. Obviously, the
values of NDPEBW and CPUBW depend on the characteristics of applications.
These values of applications will be measured in Sect. 5. We will use Eq. 1 to
calculate the performance of the six applications running on ANS/FNS.

4.2 Implementation of SANS and SFNS

The PE of each NDPE of an ANS is a quad-core Cortex-A53 ARM processor
embedded in a Fidus Sidewinder-100 SoC board [9]. Table 1 summarizes the spec-
ifications of the conventional server we used and the Fidus board. The board’s
PCIe Gen3 NVMe interfaces enable the ARM cores to directly read data from an
attached SSD. Its PCIe × 8 host interface and 1 Gigabit Ethernet interface pro-
vides a channel for data movement and communication from/to the host CPUs.
In our experiments, an application is first compiled by a cross-platform compiler
aarch64-linux-gnu-g++. Next, the executable file is offloaded from host CPUs
to the ARM cores in an NDPE. Finally, a data processing procedure is launched
by the ARM cores. For each application, we measure its performance, energy
efficiency and cost/performance ratio.

In an SFNS, the PE of an NDPE is built by FPGA logic (see Fig. 1c). We use
a Xilinx VCU1525 FPGA board [28] to implement that NDPE. The specifica-
tions of the FPGA board are presented in Table 1. The FPGA board is plugged
into a PCIe slot of the server (see Fig. 3b). The six applications are implemented
in C++ and then compiled into binary files using Vivado High-Level Synthesis
(HLS) [28] tool chain. The OpenCL framework is employed for a general man-
agement of the kernel running on NDP engines, which includes programing the
device, setting arguments for the kernel, and launching the kernel. The pseudo
code of the management is shown as below.

An SDAccel [28] development environment is used to evaluate the applica-
tions on FNS. It includes a system compiler, RTL level synthesis, placement,
routing, and bitstream generation [28]. The system compiler employs underlying
tools for HLS. The VCU1525 FPGA board is plugged into a PCIe Gen3 × 8 slot
of the conventional server (see Fig. 3b).



88 X. Song et al.

for kernel ← 0 to N − 1 do
cl::Program::Program(context, devices, binaryfile)
//create a program project
cl::Program::Kernel(program, kernel name)
//create a kernel object
cl int cl::Kernel::setArg()
//set argument and workload for kernel
cl::CommandQueue::enqueueTask(kernel)
//program the FPGA and launch the kernel

end

In the SDAccel development environment, the OpenCL (Open Computing
Language) [13] standard is used for parallel programming. It provides a program-
ming language and runtime APIs to support the development of applications on
the OpenCL platform model, which includes the host CPUs and FPGAs. Details
of SDAccel and OpenCL can be found in [28]. Note that the data flow of SFNS
is different from that of the OpenCL framework, which is shown in Fig. 4. The
primary benefit of NDP comes from reducing data movement by directly read-
ing/processing data from where they are stored (i.e., SSDs in the case of FNS).
Thus, an FNS engine is expected to be able to fetch data from an SSD to the
DRAM of an NDP engine (step 1 in Fig. 4a). And then, the data are transferred
to the FPGA to be processed, after which the results are sent back to the DRAM
in the NDP engine (step 2 in Fig. 4a). Finally, the results will be transferred to
the host-CPU (step 3 in Fig. 4a). Unfortunately, the proposed NDP engine in an
SFNS is built in the OpenCL framework, which always starts data processing
from host-CPU. When there is a need to execute an application kernel on the
FPGA board, the host-CPU first reads data from an SSD to the host-DRAM
(step 1 in Fig. 4b). Next, the host-CPU writes the data to the DRAM in an NDP
engine (step 2 in Fig. 4b). After the data have been processed in the NDP engine
(step 3 in Fig. 4b), they are eventually transferred to the host-DRAM (step 4 in
Fig. 4b).

Since it is difficult, if not impossible, to change the data flow of the OpenCL
framework to the way that an SFNS desires, we find a workaround to bypass
this issue. In particular, we use the steps 2–4 in Fig. 4b to emulate the steps
1–3 in Fig. 4a in our experiments in order to estimate an application’s wall

Fig. 4. (a) Data flow in SFNS; (b) Data flow in OpenCL framework.
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time when it is running on an SFNS. The only difference between these two
sets of steps lies in where to fetch the raw data. While SFNS is expected to
achieve this by reading data from an SSD to the DRAM of an NDP engine
(step 1 in Fig. 4a), the OpenCL framework actually accomplishes this task by
transferring raw data from host-DRAM to the DRAM of an NDP engine (step
2 in Fig. 4b). However, the VCU1525 FPGA board can deliver a 10 GB/s data
transfer bandwidth [28] in step 2 shown in Fig. 4b, which is much higher than
the 3 GB/s data transfer bandwidth provided by an SSD (see Table 1) in step
1 shown in Fig. 4a. Therefore, a delay is injected to deliberately lower the data
transfer bandwidth from 10 GB/s to 3 GB/s, by which we achieve our goal. To
balance the workload among all NDP engines, the data set is equally split across
the SSD array. In fact, the amount of workload for each kernel is set on the host
program during its argument stetting phase for a kernel.

4.3 Implementation of the Applications

Six applications with distinct characteristics are chosen to study the impact of
NDP on data center applications. They are run on CNS, SANS, and SFNS,
respectively.

Linear Classifier (LC). In the field of machine learning, a linear classifier
achieves statistical classification by making a classification decision based on the
value of a linear combination of the features [23]. If the input feature vector to the
classifier is a real vector x, then the output score is y = f(w ·x) = f

(∑
j wjxj

)
.

In our experiments, j is set to 8, which makes LC a data-intensive application.
A parallel implementation of this algorithm can be found at [23]. The size of the
dataset used for this application is 37 GB. Since the classification for each data
point is independent from the other points, the classifying of each point can be
parallelized among the 36 NDP engines.

Histogram Equalization (HE). Histogram equalization is a computer image
processing technique used to improve contrast in images. Histogram equaliza-
tion transforms pixel intensities so that the histogram of the resulting image is
approximately uniform. This allows for areas of lower local contrast to gain a
higher contrast [23]. A parallel implementation of this algorithm can be found
at [23]. The dataset size used for this application is 3.4 GB. The execution of
histogram equalization on different pictures can be done concurrently across the
36 NDP engines.

k-NN 2, k-NN 6, and k-NN 8. Given a set S of n reference data points in
a dimensional space and a query point q, the k-NN algorithm [21] returns the k
points in S that are closest to point q. Main steps of k-NN include: (1) computing
n squared Euclidean distances between the query point q (x1, x2, ..., xi) and the
n reference points of the set S (s1, s2, s3, ..., si);

distance = (x1 − s1)2 + (x2 − s2)2 + ... + (xi − si)2 (2)

(2) sorting the n distances while preserving their original indices specified in S.
The k nearest neighbors would be the k points from the set S corresponding to
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the k lowest distances of the sorted distance array. The dimension of the data in
our experiments is set to 9. Since the distance calculation for each point in the
database is independent, step 1 can be executed concurrently among all 36 NDP
engines. In step 2, the calculated distances are aggregated and then sorted in order
to discover the k nearest points of the query point. This step is carried out in the
host CPUs after all results from step 1 are aggregated to the host-DRAM. The
computational complexity of k-NN depends on the number of features of each data
point. The number behind the word k-NN represents the number of features of
each data point. For example, k-NN 8 stands for a k-NN algorithm with each data
point having 8 features. A larger number of features for each data point implies
a more complex k-NN problem. The CPU and ARM codes start from a parallel
implementation of the k-NN algorithm from the Rodinia library [21]. The dataset
used for this application is totally 130 GB [21].

FFT. FFT is an algorithm that samples a signal over a period of time (or space)
and then divides it into its frequency components. It is probably the most ubiq-
uitous algorithm employed to analyze and manipulate digital or discrete data.
It is also a well-recognized compute-intensive application [12]. The algorithm
consists of two 1D FFTs, i.e., a row-wise FFT and a column-wise FFT. Note
that for each picture its three color (i.e., R, G, B) values can be processed in
parallel as shown in Fig. 5. To obtain the best performance on CNS, we employ
MKL (Math Kernel Library) [25] for the implementation of 2D FFT on the Xeon
CPUs. A 2D FFT implementation on FPGA adopts 1D FFT IP core from Xilinx
and it mainly consists of a 256 × 256 size row-wise 1D FFT module, buffer, and
column-wise 1D FFT module (see Fig. 5). This design is implemented at the RTL
level. We run 2D FFT on 800 colorful pictures with total size of 238.54 MB [7].

Among the six applications, LC is the most data-intensive, whereas FFT is
the most compute-intensive. Their data processing complexity increases in the
following order: LC, HE, k-NN 2, k-NN 6, k-NN 8, FFT. In the same order, they
become less data-intensive, which can be seen from the “System BW” columns
shown in Tables 3 and 7. While LC, HE, and FFT only rely on NDP engines to
process their input data, the three KNN applications require both NDP engines
and host CPUs to accomplish the data processing task. In Sect. 5, we will run
these six applications with distinct data processing complexities on CS, SANS,
and SFNS separately. After that, the impact of proposed NDP server on them
will be talked.

Fig. 5. 2D FFT on FPGA.
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5 Evaluation

In this section, we measure the performance, energy efficiency, and
cost/performance ratio of the six applications running on the conventional server
(hereafter, CS), SANS, and SFNS, respectively. The results of ANS and FNS are
extrapolated from real measurements of SANS and SFNS, respectively. In ANS
and FNS, 36 NDPEs and 36 SSDs are assumed to be employed. Performance is
defined as data processing bandwidth of an application when it is running on a
server. Energy efficiency is represented by the amount of data that can be pro-
cessed per joule (i.e., MB/joule). Cost/performance ratio is defined as a server’s
cost divided by its data processing bandwidth (i.e., dollar/(MB/second)). Obvi-
ously, an NDP server is more expensive than a CS because it is equipped with
an array of NDP engines, which do not exist in a CS. However, it can deliver a
higher performance. Therefore, measuring their cost/performance ratios is a fair
method to compare their cost-effectiveness.

5.1 Evaluation of FFT & LC & HE

Performance Evaluation: Tables 2 and 3 show the performance of FFT, LC,
and HE on the five servers in terms of wall time and data processing bandwidth,
respectively. While “App” shown in Table 2 is a shorthand for “application”,
“BW” shown in Table 3 is an abbreviation of “data processing bandwidth” (see
Eq. 1). “All” stands for “all three applications”. Since there is no NDP engine
in CS, “NA” (i.e., not applicable) is used for the three applications’ “Wall time
of NDP” and “BW of NDP” columns. Besides, since the three applications are
entirely implemented and executed in the NDP engines, there is no computing
task for host CPUs. Thus, their values of “Wall time of CPU” and “BW of CPU”
are “0” and “+∞”, respectively.

The BW of either an NDP engine or host CPUs is equal to the size of dataset
divided by wall time. The wall time of ANS/FNS is derived by the wall time of
SANS/SFNS divided by 36 as 36 NDP engines can work in parallel assuming
that the dataset has been evenly distributed among the 36 SSDs. “System BW”
of an application is derived by Eq. 1. It represents the application’s performance.

Table 2. Performance of six applications

Wall time (s)

NDP/CPU

App LC HE FFT k-NN 2 k-NN 6 k-NN 8

CS NA/0.98 NA/0.13 NA/2.05 NA/17.22 NA/31.33 NA/47.45

SANS 16.67/0 1.98/0 132.60/0 825.50/0.62 1843/0.62 2354/0.62

SFNS 13.45/0 1.14/0 3.02/0 36.31/0.62 34.39/0.62 32.83/0.62

ANS 0.46/0 0.06/0 3.68/0 22.93/0.62 51.21/0.62 65.40/0.62

FNS 0.37/0 0.03/0 0.08/0 1.01/0.62 0.96/0.62 0.91/0.62
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Table 3. Performance of LC & HE & FFT

BW (GB/s) System BW (GB/s)

NDP/CPU SSD(s) NDP2CPU

App LC HE FFT All All LC HE FFT

CS NA/37.76 NA/26.15 NA/0.11 108 36 36 26.15 0.11

SANS 2.22/+∞ 1.72/+∞ 1.80e−3/+∞ 3 36 2.22 1.72 1.80e−3

SFNS 2.75/+∞ 2.98/+∞ 0.08/+∞ 3 36 2.75 2.98 0.08

ANS 80.43/+∞ 56.67/+∞ 0.06/+∞ 108 36 80.43 36 0.06

FNS 100.00/+∞ 113.33/+∞ 2.91/+∞ 108 36 100.00 36 2.91

Table 4. Energy efficiency of LC & HE & FFT

NDP (Watt) Server only
(Watt)

Energy consumption
(Joule)

Energy efficiency
(MB/Joule)

Active Idle

App LC HE FFT All All LC HE FFT LC HE FFT

CS 0 0 0 613.70 30.33 601.43 79.78 1258.10 63.00 43.64 0.19

ANS 207.50 207.50 207.50 613.70 30.33 109.40 14.27 875.21 346.33 243.98 0.27

FNS 421.20 743.40 259.56 613.70 30.33 167.07 23.21 23.19 226.78 150.00 10.29

Take LC for example, its execution wall time on the NDP engine of SFNS
is 13.45 s (see Table 2). Since the size of its dataset is 37 GB, its NDPBW is
2.75 (GB/s) (i.e., 37/13.45, see Table 3). Meanwhile, its SSDBW, NDP2CPUBW,
CPUBW are 3 GB/s (only one SSD is used in SFNS), 36 GB/s (see Table 1),
and “+∞”, respectively. Based on Eq. 1, the performance of LC on SFNS is
2.75 GB/s. Unlike FFT and HE whose size of dataset is unchanged after NDP
engine processing, the size of dataset of LC is reduced by 8 times (i.e., α = 8)
after NDP engine processing [23]. To saturate NDP2CPUBW (i.e., 36 GB/s),
its NDPBW should be at least 36 × 8 = 288 GB/s, which is much higher than
80.43 GB/s and 100 GB/s (i.e., NDPBW of LC using ANS and FNS). That is
why the performance of LC on ANS and FNS is decided by NDPBW rather than
NDP2CPUBW.

Energy Efficiency: Table 4 summarizes energy consumption and energy effi-
ciency of the three servers. All values of power (Watt) in this table are measured
by the power meter shown in Fig. 3a. The “Server Only” column provides the
power of the CS server. In the CS, since there is no NDPE, a “0” shows up in the
“NDP (Watt)” column for the three applications. The total energy consumption
of a server is the sum of energy consumption of NDPEs, energy consumption of
CPU in active status, and energy consumption of CPU in idle status. For example,
the energy consumption of ANS running LC is (207.5 + 30.33)× 0.46 = 109.40 J.
Thus, its energy efficiency is (37 × 1024)/109.4 = 346.33 MB/J.

Cost/Performance Ratio: Cost/performance ratios of the three servers are
provided in Table 5. Although in ANS and FNS the host CPUs are not involved
in data processing, their costs are still taken into account as we are calculating
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Table 5. Cost/performance ratios of FFT & LC & HE

System Cost ($) Cost/Performance ($/(MB/s))

APP FFT LC HE FFT LC HE

CS 3,543 7,086 7,086 31.45 0.19 0.26

ANS 3,723 7,266 7,266 60.60 0.09 0.20

FNS 5,863 7,504 13517 1.97 0.07 0.37

Table 6. FPGA utilization of 36 NDPEs in FNS

App/Board LUT REG BRAM DSP slices

FPGA [28] 1,182,240 2,364,480 2,160 6,840

LC 108,108
(9.14%)

125,568
(5.31%)

72
(3.33%)

180
(2.63%)

HE 1,673,352
(140.54%)b

1,961,604
(82.96%)

6300a

0

0
0

k-NN 2 129,816
(10.98%)

172,512
(7.30%)

72
(3.33%)

432
(6.32%)

k-NN 6 227,016
(19.20%)

364,140
(15.40%)

288
(13.33%)

1,440
(21.10%)

k-NN 8 272,916
(23.08%)

444,960
(18.81%)

288
(13.33%)

1,944
(28.42%)

FFT 481,932
(40.81%)

643,608
(27.21%)

180
(8.28%)

3,456
(50.50%)

aOff-chip DRAM used for the overfilled BRAM;
bLarger than 100% means more than one FPGA chip needed.

the cost of an entire system. The prices of CPUs, ARM, and FPGA can be found
at [14], [4], and [28], respectively. We will take FFT as an example to show how
to obtain its cost/performance ratio on CS, ANS, and FNS, respectively. Since
MKL [25] recommends using just one thread per host CPU core for FFT to
achieve the best performance, we divide the total CPUs’ price by two, which
is $3,543. So, the cost/performance ratio of FFT on CS is $3,543/0.11 GB/s
(see Table 3) = 31.45 $/(MB/s). In an ANS, the total price of the server is the
sum of the price of CS and 36 ARM processors [4]. In an FNS, most resources
that the 36 NDPEs consume are DSP slices, which account for 50.5% of the
FPGA resources (see Table 6). Thus, the cost of FFT on an FNS is the price
of host CPUs (i.e., $3,543) plus a 50.5% of FPGA price (i.e., $4,593.75 [8]),
which is equal to $5,863. Since the performance of FFT on FNS is 2.91 GB/s
(see Table 3), its cost/performance ratio is $5,863/2.91 GB/s = 1.97 $/(MB/s).

5.2 Evaluation of the Three k-NN Applications

Performance Evaluation: Tables 2 and 7 show the performance of k-NN 2,
k-NN 6, and k-NN 8 on the five servers in terms of wall time and data pro-
cessing bandwidth separately. Unlike FFT, LC and HE, an execution of a k-NN



94 X. Song et al.

Table 7. Performance of k-NN 2 & k-NN 6 & k-NN 8

BW (GB/s) System BW
(GB/s)

NDP/CPU SSD(s) NDP2CPU

k-NN 2 6 8 All All 2 6 8

CS NA/7.55 NA/4.15 NA/2.74 108 36 7.55 4.15 2.74

SANS 0.16/209.68 0.07/209.68 0.06/209.68 3 36 0.16 0.07 0.06

SFNS 3.58/209.68 3.78/209.68 3.96/209.68 3 36 3 3 3

ANS 5.67/209.68 2.54/209.68 1.99/209.68 108 36 5.67 2.54 1.99

FNS 128.71/209.68 136.42/209.68 142.86/209.68 108 36 108 108 108

Table 8. Energy efficiency of k-NN 2 & k-NN 6 & k-NN 8

NDP (Watt) Server only

(Watt)

Energy consumption

(Joule)

Energy efficiency

(MB/Joule)

Active Idle

KNN 2 6 8 All All 2 6 8 2 6 8

CS 0 0 0 613.70 30.33 10568 19227 29120 12.60 6.92 4.57

ANS 207.50 207.50 207.50 613.70 30.33 5815.10 12541 15916 22.89 10.61 8.36

FNS 420.53 429.85 431.87 613.70 30.33 817.06 803.46 782.29 162.93 165.68 170.17

application on an NDP server (i.e., ANS or FNS) involves both host CPUs and
NDPEs. There are two steps in an execution of a k-NN application. While the
first step (i.e., computing n squared Euclidean distances between the query point
q and the n reference points of the set S ) is performed in NDPEs, the second
step (i.e., sorting the n distances while preserving their original indices specified
in S ) is carried out in host CPUs. Note that in the first step distance calcula-
tions can be performed in parallel as there is no data dependency among the
distances. While the values in the “NDP” column show the performance of step 1
in NDP engines, the values in the “CPU” column demonstrate the performance
of step 2 in host CPUs (see Table 7). The only difference among the three k-NN
applications is the number of features used for the distance calculation in step1.

Energy efficiency and Cost/performance ratio of the three k-NN appli-
cations are summarized in Tables 8 and 9.

5.3 Impact of NDP on Data Center Applications

Figure 6 summarizes experimental results from Tables 3, 4, 5, 6, 7, 8 and 9. A
quantitative comparison between CS and the two NDP servers (i.e., ANS and
FNS) is also given in Table 10. Based on Fig. 6 and Table 10, several new findings
on the impact of NDP on data center applications can be obtained.

Table 10 shows that in terms of performance ANS outperforms CS by 2.23×
and 1.38× for LC and HE, respectively. Finding 1: For data-intensive but
compute-light applications, ANS can provide performance benefits by offloading
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Table 9. Cost/performance ratios of three k-NNs

System Cost ($) Cost/Performance ($/(MB/s))

k-NN 2 6 8 2 6 8

CS 7,086 7,086 7,086 0.92 1.67 2.53

ANS 7,266 7,266 7,266 1.25 2.79 3.57

FNS 7,591 7,968 8,390 0.07 0.07 0.08

Table 10. Comparisons among the three servers in three metrics.

Comparison with CS LC HE k-NN 2 k-NN 6 k-NN 8 FFT

ANS Performance 2.23x 1.38x 0.75x 0.61x 0.73x 0.55x

Energy efficiency 5.49x 5.59x 1.81x 1.53x 1.83x 1.42x

Cost/performance ratio 2.11x 1.30x 0.74x 0.60x 0.71x 0.50x

FNS Performance 2.78x 1.38x 14.30x 26.02x 39.42x 26.45x

Energy efficiency 3.6x 3.44x 12.93x 23.94x 37.23x 54.16x

Cost/performance ratio 2.71x 0.70x 13.14x 23.86x 31.63x 15.46x

computation from host CPUs to NDP engines that are close to data. The per-
formance benefits stem from ANS’ capability of exploiting the full bandwidth of
the SSD array, and thus, avoiding the data transfer bottleneck on the path from
the PCIe switch to host CPU DRAM (see Fig. 1a). Table 10 also shows that ANS
is inferior to CS in terms of performance for k-NN 2 (0.75x), k-NN 6 (0.61x),
k-NN 8 (0.73x), and FFT (0.55x), which all have a data processing complex-
ity higher than that of LC and HE. Finding 2: ANS cannot benefit compute-
intensive applications in terms of performance. Although offloading computation
to near-data processing engines enables ANS to enjoy the high data throughput
bandwidth of the SSD array, for compute-intensive applications these benefits
cannot offset the significant discrepancy in computational capacity between a
1.1 GHz embedded processor and a 3.0 GHz Xeon CPU. The trend shown in
Finding 1 and Finding 2 can also be observed in Fig. 6.

Can a compute-intensive application also enjoy the benefits of NDP? The
answer is yes, which is confirmed by the Performance row of FNS in Table 10.
Finding 3: FNS can offer performance benefits not only for data-intensive appli-
cations but also for compute-intensive applications. The FPGA’s hardware-level
acceleration capability in FNS remedies the weakness of an embedded processor
in ANS. This advantage of FNS and the benefits brought by NDP (i.e., fully
exploiting the high data throughput of the SSD array, and thus, reducing data
movement) together explain this finding. The performance benefits cannot be
gained by simply putting data processing engines at the host CPU side because
data transfer from the PCIe switch to host CPU could become a system perfor-
mance bottleneck if doing so (see NDP BW 142.86 GB/s and NDP2CPU BW
36 GB/s of k-NN 8 in Table 7).
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Fig. 6. Comparisons among the three servers in three metrics.

From Table 10, we obtain the following findings. Finding 4: FNS offers more
benefits in terms of performance and energy efficiency for applications with a
higher data-processing complexity, which is contrary to ANS. Finding 5: Com-
pared with CS both ANS and FNS can deliver a higher energy efficiency for all
six applications. The reason is that host CPUs are not energy efficient in nature.
Offloading more computational load to an NDP engine not only relieves the
computational burden of host CPU but also reduces the data movement, which
can better improve energy efficiency of the entire system. Table 10 shows that
ANS can provide a better cost/performance ratio for LC and HE only compared
with CS. For the rest four applications, it offers a worse cost/performance ratio.
However, FNS can improve cost/performance ratio for all applications except
HE. This is because HE consumes too many LUTs (see Table 6). Finding 6:
FNS can improve cost/performance ratio for a diverse range of data center appli-
cations, whereas ANS can do so only for some compute-light applications. The
conclusion is that FNS is better than ANS in terms of cost-effectiveness.
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6 Conclusions

In this paper, we first propose a new NDP server architecture for data cen-
ter applications. The goal of the new architecture is to benefit a wide range
of data center applications from data-intensive to compute-intensive. Next, we
implement two single-engine NDP server prototypes. Finally, we evaluate six typ-
ical data center applications on a conventional data center server and the two
prototypes. Based on our experimental results, several new findings have been
obtained. These findings answer some open questions about how NDP impacts
data center applications. Now we understand that a compute-intensive applica-
tion can also benefit from NDP in the three metrics when FPGA-based NDP
engines are employed. In addition, we find that compared with an ARM-based
NDP engine an FPGA-based NDP engine is more capable of benefiting a wide
range of data center applications. Currently, the main merit of an ARM-based
NDP engine is to improve energy efficiency and reduce cost/performance ratio
for some data-intensive but compute-light applications. For most applications,
an FPGA-based NDP engine is superior to an ARM-based NDP engine, and
thus, it should be considered first when NDP is applied to a data center server.
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Abstract. This work compares the two major paradigms for doing in
situ visualization: in-line, where the simulation and visualization share
the same resources, and in-transit, where simulation and visualization
are given dedicated resources. Our runs vary many parameters, including
simulation cycle time, visualization frequency, and dedicated resources,
to study how tradeoffs change over configuration. In particular, we con-
sider simulations as large as 1,024 nodes (16,384 cores) and dedicated
visualization resources with as many as 512 nodes (8,192 cores). We
draw conclusions about when each paradigm is superior, such as in-line
being superior when the simulation cycle time is very fast. Surprisingly,
we also find that in-transit can minimize the total resources consumed
for some configurations, since it can cause the visualization routines to
require fewer overall resources when they run at lower concurrency. For
example, one of our scenarios finds that allocating 25% more resources
for visualization allows the simulation to run 61% faster than its in-line
comparator. Finally, we explore various models for quantifying the cost
for each paradigm, and consider transition points when one paradigm
is superior to the other. Our contributions inform design decisions for
simulation scientists when performing in situ visualization.

1 Introduction

The processing paradigm for visualizing simulation data has traditionally been
post hoc processing. In this mode, the simulation writes data to disk, and, at a
later time, a visualization program will read this data and perform desired anal-
yses and visualizations. However, this mode is severely handicapped on today’s
HPC systems, as computational capabilities are increasingly outpacing I/O capa-
bilities [3,11].
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To alleviate this pressure on the I/O systems, in situ processing methods [8]
are now being used for analysis and visualization of simulation data while it is
still in memory, i.e., before reaching disk. In situ methods are varied, but in
broad terms can be placed in two categories: in-line in situ and in-transit in situ.

In the in-line in situ paradigm (sometimes also referred to as tightly coupled
in situ), the simulation and the visualization will directly share the same set
of resources. In this paradigm, generally speaking, the simulation will compute
a specified number of cycle iterations and then pause while the visualizations
are performed. Once the visualizations have been computed, the simulation will
continue on to the next time step. In the in-transit in situ paradigm (sometimes
also referred to as loosely coupled in situ), the simulation and visualization
use separate resources. In this paradigm, the simulation will compute a specified
number of cycle iterations and then transfer the simulation data over the network
to the dedicated visualization resources. Once this transfer is completed, the
simulation runs concurrently to the visualization tasks being performed.

Both paradigms have been applied successfully for real HPC applications. In
a typical application, any publication evaluating in situ processing will generally
include only anecdotal information that shows the simulation benefited from
in situ processing, perhaps including comparisons with the post hoc paradigm.
However, there has been substantially less research dedicated to how these two
paradigms directly compare. As a result, it is difficult to understand which
paradigm to use for a particular situation. A thorough comparison requires con-
sideration of many different axes [17], e.g., execution time, cost, ease of inte-
gration, fault tolerance, etc. In this work, we focus our scope to execution time
and cost. The goal of this work is to understand the performance of these two
paradigms for a number of simulation configurations.

Our hypothesis entering this work was that both paradigms (in-transit and
in-line) are useful, i.e., some workloads favor one paradigm with respect to execu-
tion time and cost, and other workloads favor the other, and a major contribution
of this work is confirmation for that hypothesis. In particular, we have found that
visualization workloads are different than the more general analysis workloads
that have been studied previously, and so the best approaches for visualization
differ. Specifically, we find that the rendering operation inherent to visualization
has parallel coordination costs, which makes in-transit more competitive in com-
parison to analysis-centric workloads, since in-transit will often run with fewer
nodes and so the coordination costs are reduced. Further contributions of this
work include additional analysis of when to choose which processing paradigm
and why, with respect both to time to solution and to resources used.

2 Related Work

While the constraints of the I/O systems in current HPC systems have made in
situ visualization an important topic, many of the central ideas go back to the
early years of computing. Bauer et al. [8] provide a detailed survey of the history
of in situ visualization.
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Over the years, a number of infrastructures for doing in situ visualization have
been widely used. SCIRun [23] is a problem solving environment that allowed
for in situ visualization and steering of computations. Cactus [16] provides a
framework to assist in building simulation codes with plug-ins that can per-
form tasks such as in situ visualization. LibSim [26] is a library that allows
simulations to use the full set of features of the VisIt [10] visualization tool
for in situ exploration, extraction, analysis and visualization. ParaView Cata-
lyst [6] offers a similar in situ functionality for the ParaView [4] visualization tool.
ADIOS [19] is an I/O middleware library that exposes both in-line and in-transit
paradigms to a simulation through a POSIX-like API. Its in-transit capabilities
are provided by a number of different data transport methods, including DataS-
paces [13], DIMES [27], and FlexPath [12]. Damaris/Viz [14] provides both in-
line and in-transit visualization using the Damaris I/O middleware. Ascent [18]
is a fly-weight in situ infrastructure that supports both distributed-memory and
shared-memory parallelism. SENSEI [5] is a generic data interface that allows
transparent use of the LibSim, Catalyst, and ADIOS in situ frameworks.

Several large studies have been done on using in situ methods in HPC simu-
lations. Bennett et al. [9] use both in-line and in-transit techniques for analysis
and visualization of a turbulent combustion code. Ayachit et al. [7] performed a
study of the overheads associate with using the generic SENSEI data interface
to perform in situ visualization using both in-line and in-transit methods. These
and other studies are focused on the particular methods chosen for in situ visu-
alization. They do not do a comparison between in-line and in-transit methods,
nor discuss the tradeoffs associated with each.

Adhinarayanan et al. [2] on the other hand look at characterizing in-line in
situ vs. post-hoc processing from the energy usage point of view. Their goal was
to see if in-line in situ was more energy efficient for a simulation vs. post-hoc
processing. Similarly, Gamell et al. [15] look at energy usage vs. performance for
an in-line in situ analytics pipeline, and explore ways of reducing the energy usage
with in situ processing. Rodero et al. [25] use the same concept and expand it to
look at different configurations of simulation and visualization nodes to reduce
energy usage.

Our work takes a different view than any of these works. First, we focus
specifically on in situ visualization pipelines, which tend to have different com-
munication and computation scaling curves than a full scale simulation. Second,
we focus specifically on in-line in situ vs. in-transit in situ, and look specifically
at visualization frequency, resource requirements, and how different combina-
tions of all of these factors impact the bottom line of simulation scientists in
terms of compute time used for visualization pipelines.

The closest comparator to our own work comes from Oldfield et al. [22]. Their
work also considered in-line and in-transit in situ. However, their work was pri-
marily focused on analysis use cases, where our work is focused on scientific
visualization use cases. This difference is essential, because scientific visualiza-
tion use cases involve rendering which requires parallel image compositing. This
image compositing can become a bottleneck at large scale. This bottleneck is
particularly relevant to this problem because the in-line approach operates with
higher concurrency and thus suffers a bigger delay, while the in-transit approach
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performs image compositing at lower concurrence and thus less delay. As a result,
our findings differ than those of Oldfield et al., specifically that in transit is
superior for a much higher percentage of workloads than Olfield’s analysis-based
study. We also consider a wider array of factors, including varying the number
in-transit resources, the simulation cycle time, and perform additional evaluation
by including a total cost model.

3 Experimental Overview

In evaluating the characteristics of the in-transit and in-line in situ paradigms,
we hypothesize that there are particular configurations for the simulation and
analysis such that one paradigm outperforms the other. This includes both per-
formance metrics under consideration in this work: execution time and resource
cost. One intuition is that in-transit in situ has a chance to execute the analysis
algorithms using fewer overall cycles, since it will use lower node counts and
suffer less busywaiting from bottlenecks. This potential benefit, however, must
offset the cost of allocating extra nodes, as well as transferring data from the
simulation. To test our hypothesis, we designed a set of experiments to study
the behaviors of both paradigms.

For this study, we use CloverLeaf3D [1,20], a hydrodynamics proxy-
application that solves the compressible Euler equations. Cloverleaf3D spatially
decomposes the data uniformly across distributed memory processes, where each
process computes a spatial subset of the problem domain; it does not overlap
communication with computation. To couple CloverLeaf3D with both in-transit
and in-line in situ, we leveraged the existing integration with Ascent [18]. For in-
transit visualization, Ascent’s link to the Adaptable I/O System (ADIOS) [19]
was used to transport data, and then the distributed memory component of
VTK-m [21] was used to perform the visualization tasks. For in-line visualiza-
tion, Ascent applied the distributed memory component of VTK-m directly. As
a result, the same visualization code was being called on the same data sets in
both settings, with the only differences being (1) whether Ascent used ADIOS
to transport the data and (2) the number of nodes dedicated to visualization.

Visualization Tasks: The visualization tasks performed were isocontouring and
parallel rendering. These tasks were chosen because they are widely used in sci-
entific visualization, and parallel rendering is a communication-heavy algorithm
that allowed testing of the performance bottleneck hypothesis. After each sim-
ulation time step, isocontours of the energy variable were computed at values
of 33% and 67% between the minimum and maximum value for each time step.
Since energy is a cell-centered quantity in CloverLeaf3D, the variable had to
be re-centered, i.e., cell values surrounding each point were averaged. After the
isocontours are computed, the geometry is rendered to an image using a parallel
rendering algorithm. As we are operating in a distributed memory environment,
each MPI process locally rendered the data it contained, then all of the locally
rendered images were composited using radix-k.
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In-line Visualization Setup: In-line visualization is accomplished via Ascent.
Ascent’s main visualization capability is effectively as a distributed memory
version of VTK-m. The visualization is described through a set of actions. Ascent
combines these actions into a data flow graph, then executes the graph. The
in-line setup is illustrated in Fig. 1a. Again, for this case, the simulation and
visualization share the same resources.

(a) Representation of the in-line visual-
ization used as part of this study. With
this mode, the simulation and visual-
ization alternate in execution, sharing
the same resources.

(b) Representation of the in-transit visual-
ization used as part of this study. With this
mode, the simulation and visualization oper-
ate asynchronously, and each have their own
dedicated resources.

Fig. 1. Comparison of the two workflow types used in this study.

In-transit Visualization Setup: In-transit visualization is accomplished via
Ascent’s link with ADIOS. ADIOS is only used in the in-transit case because the
data needs to be moved off node before visualization can take place, whereas visu-
alization is done in place in the in-line case. ADIOS supports memory-to-memory
data transports between processes or applications. I.e., it supports transporting
data in a memory space of one application to the memory space of another. For
this study, we used the DIMES data transport method. In the DIMES data trans-
port method, the writing process transports the data asynchronously over the
remote direct memory access network (RDMA) to the reading process. Addition-
ally, DIMES requires the use of metadata servers to hold indexing information
for the reading processes. The in-transit setup is shown in Fig. 1b. Here, a ded-
icated set of resources are used for the visualization. After the simulation has
computed a time step, the data are transferred over the network to the visual-
ization resources where visualization is performed asynchronously. Comparisons
between these two methods are presented in Sect. 4. Because the two paradigms
use different numbers of resources, we use two evaluation metrics to make a fair
comparison. The first, time to solution, is discussed in Sect. 4.1, and the second,
total cost, is discussed in Sect. 4.2.

Experiments: There are several different variations of each in situ paradigm.
Examples include whether the same memory space is used for in-line in situ,
or how proximate the visualization resources are for in-transit in situ. In this
study we focus on the most common variation for each. We also consider config-
urations that directly affect in situ performance, such as simulation cycle time,
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visualization frequency, and resources dedicated to in-transit in situ. We evaluate
the implications of these configurations both in terms of total time to run the
simulation, and in terms of total resources used. We also explore the scalability
of in situ visualization in both paradigms, and the implications of visualization
performed at various levels of concurrency.

The experiments were designed to build a better understanding of the per-
formance of the in-line and in-transit in situ paradigms. To aid in the analysis
of this experiment, we ran a number of different in situ configurations:

– Sim only: Baseline simulation time with no visualization
– In-line: Simulation time with in-line visualization
– Alloc(12%): In-transit visualization allocated an additional 12% of simula-

tion resources
– Alloc(25%): In-transit visualization allocated an additional 25% of simula-

tion resources
– Alloc(50%): In-transit visualization allocated an additional 50% of simula-

tion resources

For the in-transit paradigm, predetermined percentages of simulation
resources for visualization were selected. These percentages, listed above, were
selected based off of a rule of thumb in the visualization community where 10%
of resources are traditionally devoted to visualization. We used that rule as a
starting point and used two additional higher allocations to explore a range of
options for simulation scientists. This also allows enough range to study the
right ratio of simulation and visualization resource allocations. We also initially
considered in-transit allocations that were below 10%, but due to the memory
limitations on Titan (32 GB per node), the visualization nodes ran out of mem-
ory. Because of this, we omitted these experiments from our study. In the in-line
case, visualization had access to all of the simulations resources. Finally, for all
tests, we ran each one of these configurations in a weak scaling study with con-
currency ranging between 128 and 16,384 processes, with 1283 cells per process
(268M cells to 34.4B cells).

Because CloverLeaf3d is a mini-app using a simplified physics model, the
simulation has a relatively fast cycle time. This fast cycle time is representa-
tive for some types of simulations, but we also wanted to study the implications
with simulations that have longer cycle times. To simulate these longer cycle
times, we configured CloverLeaf3D to pause after each cycle completes, using
a sleep command. This command was placed after the simulation computation,
and before any visualization calls were made. To ensure no simulation commu-
nication was done asynchronously during the sleep call or visualization routines,
the simulation tasks were synchronized before entering sleep. The three cases
used were:

– Delay(0): simulation ran with no sleep command.
– Delay(10): a 10 s sleep was called after each simulation step.
– Delay(20): a 20 s sleep was called after each simulation step.
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Fig. 2. Gantt chart showing how the simulation and visualization progress over time
(from left to right) with both in-line and in-transit in situ. In this notional example,
the data transfer for in-transit is faster than the visualization step for in-line, meaning
the in-transit simulation can advance more quickly (four cycles versus three).

Conceptually, longer cycle times benefit in-transit visualization. Figure 2
demonstrates how visualization latency is hidden in in-transit vs. in-line visu-
alization. After the data have been transferred to the visualization resources,
the simulation and visualization proceed in parallel allowing in-transit to hide
the latency of the visualization. In-line visualization cannot take advantage of
latency hiding.

Lastly, in the bulk of the experiments we fixed the visualization frequency to
once every time step. This is a common setup in codes that evolve quickly, where
skipping timesteps could cause events to be missed. By having very frequent
visualization, we can see an upper bound for how visualization will impact the
simulation. To contrast these results we did a small study with a visualization
frequency of once every three simulation cycles to see how the simulation is
impacted. This scenario, where visualizations are performed every n cycles, is
also common, and we wanted to understand how the frequency of visualization
compared in terms of time and cost.

Hardware: The experiments in this study were performed on the Titan super-
computer deployed at the Oak Ridge Leadership Compute Facility (OLCF) at
Oak Ridge National Laboratory. Titan is a Cray XK7, and is the current pro-
duction supercomputer in use at the OLCF. It contains 18,688 compute nodes
and has a peak performance of 27 petaflops. Because the mini-app we used for
our study runs on CPUs only, we restricted this study to simulations and visu-
alizations run entirely on the CPU. This also simplifies the analysis as we are
not concerned with data movement within the node (from GPU to network).

Launch Configuration: The configuration for each experiment performed is
shown in Table 1. Because CloverLeaf3D is not an OpenMP code, the in-line
in situ and the simulation only configurations were launched with 16 ranks per
node. The in-transit configurations used 4 ranks per visualization node and 4
OpenMP threads to process data blocks in parallel. Therefore, in-transit and in-
line both used 16 cores per node. In the in-transit configuration, each rank will
be assigned multiple blocks. Additionally, the in-transit configuration required
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Table 1. Resource configuration for each of the tests performed in our scaling study.

Test Sim processes 128 256 512 1024 2048 4096 8192 16384

configuration Tot. data cells 6483 8163 10243 12963 16323 20483 25923 32643

In-line Total nodes 8 16 32 64 128 256 512 1024

In-transit Vis nodes 1 2 4 8 16 32 54 128

Alloc(12%) Staging nodes 1 2 2 4 4 8 8 16

Total nodes 10 20 38 76 148 296 584 1168

In-transit Vis nodes 2 4 8 16 32 64 128 256

Alloc(25%) Staging nodes 1 2 2 4 4 8 8 16

Total nodes 11 22 42 84 164 328 648 1296

In-transit Vis nodes 4 8 16 32 64 128 256 512

Alloc(50%) Staging nodes 1 2 2 4 4 8 8 16

Total nodes 13 26 50 100 196 392 776 1552

the use of dedicated staging nodes to gather the metadata from the simulation in
order to perform RDMA memory transfers from the simulation resource to the
visualization resource. These additional resources are accounted for in Table 1.

4 Results

The objective of our experiments was to understand the performance of in
situ visualization using both in-line and in-transit paradigms and explore the
hypotheses presented in Sect. 3. Our results focus on time to solution (Sect. 4.1),
total cost (Sect. 4.2), and performance and load balancing of visualization algo-
rithms (Sect. 4.3).

4.1 Time to Solution

Figure 3 shows the total runtime for each study configuration. There are several
insights that can be drawn from Fig. 3. First, the in-line visualization opera-
tions in our study are subject to poor performance as concurrency increases
(see Sect. 4.3 for a discussion on scalability). Second, the simulation cycle has a
large impact on how many resources are required for in-transit visualization to
outperform in-line visualization. In Delay(0), where simulation cycle times are
very quick, the Alloc(50%) configuration is required for the in-transit resources to
keep up with the simulation. As the simulation cycle time increases in Delay(10)
and Delay(20), fewer visualization resources are required to out perform. In the
case of Delay(20), the performance of all the in-transit configurations are nearly
identical.

The times for each configuration are a result of the work required to perform
in situ visualization, and are different for each paradigm. In Fig. 3, the added
time for in situ visualization is indicated by the gap between the “Sim Only”
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Fig. 3. Total execution time for the three simulation configurations (Delay(0),
Delay(10), Delay(20)) using in-line visualization, and three configurations of in-transit
visualization (Alloc(12%), Alloc(25%), Alloc(50%)).

line, and the in situ configuration lines. For example, in the Delay(0) case with
16,384 processes, the sim-only time was 561 s, while the in-line time was 1, 858 s,
and increase of 1, 297 s to do visualization. This gap is a result of the simulation
stalling for the visualization. For in-line visualization, the simulation will stall
until the visualization operations are complete, at which point the simulation
will continue with the next time step. For in-transit visualization, the simulation
is stalled while the data are transferred to the visualization resources. Once the
transfer is complete, the simulation will continue with the next time step, and
the visualization will be performed concurrently on the dedicated resources (see
Fig. 2). In-transit visualization is also subject to second type of stall, which can
occur when the time to complete the visualization tasks exceeds the cycle time
of the simulation. We permit such stalls to occur in our experiments. An alterna-
tive would have been to only begin visualization tasks if resources are available
(i.e., drop time slices of data). We felt permitting stalls showed more interesting
behavior, as the result from dropping time slices is approximately the same as
increasing the simulation cycle time—which we cover in other experiments.

For in-line visualization, the simulation stall is the direct cost of the visu-
alization operations. The amount of simulation stall increases with the level of
concurrency, and is a result of a drop in the scalability of the visualization opera-
tions. This effect can be seen at higher level of concurrency, and will be discussed
later in Sect. 4.3.
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Fig. 4. Boxplot of the time it took to write data from the simulation to the staging
resource at each step during the simulation. Results are shown for the three simulation
configurations of in-transit visualization. This chart demonstrates the extent to which
in-transit visualization slowed down the simulation. The lower the staging time, the
less time it took the simulation to write data and continue on to the next cycle. Note
that the majority of the time to stage data is due to the simulation being stalled while
waiting for the visualization resources to free up (Delay(0) case), and in general staging
the data is a quick operation (Delay(20) case).

For in-transit visualization, the simulation stalling in Fig. 3 is more compli-
cated. In these cases, the simulation is stalled by the data transfer time, and
in some cases, while waiting for the visualization processes to catch up. For
example, in the in-transit Delay(0) Alloc(25%) case in Fig. 3, there is a rise in
time between 1024 and 8192 processes. Figure 4 shows the range of data trans-
fer times over all time steps in the simulation. Larger boxes in Fig. 4 indicates
longer data transfer times which corresponds to the stalling described above.
There is a correspondence between the stall times in Fig. 4, and the total times
in Fig. 3. For example, looking at concurrency of 1024, 2048, 4096 and 8192 for
Delay(0) Alloc(25%) cases in Figs. 3 and 4 shows the increase in time is due
to stalling. As the simulation cycle time increases in Delay(10) and Delay(20),
and the visualization has more time to keep up with the simulation, the stalling
decreases.

Figure 5 is a metric that quantifies the impact to the simulation by the visu-
alization. Given a fixed time allocation of 500 s, the graphs show how many
simulation time steps can be completed with each configuration. The case where
no visualization is performed is the high water mark for each graph.
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Fig. 5. Illustrating the cost of doing visualization. This figure plots the number of sim-
ulation cycles that could be completed in 500 s. The number of completed cycles are
shown for the three simulation configurations using in-line visualization, and three con-
figurations of in-transit visualization. This chart demonstrates that based on simulation
time and resources, the simulation can proceed further with in-transit visualization vs.
in-line visualization.

For example, a Delay(0) configuration with 16384 simulation processors can
complete 26 cycles using in-line visualization and 42 cycles using in-transit
(Alloc(25%)). This means that a 25% increase in compute power led to a
61% increase in productivity (42/26 × 100% − 100%). Similarly, Delay(0) and
Alloc(50%) yields a 100% increase in productivity (26 cycles to 52 cycles) for
50% more resources, Delay(10) and Alloc(12%) yields a 46% increase (15 cycles
to 22 cycles) for 12% more resources, and Delay(10) and Alloc(25%) yields an
80% increase (15 cycles to 27 cycles) for 25% more resources.

Figure 6 shows the total times for the Delay(0) configuration where visualiza-
tion was performed on every cycle, and every third cycle. For in-line visualization,
the reduction in total time and reduction of frequency are nearly identical at 1/3.
For the in-transit Alloc(12%) case, the reduction in total time is much more dra-
matic. When the visualization frequency is every simulation cycle, the simulation
is stalled because there are not enough resources to keep up with the simulation.
However, with a reduction in visualization frequency, the reduced allocation can
keep up with the simulation, and the total time drops dramatically.
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Fig. 6. Total execution time for the Delay(0) simulation using in-line visualization and
the Alloc(12%) in-transit visualization at two different frequencies, an image every step,
and an image every third step. This chart demonstrates the large time savings that
can be gained for in-transit visualization by reducing visualization frequency.

4.2 Total Cost

Figure 7 shows the cost of the node allocation for the selected configurations.
We define this cost simply as TotalT ime× TotalNodes. This formulation takes
into account that the in-transit method uses additional resources, allowing for
the comparison to consider all resources used. In the in-transit case, because the
simulation allocation is much larger than the visualization allocation, the costs
are much higher where more simulation stalling occurs. This can be seen in
the Delay(0) configuration, particularly for Alloc(12%) in-transit visualization.
In Delay(10) and Delay(20), we see nearly identical costs for the in-line and
in-transit Alloc(25%) and Alloc(50%) configurations up to 8192 processes. For
these cases, the extra resources pay for themselves.

The Alloc(12%) and Delay(20) configuration is notable as the cost for in-
transit becomes less than the cost for the in-line configuration at higher concur-
rency. This is a case where adding additional resources results in both a reduced
time to solution, and a reduced allocation cost.

4.3 Scalability of Visualization Algorithms

The visualization pipeline used in this study consists of two operations: isocon-
touring and parallel rendering.

The isocontouring operation for both in-line and in-transit visualization cases
selects values based on the minimum and maximum data values at each time step,
which requires global communication of extents, i.e., two doubles per process.
The cost of computing isocontours is a function of how much output geometry
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Fig. 7. Total cost in node-seconds to run the three simulation configurations using
in-line visualization and three configurations of in-transit visualization.

is produced, which is dependent on the input data. Data blocks that do not
contain the isovalues can be ignored. Workload imbalance is possible because
the amount of work to perform is not the same for each data block.

The parallel rendering algorithm consists of two stages. First, each process
renders the geometry produced by the isocontour operation, and second, these
rendered images are combined using a parallel compositing algorithm to produce
the final image. The parallel compositing algorithm requires significant commu-
nication.

Figure 8 shows the total time for rendering for simulation Delay(0) using both
in-line and in-transit paradigms. A sharp rise in rendering time occurs for in-line
visualization at levels of concurrency above 2048. As described previously, the
parallel rendering algorithm consists of two stages: rendering of data blocks, and
parallel image compositing. The performance of in-line visualization is impacted
by both stages of the parallel rendering algorithm. The input to the rendering are
the isocontours generated in the previous step of the pipeline. The data blocks
that contain more geometry will take more time to render. Likewise, the data
blocks with less geometry will take less time to render.

For in-line visualization, each process has a single data block, and all of
the processes will wait until the longest process is finished. Second, and more
impactful, the performance of the parallel compositing algorithm is a function
of the concurrency. Higher levels of concurrency require more communication,
reducing the performance [24].
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Fig. 8. Total time spent during rendering for the Delay(0) configuration of the sim-
ulation for in-line and in-transit visualization. A communication bottleneck can be
observed at high concurrency with in-line in situ as the time to perform rendering
increases dramatically.

For in-transit visualization, a different situation exists. First, each visualiza-
tion process is assigned multiple data blocks. When multiple blocks are assigned
to each process, better load balancing is more likely to naturally occur. Second,
and more impactful, the parallel compositing algorithm is run at lower concur-
rency, and so the performance is better.

Figure 9 shows a histogram of the idle times for the in-line and the Alloc(50%)
in-transit case running on the Delay(20) simulation at 16384 processors. The idle
timings provide a higher-level look at the overall performance of the visualiza-
tion operations. The idle time captures the amount of time each process spends
waiting for other processes to complete. For in-line visualization, the histogram
shape indicates significant idle time for a large number of processes. Note that
there are a couple of in-line processes with little to no idle time, they are just not
visible on this plot. On the other hand, the idle times for in-transit visualization
lie much closer to zero, indicating much better load balancing across the entire
visualization pipeline. These effects are the result of the load imbalance in iso-
countouring and rendering, and the decreased scalability in parallel compositing
that were described above.

5 Discussion

In this section we revisit the results presented in Sect. 4, and consider them
in the broader context of the tradeoffs associated with in-line and in-transit in
situ. Simulations, along with their requirements and resources, are unique. The
same simulations could have different requirements based on the type of run
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Fig. 9. Log scale histogram showing the idle time for each process during a single visu-
alization step. The data shown are from the Delay(20) simulation configuration run
on 16384 processes, using in-line, and in-transit Alloc(50%) configurations for visual-
ization. The dotted vertical lines give the mean value for both cases. This chart shows
that in-line in situ causes higher per process idle times, driving up the total simulation
time. Note that there are a couple of processes for each paradigm with no idle time,
but they are not visible on this plot.

being performed, when the results are required, and the available resources. The
major tradeoffs to consider are related to the time to solution (see Sect. 4.1) and
the cost (see Sect. 4.2). When resources are available, time to solution might be
the primary driver. Conversely, if resources are restricted, the cost might become
the primary driver.

In Sect. 5.1 we discuss a cost model for both in situ visualization paradigms
and provide some analysis that can help inform decisions. In Sect. 5.2 we discuss
factors for consideration when time to solution is a primary driver.

5.1 In-line and In-transit Cost Models

The model for the cost of in-line visualization (CV ) can be described as:

CV = (S + V )NS (1)

where S is the time to compute the simulation, V is the time to compute visu-
alization, and NS is the number of nodes used.

The model for the cost of in-transit visualization (CT ) can be described as:

CT = (S + TIN )(NS + ND) (2)
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Fig. 10. Solutions of Eq. 3 for values of TIN . A contour line of TIN = 0 is shown
representing a data transfer and in-transit stall time of 0 s. Below this line in-transit
visualization will never be viable from a cost perspective, given that any amount of
transfer time will make it cost more than in-line. The data points for each experiment
in the study are also shown, and indicate if the experiment cost more (black) or less
(white) than the comparable in-line test.

where S and NS are as defined above. TIN is the simulation stall time caused
by transferring data to visualization resources, as well as any stall from the
simulation when waiting for the visualization to complete. ND is the number of
nodes used for visualization.

The costs of in-line and in-transit visualization are equal when Eqs. 1 and 2
are equal. Setting them equal, and solving for TIN gives:

TIN =
V NS − SND

(NS + ND)
(3)

Given a simulation time (S), in-line visualization time (V ), and a particular
resource allocation (NS and ND), Eq. 3 gives the in-transit visualization data
transfer time required for the costs of both paradigms to be equal. Smaller time
values of TIN will lower the cost of in-transit visualization with respect to in-
line visualization. Conversely, larger time values of TIN will raise the cost of
in-transit visualization with respect to in-line visualization.

Figure 10 shows the solution to Eq. 3 as a function of S and V for the fixed
configurations (NS and ND) used in our study. The black line in each chart
denotes where TIN = 0 for each (S, V ) pair for Eq. 3. That is, in order for in-
transit visualization to cost less than in-line visualization, the value of TIN , must
be zero. This is not physically possible, so (S, V ) pairs below that line will always
cost more using in-transit visualization. For (S, V ) locations above the line, the
in-transit visualization time must be less or equal to the value of TIN in Eq. 3
in order for the cost to be less than in-line visualization.

Data points from our study are also shown in Fig. 10. For each configuration
(NS , ND) in our study, the experiment generates values for S, V , and TIN . Each
point indicates an (S, V ) data value, and the color of the point indicates if TIN

was less than (white) or greater than (black) the value in Eq. 3. The slope of the
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TIN = 0 contour provides an indicator of the performance requirements for in-
transit visualization. As the slope increases (and resources used rises), increased
performance is required.

5.2 In-Line and In-Transit Time to Solution

When time to solution is the primary driver, understanding the performance
characteristics of the visualization and analysis algorithms used is important.
If the algorithms scale well with respect to the number of simulation resources,
in-transit visualization is likely to be slower, since it will be bottlenecked by
both the network transfer time and the time to complete the analysis routine on
the separate smaller set of resources. That is, if the visualization and analysis
algorithms scale well, the time to perform them in-line will likely be faster than
the time it would take to transfer the data across the network. Conversely, if the
algorithm does not scale well, i.e. requires a lot of global or inter rank commu-
nication, then in-transit may be faster overall. This phenomenon of algorithms
performing poorly at scale was demonstrated in our study as the parallel ren-
dering was scaled up, as in Fig. 8. In such situations, the reduced concurrency
provided by the in-transit paradigm translates into significant time savings.

6 Conclusion and Future Directions

In this paper, we have presented a study that compares the performance of
the two major in situ paradigms: in-line and in-transit visualization. We believe
understanding tradeoffs in execution time and cost between these two paradigms
are critical for the efficient use of in situ methods to handle the growing data
problem. Without this understanding, it is difficult to make informed decisions
when designing analysis and visualization workflows. If one technique signifi-
cantly outperforms the other (in either time or cost), the community is likely to
favor that technique. Further, if the techniques have similar performance, then
other axes of consideration can be used in the decision making process.

This work provides two major contributions towards that end. First, we
present a study and analysis for both paradigms on a simulation running on
an HPC system at scale. We varied control parameters that define how each
paradigm is configured, and analyze the performance tradeoffs for each. Sec-
ond, we have explored various models for quantifying the costs of performing
visualization using each in situ paradigm.

Further, our experiments gave insight into our hypothesis presented at the
beginning of Sect. 3. First, we demonstrated that there are particular configura-
tions for the simulation and analysis such that one in situ paradigm outperforms
the other. This is a somewhat surprising result for the in-transit paradigm, as
it means that allocating additional resources for analysis can lead to not just
faster execution time for the simulation, but faster to the extent that there are
fewer cycles used even when considering the additional resources. Second, we
demonstrated that a communication heavy algorithm (parallel rendering) can
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cause bottlenecks when using an in-line paradigm at high concurrency, but by
using a lower concurrency in-transit paradigm those bottlenecks would decrease.
We further demonstrated that an in-transit paradigm can provide better load
balancing for visualization algorithms. Lastly, we provided models that quantify
the cost of in situ visualization, and identified important relationships between
the factors in each model and how they affect overall in situ cost.

In the future, we will perform follow up studies to better understand the
behavior of both paradigms under different situations. These studies will include
more visualization pipelines, different simulation codes, consider optimal num-
bers of visualization tasks to place per node in-transit, GPU’s, and variations
of both in-line and in-transit visualization that go beyond the common model.
With this work we focused on a comparison based purely on time to solution
and resource cost. There are additional factors of consideration [17] we would
like to investigate in future work as well, as they provide insight into broader
aspects when evaluating in situ visualization paradigms.
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Abstract. Due to the physical limit in connectivity between qubits in
Quantum Annealing Processors (QAPs), when sampling from a problem
formulated as an Ising graph model, it is necessary to embed the problem
onto the physical lattice of qubits. A valid mapping of the problem nodes
into qubits often requires qubit chains to ensure connectivity.

We introduce the concept of layout-awareness for embedding ; wherein
information about the layout of the input and target graphs is used to
guide the allocation of qubits to each problem node. We then evaluate
the consequent impact on the sampling distribution obtained from D-
Wave’s QAP, and provide a set of tools to assist developers in targeting
QAP architectures using layout-awareness. We quantify the results from
a layout-agnostic and a layout-aware embedding algorithm on (a) the
success rate and time at finding valid embeddings, (b) the metrics of the
resulting chains and interactions, and (c) the energy profile of the anneal-
ing samples. The latter results are obtained by running experiments on
a D-Wave Quantum Annealer, and are directly related to the ability of
the device to solve complex problems.

Our technique effectively reduces the search space, which improves
the time and success rate of the embedding algorithm and/or finds map-
pings that result in lower energy samples from the QAP. Together, these
contributions are an important step towards an understanding of how
near-future Computer-Aided Design (CAD) tools can work in concert
with quantum computing technologies to solve previously intractable
problems.

Keywords: Quantum annealing · Minor-embedding · QUBO

1 Introduction

As quantum computing technologies evolve, Quantum Annealing Processors
(QAPs) have emerged as a promising path for the use of quantum effects to solve
the minimization of Quadratic Unconstrained Binary Optimization (QUBO)
problems. Commercial implementations of QAPs, such as those from D-Wave,
have been made available for almost a decade [19]. With recent open access for
the general public [14], this technology is now in reach of the masses, allowing
its impact to be felt broadly. Central to the use of QAPs is the formulation of
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QUBO or Ising Spin Glass (ISG) graphical models for NP problems [20,27,32].
These problems must then be mapped to qubits available on the QAP lattice,
and repeatedly put through quantum annealing to collect samples that minimize
the total energy of the ISG formulation; or Ising model. This mapping step, or
minor-embedding, typically requires the use of extra qubits solely to provide
connections between qubits which are otherwise not coupled in the architec-
ture, leading to “qubit chains”. Besides wasting qubits which could otherwise be
used for computation, long chains can lead to annealing solutions that poorly
approximate the optimum solution to the original problem being solved.

The limited connectivity between qubits in the QAP, as well as the presence of
defective qubits which must be avoided, makes this mapping problem difficult,
and has been shown to be NP-Hard [11]. Yet, finding a good solution to the
problem is vital for at least two reasons: (a) the capabilities of the mapping
algorithm can determine the size (or complexity) of the problems that can be
solved, especially in the presence of defective qubits, and (b) the quality (energy
levels) of the annealing samples depends on the structure of the mapping. We
anticipate that future QAP architectures will achieve several improvements over
the current generation [23], e.g. number of qubits, higher connectivity, lower
parameter noise, and more control on the annealing schedule (required for fair
sampling [24,28]); but will continue to require the step of minor-embedding due
to the graph’s connectivity not being complete [10,13].

Degradation effects from qubit chains on the overall performance of quantum
annealing has been the focus of previous studies [17,30,39,44]. In this paper, we
extend the study beyond the effects seen for artificial qubit chains, and consider
real problems to better understand the impact of long chains, and more generally,
to understand the capabilities of the algorithm used for minor-embedding. We
then use these findings to develop a new algorithm that takes advantage of layout
information available in many optimization problems, but also attainable for any
Ising model. To ensure our results are meaningful, energy results are gathered
on a D-Wave 2000Q with 2038 operating qubits. The topology of the qubits in
this machine is a 16 × 16 Chimera graph [10] with 8 nodes per tile as in Fig. 1.

The potential impact of this work is two-fold. First, the data presented here
will motivate future development into minor-embedding algorithms, and will
provide important resources and tools to guide future investigation in this area.
For quantum annealing technologies to continue to advance as a feasible approach
for quantum computing, work in this area is critical. Second, and more generally,
this work is a step towards goals set forth for near-future Computer-Aided Design
(CAD) tools for Noisy Intermediate-Scale Quantum (NISQ) technologies [36].
We expect that, in the long term, minor-embedding algorithms will be as critical
to computing as placement algorithms are to VLSI design today.

This paper is organized as follows. Section 2 first presents background related
to QAPs and minor-embedding. Section 3 then motivates and introduces the
concept of layout-awareness for minor-embedding, with layout-aware embedding
methods detailed in Sect. 4. Finally, in Sect. 5 we evaluate our work with real-world
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problems in terms of the ability of the algorithm to find valid embeddings and the
energies of the samples from those embeddings.

2 Background

2.1 Quantum Annealing

Programming D-Wave’s QAP requires the description of a problem as the min-
imization of the dimensionless energy of an Ising graph model, as in (1); with
N variables (nodes), si ∈ {−1,+1}, describing the ith site’s spin; and parame-
ters hi and Jij for the local longitudinal magnetic fields (bias) and the coupling
between sites (edge weights), respectively. D-Wave’s device samples from low
energy spin configurations s = {s1, s2, ..., sN} of the Ising model through Quan-
tum Annealing (QA) [19].

E(s) =
N∑

i=1

hisi +
∑

i<j

Jijsisj (1)

In QA, the initial and problem Hamiltonians, ĤI and ĤP , describe the system
according to the time-dependent Ĥ(t) in (2); with annealing time T , t ∈ [0, T ],
and Pauli1 operators σ̂

(i)
α acting on qubit i. At any point in time the system

is relaxing towards the lowest-energy states or eigenvectors |s1s2...sN 〉 with the
smallest eigenvalues of Ĥ(t). Solving for the lowest-energy state, or ground state,
of ĤP is the same as finding the arg mins of the energy function (1).

Ĥ(t) =

ĤI︷ ︸︸ ︷

−1

2

N∑

i=1

Δi(t)σ̂
(i)
x +

1

2
E(t)ĤP

ĤP =
N∑

i=1

hiσ̂
(i)
z +

∑

i<j

Jij σ̂
(i)
z σ̂(j)

z

(2)

QA is achieved through the gradual introduction of ĤP , and the reliance on
the adiabatic theorem which implies that the system will remain in its ground
state, or the lowest energy configuration, throughout the anneal. Initially, ĤI is
programmed to dominate the system by setting a high transverse energy for all
qubits using Δi(t), while scaling down the longitudinal energies hi using E(t);
Δi(0) � E(0) ≈ 0. The process runs until E(T ) � Δi(T ) ≈ 0, at which point,
the state of the system is governed by ĤP . With this, the new ground state of
the system encodes a solution to the optimization problem. Our experiments
use D-Wave’s default annealing schedule with time T = 20µs per sample. The
correct setting of the anneal schedule, given by the energy scales E(t) and Δi(t),
affects the likelihood of obtaining the lowest energy. Having a very fast schedule

1 With σ̂x = (0 1
1 0); σ̂y = (0 −i

i 0 ); σ̂z = (1 0
0 −1); σ̂

(i)
α =

i−1︷ ︸︸ ︷
I ⊗ ... ⊗ I ⊗σ̂α

N−i︷ ︸︸ ︷
⊗I ⊗ ... ⊗ I.
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might cause the system to leave the ground state set with ĤI and “jump” to
an excited state during the anneal. This jumps are made easier if the minimum
energy gap between the ground and first excited states is smaller [30]. The finite
temperature operation of QAPs allows those “jumps”, and therefore contribute
to the indeterminism and non-optimality of the distribution of results.

2.2 Minor-Embedding

The limited connectivity of the QAP means a straightforward one-to-one map-
ping, from variables to qubits, is not likely to lead to a successful implementation,
and may require the use of qubit chains. A chain is an extension of a problem ver-
tex over multiple connected qubits. Mapping of the problem graph G = {P,E},
with nodes P and edges E, to the Chimera graph H = {Q,C}, with qubits Q
and couplers C, can be formulated as a minor-embedding problem [11].

Definition. A graph G is a minor of H if G is isomorphic to a graph obtained
from a subgraph of H by successively contracting edges.

Therefore, a QAP samples from the energy function in (3), which differs
from the source formulation (1) in that qubit chains and split qubit interactions
are put in place to have the formulation match the QAP’s topology. A qubit
chain of length λi is given by Qi = {s

(k)
i |k ∈ [1, λi]}, with s

(k)
i being the kth

physical qubit mapped to the ith variable si. The number of interactions is the
connectivity κij between chains Qi and Qj ; also interpretable as the size of the
cut-set {(k, l) ∈ C|k ∈ Qi, l ∈ Qj}. Chains are connected using a ferromagnetic
coupling JFM = 1.0; also called chain strength.

Long chains are detrimental to the QA algorithm. Samples from a QAP
may return results with “broken chains”, which are mismatched physical qubits
for the same variable. The chain break method of choice, to determine the
sample value of i from a broken chain, is the majority vote with random
tiebreaker [1,4,37]; si = sign

( ∑λi

k s
(k)
i

)
. Having larger λi and κij may also

increase the resolution required for the parameters to represent the problem,
which is undesirable [12].

Eemb(s) =
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i

λi∑

k

hi

λi
s
(k)
i +
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λi∑

k

λj∑

l

Jij

κij
s
(k)
i s

(l)
j − JFM

N∑

i

∑

k<l

s
(k)
i s

(l)
i (3)

The dimension, topology, and connectivity of the target graph grows with
new generations of physical annealing machines and, due to manufacturing lim-
itations, some qubits in the QAP graph may not be functional. Therefore, the
problem should consider both G and H as inputs.

There are two common approaches for minor-embedding described in previ-
ous QAP applications. Some approaches use systematic methods that are specific
to their Ising model formulation [1,20,47]. Others, more often, rely on running
the heuristic provided by D-Wave [11] for multiple iterations and selecting the
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“best” embedding in that batch [16,18,22,34,45,48]. The “best” embedding is
the one with the lowest qubit count, and/or lowest maximum chain length. This
ambiguity in the preferred metrics is witnessed specially when choosing embed-
dings for fully-connected graphs [2,4,26,31].

(a) Layout-Agnostic [11]
Total: 648. Max Chain: 7.
Avg Chain±Stdev:
2.53±1.34.

(b) Layout-Aware Disperse
Total: 553. Max Chain: 4.
Avg Chain±Stdev:
2.16±0.76.

(c) Layout-Aware Combined
Total: 529. Max Chain: 4.
Avg Chain±Stdev:
2.07±0.86.

Fig. 1. Qualitative and quantitative comparison between embedding methods. (Color
figure online)

3 Layout-Awareness

The adjacency of graph G, which is the user’s input to the embedding algo-
rithm, represents the problem to be solved. For many problems, nodes in the
problem graph may have natural “location information” that can be deduced
by understanding how the graph is created from the problem instance; or arti-
ficially generated using graph drawing heuristics. Existing embedding heuristics
are based only on the immediate adjacency when mapping each problem node
to qubits. In our approach, we use the location information to help guide the
mapping heuristics.

In this section, we motivate our work by showing that the inclusion of this
location information in embedding algorithms, which we refer to as layout-
awareness, can have a significant effect on the characteristics of the resulting
mapping and, as a result, on the energy profile produced by a QAP sampling
from that mapping.

To show this, in this section we focus on a single test case: a 16 × 16 two-
dimensional grid with all biases hi set to 0, and all Ji,j set to a random value from
a uniform distribution inside the range (−1, 1). Presenting results for a test case
such as this provides insight into the relationship between layout, embedding
metrics, and energy. In Sect. 5 we consider more complex test cases to under-
stand how well our approach solves real-world problems; i.e. irregular non-planar
graphs with higher density and connectivity.
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We use three embedding algorithms to characterize layout-awareness. The
first we refer to as Layout-Agnostic; this is the default algorithm used in the
commercial D-Wave programming flow [11,15]. The second and third, which we
refer to as Disperse and Combined respectively, use layout information to guide
the embedding heuristic. These algorithms are described in detail in the next
section, but results are presented here to motivate our approach. We make use of
spatial layout information to either initiate the search of qubit assignments from
candidate regions of the target graph, in the Disperse method; or to produce an
initial placement that is further optimized using the heuristic in [11] to generate
a valid embedding, in the Combined method.

To represent each method, we ran each algorithm 10 times, each with a dif-
ferent seed, producing 10 embeddings of our 16 × 16 grid for each algorithm.
The mappings in Fig. 1 are the ones found with the lowest qubit count from the
sets of 10. Qualitatively, layout-awareness can be observed in the chains plot-
ted in Fig. 1, where each colour represents a node in the input problem. The
Agnostic method results in a congested, irregular mapping of the otherwise reg-
ular structure of the grid. The Disperse method, using each tile (8 qubits) in
the 16 × 16 Chimera graph as a candidate set for each problem node, preserves
layout information while also avoiding disabled qubits, and yields an embedding
that is more “spread out” in favour of consistent spacing and reduced conges-
tion during routing. The Combined method preserves some of the regularity of
the grid, while also generating a more concentrated use of qubits in the target
graph. Quantitatively, the layout-agnostic approach results in higher values for
all observed metrics, i.e. total number of qubits, maximum chain length, and
standard deviation; while both layout-aware methods deliver results that take
advantage of the regular planar layout of the 2D grid, both having a lower max-
imum chain length. Moreover, the Combined approach is able to minimize the
total number of qubits, compared to the Disperse result, which, in turn, mini-
mizes deviation in the results. These results suggest that the choice of algorithm
can significantly impact the chain length metrics in the resulting embeddings
and that the guidance given by layout-awareness is a useful addition to minor-
embedding heuristics. Our experiments can be reproduced using our open source
tools [35].

We now relate the embedding metrics to the energies of the samples obtained
from the D-Wave machine. To gather these results, we collected 10000 samples
for each of the 30 different embeddings described in this section. All experiments
were run on the same D-Wave 2000Q machine available through D-Wave’s online
service [14]. The energy values correspond to the “unembedded” Ising model [12],
after resolving broken chains. We use the median for energy, not the mean,
because the results from each run (10000 samples) are skewed and not normally
distributed [41]; which makes quantiles a more meaningful choice of metric. Each
plot in Fig. 2 shows results for all 30 embeddings. For each embedding, we mea-
sured maximum and average chain length λi, and maximum interactions κij ,
against the minimum and median of the energies sampled from the QAP, and
plotted one point in each graph. The plots for minimum energy also include a
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. D-Wave energy statistics from 10000 Samples for 10 16 × 16 2D grid embeddings
using three different methods. The x position for each dot is an embedding metric, while
the y position is either median or minimum energy of the results for each of the 10000
samples. The dotted lines represent the averages across the 10 embeddings. The dotted
black line is the solution found classically using tabu search. Note that presenting
results in terms of minimum and median energy is different from previous work where
the results are fit to an expected Boltzmann distribution [25]; we do not have enough
data to be confident that any particular distribution is appropriate.
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solution, of the original problem, found classically using tabu search and allowed
an indiscriminately long processing time. As can be seen in the graphs, the best
results, that is, those with lower energy values, were found by the layout-aware
methods. We attribute this observation to the fact that, for this example, the
layout-aware methods minimize the maximum and average chain length, which
in turn, leads to lower energy solutions. This highlights the role layout-awareness
can play in obtaining results optimized towards those goals.

4 Layout-Aware Embedding Methods

We propose a 2-stage minor-embedding algorithm using layout-aware global
placement and detailed routing. During the first stage, each node p ∈ P is
matched with a set of candidate qubits Qp ⊂ Q. For D-Wave’s 2000Q QAP, we
chose the tiles (8 qubits in tile j, k) of the Chimera2 graph as candidate bins.
Then, a routing algorithm for each node finds a qubit, or chain of qubits, guided
by the initial candidate assignment. We explore two alternative routing methods,
both based on negotiated congestion. The first method is the Disperse router,
detailed in Sect. 4.3, while the second method in Sect. 4.4 is based on [11].

4.1 Global Placement

The global placement stage uses each node’s location in the problem layout
(xp, yp) and the grid size of the target Chimera (N,M), to superpose a stretched
out geometry (x′

p, y
′
p) of the problem on top of the Chimera tiles grid. The qubits

in tile (jp, kp) are the candidates for node p; jp = �x′
p� and kp = �y′

p�. Although a
routing guided by this initial placement may result in a valid solution, stretching
will lead to long chains connecting distant nodes, as seen in Fig. 1b. Usually,
downscaling the superposed layout is enough to meet a target concentration
(dj,k = Pj,k

Sj,k
), given as the number of problem nodes mapped to a tile Pj,k, over

that tile’s supply of functional qubits Sj,k; the latter is to account for qubit yield.
A down-scaled candidate assignment for a graph layout is shown in Fig. 3a. The
input problem graph is the Ising model of the layout in the inset; see Sect. 5.1
for details. In that Figure, different colors correspond to qubits in the same tile
occupied by different nodes; overlapping candidates are allowed.

At this stage, we can transform the initial placement to meet two objectives:
(1) spread nodes out of overpopulated regions (diffusion) to ensure that the
demand for each tile Pj,k does not exceed the supply Sj,k; and (2) migrate nodes
from sparsely populated regions into denser regions (compaction) in order to
improve resource utilization. We propose a diffusion-based migration algorithm
targeting those objectives. A diffusion-based method is appealing because it
is O(|P|); |P| being the size of the input problem. Layout-aware algorithms,
however, are not constrained to the use of this method for layout transformations.

2 We also developed a flow for future QAP architectures, such as Pegasus [8], but
Pegasus machines have not been made available for public usage.
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Fig. 3. Layout-aware embedding flow. (Color figure online)

4.2 Diffusion-Based Migration

The concept of diffusion has been applied to CAD tools in the context of VLSI
and FPGA placement [3,38]. Migration (movement of nodes over time ∂dx,y

∂t )
is proportional to the local curvature of the concentration gradient, and the
diffusivity of the medium D. We define D in (4) as the overall density of the
embedding, times an expected occupancy α, or the number of qubits expected
to be used per problem node; we chose α = 3. The choice of D causes higher
migration for low global densities, and lower migration for limited qubit avail-
ability.

∂dx,y

∂t
= D∇2dx,y; D = 1 − α|P |

|Q| ; α = 3 (4)

(1) Diffusion can be achieved by applying a velocity field which, in the space
discretized by the Chimera tiles, translates to the equations in (5), dependent
on the concentration in each tile and its neighbours, at discretized time step n;
where t = nΔt and a choice of Δt = 0.2.

vX
j,k(n) = −dj+,k(n) − dj−,k(n)

2dj,k(n)
; vY

j,k(n) = −dj,k+(n) − dj,k−(n)

2dj,k(n)
(5)

(2) Compaction is achieved by forcing the migration of nodes to the centre
of the tile grid using a modified velocity field v′

j,k(n). To do this, in (6), we
replace one of the concentration terms with a high concentration using a node
limit PLIM = 6 over the Maximum supply SMAX = 8, while the other term is
replaced with the concentration at the “attractor” tiles; or the concentrations
at the neighbouring tiles of (j, k) that are horizontally (dh), vertically (dv), and
oblique (do) towards the centre of the grid.

v′X
j,k(n) = −

PLIM

SMAX
− (

dh(n) + do

2 (n)
)

2dj,k(n)
v′Y

j,k(n) = −
PLIM

SMAX
− (

dv(n) + do

2 (n)
)

2dj,k(n)
(6)



130 J. P. Pinilla and S. J. E. Wilton

This gradient will have the direction relative to the “attractor” tiles. In (7),
in order to translate the gradient into an absolute value and to assign it to a
specific node, so that all nodes in a tile do not move equally, we use the x and
y components of the distance from the centre of the grid lX,Y

p .

vX
p (n) = lXp (n)v′X

j,k(n); vY
p (n) = lYp (n)v′Y

j,k(n)

lXp (n) =
2xp(n)

N
− 1; lYp (n) =

2yp(n)
M

− 1
(7)

Lastly, we use (8), which incorporates the velocity and diffusivity to calculate
each node’s placement at the next time step. The algorithm iterates until the
dispersion, or average distance of the cells from the centre of the tile array,
increases or has a cumulative variance lower than a predefined threshold.

xp(n + 1) = xp(n) + DvX
p (n)Δt yp(n + 1) = yp(n) + DvY

p (n)Δt (8)

As a result, the set of candidates Qp is given by the qubits in tile (jp =
�xp�, kp = �yp�) at the final iteration. Qp can be expanded to neighbouring tiles
or reduced to specific qubits in each tile. As an example, Fig. 3b shows a global
placement for a graph with nodes P = {A,B,C,D,E}. In it, the candidate
qubits for node A are all the functional qubits in tile (0, 0), while the candidate
qubits for E are all the functional qubits in tile (1, 1).

4.3 Disperse Router

To create the Disperse embeddings such as that in Fig. 1b we used the following
approach. We create a Routing graph F in which we join the nodes P from the
problem graph (G = {P, I}) with the connected Chimera graph (H = {Q,C}),
and add edges from each node p ∈ P to the candidate qubits Qp. Figure 3c shows
a subgraph of a Routing Graph F with problem nodes A and E connected to
their corresponding candidates. We use the adjacency of G to formulate a series
of minimal Steiner tree problems. We iteratively solve for the minimal Steiner
tree between p and the unrouted neighbouring nodes N (p) in G, through the
qubit nodes in F . We use the negotiated congestion routing algorithm described
below. Figure 3c shows a shortest path from nodes A to E through graph F
which passes through four qubits (V , W , X, and Y ).

We use a negotiated-congestion scheme, which is widely-used for FPGA rout-
ing [29], in which overlap of resources is initially allowed but the costs of using
each qubit is recalculated until a legal solution is found. A solution is legal when
the occupancy of the qubits do not have conflicts. We define the cost of using
one qubit cq = bqsqhq to depend on a base cost bq, a present-sharing cost sq, and
a historical-sharing cost hq. The base cost bq, given in (9), is calculated using the
degree Δq of a node in relation to the maximum degree ΔMAX , and the scope
cost ςq, which favours qubits inside the same tile over those in neighbouring tiles.

bq = 1 +

(
1 − Δq

ΔMAX

)
+ ςq; ςq =

{
0 if intra

0.2 if inter
(9)
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sq(n) = 1 + δsnkq(n); hq(n) = hq(n − 1) + δhkq(n); hq(0) = 1 (10)

The congestion costs sq and hq, defined in (10), depend on the router iteration
n, the respective cost steps δp and δh, and the present qubit occupancy kq(n).
We also ensure that no paths between source and sink pass through only one
qubit. We can view our global placement algorithm as an informed reduction
of the search space. For each path, the qubit closest to the root is assigned to
the root node, and the qubit closest to the sink is occupied by the sink node.
In Fig. 3c, qubit V is assigned to node A, and qubit Y is assigned to node E.
Qubits in between the source and sink (W , X, and Y in Fig. 3c) can be assigned
to either the source or sink. We initially label these nodes as unassigned. During
routing, if a path to a different sink node is found through an unassigned node,
that node is assigned to the root node of that path. Once all connections have
been routed, we make assignments for all remaining unassigned nodes by solving
a linear programming problem to minimize the maximum chain length.

4.4 Combined Approach

The Combined approach creates a global placement as in Sect. 4.1, followed by
the algorithm in [11] with each model initialized with the candidate qubits.
In comparison with the Disperse router, the heuristic in [11] rips up conflict-
ing or large sized models and performs a tree search starting from the mapped
neighbours of the node to be placed. Negotiated Congestion is also used to cal-
culate the cost of each unused vertex. Opposite to the disperse router, this app-
roach allows models to move away from their candidate tiles and move toward
more congested areas. As seen in Sect. 3, the Combined approach yielded better
results in terms of average chain length, and comparable results for maximum
chain length, when compared both to the layout-agnostic algorithm [11], and the
Disperse router. The Disperse method tends to be too restrictive, and is out-
performed by the Combined method for benchmarks with more complexity than
the grid shown in Sect. 3. For the following sections we will focus on comparing
D-Wave’s layout-agnostic [11] heuristic with the layout-aware Combined flow.

4.5 Related Work

Our approach differs from problem-type specific, and systematic embedding
methods. Problem-type specific methods [5–7,40,42,43] make use of “local”
strategies, by embedding subsets of the problem graph, e.g. Constraints in Con-
straint Satisfaction Problems (CSP), followed by a routing stage connecting those
subgraphs. Our approach can be categorized as “global”, because problem nodes
are allowed to take any location in the target graph. On the other hand, some
applications can easily take advantage of systematic approaches for embedding.
Three dimensional lattices [20] and complete bipartite graphs [1] can be embed-
ded homogeneously, utilizing the complete fabric of the device. However, the
nature of both of these approaches, as well as systematic clique methods [9,47],
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make them dependent on the regularity of the QAP graph. Imperfections in the
qubit yield limit the viability of these methods and/or the feasible problem size
to the size of the initial clique, even if the problem graph is not complete.

The programming flow of circuit model quantum computers also requires the
mapping of logical qubits into physical qubits. This work does not target circuit
model quantum computing fabrics; but due to their limited connectivity, and
additional requirement to minimize qubit SWAPs within a decoherence time, we
anticipate that layout-awareness could be beneficial in the mapping process.

5 Evaluation

In this section, we consider a larger set of benchmark problems, as shown in
Table 1. Among these benchmark problems, we include different size 2D grids
and Rook’s graphs; models of Quantum-dot Cellular Automata (QCA) Net-
works, using the Ising formulation explained below; and LANL1 which is a
problem known to be hard to embed using D-Wave’s default algorithm [33] (and
witnessed in the valid embedding count in Table 1). Unlike the other bench-
marks, LANL1 does not have an intrinsic layout. To address this, we generate
a spring layout every time we create an embedding. This problem was included
in our benchmark set to allow us to demonstrate the applicability of layout-
awareness to any type of Ising model. Reproduction of the following results, and
open source implementations of our flow are available online [35].

Table 1. Benchmark characteristics and summary of embedding results. These bench-
mark problems are characterized by graph size |P |, number of edges |E|, graph density

D = 2|E |
|P |(|P |−1)

, and beta index (or connectivity) β = |E |
|P | . Results are obtained from

averaging 100 runs of a layout-agnostic and layout-aware algorithm for embedding time
in seconds T(s); maximum, average, and standard deviation (σ) of chain lengths λi;
maximum connectivity κi; and valid embeddings (�).

Benchmark
Agnostic [11] Combined

T
(s)

λi κi � T
(s)

λi κi �
Name |P | |E| D β Max Avg σ Max Max Avg σ Max
QCA MAJ5B 13 41 0.53 3.15 0.2 4.7 2.9 1 2.4 100 0.3 4.6 2.9 1 2.4 100
QCA NOTFT 13 49 0.54 3.5 0.3 5 3.2 1 2.5 100 0.3 4.9 3.1 0.9 2.5 100
GRID2D 4X4 16 24 0.2 1.5 0.1 3 1.6 0.7 1.5 100 0.2 3.1 1.7 0.7 1.4 100
ROOKS 4X4 16 48 0.4 3 0.3 6.1 3.9 1.1 3.5 100 0.4 5.8 3.8 1 3.1 100
QCA MAJ5A 19 88 0.51 4.63 0.6 7.1 4.5 1.5 3.4 100 0.5 7 4.4 1.6 3.4 100
QCA SRFF 24 80 0.29 3.33 0.5 5.8 3.3 1.2 3 100 0.5 5.9 3.4 1.3 3 100
GRID2D 5X5 25 40 0.13 1.6 0.3 4 1.9 0.9 1.8 100 0.4 3.5 1.8 0.8 1.8 100
QCA COPLANX 25 58 0.19 2.32 0.5 4.7 2.4 1.1 2.3 99 0.6 4.8 2.5 1.1 2.4 100
QCA MUX 25 87 0.29 3.48 0.5 6.1 3.4 1.5 3.1 100 0.6 6.1 3.4 1.5 3.2 100
ROOKS 5X5 25 100 0.33 4 0.9 9.4 5.9 1.7 4.4 100 1 9.3 5.8 1.6 4.3 100
QCA SOSC 33 112 0.21 3.39 1 6.5 3.5 1.3 3.4 100 0.9 6.3 3.5 1.3 3.4 100
QCA XOR 77 256 0.09 3.32 2 11.4 4.1 2.2 4.4 98 1.6 6.9 3.6 1.4 4.1 100
QCA FULLADD 101 305 0.06 3.02 2.9 12.5 3.6 2.1 4 90 1.6 6.8 3.3 1.4 3.9 100
QCA SERADD 128 391 0.05 3.05 3.7 14.4 3.8 2.3 4.2 91 1.9 7 3.4 1.4 4.2 100
QCA LOOPMEM 129 412 0.05 3.19 4.3 14.5 4 2.4 4.2 86 1.9 7.7 3.6 1.5 4.3 100
QCA 4BMUX 210 719 0.03 3.42 11.8 20.1 4.1 2.6 5.1 48 4.5 22.3 4.2 2.9 5.2 93
GRID2D 16X16 256 480 0.01 1.88 3.9 14 3 2.1 3.1 95 2.3 4.3 2.3 0.9 2.4 100
LANL1 269 490 0.01 1.82 5.4 27.7 3.4 3.8 3.6 33 3.4 17.9 3.1 2.9 3.7 100
QCA 4BACCUM 290 883 0.02 3.04 12.5 17.6 3.5 2.2 4.8 23 6.3 16.8 3.8 2.4 5.3 99
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5.1 Benchmark Problems: Quantum-Dot Cellular Automata

Here we provide more details regarding the QCA simulation benchmarks.
QCA [21] is a field-based computing technology based on the polarization of
QCA cells, where the geometry of the design determines the polarity of each cell.
Each QCA cell, disregarding the physical implementation, can be represented by
four quantum dots and two moving charges interacting due to Coulombic repul-
sion. Therefore, a QCA cell can have state |0〉 with polarization −1 when charges
are in the anti-diagonal

[ • ◦◦ •
]
, or state |1〉 with polarization 1 when charges are

in the diagonal
[ ◦ •• ◦

]
dots. Interaction between cells causes each local config-

uration to propagate to neighbouring cells. QCA circuits, built from the basic
components in Fig. 4, and as seen in the inset in Fig. 3a, are typically designed
using layout-level tools (e.g. [46]), which makes them especially interesting for
our layout-aware algorithm.

Fig. 4. (a) QCA wire and inverter showing ferromagnetic and anti-ferromagnetic cou-
pling; “kink” energy Ei,j

k depends on the locations ri
n and charges qi

n at dot n of cell
i, and the free space and relative permitivities, ε0 and εr (b) QCA majority voter (c)
QCA fault tolerant NOT gate; QCA NOTFT in Table 1 (d) Ising model graph of the
QCA NOTFT ; the adjacency threshold is ra,b < 2.5 and the driver cell is replaced by
the Ei,d

k biases.

In QCA simulation, the problem being solved for each model is to find the
solution of the complete quantum mechanical formulation required to simulate
cell-to-cell interactions, as given by the two-state approximation in (11).

Ĥ = −
N∑

i=1

γiσ̂x(i) − 1

2

∑

i<j

Ei,j
k σ̂z(i)σ̂z(j) +

1

2

∑

d

N∑

i=1

Ei,d
k Pdσ̂z(i) (11)

The three terms in (11) account for: the kinetic energy of moving charges in
the cells, the energy due to the geometry of neighbouring cells, and the energy
due to driver cells. Here, γi is the effective tunnelling energy used to control the
“activation” of cells, Pd is the polarization of driver cell d, and Ea,b

k is the “kink”
energy; or the energy required to change the cell’s polarization as a function of its
proximity to other cells. When parsing the QCA layout, Ea,b

k becomes negligible
for distances greater than the span of a few cells due to Ea,b

k ∝ r−5
a,b; where ra,b

is the distance between a and b. Our models of the adjacency between cells use
a threshold for ra,b < 2.5 to produce non-planar graphs.
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Favourably, there is a direct mapping from QCA cells to nodes in an Ising
model, and from the QCA tunnelling energy γi in (11) to the traverse energy
Δi(t) in (2) [39]. After embedding once, the QCA model can be simulated for
different test vectors by changing the biases associated to the driver cells. We see
this direct mapping, along with recent developments in QCA technology [21], as
an opportunity for the use of a layout-aware embedding approach. It is important
to remark that layout-awareness for minor-embedding is not QCA simulation
specific, nor limited to Ising models with intrinsic layouts.

(a) Avg Chain (b) Max Chain

Fig. 5. Detailed chain metrics for 100 embeddings, using the Combined embedding
method against the Agnostic method [11], for each benchmark with |P | > 50. Each
box shows the quartiles, with a horizontal line at the median, a dot at the mean, and the
whiskers extending until the lowest and highest datum within 1.5 of the interquartile
range; outliers are plotted as individual points.

5.2 Embedding Results

From the results in Table 1 we see that in problems with sizes |P | < 50 there is
no clear advantage for either method, including similar embedding times. How-
ever, with increasing problem complexity, we see that the likelihood of finding a
valid embedding increases for the Combined method, compared to the Agnostic
method. In particular, for the benchmark QCA 4BACCUM, we see that for the
Combined method, 99 of the 100 trials resulted in a valid embedding, while for
the Agnostic method, only 23 trials resulted in a valid embedding. The table also
shows that for higher complexity problems, the difference between the embed-
ding time for the two methods increases. We have observed that these results
are caused by the reduction of congestion provided by layout-awareness.

On the other hand, in our set of results, embeddings for two out of the
19 problems (QCA 4BACCUM and QCA 4BMUX ) tend to have longer chain
lengths when using layout-awareness. Figures 5a and b contain more detailed
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(a) QCA XOR (b) QCA FULLADD

(c) QCA SERADD (d) QCA LOOPMEM

(e) QCA 4BMUX (f) LANL1

(g) GRID 2D 16X16 (h) QCA 4BACCUM

Fig. 6. D-Wave energy statistics from 10000 samples using the 10 best embeddings
given by each method. The x position for each dot is a chain metric, while y marks both
the median (labelled marker) and minimum energies (�). A black dotted line marks
the lowest energy sampled for that benchmark. The averages over all 10 embeddings,
in both axes, are marked by dotted lines in the corresponding colours for each method.
(Color figure online)
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results for average and maximum chain length of these and other benchmarks
with sizes |P | > 50. We have observed that these negative results (longer chains)
are also associated to the reduction of congestion in the initial stages of the
embedding heuristic, which allow the algorithm to yield more valid embeddings
faster, but in doing so, will also yield unoptimized embeddings “prematurely”.
In our results, a higher number of interactions κ suggests higher congestion, or
density, in the resulting embedding; more connected nodes are mapped closer to
each other.

5.3 Sampling Results

We then performed D-Wave sampling experiments for the problems in our bench-
mark set with size |P | > 50. Each embedding was run on a D-Wave processor.
For each embedding, we collected 10000 samples. The results are summarized in
Fig. 6 in a similar fashion to those in Sect. 3. Axes relate chain metrics to energy
values.

With the inclusion of these results for real-world problems, our observations
from Sect. 3 remain. The generation of better embeddings has a direct positive
impact on the sampling of lower energy results, and the use of layout-awareness
can lead to a minimization of the maximum and average chain lengths. However,
in agreement with the results in Table 1, embeddings for both QCA 4BACCUM
and QCA 4BMUX do not seem to benefit from layout-awareness. We recog-
nize in this an opportunity for the exploration of post-embedding optimization
methods as an interesting area for future work, given that the embeddings found
faster using layout-awareness are less congested.

6 Conclusions

If Quantum Computing is to reach the hands of more users, CAD tools and
algorithms that enhance the programmability of these devices need to evolve
in tandem with the technologies. In this paper, we introduced the concept of
layout-aware minor-embedding for quantum annealing processors. Some of the
concepts used in our algorithms, e.g. global placement and migration techniques
to reduce routing congestion, come from the mature work on CAD tools for
FPGA and VLSI design.

Using layout-awareness we described a method that is fast and highly success-
ful at finding embeddings compared to existing methods, while also being able
to yield shorter or equal qubit chain embeddings for most cases. Our approach is
fundamentally different from existing methods in that it leverages layout infor-
mation that is part of the problem instance, and it does so without fixing problem
nodes to specific qubits. We are not aware of any other minor-embedding algo-
rithm that leverages layout information in this way. Moreover, our technique can
also be applied to problems which do not have intrinsic layout information. In
these cases, a layout is generated using graph drawing heuristics. This approach
could be broadly applicable to circuit model quantum computing platforms,
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for which there is an additional constraint on the movement of logical qubits
(e.g. using SWAP operations) within the decoherence time.

We anticipate there is much more research to do related to minor embedding
and CAD for quantum computers in general. It is likely that there is other
information, other than layout information, that can be used to better optimize
embeddings. To help accelerate research in this area, we are releasing our tools,
experimental data, and methods and utilities for a complete Ising-model to QAP-
samples interface with D-Wave’s online services. Together, these contributions
will help researchers explore this vast area, eventually increasing the use of QAPs
to solve many of today’s otherwise intractable problems.
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Abstract. We argue that the recursive divide-and-conquer paradigm
is highly suited for designing algorithms to run efficiently under both
shared-memory (multi- and manycores) and distributed-memory set-
tings. The depth-first recursive decomposition of tasks and data is known
to allow computations with potentially high temporal locality, and auto-
matic adaptivity when resource availability (e.g., available space in
shared caches) changes during runtime. Higher data locality leads to bet-
ter intra-node I/O and cache performance and lower inter-node commu-
nication complexity, which in turn can reduce running times and energy
consumption. Indeed, we show that a class of grid-based parallel recur-
sive divide-and-conquer algorithms (for dynamic programs) can be run
with provably optimal or near-optimal performance bounds on fat cores
(cache complexity), thin cores (data movements), and purely distributed-
memory machines (communication complexity) without changing the
algorithm’s basic structure.

Two-way recursive divide-and-conquer algorithms are known for solv-
ing dynamic programming (DP) problems on shared-memory multicore
machines. In this paper, we show how to extend them to run efficiently
also on manycore GPUs and distributed-memory machines.

Our GPU algorithms work efficiently even when the data is too large
to fit into the host RAM. These are external-memory algorithms based
on recursive r-way divide and conquer, where r (≥ 2) varies based on the
current depth of the recursion. Our distributed-memory algorithms are
also based on multi-way recursive divide and conquer that extends natu-
rally inside each shared-memory multicore/manycore compute node. We
show that these algorithms are work-optimal and have low latency and
bandwidth bounds.

We also report empirical results for our GPU and distribute memory
algorithms.

Keywords: GPU · Recursive divide & conquer ·
Dynamic programming · Exascale · Distributed memory ·
Shared memory · I/O efficiency · Communication efficiency

c© Springer Nature Switzerland AG 2019
M. Weiland et al. (Eds.): ISC High Performance 2019, LNCS 11501, pp. 143–164, 2019.
https://doi.org/10.1007/978-3-030-20656-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20656-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-20656-7_8


144 M. M. Javanmard et al.

1 Introduction

Many of the world’s current fastest supercomputers are networks of distributed-
memory hybrid compute nodes where each node houses both latency optimized
multicores (a.k.a. fat cores) and throughput optimized manycores (a.k.a. thin
cores, e.g., GPU cores) connected through a multilevel memory hierarchy [4]1
which is also what an exascale supercomputer is expected to look like in the
near future [41,54]. In addition to allowing various types of parallelism, e.g,
distributed-memory, shared-memory, task (on multicores) and data (on many-
cores), a program running on these supercomputers must exploit data locality
at various levels of computation for efficiency. Indeed, higher data locality leads
to better intra-node I/O and cache performance and lower inter-node commu-
nication complexity, which in turn can reduce running times and lower energy
consumption.

We argue in this paper that the recursive divide-and-conquer paradigm is
highly suited for designing efficient algorithms for both shared-memory and
distributed-memory architectures. The depth-first recursive decomposition of
tasks and data is known to allow computations with potentially high tempo-
ral locality, and automatic adaptivity when resource availability (e.g., avail-
able space in shared caches [13,19]) changes during runtime. Indeed, we show
that a class of grid-based parallel recursive divide-and-conquer algorithms for
solving dynamic programming problems can be run with provably optimal or
near-optimal performance bounds on fat cores (cache complexity), thin cores
(data movements), and purely distributed-memory machines (communication
complexity) without any change in the algorithm’s basic structure.

Dynamic programming (DP) [12,22] is a widely used algorithm design tech-
nique for solving optimization problems that can be decomposed into overlap-
ping subproblems whose optimal solutions can be combined to obtain an optimal
solution to the original problem. DP is extensively used in computational biol-
ogy [32,73], and in many other application areas including operations research,
compilers, sports, economics, finance, and agriculture (see DP refs in [19]).

Dynamic programs are typically implemented using nested loops that fill out
the cells of a DP table using already computed values for other cells. However,
such a looping code is usually not suitable for high performance on a modern
computer with a memory hierarchy as without any temporal locality2 in its data
access pattern it often spends significantly more time in data transfers than in
actual computations.

Tiled looping codes reduce the number of data transfers between two spe-
cific (adjacent) levels of the memory hierarchy by tiling the DP table so that a

1 As of November 2018, the supercomputers ranked 1 (Summit), 2 (Sierra), 6 (ABCI),
7 (Piz Daint), and 8 (Titan) in order of Rpeak (TFlop/s) are networks of hybrid
CPU+GPU nodes [4].

2 Temporal locality — whenever a block of data is brought into a faster level of
cache/memory from a slower level, as much useful work as possible is performed
on this data before removing the block from the faster level.
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constant number of such tiles completely fit in the smaller3 of the two levels.
Whenever a tile is brought into the smaller memory level, as much computation
as possible is done with it before replacing it with another tile. In this approach,
the code must know the size of the smaller memory level. The tiled code often
differs significantly from the standard looping code both in structure and in
complexity. Multilevel iterative tiling is possible, but at the expense of signif-
icantly increasing the complexity of the code with each additional level. Fixed
tile sizes can be problematic when the program shares the smaller memory level
with multiple other concurrently running programs because it can adapt neither
automatically nor efficiently as the memory space available to it keeps changing
during running time [13,19].

Recursive parallel 2-way divide-and-conquer DP algorithms perform an
asymptotically optimal number of data transfers between every two adjacent
levels of [19,69]. They do not need to know the sizes of the memories in the hier-
archy, can passively self-adapt to cache sharing [13,19], and the complexity of the
code is independent of the depth of the memory hierarchy. For any given pair of
adjacent memory/cache levels the bounds hold under the ideal cache model [29]
with a fully automatic optimal offline cache replacement policy. LRU replace-
ment policy also works. It has been shown very recently that for a large class of
DP problems these recursive parallel algorithms can be generated automatically
[19,37].

Recursive 2-way divide-and-conquer algorithms are not suitable for GPUs
as those devices have very limited support for recursion and require the pro-
grammer to explicitly transfer data between memory levels (e.g., between global
and shared memories). Explicit communications among compute nodes are also
required during distributed-memory computations. Moreover, these algorithms
may lose parallelism because of artificial dependencies among subtasks [18].

Our Contributions. In this paper, we show how to extend 2-way recursive
divide-and-conquer algorithms designed to solve DP problems efficiently on
shared-memory multicore machines to run efficiently also on manycore GPUs
and distributed-memory machines. The same algorithm without any changes in
its basic structure runs with provable efficiency on all three platforms. Our app-
roach works for the wide fractal DP class [19] that includes Floyd-Warshall’s
APSP, the parenthesis problem, pairwise sequence alignment, and the gap prob-
lem among many others.
(i) [GPU Algorithms]. We design I/O-optimal algorithms for the fractal DP
class [19].

3 I.e., faster and closer to the processing core(s).
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Fig. 1. Memory hierarchy
assumed by our GPU algo-
rithms.

Our approach works for arbitrarily deep mem-
ory hierarchies. But in this paper, we target the
one shown in Fig. 1. We assume that the input DP
table is stored either in the RAM or in the disk. Our
algorithms are based on r-way recursive divide-and-
conquer, where r varies based on the level of recur-
sion (i.e., different levels can have different r values).
We use r = 2 at every level of recursion until the
input size drops below the size of the GPU global
memory. At that level we choose r large enough so
that the input is decomposed into chunks that are
small enough to fit in the GPU shared memory. We
do not use the knowledge of the CPU RAM size as

the RAM can be maintained as a fully associative memory with an automatic
LRU page replacement policy (through STXXL [1]). Through the choice of r we
basically resort to iterative tiling once we reach inside the GPU as the device
provides only limited support for recursion.

We prove theoretical bounds showing that we perform an asymptotically opti-
mal number of data transfers between every two adjacent levels of the memory
hierarchy.

We have implemented our GPU algorithms for four DP/DP-like problems:
Floyd-Warshall’s APSP, parenthesis problem, gap problem, and Gaussian elimi-
nation without pivoting. Our programs run significantly faster than all internal-
memory multicore CPU implementations and almost all existing tiled GPU
implementations.
(ii) [Distributed-memory Algorithms]. Our distributed-memory algorithms
are also based on r-way recursive divide and conquer that extends naturally
inside each shared-memory multicore/manycore compute node. Thus these algo-
rithms are, indeed, hybrid distributed-shared-memory algorithms. We show that
they are work-optimal and have latency and bandwidth bounds that are within
log p factor of optimal, where p is the number of compute nodes.

We include empirical performance results for Floyd-Warshall’s APSP, the
parenthesis problem and the gap problem.

Organization. Section 2 presents our approach for designing r-way algorithms.
We describe our GPU results in Sect. 3 with the computing model, related work,
algorithm design, I/O complexities, and experimental results in Sects. 3.1, 3.2,
3.3, 3.4 and 3.5, respectively. Our distributed-memory results are presented in
Sect. 4 with the algorithm design, communication lower bounds, related work,
and experimental results in Sects. 4.1, 4.2, 4.3, and 4.4, respectively. Finally, we
conclude in Sect. 5.
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2 Multi-way Recursive Divide and Conquer

In this section, we describe our methodology for designing multi-way (i.e., r-way)
recursive divide-and-conquer algorithms for DP problems in the fractal-DP class
[19]. The 2-way and r-way algorithms will be called 2-way and r-way R-DPs,
respectively.

We will explain our methodology using the parenthesis DP [17,31] which fills
out a 2D table C[0 : n, 0 : n] based on the following recurrence:

C[i, j] = min
i≤k≤j

{C[i, k] + C[k, j] + w(i, j, k)} for 0 ≤ i < j − 1 < n;

assuming C[i, j] = ∞ for 0 ≤ i = j ≤ n and C[i, j] = xj for 0 ≤ i = j − 1 < n,
where, xj ’s are given constants and w(i, j, k) does not incur any I/Os.

The class of problems defined by the recurrence above includes optimal chain
matrix multiplication, RNA secondary structure prediction, optimal polygon
triangulation, string parsing for context-free grammar, and optimal database
joins among others. A 2-way R-DP for the problem can be found in [19].

2.1 r-way R-DP Design

We first use either Autogen [19] or Bellmania [37] to automatically derive the
standard 2-way R-DP for the given DP problem. We then derive an r-way R-
DP from the 2-way R-DP. Indeed, assuming r = 2t for some positive integer t,
each level of recursion of an r-way R-DP can be obtained by unrolling t levels of
recursion of the corresponding 2-way R-DP.The resulting r-way R-DPs typically
have more parallelism than their 2-way counterparts (see Figure 3 in [64] for an
example).

To obtain a multi-way R-DP from a 2-way R-DP, we start with t = 1 and
keep applying the following two refinement steps until we can identify the pattern
in which the recursive functions are called in the resulting unrolled R-DP.

Step 1. Take the 2t-way R-DP, and unroll each recursive function call by one
level (of recursion) based on the 2-way R-DP version of that function.
Step 2. To execute the recursive function calls in the unrolled version from
step 1 in as few stages as possible, we move each such function call to the lowest
possible stage without violating dependency constraints. We follow the following
rules where by W(F) we denote the DP subtable function F writes to and by
R(F) we denote the set of DP subtables F reads from. We say that F is flexible
provided W(F) /∈ R(F), and inflexible otherwise. By F1 → F2 we mean that F1

is executed before F2, F1 ↔ F2 means that order does not matter, and F1||F2

indicates parallel execution.

#1: If W(F1) �= W(F2) and W(F1) ∈ R(F2), then F1 → F2.
#2: If W(F1) = W(F2) and only F1 flexible, then F1 → F2.
#3: If W(F1) = W(F2) and both F1 and F2 are flexible, then F1 ↔ F2.
#4: If F1 and F2 satisfy none of the rules above, then F1||F2.

The new 2t+1-way R-DP has potentially more parallelism than its 2t-way
version.
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Fig. 2. An r-way R-DP for parenthesis problem [20].
Here, X, U and V are m × m tables.

Based on the dimension
m of the DP (sub-)table(s)
at any given level of recur-
sion of an r-way R-DP, r
can be set to a constant
or a function of either m
or both m and a particu-
lar cache or memory size
such that the resulting tile
exactly fits into that mem-
ory. When a subproblem
fits into a memory of the
smallest size, we execute an
iterative kernel. Given the
original DP table dimen-
sion n we precompute the
value of r at each recur-
sion level d and store that
in tilesize[d].

In Fig. 2 we show an r-
way R-DP for the paren-
thesis problem with func-
tions Apar, Bpar, and Cpar.
The initial function call is
Apar(C,C,C, 1), where C
is the input DP table. The
term m in all the func-
tions represents the dimen-
sion length at a particular

recursion level. The keyword parallel means that the functions can be invoked
in parallel (Fig. 3).

2.2 Additional r-way R-DP Algorithms

In this work, we have designed and implemented r-way R-DP algorithms for the
following three additional problems.

Gaussian Elimination w/o Pivoting. This DP-like algorithm is used for
solving systems of linear equations and LU decomposition of symmetric positive-
definite or diagonally dominant real matrices [22].

Floyd-Warshall’s APSP. This all-pairs shortest path algorithm [22] uses the
recurrence below. Let D[i, j, k] be the length of the shortest path from vertex vi
to vertex vj with no intermediate vertex higher than vk. Let �(i, j) be the distance
between vi and vj . Then D[i, j, k] = 1 if k = 0 and i = j; D[i, j, k] = �(vi, vj) if
k = 0 and i �= j; and D[i, j, k] = min(D[i, j, k−1],D[i, k, k−1]+D[k, j, k−1]) if
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Fig. 3. Reducing the number of parallel stages in Apar after unrolling the recursive
function calls by one level.

k > 0. The third dimension of D can be dropped to solve the problem in space
quadratic in the number of vertices in the graph.

Sequence Alignment with Gap Penalty (Gap Problem). In this problem
[30,31,73], a sequence of consecutive deletes or inserts corresponds to a gap and
they are handled with generic cost functions w and w′. The optimal alignment
cost for strings X = x1x2 . . . xm and Y = y1y2 . . . yn is defined by the following
recurrence: G[i, j] = 0 if i = j = 0, G[i, j] = w(0, j) if i = 0 ∧ j ∈ [1, n],
G[i, j] = w′(i, 0) if j = 0 ∧ i ∈ [1,m], and G[i, j] = min{G[i−1, j−1]+S(xi, yj),
min

0≤q<j
{G[i, q] + w(q, j)}, min

0≤p<i
{G[p, j] + w′(p, i)}} otherwise; where, w and w′

do not incur any I/Os.

3 External-Memory GPU Algorithms

3.1 GPU Computing Model

We give a brief overview of the GPU architecture, its programming model, and
GPU programming challenges.

General Purpose Computing on GPUs. GPUs are attached to CPUs
through PCI bus as hardware accelerators. They have a manycore architecture
with hundreds to thousands of cores, and are designed to have thousands of
light-weight threads, perform highly data-parallel and compute-intensive tasks,
and maximize the throughput of the parallel programs. GPUs support multi-
threading, SIMD, and instruction-level parallelism.
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Fig. 4. Organization of an NVIDIA GPU.

An NVIDIA GPU is a set
of Streaming Multiprocessors (SMs)
employing an SIMT computational
architecture. Each SM consists of
many processing cores connected to
a shared memory/L1 cache. The
SMs are connected to the device
(global) memory through an L2
cache. Figure 4 shows this memory
organization.

The most commonly used APIs for general purpose computing on GPUs
include OpenCL, NVIDIA CUDA, Microsoft DirectCompute, OpenACC, and
AMD’s APP SDK.

GPU Programming Challenges. Recursion and divide-and-conquer are pow-
erful tools for designing efficient (I/O-efficient, energy-efficient, and highly paral-
lel), portable (cache- and processor-oblivious) and robust (cache- and processor-
adaptive) algorithms. However, these design techniques involve complicated con-
trol logic and hence they are either unsupported or have very limited support
in GPUs.

Optimizing a GPU program is hard as many factors have big influence on its
performance: thread organization (in blocks of different dimensions with differ-
ent dimension lengths), warp size (the granularity at which the SMs can execute
computations), memory coalescing (consecutive numbered threads access consec-
utive memory locations), and streams and events (overlapping compute kernel
execution and data transfers).

3.2 Related Work (GPU)

Several GPU algorithms exist that solve DP problems: Floyd-Warshall’s APSP
[14,26,27,34,40,47,49,58,71], parenthesis problem family [51–53,56,61,74], and
sequence alignment [45,46,48,62,75]. Most of them are loops tiled for GPU
global and shared memories to exploit temporal locality. Some are based on
tiling derived from recursive divide-and-conquer algorithms that use only matrix-
matrix multiplications on a semiring, e.g., R-Kleene’s algorithm [14,23,55] for
Floyd-Warshall’s APSP. Major limitations of existing results are as follows. First,
almost all existing GPU algorithms assume that the entire DP table fits into the
GPU global memory, and none of them work when the table is too large for the
host RAM. Thus, the size of the problem they can handle is limited by the size of
one of those two levels of memory. Second, no general methodology is known that
work for a large class of DP problems. Third, theoretical performance guarantees
for data transfers and parallelism are often missing.

3.3 GPU Algorithm Design

We will explain how to port the r-way R-DP given in Fig. 2 to a GPU system.
The approach works for all fractal-DP problems. For simplicity, we assume the
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4-level memory hierarchy shown in Fig. 1. Handling deeper hierarchies, multiple
GPUs, and multiple shared memories connected to a global memory are not
difficult.

Let us first assume that we know the sizes of the CPU RAM and both
GPU memories, and let the input DP table be present in the external mem-
ory. Hence, the data from the DP table will pass through CPU RAM, GPU
global memory, and GPU shared memory. We define functions host_disk_Apar,
host_RAM_Fpar, device_global_Fpar, and device_shared_Fpar, where F ∈
{A,B,C}. The suffixes Apar, Bpar, and Cpar correspond to the three recursive
functions. Functions with keywords host and device run on the CPU and GPU,
respectively. Input and the output matrices accessed by functions with keywords
disk, RAM, global, and shared reside on CPU disk, CPU RAM, GPU global mem-
ory, and GPU shared memory, respectively.

Initially, host_disk_Apar is invoked with the entire DP table as input. The
function splits the n × n DP table into rd × rd subtables each of size (n/rd) ×
(n/rd), assuming rd divides n for simplicity. The value of rd is chosen such that
the input subtables for the function exactly fit in the RAM. The function invokes
host_RAM_Fpar, where F ∈ {A,B,C}, as per the r-way R-DP algorithm, after
copying the subtables required by that child function to RAM. We do not define
host_disk_Bpar and host_disk_Cpar as they will never be invoked.

Function host_RAM_Fpar splits each of its (n/rd) × (n/rd) sized
input/output tables into rm×rm subtables each of size (n/(rdrm))×(n/(rdrm)),
assuming rm divides (n/rd) for simplicity. It invokes appropriate functions
device_global_Fpar after copying the relevant subtables to the GPU global mem-
ory. This process continues till the functions device_shared_Fpar are reached.
Inside these functions we execute the looping kernels using GPU cores.

Now let’s assume that we do not know the size of the CPU RAM, but it is
maintained as a fully associative memory with an automatic LRU page replace-
ment policy. Then instead of host_disk_Apar and host_RAM_Apar we will only
have host_Apar, and similarly host_Bpar and host_Cpar. Initially, the function
host_Apar is invoked with the entire DP table as input. The function splits the
entire n×n DP table into 2×2 subtables each of size (n/2)× (n/2), assuming n
is divisible by 2 for simplicity. Now if a (n/2)× (n/2) subtable fits into the GPU
global memory we invoke device_global_Fpar, otherwise we recursively invoke
host_Fpar.

3.4 I/O Complexities

We present theoretical bounds on the I/O’s performed by our GPU algorithms.
Let Mm, Mg, and Ms be the sizes of the CPU main memory, GPU global

memory, and GPU shared memory, respectively, and suppose these sizes are
known to the algorithm. So there will be exactly three levels of recursion, and
in each level the algorithm will choose the largest tile size (i.e., the smallest
possible value of r) such that the required number (a constant) of tiles fit in
the next smaller level of memory. Let B, Bm, Bg, and Bs denote the block sizes
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between disk and RAM, RAM and global memory, global memory and shared
memory, and shared memory and processor, respectively. All M ’s, n’s, and B’s
are natural numbers.

Theorem 1 (I/O complexity of GPU algorithms). When run on
the GPU memory hierarchy of Fig. 1, the number of data blocks trans-
ferred by the external-memory GPU algorithm (i.e., I/O complexity) between:
(a) disk & RAM: Θ

(
nw

BM
w/d−1
m

+ nw

M
(w+1)/d−1
m

)
, (b) RAM & global mem-

ory: Θ

(
nw

BmM
w/d−1
g

+ nw

M
(w+1)/d−1
g

)
, and (c) global & shared memories:

Θ
(

nw

BgM
w/d−1
s

+ nw

M
(w+1)/d−1
s

)
; where, Θ (nw) is the total work (i.e., time spent

in computation only) performed by the GPU algorithm, and nd is the size of the
original input DP table.

Proof. We assume that the number of submatrices accessed by each recursive
function is upper bounded by a constant. Let nq be the largest tile dimension
a function can use while still making sure that the required number of tiles fit
into a memory of size Mq. Then nd

m = Θ (Mm), nd
g = Θ (Mg) and nd

s = Θ (Ms).
Let ML and MS be the sizes of two adjacent levels of memory and ML ≥ MS .

Let BL be the block transfer size between the two levels. Then the I/O-
complexity of filling the smaller memory once is O (

nd−1
S (nS/BL + 1)

)
. The

smaller memory will be filled Θ ((nL/nS)w) times. Hence, the I/O-complexity
between the two memories is O (

(nL/nS)wnd−1
S (nS/BL + 1)

)
.

We now apply the result above to prove the theorem. The I/O-
complexity between disk and RAM is O((n/nm)wnd−1

m (nm/B + 1)). The I/O-
complexity between RAM and global memory to work on all data present in
RAM is O((nm/ng)wnd−1

g (ng/Bm + 1)). However, the RAM will be filled
Θ ((n/nm)w) times. Hence, the total I/O-complexity between RAM and global is
O((n/ng)wnd−1

g (ng/Bm + 1)). We use a similar reasoning to compute the total
I/O-complexity between global and shared memories. Putting nd

m = Θ (Mm),
nd
g = Θ (Mg) and nd

s = Θ (Ms) we obtain the claimed bounds.

I/O Optimality. The optimality of the I/O bounds presented in Theorem 1 for
any given r-way R-DP follows from the known optimality of the corresponding
2-way R-DP proved under the ideal cache model [29]. We compute the I/O
complexity of an r-way R-DP as the product of the number of subproblems that
exactly fit into the memory and the number of block transfers required to scan
the input and output matrices for a subproblem. Say r = 2t for some t ∈ N.
Then, to compare the I/O complexities of the two algorithms, the r-way R-DP

can be viewed as the 2-way R-DP unrolled t times. The number of subproblems
that exactly fit in the memory will be asymptotically same for both 2-way and
r-way R-DPs. Also, the I/Os required to scan the matrices that exactly fit in
the memory will also be asymptotically the same for both R-DPs. Hence, the
I/O complexities of the two R-DPs will match.



Architecture-Independent Dynamic Programming Algorithms 153

3.5 GPU Experimental Results

We present empirical results showing the performance benefits of our GPU
algorithms.

Setup. All our experiments were performed on a heterogeneous node of the
Stampede supercomputer [2,70]. The multicore machine had a dual-socket 8-
core 2.7GHz Intel Sandy Bridge processors (2×8 = 16 cores in total) and 32GB
RAM. Each core was connected to a 32KB private L1 cache and a 256KB
private L2 cache. All cores in a processor shared a 20MB L3 cache. The node
was attached to a single NVIDIA K20 GPU. The GPU had an on-board GDDR5
memory of 5GB, and 2496 CUDA cores.

All our algorithms were implemented in C++. We used Intel Cilk Plus exten-
sion to parallelize and Intel R© C++ Compiler v13.0 to compile the CPU imple-
mentations with optimization parameters -O3 -ipo -parallel -AVX -xhost. Our
GPU programs were written in CUDA. The programs were compiled with nvcc
compiler with parameters -O3 -gencode arch=compute_35,code=sm_35.

Implementations. We focus on four DP/DP-like problems: Floyd-Warshall’s
APSP (FW-APSP), Gaussian elimination without pivoting [21], parenthesis
problem [17,31], and sequence alignment with gap penalty (gap problem) [30,31].

For all problems we consider the following two implementations where cpu
and gpu prefixes are used to indicate programs written for CPUs and GPUs,
respectively:

For FW-APSP, we also consider: (iii) gpu-tidp-harish: Harish and
Narayanan’s [34] tiled-iterative code, (iv) gpu-tidp-lund: Lund and Smith’s [47]
tiled-iterative code, (v) gpu-tidp-katz: Katz and Kider’s [40] tiled-iterative code,
(vi) gpu-rec-buluc: Buluc et al.’s implementation of the 2-way R-Kleene algo-
rithm with Volkov and Demmel’s optimization [72] for the matrix multiplication
(MM) kernel, and (vii) gpu-rdp-opt: r-way R-DP replaced with Buluc et al.’s
MM-like kernel for MM-like functions (i.e., functions reading from and writing
to disjoint matrices).

For the other three problems (i.e., parenthesis, Gaussian elimination w/o
pivoting, and gap) we could not find any publicly available GPU codes for
comparison.

Optimizations. We list below the optimizations we applied on various programs
in addition to the compiler optimizations enabled by the optimization flags we
used.

Major optimizations applied on gpu-rdp and gpu-rdp-opt are as follows.

(i) We used GPU shared memory by setting BLOCK_SIZE = 32 so that 1024
threads could work on matrices of size 32 × 32 simultaneously. Also, two
blocks with 1024 threads each were run in parallel. But since NVIDIA
K20 can run up to 2496 hardware threads at a time, 448 threads remained
unused. Use of more than 2048 threads required dropping to 16×16 or some
non-power-of-2 size, and then either run into extra overhead for launch-
ing jobs or be way under the 48KB shared memory limit per block. This
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ended up being the bigger bottleneck on the system and our preliminary
experiments showed that even with 256 more threads 16 × 16 was worse
than 32 × 32.

(ii) All our DP applications have very predictable data access patterns, and
so a user-managed shared-memory seems more appropriate for them than
an L1 cache. But we tried both Shared Memory/L1 cache configurations
and also tried varying threads, and the best configuration was 48KB shared
memory with 2048 threads. Our most memory-hungry computations access
three disjoint matrices. Hence, a block with BLOCK_SIZE = 32 and single
precision floats uses 3 × 32×32×4

1024 = 12KB of the shared memory and with
double precision floats uses 24KB. Though BLOCK_SIZE = 64 with single
precision floats will fill up the 48KB shared memory, we won’t have enough
threads to compute all 64×64 = 4096 output cells in parallel. Our prelim-
inary experiments showed that 32 was a better choice for BLOCK_SIZE
than 64.

(iii) If a function kernel reads only from submatrices it is not writing to, then
we do not synchronize inside it.

(iv) Row-major order was used for all submatrices. Flipping a submatrix to
column-major degrades performance. Row-major was used for the grid
and inside each block.

(v) GRID_SIZE was set to min {n, 16384}, where 16384 was the maximum size
such that our subproblems can exactly fit in the 5GB of global memory.

(vi) Allocating memory using gpuMalloc() on GPU global memory is slow.
Instead we simply malloc once and then copy the submatrices to the respec-
tive regions.

(vii) We allocate directly in the host’s pinned memory using cudaMallocHost().
This reduces the block transfers between pageable host memory and pinned
memory.

With more aggressive optimizations gpu-rdp and gpu-rdp-opt are likely to
perform even better than what we report in this paper. However, we want to
show that GPU algorithms designed based on recursive divide-and-conquer are
I/O-efficient and remain compute-bound for modern GPUs even when the data
is in external-memory. Once that goal is reached, additional optimizations will
only improve the results.

Additional optimizations used for cpu-rdp include:

(i) #pragma parallel, #pragma ivdep, and min loop count(B),
(ii) 64 byte-aligned matrices,
(iii) write optimization in the basecase – if an innermost loop updates the same

DP table cell repeatedly we apply all of them on a register instead of the
DP cell, and update that cell only once at the end of the loop using the
value in the updated register,

(iv) copy optimization in the basecase – copying the transpose of a column-
major input matrix to a local array in order to access it in unit stride
during computation,
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(v) pointer arithmetic, and
(vi) Z-morton layout (only for the gap problem). Each of our DP applications in

this paper runs in Θ
(
n3

)
time which asymptotically dominates the Θ

(
n2

)
time needed for layout conversion of the input matrix. Indeed, we have found
that the layout conversion time has very little impact on the actual running
times.

The three tiled-iterative implementations of FW APSP used 32 × 32 tiles.

Internal-Memory Results. Figure 5 shows the speedup of various programs
w.r.t. cpu-rdp for four DP problems. For each program, the DP table dimension
n is varied from 210 to 215. For single precision floats n = 215 is the largest power
of 2 for which an n × n DP table (using 4GB space) completely fits inside the
5GB GPU global memory.

For FW-APSP, gpu-rdp-opt was the second fastest running program with
gpu-rec-buluc running 1.5 times faster for n = 215. This is because unlike gpu-
rec-buluc, all kernels of gpu-rdp-opt were not MM-like and hence it ran slower
than Buluc et al.’s implementation. While our gpu-rdp and gpu-rdp-opt continued
to run for n = 216 and beyond, none of the other GPU implementations did as
they did not have mechanisms to expand beyond the GPU global memory.

When n = 215, our gpu-rdp programs for the Gaussian elimination, paren-
thesis and gap problems ran 1.3×, 11×, and 2.8× faster, respectively, than their
cpu-rdp counterparts. The speedup factors achieved by the GPU algorithms for
the parenthesis and gap problems are higher than that for FW-APSP/Gaussian
elimination because gpu-rdp for the former two problems have higher parallelism
than the latter two.

External-Memory Results. It is easy to extend our algorithms to work for
DP tables that are too large to fit in the CPU RAM and hence must be stored
in external-memory (or disks). We can use either a 2-way or an r-way R-DP for
external-memory until a subproblem fits in the GPU global memory, after which
we use an r-way R-DP between GPU global memory and GPU shared memory.
When an r-way R-DP is used between two levels of memory, r is chosen as the
smallest integer such that if an m×m DP (sub-)table is stored in the larger mem-
ory dividing it into tiles of size (m/r) × (m/r) each will make sure that 1 + s
such tiles completely fit in the smaller memory, where s is the maximum number
of additional tiles one must read from to update one tile. Using a 2-way R-DP

between the external-memory and the GPU global memory makes our algorithm
oblivious of the CPU RAM size provided an appropriate automatic page replace-
ment protocol is functional between the external-memory and the CPU RAM.

We use Standard Template Library for Extra Large Data Sets (STXXL)
[1] 1.4.1 to implement our algorithms for external-memory. STXXL is a C++
library for implementing containers and algorithms that process vast amounts
of disk data. In STXXL, we set the external block size as 4MB, #pages as
1024, and #blocks per page as 1. This gives us a RAM of size 4GB. STXXL
maintains the CPU RAM as a fully associative memory with an automatic LRU
page replacement policy.
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Fig. 5. Speedup of gpu-rdp programs over cpu-rdp for various dynamic programs. For
FW-APSP, gpu-buluc-rec and gpu-rdp-opt are also included.

For each of the four DP problems we compare: (a) cpu-rdp-1: serial R-DP

running on CPU, (b) cpu-rdp-128: parallel R-DP running on a CPU with 128
cores (details will follow), and (c) gpu-rdp: parallel R-DP running on a GPU
machine.

For gpu-rdp we store the input DP table in Z-Morton layout in the external-
memory until we reach a submatrix size that fits in the GPU global memory at
which point it is stored in row-major order. While the input problem accesses a
single matrix in external-memory, a subproblem may access multiple submatrices
of the DP table and they all have to fit in the GPU global memory. Once we
compute a submatrix, we write the output to the same location in the DP table
in the external-memory.

For cpu-rdp-1 and cpu-rdp-128, the base case dimension length is set to 256
and we run iterative kernels inside each base case. Since these two programs
take too long to run, we approximate their running times as follows (instead of
measuring time during real runs). The DP table is stored as a grid of blocks of
size 16K × 16K each and it is stored in Z-Morton order. We use r-way R-DP in
external-memory and whenever a subproblem is brought to RAM, we use 2-way
R-DP to execute it on CPU. Observe that unlike our GPU program gpu-rdp,
the two CPU programs are kept aware of the CPU RAM size in order to get
faster running times. Let nbase, n128

base, nchunk, tbase, and tchunk represent the
number of invocations of base case kernels, number of parallel steps of execution
of the base case kernels when we assume 128 cores, number of times RAM (of
size 16K × 16K) is loaded/unloaded, minimum time taken (among several runs)
to execute a base case kernel, and time taken to copy data between external-
memory and RAM as given in STXXL I/O statistics, respectively. Then the
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running time of cpu-rdp-1 is (nbase · tbase + nchunk · tchunk), and that of cpu-rdp-
128 is (n128

base · tbase + nchunk · tchunk).
When n = 217, in our experiments for FW-APSP, Gaussian elimination,

parenthesis and gap problems gpu-rdp ran 3.1×, 1×, 3.5×, and 1.6× faster,
respectively, than cpu-rdp-128.

4 Distributed-Memory Algorithms

4.1 Distributed-Memory r-way R-DP

Table 1. Our distributed-memory r-way R-DP algo-
rithms.
DP Work Latency Bandwidth

LCS/Edit distance O
(

n2
p

)
O (√

p
) O (n)

Parenthesis,
Floyd-Warshall’s APSP,
Gaussian elimination w/o
pivoting, Gap, Protein
accordion folding

O
(

n3
p

)
O (√

p log p
) O

(
n2√

p
log p

)

Our r-way R-DP algorithms
can be easily modified to run
efficiently on distributed-
memory machines. We mod-
ify the top level of the recur-
sion by setting r to an appro-
priate value based on the
number of compute nodes
available and adding appropriate communication instructions. Only the first level
of recursion under function A (e.g., Apar) will have a distributed-memory imple-
mentation. Every other function and every other level of recursion of A will run
completely inside a compute node and thus will have either a multicore or a
manycore implementation.

Fig. 6. Distributed-memory implementation of Apar from
Fig. 2. Here, X is an n × n DP table and p is the number
of compute nodes.

We explain our
approach by apply-
ing it to Apar from
Fig. 2. The modified
function is shown
in Fig. 6. We map
the given p compute
nodes onto the nodes
of a √

p×√
p grid P .

We set r to √
p, and

split the n × n input
matrix X into r ×
r submatrices of size
n
r × n

r each. The sub-
matrix of X (resp.
compute node of P )
at the i-th position
from the top and the
j-th position from
the left is denoted
by Xi,j (resp. Pi,j),
where i, j ∈ [1, r].
For 1 ≤ i, j ≤ r, ini-
tially only Pi,j holds
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Xi,j . Only Pi,j updates Xi,j , and all other submatrices needed for the purpose
are brought to Pi,j through either broadcasts or direct sends. Steps 1, 2.1, 2.2
and 2.3 of distributed-Apar in Fig. 6 correspond respectively to lines 4, 6, 7 and
8 of Apar.

We use the following three cost metrics [60] computed along the critical
path to evaluate our algorithms: (i) computational cost (F ): #flops executed,
(ii) latency cost (S): #messages transferred, and (iii) bandwidth cost (W ):
#words transferred. For example, for Fig. 6, F = O

((
n/

√
p
)3) (Step 1) +

O
(√

p × (
n/

√
p
)3) (Step 2) = O (

n3/p
)
. The latency cost is dominated by

the cost of broadcasts in the loop of Step 2 which iterates √
p times, and

hence S = O (√
p log p

)
. Since each message is of size O (

n2/p
)

the bandwidth
cost of each broadcast is O ((

n2/p
)
log p

)
. Taking into account that the loop

in Step 2 iterates √
p times, the overall bandwidth cost of distributed-Apar is

W = O (√
p

(
n2/p

)
log p

)
= O ((

n2/
√

p
)
log p

)
. Table 1 lists these cost metrics

for a number of distributed-memory r-way R-DP algorithms.
We have designed distributed-memory r-way R-DPs for Floyd-Warshall’s

APSP, Gaussian elimination w/o pivoting and the gap problem, too.

4.2 Bandwidth and Latency Lower Bounds

Fig. 7. Critical path in the (a) parenthesis DP evalu-
ation, (b) GAP DP evaluation, and (c) APSP/GE DP
evaluation.

In the parenthesis problem,
we need to compute the cells
in the triangle as shown in
Fig. 7(a). The sequence of
blocks 〈B0, B1, B2, .., Bd−1〉
form a critical path as the
values of the cells in a block
depend on the cells of the
block preceding it. Hence,
unless Bi’s values are com-

puted, they can’t be used for Bi+1. Let’s assume that each block is computed by a
single processor and there is no re-computation. As there are d blocks on the criti-
cal path, its latency is d. Let the block dimensions be k0, k1, ..., kd−1, respectively.
Then W =

∑d−1
i=0 Ω(k2

i ) and F =
∑d−1

i=0 Ω
(
k3
i

)
. We also know that

∑d−1
i=0 ki = n.

Hence, to minimize bandwidth and computation cost, we make each ki = k for
some k. Thus d = n/k which gives us F =

∑d−1
i=0 Ω

(
k3
i

)
= Ω

(
nk2

)
.

If F = O (
n3/p

)
, then combining with F = Ω

(
nk2

)
, we get k = O (

n/
√

p
)
.

Latency, S = d = Ω
(√

p
)
, and bandwidth, W =

∑d−1
i=0 Ω

(
k2
i

)
= Ω

(
n2/

√
p
)
.

For other problems such as the Gaussian elimination without pivoting and
the gap problem, similar arguments hold.

4.3 Related Work (Distributed Memory)

Communication lower bounds have been established for several linear algebra
algorithms, including QR and LU decomposition [10,11,16,25,28,57,59,65–67].



Architecture-Independent Dynamic Programming Algorithms 159

Classical 2D distributed-memory matrix multiplication (MM) algorithms use
only one copy of the input/output matrix which is distributed across all p pro-
cessors (by making a √

p ×√
p processor grid [15]). They have Θ

(
n2/

√
p
)

band-
width cost and Θ

(√
p
)

latency cost, while they balance the load (F = Θ
(
n3/p

)
)

[8,10,36]. Our distributed-memory R-DP algorithms also use only one copy of
the input, and the ones that access n × n matrices also distribute them evenly
across processors arranged in a √

p × √
p processor grid. While our algorithms

also balance load they are a log p factor away from the bandwidth and latency
costs of the best 2D MM algorithm.

There is a class of distributed-memory MM algorithms, called 3D, where
p

1
3 copies of the input matrix are spread across processors which make a 3D

processor grid of p
1
3 × p

1
3 × p

1
3 [5,6,24,39]. These algorithms also load balance

(F = Θ
(
n3/p

)
) as well as minimize the communication, with Θ (log(p)) latency

and Θ
(
n2/p

2
3

)
bandwidth [10,36,60]. The third class of MM algorithms interpo-

late between the two classes where they take advantage of having c copies of the
input matrix (c ∈ {1, 2, ..., p1/3}) to build a (p/c)1/2×(p/c)1/2×c processor grid,
and hence they are called 2.5D. These algorithms have Θ

(
n2/

√
cp

)
bandwidth

and O
(√

p/c3 + log(c)
)

latency. The same technique can be used for Gaussian-

elimination style LU algorithm to obtain bandwidth cost of Θ
(
n2/

√
cp

)
and a

latency cost of O (√
cp log p

)
which is asymptotically optimal for any choice of c

(modulo log(p) factor for latency). Ballard et al. [9] have extended the commu-
nication cost analysis of distributed memory algorithms to fast MM algorithms

Fig. 8. Strong and weak scaling of our distributed-memory FW-APSP and parenthesis
DP.
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(Strassen’s) and have proved that Communication-Avoiding Parallel Strassen
(CAPS), running on a distributed-memory parallel machine meets the lower
bounds on bandwidth and latency costs.

Distributed-memory graph algorithms [43,50] and DP algorithms also exist
[33,35,38,42–44,63,68]. Solomonik et al. [58] presented a FW-APSP algorithm
based on a block-cyclic approach which performs O (

n3/p
)

work and has
O (

n2/
√

p
)

bandwidth and O (√
p log2 p

)
latency. The 2.5D APSP algorithm

given in [60] which builds on a recursive divide-and-conquer FW-APSP (Kleene)
algorithm [7] has O (

n2/
√

cp
)

bandwidth and O (√
cp log2 p

)
latency and per-

forms O (
n3/p

)
work, where c ∈ {1, 2, ..., p1/3}.

4.4 Distributed Memory Experimental Results

In this section, we present empirical results showing the performance benefits of
our distributed memory algorithms that are based on r-way R-DP.

Setup. All experiments were performed on the SKX nodes of Stampede2 [3,70].
Each SKX node has dual-socket 24-core 2.1GHz Intel Skylake processors (2 ×
24 = 48 cores in total) and 192GB of DDR4 RAM. Each core is connected to
a 32KB L1 and a 1MB L2 private caches. All 24 cores on a socket share one
33MB L3 cache. Our Stampede2 allocation allowed us to use up to 128 SKX
nodes simultaneously. We ran each MPI task on a separate socket, enabling us
to run up to 256 MPI task for our experiments.

Implementations and Optimizations. All our algorithms (FW-APSP, paren-
thesis, gap) were implemented in C++. For distributed memory, we used intel
MPI. Inside each process, we used Intel Cilk Plus extension to parallelize and
Intel R© C++ Compiler version 17.0.4 to compile the CPU implementations with
optimization parameters -O3 -ipo -parallel -AVX -xhost. Additional intra-node
CPU optimizations were the same as the ones explained in Sect. 3.5.

Distributed-Memory Results. Figure 8 shows the strong and weak scaling for
FW-APSP and the parenthesis problem. Both algorithms show good scalability
properties.

5 Conclusion

We have shown that 2-way recursive divide-and-conquer algorithms for a wide
class of DP problems can be generalized so that they run with provable efficiency
on shared-memory multicores and manycores (GPUs) as well as on distributed-
memory machines without any changes in their basic structure. We have proved
bounds on I/O and communication costs of these algorithms.

We believe that “Architecture-Independent Algorithms” holds promise for
harnessing the full power of networks of hybrid compute nodes with both mul-
ticores and manycores because of their ability to run efficiently under multi-
core, manycore, shared-memory and distributed-memory settings. Many mod-
ern supercomputers already have such heterogeneous structures and exascale
supercomputers in the near future are expected to look similar.
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Abstract. During the last decade cloud services and infrastructure as
a service became a popular solution for diverse applications. Addition-
ally, hardware support for virtualization closed performance gaps, com-
pared to on-premises, bare-metal systems. This development is driven
by offloaded hypervisors and full CPU virtualization. Today’s cloud ser-
vice providers, such as Amazon or Google, offer the ability to assemble
application-tailored clusters to maximize performance. However, from an
interconnect point of view, one has to tackle a 4–5× slow-down in terms
of bandwidth and 25× in terms of latency, compared to latest high-speed
and low-latency interconnects. Taking into account the high per-node and
accelerator-driven performance of latest supercomputers, we observe that
the network-bandwidth performance of recent cloud offerings is within
2× of large supercomputers. In order to address these challenges, we
present a comprehensive application-centric approach for high-order seis-
mic simulations utilizing the ADER discontinuous Galerkin finite ele-
ment method, which exhibits excellent communication characteristics.
This covers the tuning of the operating system, normally not possible
on supercomputers, micro-benchmarking, and finally, the efficient execu-
tion of our solver in the public cloud. Due to this performance-oriented
end-to-end workflow, we were able to achieve 1.09 PFLOPS on 768 AWS
c5.18xlarge instances, offering 27,648 cores with 5 PFLOPS of theoretical
computational power. This correlates to an achieved peak efficiency of
over 20% and a close-to 90% parallel efficiency in a weak scaling setup.
In terms of strong scalability, we were able to strong-scale a science sce-
nario from 2 to 64 instances with 60% parallel efficiency. This work is,
to the best of our knowledge, the first of its kind at such a large scale.

Keywords: High-order DG · Seismic simulations ·
Earthquake simulations · Cloud computing · Petascale computing

1 Introduction and Related Work

About 10 years after the introduction of cloud services, their 2018 worldwide
revenue is estimated above 175 billion U.S. dollars, with a projected growth of
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over 17% in 20191. Further, recent enhancements of Cloud Service Providers
(CSPs), e.g., the introduction of lightweight virtualizations and high-bandwidth
networks, led to competitive solutions for the High Performance Computing
(HPC) market. Yet, federal and institutional machines dominate the November
2018 Top500 List. This dominance is accompanied by an intense discussion of
the HPC community, often questioning the feasibility of clusters, operating in
the cloud [7,14,17,18]. Therefore, virtualized Infiniband solutions [15] or loosely
coupled applications were proposed [8].

This work studies the Amazon Web Services (AWS) Elastic Compute Cloud
(EC2) and the Google Compute Engine (GCE) of the Google Cloud Platform
(GCP) in the context of large-scale HPC. First, we present thorough general-
purpose performance benchmarking, explaining crucial HPC implications of the
cloud providers’ hardware settings. Next, we present a comprehensive study
of high-order seismic simulations with the ADER discontinuous Galerkin finite
element method. The method has been continuously and extensively optimized
for extreme-scale performance (more than 10 PFLOPS) in the last five years [2–
4,12,19,22]. However, respective advancements are limited to on-premises bare-
metal machines. By exploiting the public cloud for the setup of tailored elastic
supercomputers, we obtain a true end-to-end approach, starting at the machine
setup, covering HPC optimizations, and reaching the full spectrum of modeling
and simulation. Our contributions in this work are as follows:

(a) Section 2 motivates the need for fused forward simulations in earthquake
science and summarizes the application EDGE, short for Extreme-scale
Discontinuous Galerkin Environment. This section also introduces a new
open source surface meshing tool and a new dynamic load balancing
scheme for the solver’s shared memory parallelization in noisier execution
environments.

(b) Section 3 illustrates, that the open-source HPC ecosystem is well-prepared
to operate high performance cloud computing solutions with latest hardware
enhancements. Here, we describe the optimization of the CentOS7 Linux
operating system for our cloud clusters, the preparation of custom machine
images through system-wide setups of dependencies, and the use of the batch
scheduling tools AWS ParallelCluster and Slurm GCP for elastic scalability.

(c) Section 4 assesses the theoretical performance of AWS EC2 and GCE
through rigorous micro-benchmarking and shows that recent cloud-offerings
are performance-comparable to bare-metal, on-premises systems.

(d) Section 5 analyzes the performance and scalability of the software EDGE in
the cloud. We demonstrate that it is possible to achieve petascale perfor-
mance for tightly coupled high-order DG simulations. This includes nearly
matching the performance of an entire 2013 Top10 supercomputer (Super-
MUC) for the same scientific workload, when using an elastic petascale
cluster in the public cloud.

1 Source: https://www.gartner.com/en/newsroom/press-releases/2018-09-12-gartner-
forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2019.
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https://www.gartner.com/en/newsroom/press-releases/2018-09-12-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2019


Petaflop Seismic Simulations in the Public Cloud 169

We conclude our presentation by summarizing transferable observations and
discussing implications for the future of HPC in Sect. 6.

2 Earthquake Simulations

High-dimensional challenges in earthquake science are common and have an
inherently parallel inter-problem component. Important examples are Proba-
bilistic Seismic Hazard Analysis (PSHA), the derivation of seismic velocity
models through tomographic inversion, or seismic source inversions. Common
approaches exploit the linearity of the used seismic wave propagation models.
This enables reciprocity in the Strain Green’s Tensors (SGTs) [5,24], which, in
simple words, allows us to exchange seismic sources with seismic receivers.

For example, CyberShake [11], the approach of the Southern California Earth-
quake Center to PSHA, discretizes the study area into hazard sites. Each site is
a point of interest at the surface, where we quantify the seismic hazard, originat-
ing from potential fault ruptures in the vicinity of the site. We have two options to
compute the ground shaking from the discretized high-dimensional space of uncer-
tain ruptures: (a) Run one forward simulation for every fault rupture and sample
the seismic wave field at each of the hazard sites, or (b) exploit reciprocity by
running two (horizontal ground motion components only) or three forward simu-
lations for every hazard site, and sample the seismic wave field at the surrounding
faults. The latter case is preferable, if the number of hazard sites is much smaller
than the number of considered ruptures, as in the case of PSHA.

In either case, the simulation setup of close-by ruptures in (a), or close-by
hazard sites in (b) is, except for the used source discretization, typically identi-
cal. Shared parameters include the seismic velocity model, the mesh, the simula-
tions’ end time, and the output sampling of the wave field. From a computational
perspective, this allows us to exploit inter-problem parallelism by fusing multi-
ple forward simulations within one execution of the solver. The Extreme-scale
Discontinuous Galerkin Environment (EDGE) is the first seismic solver, which
integrates the idea of fused simulations into the entire modeling and simulation
pipeline [4]. The remainder of this section describes a model setup, covering the
San Andreas Fault’s Parkfield section using EDGE. This fused setup is also used
as the setting for our strong scaling study in Sect. 5.

2.1 Fused Forward Simulations

We use the Discontinuous Galerkin (DG) method in space and the ADER
scheme in time to solve the elastic wave equations in velocity-stress formulation.
The elastic wave equations are a linear system of hyperbolic partial differential
equations:

qt + Aqx + Bqy + Cqz = S. (1)

x = (x, y, z) ∈ R
3 is the vector of Cartesian coordinates and t ∈ R

+ time. Sub-
scripts denote partial derivatives. The three normal stresses σxx, σyy and σzz, the
three shear stresses σxy, σxz and σyz, and the three particle velocities in x-, y- and
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z-direction, given as u, v and w, are summarized in the nine-dimensional vector
of quantities q(x , t) = (σxx, σyy, σzz, σxy, σxz, σyz, u, v, w) ∈ R

9. The three space-
dependent Jacobians A(x ), B(x ), C(x ) ∈ R

9×9 depend on the seismic velocity
model. The right-hand-side term, S(x, t), accounts for seismic sources.

Application of the ADER-DG machinery leads to the discrete formulation.
We use unstructured tetrahedral meshes for the spatial discretization of the
computational domain. The discrete formulation consist of a series of small and
sparse matrix-tensor products, which drive our computational single core per-
formance. EDGE’s fused approach allows us to execute these products as fully-
vectorized sparse operators on cache-line-aligned degrees of freedom without arti-
ficial zero-padding [4]. More precisely, the LIBXSMM-library2 is used to run-time
generate and compile vectorized kernels, targeting Intel’s AVX512 instruction set
extensions. In the following, we use a fifth order ADER-DG scheme in space and
time, and refer to [4] for further details on EDGE’s discretization.

Previous versions of EDGE implemented the Standard Rupture Format3

(SRF) for the source terms S(x, t). The SRF discretizes kinematic ruptures as
a collection of rupturing planar sub-faults, which act on the stress tensor. We
replaced this implementation by a new and generic point source discretization
in this work. Our new HDF5-based source format allows us to modify the par-
ticle velocities (not only the stresses) in the source terms, as required for the
implementation of point forces at the surface. Surface point forces are, for exam-
ple, used for forward simulations in PSHA. Additionally, EDGE’s new source
input reduces the modeling burden by projecting specified sources, outside of
the computational domain, to the surface of the mesh.

2.2 Model Setup

Mesh: In the first step of our setup, we derived a surface triangulation from
the 1/3rd arc-second Digital Elevation Models (DEMs) of the USGS National
Map 3DEP Downloadable Data Collection4 in the area of interest. For this pur-
pose, we introduce the tool EDGEcut, based on the open-source library CGAL
[1,23]. EDGEcut is able to automatically triangulate a projected DEM and to
compute feature-preserving intersections of the discretized mountain topography
with specified outflow boundaries. We used the transverse Mercator projection
with center at 35.817◦N, 120.365◦W to project the DEM to a plane. The projec-
tion center coincides with the epicenter of the 2004 Parkfield event in [6]. Further,
we introduced outflow boundaries at an 80 km epicentral distance in every car-
dinal direction and 40 km below sea level. EDGEcut supports problem-adapted
surface meshing by following the attractor concept of the volume mesher Gmsh
[9]. Here, we defined an attractor at (−6 km, 6 km, 0) and linearly coarsened the
surface mesh by eight times in an attractor-distance from 10 km to 50 km. We
used a minimal edge length of 200 m and identical refinement specifications for
the final volume meshing through Gmsh.
2 LIBXSMM is available from: https://github.com/hfp/libxsmm.
3 http://equake-rc.info/static/publish/paper/SRF-Description-Graves 2.0.pdf.
4 https://catalog.data.gov/dataset/national-elevation-dataset-ned-1-3-arc-second-

downloadable-data-collection-national-geospatial.

https://github.com/hfp/libxsmm
http://equake-rc.info/static/publish/paper/SRF-Description-Graves_2.0.pdf
https://catalog.data.gov/dataset/national-elevation-dataset-ned-1-3-arc-second-downloadable-data-collection-national-geospatial
https://catalog.data.gov/dataset/national-elevation-dataset-ned-1-3-arc-second-downloadable-data-collection-national-geospatial
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Velocity Model: We used a homogeneous velocity model with a density of
ρ = 2.8 g/cm3, an s-wave velocity of vs = 1.2 km/s, and a p-wave velocity of
vp = 3km/s. Note, that EDGE’s tool EDGE-V supports data-based mesh anno-
tations via the Unified Community Velocity Model [20] and velocity-aware mesh
refinement. However, as outlined below, our focus in this work is topography
support for high-dimensional earthquake science.

Sources, Receivers and SGTs: Currently, most approaches to high-dimensional
earthquake science use flat topography. The reason is often originated in the use
of finite difference forward solvers, relying on regular meshes. As we are reaching
higher resolved frequencies through the use of more powerful supercomputers,
this lack of modeling complexity is getting more severe. Thus, for example in
PSHA, adding topography to the forward solves is one of the most urgent model
extensions. In this work, we benchmark the accuracy of three-dimensional recip-
rocal computations through SGTs, when using mountain topography in EDGE.
For this purpose we placed eight sources at the surface. Our setup uses two con-
figurations for each of the sources, a point force in x-direction (West-East), and
a point force in y-direction (South-North). The source-time function of the point
forces is given through the following Gaussian:

S(t) = e−60·t2 . (2)

In addition, we ran a single forward simulation with a single double-couple point
source, located at (0, 0,−7622.4m). The source-time function of this source is a
Ricker wavelet:

S(t) =
(

1
2

− (1.92π)2 · t2
)

e−(1.92π)2·t2 . (3)

We obtained all simulation results in this section by using EDGE’s fifth order
ADER-DG scheme, 32-bit floating point precision, and by running in the Google
Cloud Platform. Figure 1 illustrates our model setup, where the visualized wave
fields correspond to the eight forward simulations with the point force in South-
North direction. Further, similar to [24], Fig. 2 compares the synthetics of the
single forward simulation to the SGT-derived synthetics of the point forces. Here,
each of the signals was convolved with the Ricker wavelet as the new source-time
function. We observe an almost perfect fit of the seismograms, which confirms
the applicability of EDGE’s reciprocal SGT pipeline within our modeling con-
straints. This procedure could now, for example, be extended to PSHA, where
the insertion of rupture uncertainties reduces to a data-processing step w.r.t.
source convolutions, once the forward simulations are completed.

2.3 Shared Memory Dynamic Load Balancing

EDGE is exposed to two sources of load imbalances in the shared memory
domain: (a) Possibly runtime-dependent performance variations of the worker
threads, and (b) diverse memory access patterns, caused by the unstructured
mesh, when reading face-adjacent data in EDGE’s neighboring kernel. Tasks of
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Fig. 1. Visualization of the surface point force forward simulations. The output require-
ments were greatly reduced by only writing tetrahedrons at the surface and by limiting
the output to the first and constant of the 35 modes of every fused simulation. The gray
spheres indicate the locations of the surface point sources. Colors denote the South-
North particle velocities of the eight South-North point forces after 4.25 simulated
seconds. Warm colors denote positive velocities, cold colors negative ones. The entire
run covered 16 fused settings and was executed in GCP. (Color figure online)

Fig. 2. Comparison of the post-processed point force simulations with the double-
couple reference. Shown are the seismograms of the particle velocity in South-North
direction for the eight stations at the surface. The x-axis reflects hypocentral distance.
The convolved SGTs are largely indistinguishable from the reference. At the very begin-
ning of each seismogram, a small and expected offset is visible, since we processed the
raw signals without tapering.
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the operating system can contribute background noise to the first case. Here,
our core-specialization in Sect. 3 isolates most of the operating system’s tasks to
reserved cores, not used by any of EDGE’s threads. However, within the prepa-
ration of this work, we additionally observed rare (≈1% probability per node
and run) performance drops of isolated cores in our program execution. These
drops appear to be independent of the Skylake-processor (bare-metal or virtu-
alized) and the affected core seems to be random. They cannot be circumvented
by using 1 GiB huge pages, as done in [16]. The impact on the overall runtime of
EDGE without dynamic load balancing is severe, since we observed up to 20%
slowdowns in our ADER-DG kernels.

We introduce a dynamic load balancing scheme to account for possible imbal-
ances in EDGE’s shared memory domain. Our load balancer is called, whenever
EDGE reaches a synchronization point and the threads are joined. Synchroniza-
tion automatically happens for wave field output at the free-surface or in the
volume, whereas our point-wise sampling of the wave field at seismic receivers
is entirely asynchronous. Thus, in settings using receivers only, e.g., in an SGT-
only configuration, we enforce artificial synchronization for the purpose of load
balancing. This synchronization interval is a runtime parameter, where all our
scaling runs in this work used 5% of the simulation time, resulting in a total
of 19 synchronization points for the duration of each run. Whenever we reach a
synchronization point, we determine if re-balancing of any of our work regions
is required. EDGE’s seismic solver has four significant work regions: (1) the
ADER time-prediction and local update of the send-elements, which computes
data, required by other ranks, (2) the ADER time-prediction and local update
of inner-elements, independent of communication within a time step, (3) the
neighboring update of the send-elements, requiring data from other ranks, and
(4) the neighboring update of inner-elements, not requiring any data of other
ranks within a time step [4].

Let us assume a single work region, where worker w is responsible for Nw

elements in a time step. This worker spent a total of tw seconds in respective
work packages from the previous synchronization point to the current one, where
the load balancing is executed. Further, Nall is the number of all elements in the
work region, max(tw) is the maximum invested time of any worker, min(tw) is
the minimum spent time of any worker, and ave(tw) is the average time, spent by
the workers. We define the element throughput Tw of a worker w, the element
throughput Tall of all workers, the imbalance I of the work region, and the
rebalancing Rw of worker w as follows:

Tw =
Nw

tw
, Tall =

W∑
w=1

Tw, I =
max(tw) − min(tw)

ave(tw)
Rw =

Tw · Nall

Tall
. (4)

Now, whenever the imbalance I exceeds a given threshold, e.g., I > 2.5% in
our case, we re-balance our work region by assigning Rw elements to each of
the workers. If this does not lead to a worker for every element, we increase
the number of elements per worker round-robin, until the Nall elements are
distributed.
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3 Cloud Setup

The cloud offers Infrastructure as a Service (IaaS). This allows us to customize
the entire setup of our high-performance compute clusters to match EDGE’s
demands. Included are not only the choice of the underlying hardware, e.g., the
CPU architecture, but also the entire software stack, for example, the operat-
ing system and its boot-options. This section describes the setup of our cus-
tomized cloud-based compute clusters using the Amazon Web Services (AWS)
and the Google Cloud Platform (GCP). The obtained single-application clusters
are highly specialized to maximize the performance of EDGE (see Sect. 2). All
used software and tools are freely available and open source. Thus, in contrast
to commercial high performance cloud computing solutions, respective charges
of our clusters solely originate from the used AWS and GCP resources.

The first software-related step of our cloud setup is the generation of cus-
tomized cloud images, which are used for our login and compute instances. We
base our AWS cloud image on the AWS ParallelCluster5-variant of CentOS7.
Our GCP CentOS7 cloud image customizes the cloud-offered images of the GCP
centos-7 family. Both cloud image setups share the same set of scripts, which
first install all tools and libraries, required for building and executing our solver.
For example, we install a recent version of the GNU compilers, OpenMPI, the
libraries HDF5 and MOAB, or the performance monitoring tools Score-P and
Scalasca. Once all software is installed system-wide, we customize the config-
uration of the operating system to maximize the instances’ performance and
to minimize possible interference with our solver. Using dual-socket instances,
we reserve the first core of every socket for the operating system and instruct
it through the GRUB2 bootloader to exclusively use these two cores. We com-
plement this configuration in the job executions by pinning our applications’
threads to all but the two set-aside cores. Upon completion of the setups, we
store the images permanently in the cloud. We open-sourced the scripts, tuning
our cluster, such that our findings can be transferred to other software.

We use the two tools AWS ParallelCluster and Slurm GCP6 to generate our
high performance computing clusters. AWS ParallelCluster and Slurm GCP use
the clouds’ APIs for this step, for example, by generating respective virtual pri-
vate networks, or by using our machine images for the compute instances. Both
tools offer a variety of configuration-options, where the most important ones are
the used instance types, the used cloud images, and the instance placing. For
maximum network performance, we use a dynamic AWS placement group and
a single GCP zone for all of the clusters’ instances. Further, since we are gen-
erating single-application clusters, we either generate clusters, exactly matching
our instance requirements, or allocate no initial compute instances at all. In the
latter case, if not used for computations, AWS ParallelCluster runs a single mas-
ter instance, and our Slurm GCP configuration a single controller instance. The
submission and monitoring of jobs on the generated clusters is similar to every

5 AWS ParallelCluster is available from: https://aws-parallelcluster.readthedocs.io.
6 Slurm GCP is available from: https://github.com/SchedMD/slurm-gcp.

https://aws-parallelcluster.readthedocs.io
https://github.com/SchedMD/slurm-gcp
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other Slurm-based7 on-premises solution. However, after job submission, the
change in Slurm’s node types triggers respective resume-scripts in background.
These scripts elastically allocate instances from the cloud for use as Slurm nodes.
Analogue, after completion of the job and a pre-defined idle time, the compute
instances are released back to the cloud through suspend-scripts. Because our
AWS and GCP charges are dominated by the number of allocated instances, the
process of elastically allocating and releasing infrastructure minimizes costs.

4 Benchmarking the Cloud

This section summarizes important Key Performance Indicators (KPIs) of var-
ious cloud instance types on a per-node basis. We limit ourselves to Intel Xeon
instances featuring Skylake-SP CPUs, as our application makes heavy use of
512-bit vector instructions, while maintaining a small memory footprint. CSPs
use special versions of these processors and do not publish their processor-
specifications. The same applies to the specifications of the physical memory
population or network details. We mitigate this lack of documentation by study-
ing a set of micro-benchmarks and a single-node setup of EDGE on various
instance types. The obtained performance is then compared to runs on an on-
premises bare-metal dual-socket Intel Xeon Platinum 8180 machine. The Xeon
8180 is the top-of-the-line processor, that is generally available and fully docu-
mented8. Apart from illustrating the actual performance of each instance type,
we also set the micro-benchmarks’ performance in relation to respective charges.
This allows us to pick the best cloud solution for our application in terms of U.S.
dollars ($) per simulation.

Table 1 summarizes all KPIs, we were able to gather from online documen-
tation for our considered instance types. In the text of this section, we shorten
notation by only using the lower-case names of the instance families, when refer-
ring to the considered instance models: n1 for n1-highcpu-96, c5 for c5.18xlarge,
c5n for c5n.18xlarge, and m5 for m5.24xlarge.

As instances are only described by their number of vCPUs (which are hard-
ware threads) and the amount of available memory, it is hard to conclude how
the actual underlying dual-socket platform is comprised. Let us take the vCPU
count as an example. Here, the number of physical CPU cores could be higher
and remaining “empty” cores could run the hypervisor. We found an indication
in the AWS News Blog, that c5, c5n and m5 use the so-called Nitro Hypervisor,
which provides nearly full hardware performance9. This indicates that no cores
are set aside for additional management tasks. For Google’s n1 we were not able
to find a hint supporting one or the other assumption. A micro-benchmark could
determine this detail by trying to determine Skylake’s last level cache size, which

7 AWS ParallelCluster supports further submission systems, e.g., AWS Batch or SGE.
8 https://ark.intel.com/products/120496/Intel-Xeon-Platinum-8180-Processor-38-

5M-Cache-2-50-GHz.
9 AWS News Blog post: https://aws.amazon.com/blogs/aws/amazon-ec2-update-

additional-instance-types-nitro-system-and-cpu-options/.

https://ark.intel.com/products/120496/Intel-Xeon-Platinum-8180-Processor-38-5M-Cache-2-50-GHz
https://ark.intel.com/products/120496/Intel-Xeon-Platinum-8180-Processor-38-5M-Cache-2-50-GHz
https://aws.amazon.com/blogs/aws/amazon-ec2-update-additional-instance-types-nitro-system-and-cpu-options/
https://aws.amazon.com/blogs/aws/amazon-ec2-update-additional-instance-types-nitro-system-and-cpu-options/
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Table 1. Publicly available KPIs for various cloud instances of interest to our work-
load. Pricing is for US East at non-discount hours on Monday mornings (obtained on
3/25/19). *AWS CPU core name strings were retrieved using the “lscpu” command;
**AWS physical cores are assumed from AWS’s documentation, indicating that all
cores are available to the user due to the Nitro Hypervisor; ***supported in multi-flow
scenarios (means multiple communicating processes per host), each process is limited
to 10 Gbps.

KPI n1-highcpu-96 c5.18xlarge c5n.18xlarge m5.24xlarge on-premises

CSP Google Amazon Amazon Amazon N/A

CPU name N/A 8124M* 8124M* 8175M* 8180

#vCPU (incl. SMT) 2 × 48 2 × 364 2 × 36 2 × 48 2 × 56

#physical cores N/A 2 × 18** 2 × 18** 2 × 24** 2 × 28

AVX512 Frequency ≤2.0GHz ≤3.0GHz ≤3.0GHz ≤2.5GHz 2.3GHz

DRAM [GB] 86.4 144 192 384 192

#DIMMs N/A 2 × 10? 2 × 12? 2 × 12/24? 2 × 12

Preemptive $/h $0.72 $0.7 $0.7 $0.96 N/A

On-demand $/h $3.4 $3.1 $3.9 $4.6 N/A

Interconnect [Gbps] 16(eth) 25***(eth) 25***(eth) 25***(eth) 100(OPA)

is built as an aggregated cache of Cache-Home-Agent (CHA) slices. Normally,
the number of cores matches the number of active CHAs. However, this is not
important to our application EDGE, hence we did not perform such a test.

As the specifications of the cloud CPUs are not publicly available, also their
frequencies are largely unknown, especially when running AVX(512) instructions.
Therefore, the AVX512 Turbo frequencies are unknown, but given that they are
normally lower than the regular base frequency, we can take the frequencies in
the CSPs’ online documentation10,11 as an upper limit.

Similar educated guessing is needed, when studying the instances’ memory
configurations. In n1’s case, 0.9 GB per core are offered, resulting in 86.4 GB for a
two-socket machine. If the machine would be fully populated with 6 DIMMs per
socket, this would mean 7.2 GB DIMMs. Therefore, we assume that the physical
memory is (much) bigger, but still do not know if all DIMMs are plugged in.
For the AWS instances the amount of available memory is at least matching
with 16 GB populations, allowing the thesis, that c5 instances have 10 out of
12 slots in use, while c5n and m5 are fully populated. This theory is supported
by AWS’s recent announcement, that c5n instances can offer up to 19% higher
memory bandwidth than c5 instances12.

To shed more light on the instance types, we present micro-benchmarks with
the goal to fill and/or refine some of the vague entries in Table 1. In particular, we
test the floating point throughput, the memory throughput, the interconnects’
capabilities and the full-application performance of a single instance.

10 https://aws.amazon.com/ec2/instance-types/.
11 https://cloud.google.com/compute/docs/cpu-platforms.
12 https://aws.amazon.com/blogs/aws/new-c5n-instances-with-100-gbps-

networking/.

https://aws.amazon.com/ec2/instance-types/
https://cloud.google.com/compute/docs/cpu-platforms
https://aws.amazon.com/blogs/aws/new-c5n-instances-with-100-gbps-networking/
https://aws.amazon.com/blogs/aws/new-c5n-instances-with-100-gbps-networking/
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Fig. 3. Sustained FP32-TFLOPS of various instance types: (a) simple FMA instruction
from register (micro FP32 FMA), (b) an MKL-SGEMM call, spanning both sockets
(SGEMM 2s), and (c) two MKL-SGEMM calls, one per socket (SGEMM 1s). All
numbers are compared to the expected AVX512 turbo performance (Paper PEAK).

4.1 Floating Point Throughput

Our first test studies the raw floating point performance. This is a key performance
metric for EDGE, since the solver’s local kernel is heavily flop-bound in order five.
This kernel executes small FP32 sparse matrix-tensor operators. The results of our
performance tests are shown in Fig. 3. Here, the first bar for each instance type is
theoretical peak performance, derived from documented values (CSPs’ websites,
data sheet for bare-metal [13]). We see that our micro-benchmark, simply running
FMA instructions through a sequence of 32 independent vfmadd231ps instruc-
tions, is able to reach close to the expected peak performance. While the bare-
metal runs match our expectations, we observe about 5% lower values for the vir-
tualized cloud instances. This can have several reasons: (a) the virtualization is
adding a slight overhead, or (b) the AVX512 all-core turbo-frequencies are about
100 MHz lower than the CSP-specified frequencies in Table 1. In summary, we see
that n1 is able to get 71% of the bare-metal system. The AWS instance models
c5/c5n reach 80%, while m5 is at 90%. These numbers are aligned with the differ-
ence in peak performance, meaning that the cloud configurations are within 95%
of the efficiency of the bare-metal system.

Further, we ran SGEMM across both sockets and two SGEMMs per socket.
In the latter case, we obtained, compared to the bare-metal system, 66% for
n1, 74% for c5, 77% for c5n, and 90% for m5. This indicates a difference in the
memory subsystem between c5 and c5n, and a weaker subsystem for n1. Also,
c5n seems to throttle the AVX512 frequency by 100–200 MHz, as the ratios drop
to 77% from 80%. We observed a 50:50 frequency split on the bare-metal machine
between 2.2 and 2.3 GHz, due to the TDP limit of the CPUs. Apart from small
performance losses (≤10%), compared to our FMA benchmark, we conclude,
that all instance types offer a solid performance relative to their peak. Thus, the
instance type should be chosen by the pricing for flop-bound codes.

4.2 Memory

After analyzing the floating performance of heavily compute-bound kernels, we
switch to the other extreme and investigate the offered memory bandwidth.
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EDGE’s unstructured accesses to data of the four faced-adjacent tetrahedrons
in the neighboring update kernel (4 · 35 · 9 · 16 · 4 byte/float = 80,640 bytes)
generate a significant pressure on the memory subsystem. Given Skylake-SP’s
FLOPS/bandwidth ratios, this operation runs at close-to full read bandwidth
for order five. As shown in Fig. 4, the indication of the SGEMM tests in Sect. 4.1
is confirmed, since the n1 and c5 instances do not reach Skylake-SP’s maximum
memory performance. Since Goto’s algorithm [10] has a high write bandwidth
demand, due to blocking of the inner product, we can now explain the SGEMM
performance drop. In the case of n1, the measured read bandwidth is very low,
indicating either a multiplexed system among several VMs, a low physical DIMM
population, and/or issues with the virtualization of the NUMA domains of the
host system. For the STREAM triad, c5n is 14% faster than c5. m5 is an addi-
tionally 9% faster than c5n and very close to the bare-metal solution. This is
aligned with Amazon’s statement that c5n can provide up to 19% more mem-
ory performance over c5. Taking the memory sizes into account, this hints that
c5 instances have only 10/12 DIMM sockets populated, whereas c5n and m5
should use all 6 memory channels per socket. A reduction of the populated
memory channels for compute-optimized instances is explainable, since DRAM
is a huge cost factor in a datacenter. In summary, the c5n and m5 instance
models behave similar to the bare-metal machine. While c5 has an additional
degradation, n1’s read bandwidth is considerably lower. Section 4.4 studies how
the memory bandwidth influences EDGE’s full application performance.

4.3 Interconnect

We close our micro-benchmarking section of the cloud by examining the intercon-
nect, when using AWS’s c5 and GCP’s n1 instance models. Here, we ran a subset
of the latest OSU MPI micro-benchmarks13. Figure 5 depicts the following micro-
benchmarks: point-to-point one process pair unidirectional bandwidth (osu bw),
point-to-point multiple processes pair unidirectional bandwidth (osu mbw mr),
point-to-point one process pair bidirectional bandwidth (osu bibw), point-to-
point one process pair latency (osu latency). osu bw confirms our expectations
13 http://mvapich.cse.ohio-state.edu/download/mvapich/osu-micro-benchmarks-5.5.

tar.gz.

http://mvapich.cse.ohio-state.edu/download/mvapich/osu-micro-benchmarks-5.5.tar.gz
http://mvapich.cse.ohio-state.edu/download/mvapich/osu-micro-benchmarks-5.5.tar.gz
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on-premises, bare-metal system. Shown are results for the benchmarks osu bw (top
left), osu mbw mr (top right), osu bibw (bottom left) and osu latency (bottom right).

for all platforms: on the bare-metal system we get 12 GB/s for the Intel Omni-
path 100 Gbps fabric, 1.8 GB/s (which is slightly short of 16 Gbps) for n1, and
1.2 GB/s for c5. As only one flow is active, the AWS performance is there-
fore limited to 10 Gbps. osu bibw shows that all interconnects offer full-duplex
transfers, however GCP’s n1 instances need larger messages for full-duplex band-
width. osu mbw mr, which runs multiple unidirectional channels through mul-
tiple ranks, does not offer an improvement when using Intel OPA. The n1 per-
formance is now at full 16 Gbps for two processes. AWS’s c5 peak is 25 Gbps
with at most 10 Gbps per process, meaning that we require at least 3 process
pairs for full bandwidth. For two pairs (not shown), the c5 interconnect achieves
exactly 20 Gbps. Finally, osu latency demonstrates that for message sizes below
16 KiB, both n1 and c5 exhibit 25× higher latencies (25us vs 1us), compared
to Intel OPA. However, recall, that we send #modes · #variables · #fused runs
· 4 byte/float ≈20 KiB for every communicating face, when using order 5 and
FP32. Thus, the size of the messages in EDGE, comprised of the communicating
tetrahedral faces, are in the MiB range, which shadows the higher latency. Sect. 5
shows in a simple model of a structured setup, that our solver is robust w.r.t. a
network, offering 5× less bandwidth than latest supercomputing fabrics. This is
due to the face-only stencil of the used high-order DG method.

4.4 Single-Node Application Performance

Finally, after deriving the flop, bandwidth and network performance through
micro-benchmarking, we execute a single node scenario of EDGE with FP32, 16
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Fig. 6. Runtime of a regular setup of EDGE. As expected all cloud instances are slower
than the top-bin bare-metal machine. AWS instances are within 85% of the bare-metal
performance, the GCP instance achieves roughly 60% of the bare-metal performance.

Fig. 7. US-Dollars ($) spent for one billion element-updates, when using pre-
emptive/spot instances (interruptible by the CSP) and on-demand instances
(uninterruptible).

fused runs and order 5 (35 · 9 degrees of freedom per element and simulation).
Based on our micro-benchmarks, we expect, that the c5n and m5 instances reach
a performance close to the bare-metal machine. While c5’s performance should
only be slightly lower, the degradation of GCP’s n1 is expected to be most
severe. Figure 6 confirms this estimate. Due to its higher flop performance, the
m5 instance can get very close to the bare-metal machine (95%). c5 and c5n
stay slightly under 90% of the bare-metal performance. n1 is still able to achieve
57% of the on-premises bare-metal solution with 70% of the flop and 57% of the
STREAM performance.

However, when running in the cloud, one should also consider the instance
pricing. Today’s CSPs offer various types of instances, where we might utilize
preemptive/spot instances for short-running or interruptible jobs. On-demand
instances are best for uninterruptible long-running jobs. Table 1 provides the
pricing for both types. We see, that the spot instances offer a huge dis-
count. Figure 7 sets the measured full-application performance in relation to
the instance price. We use the price in dollars per 1 billion element updates as
a metric. For a given mesh, number of time steps, and by considering EDGE’s
scalability (see Sect. 5), this allows us to derive the costs of an execution upfront.
Additionally, we are able to derive the most efficient cloud configuration: c5n is
most cost-efficient, when using spot instances, whereas c5 leads for on-demand
settings. Note, that other factors, e.g., the amount of available memory, the
interconnect performance, the storage costs, or the availability of instance types
should be considered in a final decision as well.
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sustained 1.09 PFLOPS in weak-scaling on 768 instances. This elastic high performance
cluster contained 27,648 Skylake-SP cores with a peak performance of 5 PFLOPS. The
strong scaling setting on 64 instances had a performance of 53 TFLOPS.

5 Elastic Scalability

The previous section shows that, due latest hardware enhancements, single-
instance public cloud executions can match the performance, provided by on-
premises installations. In order to scale out, novel algorithms are needed to
mitigate the 4–5× lower interconnect bandwidth. We address this by employ-
ing a high-order DG-solver with a high computation-to-communication ratio.
As a side note, even latest on-premises systems can suffer from such an imbal-
ance. A c5.18xlarge instance offers 6.6 TFLOPS with a bandwidth of 25 Gbps. In
contrast to this, one node of the GPU-accelerated Summit supercomputer has
96 TFLOPS (also FP32) per node and offers 200 Gbps bandwidth14. Therefore,
the cloud offers a FLOPS/bandwidth ratio, which is within 2× of Summit (of
course the latency on Summit is still ∼25× better than in the cloud). This means,
in order to run efficiently in the cloud and on Summit, similar approaches for
communication avoidance and hiding are needed. In the following, we scale our
application to 768 c5.18xlarge instances, having 27,648 Skylake-SP cores with a
peak performance of 5 PFLOPS. This is a high instance count, considering that
one normally has to wait in queues on a dedicated supercomputer. In all our
tests the cloud was able to serve our requests within 2.5 h. That includes the
largest setting, which required booting 768 instances with our custom machine
image and registering them on the Slurm-controller.

We carried out two scaling tests, depicted in Fig. 8 (due to space limitations,
we focussed on AWS for scaling and used GCP for the presented SGT runs).
First, we executed a weak scaling scenario with two processes per instance to
reach the benchmarked 20 Gbps bandwidth. Here, we took a regular five-fold
subdivided hexahedral mesh with a total of 655,360 tetrahedral elements per
instance for 1–512 instances. The 768 instance setting used 384 · 512 · 528 · 5 =
675, 840 elements to provide a proper setting for our dimension-wise 8 × 8 × 24
partitioning in this case. All boundary conditions were periodic, increasing the

14 https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/.

https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
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communication footprint. Further, we did not exploit any of the structure, when
running our unstructured solver, e.g., stored all adjacency information explicitly.

Taking the 768 instance setting as an example, we obtain (48 ·64 ·2+48 ·22 ·
2 + 64 · 22 · 2) · 2 = 22, 144 tetrahedral faces for the six rectangular sides of each
partition. For each face, data of the face-adjacent tetrahedrons has to be commu-
nicated to neighboring ranks. One y-z-side (64 ·22 ·2 faces) neighbors the second
rank on the other socket of each instance. Thus, we obtain an uni-directional
network-only communication volume of 19.6875KiB · 19, 328 ≈ 371.6MiB, when
also considering the number of required bytes for the elements’ degrees of free-
dom. With a single-instance average time of 0.81 s per timestep, we can esti-
mate a bandwidth requirement of ∼460 MiB/s on the fabric in one direction and
920 MiB/s full duplex. This is also confirmed by our extensive Scalasca measure-
ments. As AWS EC2 delivers 1.2 GB/s per process, the headroom is sufficient
to account for efficiency losses due to congestion with other cloud jobs, using
the fabric. This is important, as we cannot influence the instances’ placement
within the datacenter’s placement group, e.g., schedule instances, which are all
connected to the same Ethernet switch. For up to 32 instances we measured per-
fect weak scalability of 95% and for larger cluster sizes a slight decrease, staying
above 86%. As comparison, our in-house 32-node Xeon 8180 cluster, connected
by an Intel OPA fabric, achieved a parallel efficiency of 98% on all 32 nodes.

Second, in addition to weak-scaling a structured mesh, we ran the SGT sce-
nario of Sect. 2, which includes topography and has an unstructured mesh, com-
prised of 3,861,780 tetrahedral elements. This setting fits well into 288 GB of
memory, provided by two c5.18xlarge instances. In this case, the volume-to-
surface ratio shrinks with an increased instance count and we expect the fabric
to be limiting at larger scale. Figure 8 confirms this expectation. We can strong
scale by 4× with close-to 90% efficiency. 60% are still possible, when using once
again 8× more resources and strong scaling the original problem by 32×. While
our elastic cloud cluster delivered 77% parallel efficiency on 32 instances, the 32
nodes bare-metal Intel OPA cluster achieved a parallel efficiency of 90%.

Last but not least, we want to highlight that for neither the weak- nor the
strong-scaling case optimal placement in the datacenter or mesh-aware schedul-
ing was exploited to keep results as generalizable as possible.

6 Discussion and Conclusion

This work demonstrates the efficient use of application-centric cloud clusters for
modern and tightly-coupled scientific computing. Public cloud services offer elas-
tic multi-petaflops machines, which were four years ago only available through
on-premises supercomputing centers. In particular, we examined Google’s and
Amazon’s cloud offerings. For a single instance, we observed a performance,
matching that of a competitive on-premises bare-metal system. This is due to
two recent hardware advancements: (a) offloaded hypervisors and (b) full vir-
tualization support in CPUs for high performance VMs, allowing access to the
underlying logical CPUs and NUMA domains. From an interconnect point of
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view, we observed a 4–5× slow-down in terms of bandwidth and ∼25× in terms
of latency, compared to latest high-speed and low-latency interconnects. Taking
into account the per-node performance of supercomputers, we see that recent
cloud offerings are within ∼2× of latest accelerated supercomputers, when it
comes to the per-node interconnect bandwidth. Therefore, no matter if one is
running on an accelerated supercomputer or in the cloud, a bandwidth-efficient
algorithm is needed. This work illustrates the cloud-specific end-to-end optimiza-
tion of the high-order ADER-DG solver EDGE for seismic wave propagation
problems, such as earthquake simulations. Due to EDGE’s low communication
volume, we were able to achieve 1.09 PFLOPS on 768 c5.18xlarge instances.
These instances theoretically offer 5 PFLOPS, resulting in an application peak
efficiency of more than 20% and a parallel efficiency of close-to 90% in a weak
scaling setup.

This performance can be set into relation to previous work. In [3] a weak-
scaling of another ADER-DG solver, SeisSol, is presented. The authors sustained
1.09 FP64 PFLOPS in hardware on the, at this time, Top500 #10-placed Super-
MUC, an Intel Sandy Bridge system with 6.2 FP32 PFLOPS peak [21] (today
this system is listed #64 in the Nov’18 edition of the Top500 list). The pre-
sented, application-relevant non-zero performance in [3] is 750 FP64-TFLOPS.
In theory, this could double to 1.5 PFLOPS in a potential FP32 run15. Thus,
five years later, public cloud clusters with 12 times less nodes and roughly five
times less cores can replace a 2013 top 10 system.

This is due to three main factors: First, improvements in hardware (often
associated with Moore’s Law): instead of an 8-core CPU at 2.6 GHz, having
two 256-bit VPUs without FMA, the current work uses an 18-core CPU at
≈3.0 GHz with two 512-bit FMA-VPUs per core. This means, that each Skylake
core offers ∼4.5× higher capabilities than Sandy Bridge. Including the core-
count, every socket in the cloud cluster is ∼10× more capable than a Super-
MUC socket. Second, the efficient elimination of artificial zero-operations in
the ADER-DG kernels through fused simulations, combined with runtime code-
generation of sparse matrix-tensor kernels through the LIBXSMM library using
single precision. And finally, third, an aggressive communication scheme, utiliz-
ing application-integrated MPI progression. Only the combination of all three
aspects allows EDGE to reach high application-performance in the cloud.

In terms of strong scalability, we scaled a demanding setting from 2 to 64
instances with a parallel efficiency of 60%. This performance is a bit lower,
compared to Intel OPA. For such scenarios, AWS announced the so-called EFA
network, which provides lower latencies at up to 100 Gbps bandwidth.
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Abstract. Optimal engine operation during a transient driving cycle
is the key to achieving greater fuel economy, engine efficiency, and
reduced emissions. In order to achieve continuously optimal engine oper-
ation, engine calibration methods use a combination of static correlations
obtained from dynamometer tests for steady-state operating points and
road and/or track performance data. As the parameter space of control
variables, design variable constraints, and objective functions increases,
the cost and duration for optimal calibration become prohibitively large.
In order to reduce the number of dynamometer tests required for cali-
brating modern engines, a large-scale simulation-driven machine learn-
ing approach is presented in this work. A parallel, fast, robust, physics-
based reduced-order engine simulator is used to obtain performance and
emission characteristics of engines over a wide range of control param-
eters under various transient driving conditions (drive cycles). We scale
the simulation up to 3,906 nodes of the Theta supercomputer at the
Argonne Leadership Computing Facility to generate data required to
train a machine learning model. The trained model is then used to predict
various engine parameters of interest, and the results are compared with
those predicted by the engine simulator. Our results show that a deep-
neural-network-based surrogate model achieves high accuracy: Pearson
product-moment correlation values larger than 0.99 and mean absolute
percentage error within 1.07% for various engine parameters such as
exhaust temperature, exhaust pressure, nitric oxide, and engine torque.
Once trained, the deep-neural-network-based surrogate model is fast for
inference: it requires about 16µs for predicting the engine performance
and emissions for a single design configuration compared with about 0.5 s
per configuration with the engine simulator. Moreover, we demonstrate
that transfer learning and retraining can be leveraged to incrementally
retrain the surrogate model to cope with new configurations that fall
outside the training data space.
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1 Introduction

In order to achieve the goals of increased fuel economy and performance while
reducing emission, automotive manufacturers have implemented various strate-
gies and parameter variables to control and optimize automotive engines. Engine
calibration—the process of determining the optimal values of control variables
such as spark/fuel injection timing, valve timing, exhaust gas recirculation
(EGR) fraction is of paramount importance in achieving high engine perfor-
mance and fuel economy while meeting emission standards. Currently, to make
the problem tractable, automotive manufacturers optimize one or more engine
performance indices (e.g., fuel economy, emissions, or engine torque) with respect
to a given set of engine-controllable variables such as valve timing, EGR frac-
tion, or ignition/injection timing, with all other conditions such as engine speed
and load remaining the same. Optimal values of various engine operating points
(speed and load) are obtained via dynamometer tests that are then used to
generate engine maps. This procedure is called static calibration for steady-
state conditions. These static calibration values are then interpolated to obtain
optimal operating conditions for other operating points. The static calibration
process, however, presents significant and unique challenges on account of the
large design space and conflicting constraints. Over thirty independent design
variables, including engine speed (i.e., RPM), torque, air-to-fuel ratio (AFR),
and driving conditions (e.g., city or highway) influence the fuel economy, engine
performance, and emissions. Moreover, most engines are operated in transient
mode, especially during city drives. During the transient mode of operation,
the engine speed and load change continuously and frequently (as opposed to a
highway drive), and hence optimal operating conditions derived from static cal-
ibrations are not accurate. The lack of accuracy stems from the fact that there
is a strong nonlinear correlation between various input parameters and outputs.
For instance, a small change in the spark timing can increase the engine torque
but also greatly increase the NO emission. In order to increase the accuracy for
transient engine operation, more calibration tests have to be conducted over a
wider range of input/controllable parameters to span the entire feasible engine
operating domain. Hence, the cost and duration of the calibration process grow
exponentially with the number of input/controllable parameters, greatly increas-
ing the product design cycle/time to market. Even for engines with simple tech-
nologies, achievement of the optimal calibrations for the transient driving mode
is impractical.

Harnessing the power of high-performance computing, one can perform opti-
mal calibrations for the transient driving conditions using massively parallel
computations. Conducting design, analyses, and optimization studies over such
a large parameter space presents serious computational challenges, however. To
span the entire engine operating range over the vast parameter space requires
thousands of combinations of input conditions. For instance, if one were to con-
sider just six different input control parameters with five parametric values for
each input variable, one would have 15,625 (56) different input combinations
for a single transient drive cycle (or commute of a single driver). Given the
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wide variability in the driving habits of individual drivers and different types
of commutes, simulating the typical drives of a handful of drivers would yield
over a 100,000 transient simulations. Each such simulation would produce vast
amounts of output data, such as peak, average, and cumulative values of emis-
sions, power, engine temperature, and exhaust gas temperature and pressure.
Computational time for a typical city or highway drive is also a major barrier
to the use of high-performance computing in large-scale transient drive cycle
simulations. For instance, the computational time for a single engine cycle (one
compression stroke followed by one expansion stroke of the piston) can range
from a few hours to days at the strong-scaling limit (50–100 cores) of modern
multidimensional simulation codes. A typical 25–30-min drive involves about
40–50,000 engine cycles. Thus, a single multidimensional drive cycle simulation
would require well over a year, which precludes their use for such drive cycle
simulations and optimization (calibration).

Given the need to simulate typical drive cycles of thousands of vehicles
in real time (physical time taken to run engine dynamometer tests or dyno
tests) while efficiently harvesting and learning useful design, development, and
optimization data, we have developed a modeling framework called MaLTESE1

(Machine Learning Tool for Engine Simulations and Experiments). It is a scal-
able simulation-driven machine learning (ML) framework that enables automo-
tive design engineers to exploit the task parallelism inherent in simulating thou-
sands of transient drive cycles and learning at real-time speeds. The framework
also allows the coupling of experimental engine data in order to tune simulation
constants and/or train the neural network and hence closely couples large-scale
simulations, available engine data, and ML. This paper describes the use of MaL-
TESE to conduct the largest transient driving cycle simulation conducted on the
Theta supercomputer at the Argonne Leadership Computing Facility. We also
present an in-depth study of the use of ML methods to predict engine perfor-
mance and emissions based on the training and test data obtained from the drive
cycle simulations.

The MaLTESE framework consists of two main components: an engine sim-
ulator pMODES and a neural-network-based surrogate-modeling tool. Engine
simulations of thousands of different typical transient city driving commutes,
each approximately 25–30 min, were accomplished by using pMODES (parallel
Multi-fuel Otto Diesel Engine Simulator). This is a parallel, robust, physics-
based real-time engine simulator that can concurrently compute the performance
and emissions for thousands of transient drive cycles. The simulator can perform
engine simulations for either gasoline (Otto) or diesel engines with any combi-
nation of over thirty user-defined input/control variables. Given a set of driving
conditions (wind speed, friction, gear-shift/transmission strategy, etc), one can
obtain detailed information about over twenty engine outputs, such as fuel con-
sumption, engine performance (power/torque), emissions (carbon dioxide, car-
bon monoxide, nitric oxide, soot), exhaust gas temperatures and pressures, and
maximum engine temperature and pressure. The engine simulator produces the

1 Aptly named after a small, intelligent dog that loves to learn new tricks.
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same data as an engine being tested on a dynamometer. Since thousands of
driving commutes can be simulated simultaneously, accurate input/output cor-
relations (transient calibration) over a wide range of input parameters can be
accomplished without the prohibitive testing costs. Furthermore, since the drive
cycle simulations can be conducted at speeds faster than real time, a typical drive
cycle simulation can be conducted in less than 30 min, hence making it practical
for the design and development of fleets of cars. A subset of the large calibration
data is then input to the neural-network-based surrogate modeling tool. Based
on the calibration data, a surrogate model is trained to capture the relationship
between the multiple inputs and outputs. The trained surrogate model can then
be used to predict expected calibration values of other driving conditions and can
be a part of the engine control unit. Large computing clusters with thousands
of cores greatly reduce the wall time and effort by concurrently simulating thou-
sands of driving cycles. A subset of the large data set was generated from over
300 million engine operating points in a typical commute of 250,000 different
drivers. Finding the optimum operating condition for a given engine operation
(speed, load, driving condition) can improve engine efficiency, reduce emissions,
reduce engine wear and tear, and improve fuel economy. Use of large-scale com-
puting and data analytics for drive cycle analyses enables engine designers to
reduce the cost and time required for engine dyno tests, hence reducing the
product design cycle and cost to consumers.

The main goal of this paper is to use MaLTESE to demonstrate the following:

1. Concurrent simulation of thousands of driving cycles with the engine simula-
tor (pMODES) for a typical 25-min commute at faster-than-real-time speed.

2. Ability of deep neural networks to use a small subset of the parameter space
to train a model and predict engine output characteristics of any arbitrary
driving cycle in the parameter space.

3. Inference time of a deep-neural-network-based surrogate model being consid-
erably lower than simulations with near 1% error in prediction accuracy.

This paper is organized as follows. Section 2 describes the method of solution for
the engine simulation and the training and testing of the neural-network-based
ML predictions. Section 3 presents the numerical experiments using various ML
methods. Section 4 discusses related work. The main conclusions of the paper
are presented in Sect. 5.

2 Surrogate Modeling for Transient Drive Cycle
Simulation

In this section, we discuss the engine simulator and the ML approach for sur-
rogate modeling. We also describe the parameters of the drive cycle simulations
and the choice of the parameter subspace to train the neural network.
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2.1 Engine Simulator

The engine simulator pMODES [2,3] is used to compute the temporal variation
of various engine parameters such as pressure, temperature, and mixture com-
position for each CAD over an entire drive cycle. The energy equation shown in
Eq. (1) describes the relationship between the engine crank angle θ and instan-
taneous pressure (P (θ)).

dP (θ)
dθ

=
γ − 1
V (θ)

(Qin − Qloss) − γ
P (θ)
V (θ)

dV

dθ
(1)

Here, Qin is the heat input due to fuel combustion, Qloss is the heat lost from
the engine, γ is the ratio of specific heats of the working fluid, and V (θ) is the
instantaneous volume of the cylinder. Solution of this equation yields the tem-
poral variation of cylinder pressure for a given set of operating conditions (such
as load, combustion duration, fuel type, and engine RPM). The instantaneous
values of temperature and composition of the burned and unburned gas zones
can be obtained from the instantaneous value of computed pressure. Knowing
the instantaneous temperature, pressure, and composition of the burned zone,
one can compute emissions such as nitric oxide, carbon monoxide, soot, and
unburned hydrocarbons using simplified reduced chemistry models. Details of
these models and the solution procedure are discussed in Ref. [4]. Instantaneous
values of equilibrium concentrations of the combustion products are needed in
order to compute various emissions. Computation of these equilibrium concen-
trations poses serious numerical challenges because of the stiffness of the system
of nonlinear equations describing the formation of combustion products. Refer-
ences [2,3] discuss the details of the computation procedure and steps taken to
ensure a fast, robust solution. Following the solution procedure discussed above,
one can obtain a temporal variation of output quantities such as emissions (NO,
CO), engine exhaust temperature and pressure, and torque as a function of time.
Figure 1 in Ref. [5] shows the temporal variation of NO and CO for a given fuel
injection pattern.

In this work we considered sixteen driving cycles. Each transient cycle had
1,500 data points corresponding to a typical 25-min commute, with data sam-
pled every second (25 * 60). For each drive cycle, we considered five values
for six independent engine parameters—spark timing, engine rpm (depends on
gear ratio), ambient air temperature, air humidity, internal EGR fraction (pro-
portional to valve timing), and compression ratio (engine size)—thus yielding
15,625 cases (56) with different input conditions for each drive cycle and 250,000
for all sixteen drive cycles considered. This number of 250,000 drive cycles is
representative of the rush-hour traffic on four major freeways in a typical large
city.

2.2 ML-Based Surrogate Modeling

A class of ML approaches used for surrogate modeling is supervised learning [6].
Typically, it is used to model the relationship between the output variables and
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several independent input variables. In this work, we seek to find a surrogate
model that captures the relationship between the five output variables (exhaust
temperature, exhaust pressure, NO, CO, and engine torque) and the ten input
variables (ambient air temperature, air humidity, valve timing, engine size, spark
timing, gear ratio, fuel injection rate, air-fuel ratio, engine inlet pressure, and
intake air mass). A supervised learning method takes as input a set T of N
training points of the form {(x1, y1), . . . , (xN , yN )}, where xi and yi are the
input and output vectors of the ith training point, respectively. The training
procedure of the supervised learning method seeks to find a surrogate function h
for f : X → Y , where f is an unknown function that maps the multidimensional
input space X to the multidimensional output space Y , respectively, such that
the difference between f(xi) and h(xi) is minimal for all xi ∈ T ⊂ D, where D
is the full data set.

Arguably, classical ML methods are limited in their ability to learn directly
from raw data. For decades, the development of ML surrogate models required
considerable domain expertise to transform raw input data into a suitable inter-
nal representation from which the system could try to learn the relationship
between inputs and outputs. Recently, representation learning methods have
been developed to automatically discover representations that are best for learn-
ing the relationship between inputs and outputs [14]. Deep learning approaches
[18] are representation learning methods with multiple levels of representation.
They are obtained by composing simple nonlinear computational units that
transform the representation at one level into a representation at a higher,
slightly more abstract level. These approaches have dramatically improved the
state of the art in many ML tasks, such as speech recognition, visual object
recognition, drug discovery, and genomics [14,18].

Deep neural network (dnn) [18] systems are a prominent class of deep learn-
ing approaches. A dnn comprises a stack of computational layers organized in a
hierarchical way, with the layers connected through a system of weighted con-
nections. Each layer has a number of simple computational units, each with a
nonlinear transformation operation called an activation function. The input layer
of the dnn receives a batch of input data, which is transformed into higher-level
representations through the stack of computational layers and weighted connec-
tions. The output layer of the dnn gives the predicted values of the outputs.
During the training phase, the weights of the connections in the network are
adjusted to minimize prediction errors. This adjustment is achieved efficiently
by using a back propagation method that calculates the gradient of the error
with respect to all the weights in the network and uses it in a stochastic gradient-
based optimization to adjust the connection weights.

While there exists a standard dnn configuration for traditional ML tasks
such as image and text classification, there is no default or general-purpose dnn
configuration for surrogate modeling of engineering applications and in particular
transient drive cycle modeling. Designing a suitable dnn for a given modeling task
is a key research challenge for many nontraditional ML tasks.
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Fig. 1. The dnn configuration obtained for transient drive cycle surrogate modeling

We carried out an exploratory study and developed a relatively simple multi-
layered feed-forward neural network. Figure 1 shows the obtained network used
in this work: the input layer of size |X| = 10 is connected to a dense hidden
layer with 16 units (HL0) and a rectified linear activation function (not shown
in the figure). This configuration is repeated six times (HL1, . . ., HL5), where
the output of the previous layer is given as the input for the next layer. Conse-
quently, the 16 units of the jth layer are connected to each of the 16 units in
the (j + 1)th layer. The last layer is the output layer of size |Y | = 5 that gives
predicted values.

3 Experimental Results

In this section, we first describe the setup that we used to assess the efficacy of
the proposed dnn method. We then describe the training data generation and
prediction accuracy results.

3.1 Setup

In addition to dnn, many classical ML methods (sometimes referred to as shal-
low learning methods) for surrogate modeling exist in the literature. Based on
the algorithmic similarity and functionality, they can be grouped as regulariza-
tion, instance-based, recursive partitioning, kernel-based, bagging, and boosting
methods. For comparison with dnn, we selected several classical ML methods to
cover different groups: ridge regression (rg) [16], k-nearest-neighbor regression
(knn) [6], support vector machine (svm) [25], decision tree (dt) [19], random for-
est (rfr) [8], extremely randomized trees (etr) [13], ADA-boosting regression
(abr) [11], bagging regression (br) [7,20], gradient boosting regression (gbr)
[12], and eXtreme gradient boosting (xgb) [9]. As a baseline, we also included
the simplest regression method, multivariate linear regression (lm).

The ML training and inference experiments were run on a single-node hard-
ware platform with a 3.4 GHz Intel Xeon E5-2687W processor (8 cores per CPU),
64 GB RAM, with an NVIDIA Tesla P100, 16 GB GPU RAM. The dnn training
and inference leveraged GPUs, whereas the classical ML methods used only the
host CPU processors.

We used Python (Intel distribution, version 3.6.3) and the scikit-learn library
[23] (version 0.19.0) to implement all the classical ML methods. We used the
default hyperparameters provided by the scikit-learn library for the ML methods.
For dnn, we used Keras [10] (version 2.0.8), a high-level neural network Python
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library that runs on the top of the TensorFlow library [1] (version 1.3.0). We
used the following hyperparameter settings for dnn training: epochs = 50, batch
size = 16, loss = mean squared error, and optimizer = adam. While dnn natively
supports multioutput regression, where we can build a single model with multi-
ple outputs, the classical ML methods considered in our study do not support
multioutput regression. Therefore, we built one model for each output. We lever-
aged the MultiOutputRegressor interface in the scikit-learn library to build the
multioutput regression models.

Given the different ranges for inputs and outputs, ML methods benefit from
preprocessing the training and the testing data set. For each input and output, we
applied MinMaxScaler and StandardScaler transformations in the scikit-learn
library. The former scales the values between 0 and 1, and the latter removes the
mean and scales the values to unit variance. We applied the two transformations
before training and applied the inverse of StandardScaler and MinMaxScaler
transformations after inference so that evaluation metrics were computed on the
original scale. Note that the inverse transformations are required only for the
predicted output values.

We adopted two evaluation metrics to assess the accuracy of the ML models
on the test data and to compare them. The first metric is the Pearson product-
moment correlation coefficient (r), which we use to measure the strength of a
linear association between observed and predicted values on the test data. This
metric ranges from −1 to +1. A value of 1 indicates a perfect linear relationship
between observed and predicted values. A value of 0 indicates that no linear
correlation exists between observed and predicted values and thus the prediction
accuracy of the model is poor. A value of less than 0 means that as the value
of observed (predicted) values increases, the value of the predicted (observed)
values decreases. While this metric does not capture the absolute error, it is
particularly useful when engineers build ML models for optimization as an end
goal, where the relative ordering of the predicted values is sufficient to choose
the best configurations. The second metric is the mean absolute percentage error
(MAPE) given by the mean of 100 × |yi−ŷi|

yi
% for i ∈ 1, . . . , n, where yi and ŷi

are observed and predicted values of the test data point i, respectively. We used
this metric to assess the prediction error for each output.

3.2 Training Data Generation at Scale

As explained earlier, 250,000 different transient drive cycles were simulated con-
currently by using the engine simulator pMODES to generate the training and
test data for the ML algorithms. The simulations were conducted on Theta—a
4,392-node, 11.69-petaflop Cray XC40–based leadership-class supercomputer at
the Argonne Leadership Computing Facility (ALCF). Each node of Theta is a
64-core Intel Xeon Phi processor with 16 gigabytes of high-bandwidth in-package
memory, 192 GB of DDR4 memory, and a 128 GB SSD. The nodes of Theta are
interconnected by an Aries fabric. Theta has a total file system capacity of 10
petabytes.
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In this work, large-scale computing was used to exploit the inherent task par-
allelism in the simulation of a large number of drive cycles. In such applications,
it is important to demonstrate that the overall size of the problem (number of
drive cycles considered) does not adversely affect the total wall time for simu-
lation. In order to test the weak-scaling characteristics of the simulation, three
different tests were run, with 62,500, 12,5000, and 250,000 cases run concurrently,
corresponding to 1/4, 1/2, and near-full-machine simulation (3,906 nodes out of
4,392 nodes). Since each drive cycle was run concurrently on a single processor,
the total wall time for each of these cases should be nearly constant. Within
each set of runs, the simulation time for an individual drive cycles depends on
the computations required for the emissions, which can vary depending on the
case being considered. Table 1 shows the minimum and maximum time required
for computing an individual drive cycle.

Table 1. Weak scaling on Theta

Nodes (cases) Min time (sec) Max time (sec)

1024 (62500) 728 1157

2048 (125000) 740 1252

3906 (250000) 720 947

The runtime for a typical 25-min drive cycle was about 12–15 min (faster
than real time) on the Intel Knights Landing (KNL) cores on Theta. From
Table 1, we can see that the minimum simulation time is nearly constant for
all the cases considered. We also can see that the maximum simulation time is
nearly constant for the 1/4 and 1/2 machine size cases, whereas the near-full-
machine simulation is about 20% lower. The system load from other jobs on
the machine seems to have a greater impact on the simulation time for cases
1 & 2 compared with case 3, where there is less interference from other jobs
on the system. These results demonstrate that one can simulate drive cycles of
various sizes—even thousands—on a large-scale production cluster such as Theta
without a serious penalty on overall wall time for computation as the size of the
drive cycle simulations increases. Such a capability might be required if one were
to use physics-based models to develop the acceleration and braking strategies
for connected vehicles in order to optimize fuel efficiency, reduce emissions, and
reduce engine wear and tear.

The discussion also shows that conducting a drive cycle simulation of a large
parameter space requires considerable computational resources. To minimize the
use of large-scale computing for drive cycle analyses, we investigated the possi-
bility of using machine learning techniques wherein a small subset of the large
parameter space is used as training data. We explored the possibility of using
a trained model in predicting the characteristics of other drive cycles without
the need for conducting simulations or gathering engine data with acceptable
accuracy. In this work, we generated the following data sets for training and
testing.
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1. train-data-1: From the complete parametric study of 250,000 different drive
cycles, a representative set of 64 different drive cycles, spanning the input
parameter range, was chosen for training data. We used Latin hypercube
sampling [21], a statistical method on the input space to select the 64 repre-
sentative sets. Since each drive cycle had 1,500 data points for fuel flow rate,
a total of 96,000 data points were used for training.

2. test-data-1a: To test the accuracy of prediction from the training set, we
used two different test data sets from the entire set of 250,000 (excluding
those used in the training). The first set comprised four different drive cycles,
which had the same fuel flow rate but for which the other input parameters
were different, for a total of 6,000 data points.

3. test-data-1b: In addition to this test data set, a random set of four drive
cycles (for a total of 6,000 points) was chosen for the 250,000 cases (excluding
those used to train the model). By random, unlike the test-data-1a case,
no parameter was intentionally kept constant.

4. test-data-2: Both the test cases test-data-1a and test-data-1b were
drive cycles wherein the range of input parameters of the test drive cycles
was the same as that for the training model. In order to test the efficacy of
the ML methods wherein the test data might have parameters beyond the
bounds of the trained data, a third data set was generated. This data set had
a fuel flow rate that was 20% higher than the corresponding fuel flow rate
used in test-data-1a. Furthermore, the engine RPM was lower than that
used in test-data-1a by 17%.

3.3 Comparison of ML Methods

In this section, we compare the different ML methods that were trained on
train-data-1 and tested on test-data-1a and test-data-1b. We use parallel
coordinate plots to visualize the accuracy metrics obtained by the ML methods
on the five outputs. In the plot, each output is given an axis; the five axes are
placed parallel to each other. Each axis can have a different scale because each
output can have a different range of values. Given an ML method, its accuracy
value on each axis is connected and visualized through a line.

The parallel coordinate plots for Pearson product-moment correlation coef-
ficients are shown in Figs. 2a and b. On both testing data sets, all ML methods
obtain correlation coefficients larger than 0.92. On test-data-1a, dnn outper-
forms other ML methods, obtaining correlation coefficient values larger than
0.99 for exhaust temperature, exhaust pressure, NO, CO, and engine torque,
respectively. The trend is similar on test-data-1b, where dnn achieves larger
correlation coefficient values than those of the classical ML methods. An excep-
tion is for exhaust temperature, where the correlation coefficient of xgb is slightly
larger than dnn.

Figures 2c and d show the MAPE values on test-data-1a and test-
data-1b, respectively. The range of error percentages for exhaust temperature,
exhaust pressure, NO, and engine torque is between 0.2% and 2.5%; but for CO
the error goes up to 10.39% and 7.23% on test-data-1a and test-data-1b,
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Fig. 2. Parallel coordinate plot showing the accuracy metrics obtained by different ML
methods
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respectively. This indicates that prediction of CO is more difficult than pre-
diction of exhaust temperature, exhaust pressure, NO, and engine torque. The
MAPE values obtained by dnn are smaller than those of other ML methods.
In particular, dnn achieves significantly smaller MAPE values for the outputs;
exhaust pressure, CO, and engine torque. Overall, MAPE values of dnn are not
more than 0.59% and 1.07% on test-data-1a and test-data-1b, respectively.
The scatter plots of observed and predicted values from dnn for the five outputs
on test-data-1a and test-data-1b are given in AppendixA.

Fig. 3. Bar plots showing the training and inference times of the different ML methods

Figure 3 shows the training and inference times of the different ML meth-
ods on train-data-1 and test-data-1a, respectively. From Fig. 3a, we observe
that dnn requires approximately 1,000 s for training. On the other hand, the
training times of classical ML methods range between 0.1 and 10 s. An excep-
tion is svm, which requires a training time similar to that of dnn. Even though
dnn leverages P100 GPUs, it is more computationally expensive than other ML
methods. This difference can be attributed to the cubic algorithmic time com-
plexity. The bagging and boosting methods typically have a time complexity of
O(N log N) in the training set size N . Figure 3b shows the time required for
inference on test-data-1a. To predict 6,000 points, dnn requires approximately
0.1 s (16 microseconds/configuration), which is lower than that of several sophis-
ticated classical ML methods such as br, etr, rfr, and svm. Simple ML methods
such as lm, rg, and dt require less than 0.01 s, but their accuracy values are not
as high. We observed a similar trend on test-data-1b.

3.4 Impact of Training Set Size

We studied the impact of the training data size on the accuracy of the dnn
method by varying the number of training points. In addition to the default
training data size of 96,000, we considered training set sizes of 1,500, 3,000,
6,000, 12,000, 24,000 and 48,000 data points (1,500 data points represent one
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Fig. 4. Parallel coordinate plot showing the impact of training data set size on the
MAPE values obtained by dnn on test-data-1a

complete transient drive cycle; hence, the training set sizes represent 1, 2, 4, 8,
16, and 32 different drive cycles). For each training set size, we trained the dnn
method and evaluated the model on test-data-1a.

The results are shown in Fig. 4, where the lines in the parallel coordinate
plot correspond to the training data set sizes. We observe that an increase in
the training set size decreases the MAPE values. We did not include the MAPE
values for 1,500 because the error values are too high (greater than 100%), which
results in skewed axes ranges. The dnn model trained with 3,000 points yields
MAPE values between 6.26% and 23.39%. While the MAPE values for training
set size to 6,000 and 12,000 are lower than that of 3,000, to achieve MAPE values
within 1% for all the outputs, the dnn model requires at least 48,000 training
points.

3.5 Model Adaptation Using Transfer Learning and Retraining

We evaluated the efficacy of the ML models when the test data falls outside the
training data regime. We took the ML models trained on train-data-1 and
tested them on test-data-2. The results are shown in Fig. 5a. The ranges of
MAPE values for all ML models are large: [1.71%, 20.24%] for exhaust temper-
ature, [10.21%, 22.73%] for exhaust pressure, [1.83%, 15.25%] for NO, [10.61%,
269.43%] for CO, [5.34%, 46.86%] for engine torque. This range can be attributed
to the fact that while ML methods can generalize the learned functional relation-
ship inside the input space spanned by the training points, outside that space
their prediction power decreases significantly.

A promising approach to adapt ML models for new test cases such as
test-data-2 involves calibrating the trained model by using transfer learning,
where a model trained on one task can be adapted to a similar task with limited
training data. In our case, a small subset of data from test-data-2 can be used
to retrain the model. Nevertheless, not all ML methods offer that transfer learn-
ing capability. Among the ML methods considered in our study only dnn can be
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Fig. 5. Parallel coordinate plots showing the impact of retraining and transfer learning
on the ML methods

used for transfer learning. All other methods require complete retraining, where
one needs to add the new data to the training data and train from scratch.

We used 1,500 points from test-data-2 for transfer learning and retraining
from scratch. We note that the training data set size of 1,500 points alone resulted
in poor prediction accuracy on train-data-1. Our hypothesis is that using the
ideas of transfer learning and retraining but with the same limited data setting,
we can significantly improve the prediction accuracy of the ML models.

For dnn, we took the model trained on train-data-1. To enable transfer
learning, we froze the weights of HiddenLayer0, HiddenLayer1, and Hidden-
Layer2 layers (see Fig. 1); used 1,500 points from test-data-2; and retrained
the dnn model, where the weights of HiddenLayer3, HiddenLayer4, and Hidden-
Layer5 layers were adjusted. The retrained dnn model was then used to predict
the outputs in test-data-2. For other ML models, we used the retraining-from-
scratch approach, where we added 1,500 points from test-data-2 to 96,000
points of train-data-1 and trained the ML models.
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The results are shown in Fig. 5b. We observe that both the transfer learning
method and training from scratch for other ML methods significantly reduce
error values for all the outputs. The ranges of MAPE values are [0.41%, 1.99%]
for exhaust temperature, [1.53%, 6.93%] for exhaust pressure, [0.57%, 2.22%]
for NO, [3.62%, 8.09%] for CO, and [1.89%, 6.71%] for engine torque. The dnn
method obtains smaller MAPE values for three outputs: 0.41% for exhaust tem-
perature, 1.53% for exhaust pressure, and 0.58% for NO. Only for CO and engine
torque are the MAPE values larger. Overall, however, MAPE is within 5.5%.

4 Related Work

Given the importance of internal combustion (IC) engines in transportation and
power generation, considerable work has been conducted in the area of predict-
ing their performance and emissions, including the use of soft computing tech-
niques such as artificial neutral networks (ANNs). Some of the earliest attempts
to use ANNs to predict the NO emissions during the transient operation of a
diesel engine were reported by Ref. [17]. Similar attempts were reported in Refs.
[15,22]. Reference [24] provides an exhaustive review of the use of soft computing
techniques in automotive engines. All the reported results with these techniques
for IC engines are for a single engine/transient operation. Most of these reported
results use experimental data from an engine operation with a small set of input
parameters (two to three input variables) to predict a specific output quantity
such as NO or exhaust temperature. None of the papers have attempted to use
machine learning techniques to predict the performance and emissions of a fleet
of cars with a large set of input parameters, each of which was varied over a
large operating range, as reported in this work.

To the best of our knowledge, this is the single largest drive cycle simula-
tion (250,000 different cases) conducted by using a well-validated, physics-based
reduced-order model at faster-than-real-time computing speeds. This is also the
first demonstration of the ability to apply ML methods to such large-scale engine
data to predict performance and emissions.

5 Conclusion

We developed MaLTESE, a simulation-driven machine learning modeling frame-
work that couples massively parallel simulations of thousands of engine drive
cycles at real-time speeds and a machine-learning-based surrogate modeling app-
roach. We scaled the simulation up to 3,906 nodes on the Theta supercomputer
at the Argonne Leadership Computing Facility to generate data for training the
surrogate model. We developed a deep-neural-network-based surrogate model
and compared it with several classical machine learning methods. From our
numerical experiments we observed that all learning methods yielded reasonably



MaLTESE: Large-Scale Simulation-Driven Machine Learning 201

good prediction accuracy. We demonstrated that the deep neural network is a
promising method: it outperforms other classical machine learning techniques
and achieves correlation coefficient values larger than 0.99 and a mean absolute
percentage error within 1.07% for exhaust temperature, exhaust pressure, nitric
oxide, carbon monoxide, and engine torque. Our comparative study of machine
learning methods provides valuable input to design engineers who can make an
informed decision about the use of machine learning methods for their design
and development assessments.

In addition to the prediction accuracy of various machine learning methods,
we studied the training and inference times for the various learning methods.
We observed that the training time for deep neural networks was about two to
four orders of magnitude higher than that for classical machine learning methods:
0.1–10 s for classical methods vs 1000 s for deep neural networks. Once the model
is trained, however, the interference time required by the deep neural network to
predict the output characteristics 6,000 data points (4 different drive cycles) is
about 0.1 s (16 microseconds/configuration). As shown earlier, concurrent sim-
ulation of four different drive cycles on four KNL processors would take over
700 s. These inference timing studies show that the deep-neural-network-based
surrogate-model can be used for real-time control using the emerging low-cost
and relatively low-powered on-board deep learning chips.

The parametric study of the size of the training set showed that for predicting
all output variables within 1% accuracy, 48,000 data points (corresponding to
32 different representative drive cycles) were required. This study shows that
a small subset of well-chosen representative drive-cycles (64 drive cycles in this
case) can be used to predict the output of other drive cycles without having to
simulate the entire parametric range (250,000 drive cycles). Based on the transfer
learning studies, we have demonstrated the possibility of using machine learning
methods to yield high-accuracy prediction even when the input parameter space
is considerably different from the parameter range used for training.

Acknowledgment. This research used resources of the Argonne Leadership Com-
puting Facility, which is a DOE Office of Science User Facility supported under Con-
tract DE-AC02-06CH11357. This material was based upon work supported by the U.S.
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A Appendix

See Figs. 6, 7, 8, 9 and 10.

Fig. 6. Scatter plot of observed and predicted values from dnn for exhaust temperature
on test-data-1a and test-data-1b

Fig. 7. Scatter plot of observed and predicted values from dnn for exhaust pressure on
test-data-1a and test-data-1b
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Fig. 8. Scatter plot of observed and predicted values from dnn for NO on test-data-1a

and test-data-1b

Fig. 9. Scatter plot of observed and predicted values from dnn for CO on test-data-1a

and test-data-1b
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Fig. 10. Scatter plot of observed and predicted values from dnn for engine torque on
test-data-1a and test-data-1b
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Abstract. In high-performance computing many performance problems
are caused by the memory system. Because such performance bugs are
hard to identify, analysis tools play an important role in performance
optimization. Today’s processors offer feature-rich performance moni-
toring units with support for instruction sampling. But existing tools
only partially use this data. Previously, performance counters were used
to measure the memory bandwidth. But the attribution of high band-
width to source code has been difficult and imprecise. We introduce a
novel method for identifying performance degrading bandwidth usage
and attributing it to specific objects and source code lines. This paper
also introduces a new method for false sharing detection. It can differen-
tiate false and true sharing, identify objects and source code lines where
the accesses to falsely shared objects are happening. It can uncover false
sharing, which has been overlooked by previous tools. PerfMemPlus auto-
matically reports those issues by using instruction sampling data cap-
tured with a single profiling run. This simplifies the tedious search for
the location of performance problems in complex code. The tool design
is simple, provides support for many existing and upcoming processors
and the recorded data can be easily used in future research. We show
that PerfMemPlus can automatically report performance problems with-
out producing false positives. Additionally, we present case studies that
show how PerfMemPlus can pinpoint memory performance problems in
the PARSEC benchmarks and machine learning applications.

Keywords: Performance analysis · Memory bandwidth ·
False sharing · Instruction sampling

1 Introduction

If an application shows unsatisfactory performance or bad parallel scaling the
often tedious process of performance optimization starts. Many potential per-
formance problems are caused by the interactions of hardware and software.
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Especially the memory system, with its complex architecture and shared
resources is the bottleneck for many applications.

Simple execution time profiles, like gprof [10] cannot identify if there is a
performance problem and what kind of performance problem it is. Specialized
parallelism profilers like Delay Spotter [12] or Aftermath [5] can identify a lack
of parallelism or inefficient scheduling. A tool specialized for analyzing mem-
ory accesses, such as the one we are introducing here can be helpful because it
can identify the exact location (Function, Object, Source code line) where the
problem is occurring. Modern processors have a performance monitoring unit
(PMU) that can record information about the interaction of software and hard-
ware. Instruction sampling is one of the features offered by the PMU. AMD calls
this method Instruction Based Sampling (IBS). Intel calls it Precise Event Based
Sampling (PEBS). Performance analysis tools use the recorded data, analyze it
and can help to uncover performance problems.

Some previously developed tools became unusable on current hardware
and require large efforts to keep them running on current hardware [16,29].
Existing tools do not enable researchers to easily explore and reuse instruc-
tion sampling data for the development of new performance analysis meth-
ods [8,9,15,16,24,35]. Instruction sampling does not provide information about
the consumed DRAM bandwidth. Performance counters, which do provide this
information, cannot be attributed precisely to source code lines and objects. Even
when knowing the exact consumed memory bandwidth, it is difficult to decide if
the used bandwidth is hurting performance or if it is within the supported limits
of a system. False sharing is still a problem that is difficult to detect and existing
tools [4,15] failed to detect cases of false sharing as we show in this paper. Tools
that present performance data [9,14] are helpful but it is still time-consuming to
check for specific problems using those tools. Automatic discovery and reporting
reduce the required time and effort. Previous tools, that support automated dis-
covery are specialized on the detection of one specific problem [15,18,19,23,35].
They use different methods and rely on different data that needs to be cap-
tured with individual recording tools. Using several completely different tools is
not the preferred solution to find different kinds of memory-related performance
problems. To address these issues, we make the following contributions:

– An algorithm that automatically discovers memory-related performance prob-
lems and attributes them to source code lines and objects using instruction
sampling data, that is captured with a single profiling run. The discoverable
problems include:
• Performance degrading memory bandwidth consumption on remote and

local DRAMs.
• False sharing and differentiation from true sharing.

– A future-proof tool, which implements the algorithm and can record instruc-
tion sampling data with low overhead. It also enables users to explore all
aspects of instruction sampling data and provides visualizations.

– Case studies that demonstrate how instruction sampling data and PerfMem-
Plus can be used to locate different kinds of performance problems.
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2 Related Work

In the past tools that present performance data and allow manual exploration
were introduced. In addition, there are analysis tools which are designed for
specific problems and come with automated detection features.

Specialized tools for specific performance problems can detect only a certain kind
of performance problem. In contrast, PerfMemPlus can automatically detect dif-
ferent performance problems with data captured by a single tool with a single
profiling run. ScaAnalyzer [24] uses metrics to quantify the scalability loss to find
the most promising optimization opportunities. The reported metrics help the
user to identify remote memory accesses and the cache level in which a problem
occurs. Liu et al. [21] introduce a data centric profiler. It helps to identify high
latency memory accesses in the source code. It can also identify variables with a
high number of remote memory accesses. HPCToolkit-NUMA [22] enhances this
by introducing metrics to quantify the severity of remote memory accesses. It also
adds a method to detect an actual place where the allocation in a NUMA system
is happening. Memprof [16] is another profiler for NUMA multicore systems. It
detects remote memory accesses by looking at thread and object interactions.
Identification of remote memory accesses is one of the major features of the
tools introduced above. They all require a manual interpretation of the reported
metrics. Our approach can automatically identify these performance degrading
main memory accesses. DProf [29] is a specialized tool to locate cache perfor-
mance bottlenecks. DProf can show a cache miss based object profile and classify
misses. It can also indicate when an object is accessed from multiple cores. It only
supports object-based analysis and cannot provide information about functions
and source code lines. Memprof and DProf both implement their own low-level
hardware interface. Both only support outdated AMD processors. In contrast,
PerfMemPlus benefits from an existing and well maintained low level interface.
DR-BW [35] is a tool which can detect remote memory bandwidth contention
in NUMA Systems. It is based on machine learning using features extracted
from the performance monitoring unit. It is limited to the remote DRAM band-
width contention on NUMA systems. In contrast, our approach can be applied
to local and remote DRAM and can even be used on single socket systems.
ParaTools ThreadSpotter [28] is a tool that can give suggestions on potential
performance problems. It does not have an object-based view. Because it uses
software instrumentation and cache simulation, it has a higher overhead com-
pared to PerfMemPlus and cannot collect information directly from the hard-
ware. Instruction sampling based tools, such as PerfMemPlus, can collect data
with less overhead.

False sharing detection based on machine learning using PMU data is intro-
duced by Jayasena et al. [15]. But their approach could not detect the case of
false sharing in Freqmine which we found using PerfMemPlus. Our approach
does not require a training phase. A detection method that uses samples of
accessed addresses is introduced by Liu et al. [18,19] and by Chabbi et al. [4] as
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an on-the-fly method. These approaches are all based on analyzing the address
access patterns. In contrast, our approach avoids this by using data about mod-
ified cache lines from the hardware. Chabbi et al. also examined the Freqmine
benchmark but could not detect the false sharing with their approach.

Tools for manual exploration usually cover a wider range of memory-related per-
formance problems, but come with no or little automated detection. Linux Perf is
a general purpose profiler not limited to memory performance. Perf is well main-
tained and offers the best support for different and new hardware architectures
out of all considered tools. It is a powerful tool, but it requires knowledge about
the hardware and its potential bottlenecks to configure the right events. Dynam-
ically allocated data cannot be resolved. Analysis features are mostly designed
for a general purpose profiler with few features for memory performance analysis.
PerfMemPlus is built on those good features of Perf and adds specialized fea-
tures for recording and analyzing memory accesses. MemAxes [8,9] introduces
new visualizations for data gathered through instruction sampling and anno-
tation of the code. It uses a latency profile to point out significant functions
and objects and a clustering mechanism to find interesting subsets in the data.
The authors demonstrate that their visualizations are suitable for identifying
unbalanced hardware utilization. In order to spot problems, the user needs to
interpret the visualizations and draw conclusions regarding what type of per-
formance problem is the limiting factor. It does not come with any automatic
detection features. Intel VTune Amplifier XE is a general purpose profiling tool,
but it also has some specialized memory performance features [14]. Using this
tool it is possible to explore many aspects of the data, including relevant data for
finding false sharing [13]. It does not have automated detection of false sharing.
Main memory bandwidth can be measured and attributed to the source code.
But this tool cannot make a decision whether there is bandwidth contention or
not. Which level of bandwidth usage is regarded as too high has to be set by the
user.

3 Automatic Discovery of Performance Problems

The automatic detection of performance problems consists of two steps. First, it
selects function and object combinations as candidates. Second, these candidates
are checked for signs of memory performance problems using the algorithms
introduced in this section. A candidate is a pair of a function accessing an object.
Objects are identified by a common allocation call stack. All function and object
pairs are considered as candidates. Except for those functions that contribute
less than 1% to the total execution time. Excluded functions can at most bring
a one percent speedup if their execution time was fully eliminated, which is not
possible in practice.

3.1 False Sharing

False sharing is hard to detect manually because its occurrence depends on the
data layout and cache line size. Despite numerous previous efforts [4,15,18–20]
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detecting false sharing is still difficult and previous tools could not identify some
cases of false sharing as we show in Sect. 5. The previous tools are specialized
tools for false sharing detection and cannot find any other performance problems.
Our approach can be applied to instruction sampling data, which can also be
used to detect other types of performance problems.

Instruction sampling provides data about the coherency status of accessed
cache lines. The hit modified flag (HITM) indicates that the cache line, in which
the requested data resides, is shared with another core and has been previously
modified. By using this hardware feature, we avoid expensive cache simulation
or analysis of access patterns. The idea to use the hit modified flag was proposed
before [26]. But no concrete algorithm to identify false sharing and differentiate
it from true sharing is given in this earlier publication and objects cannot be
pointed out. We add such a differentiation and can give a clear answer whether
there is false sharing or not without any further manual interpretation. We can
also report the objects affected by false sharing.

The algorithm is applied to a candidate as described in Sect. 3. Objects can
be identified by a common allocation call stack or as individual allocations. The
algorithm counts the number of threads that write a certain address in a shared
cache line. If only one thread writes it, there is false sharing. If multiple threads
write this address, it is true sharing. Additionally, we make sure to consider only
addresses within the same object and not just reused addresses. The proposed
algorithm consists of the following steps:

1. Check all access samples for the HITM flag. If the HITM flag is set in at least
one sample, mark it as “modified cache line” and continue with step two.

2. Check if the object (identified by common call stack) is written by multiple
threads to confirm that it is an actual shared object. If the object is written
by multiple threads, then continue with step three.

3. Check if addresses within the object are shared. Select all addresses that have
the HITM flag set for a specific object. In this step, individual objects are used
even if they have the same allocation call stack. Then see how many different
threads write this location. If it is more than one, there is true sharing. If it
is only one, then it is false sharing.

After this confirmation, the source code locations of readers and writers, thread
ids and the allocation call stack of the object can be taken from the samples. The
report of this performance problem contains the location and how many percents
out of all accesses have the HITM flag set to judge how severe the problem is.

3.2 Main Memory Bandwidth

The performance monitoring unit in processors contains counters for the num-
ber of DRAM requests. Using those counters the memory bandwidth can be
measured. Because those counters exist for each socket and count globally for
the whole socket, they cannot be directly attributed to a specific core, object or
function. In contrast, instruction sampling data can be precisely attributed to
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code and data, but it has no direct way of measuring the memory bandwidth.
We introduce an approach to use instruction sampling, identify performance
degrading bandwidth usage and attribute it to source code lines and objects.

This section describes the approach for the local DRAM. The same method
can be applied to the remote DRAM. We use the latency of load instructions
that hit the local DRAM as an indicator for memory bandwidth saturation.
The basic idea is that loading data from a memory can be done with a fixed
latency. If other issues, like bandwidth saturation, occur the load request is
delayed and the total latency to complete the load instruction increases. Figure 1
shows the increase in latency when increasing the main memory bandwidth. The
data was generated with the Intel memory latency checker [34] on the systems
which are introduced in Sect. 5. It shows that the latency stays low with only
a small increase until the bandwidth gets close to the hardware limit. At this
point, when the system reaches its throughput limit, there is a sharp increase
in latency. This relationship is well known in queuing theory. When the arrival
rate (bandwidth requirement of the application) is higher than what the system
can process in a certain time (maximum hardware memory bandwidth) the time
required for queuing and processing (latency) of the requests will increase. We
do not know all details about the internal operations in the processor and there
might be unknown effects that cause latency spikes. However, our method uses
a large number of samples, considers only accesses that actually hit the DRAM
and excludes samples that have other known problems such as a TLB miss. We
conclude that if there is a high latency in all the captured samples, the reason is
most likely DRAM bandwidth contention. Our experiments in Sect. 5 have not
raised any false positives.

Fig. 1. Latency change of DRAM accesses with increased required memory bandwidth
of the benchmark. B48 and H36 are two different hardware platforms described in Sect. 5.

For measuring the base latency of a DRAM access we use the ScanRad64-
IndexUnrollLoop benchmark [3]. It is a pointer chasing benchmark. Elements in
an array are accessed in random order and only after a load is completed the
address of the next element is known. Only one access at a time is executed
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and the processor cannot predict the access pattern. It is the worst case of a
local DRAM accesses without contention effects. We execute this benchmark on
a single core with an array size of 2 GB. The benchmark execution is profiled
with PerfMemPlus. This microbenchmark causes TLB misses due to the large
array size and random access of array elements. To obtain the latency threshold,
we exclude all DRAM accesses samples that have caused a TLB miss. This is
easily possible because a flag in the instruction sampling data is set if there
was a TLB miss. The median latency of load accesses from the local DRAM
becomes the threshold for identifying memory bandwidth related performance
problems. If this performance problem is detected the report contains how much
the limit was exceeded in percent. When applying this algorithm for detection
and there are less than 10 samples hitting the local DRAM a warning is printed
that indicates that the sample count is too low. This limit avoids drawing wrong
conclusions from an insufficient number of samples. The actual value for this
limit is not critical since it is just used to guarantee that the detection works
on large enough data. Running the analysis again with a higher samplerate can
solve this problem.

4 PerfMemPlus Implementation

Performance monitoring hardware changes between processor generations. Pre-
vious tools [16,29], which implement a custom hardware interface, require code
changes for new hardware. The data that is collected through instruction sam-
pling can be huge and previously it was stored in binary formats which make it
hard to explore the data for interesting features. To process the large data effi-
ciently a scalable storage format is required. Because of their monolithic design
existing tools [9,24,35] are hard to extend and modify.

The following key ideas in our tool design address these issues. The central
component in PerfMemPlus is Linux Perf. Perf is available as part of the Linux
kernel and can be run on a variety of Linux based operating system without
modifications and it comes with regular updates for new hardware. We add a
few other software components around Perf to make its use easier and tailored to
the analysis of memory accesses. Figure 2 shows the software components. Perf
cannot resolve dynamically allocated objects so we add an allocation tracker to
provide this capability and merge the captured data based on timestamps. Perf
stores the recorded sampling data in a binary, Perf specific format. Through a
scripting interface we export the data into an SQLite database. The advantage
of SQLite is that it is an easily usable data format and separates the record-
ing tool from the analysis tool. Because the instruction sampling data on its
own does not provide insights to software developers, we supply a GUI viewer
tool with PerfMemPlus. The viewer executes the automatic detection of perfor-
mance problems as described in Sect. 3 and displays the findings. The viewer
also supports manual exploration of the data. It has a unique approach to guide
the user through the data step by step without overwhelming the user with
too much information at a time. The following sections describe the details
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Fig. 2. Components of the PerfMemPlus implementation.

of our tool design and the challenges we had to solve for implementing this
tool. The PerfMemPlus source code is available at https://github.com/helchr/
perfMemPlus.

4.1 Profiling Tool

Because Linux Perf is maintained through the Linux kernel development com-
munity, we expect this tool to provide support for the upcoming years. We can
update the underlying Perf without modifications to PerfMemPlus as long as
the interface remains stable. We do not use the perf event open syscall inter-
face, because using the command line interface provided by the Perf tools makes
the implementation simpler and better isolates the individual components. We
do not modify Perf itself because we would have to maintain a forked version
of the original Perf. Instruction sampling has the advantage that it can ana-
lyze an application without modification of the source code of the application.
Only debug information needs to be available in the binary and fully optimized
binaries are supported. Perf already provides all those capabilities.

Because of the SQLite-based data format, is possible to keep the profiling
tool and use another custom tool for visualization of the data and vice versa.
The relational data model and SQL are suitable for instruction sampling data.
Aggregations to specific functions or objects, sorting by certain attributes and
selecting ranges can be done using SQL queries. Researchers can easily access
the data and extract performance relevant information. Unlike binary formats,
where parsing data structures, iterating through them and manually aggregating
them to useful views is necessary. The implementation of the viewer component
of PerfMemPlus serves as an example. It is essentially a set of predefined SQL
queries that have proven to show useful views for performance analysis. SQLite as
data format gives scalability with little implementation effort. Big trace files can
be stored on disk and indexes enable quick lookups to find the required data.
Any other relational database would also satisfy these requirements. But we
chose the file-based SQLite database because it does not require the installation
of databases and file-based operations are familiar to most users.

Because of Perf lacks some of the required features, we use two independent
tools to profile an application. Perf does the instruction sampling and the allo-
cation tracker records data about the dynamic memory allocations. To attribute

https://github.com/helchr/perfMemPlus
https://github.com/helchr/perfMemPlus
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accessed addresses to objects the data needs to be merged. Dynamic memory
allocations are only valid for a certain time period. To make a lookup from a
given accessed data address to an allocation call stack the time information has
to be considered. Both tools individually record a timestamp for samples and
allocations. In order to have comparable timestamps from both sources, both
must rely on the same clock source. We use the CLOCK MONOTONIC clock
source which returns a timestamp counted in nanoseconds from the startup of
the system. This counter needs to be in sync between multiple cores and sock-
ets of the same system. The CLOCK MONOTONIC is internally based on the
Time Stamp Counter (TSC). The TSC is not affected by power management and
it is synchronized at startup with all cores across all sockets. The support for
those features can be verified by checking the presence of the constant tsc and
nonstop tsc flags. By correlating the process id, timestamp and address Perf-
MemPlus can find the corresponding data object for a given address. Because
SQLite already provides methods for efficiently selecting an address and times-
tamp within ranges our simple implementation is entirely based on SQL queries.

4.2 Viewer

The auto analysis results view (Fig. 3) contains the function, accessed object
and identified performance problem. Complete allocation call stacks of indicated
objects and exact source code lines, where the problems are caused, can be
displayed. The view also includes metrics to judge the severity of the problem in
the application. First, the contribution of a function to the total execution time
Second, the latency contribution of accesses to the reported object within this
function. Third, a problem specific value which is explained in Sects. 3.1 and 3.2.
If many problems are reported this value is useful to decide which problems to
tackle first.

In the manual exploration view, the user can first check if there is a memory-
related problem. The memory access latency of functions and objects is a good
indicator for performance problems. Because inefficient use of the memory sys-
tem (cache miss, remote memory access, TLB miss) will increase the latency.
The second step is to identify offending functions and objects. PerfMemPlus
extends the common execution time profile with a latency profile as shown in
Fig. 7. This helps to identify the most offending functions and objects in terms of
memory access. Figure 8 shows a call stack after selecting one of the functions.
This call stack shows from where the selected function is called. It uses the
latency metric, instead of the execution time, to identify the source of the most
expensive memory accesses. Once a function has been selected, it is possible to
explore the objects it accesses. This view, which is shown in Fig. 5, also comes
with a profile to select the most offending objects within a previously selected
function. It is also possible to explore the data in the same way starting from
the objects. Finally, the investigation for the cause of the performance prob-
lem can be done considering only the previously selected functions and objects.
Possibilities to find performance problems include views of cache hit rates and
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latencies in different cache levels (Fig. 6), cache coherency statistics, access pat-
terns (Fig. 4) and data sharing between threads. All these views are placed in
separate windows to limit the amount of information a user has to process at
a time.

5 Evaluation

We used two different systems for the evaluation. Both are NUMA systems
with two sockets. They are denoted as B48 (Intel Broadwell with a total of 48
physical cores) and H36 (Intel Haswell with a total of 36 physical cores). The
details are listed in Table 1. Both systems run Ubuntu 16.04 and we used the
gcc compiler version 5.4. In order to apply the bandwidth limit detection, it is
required to first characterize the systems. We determined the latency threshold
for both systems with the method described in Sect. 3.2 and the peak memory
bandwidth measured with STREAM triad [27].

Table 1. Hardware used for the evaluation.

System CPU Peak bandwidth Latency threshold

B48 2x E7-8890v4@2.2 Ghz 62 GB/s 371 cycles

H36 2x E5-2699v3@2.3 Ghz 76 GB/s 208 cycles

5.1 The PARSEC Benchmarks

We evaluated the automatic discovery using all the 13 PARSEC [2] bench-
marks. All PARSEC benchmarks were executed with the native input set and the
speedup results are based on the time required for the region of interest (ROI).
All reported numbers are the average of ten repetitions. On the H36 system, we
used 36 threads. On the B48 system, we used 48 threads. Except for Facesim and
Fluidaniamate where we used 32 threads due to limitations in the benchmark.
In this paper, we present the results for the pthreads version of all benchmarks
except for Freqmine, which only has an OpenMP version. PerfMemPlus supports
other parallelization methods such as Intel TBB but we omit the results in this
paper because it does not provide any relevant insights.

The PARSEC benchmarks were analyzed in several previous studies [1,2,6,
7,16,19,25,31,32] so that we can draw conclusions about the ground truth of the
performance problems from the existing literature. Only two benchmarks have
known memory-related performance issues. In Canneal memory issues [7] con-
tribute to the slowdown and it has the second highest bandwidth requirement [2]
of all PARSEC benchmarks. Streamcluster is sensitive to DRAM speed [1] and
has the highest main memory bandwidth requirement of all PARSEC bench-
marks [2]. There are also NUMA issues due to the allocation of the main array
to one node and accesses from both nodes [16]. The benchmark also suffers
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from false sharing [15,19]. Data locality is worsened by shuffling pointers to
data between algorithm iterations [25]. In Freqmine no false sharing has been
detected in previous work [4,15] but we found a previously unknown case of false
sharing. Table 2 shows a summary of the known memory performance problems
and the detected memory performance problems. PerfMemPlus was able to cor-
rectly identify false sharing and main memory bandwidth limitations in Stream-
cluster. It also detected the memory bandwidth issue in Canneal. It found a
previously unknown case of false sharing in Freqmine. In the other 10 bench-
marks, PerfMemPlus has not reported cases of false sharing and main memory
bandwidth limitation. Thus, it reported no false positives.

Table 2. Known and detected memory performance problems in PARSEC.

Benchmark Memory performance problem

Actual Detected

Canneal Memory
bandwidth

Memory bandwidth

Streamcluster Memory
bandwidth, False
sharing, Bad
locality

Memory bandwidth, False sharing

Freqmine False sharing
(Previously
unknown)

False sharing

Others None None

5.2 Canneal

The automatic discovery reported two instances of memory bandwidth limitation
on the B48 and H36 system. Both occur in the function netlist elem::swap cost.
The first one when accessing the std::vector elements. The second one when
accessing the std::vector locations. The objects are allocated to one of the two
nodes but later accessed from both nodes. We applied interleaved allocation
to those two objects. Table 3 shows the performance improvement and change
in DRAM access latency. For both systems, the initial latencies were above
the latency limit. However, on the H36 system, the reported latencies are only
slightly above the threshold. But the performance gain on this system was only
6.0%. The Canneal benchmark issues more memory request when increasing the
number of threads and the main memory bandwidth is also lower on the B48
system. Thus, we already expected main memory bandwidth limitations to be
more severe on the B48 system.
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Table 3. Optimization results of the Canneal benchmark. The two different cycle
values represent the access to the two different reported objects.

System Speedup Initial latency [cycles] Optimized latency [cycles]

B48 11.8% 539 ± 45.9, 403 ± 43.6 312 ± 13.6, 310 ± 20.0

H36 6.0% 218 ± 17.4, 224 ± 20.2 201 ± 11.4, 215 ± 11.9

5.3 Streamcluster

In Streamcluster PerfMemPlus reported a memory bandwidth limitation and
false sharing on both systems. The report is shown in Fig. 3. In the function
pgain accesses to the array block exceed the available bandwidth. The object is
allocated to one of the two nodes but later accessed from both nodes. We applied
interleaved allocation to the array block. Table 4 shows the speedup and latency.

Fig. 3. Auto analysis results view of Streamcluster. It lists the detected performance
problems, their location and severity metric.

Table 4. Speedup and DRAM latencies of the Streamcluster benchmark when applying
interleaved allocation to the array block.

System Speedup Initial latency [cycles] Optimized latency [cycles]

B48 45.2% 496 ± 16.0 226 ± 11.7

H36 14.5% 253 ± 25.6 231 ± 17.1

Additionally, false sharing occurs in the function pgain accessing an array
called work mem. When we checked the source code at the indicated location we
found that there is already padding to prevent false sharing in this application.
But it assumes a cache line size of 32 bytes. We set the padding to match the
real cache line size of 64 bytes and we achieved a speedup of 5.7% and the HITM
accesses in the function pgain disappeared. PerfMemPlus detected false sharing
in all of the 10 repetitions of the experiment.

The third problem of bad locality cannot be detected by our automated app-
roach. However, it can be diagnosed using visualizations created by PerfMem-
Plus. The function pgain accessing the array block was identified as the main
offender from the function and object profiles. We focused the analysis on this
function and object. Figure 4(a) shows the addresses within the array block that
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are accessed over time. This diagram shows one specific thread, but it looks
similar for other threads. Each point represents one access sample. The figure
shows no clear structure and addresses are accessed randomly. Moreover, every
thread accesses the whole range of the array.

Fig. 4. Access pattern of the array block in the function pgain in one thread of the
Streamcluster benchmark.

The reason for this random access is that the clustering part is repeatedly
executed and data needs to be processed multiple times in different orders for
this algorithm to work correctly. In this implementation not the data itself is
shuffled, but pointers to the data are shuffled. Consequently, in every iteration
different addresses are accessed by every thread. A comment in the source code
indicates that it was done to avoid copying the large data elements and to
increase performance. We changed it to a copy based shuffle operation that copies
the actual data and does not change the pointers as already suggested by Majo
et al. [25]. The accessed addresses stay the same even though the underlying data
changes. By using PerfMemPlus to display the access patterns such problems can
be discovered easier compared to manual examination, which was used in the
previous publication. In the optimized version, we saw that a thread mostly
accesses the same part of the array throughout the execution. This is indicated
by the horizontal line in Fig. 4(b). The diagrams for other threads look similar
with the horizontal line shifted on the vertical axis because they access a different
part of the array. This optimization resulted in an improved L1 hit rate in the
concerned functions and objects from 72% to 94% and a speedup of 45.2% on
B48 and 36.7% on H36.

5.4 Freqmine

We found a case of false sharing in Freqmine. PerfMemPlus detected false sharing
in all of the 10 repetitions of the experiment. It was not found by specialized
false sharing detection tools [4,15]. The studies were done in a similar software
and hardware environment. We suspect that the first tool could not detect false
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sharing due to the machine learning approach and insufficient training data.
The second tool needs to work with a limited amount of debug registers and can
only cover a part of the addresses. The amount HITM accesses in Freqmine is
lower than in Streamcluster where false sharing was discovered by the previous
tool. The sparse occurrence of false sharing in Freqmine makes it more difficult
to detect. We verified that it is an actual case of false sharing by reading the
source code. The falsely shared object is the class stack with a size of 20 bytes.
There is an array named list, which is defined defined in fp tree.cpp, with one
element of type stack for each thread. If the stack objects are placed right next
to each other, false sharing occurs. Write accesses happen at multiple lines inside
the parallel section of the FP tree::FP growth function. Perf c2c [26] does also
detect modified cache lines. However it cannot identify the object and cannot
confirm whether there is true or false sharing. We added padding to the struct
so that each struct is placed in its own cache line. This optimization led to a
speedup of 4.6% on B48 and 4.8% on H36.

5.5 Mnist

The application called Mnist [33] is a neural network implemented in plain C++
without using any specialized libraries. It performs handwritten digit recognition
on the Mnist [17] dataset. It is a single threaded application. The function profile
showed that the operator*<1000, 100, 784> has a higher latency than any other
function. The objects accessed by this function are shown in Fig. 5. All high
latency accesses go to one object with id 3. The allocation call stack showed
that object 3 is a matrix. Figure 6 shows the cache hit rates of the function
operator*<1000, 100, 784> when it accesses the object 3. Most accesses hit in
the L2 cache. Other functions and objects have good L1 hit rates. Only this one
function, processing one type of matrix has bad cache hit rates.

Fig. 5. The object profile of objects
accessed by operator*<1000, 100, 784>.
The screenshot is cut to show only the most
significant object.

Fig. 6. Cache hit rates and laten-
cies of the operator*<1000, 100,
784> function accessing one spe-
cific matrix with id 3.
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We implemented cache blocking in the operator*<1000, 100, 784> function.
We only changed the one template specialization that processes the identified
matrix type and did not modify other functions that multiply matrices of differ-
ent sizes. PerfMemPlus pointed out only the function and object where modifica-
tion was necessary and did not report cases where no optimization was necessary.
The performance was increased by 12.8% on B48 and 7.7% on H36. L1 cache hit
rates of the specific function and object were increased to 99.8%.

5.6 N3LP

N3LP [30] is a neural machine translation application. It is implemented using
the Eigen library [11] for arithmetic operations. This library is fairly complex
and relies on C++ template metaprogramming to implement optimizations at
compile time. Despite that, using PerfMemPlus it is possible to find the memory
access hotspots and analyze the interaction of user program and library.

First, the auto analysis showed that memory bandwidth is exceeded by many
functions. To take a more detailed look, we used the function profile that is shown
in Fig. 7. It shows all functions with a significant contribution to the execution
time. It also shows that those functions cause most of the latency and average
latencies are high.

Fig. 7. Function profile which shows the functions contributing to the latency in N3LP.
This profile combines traditional metrics, like execution time, with latency based met-
rics for memory performance analysis.

To get more details, we looked at inlined functions, callstacks and source
code lines of the reported functions, which is possible due to the precision of the
instruction sampling. Almost all the latency of the function SoftMax::backward is
produced by the source code line grad.weight += delta*input.transpose(); Where
delta and input are two vectors. Assuming that the Eigen library already does as
much optimization as possible we suspected that the culprit must be in the way
it is used. We resolved the call stacks to each of the other reported functions
to find out from where in the user code they are called. Figure 8 shows one
of those callstacks. Normal profilers use the fraction of the execution time to
sort functions. Whereas PerfMemPlus shows the latency contribution, coming
from each calling function. In summary, we identified that mainly the functions
LSTM::backward and SoftMax::backward are calling the Eigen operations with
high latency.
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Fig. 8. Callstack of one of the reported functions in the Eigen library. The percentage
of total latency is shown in the right column.

The cache and memory details window of PerfMemPlus showed that the
average L1 cache hit rate in those six functions is only 40% and only 15% in
SoftMax::backward. We focused our optimization on improving the data locality.
In our optimization, the single vectors are merged into a matrix. This way Eigen
can execute a matrix multiplication instead of multiple vector multiplications
and Eigen is able to apply better optimizations such as cache blocking. This
optimization strategy was first proposed by Qiao et al. [30]. We achieved higher
cache hit rates and performance improvements of 229.9% on the B48 system and
194.2% on the H36 system.

5.7 Overhead

We individually chose samplerates for each benchmark to keep the overhead low
and to provide enough samples to correctly execute the automated detection
without warnings. Because the overhead was similar on both systems we report
the average overhead on both systems in Table 5.

Table 5. Overhead of PerfMemPlus in the analyzed benchmarks.

Application Samplerate Overhead

Canneal 6000 4.9%

Streamcluster 16000 22.5%

Freqmine 64000 10.3%

Mnist 6000 3.8%

N3LP 8000 6.3%

6 Conclusion and Future Work

Performance analysis is still a challenging task even with tool support. PerfMem-
Plus can simplify the process by automatically discovering false sharing and main
memory bandwidth limitations. PerfMemPlus points out the exact location of
performance problems making it easy to fix them. In the case studies, covering all
PARSEC benchmarks, we demonstrated that problems are reliably detected. The
manual analysis methods of PerfMemPlus helped to find performance problems
in machine learning applications. The data format and design of PerfMemPlus
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allows researchers to easily modify the tool and explore all aspects of instruction
sampling data. We plan to apply the automatic discovery method to detect other
kinds of performance problems.
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Abstract. We present GPUMixer, a tool to perform mixed-precision
floating-point tuning on scientific GPU applications. While precision
tuning techniques are available, they are designed for serial programs
and are accuracy-driven, i.e., they consider configurations that satisfy
accuracy constraints, but these configurations may degrade performance.
GPUMixer, in contrast, presents a performance-driven approach for tun-
ing. We introduce a novel static analysis that finds Fast Imprecise Sets
(FISets), sets of operations on low precision that minimize type conver-
sions, which often yield performance speedups. To estimate the relative
error introduced by GPU mixed-precision, we propose shadow computa-
tions analysis for GPUs, the first of this class for multi-threaded appli-
cations. GPUMixer obtains performance improvements of up to 46.4% of
the ideal speedup in comparison to only 20.7% found by state-of-the-art
methods.

1 Introduction

GPU accelerated computing has reached a tipping point in the high-performance
computing (HPC) market. As HPC scientific applications increasingly rely on
GPU accelerators to perform floating-point arithmetic, tools to extract the maxi-
mum performance out of floating-point intensive computations are also becoming
increasingly important.

This paper presents GPUMixer, the first tool to tune floating-point mixed-
precision scientific applications on GPUs. While most mission-critical scientific
applications use double-precision floating-point arithmetic (FP64) because of
accuracy requirements, current generations of GPU architectures have higher
peak computation rates in single-precision floating-point arithmetic (FP32) or
lower precision [19]. To take advantage of the performance that lower precision

This work was performed when P. C. Wood and R. Singh were at Purdue University.

This is a U.S. government work and not under copyright protection in the United States;
foreign copyright protection may apply 2019
M. Weiland et al. (Eds.): ISC High Performance 2019, LNCS 11501, pp. 227–246, 2019.
https://doi.org/10.1007/978-3-030-20656-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20656-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-20656-7_12


228 I. Laguna et al.

offers, programmers can use mixed-precision computing to perform some com-
putations in high precision (e.g., FP64) and some in low precision (e.g., FP32,
or lower). GPUMixer provides a practical method to select the computations to
be performed on FP32 or FP64 precision so that (a) user-defined accuracy con-
straints are maintained and (b) performance is significantly improved.

Tuning mixed-precision programs is challenging. Programmers are interested
in finding mixed-precision configurations, i.e., sets of operations on more than
one precision, that satisfy both accuracy and performance demands. However,
because the number of possible configurations is very large, manually exploring
all configurations is impractical, even in small programs. For FP64/FP32 mixed-
precision programs, for example, the number of possible configurations is 2N ,
where N is the number of floating-point arithmetic operations.

In the domain of serial applications, a number of techniques for automatic
tuning have been proposed to address this problem [3,4,6,7,11,13,16,22,23],
however, practical and efficient tuning tools for multi-threaded applications are
scarce, making mixed-precision programming for GPUs hard.

Irrespective of their architectural focus, a limitation of the majority of these
methods is that they focus on mixed-precision tuning with accuracy as a target.
That is, the configuration space search is driven by accuracy constraints in the
program solution. We call this methods accuracy-driven approaches. Because
performance is not explicitly modeled, these approaches have the disadvantage
of suggesting configurations that provide no performance guarantees, and in
many cases configurations that degrade performance.

GPUMixer, on the other hand, is designed as a performance-driven approach.
We introduce the concept of Fast Imprecise Sets (FISets), a set of arithmetic
operations in a GPU kernel on which the data that enters and that leaves the set
is in high precision, but on which the operations of the set are in low precision
(hence an imprecise set). A FISet has the property that the ratio of arithmetic
operations to cast operations is high; thus, an FISet is a configuration that,
almost always, yields performance speedups (hence a fast set).

We demonstrate that FISets can be found via static analysis, which elimi-
nates the need for running configurations to determine whether they provide per-
formance speedup or not, as existing techniques do (e.g., [7,16]). Our algorithm
for finding FISets locally maximizes the number of low-precision arithmetic oper-
ations while it minimizes the number of type cast operations in input/output
boundaries of operation sets.

To find the FISets that also satisfy accuracy requirements, we perform
shadow computations, a dynamic analysis that calculates an approximation of
the relative error introduced when the precision is decreased from FP64 to FP32
in GPU kernels. While previous shadow computations techniques exist to tune
serial programs [13,22], to the best of our knowledge, we present the first shadow
computations framework for multi-threaded/GPU programs.

The contributions of this paper are:

1. We introduce the concept of FISets, floating-point configurations that provide
performance speedups, and present an algorithm to find them statically.
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2. We describe an implementation of our algorithm in the LLVM compiler [14]
for the NVIDIA CUDA programing model. We show that our method can be
applied efficiently to realistic multi-kernel GPU programs.

3. We implement the first GPU shadow computations framework for mixed-
precision tuning, a dynamic analysis to compute the relative error introduced
when the precision of FP64 operations is decreased to FP32.

4. We evaluate our implementation in three computationally intensive CUDA
programs. We show that our approach finds configurations that are always
faster than the default (all in FP64) for a given error threshold and input.

We compare our approach to the Precimonious approach [22,23], a state-of-
the-art method for mixed-precision tuning on serial programs. On our evaluation,
our approach finds performance speedups that can vary between 9.8%–46.4%
of the ideal speedup, whereas the comparison approach finds speedups of only
1.4%–20.7%.

2 Related Work

Formal Methods. FPTuner [3] is a rigorous approach for precision tuning based
on Symbolic Taylor Expansions and interval functions; FPTuner meets error
thresholds across all program inputs, however it has been demonstrated only on
small programs and it has limitations handling conditional expressions. Rosa [6]
is a source-to-source compiler that uses an SMT solver to annotate a program
with mixed-precision types; the compiler operates on the Scala programming
language. Paganelli and Ahrendt [21] present an approach that formally proves
that an increased precision in a variable causes only a limited change of the
result; it uses SMT solvers and is demonstrated on FPhile, a toy sequential
imperative language. Other formal methods include Salsa [5] and S3FP [4].

Although these methods perform rigorous analysis and can verify properties
for all inputs, they scale poorly and/or do not support common HPC program-
ing languages (C/C++) and coding patterns (branches and loops), thus their
applicability to realistic HPC applications is limited.

Heuristics for Automated Search. These methods cannot prove properties
but they are able to scale to real-world programs, and as a result have broader
practical utility. Our approach falls in this category.

CRAFT [11,12] performs an automated search of a program’s instruction space,
determining the level of precision necessary in the result of each instruction to
pass a user-provided verification routine assuming all other operations are done
in high precision, i.e., FP64. While it uses heuristics to sample a fraction of
the search space, it can be very time consuming even for very small programs
(worst case complexity is O(2N )). Precimonious [23] uses the delta-debugging
algorithm to search for configurations. While this algorithm helps in speeding
up the search, this can still lead to a high number of builds and runs of the
program. Blame Analysis [22] finds configurations that satisfy user-given error
constraints, using a single execution of the program. The analysis finds a set of
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variables that can be in single precision, while the rest of the variables are in
double precision; however, the output configurations may or may not improve
performance, so to use the analysis in practice one must perform runs of the
program to determine which configurations actually improve performance. The
experiments in [22] use Precimonious to perform the program runs in a guided
manner. ADAPT [16] uses algorithmic differentiation to provide estimates about
the final output error, which can be used for mixed-precision tuning.

The above techniques are accuracy-driven approaches, i.e., the configuration
space search is driven by accuracy constraints in the program solution. Because
performance is not explicitly modeled—the cost of operations is seen as a black
box—these approaches may suggest configurations that provide no performance
guarantees. GPUMixer, in contrast, is driven by performance gains.

A recent approach, HiFPTuner [7], considers performance by avoiding fre-
quent precision casts on program variables. This approach, however, focuses on
serial programs and is not available on GPUs and/or CUDA. Another difference
is that [7] requires dynamic profiling to build a weighted dependence graph of
the program, which is non-trivial to build efficiently on CUDA. One of the chal-
lenges to gather the per-instruction error introduced on multi-threaded code is
to do it with reasonable overhead (one of the problems that we solve partially
in our shadow computation framework). Because of the above limitations, we
compare our method to the Precimonious method [22,23] instead of comparing
it to [7]. The Precimonious approach (via delta debugging) is a more generic
approach that can be easily adapted to GPUs (see Sect. 5.1 for more details).

3 Background and Overview

3.1 Example of Mixed-Precision Tuning

To illustrate the problem of mixed-precision tuning, we present an example using
a CUDA kernel from an N-body simulation [18]. Listing 1.1 shows an implemen-
tation of the force calculation in an n-body simulation obtained from [8]. After
the kernel calculates the forces and velocities of particles, the positions of the
particles, x, y, and z, are updated in the main function.

Table 1. Error and speedup for different configurations of Listing 1.1 on a NVIDIA
Tesla P100 GPU

Case x y z Error Speedup (%)

1 −0.599775587166981 −0.906326702752302 −0.217694232807352

2 −0.508669376373291 −0.906326711177825 −0.217694222927093 15.19 53.70

3 −0.575293909888785 −0.906326702752302 −0.217694232807352 4.08 5.78

4 −0.611327409124778 −0.906326702752302 −0.217694232807352 1.93 −43.35

5 −0.588951610438680 −0.906326702752302 −0.217694232807352 1.80 11.69

We perform mixed-precision tuning on the kernel variable declarations to find
a configuration that yield both accurate results and a performance speedups. The
baseline configuration is where all variables are declared as FP64, i.e., as double,
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the one shown in Listing 1.1. To illustrate the calculation of the error introduced
by mixed-precision, we focus on the error introduced to the particle positions
(x, y, and z) for a single particle (i=0). Programmers of scientific codes may
define their own metric for error, however, for this illustrative case, we define
the relative error introduced by mixed-precision as: error = (|(x−x0)/x|+ |(y−
y0)/y| + |(z − z0)/z|) ∗ 100.0, where x, y, z are the particle positions for the
baseline, and x0, y0, z0 are the particle positions for a new configuration.

1 __global__ void bodyForce(double *x, double *y,
2 double *z, double *vx, double *vy, double *vz,
3 double dt, int n)
4 {
5 int i = blockDim.x * blockIdx.x + threadIdx.x;
6 if (i < n) {
7 double Fx=0.0; double Fy=0.0; double Fz=0.0;
8 for (int j = 0; j < n; j++) {
9 double dx = x[j] - x[i];

10 double dy = y[j] - y[i];
11 double dz = z[j] - z[i];
12 double distSqr = dx*dx + dy*dy + dz*dz + 1e-9;
13 double invDist = rsqrt(distSqr);
14 double invDist3 = invDist * invDist * invDist;
15 Fx += dx*invDist3; Fy += dy*invDist3; Fz += dz*invDist3;
16 }
17 vx[i] += dt*Fx; vy[i] += dt*Fy; vz[i] += dt*Fz;
18 }
19 }

Listing 1.1. Force computation in an N-body simulation

Table 1 shows the particle values, error, and performance speedup of four
configuration with respect to the baseline, case 1. Case 2 shows the configuration
where all variables in the kernel are declared as FP32, i.e., as float. We observe
that while the speedup is significant, 53%, the error is high, 15.19. Case 3 shows
the case where only variable invDist3 is declared as FP32 and the rest as FP64—
in this case the error decreases, but the speedup is not too high, only 5%. Case 4
shows an interesting case: when the variable invDist3 is the only one declared
as FP32, the error is very low, but the speedup is negative, i.e., performance
degrades. Case 5 shows the best we found when the distSqr,invDist, and
invDist3 variables are declared as FP32: the error is lower than as in case 4 while
the speedup is about 11%. This example illustrates that some configurations can
produce low performance speedup or even performance degradation; the goal of
our approach is to find via static analysis configurations such as 3 and 5 that
improve performance and discard cases such as 4.

3.2 Configurations

While mixed-precision configurations can be expressed in terms of the precision
of variable declarations (as in the previous example), a more precise approach is
to express configurations in terms of the precision of floating-point operations.
The reason behind this is that a variable can be used in multiple floating-point
operations; the precision of each of these operations can be decreased/increased.
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More formally, given a program with N floating-point arithmetic operations
and two classes of floating-point precision, e.g., FP32 and FP64, a configuration
is a set of operations on which a subset of n1 operations are executed in one
precision and a subset of n2 operations are executed in another precision, such
that n1 +n2 = N . For k classes of floating-point precision, subsets of operations
can be executed on different precision, such that n1 +n2 + . . .+nk = N . Table 2
shows the four possible classes of mixed-precision configurations. The goal is to
automatically find configurations that belong to class A.

Table 2. Classes of configurations of a program

Satisfy accuracy constraints Improve performance Class

Yes Yes A

Yes No B

No Yes C

No No D

Fig. 1. Workflow of the approach.

3.3 Overview of Our Approach

Figure 1 shows the overview of our approach. Given a GPU program, we option-
ally run a profiling run to determine kernels on which precision reduction can
potentially give the highest performance benefits, e.g., by analyzing the kernels
where the application spends most of its time or kernels that are computationally
intensive. Note that this step is optional—if the programmer is not interested
in profiling the application, our method analyzes all kernels.

Next, the compiler transforms kernels into an intermediate representation
and searches for code regions where precision reduction could speedup the pro-
gram execution, i.e., FISets. For each identified case, the compiler automatically
performs code transformations and generate a program configuration. This con-
figuration will likely yield a performance speedup when executed, thus it belongs
to P = A ∪ C (see Table 2).

Finally, since some of the configurations in P may not satisfy the user accu-
racy constraints, configurations must be analyzed to identify those that satisfy
such constraints. Note that the user is free to use any existing accuracy-driven
tuning method that is available in conjunction with FISets. However, since there
is no accuracy-driven analysis available for GPUs, we develop our own method
(shadow computations for GPUs), to fill this gap.
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Fig. 2. Illustration of the algorithm to find FISets.

4 Approach

We describe our approach to model performance of mixed-precision code regions
via static analysis with FISets, and our shadow computations approach to com-
pute the error of mixed-precision configurations in GPUs.

4.1 Kernel Intermediate Representation

We use the NVVM IR [17] as the intermediate representation for GPU kernels.
This representation is based on the LLVM IR and allows us to use high-level lan-
guage front-ends, such as Clang to generate NVVM IR. Our approach performs
transformation on the NVVM IR, a binary format to represent CUDA kernels.

4.2 FISet Design

The base working abstraction of FISets is a data dependence graph G = (V,E).
This is a directed graph whose nodes V represent NVVM IR instructions whose
edges E represent dependencies between nodes. We assume that the compiler
(in our case, LLVM) generates a data dependence graph for each kernel.

Roughly speaking, a FISet, which we denote as Φ, is a group of operations
v ∈ V on which the data that enters and that leaves the group is in high preci-
sion, i.e., FP64, and on which the operations that compose the group are in low
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precision, i.e., FP32. A FISet can contain both arithmetic floating-point oper-
ations and non-arithmetic operations, such as comparison or select operations,
that join together groups of arithmetic operations.

Type Conversions. Any mixed-precision approach incurs type conversion oper-
ations, or casting, to transform data from one precision to another. Type conver-
sions are expensive in GPU architectures. Our algorithm to find a Φ in a kernel
attempts to minimize the number of conversion operations and to maximize the
number of floating-point operations in the set.

A key idea of the algorithm is that if we can perform conversions only at
the beginning and at the end of a large sequence of floating-point operations
that have high degree of dependence among them, we can increase the ratio of
arithmetic-to-cast operations, therefore increasing the arithmetic throughput of
the code region. Formally, we define the arithmetic-to-cast operations ratio for
a code region as

rac = O/C, (1)

where O is the number of floating-point operations and C is the number of
casting operations.

4.3 FISet Illustration

Consider a portion of a graph as shown in the beginning of Fig. 2, where two data
values are loaded and stored into registers R1 and R2, which are then used by a
multiplication. In step 1, the algorithm considers the code transformations that
are required to lower the precision of the multiplication operation. In this exam-
ple, we use a three-input instruction format with operations in FP64 denoted in
upper case (e.g., MUL), and operations in FP32 in lower case (e.g., mul).

The second column of step 1 in the figure shows the required transformation
to reduce the precision. Since data in registers R1 and R2 is in FP64, we need to
perform two type conversions to truncate their data to FP32. After the multi-
plication in FP32 is performed, we need to extend the result to FP64, incurring
another conversion (from FP32 to FP64). In this step, rac = 1/3. This ratio will
likely not improve performance; in fact, it will degrade performance since for the
same MUL operation we are performing three additional instructions, i.e., type
conversion operations. The goal of the algorithm is to find cases where rac > 1.0.

In step 2 (second row of the figure), we consider the neighbors of the pre-
vious MUL operation. Here, neighbors are operations that depend on MUL and
operations that influence MUL. Since the only operations that influence MUL are
load operations, we do not consider them (they are not arithmetic floating-point
operations); however, we consider the ADD operation that depends on the result
of MUL. The second column of step 2 shows the required transformation to reduce
the precision, which would produce rac = 2/3; this can be easily seen by notic-
ing that there would be two arithmetic operations and three type conversions,
rac = O/C = 2/3 after the corresponding transformation. Since rac < 1.0, the
algorithm keeps expanding the neighbors set and performs the same estimations.
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Finally in step N we find a set with rac > 1.0, i.e., rac = 4/3 (see last part
of Fig. 2). Here we declare this set a Φ.

4.4 FISet Properties and Algorithm

Loops. If all nodes of a FISet are in the same loop (or loop level), or there is
no loop in the kernel, we do not do anything special because all the instructions
will be executed the same number of times, which will not affect rac; this is
the common case for most kernels. When this is not the case, we consider the
following two cases—we assume kernels can have nesting loops, L0 > L1 > L2 >
..., where L0 encloses L1, L1 encloses L2, and so on:

– Arithmetic operation nodes are in loop level Lx and conversions are in loop
level Ly, where Lx > Ly. We assume that the arithmetic operations will be
executed equal or more times than the conversions so we do not do anything
special. Note that this applies even for Lx ≥ Ly, for a given input. In this case,
rac may be higher than expected, which is fine for performance speedups.

– Arithmetic operation nodes are in loop level Lx and conversions are in loop
level Ly, where Ly > Lx. In this case, conversions may be executed more times
than arithmetic operations. We use a heuristic to handle this case: if we find
the same number of arithmetic operations as the number of conversions in
the loop that contains the conversions, we allow this to be a FISet ; otherwise,
we discard this case, and the algorithm proceeds.

Algorithm. The FISet search algorithm is shown in Algorithm 1. The algorithm
starts by taking a node from the dependence graph and by calculating the num-
ber of in/out edges, which is then used to calculate rac. If rac > 1.0, it adds it
to the list of FISet. Next, it increases the set to explore by adding the neighbors
of the node, which are then used to calculate rac like in the previous step. The
nodes to be explored are added to the neighborsList. It does not add neighbors
to the list if the node is a terminating node, i.e., it is a load/store operation or
a function call since these operations do not have lower precision versions. For
GPU kernels with very large dependence graphs, the algorithm can find many
FISets. In those cases, we allow the user to specify the maximum number of
FISets that the algorithm return, using the parameter φ.

Multiple FISets. Algorithm 1 can identify multiple disjoint FISets in the same
kernel. If two FISets overlap, i.e., they have instructions in common, the algo-
rithm will return the union of the two. If FISets do not overlap, multiple config-
urations combining these FISets are considered. In practice, however, we found
that a single FISet per kernel typically gives reasonable speedups.

Compilation Process. Once CUDA modules are transformed to NNVM IR
(by the clang front-end), the FISets search is performed in the NVVM IR repre-
sentation. After this, the kernel is transformed to PTX, which is then assembled
into object files. Finally the NVIDIA nvcc compiler is used to link objects.
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4.5 Shadow Computations

FISets per se give no information about the error introduced by lower precision
arithmetic. To calculate this error we use dynamic shadow computations. Shadow
computations analysis for mixed-precision tuning has been used before [13,22];
however, none of the previous frameworks handle multi-threaded programs, so,
as far as we know, ours is the first.

input : Dependence graph DG
output: FISets: list of FISets found

1 for node n ∈ DG do
2 if n is not arithmetic op then
3 continue
4 else
5 currentSet = [n]
6 neighborsList = [n]
7 while neighborsList is not empty do
8 tmp = neighborsList.getFirstElement()
9 for node m ∈ neighbors(tmp) do

10 if m is not load/store or function call then
11 numConversions += numInEdgesOfNode(m) +

numOutEdgesOfNode(m) - numFloatingPointConstants(m) - 1
12 numOperations += 1
13 add neighbors of m to neighborsList
14 remove m from neighborsList
15 add m to currentSet

16 if numOperations/numConversions > 1.0 then
17 add currentSet to FISets

Algorithm 1. FISet Search Algorithm. Symbols and operation definitions: neigh-

borsList is the list of nodes to visit; currentSet is the set of nodes we have visited and

may become a FISet ; neighbors() returns the in- and out-edges of a node that have

not been visited; numInEdgesOfNode() and numOutEdgesOfNode() return the num-

ber of in- and out-edges of a node respectively; numFloatingPointConstants() returns

the number of constant input parameters of an operation (they do not require con-

version). Note that line 11 subtracts 1 because we need to subtract the edge that

connects m to the currentSet, otherwise it would be counted twice when we calculate

numInEdgesOfNode() or numOutEdgesOfNode().

The idea of shadow analysis is that, for each floating-point arithmetic oper-
ation in high precision, e.g., FP64, a similar operation is performed side-by-side
on lower precision, e.g., FP32. By comparing the result of the operation in low
precision with the result of the operation in high precision, we calculate the
relative error that the low-precision operation would introduce.

Calculating the Kernel Total Error. We compute an approximation of the
total error that is introduced in the kernel when the precision of portion of the
kernel (a FISet) is downgraded. This allows us to guide the search for FISet
configurations that introduce low total error.
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(a) Total error calculation (b) Trial runs sorted by their FISeterror

Fig. 3. Shadow computations used to calculate the mixed-precision error

More formally, let us say that a kernel comprises FP64 operations {a64, b64,
c64}. Operations are of the form [x64 = OP, y64, z64], and OP ∈ {+,−, ∗, /,<,
>,=, �=}. When an operation is transformed to FP32, its operands y64, z64 must
be truncated to FP32. Both the truncations and the operation performed to lower
precision introduce errors. Shadow computations analysis computes an approx-
imation of the total error introduced by these transformations. The word total
means that the contribution to the error of all the GPU threads is considered.

Kernel Instrumentation. We start with a kernel with all its instructions
in FP64. Each FP64 operation is instrumented with a callback function. The
function takes as input the operands of the FP64 operation (in FP64 precision)
and truncates them to FP32 precision. It then computes two values: v64 and v32.
v64 corresponds to the result of the operation as if the operation is performed in
FP64 precision; v32 corresponds to the result of the operation as if the operation
is performed in FP32 precision. The following calculates the relative error:

e = abs((v64 − v32)/v64), (2)

where abs() is the absolute value function. The result of e is stored in FP64
precision. Because of the SIMT execution model of GPUs, all threads in a warp
in the kernel block execute the same callback function.

GPU In-Memory Structure. We keep a structure in the GPU global memory
of the form:

total error[INST ][THREADS],

where INST is the number of static instructions of the kernel, and THREADS
is the maximum number of threads that the kernel can use. This keeps track of
the error values for all static instructions and for all the threads that execute the
instruction. Since a thread can execute a static instruction multiple times, each
calculated e is aggregated (added) into a single e for the static instruction—this
allows us to calculate a total relative error for the instruction (see Fig. 3a).

Assigning an Error Value to a FISet. We run the GPU program once
with a set of inputs from the user to obtain a total error value for each static
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instruction. Given a FISet with N instructions, we assign an error value to the
FISet by merging the total error value of each FISet static instruction, using
this formula:

∑N
i total error i. We call this error FISeterror.

Trial Runs. Given several FISets, and their corresponding FISeterror, to satisfy
accuracy constraints, we search for FISets configurations in the order of their
error, starting with those with the smallest FISeterror (see Fig. 3b). Searching
for configurations means that we run the program to determine its output. We
call this a trial run. Trial runs are independent of the shadow computations run.

Putting It All Together Error and Performance Thresholds. To search
for configurations, the user provides two independent parameters: error threshold
and performance threshold. Error threshold specifies the number of digits of
accuracy that is expected in the program output with respect to the baseline
FP64 precision case. For example, if the output of the FP64 case is 3.1415 and
the output of the mixed-precision case is 3.1479, we say that the latter is accurate
up to 3 digits (i.e., from left to right, digits 3, 1 and 4).

Performance threshold specifies the minimum performance speedup that is
expected. Here, performance speedup is defined with respect to the maximum
ideal speedup, i.e., the performance of the program when it is compiled using
fully FP32. We use the figure of merit (FOM), which represents the metric of
performance of the program. Specifically, we define the speedup of the mixed-
precision case as:

s = ((pmixed − p64)/(p32 − p64)) ∗ 100, (3)

where pmixed is the performance of the mixed-precision case, p64 is the perfor-
mance of the FP64 case, and p32 is the performance of the FP32 case. Thus,
s = 100% when the mixed-precision case performs as the FP32 case, i.e., when
all instructions are converted from FP64 to FP32.

Modes of Operation. Our approach has three modes of operation to search
for configurations:

– Mode 1: the user cares only about the output error and does not care about
the magnitude of performance speedup (as long as there is some performance
speedup). In this case, the user provides only an error threshold. The search
is based on the FISets total error value—we start running the FISet config-
uration with the smallest total error, then continue with the configuration
with the second smallest total error, and so on. The search ends when the
output error meets the error threshold.

– Mode 2: the user cares about both output error and performance speedup,
but output error has priority. Here, the search is performed like in Mode 1,
but it ends when both the output error meets the error threshold and the
performance speedup meets the performance threshold.
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– Mode 3: the user cares about both output error and performance speedup,
but performance speedup has priority. Here, the search is based on the ratio rac
of the FISets (high rac implies high chances of performance improvements)—
we start by running the FISet configuration with the largest rac, then continue
with the configuration with the second largest rac, and so on. The search ends
when both the output error meets the error threshold and the performance
speedup meets the performance threshold.

4.6 Limitations

Accuracy of Ratio rac. A limitation of rac is that it does not consider the
actual cost of operation types. Unfortunately, we are limited by the fact that
the NVIDIA CUDA C Programming Guide [20] does not specify the cost of all
GPU operations—it specifies the throughput of add and multiply operations
but it lacks throughput specs for other common operations, such as division
and math operations, e.g., sqrt. We believe that per-instruction costs could be
empirically estimated for specific GPU architectures, but it requires significant
benchmarking that is out of the scope of this paper. Nevertheless, we have found
that rac is practical for most cases.

Register Pressure. Mixed-precision programs can incur register pressure
because new type conversions introduce additional instructions, thus more reg-
isters may be required. Registers, along with other resources, are scarce in GPU
Streaming Multiprocessors (SM). There is a maximum number of available reg-
isters in an SM—255 per thread for NVIDIA compute capability 6.0. If a kernel
uses more registers than the hardware limit, the excess registers will spill over to
local memory impacting performance. FISets can increase registers usage by a
small amount. This may be a problem only on kernels with a register usage that
is close to the limit. In such cases, a configuration may not yield any speedup.
In our experiments, however, we only saw one kernel in this category.

5 Evaluation

We present our evaluation of GPUMixer. We implement GPUMixer in the Clang/L-
LVM compiler [14] 4.0, using the CUDA ToolKit 8.0. Experiments are conducted
in a cluster with IBM Power8 CPU Core nodes, 256 GB of memory, and NVIDIA
Tesla P100 GPUs (compute capability 6.0), running Linux.

5.1 Comparison Approach: Precimonious

While none of the existing mixed-precision tuning methods handle multi-
threaded and/or CUDA codes, the Precimonious technique [22,23] uses a generic
search algorithm, delta debugging, that can be implemented for CUDA programs
(the original version in the paper works on CPU-base serial programs). This algo-
rithm is considered the state-of-the-art on automatic mixed-precision tuning and
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it is also used as a comparison baseline in several works [7,22]. We implement the
delta debugging tuning algorithm as described in [23] as a comparison framework
for our approach as well, which we call Precimonious-GPU.

As described in [23], our implementation finds a 1-minimal configuration, i.e.,
a configuration for which lowering the precision of any one additional variable
would cause the program to compute an insufficiently accurate answer or violate
the performance threshold. To generate program variants, we use static changes
to the source code to modify the declarations of variables from FP64 to FP32.

Table 3. Profile of Top Kernels in LULESH

Kernel Time rac Registers usage

FP64 Mixed

CalcVolumeForceForElems 25.21% 8.13 254 255

ApplyMaterialPropertiesAndUpdateVolume 24.62% 1.01 62 65

CalcKinematicsAndMonotonicQGradient 18.87% 3.45 128 128

Mode of Operation. Since Precimonious does not perform a search separately
driven by error or by performance, we only use one mode of operation: once both
the error and performance constraints are met, the algorithm stops.

5.2 CUDA Programs

We evaluate our approach on three scientific computing CUDA programs:
LULESH [10], CoMD [1], and CFD [2]. LULESH is a proxy application that
solves a Sedov blast problem. This simulation is useful in a variety of science
and engineering problems that require modeling hydrodynamics. CoMD is a ref-
erence implementation of typical classical molecular dynamics algorithms and
workloads. CFD (from Rodinia benchmarks) is an unstructured grid finite vol-
ume solver for the three-dimensional Euler equations for compressible flow. We
use -O2 optimization in all programs. As inputs we use: -s 50 for LULESH,
N=20, nx=25,ny=25,nz=25, for CoMD, and fvcorr.domn.193K for CFD.

Output. For LULESH, we consider the TotalAbsDiff as the main output, a
symmetry value for the final origin energy of the simulation. For configuration,
we also perform other correctness checks, including making sure that the final
energy and iterations count is the same as in the FP64 version. For CoMD, we
use the simulation final energy as the main output since this is one of the key
interesting final results for molecular dynamics simulations. For CFD, we use
the total density energy as the output.

Figure of Merit (FOM). For LULESH, we use zones per second as the FOM;
for CoMD we use the average atom rate, i.e., processed atoms per time (atom-
s/usec); for CFD we use execution time in seconds. Note that for LULESH and
CoMD, higher FOM is better, while for CFD, lower is better.
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5.3 Overhead of Shadow Computations

The overhead of shadow computations analysis is on average 24× (61× for
LULESH, 1.5× for CoMD, and 11.12× for CFD), which is comparable to the
overhead of static and binary instrumentation tools [9,15]. Note that shadow
computations analysis is run only once with a given input and is independent of
the trial runs (see Sect. 4.5).

5.4 Threshold Settings

We present results for three levels of accuracy (3, 6, and 9 digits of accuracy)
with respect to the baseline FP64 precision case, and four performance thresh-
olds (5%, 10%, 15%, and 20%). We experimented with higher digits of accuracy
and higher performance thresholds, however, none of the approaches found solu-
tions in such cases, so we limit the results in the paper to 9 digits of accuracy
and 20% of performance threshold. Note that for CFD, where lower FOM is
better, speedup is −s. We set the maximum number of FISets, φ, to 100 in all
experiments. In practice, the number of trial runs is always less than this value.

5.5 Case 1: LULESH

Table 3 shows the result of LULESH’s profile. The first and second columns show
the three kernels that consume most of the execution time and the percentage
of time, respectively. Since time in the remaining kernels is small (less than 5%),
we do not consider them in the rest of the analysis as they are unlikely to yield
high speedups when using mixed-precision. The third column shows the average
arithmetic-to-cast operations ratio, rac, for the kernel FISets.

As we observe in the table, CalcVolumeForceForElems has a high aver-
age rac, which means that the FISets of this kernel could potentially give high
speedups. As we observe in the fourth and fifth columns of the table, which
show the register usage for the baseline (FP64) and mixed precision versions,

Table 4. Results of using FISets and shadow computations: performance speedup
(% of maximum ideal speedup) for three error thresholds, four performance thresholds
and tree modes of operation; number of runs in parenthesis.

Error
thold.
(digits)

Mode 1 Mode 2 Mode 3

Performance threshold Performance threshold

5% 10% 15% 20% 5% 10% 15% 20%

LULESH3 9.8% (1) 9.8% (1) 30.4% (2) 30.4% (2) 30.4% (2) 46.4% (1) 46.4% (1) 46.4% (1) 46.4% (1)

6 0.3% (12) 8.4% (79) − − − − − − −
9 0.3% (12) − − − − − − − −

CoMD 3 24.2% (1) 24.2% (1) 24.2% (1) 24.2% (1) 24.2% (1) 10.9% (1) 10.9% (1) 37.5% (7) 37.5% (7)

6 24.2% (1) 24.2% (1) 24.2% (1) 24.2% (1) 24.2% (1) 10.9% (1) 10.9% (1) 37.5% (7) 37.5% (7)

9 2.3% (3) 19.7% (62) 19.7% (62) 19.7% (62)− 19.3% (8) 19.3% (8) 19.3% (8) −
CFD 3 8.3% (1) 8.3% (1) 13.3% (3) 15.3% (35)− 5.1% (9) 12.6% (15) 15.1% (39)−

6 8.34% (1) 8.3% (1) 13.3% (3) 15.3% (35)− 5.1% (9) 12.6% (15) 15.1% (39)−
9 − − − − − − − − −
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Table 5. Precimonious-GPU results: performance speedup (% of maximum ideal
speedup) for the error thresholds and performance thresholds; number of runs are
in parenthesis. See Fig. 4 for the maximum speedup reported for each approach.

Error Thold. (digits) Performance threshold

5% 10% 15% 20%

LULESH 3 11.6% (11) 11.4% (11) 17.4% (32) 20.7% (34)

6 11.5% (11) 11.4 (11) − −
9 − − − −

CoMD 3 12.6% (2) 12.9% (2) − −
6 13.6% (2) 12.7% (2) − −
9 5.4% (24) − − −

CFD 3 − − − −
6 − − − −
9 − − − −

the register usage of this kernel is very close to the limit, i.e., 254 out of a maxi-
mum of 255 registers per thread in this GPU. The average register usage for the
mixed-precision version is 255, which indicates that this is kernel is not a good
candidate for mixed-precision, therefore, we discard this kernel in the analysis.

Fig. 4. Maximum performance speedup (% of the ideal speedup) reported by
Precimonious-GPU and the FISets approach.

ApplyMaterialPropertiesAndUpdateVolume is the next kernel that we con-
sider (second in the table). While the algorithm found a few FISets in it (4), the
average rac of these FISets is quite low: only 1.01. This indicates that there is
almost no potential for performance improvements in this kernel, thus, we also
discard this kernel in the analysis.

CalcKinematicsAndMonotonicQGradient, the third kernel is next consid-
ered. This kernel has the appropriate characteristics: the average FISets rac is
3.45 and its average register usage is 125, even when FISets are used, i.e., for this
kernel FISets do not increase register usage. Therefore, we focus on this kernel
in the rest of the analysis and experiments.
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Table 4 (first section) shows the performance results for LULESH, for the
error thresholds, performance thresholds and the three modes of operation; the
number of trial runs are shown in parenthesis. For Mode 1, we find a configuration
with 3 digits of accuracy and 9.8% of speedup with a single trial run; the cases for
6 and 9 accuracy digits do not produce significant performance improvements.

Except for the 6-digit case in Mode 2 (5% of performance threshold), which
requires 79 runs, Mode 1 and Mode 2 both generally find configurations with
high performance improvement (up to 46%) with only a few runs (1–2 runs).
We did not find configurations for the 9-digit case in Modes 2–3.

Precimonious. The Precimonious-GPU results are shown in Table 5. We
observe that the maximum speedup found is about 20.7% for the 3-digit case.
Like in our approach, it cannot find good solutions for the 9-digit case.

Input Sensitivity. We measure the performance speedup (using Eq. 3) for mul-
tiple LULESH inputs. We use two FISet configurations: one with a low rac of
2.08 (case 1), and another one with a high rac of 6.90 (case 2). Figure 5 shows
the results; digits of accuracy are shown as labels. We observe that for case 1,
the speedup for a small input (20) is small, but it increases for larger inputs. For
case 2, the speedup for a small input is large and it decreases for larger input.
In both cases the speedup stays almost the same for several large inputs, 50–80.
The digits of accuracy for case 1 tend to be higher than for case 2 because case
1 has less FP32 operations than case 2 (its FISet is smaller) and as a result it
incurs smaller error.

Fig. 5. Performance speedup for multiple LULESH inputs for two FISet configurations.
Labels are the digits of accuracy.

5.6 Case 2: CoMD

CoMD is a compute-intensive workload, where a large portion of time is spent
computing forces between particles—these operations involve several addition
and multiplication operations versus a few load/store operations. This code is a
good candidate for FISets and mixed-precision in general.

We follow a profiling phase that is similar to the one we did for
LULESH. Out of the top four time-consuming kernels, SortAtomsByGlobalId,
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LoadAtomsBufferPacked, fill, and LJ Force thread atom, our algorithm only
found FISets in LJ Force thread atom. Thus, this was the only candidate
for performance improvements for our technique. The average FISets rac for
this kernel was 3.10. By inspecting the code more carefully, we found that
LJ Force thread atom is where particle force calculations is done, so this find-
ing makes sense. We did not find any kernel with high register pressure in this
code.

Table 4 (mid section) shows the performance results for CoMD. As expected,
the algorithm finds configurations that meet both error and performance thresh-
olds for all modes of operation, in many cases with a single trial run. The best
case in terms of performance was about 37% for 6 digits of accuracy with only
7 runs. As shown in Table 5, while it can find solutions with a few trial runs,
Precimonious-GPU finds a maximum speedup of about 12.9%.

5.7 Case 3: CFD

CFD presents high potential for performance improvements via mixed-precision
since the code core computations, flux computations, involve a number of
compute-intensive operations. While this program is smaller than the LULESH
and CoMD, it challenges our approach because its main kernel is relatively large,
potentially causing FISets to put pressure on register usage.

After profiling the code, we find that 67% of the time is spent in
cuda compute flux, while the rest of time is spent mostly on cuda time step
(22%). Our algorithm did not find FISets in cuda time step; so we focus on
cuda compute flux on which the average rac of FISets is 3.56. Note that we did
not find any kernel on which FISets causes a register pressure in this code.

Table 4 (third section) shows the performance results for CFD. We find con-
figurations of up to 15.1% with up to 6 digits of accuracy running the code 39
times. It can also find a case for 8% of speedup on 6 digits of accuracy with a
single trial run. Precimonious-GPU is, however, unable to find solutions for the
target error and performance thresholds—the maximum performance speedup
ever reported during the search was about 1.4% as shown in Fig. 4.

6 Conclusions

While floating-point mixed-precision tuning techniques exist, they are accuracy-
driven and do not provide significant performance speedups to GPU programs.
We introduce and evaluate GPUMixer, a new tool to tune floating-point preci-
sion on GPU programs with a focus on performance improvements. GPUMixer
is engineered on novel concepts, such as FISets to statically identify regions
that yield performance, and shadow computations analysis to compute the error
introduced by mixed-precision. Our evaluation shows that our approach can be
used in realistic GPU applications, and that it can find configurations that pro-
duce higher speedups (up to 46% of the ideal speedup) than those of current
state-of-the-art techniques.
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LNCS, vol. 9128, pp. 31–46. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-19458-5 3

6. Darulova, E., Kuncak, V.: Towards a compiler for reals. ACM Trans. Program.
Lang. Syst. (TOPLAS) 39(2), 8 (2017)
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23. Rubio-González, C., et al.: Precimonious: tuning assistant for floating-point preci-
sion. In: Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis, p. 27. ACM (2013)

https://docs.nvidia.com/cuda/nvvm-ir-spec/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html


Performance Exploration Through
Optimistic Static Program Annotations

Johannes Doerfert(B) , Brian Homerding , and Hal Finkel

Argonne National Laboratory, Lemont, IL, USA
{jdoerfert,bhomerding,hfinkel}@anl.gov

Abstract. Compilers are limited by the static information directly or
indirectly encoded in the program. Low-level languages, such as C/C++,
are considered problematic as their weak type system and relaxed mem-
ory semantic allows for various, sometimes non-obvious, behaviors. Since
compilers have to preserve the program semantics for all program exe-
cutions, the existence of exceptional behavior can prevent optimizations
that the developer would consider valid and might expect. Analyses to
guarantee the absence of disruptive and unlikely situations are conse-
quently an indispensable part of an optimizing compiler. However, such
analyses have to be approximative and limited in scope as global and
exact solutions are infeasible for any non-trivial program.

In this paper,wepresent anautomated tool tomeasure the effectmissing
static informationhas on theoptimizations applied to agivenprogram.The
approach generates an optimistically optimized program version which,
compared to the original, defines a performance gap that can be closed by
better compiler analyses and selective static program annotations.

Our evaluation on six already tuned proxy applications for high-
performance codes shows speedups of up to 20.6%. This clearly indicates
that static uncertainty limits performance. At the same time, we observed
that compilers are often unable to utilize additional static information.
Thus, manual annotation of all correct static information is therefore not
only error prone but also mostly redundant.

Keywords: Compiler guided auto tuning · Performance gap · LLVM

1 Introduction

Programs in the high-performance computing domain are often subject to fine-
grained tuning and therefore developed in low-level programming languages such
as Fortran or C/C++. However, this tuning potential can cut both ways. With-
out proper annotations, low-level languages allow various behaviors that are
uncommon to occur during a normal program execution. These “corner case
behaviors” include, for example, potentially aliasing pointers and possibly over-
flowing integer operations. While performance can increase if such corner case
behaviors are exploited properly, performance can also be limited if beneficial
compiler transformations are prevented by their presence.
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Figure 1 illustrates how corner case behaviors can prevent desired optimiza-
tions. The call to the external function might cause arbitrary side effects and
changes to the values passed as arguments. After the call, sum might not be zero
and locP is not guaranteed to be {5, 11}. Additionally, the address of sum or
locP could escape, creating aliasing issues if one is stored in globalPtr. As a
result, compilers cannot assume the access to globalPtr is invariant in the loop.

Fig. 1. Low-level code that allows for various
unexpected behaviors which prevent perfor-
mance critical transformations.

Finally, the loop iteration counter
u may overflow. Thus, the loop can
iterate either UB - LB iterations,
if LB <= UB, or alternatively 256 -

UB + LB iterations, if LB > UB. Due
to this uncertainty, most compilers
will struggle to optimize the loop,
e.g., to replace it by a closed form
expression. As discussed in Sect. 2,
all these optimizations would be
possible if better static informa-
tion on the effects of the external

function and the values of LB and
UB were available.

In this work we identify and optimistically eliminate situations in which static
information is missing, e.g., due to the low-level nature of the program. In par-
ticular, we determined 20 opportunities for which skilled, performance-minded
developers, or improved compiler analyses, could enhance conservatively sound
compiler assumptions. For these, our tool automatically explore the performance
impact if perfect information would have been provided by optimistically pro-
viding it, followed by an application specific verification step. In other words,
we automatically accumulate optimistic static program annotations under which
the program remains valid on user specified inputs. After this tuning process,
the last successfully verified version defines a performance gap which can be
minimized through manual annotations.

It is important to note that optimistic optimization is not meant to be used
in production because it gives up on total correctness, the foundation of the
compilation process. Instead, it should be seen as a compiler guided development
tool. It directs performance minded programmers towards static information
both required and usable by the compiler, consequently minimizing manual effort
while effectively increasing performance.

The paper is organized as follows: Sect. 2 explains how static annotations
restrict the set of defined program behaviors, potentially enabling program opti-
mizations. In Sect. 3, we detail the exploited opportunities for additional static
information. We explain the corner case behaviors which annotation can exclude,
the transformations that could be enabled, and how static information can be pro-
vided in the source. Before we present an elaborate evaluation of our approach
on six high-performance proxy applications in Sect. 5, we list implementation
choices in Sect. 4. After related work is discussed in Sect. 6, we conclude in Sect. 7.
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2 Static Program Annotation

Programming languages, including the intermediate representations used inside
a compiler, allow to encode additional information directly in the program code.
Such information can improve later analyses and enable optimizations, regardless
of how the information came to be. This is especially important for performance
aware developers that use program annotations to encode their domain knowl-
edge, e.g., the shapes of possible inputs or the contexts in which code will be
used. Encoded information lifts a burden from the compiler as it limits the set
of defined program behaviors. The only (purely static) alternative is running
complex analyses at compile time. Given that some program properties, e.g.,
pointer aliasing, are in their general form undecidable [20], programmer anno-
tated knowledge is often irreplaceable.

Fig. 2. Left: The code shown in Fig. 1 statically annotated with optimistic information.
Right: The same code after annotation enabled compiler optimizations eliminated
the loop.

Section 1 lists problems and missed transformations for the code in Fig. 1.
To overcome these problems, and thereby enable optimizations that lead to the
version shown in Fig. 2 (right), the problematic corner case behaviors need to
be eliminated through program annotations. The first was the potential for the
external function call to manipulate the arguments as well as globalPtr. While
our implementation in the LLVM [16] compiler can encode this in different ways,
programming languages like C/C++ generally offer less possibilities. In this sit-
uation it is sufficient to annotate the external function as pure, as shown in
the left part of Fig. 2. Pure functions may not alter outside state, preventing the
escape of the argument pointers and thereby also potentially aliasing accesses.
Consequently, the compiler can hoist the load of globalPtr out of the loop.
Also the access to locP.first can be hoisted which leaves a loop that accumu-
lates an unknown but fixed value. If we additionally ensure the compiler that
the loop iteration variable u is not going to wrap around, e.g., through the
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__builtin_assume(LB <= UB) annotation, the loop is replaced by a closed form
expression that directly computes the result. Note that the absence of memory
writes in the external function, the consequent absence of aliasing pointers, and
the lifetime of sum allow to simplify the closed form expression even further.

As manual exploration of such annotations is tedious, and most are superflu-
ous, we provide an automated way. It allows developers to periodically determine
the impact of some, or all, static uncertainty sources in application hotspots
and, depending on the results, manually verify and manifest the most important
annotations in the code.

3 Optimistic Optimization Opportunities

Optimistic optimization opportunities arise whenever the semantic of the pro-
gram allows different behaviors to manifest at runtime. While this is the essence
of any input-dependent, non-trivial program, there are various situations for
which the runtime behavior for all inputs, or at least the ones the user is inter-
ested in, is actually the same. While the purpose of compiler analyses is to iden-
tify which behaviors cannot occur at runtime, optimistic optimization opportuni-
ties allow to explore the space of the ones we need to allow. Thus, program anal-
yses find a potentially conservative, but sound approximation of the actual run-
time behaviors while optimistic optimization opportunities enable us to explore
less conservative, potentially unsound approximations. Figure 3 lists the opti-
mistic optimization opportunity kinds our approach can identify and exploit.

Fig. 3. Identified and exploited opportunities.

Whenever one of these situa-
tions is encountered in the pro-
gram, our compiler extension
generates an optimistic choice,
which, if taken, results in a pro-
gram annotation that limits the
behaviors the rest of the com-
piler will assume to be legal.

In the remainder of this
section, identified and exploited
opportunity kinds and their
source annotations are detailed
together with a discussion how
subsequent transformations may
be enabled by seized optimistic
opportunities.
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3.1 Potentially Overflowing Computations

Binary computations in low-level languages, such as C/C++ and LLVM intermedi-
ate representation (LLVM-IR), have multiple evaluation semantics that differ for
overflowing operations. In C/C++, the signedness of the operands determines if
operations are computed with wrapping or undefined semantics. For the former,
the result of the operation is computed modulo the largest value representable
in the target type bit-width. For the latter, the value is undefined if the mathe-
matically exact result would require more bits than provided by the target type.
In LLVM-IR, values do not have an associated signedness but operations carry
annotations to determine the semantics. If none are present, wrapping semantic
is used. While it is an implementation of undefinied semantic, it is more restric-
tive when it comes to the possibility of integer overflows. Only if operations are
tagged with no-(un)signed-wrap (nsw/nuw), LLVM is allowed to assume the more
lenient undefinied semantic. Thus, the result, if interpreted as signed or unsigned
value respectively, will either be mathematically exact or undefined. Similarly,
C/C++ compilers allow to enforce wrapping or undefined semantic for poten-
tially overflowing computations regardless of the operands signedness through
the command line options -fwrapv and -fno-strict-overflow.

Potentially overflowing arithmetic operations, including address computa-
tions, offer an opportunity for optimistic annotation. If the program semantic
did not imply nsw/nuw for a computation, or if transformations applied by the
compiler could not prove these properties for newly introduced or modified code,
a potential overflow is well-defined and has to be taken into consideration. As
integer overflows rarely happen (on purpose) in practice, especially in loop heavy
computation hot-spots [1,9], the missing nsw/nuw flags provide a perfect oppor-
tunity for optimistic optimization.

Our optimistic code annotator can add missing annotations, e.g., nsw and nuw,
to potentially overflowing operations. We distinguish thereby between annotations
for signed, unsigned, and address computations which can be enabled separately.

3.2 Potentially Parallel Loops

Detecting parallelism in sequential programs has been a major challenge for
decades. Especially for low-level languages there are various caveats including,
but not limited to: potentially overflowing computations (ref. Sect. 3.1), poten-
tially aliasing pointers (ref. Sect. 3.5.1), and unknown side-effects of function
calls (ref. Sect. 3.4.2). Even if all of these issues are tamed, powerful dependence
analyses are needed to identify parallelism in non-trivial loops [5,11,19].

In the context of LLVM, parallelism is usually exploited by the loop vectorizer
and the polyhedral loop optimizer Polly [13]. While both employ runtime checks
to deal with some of the aforementioned low-level issues [3,9], these come with
their own set of limitations. As our approach shifts the soundness liability to the
expert developer, we can optimistically annotate loops as parallel.
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LLVM currently encodes parallelism as metadata annotations on non-pure
instructions inside of loops. The annotations are only exploited in two ways,
both related to the loop vectorizer: First, the dependency legality check for
vectorization is skipped, and, second, in case if-conversion [2] is necessary, it is
assumed to be legal.

3.3 Control Flow Speculation

Programs, especially in high-performance computing, often interleave various
operating modes that result in variations in the executed program path. In
the benchmarks we evaluated, input flags determined for example which energy
transfer function and output method is used. In case we are only interested in
a subset of these modes, we can specialize the program based on the content
of variables which determine the executed path. Thus, if a variable is used as a
control condition, we can optimistically assume that only one control flow target
is always executed next. To embed this information in the program, we place an
assumptions intrinsics call (llvm.assume) which is LLVM’s counterpart of Clang’s
__builtin_assume. Other C/C++ compilers have similar functionality.

Similar to general value specialization, which could also be done through this
scheme, unguided control flow speculation is unlikely to succeed. We therefore
restrict ourselves to the control flow conditions that depend on global variables,
parameters, and function return values. Additionally, we do not speculate for
loop exit or latch branches, and we require a non-relational control flow con-
dition with one constant operand. While this already reduces the possibilities
significantly, we additionally try to use a single optimistic optimization choice
variable to represent all opportunities induced by the same a global variable,
function return value, or function parameter. This will synchronize all specula-
tive choices as described in Sect. 4.1.

3.4 Function Behavior

A compiler has to treat calls to unknown functions as optimization barriers
because the callee can not only cause arbitrary side-effects, but it could also never
return control to the caller. Even if the called function is known, its definition
might not necessarily be available in the current translation unit. If a definition
is available but the language semantic allows a different one to be chosen at link
time or run-time, it is not allowed to deduce information from this potential def-
inition. Finally, if the definition is available and known to be executed, the com-
piler has to employ inter-procedural analyses. From an algorithmic standpoint
such inter-procedural analyses are often less precise, due to uncertainty stemming
from unknown outside callers. From an implementation standpoint they are also
less interesting than their intra-procedural counterparts because the latter are pre-
dominantly needed after (aggressive) inlining was performed.

In LLVM, intra-procedural analyses are dominating in numbers and potential.
The existing inter-procedural analyses mostly try to limit the possible effects of
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function calls and simplify the caller-callee interface through propagation of con-
stants. However, all of the above mentioned issues will limit the information that
can be deduced from, and the transformations than can be applied to, functions.

Since function call can generally cause various possible behaviors at runtime,
especially if the called function is unknown or not inlined, they provide different
optimistic optimization opportunities discussed in the following.

3.4.1 Undefined Behavior
Functions might not only cause side-effects and raise exceptions, they can also
cause undefined behavior, e.g., a division by zero. While compilers generally take
advantage of undefined behavior, they shall never introduce it on a path on which
it would not manifest anyway. Consequently, unconditionally hoisting of calls out
of a loop is unsound, even if the call is to a constant function (ref. Sect. 3.4.2) not
raising exceptions (ref. Sect. 3.4.3). Doing so is only valid if the callee does either
not cause undefined behavior, or it would have been executed anyway.

To enable control dependence changes for calls, we provide an optimistic
optimization opportunity for the speculatable LLVM-IR function attribute1.
Since speculatable does imply the absence of undefined behavior and also other
side-effects, we combined this opportunity with the side-effect encoding described
in Sect. 3.4.2.

Fig. 4. Optimistic function side-effect choices.

3.4.2 Side-Effects
Conservatively, a function
might read or write any
accessible memory loca-
tion. Thus, everything tran-
sitively reachable through
global variables or pointer
arguments is potentially
accessed. Since this gen-
erally includes locations
to which pointers might
have escaped earlier (ref.
Sect. 3.5.2), the set of known
invariant locations is often
quite limited. Consequently,
transformations involving memory are severely restricted as they could
potentially interact with the called function. To restrict the possi-
bly accessed locations, low-level languages provide function and param-
eter annotations. The function level is discussed here and parameters
in Sect. 3.5. In C/C++, functions can be marked as pure and constant
via __attribute__((pure/const)). The pure annotation guarantees that the
function will at most read global variables and not access any other
location. The const annotation also disallows global reads. In LLVM-IR,
1 The speculatable annotation is fairly new so we add the implied readnone explicitly.
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similar annotations exist. A function can be marked as readnone, to indicate that
no memory is accessed, as readonly if there is no memory write, or as writeonly

if there is no memory read. In addition, LLVM uses inaccessiblememonly to indi-
cate that all accessed locations are not directly accessible from the user code,
argmemonly to indicate that all memory accesses are based on pointer arguments,
and inaccessiblemem_or_argmemonly to combine the two2. To exploit actual, not
potential, behaviors, we generate optimistic opportunities with the optimistic
choices listed in Fig. 4. During the search space exploration (ref. Sect. 4.2), the
choices are tried in order, thereby gradually decreasing the optimism.

3.4.3 Runtime Exceptions
A function invocation can return to its respective call site, not terminate at
all, or it can return to a point higher up the call chain. The latter, referred to
as stack unwinding, is most often associated with runtime exceptions. Thus, if
the called function raises an exception which is not caught inside that function
invocation, the exception will traverse the call chain until a suitable handler
is found. Since the code succeeding the in-between invocations would then be
skipped, the compiler has to ensure the integrity of the program state prior to
a potentially unwinding call. Hence, all non-local memory effects preceding an
invocation that might transitively raise an exception have to be visible, and
the side-effects after the invocation shall not be visible. As this severely limits
the code movement and combination abilities only to preserve the semantics in
case an exception is actually raised, it offers a perfect optimistic optimization
opportunity for all programs, and program runs, that will not raise exceptions.

Compilers often allow to disable exceptions through options, e.g.,
-fno-exceptions. Additionally, C++ has the keyword noexcept, and the nothrow

attribute is often supported. However, runtime exceptions are not the only cause
for stack unwinding. We therefore use the LLVM-IR nounwind function attribute
to guarantee each call site will either return control to its successor instruction,
or not at all.

3.4.4 Return Values
In addition to the side-effects, functions return values. While speculation on
values opens up a far too large search space, there are common idioms that we
optimize for. In particular, functions that return a value with the same type as
one or multiple of their parameters might always return one of them.

To limit the number of optimistic opportunities, we only consider functions
that return a pointer type. The number of optimistic choices is then equal to the
number of parameters with the same type. The LLVM-IR parameter attribute
returned is used to indicate that the return value is equal to the argument
passed for this parameter. During the search space exploration (ref. Sect. 4.2),

2 GCC’s attribute leaf is similar to inaccessiblemem_or_argmemonly in LLVM-IR.
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the suitable parameters are tried from the first one declared to the last. This is
preferable because class methods take an implicit “this” object pointer, which
is often returned.

3.4.5 Visibility
To write modular and maintainable programs, most programming languages
allow to choose different scopes for a symbol declaration. In particular, functions
can be, among others, declared with a global or local scope. In C/C++, the
former is the default while the latter, i.e., translation unit local, requires the
function to be declared as static. Only if that is the case, the compiler can reason
about all call sites prior to link time3. This can then justify more aggressive
inlining as well as inter-procedural information propagation from call sites to
the function definition4.

To limit the visibility, or scope, of a function declaration optimistically, we
change the linkage type of external functions to internal. This is valid if, at link
time, there are no users outside the current translation unit. If there are, the
linking process, and thereby the verification, will automatically fail. Changing
the linkage type of a function declaration in LLVM-IR to internal has a similar
effect as the static keyword in C/C++.

3.5 Pointer Attributes

Pointers and the associated memory accesses, are arguably the most complicated
part of a program. Especially in low-level languages, such as a compiler’s inter-
mediate representation, there are various caveats that have to be considered.
Two memory accesses can for example alias, hence they might access (partially)
the same memory locations. An access can be invalid at runtime if the accessed
location is not dereferenceable, e.g., if the access pointer is “dangling”. Simi-
larly, the access can be invalid if the alignment of the access pointer violates the
requirements of the assembly instruction that was chosen to implement it. As
a consequence, potentially aliasing accesses induce dependences that have to be
preserve similar to the control conditions of potentially invalid accesses.

3.5.1 Aliasing
Since the use of unrestricted pointers is a major source of uncertainty during
program optimization, compilers employ various forms of context-, flow-, type-
and field-sensitive alias analyses [7,10,14,17,22,23]. Alias analyses, as well as the
dependence analyses built on top, are tasked to identify and classify the depen-
dence between side-effects. Only due to this information, transformations can
decide if it is sound to alter the execution order of accesses, substitute them with
already available values, or eliminate them all together. However, identifying alias-
ing pointers is on its own an undecidable problem [20]. Even if it is decidable for a

3 Link time optimizations [12,15] are discussed in more detail in Sect. 5 and Sect. 6.
4 While not in LLVM, a prototype for such a pass has been proposed already [8].
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given program, it is complex and consequently unrealistic to expect pointer related
uncertainties to be resolved through static analyses alone [3].

Programming languages for which pointers by default alias commonly provide
annotations to restrict the set of objects a pointer can alias with. While these
annotations, e.g., restrict/__restrict__ in C/C++, and noalias in LLVM-IR, are
coarse-grained tools, they already allow to handle a common case: Two pointers
that do not originate in the same “restrict” qualified declarations cannot alias.

We introduce the noalias annotation to function parameters and return val-
ues with pointer type. As the support for otherwise scoped restrict qualified
pointers in LLVM is preliminary, we did not investigate this possibility for now.

3.5.2 Capturing
Compilers try to determine the provenance, or the source object, of a pointer
to rule out aliasing. Aliasing is impossible if a pointer is based on an object
another pointer cannot be based on. An example are stack allocated objects
that, initially, cannot alias with any pointer loaded from memory or provided
from the outside. However, as soon as a pointer to the stack object escapes, i.e.,
the address of the object is potentially duplicated and made available to the rest
of the program, this guarantee is void. A pointer conservatively escapes if it is
passed to a function or stored in memory.

We augment the results of the already performed inter-procedural capture
analyses in LLVM, which derives nocapture function parameter annotations, with
optimistic annotations if they were not derived. For C/C++, Clang allows the
programmer to achieve the same effect through __attribute__((noescape)).

3.5.3 Usage
As a fine-grained supplement to the function side-effects described in Sect. 3.4.2,
LLVM allows to annotate pointer parameters with access information. The
choices again include readnone, to express that the pointer is not dereferenced
during the execution of the function, readonly, to guarantee the absence of stores
through the pointer, and writeonly, which rules out read accesses to the pointer.

The optimistic opportunity generated for each pointer parameter includes all
three optimistic alternatives and is, again as the function side-effect equivalent,
explored from the most optimistic one to the least. As before, if no optimistic
choice could be successfully verified a pessimistic choice is taken, thus the pointer
is not annotated.

3.5.4 Alignment
There are different ways pointer alignment is exploited by a compiler. A very
important one is the ability to utilize specialized instructions on machines that
distinguish between aligned and unaligned memory accesses. Especially for vec-
tor code (SIMD) this can cause a significant performance difference.

For C/C++, compilers offer various ways to add alignment information includ-
ing __attribute__((aligned(N))) qualifier, and the __builtin_assume_aligned

(P, N) call. In this work, we introduced three different alignment annotations
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intotheLLVM-IR.First, formemoryaccessestodescribetheir individualalignment,
then for pointer parameters, and finally for pointers loaded from memory. In each
caseweprovidedtwooptimisticchoices,cache linealignmentandpointeralignment.

3.5.5 Dereferenceability
Pointers might or might not point to a memory address that can be accessed at
a certain program point. If they do not when accessed, the behavior is undefined.
Consequently, compilers have to be especially careful when they move memory
accesses which can easily prevent powerful optimizations such as loop hoisting
or argument promotion.

As pointers most often point to memory that is in fact accessible,
we can optimistically introduce the corresponding LLVM-IR annotation
dereferenceable(N_Bytes). It is used for function parameters and return val-
ues with pointer type, as well as to annotate pointers loaded from memory.
In all three situations we have two optimistic choices, dereferenceability of a
single element, or, alternatively, 64 consecutive elements. To achieve a similar
effect for returned pointers in C/C++, i.e., to guarantee a certain number of
accessible bytes if the returned pointer is non-null, GCC and Clang provide the
__attribute__((alloc_size(...))) function annotation.

3.5.6 Memory Invariance
The const keyword in C/C++ can be circumvented by a const_cast except for uses
in certain variable declarations. Even though LLVM does not generally retain
const information, it allows to annotate accesses as invariant which states that
all executions will result in the same value.

To improve optimizations of memory loads, we use the LLVM-

IR invariant.load annotation optimistically. It can act as an alternative to fine-
grained alias annotations and as such enable load coalescing and load hoisting
out of loops.

3.6 Overlapping and Inconsistent Annotations

The various annotations we introduce are not disjoint. In fact, it is possible
that the optimistically annotated program contains logical inconsistencies. As
an example take a function which we optimistically declared as constant (ref.
Sect. 3.4.2), thus which can be assumed to be completely free of memory side-
effects. While this annotation already provides a tight guarantee on the overall
side-effects the function shall induce, our algorithm might still not be able to
annotate all pointer parameter of this function as “read-only” or “not-accessed”
(ref. Sect. 3.5.3). While such inconsistencies can potentially violate implicit pre-
conditions of the optimization pipeline, they might also allow to enable optimistic
transformations that would otherwise not have been possible. This is partially
due to the granularity of the annotations and partially due to the multitude of
ways analysis and optimization passes can query information.
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4 Implementation Details

Our implementation5 is split into three components. The first, thought to be
provided by the application developer, is a benchmark description. It consists of
benchmark specific information, for example the compilation flags, and instruc-
tions to verify the result, e.g., the invocation of the test suite. Additionally, the
source files, or individual functions, chosen for optimistic optimization are iden-
tified. The second component is a transformation pass in the LLVM compiler.
It is run at 14 locations in the otherwise original -O2/-O3 pipeline. Every time
it will identify optimistic annotation opportunities and, depending on the com-
mand line flags provided, either ignore them, act on them, or report them to
the outside. The brains of our approach is located in a dedicated and exter-
nal driver script. It will interpret benchmark description files, request optimistic
opportunities from the compiler pass, and explore the space of optimistic choices
until a timeout is reached or all opportunities have been resolved. Since early
decision can impact the code and thereby change the opportunities available at
a later point in the pipeline, it is important to perform the exploration itera-
tively, one annotation insertion point at a time. Not all opportunities described
in Sect. 3 are exploited at every location. Instead, easily droppable annotations,
e.g., for parallel loops (ref. Sect. 3.2), are placed only before they are used, e.g.,
prior to the loop vectorizer. Invariable annotations, e.g., for functions visibility
(ref. Sect. 3.4.5), are introduced only once in the very beginning.

4.1 Granularity of Optimistic Opportunities

Optimistic information can often be added in different, potentially nested, gran-
ularities. As an example we can annotate a function declaration as a whole, all
pointer arguments individually, or, as implemented, do both. While we choose
a fine granularity for declarations, we did not yet investigate annotations on
individual call sites. Depending on the compiler, finer-grained annotations, i.e.,
parameter vs. function annotation, and call site vs. declaration annotation, can
improve the result. However, they can also easily cause overlapping and incon-
sistent annotations (ref. Sect. 3.6), increase tuning time, and lead to results that
are harder to replicate through source code annotations.

To limit tuning time we eliminated opportunities early on. This means, (1)
we do not add annotations if any of the possible optimistic choices is already
present in the code, and (2) we accumulate opportunities into a single pick based
on the kind and name of the value involved. Hence, every time an opportunity
arises for a variable, we check if we can reuse the choice made earlier for the
same opportunity kind and variable name. For example, all function parameters
with the same name in a single translation unit are annotated the same. While
this is especially useful for the control flow speculation explained in Sect. 3.3, it
generally reduces the number of opportunities we explore.

5 Please see https://github.com/jdoerfert/PETOSPA for the code and benchmarks.

https://github.com/jdoerfert/PETOSPA
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4.2 Search Space Exploration

The space of potential choices for optimistic optimization opportunities is often
too large to be searched exhaustively. This is partially because the order in
which opportunities are resolved is important, e.g., earlier choices may interact
with new ones, and because different optimistic opportunities are non-binary
choices, e.g., the function side-effects explained in Sect. 3.4.2. Consequently, a
globally optimal solution, measured for example by the number of optimistically
resolved opportunities or the final performance, is unrealistic for any real pro-
gram. Instead, we find a locally optimal solution where opportunity kinds are
explored in a fixed order. This order is empirically chosen to allow our explo-
ration algorithm to optimistically resolve many opportunities at once. When the
verification failed, the number of optimistically resolved opportunities is split in
half. If an opportunity is already tested in isolation, the optimism of the choice
is decreased. After a less optimistic choice was fixed, we increase the number of
tested opportunities again to potentially allow many choices at once.

5 Evaluation

We evaluated our approach on six proxy applications for high-performance codes
described in Fig. 5. While these codes are simplified, they retain much of the
original complexity, making them authentic benchmarks for our approach. They
especially already contain manual annotations, though, they are, as any produc-
tion code would be, too complicated to provide all valid annotations manually.
Several of the codes have few important kernels which encompass the vast major-
ity of the runtime. Others have a long flat profile which is similarly common in
practise. We also have variety within our annotated sections with large and small
kernels, along with stand alone kernels and kernels with deep call paths. Beyond
the code details, the benchmarks exhibit a variety of run time profiles, providing
a range from compute to memory bound proxy applications.

The experiments were performed on an Intel(R) Xeon(R) CPU E5-2699 v3
(Haswell), running at 2.30 GHz with 72 threads and 36 cores across two sockets.
For each generated executable we collected 20 timings for a medium problem
definition. The following discussion is based on the results shown in Fig. 7.

5.1 RSBench (A)

RSBench simulates resonance representation cross sections lookups for nuclear
reactor core Monte Carlo particle transport. It is a compute bound alternative
to the XSBench kernel (ref. Sect. 5.2), the algorithm that is currently in use.
RSBench heavily relies on the standard math library. As shown in Fig. 7, we
compiled RSBench 99 times during the tuning. It took 497 s to finish with all
240 optimistic opportunities and we achieved 20.6% speedup compared to the
original.
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During the tuning, we see two significant speedups, each ≈ 10% compared
to the baseline, both while working on the earliest of the 14 annotation points.
The first improvement happened after alias (Sect. 3.5.1), wrapping (Sect. 3.1),
exception (Sect. 3.4.3), visibility (Sect. 3.4.5), dereferenceability (Sect. 3.5.5), and
alignment (Sect. 3.5.4) annotations were added in a single step. The second one
while annotating function side-effects (Sect. 3.4.2), the last annotation kind at
each insertion point.

For this compute heavy code the first significant speedup is visible after 15
compilations (of 99) which together took 98 s (of 497 s) to explore.

5.2 XSBench (B)

XSBench simulates the macroscopic cross section lookups that are the primary
performance concern for nuclear reactor core Monte Carlo particle transport
simulations. It is a memory intensive, semi random memory access code. Our
evaluation focused on a serial run of the XSBench proxy application as the code
is memory latency bound and the limitation of our memory system hides any
performance changes in parallel runs. After 96 compilations, 422 s, and 141 opti-
mistically annotated opportunities, the final executable shows a 15.6% speedup
over the baseline.

The first optimistically annotated version performed even ≈ 18.13% bet-
ter than the baseline. It contained 23 optimistic choices for alias and wrapping
opportunities. The next three versions internalized functions and forfeited the
speedup. It is not until 54 annotations later that we regain most of the perfor-
mance gains. These 54 choices are spread over dereferenceability, alignment, and
control flow (Sect. 3.3) annotations.

For this memory latency sensitive code, we find our best version in the middle
of our optimistic annotation tuning after only 28 compilation (of 96) and 88 s.
XSBench has many successful compilations that make no change in the resulting
binary (marked as ), especially in the second half of the tuning. This is interest-
ing as evidence of the compilers inability to utilize the additional information.

5.3 PathFinder (C)

PathFinder is a memory latency sensitive graph traversal and search. We see
a 17.3% speedup with 299 annotations after 257 compilations taking a total of
4259 s.

PathFinder is the code that has the most “new” versions (shown as ), i.e.,
successfully verified binaries that differ from the last. In total, 35% of all success-
ful builds are (new) versions. Over all versions, a relatively steady performance
increase is visible. There are two smaller drops that happen, and recover, while
annotating a single opportunity kind, first memory invariance (Sect. 3.5.6), and
then function side-effects. For PathFinder we make the least optimistic choices,
totaling 11.7% of all opportunities, but additional information is consistently
changing the executable.
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After 96 compilations, taking 1194 out of the 4259 total seconds, the maximum
speedup was almost reached. While the most significant improvement happens for
an early insertion point, gains are made throughout the entire tuning.

5.4 CoMD (D)

CoMD is a molecular dynamics code which uses the Lennard-Jones potential. It
is another compute heavy proxy application and shows a 4.6% speedup. Tuning
introduces 194 annotations in 2614 s and spread over 129 compilations.

While the final result is faster than the baseline, we see slowdowns for inter-
mediate versions. The first happens after annotating alias, wrapping, exception,
dereferenceability, and alignment opportunities. The next version, still working
on alignment, abruptly regains the loss. Later we experience a similar drop below
the base line, again after annotating alignment and wrapping information. The
majority of the optimistic opportunities are concerned with memory operations
in this compute intensive code.

The final and best version is 4.62% faster than the baseline, but a speedup
of 3.92% is already achieved after 21 compilations and 404 out of 2614 s.

5.5 Pennant (E)

Pennant is an unstructured mesh physics application using radiation–hydro code.
Pennant’s runtime has a long tail of small functions which limits (due to time) our
ability to annotate more of the application. Our tuning is unable to make any per-
formance gain despite adding 689 annotations over the course of 530 compilations.

While no speedup was achieved, we discovered an intermediate version with a
significant slowdown. This version has only five additional optimistic annotations
compared to the one before. The slowdown, as well as the subsequent recover,
happens while we annotate function memory effects, an opportunity with 13
different optimistic choices. The five annotations which cause the slowdown,
along with the five that recover it again, are annotated through 119 compilations.
Thus, our search algorithm was forced to reduce the optimism of the individual
choices until verification succeeded.

The Pennant code is unable to capitalize on the additional information despite
610 optimistic choices made for 689 opportunities. During most of the tuning
(observe the logarithmic axis) additional annotations did not change the binary.

5.6 MiniGMG (F)

MiniGMG is a benchmark for geometric multigrid solvers. It is designed to stress
both the compute and memory subsystem of the hardware. MiniGMG has shown
no performance changes after annotating all 479 opportunities optimistically.

MiniGMG has the most regular results. Each of the four versions was followed
by three successful compilations, which did not change the binary. None of the
version showed any significant change in performance. The two opportunity kinds
wrapping and alignment account for over half of all opportunities.
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Fig. 7. Performance and optimization results for the six high-performance proxy appli-
cations described in Fig. 5. Each plot shows the speedup (left) relative to the original
version, and the tuning time (right), both with regards to the number of compilations
(=tries) performed. If annotations yielded a successfully verified executable we mark
it as , if it was different from the last one, or as , if it was not.
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5.7 Successfully Verified Annotations

The dots in Fig. 7 indicate successfully verified builds that contain more anno-
tations but do not change the resulting binary. Depending on the benchmark,
between 10.6% and 35.5% of valid builds resulted in a new binary which we
had to verify. The other cases were versions bit-equal to the last which were not
verified. XSBench (B) only produces five different versions despite 47 successful
builds with new annotations. In contrast, PathFinder (C) creates 22 different
binaries in 62 successful builds. XSBench and Pennant (E) both have substan-
tial successful compilations after the final version is first compiled. PathFinder
is the only benchmark that continues to make improvements late, however these
are only regaining lost performance from earlier optimistic versions.

5.8 Optimistic Choices

Over all benchmarks, a large percent (>88%) of opportunities result in opti-
mistic choices (see Total in Fig. 6). This holds to the understanding that there
is a great deal of information that the compiler is not aware of. The hope is
to help the developer understand what information will most likely generate a
positive effect on the application. At the same time we need to remedy limita-
tions in current compilers to make profitable use of additional knowledge. The
annotation pass run first in the optimization pipeline discovers the majority of
the optimistic opportunities (always >70%). This is not surprising as optimistic
information is often maintained throughout the pipeline. As a consequence, we
will, for example, explore function interface specific opportunities only at the
first (of the 14) insertion points.

5.9 Comparison with Link Time Optimization (LTO)

Fig. 8. Performance compared to
monolithic and thin-LTO.

We also collected data for both (monolithic)
LTO and thin-LTO [15]. Figure 8 show the
performance gap determined by our tech-
nique with LTO/thin-LTO as a baseline.
While the difference is smaller than for non-
LTO builds, it remains significant, i.a., our
optimistically annotated XSBench shows a
14% speedup compared to a full monolithic
LTO build.

Compile time over the original source
increased through monolithic LTO by 5.5%
to 18.5%. With (sequential) thin-LTO the increase was between 3.6% and 17.3%
(expect for MiniGMG (F) which showed a compile decrease of 15.6%). For the
optimistically annotated benchmarks compile time decreased by 0.3% to 2.5%.
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6 Related Work

While we are not aware of exiting work that makes similar use of additional opti-
mistic static information to identify performance gaps through the optimizations
in an exiting compiler, there are various related research fields.

Autotuning. Given our moderate knowledge in the area of autotuning we
restricted ourselves to the most important files and functions in the evaluated
benchmarks. Consequently, it was sufficient to use ad-hoc search space reduc-
tions and a custom search space exploration to determine optimistic choices. To
allow the approach to scale in the future we need to incorporate elaborate tuning
mechanism as offered through tools like OpenTuner [4] or BOAT [6]. The latter
seems explicitly interesting as we can integrate domain knowledge, e.g., we could
leverage information such as the expected benefit based on the opportunity kind.

Link Time Optimization. Certain inter-procedural uncertainties are already
resolvable through link time optimization (LTO). While existing LTO implemen-
tations in GCC [12] and LLVM [15] have shown great success, it is unrealistic
to assume they will ever reach the same level of inter-procedural information
that can be provided through optimistic annotations. There are two main rea-
son. First, only where LTO compilation was used, link time inter-procedural
information can be collected. Thus, system or third party library calls will often
limit the analyses results as external functions call do it in non-LTO compilation.
Second, LTO enabled compilation suffers still from input and context dependent
uncertainties. Even if we assume we could inline all function calls or derive per-
fect caller-callee information statically, nine of the 20 optimistic opportunities
we collected would still be needed. Finally, LTO approaches induce a constant
compile time penalty as discussed in Sect. 5.9.

Super Optimization. Our technique shares ideas and goals with super opti-
mization approaches [21,25] as well as other aggressive optimization tech-
niques [18,24] developed outside of a classic compilation toolchain. While these
techniques are often focused on correctness first, e.g., through semantic encod-
ings or rewrite systems, and performance second, we relaxed the correctness
criterion and put the user in charge of verification. We also do not introduce or
explore new transformations but instead try to enable existing ones. An interest-
ing future direction is the combination of the reasoning capabilities common to
super optimizations with an optimistic approach to identify the most promising
opportunities. Even if complete static verification might be out of reach, runtime
check based verification has shown great success in the LLVM loop vectorizer
and polyhedral optimizer Polly [3,9].



266 J. Doerfert et al.

7 Conclusion and Future Work

Our findings show that there is extensive knowledge, which may be apparent to
the developer, that the compiler is unable to discover statically. This information,
once exposed to the compiler, can significantly improve performance. However,
additional information will most often not result in better performance or even
a different executable, either because it is unusable or unneeded for optimiza-
tions, suitable optimizations are simply missing, or later analyses would have
determined it as well.

Beyond the integration of new opportunities, we plan to isolate interesting
optimistic choices automatically. Those with the most significant performance
impact, the ones without any impact at all, as well as those causing a regres-
sion, may all provide valuable information. Optimally, we want to predict what
informational will be used, and what annotations are necessary to achieve a
performance gain. In addition, we want to hone in on annotations producing a
performance loss because these indicate compiler flaws.
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13. Grosser, T., Größlinger, A., Lengauer, C.: Polly - performing polyhedral optimiza-
tions on a low-level intermediate representation. Parallel Process. Lett. (2012).
https://doi.org/10.1142/S0129626412500107

14. Jeong, S., Jeon, M., Cha, S.D., Oh, H.: Data-driven context-sensitivity for points-to
analysis. PACMPL (2017). https://doi.org/10.1145/3133924

15. Johnson, T., Amini, M., Li, D.X.: ThinLTO: scalable and incremental LTO. In:
International Symposium on Code Generation and Optimization, CGO (2017).
http://dl.acm.org/citation.cfm?id=3049845

16. Lattner, C., Adve, V.S.: LLVM: a compilation framework for lifelong program
analysis & transformation. In: International Symposium on Code Generation and
Optimization CGO (2004). https://doi.org/10.1109/CGO.2004.1281665

17. Lattner, C., Lenharth, A., Adve, V.S.: Making context-sensitive points-to anal-
ysis with heap cloning practical for the real world. In: Conference on Program-
ming Language Design and Implementation (PLDI) (2007). https://doi.org/10.
1145/1250734.1250766

18. Lopes, N.P., Menendez, D., Nagarakatte, S., Regehr, J.: Provably correct peephole
optimizations with alive. In: Conference on Programming Language Design and
Implementation (PLDI) (2015). https://doi.org/10.1145/2737924.2737965

19. Pugh, W.: The Omega test: a fast and practical integer programming algorithm
for dependence analysis. In: Conference on Supercomputing (SC) (1991). https://
doi.org/10.1145/125826.125848

20. Ramalingam, G.: The undecidability of aliasing. Trans. Program. Lang. Syst.
(1994). https://doi.org/10.1145/186025.186041

21. Sasnauskas, R., Chen, Y., Collingbourne, P., Ketema, J., Taneja, J., Regehr, J.:
Souper: a synthesizing superoptimizer. CoRR (2017). http://arxiv.org/abs/1711.
0442

22. Shapiro, M., Horwitz, S.: Fast and accurate flow-insensitive points-to analysis. In:
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL) (1997). https://doi.org/10.1145/263699.263703

https://doi.org/10.1145/277650.277670
https://doi.org/10.1145/277650.277670
https://doi.org/10.1007/978-3-319-98521-3_8
https://doi.org/10.1007/978-3-319-98521-3_8
http://dl.acm.org/citation.cfm?id=3049864
http://dl.acm.org/citation.cfm?id=3049864
http://doi.acm.org/10.1145/178243.178264
http://doi.acm.org/10.1145/178243.178264
https://doi.org/10.1007/BF01407931
http://arxiv.org/abs/1010.2196
https://doi.org/10.1142/S0129626412500107
https://doi.org/10.1145/3133924
http://dl.acm.org/citation.cfm?id=3049845
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/1250734.1250766
https://doi.org/10.1145/1250734.1250766
https://doi.org/10.1145/2737924.2737965
https://doi.org/10.1145/125826.125848
https://doi.org/10.1145/125826.125848
https://doi.org/10.1145/186025.186041
http://arxiv.org/abs/1711.0442
http://arxiv.org/abs/1711.0442
https://doi.org/10.1145/263699.263703


268 J. Doerfert et al.

23. Steensgaard, B.: Points-to analysis in almost linear time. In: ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL) (1996).
https://doi.org/10.1145/237721.237727

24. Tate, R., Stepp, M., Lerner, S.: Generating compiler optimizations from proofs.
In: Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2010, Madrid, Spain, 17–23 January 2010, pp.
389–402. ACM (2010), https://doi.org/10.1145/1706299.1706345

25. Tate, R., Stepp, M., Tatlock, Z., Lerner, S.: Equality saturation: a new approach
to optimization. In: ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL) (2009). https://doi.org/10.1145/1480881.1480915

https://doi.org/10.1145/237721.237727
https://doi.org/10.1145/1706299.1706345
https://doi.org/10.1145/1480881.1480915


Programming Models and Systems
Software



End-to-End Resilience for HPC
Applications

Arash Rezaei1, Harsh Khetawat1, Onkar Patil1, Frank Mueller1(B) ,
Paul Hargrove2, and Eric Roman2

1 Department of Computer Science, North Carolina State University,
Raleigh, NC 27695-8206, USA

mueller@cs.ncsu.edu
2 Lawrence Berkeley National Laboratory, Berkeley, CA 94730, USA

{phhargrove,ERoman}@lbl.gov

Abstract. A plethora of resilience techniques have been investigated
to protect application kernels. If, however, such techniques are com-
bined and they interact across kernels, new vulnerability windows are
created. This work contributes the idea of end-to-end resilience by pro-
tecting windows of vulnerability between kernels guarded by different
resilience techniques. It introduces the live vulnerability factor (LVF),
a new metric that quantifies any lack of end-to-end protection for a
given data structure. The work further promotes end-to-end application
protection across kernels via a pragma-based specification for diverse
resilience schemes with minimal programming effort. This lifts the data
protection burden from application programmers allowing them to focus
solely on algorithms and performance while resilience is specified and
subsequently embedded into the code through the compiler/library and
supported by the runtime system. In experiments with case studies and
benchmarks, end-to-end resilience has an overhead over kernel-specific
resilience of less than 3% on average and increases protection against bit
flips by a factor of three to four.
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1 Introduction

In large-scale parallel systems, faults are not an exception but rather the
norm [18,29]. Faults such as bit flips or hardware faults may result in applica-
tion or operating system failures. Hardware and software techniques have been
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devised to make such systems more resilient to failures. But future exascale sys-
tems are projected to see an increase in the frequency of faults, which would
require 20% more circuitry and energy to counter them [33]. However, hardware
vendors tend to design and build general-purpose, and not exascale-specific hard-
ware due to manufacturing costs. As a result, the future systems will be likely
built with off-the-shelf components while delegating a significant part of the
resilience responsibility to the software layer.

The significance of resilience in future HPC systems has been emphasized in
prior research, e.g., [33]. In particular, multiple challenges arise in HPC systems
from the size (millions of cores) and the programming model (tightly coupled).
Intuitively, larger numbers of components result in a higher probability of fail-
ures. What’s more, a tightly coupled programming model may result in fast fault
propagation after just one node has been hit [17]. Hence, resilience is considered
a major roadblock on the path to next-generation HPC systems.

In practice, hardware protection is complemented by software resilience. A
variety of software techniques exist, such as checkpoint/restart (CR), redun-
dancy, and algorithm-based fault tolerance (ABFT), each with their own ben-
efits and limitations in terms of applicability and cost. CR has high storage
overheads and requires backward recovery via re-execution, which limits scala-
bility [16]. Redundancy requires either only extra memory or both extra memory
and processing resources, which is costly [17]. ABFT results in low overheads
and supports forward execution, but each numerical algorithm has to be cus-
tomized [12,15,19]. A choice of a low-cost resilience scheme is best made per
numerical kernel rather than for an entire application. The composition of dif-
ferent resilience techniques, however, results in a generally overlooked problem:
It creates windows of vulnerability. Consider kernel K1 with redundant execution
followed by kernel K2 with ABFT protection. K1’s result is consumed by K2,
yet the result’s integrity is no longer checked after K1 has finished. This leaves
variables storing K1’s result vulnerable until K2 has consumed all of them. In
contrast, by protecting both K1 and K2 with redundancy, intermediate and final
results can be compared (dual redundancy) or even corrected (triple redundancy
with voting).

We introduce end-to-end resilience to allow the selection of different low-cost
resilience techniques across different application phases. End-to-end resilience
composes protection spaces of kernels with disjoint resilience techniques such
that windows of vulnerability are avoided. Another problem is that program-
mers are often forced to clutter numerical methods with tangential resilience
concerns making codes hard to maintain. Resilience APIs try to reduce this
clutter but cannot eliminate it, e.g., Containment Domains [9], GVR [39],
Charm++ [21], etc. Also, transparent resilience techniques, such as BLCR [13],
tend to impose much higher overhead than application-specific resilience via
CR [26] or ABFT [15]. But the interleaving of algorithmic and resilience con-
cerns makes it hard to maintain such programs. End-to-end resilience is realized
elegantly via pragmas at the program level, which provides the benefits of the
aspect-oriented programming (AOP) paradigm [22] as it increases modularity by
allowing the separation of algorithmic and resilience concerns at no extra cost
while still meshing with a variety of execution paradigms and resilience methods.
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This work makes the following contributions:

• We identify the vulnerabilities between protected kernels and offer a system-
atic solution via end-to-end resilience.

• We propose a metric to quantify vulnerability across protected kernels.
• We design and implement a resilience pragma to support separation of the

resilience aspects from the algorithms to increase portability and modularity
imposing minimal programming effort.

• We show that, in contrast to prior work, auto-generated protection provides full
end-to-end protection at less than 3% additional time overhead on average.

2 Background

Hardware faults can be persistent or transient. Persistent faults are typically due
to aging or operation beyond temperature thresholds. If a persistent faults results
in a failure, re-execution will not help, i.e., an HPC job of thousands of processes
is rendered useless. Transient hardware errors, also called soft errors, are often
due to cosmic radiation. They allow the application to continue execution, albeit
with tainted data. Such faults manifest as bit flips in the data in memory or
anywhere in the data path (e.g., caches, data bus). Although CPU registers,
caches, and main memory are often equipped with ECC, only single bit flips
are correctable while double-flips generally are not (by SEC-DED ECC while
chipkill can correct some multi-bit errors depending on their device locality).1

Jaguar’s 360TB of DRAM experienced a double bit flip every 24 h [18]. Some
soft faults may remain undetectable and may result in so-called Silent Data
Corruption (SDC). SDCs may manifest at application completion by producing
wrong results or, prior to that, wrong interim results. It is known that SDC rates
are orders of magnitude larger than manufacture specifications [27,30,35].

Resilience methods usually compensate for the computation/state loss by
performing a backward or forward recovery. Backward recovery recreates an
older state of an application through classic rollback recovery methods, such as
system-level or application-level checkpoint/restart (CR) [26]. Forward recovery
typically handles errors by repairing the affected data structures. A correction
procedure is invoked that may recover the intended values from a peer replica
(redundant computing) [17], or via Algorithm-Based Fault Tolerance (ABFT)
from checksums or solver properties [8,12,15,19,31].

Many HPC applications are comprised of multiple kernels that form a multi-
phase pipeline. The above-mentioned methods are resilient to one or multiple
types of faults with different overhead. Intuitively, there is no single solution
that fits all scenarios while providing the best performance. Thus, a combination
of methods enables the selection of the best resilience mechanism per applica-
tion phase considering factors such as computation time and size of data that
needs protection. End-to-end data integrity is a goal explicitly cited in exascale
reports [33]. Our end-to-end resilience fills this very gap.
1 Bit flips in code (instruction bits) create unpredictable outcomes (most of the time

segmentation faults or crashes but sometimes also incorrect but legal jumps) and
are out of the scope of this work.
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3 Assumptions

Our fault model considers soft errors/SDCs that materialize in memory in a fault
agnostic manner, i.e., SDCs may occur in unprotected DRAM (no ECC) due to
cosmic rays or may result from bit flips in the processor core during calcula-
tions, unprotected register files, or caches. Hence, results of (faulty) calculation
are subsequently written to memory, which creates an SDC even if memory is
protected with ECC/chipkill. This is consistent with findings of past work [30,35]
indicating that undetected errors in SECDED ECC-protected DRAM present a
problem today, and that some SRAM structures remain unprotected.

On the software side, we assume that the correctness of a data structure can
be verified (through a Checker method) and the stored values can be recovered
through a Recover method should an inconsistency be detected. Many algo-
rithms commonly used in HPC, such as numeric solvers, have approximation
methods based on convergence tests. These convergence tests could be used as
the Checker. If an algorithm lacks a simple checking method or invariant, the
Checker can be provided through comparison with a checksum over the data that
was computed beforehand and stored in a safe region.2 The Recover method is
given by the forward recovery phase in ABFT methods, or simply by restoring
a light-weight deduplicated [2] or compressed [20] checkpoint of the data.

We further assume that the computation is (or can be made) idem-potent
with respect to the encapsulated region, i.e., if globals are changed inside the
region, they have to be restored by the recovery method. In other words, if a
method/region is called twice in a row, the result would be the same as the
inputs (or global variables) remain unmodified by the computation (no side
effects).3 CR and redundant computing already ensure idem-potency since iden-
tical state is restored in the former while redundant state exists for the latter.
ABFT methods have to be analyzed to ensure that dynamic live ranges are
encapsulated by end-to-end resilience, while any other global side effects need
to capture/restore globals at region boundaries. Existing solutions to I/O idem-
potency are required as well [4]. We can then retry a computation if needed, i.e.,
when no other recovery methods exist (or if the other recovery methods have
failed). Notice that we do allow the side effects of communication inside regions
(see Sect. 4). Application kernels, e.g., the ones studied, were found to be already
compliant with these constraints, and frameworks have similar constraints, e.g.,
DAG-based HPC tasks and map-reduce [1,7].

2 Extra checks are added to guarantee the correctness of data stored in a safe region. A
safe region is assumed to neither be subject to bit flips nor data corruption from the
application viewpoint—yet, the techniques to make the region safe remain transpar-
ent to the programmer. In other words, a safe region is simply one subject to data
protection/verification via checking.

3 Inputs are read from disk and stored in globals or on the heap, but may be recovered
by re-reading from disk. Globals are calculated in the program and can only be
recovered by re-calculation or ABFT schemes.
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4 End-to-End Resilience

Live Vulnerability Factor: We introduce a new metric, the term Live Vulner-
ability Factor (LVF): LV F = Lv × Sv,
where Lv is the length of the dynamic live range of an arbitrary (incl. non-scalar
array) data structure/variable v (vulnerability window), and Sv is the space
required to hold the related data in memory. Length is measured as wall-clock
time from first set to last use (dynamic live range) of a variable during execution.

Protection Across Scopes: Applications are typically composed of phases
during which different algorithmic computations are being performed. Interme-
diate results are created and passed from phase to phase before the final result
is generated. Our core idea is to exploit the dynamic live range of predominantly
non-scalar variables within and across phases, and to immediately perform a cor-
rectness check after the last use of any given variable. Scalar live range analysis is
a well-understood technique employed by compilers during code optimizations,
such as register allocation (among others), while dynamic live ranges are rarely
analyzed but can, in part, be inferred from escape analysis. Figure 1 outlines
the idea for our running example, a sequence of two matrix multiplications,
enhanced by an extra checksum row and column per matrix for resilience (see
Huang et al. [19]). Huang’s method provides protection for result matrices C and
E within a single matmult kernel (arrows on left side) while end-to-end resilience
protects all matrices during their entire live time across kernels (arrows on right
side). If an error strikes during the lifetime of phase-dependent variables, single-
kernel protection methods cannot provide any assistance as they are locally
constrained to region boundaries. This is precisely where our end-to-end protec-
tion comes to the rescue. In fact, Fig. 1 concisely illustrates that single-kernel
protection misses out on more than half of the lifetime of variables
compared to end-to-end protection even if 99% of execution time is spent
inside the two matmult kernels.

Fig. 1. Matrix multiplica-
tion, range of live variables

When a live range ends, data is checked for cor-
rectness. If correct, no action is taken, otherwise
correct values are recovered (if detected as erro-
neous), or re-computation is performed (if erroneous
but direct recovery has failed). The intuition here is
to avoid the high overhead of frequent checks (e.g.,
after every variable redefinition or use inside the
live range) while providing a guaranteed end-to-end
correctness of the computation.

The Protect Pragma: We propose a pragma-based resilience scheme and show
how the corresponding code is expanded to provide the extra end-to-end pro-
tection. This allows us to cover the vulnerability window of different variables
by automatically expanding codes through the compiler. The expanded code
performs check and recovery actions on the vulnerable data. We incorporate
end-to-end resilience into OpenMP-like pragmas to facilitate adoption and code
maintenance with a potential of future synergy between thread parallelism and
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resilience (beyond the scope of this paper). The pragma has a simple, yet pow-
erful and extendable interface with the following syntax:

#pragma protect [M ][Check(f1, .., fn)][Recover(g1, .., gm)][Comm][Continue]

The resilience method, M, which can be CR or Redundancy (2/3)
(dual/triple), is an optional argument. The integration of both resilience
approaches is discussed in a latter example. Check and Recover receive a list
of functions parameterized by each variable that needs protection. We use f to
denote a checker, and g for a recovery methods. By default, f and g are a check-
sum calculation and checksum-based correction, respectively. A user may over-
write f/g to supply more efficient checking/recovery. A region that contains MPI
communication is annotated with the Comm keyword. The Continue keyword
indicates that data is live beyond the current region, i.e., crossing phases/kernels,
and requires end-to-end protection. Figure 2 depicts the source code of our run-
ning example with the protect pragmas with the “Continue” keyword to protect
live matrices across kernels.

Fig. 2. Matrix multiplication with protect pragma

In the final code, every region is contained within a while loop (protec-
tion boundary) with checking and recovery code after the computation. After
mmult(A,B,D), a Check is invoked followed by Recover if the check fails inside
the loop. (Both are called via function pointers.)

Code resulting from chaining of regions with the Continue keyword are high-
lighted and described as follows. A boolean array of size 3 named completed and
a flag first are maintained for the 3 chained regions in this code, which indi-
cates the correct completion of regions 0, 1, and 2. At the end of region 0/1/2,
the corresponding flag is set. Matrix D is only loaded once due to the condi-
tional on the flag. Additional loads may be triggered inside the Recover() calls
for matrices A, B, and D if they cannot be repaired using checksums.
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Recovery from regions that involve MPI communication with other processes
requires coordination among these processes. The Comm option of the pragma
indicates that such communication exists inside that pragma region. It results in
generating code for a global reduction of check() return codes indicating if any
checks have failed, in which case recovery with recomputation is required where
all peer MPI tasks participate in recomputation.

Notice that pragmas cannot easily be replaced by macros. First, variable
number of check and recover routines may be specified, one per data structure,
which cannot be expressed by a macro. Second, a begin and end macro would
be required per pragma, but all three begins would have to be placed on line
4 of Fig. 2 while the ends would follow after lines 8, 13, and 16, respectively.
This would make the source code significantly less legible. The compiler also has
the ability to perform semantic checks to ensure that the live range of protected
variables under the Continue keyword extends to the end of the scope spanning
multiple pragmas and to capture/restore globals via live range analysis.

Source code changes in terms of added pragmas are only needed at the top
level of computations (e.g., timestep loop for most HPC codes), and most notably
not in libraries. Continue creates an orphaned semantics (in OpenMP terminol-
ogy) that continues the lexical extent from scope-to-scope (transitively) in the
current compilation unit, where each pragma in such a chain expands the live
range for the current set of protected variables. For the enclosing scope, the
resulting chain results in one checkpoint per pragma in the absence of faults.
In the presence of a fault, selective recovery from the last valid data is only
performed at the inner-most scope that stored this data.

Task-Based Resilience: An alternative to the pragma approach is to design a
task-based programming scheme that implicitly provides end-to-end resilience.
Tasking libraries are becoming more popular in the HPC community due to their
more graceful load balancing and potentially asynchronous execution models,
e.g., PaRSEC [5], OmpSs [14], the UPC Task library [25], and Cilk [3].

Resilience has been added to PaRSEC [6] and OmpSs [24]. Other work focuses
on soft faults [6], i.e., they take advantage of the algorithmic properties of ABFT
methods to detect and recover from failures at a fine grain (task level) and utilize
periodic checkpointing at a coarse grain (application). Yet others uses CR and
message logging at the task granularity to tolerate faults with re-execution [24].

Instead of focusing on a specific resilience approach, we target a more com-
plex problem. We propose a tasking system that allows for different resilience
methods to interact in an easily understandable and extendable manner. A
resilient task class is provided with two methods that are called before and after
the actual execution of a task, namely resilience pre, resilience post. In
resilience pre, depending on the resilience type of the task, CR or Redun-
dancy, the checkpoint method or wakeup shadow is called, respectively. In
resilience post, first the shadow process is put to sleep under redundant exe-
cution. Then data structures with their last use in the task are checked and
corrected if needed. If correction fails, a set of tasks is put into the scheduling
queue to recompute the tainted data structures.
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5 Implementation Details

The resilience pragma API is implemented as a transform pass in the Cetus
compiler [10] via source-to-source transformation (i.e., no need for more complex
frameworks like LLVM as the IR is never used). Source-to-source compilation
using Cetus allows us to transform an input C program to a modified C program
as output. Cetus uses Antlr [28] in order to parse C programs into an Intermedi-
ate Representation (IR). The compiler passes are then run on the IR in order to
generate the output source code. Each pass iterates over the IR and is capable
of modifying it by adding, removing, or editing the input source. New code is
added as Cetus IR objects, equivalent to building an IR tree from its leaves.
Similarly, a complex IR can be generated by extending these trees. Cetus allows
iterating over the IR in a depth-first manner, which is utilized here.

ProtectPragmaParser Class: We added the ProtectPragmaParser class, a
transform pass that implements our pragma. Each pragma directive in the input
program is represented as an object of the ProtectPragmaParser class. The Pro-
tectPragmaParser class is run in order to transform the generated parse tree
to an equivalent parse tree structure, which contains our protection boundaries,
checker functionality, and recovery mechanisms. We traverse the input parse tree
in a depth-first manner looking for the protect pragma directives. On finding the
pragma, we parse the directive to populate the checker and recovery functions
associated with this particular pragma. We also generate the necessary protec-
tion boundary, checking, and recovery code required in the current context and
track the variables defined at these protection boundaries. As part of the Pro-
tectPragmaParser object creation, we check if the current directive is chained to
a previously encountered directive via the Continue keyword. If chained, we can
recompute these resilient variables in case their recovery methods fail, and the
ProtectPragmaParser object of the current context is added to the list of chained
pragmas of the directive it is chained to. Otherwise, it is added as an independent
(root) pragma. When chaining is found in the input IR, we extend the protection
boundaries of the current pragma around that of the following pragma. When
the input source code has been completely parsed, a logical structure of these
chained (or unchained) directives is created (see pragmas in Fig. 2).

Once the entire input source code has been traversed and the logical struc-
ture of pragmas is created, a recursive function that emits transformed code is
invoked on the root objects. This, in turn, invokes the function on each of its
chained pragmas. It is at this stage that checking and recovery code for non-last-
use variables is removed so as to reduce the checking overhead. This function
uses the chaining information to correctly emit the nested while loop structure
as part of the output source code. As part of the code emitting process, if a
particular directive had the CR or Redundancy clause, then the compiler emits
the appropriate function calls to wake shadow and sleep shadow in case of the
Redundancy clause, and create ckpt in case of the CR clause.



End-to-End Resilience for HPC Applications 279

The Cetus compiler infrastructure along with our ProtectPragmaParser func-
tionality allows us to transform our input source code in this manner to support
end-to-end resilience. While these transformations could be performed manu-
ally by the programmer for simple examples, it quickly becomes tedious and
error-prone for more complicated program structures or even chained regions.
Our Cetus implementation transforms the input source in a single pass through
the IR tree, emitting code recursively even for complicated, inter-leaving depen-
dencies between resilient variables. This allows for the development of powerful
software that has end-to-end resilience while off-loading the repetitive and some-
times non-trivial task of code expansion to the compiler.

6 Experimental Results

All experiments were conducted on a cluster of 108 nodes, each with two AMD
Opteron 6128 processors (16 cores total) and 32GB RAM running CentOS 7.3
and Linux 4.10 (except for TF-IDF, which uses CentOS 5.5, Linux kernel 2.6.32
and Open MPI 1.6.1 due to BLCR [13] and RedMPI [17] requirements). ABFT
resilience is realized via protecting critical data with checksums so that we can
attempt to recover (repair) results, or, if recovery fails, resort to CR and reload
data from disk. Redundancy is realized via Red-MPI of which we obtained a
copy [17]. These techniques, referred to as conventional resilience in the following,
are compared to their equivalent version with end-to-end resilience guarantees.

We present examples of pragma- and task-based end-to-end resilience for two
variants of matrix multiplication and a page ranking program, with experimental
results for these codes as well as the NAS Parallel benchmark codes. To this end,
we already discussed end-to-end resilience for two successive matmult kernels in
Fig. 2. The same kernels can also be refactored using fine-grained tasking as
discussed next.

The task-based resilience class/capabilities (Sect. 4) plus a task-based run-
time system are utilized to implement a blocked matrix multiplication utilizing
POSIX threads. We add checksums per block of a matrix. The checksum ele-
ments are colored in the 2 examples of Fig. 3.

Fig. 3. Blocks (white) with
checksums (blue) (Color
figure online)

For a matrix of size 4 × 4, if the block size k
is 2, then 20 extra elements are needed to hold the
checksums. For a 6×6 matrix, 45 extra elements are
needed. In practice, the size of a block (configured
to fit into L1 cache with other data) is much larger
than the extra space overhead for checksums.

6.1 Matrix Multiplication

We use 5 input sizes for square matrices from 512 × 512 to 2560 × 2560. The
size of last level cache (L3) is 12 MB, and only the first experiment (N = 512)
completely fits in the L3 data cache. Thus, data is repeatedly loaded from main
memory (DRAM) in all other experiments. We use 16 OpenMP threads that
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perform matrix multiplications in a blocked manner with a tile/block size of
32 × 32. Each thread needs 3 blocks to perform the multiplication. Thus, the
block size is selected as number of elements that can be accommodated in 1

4 th
of the L1 data cache size of 64 KB.

Figure 4 contrasts the performance evaluation of sequentially composed
matrix multiplication with conventional resilience (left bar) with our end-to-end
resilience (right bar). For the pragma-based solution (left half), fault-free execu-
tion ranges from 0.88 (n = 512) to 35 s (n = 2560) when no correction needs to be
triggered. In this case, end-to-end resilience has a 0.99% overhead at n = 512; for
larger matrix sizes, this overhead is also negligible (around 0.69%). Task-based
execution (right half) results in slightly higher execution times and overheads
that are between 1.4% (for large matrices) and −0.64% (for small ones) and
varies between 4.6% and −6.5% due cache artifacts with unaligned (1536) and
aligned (2048) cache lines resulting in more/fewer cache conflicts, respectively.
The alignment can be attributed to the implementation of per-block checksums
in task-based matrix multiplication. Overall, more computation is performed
during the multiplications and check operations.

Observation 1: End-to-end resilience across kernels results in the same cost
as conventional resilience only protecting single kernels.

Fig. 4. Time of conventional/end-to-end
resilience

Fig. 5. Live Vulnerability Factor (bars)
and % increase (above bars)

Performance Under Faults and Resulting Failures: We next investigate
the correlation between LVF and the likelihood of failures in matrices. The LVF is
computed from the vulnerability window of data structures (see Sect. 4). Figure 5
depicts the LVF as bars of each matrix under failure-free execution of the applica-
tion. The vulnerability size is 50.03 MB and the vulnerability window depends on
the live range of each matrix. C has the highest LVF, next comes E and then A.
B and D have the same LVF, the smallest among the 5 matrices. This reflects the
live ranges of the respective (same size) data structures during program execu-
tion (see Fig. 1). Notice that conventional resilience would only protect matrices
C and E within, but not across kernels, i.e., they would only protect about 50%
of our LVF for C/E and none for A/B/D (see Fig. 1). Furthermore, end-to-end
resilience adds overhead that increases the LVF by only 0–5%, as depicted by
the labels above bars in Fig. 5, but, unlike previous work, checks/corrects SDCs
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even across kernels that are otherwise only locally protected. Since these matri-
ces comprise 99% of the program’s data, the LVF per program is the average of
weighted per-data LVFs, where weights are 1 (same size and range), except for
matrix C with weight 2 (same size, twice the range).

Observation 2: End-to-end resilience protects data over significantly larger
execution ranges at less than 1% increased LVF for pragma-based and 2.2% for
task-based execution.

We also developed a program variant that injects faults (single bit flips) in
uniformly randomized locations over the matrices (all 5 matrices, each sized at
2560×2560) and also at uniformly randomized times in a time window according
to a given rate (configurable). This allows us study the effect of fault injections
in real life and compare the results to the LVF metric. We randomly inject faults
during runtime with fault rates from 25 to 45 s for pragma-based execution. Such
high fault rates may be unlikely, but the point is to assess overhead and to illus-
trate the robustness of our technique: A second fault may be injected before
the first one has been mitigated, yet end-to-end resilience is capable of making
forward progress. (Solar flares are actually reported to result in multiple SDCs
in rapid succession.) The y axis of Fig. 6 shows the number of faults. Using con-
ventional resilience, only the faults in the lower-most shaded region of matrices
C and E can be corrected by conventional resilience methods that are limited
to a given scope/kernel, such as [11]. For end-to-end resilience, faults resulting
in detectable errors in the lower portion of all matrices (errors across and in
kernels, i.e., including the shaded regions of C/E) are all subsequently corrected
by end-to-end resilience, even though they cross scope/kernel boundaries. This is
the most significant result of our work as it demonstrates how much more fault
coverage end-to-end resilience has compared to conventional resilience schemes.
This covers cases where injections hit data while it is live. In fact, it shows that
the majority of faults occurs outside of ABFT kernel protection, which is exactly
what end-to-end resilience protects.

Fig. 6. Fault injection over 100 runs
(pragma-based)

Fig. 7. Fault injection over 100 runs
(task-based)

Other injections do not result in a failure as they hit stale data (upper-
most portion per bar). In other words, end-to-end resilience never resulted in
erroneous results while conventional ABFT misses errors across kernels, which
are dominant. Furthermore, the distribution of corrected injection counts over
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matrices resembles the distribution of the LVF across matrices in Fig. 5. This is
significant as injection experiments and LVF analysis thus validate each other.
Slight differences can be attributed to the fact the LVF is based on failure-free
execution while Fig. 6 is based on repeated executions for some corrections for
certain detected errors (e.g., in the input matrices).

Observation 3: End-to-end resilience corrected all SDCs, i.e., 3 to 4 times as
many as single-kernel conventional techniques.

Figure 7 depicts the corresponding results for task-based end-to-end
resilience. We observe a similar distribution across matrices to Fig. 6, yet the
number of faults lower since the task-based approach requires less time to exe-
cute. Consequently, fewer faults are injected at the same MTTF rate. Task-based
injection counts that were corrected also loosely resemble the LVF in Fig. 5 for
the same reasons as before, only that E is now indicated to be more prone to
faults than C due to observed error corrections.

Observation 4: The LVF (without error injection) indicates the relative vul-
nerability of data structures.

Fig. 8. Completion time with faults

Figure 8 depicts the aver-
age completion times after
fault injection. All faults
that resulted in an error
were detected and corrected
by end-to-end resilience. The
pragma-based approach (left
half) resulted in 8%–15%
overhead for a fault rate
from 45 to 25 s. Notice that
such a high fault rate results
in one or more faults per execution, some of which result in detectable errors
that are subsequently corrected at the expense of executing recovery code. Again,
such high SDC rates are not realistic, but they allow us to compare the relative
overhead between pragma- and task-based. For the task-based case, overhead
ranged from 8%–14%, nearly the same as pragma-based. The absolute time (y-
axis) indicates that task-based is more efficient since tiling results in higher data
reuse in caches on one hand and due to less overhead for corrections limited to
a single tile on the other hand.

Observation 5: Overall, pragma- and task-based resilience result in comparable
overheads for matmult.

6.2 TF-IDF

We further assessed the resilience capabilities for an MPI-based benchmark.
We ported a term frequency/inverse document frequency (TF-IDF) benchmark
for document clustering based on prior work [38]. TF-IDF is a classification
technique designed to distinguish important terms in a large collection of text
documents, which is the basis for page ranking with applications in data mining
and search engines. The classification is broken into two steps. (1) TF calculates
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the frequency of a term on a per document basis. (2) DF counts the number of
occurrences of a given term (document frequency). The final result is tfidf =
TF × log N

DF . Note that TF is a local computation while DF is global across all
documents. As a result, the DFs need to be aggregated.

Figure 9 depicts the steps in the TF-IDF benchmark. At first, the names of
files are loaded. Then the term frequency (TF) method is called with filenames
as input and tfs as output. Next, the document frequency (DF) is called with
tfs as input and dfs as output. Finally, the tfidf value is computed for every
term with a TFIDF call with tfs and dfs as input parameters. Figure 9 also
depicts single kernel protection areas (arrows on left) and the vulnerability win-
dows (live ranges) of variables protected by end-to-end resilience (arrows on
right). The DF method contains MPI communication for the aggregation of
document frequencies across all MPI ranks.

Fig. 9. Vulnerability windows in
TF-IDF

Table 1. Compiler-derived resilience info

Region Variable
Name

Check method Recover
method

0 fn Checker(fn) Load(fn)

1 tfs – –

2 tfs Checker(tfs) Recover(tfs),
Region(0)

dfs Checker(dfs) Region(1)

Check and Recover Methods: TF-IDF does not have any check provided
by the algorithm. Thus, we compute a checksum over the data. To demonstrate
the capabilities of end-to-end resilience, we use a combination of redundancy
and CR in this case study. CR provides a restore function, which we use as a
recovery method.

Pragma Expansion: End-to-end resilience for TF-IDF can be provided by
augmenting the code with three pragmas over as many regions (see Fig. 10).
The first region is executed under redundancy with the default of dual redun-
dancy to check if the filename is correct and, as recovery, reload the filename if
this check fails. (Triple redundancy is optional and may allow the filename to
be recovered, but this overhead is not justified just for protecting a filename.)
The second region is protected with CR. The data of tfs is live across all three
regions, while dfs is live across the last two pragma regions (Continue keyword).
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Fig. 10. TF-IDF with protect pragma

Inside the DF method, MPI communication is used and, consequently, the
Comm keyword is added to the second pragma. Table 1 depicts the regions, the
input variable(s) to each region and the check and recover method per variable.
Note that tfs is still live in region 2. Thus, no check should be carried out
on tfs in region 1. Thus, region 1 does not have check/recover methods. The
chaining of regions is also shown in Table 1. In region 2, tfs can be recovered
by recomputing region 0. Similarly, dfs can be calculated from region 1.

We perform the code transformation in two steps. At first, the function calls
for the CR or Redundancy schemes are added to the source code, followed by
expansion of the pragma regions which provide end-to-end resilience. (final code
omitted due to space).

Experimental Results of TF-IDF: We used 750 text books with a total
size of 500 MB for the TF-IDF benchmark with 4 MPI ranks. We performed
the evaluation with 4 input sizes: 125 MB, 250 MB, 375 MB, and 500 MB, which
were protected by checksums.

Figure 11 depicts the time for conventional per-kernel resilience of TF-IDF
and compares that to our end-to-end resilience. Execution times are averaged
over 30 runs with small standard deviations (0.01–0.22). The overheads are
almost the same, fluctuations of higher/lower execution by 0.25% or less are
insignificant for input sizes of 125 MB to 16.2% for 500 MB. This confirms
observation 1.

Figure 13 depicts the LVF metric on a logarithmic scale (y-axis) for the three
kernels filenames (filen), tfs, and dfs and an input of 500 MB. The tfs data has
the highest vulnerability. This reflects a combination of data size (tfs is larger
than filenames/dfs) and live range of tfs during program execution (see Fig. 9).
The other two kernels operate on smaller data and live ranges, and while this
data still critical for resilience (e.g., names of files that will be opened), they add
little overhead and are less prone to corruption (lower LVF). We observe again
significantly increased protection ranges with end-to-end resilience at virtually
unchanged overheads (0.01% to 2.71%). This confirms observation 2.

Similar to the fault injection code for matrix multiplication, we inject faults
uniformly across the 3 data structures with fault rates from 25 to 45 s for TF-IDF.
Figure 14 depicts the faults normalized against the respective data structure sizes.
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Fig. 11. Failure-free exec. time
of TF-IDF

Fig. 12. Fault injection, various fault
rates, 100 actual runs

The filenames data structure is small compared to the tfs and dfs structures, i.e.,
fewer faults are injected into filenames even though it has a larger life range than
dfs. Similarly, tfs has the most injections as it is the largest data structure and is
also live for the longest period of time. Finally, dfs is live for the shortest period of
time, but because of its larger data footprint we see several injections into it. The
shape of the fault distribution of Fig. 14 for actual injections closely resembles that
of the modeling via the LVF metric in Fig. 13. This confirms observation 4.

Fig. 13. Live Vulnerability Fac-
tor (bars) and % increase (above
bars) for TF-IDF

Fig. 14. Fault injection normalized to
respective data structure sizes

Results indicating different fault handling classes are presented in Fig. 12.
As with the matrix multiplication example, only the faults in the lower-most
shaded regions of the tfs and dfs data structures can be corrected by conventional
resilience methods while end-to-end resilience manages to detect and correct
all errors, even those crossing scope/kernel boundaries. Furthermore, tfs was
benefiting the most from end-to-end resilience while conventional resilience in a
single kernel left many SDCs in tfs and some in dfs undetected (reflecting the
vulnerability per data structure expressed by the LVF in Fig. 13). This confirms
observation 3.

Discussion: We also experimented with a XOR hash to protect the data struc-
tures of TF-IDF. To produce a plain text as input for XOR, key/value strings
of the tfs data structure were concatenated per file before they could be hashed.
Due to string concatenation, this resulted in an additional 10% performance
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overhead for a total increase in LVF by 13% compared to no protection. This
increase in LVF is clearly inferior to the simple checksums with 2.71% LVF over-
head (Fig. 13), which underlines the importance of designing resilience mecha-
nisms that require small metadata and perform checks with little performance
overhead. Otherwise, resilience mechanisms might actually increase the chance
of SDCs (due to a larger data footprint vulnerable for a longer time), i.e., a 100%
increase in LVF doubles the chance of SDCs (even though they might be caught
and fixed with end-to-end resilience).

Observation 6: The LVF indicates (without error injection) that The change
in LVF (in %) reveals if protection was effective or counter-productive.

6.3 NAS Parallel Benchmarks

We apply our resilience pragma to the NAS parallel benchmark (NPB) suite
to calculate the overhead of our scheme. We use the C port of the OpenMP
version of the NPB suite. We annotate each iteration of the benchmarks with a
pragma that protects the input data structures. Notice that only four of the NPB
benchmarks of this C-based OpenMP version compile correctly for input class
C, i.e., we cannot report results for the remaining ones, because data structures
that remain unmodified between iteration boundaries are too small for end-to-
end resilience to be effective. The input data structures are verified with a simple
scheme that calculates a checksum over the entire data structure.

The data structure is checked for correctness inside the resilience region spec-
ified by the pragma and control is allowed to move to the next iteration only
when the input data structures are verified to be correct. Via checkpointing, one
can revert the data structures to a previously saved state in case a soft error is
detected in the input data structures.

Fig. 15. Time of NPB codes (input class C)
with/without pragma

Figure 15 shows the execution
time (in seconds) of the different
benchmarks with and without the
resilience pragma. The results are
averaged over 10 runs of the bench-
mark and run for up to 30 min.
We observe that the incurred over-
head in case of a fault-free execu-
tion is between 0.63%–2.61%. The
standard deviation for the execu-
tions ranges from 0.983 for FT to
9.957 for SP (too small to show in
the plots).

Observation 7: Correctness of program-protected data structures can be guar-
anteed with a small penalty on performance of less than 3%.
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7 Related Work

LVF differs from other metrics that assess resilience. The Failures in Time (FIT)
rate is defined as a failure rate of 1 per billion hours. FIT is inverse proportional
to MTBF (Mean Time Between Failures). The Architectural Vulnerability Fac-
tor (AVF) [35] is the probability that a fault (in microprocessor architecture)
leads to a failure (in the program), defined over the fraction of time that data is
vulnerable. The Program Vulnerability Factor (PVF) [34] allows insight into the
vulnerability of a software resource with respect to hardware faults in a micro-
architecture independent way by providing a comparison among programs with
relative reliability. The Data Vulnerability Factor (DVF) [37] considers data
spaces and the fraction of time that a fault in data will result in a failure.
DVF takes into account the number of accesses as a contributor to fault occur-
rence. Past work has taken value live ranges into account to design a fault injec-
tion framework and measure CPU vs. GPU vulnerabilities in terms of PVF in
Hauberk [36] and to protect critical data for GPU kernels [23]. Value live ranges
encapsulate the live time of variables promoted to registers for short program
segments while our variable live range captures the live time of compound struc-
tures/arrays over the entire program (from first define to last use) irrespective of
register promotion. This is necessary as a singular structure/array element can-
not be checked in isolation as required by end-to-end resilience (see next section),
it can only be checked in conjunction with a subset of structure/arrays elements.
Our LVF metric captures this difference and is thus different from AVF, PVF,
and DVF. Furthermore, LVF takes into account time × space, which covers the
effect of soft errors. Our metric is agnostic to architectural aspects of a processor
(covered by AVF) and their impacts on programs (see PVF). It is also agnostic of
the number of references (unlike DVF) as it considers both (a) written, incorrect
results and (b) SDCs that may occur, even in the absence of write instructions
(which other work does not). Simon et al. [32] use a Poisson distribution over a
task’s lifetime to determine the probability of task failures and derive from it the
need for task-based replication. Unlike our work, they do not address the issue
of data vulnerability when applications mix multiple resilience techniques. Diniz
et al. [11] propose a resilience pragma to protect a single kernel. In contrast, our
work contributes protection for end-to-end resilience across kernels.

8 Conclusion

We proposed an annotation-based approach for building highly modular and
resilient applications such that resilience concerns are separated from algorithms.
Our approach requires a minimal effort by application programmers and is highly
portable. We introduced and investigated the significance of the live vulnerabil-
ity factor, which takes into account the live range of a data structure and its
storage space to provide insight into the likelihood of failures. We introduced
an effective set of building blocks for detection and correction of soft faults
through Check and Recover methods for arbitrary data structures. We provided
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two approaches, pragma- and task-based, to implement end-to-end resilience.
We showed the effectiveness of end-to-end resilience for two variants of sequen-
tially composed matrix multiplications and TF-IDF under failure-free execution
and fault scenarios in detail. We further assessed the overhead of our method
for NPB codes operating at input size C. End-to-end resilience incurred less
than 3% overhead on average compared to conventional single-kernel resilience
and increased protection against bit flips by a factor of three to four. The LVF
metric helped in guiding which data structures to protect and assessing if protec-
tion meta-data and checking algorithms were effective (or counter-productive)
in providing resilience.
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Abstract. Driven by increasing core count and decreasing mean-time-to-
failure in supercomputers, HPC runtime systems must improve support
for dynamic task-parallel execution and resilience to failures. The async-
finish task model, adapted for distributed systems as the asynchronous
partitioned global address space programming model, provides a simple
way to decompose a computation into nested task groups, each managed
by a ‘finish’ that signals the termination of all tasks within the group.

For distributed termination detection, maintaining a consistent view
of task state across multiple unreliable processes requires additional
book-keeping when creating or completing tasks and finish-scopes. Run-
time systems which perform this book-keeping pessimistically, i.e. syn-
chronously with task state changes, add a high communication overhead
compared to non-resilient protocols. In this paper, we propose optimistic
finish, the first message-optimal resilient termination detection protocol
for the async-finish model. By avoiding the communication of certain
task and finish events, this protocol allows uncertainty about the global
structure of the computation which can be resolved correctly at failure
time, thereby reducing the overhead for failure-free execution.

Performance results using micro-benchmarks and the LULESH
hydrodynamics proxy application show significant reductions in resilience
overhead with optimistic finish compared to pessimistic finish. Our opti-
mistic finish protocol is applicable to any task-based runtime system
offering automatic termination detection for dynamic graphs of non-
migratable tasks.

Keywords: Async-finish · Termination detection · Resilience

1 Introduction

Recent advances in high-performance computing (HPC) systems have greatly
increased parallelism, with both larger numbers of nodes, and larger core counts
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within each node. With increased system size and complexity comes an increase
in the expected rate of failures. Programmers of HPC systems must therefore
address the twin challenges of efficiently exploiting available parallelism and
ensuring resilience to component failures. As more industrial and scientific com-
munities rely on HPC to drive innovation, there is a need for productive pro-
gramming models for scalable resilient applications.

Many productive HPC programming models support nested task parallelism
via composable task-parallel constructs, which simplify the expression of arbi-
trary task graphs to efficiently exploit available hardware parallelism. Termina-
tion detection (TD) – determining when all tasks in a subgraph are complete – is
a key requirement for dynamic task graphs. In an unreliable system, additional
work is required for correct termination detection in the presence of component
failures. Task-based models for use in HPC must therefore support resilience
through efficient fault-tolerant TD protocols.

The async-finish task model is a productive task parallelism model adopted
by many asynchronous partitioned global address space (APGAS) languages. It
represents a computation as a global task graph composed of nested sub-graphs,
each managed by a finish construct. Finish embodies a TD protocol to track the
termination of the asynchronous tasks spawned directly or transitively within
its scope.

The first resilient TD protocol for the async-finish model was designed by
Cunningham et al. [3] as part of the Resilient X10 project. Resilient X10 provides
user-level fault tolerance support by extending the async-finish model with fail-
ure awareness. Failure awareness enables an application to be notified of process
failures impacting the computation’s task graph to adopt a suitable recovery pro-
cedure. Unsurprisingly, adding failure awareness to the async-finish model entails
a cost; it requires the runtime system to perform additional book-keeping activi-
ties to correctly detect termination despite the gaps created in the computation’s
task graph.

Cunningham et al. TD protocol for Resilient X10 tracks all state transitions
of remote tasks in order to maintain a consistent view of the computation’s
control flow. While this ensures a simple failure recovery process, it adds more
termination signals than are strictly necessary during normal failure-free exe-
cution. Since it favors failure recovery over normal execution, we describe this
protocol as ‘pessimistic’.

In this paper, we review the pessimistic finish protocol, and demonstrate that
the requirement for a consistent view results in a high performance overhead for
failure-free execution. We propose the ‘optimistic finish’ protocol, an alternative
message-optimal protocol that relaxes the consistency requirement, resulting in
faster failure-free execution with a moderate increase in recovery cost.

The remainder of the paper is organized as follows. Sections 2−3 review
the nested task parallelism models, the X10 programming language, and related
work. Section 4 proves the optimal number of messages required for correct
async-finish termination detection. Section 5 describes the failure model and
the challenges of recovering async-finish task graphs. Sections 6−8 describe the
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non-resilient finish protocol, the pessimistic finish protocol, and the optimistic
finish protocol using an abstract TD framework. Section 9 describes a scalable
resilient finish store. Sections 10−11 present the performance evaluations and
the conclusion.

2 Background

2.1 Nested Task Parallelism Models

Computations that entail nested termination scopes are generally classified as
fully-strict or terminally-strict. Blumofe and Leiserson [2] describe a fully-strict
task graph as one that has fork edges from a task to its children and join edges
from each child to its direct parent. A task can only wait for other tasks it
directly forked (see Fig. 1-a). In contrast, a terminally-strict task graph allows a
join edge to connect a child to any of its ancestor tasks, including its direct par-
ent, which means a task can wait for other tasks it directly or transitively created
(see Fig. 1-b). Cilk’s spawn-sync programming model and X10’s async-finish
programming model are the most prominent representatives of fully-strict and
terminally-strict computations, respectively. For dynamic irregular task trees,
the async-finish model avoids unnecessary synchronization by relaxing the
requirement to have each task to wait for its direct successors.

Fig. 1. Nested parallelism models. Dotted boxes are termination scopes; circles are
tasks.

When failures occur, nodes in the computation tree are lost, resulting in sub-
trees of the failed nodes breaking off the computation structure. Fault-tolerant
termination detection protocols aim to reattach those sub-trees to the remaining
computation to facilitate termination detection. Although in this paper we focus
on the async-finish model, the described resilient protocols are also applicable
to the spawn-sync model.
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2.2 The X10 Programming Model

We used the APGAS language X10 as a basis for our study of the termination
detection protocols of the async-finish model. X10 models a parallel computa-
tion as a global address space partitioned among places. Each place is a multi-
threaded process with threads cooperating to execute tasks spawned locally or
received from other places. A task is spawned at a particular place and cannot
migrate to other places.

An X10 program dynamically generates an arbitrary task graph by nesting
async, at, and finish constructs. The async construct spawns a new task at the
current place. To spawn an asynchronous task at a remote place p, at is used
with async as follows: (at (p) async S;). The finish construct is used for syn-
chronization; it defines a scope of coherent tasks and waits for their termination.
Each task belongs to one finish scope, and finish scopes can be nested. Excep-
tions thrown from any of the tasks are collected at the finish, and are wrapped in
a MultipleExceptions object after finish terminates. A place may hold references
to objects hosted at remote places using the x10.lang.GlobalRef type. To access
a remote object using its global ref gr, a task must shift to the object’s home as
follows: (at(gr) gr().doSomething();).

3 Related Work

Dijkstra and Scholten (DS) [4] proposed one of the earliest and best-studied
TD protocols for the so-called ‘diffusing computation’ model. In this model,
the computation starts by activating a coordinator process that is responsible
for signaling termination. Other processes are initially idle and can only be
activated by receiving a message from an active process. An active process can
become idle at any time. The DS protocol is a message-optimal protocol such
that for a computation that sends M basic messages, DS adds exactly M control
messages to detect termination. It requires each intermediate process to signal
its termination only after its successor processes terminate. This termination
detection model is very similar to Cilk’s fully-strict spawn-sync model. Fault-
tolerant extensions of the DS algorithm are presented in [6,7].

Lai and Wu [6] describe a resilient protocol that can tolerate the failure of
almost the entire system without adding any overhead for failure-free execution.
The idea is that each process (idle or active) detecting a failure must detach
from its parent, adopt the coordinator as its new parent, and share its local
failure knowledge with its parent and the coordinator. On detecting a failure,
the coordinator expects all processes to send termination signals directly to it.
The protocol introduces a sequential bottleneck at the coordinator process, which
limits its applicability to large-scale HPC applications.

Lifflander et al. [7] took a practical approach for resilient TD of a fully-strict
diffusing computation. Based on the assumption that multi-node failures are rare
in practice, and that the probability of a k-node failure decreases as k increases,
they designed three variants of the DS protocol that can tolerate most but not all
failures. The INDEP protocol tolerates the failure of a single process, or multiple
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unrelated processes. It requires each parent to identify its successors and their
successors. Therefore, each process notifies its parent of its potential successor
before activating it. Two protocols were proposed to address related failures,
however, they cannot tolerate the failure of an interior (non-leaf) node and its
parent.

To the best of our knowledge, the only prior work addressing resilient TD
for the terminally-strict async-finish model was done in the context of the X10
language. Cunningham et al. [3] enhanced X10 to allow a program to detect the
failure of a place through a DeadPlaceException from the finish constructs that
control tasks running at that place. The TD protocol extends finish with an
adoption mechanism that enables it to detect orphan tasks of its dead children
and to wait for their termination before reporting a DPE to the application. This
adoption mechanism ensures that failures will not leave behind hidden tasks at
surviving places that may silently corrupt the application’s state after recovery.
However, it requires additional book-keeping activities for tracking the control
flow of the computation, which results in high resilience overhead for failure-free
execution. Our work extends [3] to provide a low-overhead resilient termination
detection protocol for the async-finish model. Assuming failures are rare events,
we designed a message-optimal ‘optimistic’ TD protocol that aims to optimize
the failure-free execution performance of resilient applications.

Resilient distributed work-stealing runtime systems use fault tolerant pro-
tocols for tracking task migration under failure [5,9]. Our work focuses on the
APGAS model, in which tasks are explicitly assigned to places, hence they are
not migratable.

4 Message-Optimal Async-Finish Termination Detection

In this section, we consider the optimal number of control messages required
for correct async-finish termination detection in both non-resilient and resilient
implementations.

We assume a finish block which includes nested async statements that create
distributed tasks, such that each task and its parent (task or finish) are located
at different places. Messages sent to fork these tasks at their intended locations
are referred to as basic messages. For example, in the task graphs in Fig. 2, three
basic messages are sent to fork tasks a, b, and c. The additional messages used
by the system for the purpose of termination detection are referred to as control
messages (shown as dotted lines in the figures). We consider the basic messages
as the baseline for any termination detection protocol, thus an optimal protocol
will add the minimum number of control messages as overhead. In resilient mode,
we build on Cunningham et al.’s design [3] in which the TD metadata of the
finish constructs are maintained safely in a resilient store. A finish and the
resilient store exchange two signals: the PUBLISH signal is sent from the finish

to the store to create a corresponding ResilientFinish object, and the RELEASE

signal flows in the other direction when the finish scope terminates (see Fig. 2-b).
As a finish scope evolves by existing tasks forking new tasks, finish needs to

update its knowledge of the total number of active tasks so that it can wait for
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Fig. 2. Message-optimal async-finish TD protocols.

their termination. We refer to this number as the global count or gc. Finish forks
the first task and sets gc = 1. A task must notify finish when it forks a successor
task to allow finish to increase the number of active tasks (by incrementing gc).
When a task terminates, it must notify finish to allow it to decrease the number
of active tasks (by decrementing gc). When the last task terminates, gc reaches
zero and finish is released. We use the terms FORK and JOIN to refer to the control
signals used to notify finish when a new task is forked and when a running task
terminates. Multiple signals from the same source may be packed in one message
for better performance.

Lemma 1. A correct non-resilient finish requires one TD control message per
task.

Proof. Finish detects termination only after all forked tasks terminate. Thus
sending a JOIN signal when a task terminates is unavoidable for correct termina-
tion detection. During execution, a parent task may fork N successor tasks, and
therefore, it must notify finish with N FORK signals for these tasks. Assuming
that failures do not occur, each task must eventually terminate and send its own
JOIN signal. A task can buffer the FORK signals of its successor tasks locally and
send them with its JOIN signal in the same message. Thus, with only one message
per task, finish will eventually receive a FORK signal and a JOIN signal for each
task, which guarantees correct termination detection.

Figure 2-a illustrates this method of non-resilient termination detection.
When task a forks tasks b and c, it delays sending their FORK signals (+b, +c)
until it joins. At this point, it packs its JOIN signal (-a) with the delayed FORK

signals and sends one message containing the three signals (-a, +b, +c). Note
that delaying the fork signals may result in tasks joining before their FORK signals
are received by finish. A correct implementation must delay termination until
each FORK is matched by a JOIN and each JOIN is matched by a FORK.

Lemma 2. A correct resilient finish requires two TD control messages per task.

Proof. In the presence of failures, tasks may fail at arbitrary times during exe-
cution. For correct termination detection, finish must be aware of the existence
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of each forked task. If a parent task fails in between forking a successor task and
sending the FORK signal of this task to finish, finish will not track the succes-
sor task since it is not aware of its existence, and termination detection will be
incorrect. Therefore, a parent task must eagerly send the FORK signal of a suc-
cessor task before forking the task, and may not buffer the FORK signals locally.
For correct termination detection, each task must also send a JOIN signal when
it terminates. As a result, correct termination detection in the presence of fail-
ures requires two separate TD messages per task – a message for the task’s FORK

signal, and a message for the task’s JOIN signal. The absence of either message
makes termination detection incorrect.

Figure 2-b demonstrates this method of resilient termination detection, which
ensures that a resilient finish is tracking every forked task. Assuming that a
resilient finish can detect the failure of any node in the system, it can can-
cel forked tasks located at failed nodes to avoid waiting for them indefinitely.
Note that in counting the messages, we do not consider the messages that the
resilient store may generate internally to guarantee reliable storage of resilient
finish objects. While a centralized resilient store may not introduce any addi-
tional communication, a replication-based store will introduce communication
to replicate the objects consistently.

Lemma 3. Optimistic resilient finish is a message-optimal TD protocol.

Proof. Our proposed optimistic finish protocol (Sect. 8) uses exactly two mes-
sages per task to notify task forking and termination. Since both messages
are necessary for correct termination detection, the optimistic finish protocol
is message-optimal.

5 Async-Finish Termination Detection Under Failure

In this section, we use the following sample program to illustrate the challenges
of async-finish TD under failure and the possible solutions. In Sect. 7 and Sect. 8,
we describe how these challenges are addressed by the pessimistic protocol and
the optimistic protocol, respectively.

1 finish /*F1*/ {

2 at (p2) async { /*a*/ at (p3) async { /*c*/ } }

3 at (p4) async { /*b*/ finish /*F2*/ at (p5) async { /*d*/ } }

4 }

Failure Model: We focus on process (i.e. place) fail-stop failures. A failed place
permanently terminates, and its data and tasks are immediately lost. We assume
that each place will eventually detect the failure of any other place, and that
a corrupted message due to the failure of its source will be dropped either by
the network module or the deserialization module of the destination place. We
assume non-byzantine behavior.
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Fig. 3. Task tracking under failure. The square brackets mark in-transit tasks.

Challenge 1 - Loss of Termination Detection Metadata: As a computa-
tion evolves, finish objects are created at different places to maintain the TD
metadata (e.g. the active tasks of each finish). Losing one of these objects impairs
the control flow and prevents correct termination detection. To address this chal-
lenge, Cunningham et al. [3] proposed using a resilient store that can save the
data reliably and survive failures. The design of the resilient store is orthog-
onal to the termination detection protocol, thus different stores (i.e. central-
ized/distributed, disk-based/memory-based, native/out-of-process) can be used.
However, the survivability of the protocol implementation is limited by the sur-
vivability of the store. For the above program, we assume that F1 and F2 have
corresponding resilient finish objects in the resilient store.

Challenge 2 - Adopting Orphan Tasks: When the finish home place fails,
the finish may leave behind active tasks that require tracking. We refer to these
tasks as orphan tasks. According to the semantics of the async-finish model, a
parent finish can only terminate after its nested (children) finishes terminate.
A parent finish can maintain this rule by adopting the orphan tasks of its dead
children to wait for their termination. Figure 3-b shows the adoption of task d

by F1 after the home place of F2 failed.

Challenge 3 - Loss of In-Transit and Live Tasks: Each task has a source
place and a destination (home) place, which are the same for locally generated
tasks. The active (non-terminated) tasks of the computation can be either run-
ning at their home place (live tasks) or transiting from a source place towards
their home place (in-transit tasks).

The failure of the destination place has the same impact on live and in-transit
tasks. For both categories, the tasks are lost and their parent finish must exclude
them from its global task count. For example, the failure of place 4 in Fig. 3-b
results in losing the live task b, and the failure of place 3 in Fig. 3-c results in
losing the in-transit task c, because its target place is no longer available.
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Listing 1.1. Finish TD API.

1 abstract class Finish(id:Id) {

2 val latch:Latch;

3 val parent:Finish;

4 def wait() { latch.wait(); }

5 def release() { latch.release(); }

6 }

7 abstract class LocalFinish(id:Id) {

8 val gr:GlobalRef[Finish];

9 def fork(src, dst):void;

10 def join(src, dst):void;

11 def begin(src, dst):bool;

12 }
Fig. 4. Tracking remote task creation.

The failure of the source place has a different impact on live and in-transit
tasks. Live tasks proceed normally regardless of the failure, because they already
started execution at their destinations. However, in-transit tasks are more diffi-
cult to handle (Fig. 3-d). Based on Lemma 2, in resilient mode, a source place
must notify its finish of a potential remote task before sending the task to its
destination. If the source place died after the finish received the notification,
the finish cannot determine whether the potential task was: (1) never transmit-
ted, (2) fully transmitted and will eventually be received by the destination, or
(3) partially transmitted and will be dropped at the destination due to message
corruption. A unified rule that allows finish to tolerate this uncertainty is to con-
sider any in-transit task whose source place has died as a lost task and exclude
it from the global task count. The finish must also direct the destination place
to drop the task in case it is successfully received in the future.

To summarize, recovering the control flow requires the following: (1) adopt-
ing orphan tasks, (2) excluding live tasks whose destination place is dead, (3)
excluding in-transit tasks whose source place or destination place is dead, and
(4) preventing a destination place from executing an in-transit task whose source
place is dead. The optimistic finish protocol achieves these goals using the opti-
mal number of TD messages per task, unlike the pessimistic protocol which uses
one additional message per task.

6 Distributed Task Tracking

In this section, we describe an abstract framework that can be used to implement
termination detection protocols, based on the X10 runtime implementation. The
essence of the framework is presented as pseudocode in Listing 1.1, and Fig. 4. In
Sects. 6.3, 7, and 8, we will describe three termination detection protocols based
on this framework.

6.1 Finish and LocalFinish Objects

A termination detection protocol is defined by providing concrete implemen-
tations of the abstract classes Finish and LocalFinish shown in Listing 1.1.
For each finish block, an instance of Finish with a globally unique id is created
to maintain a global view of the distributed task graph. When the task that
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Listing 1.2. Non-resilient Finish

1 class NR_Finish(id) extends Finish {
2 gc:int=0; // global count
3 def terminate(live:int[places]) {
4 for (p in places) gc += live[p];
5 if (gc == 0) release();
6 }
7 }
8 class NR_LocalFinish(id) extends LocalFinish {
9 live:int[places]={0}; //signals buffer

10 def fork(src, dst) { live[dst]++; }
11 def begin(src, dst) { return true; }
12 def join(src, dst) { live[dst]--; @F[id].terminate(live); }
13 }

created the finish reaches the end of the block, it calls the function wait to block
on the latch until all the tasks that were created by the finish block have ter-
minated. When all tasks (direct and transitive) terminate, the runtime system
calls the function release to release the blocked task. The runtime system links
each finish object to its parent in a tree structure.

Each visited place within a finish block will create an instance of type
LocalFinish to track task activities done locally. It holds a global reference to
the global Finish object to notify it when changes in the task graph occur so
that the Finish has an up-to-date view of the global control structure.

6.2 Task Events

LocalFinish defines three interfaces to track task events: fork, begin, and join.
Figure 4 shows the invocation of the three task events when a source place src

spawns a task at a destination place dst. On forking a new task, the source
place calls fork to notify finish of a potential new task, then it sends the task
to the destination place. On receiving a task, the destination place calls begin

to determine whether or not the task is valid for execution. If the task is valid,
the destination place executes it, then calls join to notify task termination. If
the task is invalid, the destination place drops it.

We describe the protocols in terms of the variables of the Finish and
LocalFinish objects, and the implementations of the three task events fork,
begin, and join. In the included pseudocode, we use the notation @F[id],
@LF[id], and @RF[id] to refer to a remote Finish object, LocalFinish object
and ResilientFinish object, respectively.

6.3 Non-resilient Finish Protocol

Listing 1.2 describes a message-optimal implementation of a non-resilient finish.
The finish object maintains a global count, gc, representing the number of active
tasks. The LocalFinish maintains a live array to buffer the FORK and JOIN signal
of its task and the FORK signals of successor tasks to other places. The begin event
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Fig. 5. The task tracking events as task c transitions from place 2 to place 3, based
on Fig. 3-a.

accepts all incoming tasks, because this non-resilient protocol is not prepared for
receiving invalid tasks due to failures. The join event passes the signals buffer
live to the finish object. Finish updates gc according to the passed signals and
releases itself when gc reaches zero.

7 Resilient Pessimistic Finish

The pessimistic resilient finish protocol requires the resilient finish objects to
track the tasks and independently repair their state when a failure occurs. Inde-
pendent repair requires advance knowledge of the status of each active task
(whether it is in-transit or live) and the set of children of each finish for adop-
tion purposes.

Classifying active tasks into in-transit and live is necessary for failure recov-
ery, because the two types of tasks are treated differently with respect to the
failure of their source, as described in Sect. 5. Using only the FORK and the JOIN

signals (see Sect. 4), a resilient finish can track a task as it transitions between
the not-existing, active, and terminated states. However, these two signals are
not sufficient to distinguish between in-transit or live tasks. The pessimistic pro-
tocol adds a third task signal that we call VALIDATE to perform this classification.
Although the classification is only needed for recovery, the application pays the
added communication cost even in failure-free executions.

The resilient finish object uses three variables for task tracking: gc to count
the active tasks, live[] to count the live tasks at a certain place, and trans[][]

to count the in-transit tasks between any two places. On receiving a FORK signal
for a task moving from place s to place d, the resilient finish object increments the
variable trans[s][d] and the global count gc. When the destination place receives
a task, it sends a VALIDATE message to resilient finish to check if the task is valid for
execution. If both the source and the destination of the task are active, resilient
finish declares the task as valid and transforms it from the transit state to the
live state. That is done by decrementing trans[s][d] and incrementing live[d].
On receiving a JOIN signal for a task that lived at place d, the resilient finish
decrements the variables live[d] and gc (see Fig. 5-a).
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7.1 Adopting Orphan Tasks

Tracking the parental relation between finishes is key to identifying orphaned
tasks. The pessimistic finish protocol requires each new finish not only to publish
itself in the resilient store, but also to link itself to its parent. Thus, in addition
to the PUBLISH and the RELEASE signals (see Sect. 4), a pessimistic finish uses a
third signal ADD_CHILD to connect a new resilient finish to its parent. When a
parent finish adopts a child finish, it deactivates the resilient finish object of
the child and adds the child’s task counts to its own task counts. A deactivated
finish forwards the received task signals to its adopter. The FORWARD_TO_ADOPTER

directive in Listing 1.3 refers to this forwarding procedure.

7.2 Excluding Lost Tasks

When place P fails, the live tasks at P and the in-transit tasks from P and to
P are considered lost. The number of lost tasks is the summation of live[P],
trans[*][P], and trans[P][*]. After calculating the summation, the pessimistic
finish object resets these counters and deducts the summation from the global
count gc (see the recover method in Listing 1.3). If the source place of an in-
transit task fails, the finish requests the destination place to drop the task using
the response of the VALIDATE signal.

8 Our Proposed Protocol: Resilient Optimistic Finish

The optimistic finish protocol aims to provide reliable execution of async-finish
computations using the minimum number of TD messages. It optimizes over
the pessimistic protocol by removing from the critical path of task execution
any communication that is needed only for failure recovery. In particular, it
removes the VALIDATE signal which classifies active tasks into in-transit and live,
and removes the ADD_CHILD signal which synchronously tracks the children of
each finish. It compensates for the missing information due to removing these
signals by empowering the places with additional metadata that can complete
the knowledge of the resilient store at failure recovery time.

A resilient optimistic finish object uses the following variables for task track-
ing: gc to count the active tasks, transOrLive[][] to count the active tasks,
which may be in-transit or live, given their source and destination, and sent[][]

to count the total number of sent tasks between any two places, which includes
active and terminated tasks. Each visited place within a finish scope records
the following variables in its LocalFinish object: recv[] to count the number of
received tasks from a certain place, and deny[] to check whether it can accept
in-transit tasks from a certain place. Initially, tasks can be accepted from any
place.

When a source place s forks a task to a destination place d,
transOrLive[s][d], sent[s][d] and the global count gc are incremented (see
Listing 1.4-Line 32). When the destination place receives the task, it locally
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determines whether or not the task is valid for execution using its deny table
(see Listing 1.4-Line 19). If the task is valid, the place executes it and sends a
JOIN signal when the task terminates. The JOIN signal carries both the source
and the destination of the task and results in decrementing transOrLive[s][d]

and gc (see Fig. 5-b). Note that sent[][] and recv[] are never decremented.
We will show in Sect. 8.2 how the sent[][] and the recv[] tables are used for
resolving the number of lost in-transit tasks due to the failure of their source.

8.1 Adopting Orphan Tasks

The optimistic protocol does not use the ADD_CHILD signal, but rather calculates
the set of children needing adoption at failure recovery time.

Each resilient finish object records the id of its parent, which was given in the
PUBLISH signal that created the object. The protocol relies on the fact that a child
finish at place x will be created by one of the living tasks at place x governed by
the parent finish. When a place P dies, each resilient finish object checks the value
of transOrLive[*][P] to determine whether it has any active tasks at that place.
If there are no active tasks at P, then there are no children needing adoption due
to the failure of place P. Otherwise, it consults the resilient store to retrieve the
list of children whose home place is P, and therefore require adoption. The parent
finish records these children in a set called ghosts. Termination is detected when
gc reaches zero and the ghosts set is empty (see the condition of tryRelease()

in Listing 1.4). A valid resilient store implementation of the optimistic finish
protocol must implement the FIND_CHILDREN function. This function is reduced
to a search in a local set of resilient finish objects in a centralized resilient store,
or a query to the backup of the dead place in a replication-based resilient store.

The reason why we refer to the adopted children as ‘ghosts’ in this protocol
is because we keep them active after their corresponding finish dies. The ghost
finishes continue to govern their own tasks as normal, unlike the pessimistic finish
protocol which deactivates the adopted children. When a ghost finish determines
that all its tasks have terminated, it sends a REMOVE_CHILD signal to its parent
(Line 50 in Listing 1.4). When the parent receives this signal, it removes the
child finish from its ghosts set and checks for the possibility of releasing its
corresponding finish.

8.2 Excluding Lost Tasks

Like the pessimistic protocol, we aim to exclude all transiting tasks from and
to a dead place, and all live tasks at a dead place. However, because transiting
and live tasks are not distinguished in our protocol, more work is required for
identifying lost tasks.
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Listing 1.3. Pessimistic Finish.

1 abstract class P_ResilientStore {
2 def PUBLISH(id):void;
3 def ADD_CHILD(parentId, childId):void;
4 }
5 class P_Finish(id:Id) extends Finish {
6 def make(parent:Finish) {
7 @store.ADD_CHILD(parent.id, id);
8 @store.PUBLISH(id);
9 }

10 }
11 class P_LocalFinish(id:Id) extends LocalFinish {
12 def fork(src, dst) {
13 @RF[id].FORK(src, dst);
14 }
15 def join(src, dst){
16 @RF[id].JOIN(src, dst);
17 }
18 def begin(src, dst) {
19 return @RF[id].VALIDATE(src, dst);
20 }
21 }
22 class P_ResilientFinish(id:Id) {
23 gc:int=0;
24 live:int[places];
25 trans:int[places][places];
26 children:Set[Id];
27 adopter:Id;
28 def FORK(src, dst){
29 FORWARD_TO_ADOPTER;
30 if (bothAlive(src, dst)) {
31 trans[src][dst]++; gc++;
32 }
33 }
34 def JOIN(src, dst) {
35 FORWARD_TO_ADOPTER;
36 if (!dst.isDead()) {
37 live[dst]--; gc--;
38 if (gc == 0) @F[id].release();
39 }
40 }
41 def VALIDATE(src, dst) {
42 FORWARD_TO_ADOPTER;
43 if (bothAlive(src, dst)) {
44 trans[src][dst]--;
45 live[dst]++;
46 return true;
47 }
48 else return false;
49 }
50 def addChild(cId) {
51 children.add(cId);
52 }
53 def recover(dead) {
54 // adopt orphaned tasks

55 for (c in children) {
56 if (c.home == dead) {
57 trans += @RF[c].trans;
58 live += @RF[c].live;
59 gc += @RF[c].gc;
60 @RF[c].adopter = id;
61 }
62 }
63 // exclude lost tasks

64 gc -= trans[dead][*] + trans[*][dead] +
live[dead];

65 trans[dead][*] = 0;
66 trans[*][dead) = 0;
67 live[dead] = 0;
68 if (gc == 0) @F[id].release();
69 }
70 }

Listing 1.4. Optimistic Finish.

1 abstract class O_ResilientStore {
2 def PUBLISH(id, parentId):void;
3 def FIND_CHILDREN(id, place):Set[Id];
4 }
5 class O_Finish(id:Id) extends Finish {
6 def make(parent:Finish) {
7 @store.PUBLISH(id, parent.id);
8 }
9 }

10 class O_LocalFinish(id:Id) extends LocalFinish {
11 deny:bool[places]; recv:int[places];
12 def fork(src, dst) {
13 @RF[id].FORK(src, dst);
14 }
15 def join(src, dst){
16 @RF[id].JOIN(src, dst);
17 }
18 def begin(src, dst) {
19 if (deny[src]) return false;
20 else { recv[src]++; return true; }
21 }
22 def COUNT_TRANSIT(nSent, dead) {
23 deny[dead] = true;
24 return nSent - recv[dead];
25 }
26 }
27 class O_ResilientFinish(id:Id) {
28 gc:int=0; parent:Id;
29 transOrLive:int[places][places];
30 sent:int[places][places];
31 ghosts:Set[Id]; isGhost:bool;
32 def FORK(src, dst){
33 if (bothAlive(src, dst)){
34 transOrLive[src][dst]++; gc++;
35 sent[src][dst]++;
36 }
37 }
38 def JOIN(src, dst){
39 if (!dst.isDead()){
40 transOrLive[src][dst]--; gc--;
41 tryRelease();
42 }
43 }
44 def removeChild(ghostId) {
45 ghosts.remove(ghostId); tryRelease();
46 }
47 def tryRelease() {
48 if (gc == 0 && ghosts.empty())
49 if (isGhost)
50 @RF[parent].removeChild(id);
51 else @F[id].release();
52 }
53 def recover(dead) {
54 if (transOrLive[*][dead] > 0) {
55 val c = @store.FIND_CHILDREN(id, dead);
56 ghosts.addAll(c);
57 for (g in c) @RF[g].isGhost = true;
58 }
59 gc -= transOrLive[*][dead];
60 transOrLive[*][dead] = 0;
61 for (p in places) {
62 if ( transOrLive[dead][p] > 0) {
63 val s = sent[dead][p];
64 val t = @LF[id].COUNT_TRANSIT(s, dead);
65 transOrLive[dead][p] -= t;
66 gc -= t;
67 }
68 }
69 tryRelease();
70 }
71 }
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For a destination place P, transOrLive[s][P] is the number of the in-transit
tasks from s to P and the live tasks executing at P. If P failed, both categories of
tasks are lost and must be excluded from the global count. After determining the
ghost children (as described in Sect. 8.1), the resilient finish object can deduct
transOrLive[*][P] from the global count, and reset transOrLive[*][P] for each
failed place P. Any termination messages received from the dead place P must be
discarded, otherwise they may incorrectly alter the global count. Handling the
failure of both the source and the destination reduces to handling the failure of
the destination.

For a source place P, transOrLive[P][d] is the number of the in-transit tasks
from P to d and the live tasks sent by P and are executing at d. If P failed, only
the in-transit tasks are lost and must be excluded from the global count; the
live tasks proceed normally. An optimistic resilient finish can only identify the
number of in-transit tasks through communication with the destination place
d. Place d records the total number of received tasks from P in recv[P]. At
the same time, the resilient finish object records the total number of sent tasks
from P to d in sent[P][d]. The difference between sent[P][d] and recv[P] is
the number of transiting tasks from P to d. The resilient finish object relies
on a new signal COUNT_TRANSIT to calculate this difference and to stop place
d from receiving future tasks from place P by setting deny[P] = true (see the
COUNT_TRANSIT method in Listing 1.4, and its call in Listing 1.4-Line 64).

8.3 Optimistic Finish TLA Specification

TLA (Temporal Logic of Actions) [10] is a specification language for documen-
tation and automatic verification of software systems. The system’s specification
includes an initial state, a set of actions that can update the system’s state, and
a set of safety and liveness properties that describe the correctness constraints of
the system. The TLA model checker tool, named TLC, tests all possible combi-
nations of actions and reports any detected violations of the system’s properties.

We developed a formal model for the optimistic finish protocol using TLA to
verify the protocols correctness. Using 22 TLA actions, the model can simulate
all possible n-level task graphs that can be created on a p-place system, where
each node of the task graph has at most c children. It can also simulate the
occurrence of one or more place failures as the task graph evolves. The model
specification is available at [11].

The distributed TLC tool currently cannot validate liveness properties, such
as ‘the system must eventually terminate’, which we needed to guarantee in our
protocol. Using the centralized TLC tool, it was infeasible for us to simulate
large graph structures without getting out-of-memory errors due to the large
number of actions in our model. Therefore, we decided to use a small graph
configuration that can simulate all scenarios of our optimistic protocol. In order
to verify the case when a parent finish adopts the tasks of a dead child, we
need at least a 3-level graph, such that the finish at the top level can adopt
the tasks at the third level that belong to a lost finish at the second level. In
our protocol, separate cases handle the failure of the source place of a task,
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and the failure of the destination place of a task. With one place failure we can
simulate either case. The case when a task loses both its source and destination
requires killing two places, however, in our protocol handling the failure of both
the source and destination is equivalent to handling the failure of the destination
alone. Therefore, one place failure is sufficient to verify all rules of our protocol.
Because we use the top finish to detect the full termination of the graph, we
do not kill the place of the top finish. Therefore, we need two places or more in
order to test the correctness of the failure scenarios.

Testing was performed using TLC version 1.5.6 on an 8-core Intel i7-3770
3.40 GHz system running Ubuntu 14.04 operating system. It took a total of 2 h
and 59 min to verify the correctness of our protocol over a 3-level task tree with
a branching factor of 2 using 3 places, with one place failure at any point in the
execution.

9 Finish Resilient Store Implementations

Cunningham et al. [3] described three resilient store implementations, of which
only two are suitable for HPC environments. One is a centralized store that holds
all resilient finish objects at place-zero, assuming that it will survive all failures.
The centralized nature of this store makes it a performance bottleneck for large
numbers of concurrent finish objects and tasks. The other store is a distributed
store that replicates each finish object at two places – the home place of the
finish, which holds the master replica, and the next place, which holds a backup
replica. Unfortunately, this scalable implementation was later removed from the
code base of Resilient X10 due to its complexity and instability. As a result,
users of Resilient X10 are currently limited to using the non-scalable centralized
place-zero finish store for HPC simulations.

9.1 Reviving the Distributed Finish Store

Because a centralized place-zero finish store can significantly limit the perfor-
mance of Resilient X10, we decided to reimplement a distributed finish store for
Resilient X10 for both optimistic and pessimistic protocols. Using TLA’s model
checker, we identified a serious bug in the replication protocol described in [3]
for synchronizing the master and the backup replicas of a finish. The problem in
their implementation is that the master replica is in charge of forwarding task
signals to the backup replica on behalf of the tasks. If the master dies, a task
handles this failure by sending its signal directly to the backup. In cases when
the master fails after forwarding the signal to the backup, the backup receives
the same signal twice – one time from the dead master and one time from the
task itself. This mistake corrupts the task counters at the backup and results in
incorrect termination detection.

Using TLA, we designed a replication protocol (available in [11]) that requires
each task to communicate directly with the master and the backup. The protocol
ensures that each signal will be processed only once by each replica in failure-free
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and failure scenarios. When one replica detects the failure of the other replica, it
recreates the lost replica on another place using its state. The protocol ensures
that if both replicas are lost before a recovery is performed, the active tasks
will reliably detect this catastrophic failure, which should lead the Resilient X10
runtime to terminate. Otherwise, the distributed store can successfully handle
failures of multiple unrelated places. Because the failure of place-zero is unre-
coverable in the X10 runtime system, our distributed finish implementations do
not replicate the finish constructs of place zero.

10 Performance Evaluation

We conducted experiments on the Raijin supercomputer at NCI, the Australian
National Computing Infrastructure. Each compute node in Raijin has a dual
8-core Intel Xeon (Sandy Bridge 2.6 GHz) processors and uses an Infiniband
FDR network. We statically bound each place to a separate core. The X10 com-
piler and runtime were built from source revision 36ca628 of the optimistic
branch of our repository https://github.com/shamouda/x10.git, which is based
on release 2.6.1 of the X10 language. The experiments use the Native (C++
backend) version of X10 compiled using gcc 4.4.7 and use MPI-ULFM [1] for
inter-place communication. MPI-ULFM is a fault tolerant MPI implementation
that provides efficient fault tolerant point-to-point and collective communica-
tion interfaces over Infiniband and other networks. We built MPI-ULFM from
revision e87f595 of the master branch of the repository https://bitbucket.org/
icldistcomp/ulfm2.git.

10.1 Microbenchmarks

Cunningham et al. [3] designed the BenchMicro program to measure the overhead
introduced by resilient finish in various distributed computational patterns, such
as fan-out, all-to-all (or fan-out fan-out), and tree fan-out. We modified Bench-
Micro to start all patterns from the middle place, rather than from place-zero.
This avoids giving an unfair advantage to the centralized implementations by
allowing them to handle most of the signals locally.

Table 1. Slowdown factor versus non-resilient finish with 1024 places. Slowdown factor
= (time resilient/time non-resilient). The “Opt. %” columns show the percentage of
performance improvement credited to the optimistic finish protocol.

Pattern Finish count Tasks/Finish P-p0 O-p0 Opt. % P-dist O-dist Opt. %

1 Fan out 1 1024 2.3 0.9 59% 9.2 7.9 14%
2 Fan out message back 1 2048 1.4 1.2 15% 22.3 7.2 68%
3 Fan out fan out 1 10242 51.4 23.9 53% 95.6 39.2 59%
4 Fan out fan out with nested finish 1025 1024 90.9 80.8 11% 4.1 3.8 7%
5 Binary tree fan out 512 2 8.6 8.5 2% 1.4 1.1 27%
6 Synchronous ring around 1024 1 1.8 1.7 1% 1.8 1.8 0%

https://github.com/shamouda/x10.git
https://bitbucket.org/icldistcomp/ulfm2.git
https://bitbucket.org/icldistcomp/ulfm2.git
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We measured the time to execute each pattern using 256, 512 and 1024
places, with one place per core. Each configuration was executed 30 times.
Figure 6 shows the median with error bars representing the range between the
25th percentile, and the 75th percentile. P-p0, O-p0, P-dist, and O-dist
refer to pessimistic-centralized, optimistic-centralized, pessimistic-distributed
and optimistic-distributed implementations, respectively. Table 1 summarizes
the performance results with 1024 places.

From the results, we observe: (1) our proposed optimistic protocol reduces the
resilience overhead of the async-finish model for all patterns. (2) the improvement
with the optimistic protocol is greater as the number of remote tasks managed
by a finish increases. (3) the more concurrent and distributed the finish scopes
are in the program, the greater the improvement observed with the resilient
distributed finish implementations.

10.2 LULESH

X10 provides a resilient implementation of the LULESH shock hydrodynamics
proxy application [8] based on rollback-recovery. It is an iterative SPMD appli-
cation that executes a series of stencil computations on an evenly-partitioned
grid and exchanges ghost regions between neighboring places at each step.

We evaluated LULESH with a problem size of 303 elements per place for 60
iterations. In resilient modes, checkpointing is performed every 10 iterations. In
the failure scenarios, we start three spare places and kill a victim place every
20 iterations – exactly at iterations 5, 35, and 55. Therefore, a total of 75 iter-
ations are executed, because each failure causes the application to re-execute 5
iterations. The victim places are N/4, N/2, and 3N/4, where N is the number
of places. Both failure and checkpoint rates are chosen to be orders of magni-
tude higher than would be expected in a real HPC system, to allow checkpoint
and recovery costs to be accurately measured. Table 2 and Fig. 7 show the weak
scaling performance results using different TD implementations.

LULESH uses the fan-out finish pattern multiple times for creating the appli-
cation’s distributed data structures and for spawning a coarse-grain task at each
place to compute on the local domain. These remote tasks do not add a resilience
overhead, because the fan-out finishes start from place zero. The initialization
kernel is highly communication-intensive – each place interacts with all its 26
neighbors to obtain access to remote buffers used for ghost cell exchange. This
kernel is re-executed after each failure to reinitialize the references to the ghost
regions. The optimistic finish protocol is highly effective in reducing the resilience
overhead of this kernel and speeding up recovery.

Each LULESH step performs point-to-point communication between neigh-
boring places for exchanging ghost regions, as well as collective functions. How-
ever, the collectives map directly to native MPI-ULFM calls, hence do not use
finish. Ghost exchange is performed using finish blocks that manage a small
number of tasks. With 1000 places, the measured resilience overhead of a single
step is: 13% for P-p0, 8% for O-p0, 10% for P-dist, and only 4% for O-dist.
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Fig. 6. BenchMicro results.

The application applies in-memory checkpointing by saving a copy of its state
locally and another copy at the next place. Each copy is saved within a finish
block that controls a single remote task; hence the advantage of the optimistic
protocol is minimal.

The reported failure detection time is the time between killing a place and
the time when the fan-out finish that controls the execution of the algorithm
reports a DeadPlaceException. This occurs only after all its tasks terminate with
errors due to the failure of the victim (global failure propagation is achieved by
ULFM’s communicator invalidation mechanism). Reducing the runtime’s track-
ing activities for termination detection accelerates task processing as well as
failure detection using optimistic finish.
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Table 2. Average execution time for different LULESH kernels (times in seconds, finish
resilience overhead shown in parentheses).

Places Mode Init. Step Ckpt Detect. Reinit.
Total time
60 steps

(0 ckpt+0 fail)

Total time
60 steps

(6 ckpt+0 fail)

Total time
75 steps

(6 ckpt+3 fail)

343

non-res. 0.97 0.073 5.33
P-p0 6.22 (539%) 0.091 (26%) 0.16 0.57 7.21 11.70 (119%) 12.64 37.35
O-p0 4.15 (326%) 0.092 (27%) 0.15 0.47 5.12 9.69 (82%) 10.58 28.75
P-dist 2.02 (107%) 0.085 (17%) 0.05 0.23 1.93 7.12 (33%) 7.44 15.20
O-dist 1.36 (39%) 0.082 (12%) 0.05 0.12 1.40 6.26 (17%) 6.58 12.36

1000

non-res. 1.72 0.085 6.82
P-p0 10.01 (482%) 0.096 (13%) 0.20 1.28 10.68 15.75 (131%) 16.92 54.25
O-p0 7.49 (335%) 0.092 (8%) 0.18 0.66 8.54 12.99 (90%) 14.09 43.07
P-dist 2.50 (45%) 0.094 (10%) 0.06 0.53 2.55 8.12 (19%) 8.46 19.07
O-dist 2.41 (40%) 0.089 (4%) 0.06 0.36 2.50 7.73 (13%) 8.08 18.01

Fig. 7. LULESH weak scaling performance (1 core per place; this application requires
a perfect cube number of places)

The computational pattern of LULESH is widely represented in the HPC
domain. Overall, the optimistic finish protocol is successful in reducing the
resilience overhead of the application in failure-free and failure scenarios. The
frequent use of concurrent finish scopes demonstrates the scalability advantage
of the distributed finish store.
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11 Conclusion

We described optimistic finish, a resilient message-optimal termination detection
protocol for the productive task model, async-finish. By reducing the signals
required for tracking tasks and finish scopes, our protocol significantly reduces
the resilience overhead of overly decomposed parallel computations and enables
them to reliably recover from failures.
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Abstract. Recent years have seen the emergence of two independent pro-
gramming models challenging the traditional two-tier combination of mes-
sage passing and thread-level work-sharing: partitioned global address
space (PGAS) and task-based concurrency. In the PGAS programming
model, synchronization and communication between processes are decou-
pled, providing significant potential for reducing communication overhead.
At the same time, task-based programming allows to exploit a large degree
of shared-memory concurrency. The inherent lack of fine-grained synchro-
nization in PGAS can be addressed through fine-grained task synchroniza-
tion across process boundaries. In this work, we propose the use of task
data dependencies describing the data-flow in the global address space to
synchronize the execution of tasks created in parallel onmultiple processes.
We present a description of the global data dependencies, describe the nec-
essary interactions between the distributed scheduler instances required
to handle them, and discuss our implementation in the context of the
DASHC++ PGAS framework.We evaluate our approach using theBlocked
Cholesky Factorization and the LULESH proxy app, demonstrating the
feasibility and scalability of our approach.

Keywords: Parallel programming · PGAS · Task parallelism · RMA

1 Introduction

The decoupling of communication and synchronization in the partitioned global
address space (PGAS) programming model allows applications to better exploit
hardware capabilities of modern high-performance networks and potentially
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increase scalability [2,11,33]. However, consistent states are required to reli-
ably exchange data across process boundaries, which require some form of inter-
process synchronization. The simplest forms of synchronization are point-to-
point messages and collective operations such as barriers. However, the former
break with the concepts of a one-sided programming model while the latter are
coarse-granular with a high potential for synchronization slack. Thus, the need
for fine-grained synchronization in a one-sided programming model is imminent.

The decomposition of a computational problem into packages of work with
well-defined inputs and outputs in the form of tasks allows the application to
expose a high degree of concurrency to a runtime system and are better suited
than traditional work-sharing constructs to exploit ubiquitous multi- and many-
core shared-memory systems [7]. Based on the data-flow between tasks, a task
graph can be constructed by the runtime system and used to maximize paral-
lelism while ensuring a correct execution order of tasks. The data-flow between
tasks can be detected automatically or provided by the user, either in the form of
explicit channels between tasks, e.g., C++11 futures and continuations, or implic-
itly the through the definition of data dependencies as found in OpenMP [20].

Both approaches have been used to synchronize the execution of tasks in
distributed parallel applications, e.g., through the construction of the global task
graph in each process or by relying on forms of explicit signals to ensure correct
execution order. A detailed discussion of related work is provided in Sect. 3.

In this paper, we propose to employ user-provided descriptions of data-
dependencies between tasks in the global address space to ensure correct ordering
of global memory accesses within these tasks. Processes only explicitly discover
a trimmed task graph, i.e., the tasks they will later execute, while the underlying
runtime system automatically discovers and handles edges in the graph that cut
across process boundaries. This forms a strictly one-sided task-based program-
ming model that preserves locality awareness. We describe the mechanics of the
task graph discovery and necessary scheduler interactions in Sect. 4 before pre-
senting an implementation of our approach in the context of the DASH PGAS
abstraction in Sect. 5, which is evaluated using micro benchmarks, the Blocked
Cholesky Factorization, and the Lulesh proxy app in Sect. 6, demonstrating both
competitive performance and scalability.

2 Background and Motivation

The DASH PGAS abstraction is based entirely on C++14 and thus does not
rely on any specific compiler to provide distributed data structures and parallel
algorithms working on them. The set of distributed data structures is com-
prised of both static containers such as one- and multi-dimensional arrays as
well as dynamic data structures, e.g., unordered maps and lists. Data access to
the elements can be performed similar to containers in the C++ standard tem-
plate library (STL) such as std::vector, including overloaded array subscript
operators for random access as well as global and local iterators. A detailed
introduction to DASH can be found in [10].
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The data distribution in containers is handled by DASH. The user specifies
the size of each dimension in a multi-dimensional array together with the desired
block distribution pattern and the set of processes across which the container is
allocated, called teams of units in DASH. Units own both private local memory
and a portion of the global memory that is accessible by other units. Containers
provide locality-aware access methods, allowing units to iterate either over a
global range or a range of their local portion, including access through native
pointers. The overarching owner-computes principle ensures that computation
is efficient and global data access is reduced to a minimum.

RMA access primitives such as blocking and non-blocking put and get oper-
ations are implemented based on MPI-3 RMA primitives [24,34].

Although previous work has focused on reducing the intra-node communica-
tion latency between DASH units by avoiding calls into the MPI library, the data
transfer latencies cannot be neglected. For performance critical code regions, per-
forming computation on local data through native pointers is inevitable, requir-
ing (bulk) data exchange between units. Hence, shared-memory parallelism is a
promising approach to reducing the amount of data to be communicated across
process boundaries by exploiting ubiquitous multi- and many-core architectures
to operate on shared data.

An approach to task-based parallelization should be well integrated with the
underlying PGAS environment to provide both thread-based parallelization and
fine-grained synchronization at a global scale. Following the owner-computes
principle and to retain the flexibility of the underlying language, units should
only be required to discover the local portion of the global task graph, as depicted
in Fig. 1. Since all communication between tasks across process boundaries hap-
pens through the distributed DASH containers, the data-flow should be described
through dependencies in the global memory space and no additional explicit syn-
chronization and communication channels should be required.

3 Related Work

The Asynchronous PGAS (APGAS) model breaks with the traditional SPMD
execution model by reducing the set of initially running processes to a single
place that spawns tasks using (recursive) async statements using remote task
invocation [23]. The tasks can be synchronized using atomic and finish state-
ments. Implementations of APGAS are X10 [8] as well as UPC and Habanero-
UPC++ [17].

Several task-based parallel programming models start from a single thread of
execution and leave the decision of the place of execution to the scheduler, hiding
the locality information from the user. The Chapel language has taken a similar
approach using begin and cobegin to create tasks [6]. In addition, Chapel offers
synchronization variables to guard reads and writes to (globally) shared variables
for simple producer-consumer patterns. The Charm++ programming system
provides a distributed tasking system, which supports the migration of tasks
between processes in order to dynamically balance the parallel execution [15].
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The Regent project has created a language that is a front-end to the Legion
hierarchical data partitioning system and is aiming at extracting distributed task
parallelism from a sequential program description [3,28]. The HPX programming
system is the main implementation of a direct global synchronization scheme in
which futures are used for both synchronization and communication between
tasks in an active global address space [14].

Several proposals have been made for unidirectional signaling of data avail-
ability. AsyncShmem is built on top of OpenShmem to facilitate distributed task
synchronization that allows tasks to wait for state change in the global address
space [12]. Notified Access proposed in [4] provides a one-directional notification
scheme that can be used to notify the target of an MPI-3 RMA operation about
an access but operates on the granularity of a process-wide window and does not
help in synchronizing local writes and remote reads. Similarly, CoEvents intro-
duced in Fortran 2015 provide a one-directional signaling scheme, e.g., to signal
the availability of data or the completion of read operations [18]. In all cases,
unidirectional signaling may require significant efforts by the user to implement
complex task synchronization schemes in the global memory space.

The XcalableMP programming model supports tasklets that are synchro-
nized through data dependencies locally and through tags and process infor-
mation remotely, forming a two-tier two-sided synchronization scheme that is
directly mapped onto MPI two-sided communication and OpenMP statements,
effectively mimicking MPI message semantics [31].

Several approaches discover the full global task graph on each process to infer
the global task graph, including QARK-D [32] and PaRSEC DTD [13], which
uses affinity tags provided by the user to determine the place of execution for a
task. PaRSEC traditionally uses parameterized task graphs that are generated
from a high-level language and does not require dynamic discovery of tasks to
detect both local and global dependencies [5]. The StarPU task-system provides
support for both global task graph discovery (sequential task flow, STF) to auto-
matically infer inter-process dependencies as well as the use of explicit MPI send
and receive tasks [1].

Several shared memory tasking libraries exist, including Intel Thread Build-
ing Blocks [21] and Cilk-Plus [22], none of which provide a way to express data
dependencies. The SuperGlue tasking library [30] offers a C++ interface to define
data dependencies between tasks that are automatically versioned to perform
the dependency matching.

The OmpSs programming model has been the breeding bed of the tasking
approach in OpenMP [9]. Efforts have been made to automatically hide commu-
nication by integrating support for two-sided MPI communication in OmpSs [19]
but that approach is not applicable to the PGAS programming model since it
lacks the inherent synchronization of messages. The ClusterSs approach provides
a centralized distributed task-based execution based on the APGAS model [29].

To the best of our knowledge, no previous work has attempted to use user-
provided data dependencies to synchronize distributed locality-aware task cre-
ation and execution in a PGAS programming environment.
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Fig. 1. Distributed task graph with the local portion to be discovered by the process
in the center (green) and dependencies across process boundaries to be communicated
by the scheduler (dashed lines, blue tasks). The scheduler in the center is unaware of
the gray tasks and their dependencies. Phases are used to reliably find dependent tasks
across process boundaries, e.g., B1→C2. (Color figure online)

4 Global Task Data Dependencies

In the global tasking model we propose, the main threads of each process execute
the application’s main routine and dynamically create tasks that will be executed
by a set of worker threads and the main thread itself, i.e., there are no explicit
parallel regions. A global virtual root task is used as a parent task for the tasks
created in the main thread of execution. Tasks themselves may create tasks that
are added to the local pool of runnable tasks once their dependencies have been
satisfied. However, dependencies may only be used to synchronize sibling tasks,
i.e., tasks that have the same parent task. As a consequence, only tasks created
by the main threads of execution may be synchronized across process boundaries.

A task consists of an action to be executed and a set of dependency defini-
tions. A data dependency definition in the global task dependency model includes
a dependency type k ∈ {in, out}, and a reference to a memory location in the
local or global memory space. Due to the unsynchronized nature of the parallel
task creation on multiple processes, we cannot derive a partial order in which the
tasks are created. Thus, dependencies reaching across process boundaries could
not be reliably matched if tasks from different processes have dependencies on
the same global memory location, e.g., B1→C2 and B3→C4 in Fig. 1.

In order to derive this partial ordering and to reliably identify dependent
tasks, we extend the task model with the notion of a phase φ ∈ N, in which tasks
and their dependencies are created and which provide a global partial ordering
among dependency definitions. The concept of phases has been inspired by the
phases that are spawned by global fence or barrier synchronization, which guar-
antee happens-before relations between global memory accesses and thus the
existence of a coherent global state, i.e., all operations before the barrier have
completed and it is safe to execute new operations that depend on them. Natu-
rally, a blocking barrier across all processes is not desirable in an asynchronous
execution model. Instead, task phases model a global state that is guaranteed
to be synchronized across processes without any actual communication.
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Using phases, the matching of dependencies across process boundaries is done
using the following set of rules. Here, local dependencies reference a memory
location in the local memory space of the process on which they were created
while remote dependencies reference a memory location in the portion of the
global memory space owned by a different process. If a dependency D1 defined
by a task T1 matches another dependency D2 defined by a task T2 then the
execution of T2 has to be postponed until after the completion of T1, noted as
T1→T2 below.

R1: Dependencies only match between sibling tasks.
R2: Dependencies only match if they reference the same memory location.
R3: Input dependencies match the previous output dependency (RAW depen-

dencies, e.g., C1→C2 in Fig. 1).
R4: Output dependencies match all previous input dependencies up to and

including the previous output dependency (WAR and WAW dependencies,
e.g., B1→B2 and C2→B2 in Fig. 1).

R5: Local dependencies match local dependencies regardless of the phase
(e.g., C3→C4 in Fig. 1).

R6: Output dependencies reside in the phase in which they were specified
(e.g., B1 resides in phase N in Fig. 1).

R7: Remote input dependencies match the last output dependency in any pre-
vious phase (e.g., C2 in phase N + 1 depends on B1 in phase N in Fig. 1).

R8: Matching remote dependencies may not occur in the same phase. For exam-
ple, the definition of B2 and C2 in the same phase would be erroneous.

These rules allow for the coordination of the execution of tasks created in
parallel. Rules R1–R4 reflect the dependency model of OpenMP; rules R4–R8

are necessary to ensure correct synchronization across process boundaries. As
depicted in Fig. 1, phases may contain an arbitrary number of local dependen-
cies and are only required for the matching of remote dependencies. In contrast
to using communicating barriers for synchronization, the schedulers can lever-
age the knowledge about dependencies and phases to detect conflicting global
dependencies or missing synchronization thanks to rule R8. Within a phase, mul-
tiple matching dependencies may exist (rule R5) and the last matching output
dependencies is considered the dominant dependency for that particular phase,
as implied by rule R4.

4.1 Creating the Global Task Graph

As described above, the main application threads of each process discover tasks
that will eventually be executed locally. The lack of a global view on the task
graph requires the detection of edges between tasks reaching across process
boundaries (dashed lines in Fig. 1). This is done by the individual scheduler
instances exchanging information on remote dependencies and matching them
with dependencies of local and other remote tasks. Each process is responsible
for handling the dependencies referencing the memory it owns.
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Fig. 2. Interaction of two scheduler instances required during creation, matching, and
execution of tasks with dependencies across process boundaries, based on the example
in Fig. 1.

While creating the tasks, the scheduler populates the local task graph and
communicates any remote dependencies to the scheduler owning the referenced
global memory location ( 1 in Fig. 2). Tasks in the first phase can be executed
immediately, provided all local dependencies have been satisfied. The execution
of tasks in later phases has to be deferred until their dependencies have been han-
dled by the responsible scheduler. The matching is performed in a task matching
step ( 2 in Fig. 2), which extends the local task graph with the edges that reach
across process boundaries based on the global memory owned. Once all edges
have been established, all phases leading up to the current phase are released
for execution by the worker threads.

Overall, each matching step requires one global collective synchronization
operations among the main threads to ensure a consistent global state, i.e., all
dependencies up to and including the current phase have been communicated.
Matching typically occurs repeatedly during the discovery of the task graph
and may be triggered by a phase transition. The matching interval, i.e., the
number of phase transitions between matching steps, is variable and a throttling
mechanism allows to limit the number of active phases, thus limiting the number
of tasks instantiated at any point in time.

4.2 Executing the Global Task Graph

The execution of the task graph happens continuously based on the phases that
have been released for execution. Thus, task creation and matching may be
overlapped with the execution of tasks by the worker threads. As soon as a task
completes its execution, all local dependencies will be released and the tasks are
eventually queued for execution as soon as all dependencies have been satisfied.
Remote dependencies are released through a signal to the remote scheduler own-
ing the released task ( 3 in Fig. 2), which subsequently signals the completion
of the released task to the scheduler owning the referenced memory location ( 4
in Fig. 2). Tasks may access local and global memory at any time during their
execution.
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5 Implementation

We have implemented the global task data dependency model described in Sect. 4
within DASH. At the heart of the implementation are scheduler instances man-
aging the creation and execution of tasks at the individual processes and col-
laboratively coordinate their execution. Each scheduler manages a thread-pool
comprised of a configurable number of POSIX threads.

Schedulers communicate through an active messages queue that is based
on MPI and handles the communication completely transparent to the user. A
progress thread may be used in the background to handle the communication
to (i) ensure timely processing, and (ii) mitigate the overhead of thread-parallel
access of the MPI library by funneling messages through it. Alternatively, worker
threads may periodically poll the message queue to handle dependency releases.
In both cases, DASH requires support for MPI THREAD MULTIPLE as tasks may
access global memory at any time.

We have implemented support for rescheduling (or cyclic [26]) task-yield
and allow tasks to wait for the completion of communication operations with-
out active polling. Tasks may be canceled together with all remaining tasks,
e.g., after checking for a termination criterion, either starting from a single pro-
cess that propagates the cancellation signal or collectively on all processes. Tasks
are scheduled in a co-operative manner, i.e., their execution is not interrupted
unless they enter a task scheduling point such as yield, a task creation operation,
or any other task cancellation point.

In addition to in and out dependencies, DASH also provides a copyin depen-
dency, which constitutes an input dependency that copies the referenced mem-
ory range into a user-provided buffer. This transfer can be performed by either
one-sided (get) or two-sided communication (send-recv). For the latter, a task
together with a remote input dependency is injected at the process owning the
referenced memory that triggers a send operation as soon as the dependency has
been satisfied. This is especially useful on platforms that do not support remote
direct memory access (RDMA) and thus show poor performance when using MPI
RMA operations, all while retaining the one-sided programming model. Never-
theless, regular input dependencies are useful in cases where the target memory
is non-contiguous or the dependency serves as a sentinel for more complex global
memory accesses.

5.1 Example Code

Listing 1.1 shows the implementation of the Blocked Cholesky Factorization,
which factorizes a N × N symmetric positive definite matrix A into its upper
triangular matrix U and its transpose, i.e., A = UU∗.

We implemented dash::async, which creates a task that executes the provided
action (C++ std::function or lambda) once all dependencies specified through
dash::out, dash::in, or dash::copyin are satisfied. The specification of phases is
done through calls to dash::async fence (lines 9, 17, and 36).
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� �

1 dash::Matrix <2, double > matrix{N, N, dash::TILE(NB),dash::TILE(NB)};
2

3 for (int k = 0; k < num_blocks; ++k) {
4 if (mat.block(k,k). is_local ()) {
5 dash:: async ([&](){ potrf(matrix.block(k,k)); },
6 dash::out(mat.block(k,k)));
7 }
8

9 dash:: async_fence (); // <- advance to next phase
10 for (int i = k+1; i < num_blocks; ++i)
11 if (mat.block(k,i). is_local ())
12 dash:: async ([&](){
13 trsm(cache[k], matrix.block(k,i)); },
14 dash:: copyin(mat.block(k,k), cache[k]),
15 dash::out(mat.block(k,i)));
16

17 dash:: async_fence (); // <- advance to next phase
18 for (int i = k+1; i < num_blocks; ++i) {
19 for (int j = k+1; j < i; ++j) {
20 if (mat.block(j,i). is_local ()) {
21 dash:: async ([&](){
22 gemm(cache[i], cache[j], mat.block(j,i)); },
23 dash:: copyin(mat.block(k,i), cache[i]),
24 dash:: copyin(mat.block(k,j), cache[j]),
25 dash::out(mat.block(j,i)));
26 }
27 }
28

29 if (mat.block(i,i). is_local ()) {
30 dash:: async ([&](){
31 syrk(cache[i], mat.block(i,i)); },
32 dash:: copyin(mat.block(k,i), cache[i]),
33 dash::out(mat.block(i,i)));
34 }
35 }
36 dash:: async_fence (); // <- advance to next phase
37 }
38 dash:: complete (); // <- wait for all tasks to execute

� �

Listing 1.1. Implementation of Blocked Cholesky Factorization using global task data
dependencies in DASH. Some optimizations omitted for clarity.

In the example listing, each process creates only the tasks that output local
blocks, e.g., factorization of a block (potrf) is only performed on the unit that
owns the block (lines 4–7). The tasks that require the factorized block as input
to solve the triangular matrix on the remaining blocks of the current row (trsm,
lines 10–15) specify a copyin dependency and will only start executing as soon as
the corresponding potrf task completed and the block has been copied into the
local user-provided buffer (cache[k]). The scheduler will make sure that blocks
are copied only once even if multiple tasks require them as input. The same
pattern is used for the tasks executing the gemm and syrk operations.

5.2 Range-Based Task and Dependency Creation

Similarly to the OpenMP taskloop construct, DASH also offers a construct for
creating tasks across an input range and allows to define dependencies for the
individual tasks. As depicted in Listing 1.2, the dash::taskloop function takes an
input range [begin, end), optionally a chunk-size (maximum number of elements
assigned to each task, line 5) or the number of tasks to be created, and an
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action to be executed. In addition to the action each task performs on the sub-
range assigned (lines 7–9), the user may also provide a function generating the
dependencies for each task by assigning them to an insert iterator (lines 11–14).
This allows users to synchronize the generated tasks with tasks generated by
other task creation constructs.

� �

1 dash::Array <int > arr(N);
2

3 if (dash::myid() == 0) {
4 dash:: taskloop(
5 arr.begin(), arr.end(), dash:: chunk_size (10),
6 // task action
7 [&] (auto begin , auto end) {
8 // perform action on elements in [begin , end)
9 },

10 // generate out dependencies on elements in [begin , end)
11 [&] (auto begin , auto end , auto deps) {
12 for (auto it = begin; it != end; ++it)
13 *deps = dash::out(it);
14 });
15 }

� �

Listing 1.2. Example of using the dash::taskloop in combination with a dependency
generator.

6 Experimental Evaluation

We performed our measurements on two different systems: a Cray XC40 (Hazel
Hen) installed at HLRS in Stuttgart, Germany, and the Primergy CX1640 M1
system Oakforest-PACS installed at the University of Tsukuba, Japan. The
details are listed in Table 1. All codes have been compiled using the Intel com-
piler 18.0.1 and all threads have been pinned to their respective core using the
hwloc library. For OpenMP codes, thread binding was controlled through the
environment variable setting KMP AFFINITY=granularity=fine,balanced.

The numbers presented reflect an average of five repetitions performed on
the same set of nodes.

6.1 Micro-benchmarks

Figure 3 displays the results of measuring the overhead of creating and executing
DASH tasks with different numbers of dependencies. The measurements were
taken using one process on each of the 16 nodes and a single thread per process
in order to include both task creation and execution. We measured the creation
of 100,000 tasks with different dependency patterns, ranging from zero to 32
dependencies on distinct (but repeating) memory locations.
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Table 1. System configurations used. On all systems, the Intel compiler 18.0.1 and
MKL 2018.1 were used for compilation.

System CPU Network MPI

Cray XC40 (Hazel Hen) Intel Xeon E5-2680 v3
(2x12C, 2.5 GHz)

Cray Aries Open MPI 4.0.0

Oakforest-PACS Intel Xeon Phi 7250
(68C, 1.4 GHz)

OmniPath Intel MPI 18.2

Local Output Dependencies. In the case of local-out, each task is created
with the respective number of output dependencies on different local memory
locations, effectively serializing their execution. On the Cray system, the over-
head ranges from 0.67µs for a task with no dependency over 1.4µs for a single
dependency to 8µs for 32 local dependencies. This puts our implementation
in the range of common OpenMP implementations, albeit slightly above both
Clang and GCC but below research implementations such as OmpSs [25].

Given the low single-core performance of the KNL system, the overhead for
local task dependencies is significantly higher on Oakforest-PACS. Handling a
task with a single dependency takes about 5µs, of which 2µs are required for task
creation and execution, i.e., the handling of the dependency requires about 3µs.
For 32 local dependencies, the overhead is found at 29µs per task.

Single Target Remote Input Dependencies. In the remote-in-single

benchmark, a single process creates tasks with input dependencies pointing to
unique memory locations on all other remote processes. This benchmark reflects
the minimum overhead involved in exchanging information on remote dependen-
cies, their processing on the remote side, and the signaling of their release. We
measured the overhead when running either with or without a communication
thread processing active messages in the background, as described in Sect. 5. As
to be expected, the overhead is higher than for local dependencies, ranging from
2.5µs for a single dependency to up to 34µs for 32 remote input dependencies
on the Cray system. With the communication thread enabled, the overhead for a
task with 32 remote input dependencies drops to 25µs since the communication
is not handled by the thread creating the tasks.

On Oakforest-PACS, the latency rises up to 530µs for 32 remote input depen-
dencies, which is significantly higher than on the Cray system. We attribute this
to both the slower serial core performance as well as the OmniPath network,
which provides less sophisticated hardware features to support MPI commu-
nication than the Aries fabric. However, with the communication thread in the
background, the overhead drops to 89µs, which constitutes only a factor of three
compared to the local dependencies.

Since only a single process is creating tasks with remote dependencies, the
target processes of these dependencies can instantly handle the dependencies.
Hence, the overhead mainly stems from the inter-scheduler communication.
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Fig. 3. Average overhead for tasks with different numbers of local and remote
dependencies running on 16 nodes of different platforms.

Remote Input Dependencies Between All Processes. For the remote-

in-all benchmark, all processes create tasks with remote dependencies point-
ing to all other processes. This benchmark includes the impact of all processes
communicating dependencies, which better reflects real applications in which
tasks from multiple processes communicate with each other. We observe laten-
cies between 9µs for a single remote dependency and up to 215µs for 32 remote
input dependencies on the Cray system. In presence of a communication thread,
the overhead is at 35µs, which is still only slightly more than a microsecond per
remote dependency.

On Oakforest-PACS, latencies are significantly higher, ranging from 40µs to
1092µs. Similar to the previous benchmarks, the overhead drops significantly
in case the communication thread is available: 119µs for a task with 32 remote
dependencies.

While these latencies are higher than for local dependencies for large numbers
of dependencies, we expect that only a small fraction of tasks in common appli-
cations will exhibit such a high number of remote dependencies as the majority
of tasks will have dependencies to local tasks. For small numbers of dependencies,
the difference between local and remote dependencies is not prohibitively large and
within a reasonable range. For applications with large numbers of remotely depen-
dent tasks, e.g., numerical algorithms such as the Blocked Cholesky Factorization
described in Sect. 5.1, the use of a communication thread is highly recommended.

6.2 Blocked Cholesky Factorization

We have measured the performance of the Blocked Cholesky Factorization dis-
cussed in Sect. 5.1. Blocks are 2D-cyclically distributed and tasks consume both
remote and local blocks to compute local blocks, adhering to the owner-computes
principle.
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Fig. 4. Per-node weak-scaling performance of Blocked Cholesky Factorization of a
matrix with leading dimension N = 25k/node and block size NB = 320 (higher is
better). (DTD runs on Oakforest PACS at scale did not complete within a reasonable
time.)

We compare our implementation against both PaRSEC’s parameterized task
graph (PTG) and dynamic task discovery (DTD) implementations. Other related
approaches do not provide comparable scalability: For example, XcalableMP
translates tasklets into OpenMP tasks and relies on MPI two-sided communica-
tion for inter-process task synchronization, a technique that has been show to
not be portable [26]. We were unable to successfully collect measurements for
StarPU/Chameleon on both machines.

We performed weak-scaling experiments of the Blocked Cholesky Factoriza-
tion using matrices with a leading dimension of 25k double precision elements
per node, the results of which are depicted in Fig. 4. Both in PaRSEC and DASH,
the background communication thread was pinned to a dedicated core, which has
proven to yield superior performance. The DASH schedulers perform a match-
ing step every 100 phases, i.e., every 33 iterations of the outermost loop, and
the phase throttling was set to 400 simultaneously active phases. s On the Cray
system PaRSEC PTG clearly outperforms both DASH (≈20% on 144 nodes)
and DTD, which is expected as PTG does not incur the overhead of dynamic
task discovery. The dynamic discovery of the global task graph in DTD appears
to inhibit the scalability of the benchmark. We tested different block-sizes and
found that NB = 320 elements yield the best performance for all implementa-
tions compared to NB = 256 and NB = 512.

The copyin dependency discussed in Sect. 5 yields better performance using
one-sided get on the Cray system. However, we found that the Intel MPI imple-
mentation does not support the RDMA capabilities of the Omni-Path fabric
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on Oakforest-PACS, which required the use of two-sided communication in the
background. The scalability characteristics of DASH on Oakforest-PACS are
similar to the behavior observed on the Cray system. Unfortunately, we were
unable to get anywhere near the expected performance for both PTG and DTD
at scale. This is part of an ongoing investigation.

6.3 LULESH

To demonstrate the scalability of our approach, we ported the Livermore
Unstructured Lagrangian Explicit Shock Hydrodynamics proxy application (LU-
LESH [16]) to use DASH in combination with global task dependencies.

We started by replacing the OpenMP work-sharing constructs in the original
code of LULESH 2.03 with dash::taskloop constructs described in Sect. 5.2. Each
task carries a set of dependencies that allows the scheduler to chain chunks of
multiple consecutive task-loops to improve cache locality.

An important observation to make is that while traditional work-sharing
constructs tend to be well balanced across threads (in the absence of exter-
nal influence factors such as NUMA effects), the scheduling of tasks created
by taskloops is less predictable as some worker threads may be busy executing
other tasks. Moreover, in a single iteration LULESH performs computation on
the nodes of the unstructured grid, followed by the elements described by the
nodes, and regions of elements, each containing multiple parallel loops. While it
may be possible to overlap these different computations, we have not attempted
to achieve this but instead introduced artificial synchronization between these
levels, e.g., to make sure that all tasks operating on the nodes of the grid are
completed before starting computation on the elements formed by them. In some
cases, the resulting synchronization slack may be hidden by partially overlap-
ping iterations, e.g., force-computation on the nodes may commence before the
timestep width for the next iteration has been determined.

In order to achieve proper load-balancing, we control the number of tasks
created by the task-loops as described in Sect. 5.2. We found that the number
of threads times a factor of five yields the best performance in our experiments.
However, this factor may be dependent on the architecture and the problem size.

LULESH employs a 28-point stencil pattern to exchange data with neigh-
boring processes in a 3D grid. We replaced the MPI two-sided communication
with global memory arrays into which processes pack the boundary data to be
communicated to other processes (similar to the MPI version). The data is then
read from global memory on the remote side and unpacked to update the halo
regions. Both packing and unpacking have been implemented as tasks—one for
each neighbor—with remote dependencies between the packing and unpacking
tasks. Thus, the halo updates may be performed as soon as the respective neigh-
bor has completed packing its boundary data relevant for a particular process.

The runtimes of both implementations and the relative speedup are depicted
in Fig. 5, which shows the weak-scaling behavior on the Cray XC40 up to 1000
nodes with one process per node and 24 threads per process plus a floating
progress thread. A matching step was performed every 20 phases in DASH, which
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Fig. 5. Weak-scaling runtime and speedup of DASH relative to the reference imple-
mentation of the LULESH benchmark with a domain size of 2003 and 3003 elements
per node at 100 iterations on the Cray XC40 (lower is better).

caused a matching to be performed roughly every four timesteps as each iteration
required six phase transitions, one before and one after each data exchange. The
phase throttling was set to 60, i.e., tasks for ten consecutive iterations were
continuously instantiated simultaneously.

For 3003 elements per node, the DASH implementation exhibits an increase
in runtime of 4% between 64 and 1000 nodes, yielding almost perfect weak scaling
in that range. The OpenMP implementation, in contrast, exhibits an increase of
22% in the same range. At this size, we observed a speedup of 25% between the
OpenMP and DASH implementation on 1000 nodes, which we attribute to the
improved cache utilization as well as partial overlapping of communication and
computation of consecutive timesteps in the task-based parallelization.

The results are more stable for s = 200. Here, the observed speedup at 1000
nodes of DASH compared to OpenMP is only 3.8% and the overall behavior
is more homogeneous. For even lower problem sizes (not displayed), we have
observed that the task management overhead prohibits any gains of the task-
based parallelization over OpenMP and might eventually lead to a slow-down. It
has been shown in the past that a certain minimum task granularity is required
for task-based parallelization schemes [27].

Overall, the results demonstrate the feasibility and scalability of our app-
roach. A uniform way of expressing both local and remote dependencies between
tasks in a PGAS application while discovering only the local portion of the
task graph can lead to significant performance improvements over traditional
work-sharing constructs. The required collective synchronization during the task
matching does not inhibit scalability as it can be overlapped with the execution
of tasks from already matched phases.
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7 Conclusion and Future Work

In this paper, we have proposed a new approach for the synchronization of tasks
created in a locality-aware PGAS abstraction in which processes only discover
the trimmed task graph, i.e., the local portion they will execute. The global
execution order of tasks is determined based on a set of dependency definitions
of each task that is specified by the user. Loosely coupled scheduler instances at
each process communicate dependency information to avoid central coordination
and the requirement for global task graph discovery. The synchronization is
decoupled from accesses to the global memory space, retaining the potential for
random access in distributed data structures.

We are convinced that global task data dependencies are well suited to syn-
chronize one-sided communication as they rely on the global address space for
synchronization and communication instead of using unidirectional synchroniza-
tion mechanisms, explicit two-sided communication, or remote task invocation
for inter-process task synchronization, all while providing a simple way to cre-
ate complex synchronization patterns. Moreover, our approach does not limit
the set of language features allowed while discovering the global task graph,
e.g., branches based on data locality are perfectly valid.

Using the LULESH proxy app, we have shown that our approach scales to
hundreds of nodes while achieving a significant speedup over the reference imple-
mentation for larger problem sizes. While the Blocked Cholesky Factorization
shows some noticeable overhead compared to PaRSEC PTG due to the dynamic
discovery of the local task graph and the exchange of dependency information,
our measurements indicate that our approach yields better scalability than a
dynamically discovered global task graph.

Overall, the results presented in this paper are encouraging to further pur-
sue this approach. We plan to investigate the integration with other task-based
parallelization libraries, such as OpenMP, to ease the transition from regular
MPI+OpenMP applications towards DASH. Moreover, we will investigate the
potential for automatic tuning of the task creation threshold and task granularity
and will elaborate ways to contextualize the virtual root task to provide mul-
tiple concurrency contexts with the ability to synchronize tasks across process
boundaries.
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15. Kalé, L., Krishnan, S.: CHARM++: a portable concurrent object oriented system
based on C++. In: Proceedings of OOPSLA 1993 (1993)

16. Karlin, I., Keasler, J., Neely, R.: Lulesh 2.0 updates and changes. Technical report
LLNL-TR-641973 (2013)
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Abstract. The MPI multithreading model has been historically difficult
to optimize; the interface that it provides for threads was designed as a
process-level interface. This model has led to implementations that treat
function calls as critical regions and protect them with locks to avoid
race conditions. We hypothesize that an interface designed specifically
for threads can provide superior performance than current approaches
and even outperform single-threaded MPI.

In this paper, we describe a design for partitioned communication in
MPI that we call finepoints. First, we assess the existing communication
models for MPI two-sided communication and then introduce finepoints
as a hybrid of MPI models that has the best features of each existing
MPI communication model. In addition, “partitioned communication”
created with finepoints leverages new network hardware features that
cannot be exploited with current MPI point-to-point semantics, making
this new approach both innovative and useful both now and in the future.

To demonstrate the validity of our hypothesis, we implement a fine-
points library and show improvements against a state-of-the-art multi-
threaded optimized Open MPI implementation on a Cray XC40 with
an Aries network. Our experiments demonstrate up to a 12× reduc-
tion in wait time for completion of send operations. This new model is
shown working on a nuclear reactor physics neutron-transport proxy-
application, providing up to 26.1% improvement in communication time
and up to 4.8% improvement in runtime over the best performing MPI
communication mode, single-threaded MPI.
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1 Introduction

The Message Passing Interface (MPI) [15] has supported a threaded interface for
user applications since 1997. Despite being supported for a long time, MPI mul-
tithreading is not widely used today. There are several factors preventing MPI
multithreading from widespread use. One factor is that MPI multithreading
support remains poorly optimized in some common implementations and their
commercial derivatives. Lack of consistency in performance is another major
issue preventing widespread use, and this deficiency is understandable: mak-
ing a highly performant multithreaded MPI library is complex and challenging.
Additionally, it can be difficult for thread-based code to interact with MPI in an
efficient manner. For these reasons, many hybrid codes today do not allow thread
interaction with MPI, opting instead to coordinate to allow a single thread to
perform MPI calls. For example, an MPI+OpenMP hybrid code might perform
a computation using many threads but still use a single master thread to com-
municate using MPI.

The MPI threading model treats threads in much the same way as processes.
Threads can perform all of the functions available in MPI; however, many codes
do not require the full MPI multithreaded support that exists today. Alternative
interfaces designed specifically for thread interaction with MPI could be designed
to provide easy-to-use semantics and performance benefits over existing MPI
interfaces. Performance improvements could be realized by leveraging thread
behaviors and isolating the portion of the MPI API that needs to be thread-
safe.

Contemporary MPI implementations typically use pessimistic serialization to
enforce thread safety to MPI calls (e.g., locks), allowing only a single thread to
interact within certain MPI critical paths or data (e.g., a given communicator)
at a given time. While this restriction may be desirable for a general threading
case where the behavior of threads is unknown, it can be problematic for threads
that would otherwise not interfere with each other in their participation in a
communication. For example, if multiple threads each write to a shared memory
buffer using non-overlapping offsets, no interference would occur.

A 2018 survey [2] highlighted application developer concerns with MPI
related to the US Department of Energy’s Exascale Computing Project. All of
the developers not currently using thread multiple cited performance as the
reason they were not using it, however, a large majority of those developers (86%)
want to interact with MPI using multiple threads. Historically, some implemen-
tations used a single global lock on the MPI library. However, many implemen-
tations have recently moved to locking at a fine granularity. We have used an
optimized fine-grain locking MPI for comparison to our proposed MPI thread-
ing interface enhancements, finepoints, in this work. Finepoints uses lightweight
synchronization, requiring only a single atomic for synchronization (which is
the minimum synchronization overhead achievable on modern hardware). It also
works with emerging hardware to fully offload the threading synchronization
overhead. Finepoints is the first solution to offer many of the optimizations that
are available to one-sided communication methods in a two-sided model.
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In this paper we will detail the design of our proposed solution, finepoints, a
partitioned communication interface for MPI. This approach partitions buffers in
MPI, allowing threads to contribute individual parts to a single communication
operation. We will describe the interface and show the proposed MPI function
calls and detail the reasoning behind the design as well as the benefits that
the design provides. Next, we will present an implementation of finepoints and
evaluate it on a Cray XC40 platform to assess its performance impact. Further,
we will detail the changes that we made to two applications to adapt them to
use finepoints and show the results of using the interface on a reactor neutron
transport proxy application and a finite element code. Finally, we will summarize
the results and discuss how these findings relate to the existing work in the area.

This paper makes the following contributions:

– A two-sided, optimizable MPI interface designed specifically for thread-
ing/tasking support;

– A design for how finepoints can be fully offloaded to future MPI message
matching NIC hardware; and,

– The first finepoints-integrated proxy applications, a reactor neutron transport
simulation and a finite element code.

2 Background

The model for multithreading in MPI is simple: threads in a process can access
MPI however they wish, using the full interface that is used on a per-process
basis in a non-threaded MPI program. There are no modifications to the interface
for threads, and all threads share the MPI address (rank) of their parent pro-
cess. MPI threading modes simply serve to dictate what level of thread-safety is
provided by MPI—either MPI THREAD MULTIPLE, where all calls are thread safe,
or funneled and serialized mode, in which the user is responsible for managing
thread-safety with MPI. There is a fourth mode, single, in which threads do not
exist. In this paper, we refer to threads as the mechanism by which tasks are
run/completed.

MPI provides two main point-to-point interfaces, two-sided send/recv where
each message sent matches a receive posted at the target. This results in per-
message completion notifications and strong ordering guarantees for messages
sent on a given communicator. MPI also provides a one-sided interface called
Remote Memory Access (RMA). RMA uses a put/get semantic that can be
conceptualized as a remote load/store model. RMA requires that an application
explicitly handle synchronization of communication buffers. MPI RMA code typ-
ically requires major algorithm changes to use it effectively [14] and its expected
use at exascale still remains low (<25% [2]). While work on the RMA model
is promising in terms of performance [8,12], the application level code changes
required to existing code bases [14] compels exploration of a two-sided model.

The endpoints proposal, which is no longer under consideration by the MPI
standardization committee, was an attempt to allow for increased utility for
multiple threads (cf, [5]). Endpoints addressed threads by assigning a logical
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Fig. 1. MPI models for data transmission with multiple tasks/threads. Model A
is the traditional single-send approach in an MPI+X applications. Model B is the
current multithreaded send-per-thread model. Model C is our proposed partitioned
model which leverages the completion model of A and transfer model of B.

address (rank) to each thread or user defined group of threads, enabling per-
thread addressability. Endpoints did not fundamentally change the communica-
tion model, it only added additional addressability to the existing multithreaded
model in MPI. There is no public implementation of MPI endpoints and given
its current status with the standards committee, it is unlikely that one will
be released in the foreseeable future. Unfortunately, this means that perfor-
mance comparisons are not possible. However, we can estimate the overheads
of Endpoints matching, by emulating it’s behavior with a traditional match list
implementation that separates traffic by communicator.

2.1 MPI Multithreaded Communication Models

Figure 1 demonstrates the two main threading models used with MPI. Model
A shows the single-send (single-threaded) MPI model, where only a single
thread calls into MPI, regardless of how many tasks may be used in the non-
communication regions of code. There is a time, Twait that is required to wait
for all task dependencies on the communication buffer to complete. No commu-
nication can happen even if some tasks are ready to send their data. Once all
of the data is complete, there is some overhead for issuing the send commands
in MPI, Osend, after which data is transferred over the network, Ttransfer, and
finally some overhead on the receiver-side for matching the message and marking
the request as complete, Orecv.

Model B demonstrates the many-send model, in which each task sends data
as it completes. This results in having no Twait period as data can be sent
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when it becomes available (all dependencies for the data are complete and it
is ready-to-send). Note the use of the time before the dotted vertical line that
denotes the beginning of the transfer in model A. However, this also results
in synchronization overhead, Osync needed to ensure thread-safety in the MPI
library, and numthreads times the send and recv overheads. In addition, the
message matching overhead for model B will likely be much larger than model A.
Because matching is done serially, this message matching overhead will not only
significantly increase all of the instances of Orecv, it can lead to cascading delays
in subsequent instances of Orecv.

Therefore, we have two models, A, the single-send model, which cannot take
advantage of Twait and B, the many-send model, that has more overhead than
model A. In current applications, the single-send model is the more popular
approach as it has higher performance in many scenarios. However, there is
broad interest in using a model similar to the many-send model as previously
discussed [2]. To address this, we propose that a third model, C, that combines
the best characteristics of both current models by taking advantage of Twait

like model B and offering the minimal receive-side overhead of model A. Model
C allows tasks to notify the MPI library that their data is available to send,
but allows MPI to make the decision on when to transfer data, ensuring that
send overheads and network packet level efficiency can be controlled by MPI. In
addition, MPI can manage multiple outstanding operations, allowing model C to
take advantage of NIC-level parallelism, unlike model A. The number of receive-
side notifications/completions is controllable between 1 and Ntasks, allowing
for control over receive-side overhead. By setting the number of send-side data
partitions to 1, model C can approximate model A; there is no inherent 1:1
relationship between tasks and partitions.

3 Hybrid-Model Design Requirements

There are three requirements for the design of partitioned communication (model
C in Fig. 1). First, the design must allow communication to occur when tasks
complete, rather than synchronizing on a thread barrier or join before commu-
nicating. This addresses the weakness in model A, that there is wasted time due
to a monolithic task dependency of all tasks completing before communication.
This allows partitioned communication to emulate the strengths of model B, a
lack of this monolithic task dependency. We will refer to the productive use of
the time that would be spent waiting in model A as early-bird communication.

Second, the design must address the weakness in model B by minimizing or
hiding the overheads of thread-safety, send operations, and receive-side overhead.
Low receive-side overhead is achieved by reducing number of matching opera-
tions and request completions/notifications. There can be an advantage to having
multiple completions, namely that task dependencies on a subset of the data can
progress when the required remote data becomes available. However, this needs
to be balanced with the increased overhead caused by multiple completions. For
the purposes of this paper, we choose to minimize receive-side overhead by using
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a single match/completion operation. This will keep the design in line with the
desirable low overhead in model A and avoid matching issues. The last require-
ment is that the MPI implementation should be free to send data whenever
it is most efficient to do so. This allows data to be sent with good wire effi-
ciency (header to payload ratio), a benefit of model A and weakness of model B.
By controlling the size of the data sent and allowing for aggregation inside the
MPI library we can control the wire efficiency of data transfers for model C.
This is something that both models A and B are not able to take advantage of;
each send operation is sent as a distinct message in modern MPI libraries.

To allow for easy use/adoption of the partition communication models, there
are three main objectives that the design has to meet. The first objective was to
align our design with current practice. Existing concurrency models like OpenMP
allow for tasks and threads to work cooperatively on a shared buffer—in the
most simple sense, like a SIMD model, where multiple data items in a buffer
are acted on simultaneously. Threading can be more complicated but the basic
concepts behind this approach can be leveraged to better match the thread usage
model for MPI. This widely adopted tasking/threading model provides a single
buffer that multiple actors (thread, tasks, etc.) can operate on. By matching the
semantics of the MPI calls to the semantics of common multithreading models,
mismatch can be avoided at the interface level and programmers can easily
translate existing threading code to communication.

The second objective was to align our design with legacy practice. Legacy
applications have leveraged an MPI+X model with distinct communication and
computation phases in a bulk synchronous model. Multi-million-line MPI codes
require great effort to modify and revalidate. Therefore, minimal code change at
the MPI level is desirable in terms of time and cost for updating and revalidating
legacy code bases. This is useful to ensure the widest adoption possible.

Finally, the third objective was to aline our design with anticipated future prac-
tices. Proposed models for future applications include task based threading, over
decomposition, adaptive workflows, in-situ analytics, etc. These models increase
the complexity of requirements for the communication layer of an HPC system.
Changing the communication model of legacy and modern codes is a significant
undertaking, often performed by non-experts of MPI. To reduce the burden on
application developers the interface needs to be adaptable to future hardware and
programming models with little to no impact on interface provided by an imple-
mentation.

3.1 Finepoints: Partitioned Communication

Finepoints is a MPI interface for partitioned communication designed to match
the characteristics of the hybrid communication model C in Fig. 1. Partitioned
communication is a new concept in MPI. With partitioned communication we
propose breaking the monolithic nature of the single send model by allowing
tasks to express data availability to the MPI library by reporting parts of an
operation as ready. This allows data to be moved as a portion of a larger oper-
ation. The larger operation will have the same receiver-side overhead as the
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single-send model. We will present the design of finepoints. We target the two-
sided communication model in MPI for our design as it is by far the most popular
communication method in MPI applications. However, we will discuss the use of
MPI’s one-sided model where it is a possible option for meeting our requirements.

The first requirement was to use the time that would otherwise be wasted in
the case where many threads or tasks need to synchronize before sending any
data. Partitioning a send operation accomplishes this goal by notifying MPI as
portions of the data buffer become available. This gives MPI the opportunity to
send data if doing so is desirable. There are situations in which delaying sending
the data is the correct decision, for example, when the available data is too
small in size. Another situation in which a system would want to delay data
transfer is when the data in the buffer is too fragmented to be sent efficiently.
Some networking hardware can efficiently handle strided data or IOvecs, which
can describe fragments of data to be collected from memory and sent (gathered)
and distributed back to target memory on the receive side (scattered). These
features make it desirable to leverage hardware that supports such gather/scatter
operations, such as Remote Direct Memory Access (RDMA) as it maps well to
these capabilities.

To address the low message processing overhead requirement we must keep
the number of messages that MPI must match small, similar to a single-threaded
MPI process. One way to get around the matching requirement is the use one-
sided communication, which does not provide matching. The drawback to this
approach is that the method of completing a given communication with one-
sided code is much different than that of two-sided send/recv. Send/recv pro-
vides clear message arrival notification as a completed request. One sided com-
munication requires synchronizing a memory window between the sending and
receiving nodes. This change in semantics can significantly impact application
code, in some cases requiring changing the underlying algorithms to better fit
the communication semantics. To avoid these drawbacks a design must leverage
two-sided send/recv semantics and must produce as few messages that need to
be matched as possible. Along these lines, partitioned communication matches
these requirements. It reduces the number of messages that must be processed
(matched and notified of completion) but also allows for fine-grained notifica-
tion of parts of a buffer becoming available to send to MPI. This allows MPI to
optimize how the data is sent for any given network architecture, but still allows
for the well known send/recv completion semantics. This addresses the issues
that can afflict the many-send situation (model B) of each thread/task send-
ing its own messages. This also addresses the third requirement for our design,
controllable wire efficiency.

Now that all of the desirable traits and potential designs have been discussed,
we can outline a basic design and API for finepoints. Finepoints will use a par-
titioned send, allowing threads/tasks to notify MPI when portions of a larger
shared buffer become available to send. We will only allow a limited number of
completions on the receive side to minimize message processing overhead. We
can allow some receive side partitioning/notification, but we must be careful not
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to create too high of an overhead from matching/request completion. Next, we
will require some sort of buffer negotiation, as the buffer can arrive in chunks
instead of all at once. This can be done using a persistent operation to reduce
setup overhead or an on-the-fly one-time-use buffer negotiation. We will provide
both interfaces for send operations.

3.2 Partitioned MPI Communication Interface

Partitioned communication in MPI as a concept can be applied to almost all
of MPI’s existing communication calls, both point-to-point and collectives. For
the purposes of our paper, we will only cover point-to-point communication. We
present our proposed additions to the MPI-3 or MPI-4 standard in C; for brevity,
we omit the Fortran versions of the calls.

The persistent communication approach requires that certain information
about the partitioned operation be expressed to MPI prior to writing to any
buffers. First, the operation must be initialized; that is, the required informa-
tion to set up the buffers and synchronization methods must be provided. We
propose a MPIX Partitioned send init function call defined below. This func-
tion can be used to initialize the partitioned send, which is similar to a persistent
operation setup, but introduces the concept of message partitioning.

int MPIX_Partitioned_send_init(

void *buf, int count, MPI_Datatype data_type, int to_rank, int to_tag,

int num_partitions, MPI_Info info, MPI_Comm comm, MPI_Request *request);

Similarly, a recv version of this call must be created to allow for the sender
and receiver sides to agree on a buffer for the partial messages (which may be
the application buffer on the target side).

int MPIX_Partitioned_recv_init(

void *buf, int count, MPI_Datatype data_type, int from_rank, int from_tag,

MPI_Info info, MPI_Comm comm, MPI_Request *request);

These initialization functions match via tags, sender/receiver rank, and com-
municator at initialization to form a two-process persistent operation (channel).
While wildcard sources/tags may be used for from rank and from tag in the
MPIX Partitioned recv init call, it is up to the programmer to make sure that
there is logical consistency between the sender and receiver that connect during
this process. Unlike normal point-to-point persistent send/recv, these operations
may communicate. To reduce complexity in initialization, these calls should be
non-blocking. The output of this function is a request that can be used imme-
diately in a MPIX Pready call.

When a request is active on the send side, buffer partition elements may be
added with the following API:

int MPIX_Pready(

void* buf, int count, MPI_Datatype in_datatype, int offset_index,

MPI_Request *request);
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For non-persistent communication, a normal recv operation is used at the
target and a partitioned send request can be started with the following API:

int MPIX_Ipsend(
void *buf, int count, MPI_Datatype data_type, int to_rank, int to_tag,
int num_partitions, MPI_Info info, MPI_Comm comm, MPI_Request *request);

When the request is in progress, it waits for num partitions MPIX Pready
calls. When the number of buffer partitions added equals the num partitions
argument given at initialization, no more partitions may be added prior to a
completion operation (MPI Wait). The total size of the buffer is the count value
times the size of the datatype, in bytes, given at initialization.

When using the persistent version of Pready/wait calls (e.g. MPIX Pready,
not MPIX Ipsend), MPIX Pready calls for subsequent rounds of communication
can only be made after a successful MPI Wait or MPI Test call on that request.
The buffer should not be altered until it is confirmed that the send operation is
complete. This motivates the use of multiple send buffers as it allows tasks to
continue to execute and overlap their computation with communication. With
even a limited number of buffers, an application can avoid waiting long peri-
ods for communication completion. When combined with the non-synchronous
nature of MPIX Pready calls, this will enable applications to spend essentially
no time in synchronization barriers for coordinating send operations or waiting
on their completion. Tasks will still be required to wait for incoming data if it
is not available.

It should be noted that extending the partitioned communication interface
to support partial receives is trivial. However, we leave such extensions to future
work as the optimization space for receive side partitioning is large and warrants
its own full-scale investigation. We instead concentrate on the performance ben-
efits of the send-side partitioning in this paper as an introduction to the general
partitioned communication concept.

MPIX Ipsend calls are expected to return immediately. MPIX Pready calls are
subsequently used to indicate partition readiness. MPIX Ipsend calls are sim-
ilar to existing persistent communications interfaces, except that there are no
requirements for communication-initiating calls prior to calling MPIX Ipsend, the
setup happens when MPIX Ipsend is called. It is required that the receiver-side
post a non-blocking receive that will match the MPIX Ipsend call. If no match is
found MPIX Ipsend will return an error code indicating that the operation is not
ready and the user should try again. This error reporting is not fatal, following
the precedent set by file I/O in MPI.

There are no blocking versions of MPIX Pready; it is always a non-blocking
call. The offset index is an integer that specifies what internal index the
datatypes have in the buffer. For example, for a simple contiguous buffer case,
the first element would have index 0. Complex datatypes are supported, and the
index associated with those datatypes should be interpreted as their logical place-
ment in the buffer compared to the other expected contributions of datatypes.
There is no demand that buffer contributions be non-overlapping in memory;
however, we will not define the behavior for overlapping buffer additions here.
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MPIX Pready and MPIX Ipsend calls can be made thread-safe independently
of the other thread concurrency requirements of the MPI library because of the
threading isolation that these functions provide. Since partitioned communica-
tion does not rely on other parts of the MPI library that have potential thread
safety issues, we propose that the finepoints calls use a new threading mode,
MPI THREAD PARTITIONED, which allows high-performance lock-free MPI calls for
the majority of the library by isolating a thread-specific interface for handling
concurrency. Partitioned communication need not share significant internal MPI
data structures, and the only concurrency required is an atomic fetch and incre-
ment to determine if the partitioned operation has reached its num partitions
threshold. Finepoints leverages the knowledge of thread/task interaction at the
application and runtime levels to allow for overhead much lower than an MPI
implementation with a traditional send/recv type interface could reasonably be
expected to provide. An example of finepoints code is provided in Fig. 2 which
demonstrates a simple microbenchmark that we will use in Sect. 4.

3.3 Hardware Support for Partitioned Send

We can design full-featured hardware support for partitioned send operations
from basic operations of some MPI message matching NICs without the need
for new hardware. An example of a networking solution that can support parti-
tioned sends today is Bull’s BXI interconnect [3]. Bull’s BXI network uses the
Portals 4 networking API [1], which supports triggered operations. Triggered
operations use a hardware counter on networking devices to accumulate counts
of certain events that can be associated with them. Consequently, on the receive
side, a Portals-compatible NIC can keep a count of the number of expected con-
tributions to a buffer and deliver immediate notification of completion to the
target. The send-side MPI library can leverage triggered operations as well, by
staging multiple requested send operations with the different counts on which
they are triggered. Using the PtlCTInc function in the Portals 4 API, MPI can
perform the bookkeeping required for subsections of the partitioned buffer on
the NIC hardware. Once a given sub-partition of the overall buffer has been
placed, the hardware automatically triggers the send to occur. This automatic
send allows for increased network efficiency while offloading a large portion of
the work that would otherwise have to occur in software (counting incoming seg-
ments and determining when a request is complete). This concept is the same
one behind the mechanism of offloading MPI collectives with Portals-compatible
hardware [18]. Therefore, finepoints allows the utilization of network offloading
capabilities that are currently being applied for MPI collective offloads to be
used for point-to-point communication as well. Networking offload is desirable
at exascale [7], and therefore we expect that such offloading capabilities will be
widely available in the near future.
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Fig. 2. Pseudo code for finepoints microbenchmark

4 Experimental Results

In this section, we detail our experimental platform and assess the performance
of finepoints via extensive microbenchmark experimentation and the evaluation
of two proxy applications, a finite elements code, MiniFE [11], and a nuclear
reactor physics code, SimpleMOC [10], both part of the application set for the
Exascale Computing Project run by the US Department of Energy (DOE).

To assess finepoints, we have implemented a library on top of MPI that
allows partitioned communication (finepoints) to be layered on top of existing
MPI calls, particularly the MPI RMA interface. These results demonstrate the
performance of a non-hardware implementation of finepoints.

4.1 Experimental Platform

Our experiments were run on a Cray XC40 system. XC40s have two different
node types: a dual-socket node with Haswell E5-2698v3 CPUs and 128 GB RAM,
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and a single-socket node with a Knights Landing (KNL) Xeon Phi 7250 many-
core CPU with 96 GB RAM and 16 GB MCDRAM. This model has 68 cores
each with support for 4-way SMT. For this reason, microbenchmarks use 64
threads while the application study extends to 256. For purposes of the eval-
uation, the number of partitions in the subsequent experiments is set to be
the number of threads. While there are other configurations available, this is
the primary use case we expect to see in finepoints applications. We used the
KNL nodes exclusively, as many-core architectures let us explore large amounts
of thread concurrency. These results all utilize the same Cray Aries Intercon-
nect with a theoretical maximum bandwidth of 10.2 GiB/s. Open MPI 3.0
is used as the thread-optimized MPI library to interface with our finepoints
library. Open MPI’s message matching solution combined with different tags
for each multi-send message mean that message matching overhead is minimal,
approximating the performance of traditional as well as persistent multi-send
(MPI THREAD MULTIPLE overhead is still significant).

4.2 Microbenchmarks

Microbenchmark Setup. In order to evaluate the fine-grain behavior of
finepoints, we have created microbenchmarks that assess performance during
OpenMP parallel loop execution for data exchanges. Our benchmarks allow for
the independent variables of message size, number of threads, compute time per
loop, and compute time variation. The compute time variation variable repre-
sents typical application performance variation that results from imbalances in
the amount of work to be done per process, due to OS noise and process place-
ment on large systems. This variation allows us to explore finepoints ability to
leverage the idle thread time caused by this noise, as finepoints decouples indi-
vidual thread completion from communication dependency. This noise represents
the Twait time in the communication models comparison from Fig. 1. To imple-
ment this compute time variation, we delay a victim thread by the required noise
amount. After this noise is injected, the microbenchmarks communicate using
the selected communication model. For single send, the threads synchronize after
which a single large message is sent. For multi send and finepoints, each thread
sends an equal portion of the message using an MPI Send or a Pready call. For
the single-thread case, this delays the thread synchronization and thus the only
send call; for multithread, it is the last send call to occur; and for finepoints, it
is the MPI Pready call time for the completing call.

The dependent variable from this microbenchmark is perceived bandwidth.
Perceived bandwidth is bandwidth required for an single threaded MPI Send to
complete in an equivalent time. This is measured by instrumenting the time of the
final thread joining the communication region, where the MPI Send would have
been called in the single threaded model, to the completion of all communication
for the iteration. From our communication models in Fig. 1, this corresponds to cal-
culating the bandwidth from the all-tasks complete point in time (the dotted verti-
cal line). We do this as it provides a baseline for performance centered on the single-
send model, the dominant MPI communication model. For a traditional MPI Send,
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the perceived bandwidth is the whole transfer time of the message. For finepoints
and traditional multi-send, the perceived bandwidth is the bandwidth that the
single-send model would need in order to complete the communication after the
all-tasks complete point to match the wait time of finepoints or multi-send. While
these numbers could be presented as time spent waiting after the all-tasks com-
plete point, perceived bandwidth allows a comparison to a well-known metric that
can be scaled with trivial effort for future generations of hardware.

Perceived bandwidth can be significantly higher than the actual bandwidth
on a system. For example, if 100 workers all need to send one piece of data to a
neighbor node and 95 workers complete but 5 workers take significantly longer,
95% of the data transfer can occur with finepoints and multi-send before the last
workers reach their communication calls. Thus, the observed communication call
could take 95% less time than a call that used the single-thread method, which
requires all data to be collected before sending the first byte. Each microbench-
mark experiment was run for 50 iterations and the data in this section represents
an average over those iterations.

Microbenchmark Results. Our first experiments vary only message size and
thread count. Figure 3a shows the performance of finepoints versus send/recv
in MPI for both single-thread and traditional multi-send MPI. These results
exclude any compute time in the communication loops or any noise.

Figure 3a shows typical trends that are expected by MPI experts. The single-
send model’s MPI operation is superior to the multi-send model’s MPI ver-
sion and, as lock contention increases with the number of threads, the per-
formance gap between single-send and multi-send models grows, even for our
multithreading-optimized MPI implementation. The single-send model clearly
outperforms multi-send and finepoints at small message sizes when ignoring the
drop in performance that occurs during the eager-rendezvous protocol switch.
Breaking up a small message into 16, 32, or 64 parts operates the network in the
lower part of a typical bandwidth curve, where packet overheads dominate costs.
For small message sizes, performing a single send operation is still preferable,
while the benefits of the finepoints approach are clear with larger message sizes.
It should be noted that finepoints can accommodate aggregation of smaller mes-
sages such that the performance of singlethreaded MPI can be approximated.
The results for these benchmarks do not use aggregation.

The performance of small message transfers may appear to be problematic as
many MPI applications use small to medium sized messages frequently. However,
with the shift towards fewer MPI processes and more threads per process, the
overall amount of data needed to be transmitted by a single process will grow. A
64 process MPI-everywhere solution will have to send 64× more data when it is
run in a one-process, 64 thread configuration, leading to larger message sizes for
multithreaded codes. This will push many application into an area where fine-
points performs well. Based on previous work exploring message sizes used by
applications of interest [6], we find that message sizes in the 8 KiB–16 KiB range
are important and many applications send messages of 1 MiB or more, resulting
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in the vast majority of network usage for codes. Therefore, when we move to a
multithreaded code, we expect messages to be Nthreads times larger in size, and
this is well within the message size range where finepoints is the clear winner.
Notably, at a 1 MiB transfer size (total, not per thread), finepoints outperforms
the single-send model performance for all thread counts below 64 (results not
shown for space). At 64 threads, a 2 MiB transfer is required to outperform
the single-send model performance. This performance gap is significant for large
transfers when all of the bandwidth curves flatten out. The difference in perfor-
mance, from 7,200 MiB/s to 9,000 MiB/s on finepoints, represents a significant
25% increase in throughput.

This difference results from several factors. First, finepoints can easily lever-
age hardware RDMA data transfers, allowing for high-performance messaging.
Second, the MPI library expects the finepoints transfer to occur; with traditional
MPI send/recv, the library must react to the transfer with no advance setup.
What is most promising here is that the observed improvement comprises a
worst-case outcome for finepoints, since there is no time variance in the com-
pute or noise in the system that allows finepoints to take advantage of available
bandwidth in the network while laggard threads finish their compute tasks.
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Fig. 3. Partitioned communication with varying noise and compute load

Figure 3b shows finepoints working with a 100 ms compute loop with 1%
noise. This reflects real codes on production machines better than no-noise sit-
uations do, as 2–4% noise has been common on systems for many years [16].
Both multi-send and finepoints can show bandwidths greater than the available
bandwidth from the NIC using this approach because they have the oppor-
tunity to send portions of the overall transfer before the final process/thread
reaches the communication call. With 64 threads, we see the drawback of
MPI’s THREAD MULTIPLE mode. Lock contention is high with large thread counts,
impacting the performance of the multi-send approach. While multi-send quickly
degrades in performance and even underperforms the single-send model, fine-
points gains performance from having many threads. Eventually with large
enough message sizes, we see finepoints and multi-send converging back to native
wire rates, this happens when there is so much data that the early-bird overlap-
ping cannot preemptively send a large enough portion of the data to see major
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performance gains. It should be noted that even in these cases, finepoints per-
formance is no worse than the singlethreaded case. Finepoints starts to see a
small drop in performance at the 64-thread level illustrated in our Fig. 3b, but
still significantly outperforms the best competitor at message sizes of greater
than 1 MiB total. To put these bandwidth numbers in context, finepoints with
a 8 MiB message will spend only 0.5% of its time waiting for communication
with a 100 ms compute loop, compared to 1.9% for the single-send model and
1.3% for multithreaded MPI. This result highlights one of the key performance
benefits of finepoints, namely that multiple threads can initiate data movement,
exploiting Twait from our communication models without the locking overhead
Twaitlock and much smaller Osync compared to the multi-send mode.

Shorter compute times can impact the amount of overlap that finepoints can
exploit, with compute times of 10 ms demonstrating up to a 3× improvement in
performance versus the single-send model as shown in Fig. 4a. Figure 3c shows
early-bird communication mostly completing before the final thread arrives
at the partitioned communication call. With the chance to send this data in
advance, the perceived bandwidth when the final thread reaches the partitioned
communication call is 12× greater than a single threaded approach for 64 threads
at message sizes of 64 MiB. At a 64 MiB message size finepoints only spends 0.5%
of time waiting for communication while the single-send model spends 8.8% and
multi-send spends 0.95%. For the 4% noise case, which we expect to be typical
of future systems we can observe in Fig. 4b that with reasonable compute times,
finepoints can beat single threaded MPI by up to than 9.5× and multi-send by
3.3× in the best case. Thus, early-bird communication can help alleviate a major
cost of bulk-synchronous parallelism (BSP). It achieves this result by reducing
the time penalty for poor synchronization, reducing the delay after all threads
have reached the synchronization point as much as possible.

To ensure that the results observed for finepoints are not a result of the
lightweight cores used for the experiments, we have also conducted similar testing
on the Haswell partition of our system. These results are omitted for space, but
the general trends hold on a Haswell system as well: finepoints outperforms
both multi-send and the single-send model for message sizes larger than 1 MB
across a spectrum of no-noise to noisy execution. For example, at 32 threads
(one thread per core), finepoints beats single by 34% and multi-send by 99%
at 64 MiB message sizes with no aggregation, with the latest version of Cray
MPICH.

4.3 Message Aggregation Optimizations

The results presented thus far have sent messages as soon as any data was added
to the partitioned buffer; however, finepoints can also optimize the transfers out
of the partitioned buffer by aggregating traffic to the target node. We have
implemented an aggregation scheme that allows the user to specify an aggrega-
tion threshold for their network. Our aggregation scheme attempts to combine
send operations that occur close together in time that are in contiguous memory,
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Fig. 4. Three experiments exploring the effects of finepoints in situations of short
iteration times, realistic noise, and with aggregation

up to the aggregation threshold size. Timeouts will cause data to move regardless
of aggregation if operations are sufficient spread out in time.

Aggregation is most effective when there is a large number of threads, which
corresponds to more numerous and smaller individual data transfers. Figure 4c
shows the benefit of this aggregation versus a baseline finepoints without aggre-
gation for 64 threads with a 512 KiB aggregation size. We observe that the
aggregation optimization can have large impact on the overall performance of
finepoints at high thread counts. For the 100 ms compute loop results shown, the
maximum gain is 199.5% at 2 MiB, and the optimized version is always better
than the baseline finepoints case.

4.4 Application Proxies

To demonstrate finepoints with an application, we chose two application proxies
to test the impact of finepoints. MiniFE is a proxy application from the Man-
tevo suite [11] that uses conjugate gradient solver on a finite elements problem.
The main communication pattern is a fully packed halo exchange, optimized
for the single-send model. MiniFE is essentially a worst case for finepoints as
it is optimized to send small messages and is highly tuned for the single-send
model. To leverage finepoints in this code, we modified the application in the
most direct manner possible, where each thread sends a subset of the overall
buffer. This results in a significantly larger number of messages being sent by
each peer compared to original serialized code. To provide a comparison to cur-
rent multithreaded paradigms, we have included a multi-send version as well
that decomposes messages in the same manner of the finepoints version.

Figure 5 shows the results of MiniFE run with 16 nodes (1 process per node)
and a 3303 problem size per process with no injected variation in the communi-
cation phase. Each data point represents the average of three runs. In this graph
we show communication time on the primary y axis and cg-solve time on the
secondary y axis. The general trends in this data show that finepoints performs
better than multi-send but worse than the original serialized code. Because of
a bug we encountered in Open MPI, multi-send runs leveraging more than 32
threads failed to complete. At this scale, the communication in finepoints is a
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factor of 2 better than the multi-send baseline. In follow-on experiments lever-
aging Cray’s MPI, we found that multi-send spent 61% of the CG solve time
in communication at 256 threads. In contrast, finepoints spends just 11% of
its time communicating with 256 threads. As the message decomposition strat-
egy results in a larger number of smaller size messages, it is unsurprising that
finepoints spends more time communicating than the single threaded case.

While finepoints does spend a larger percentage of its solve time doing com-
munication than the single-send model (11% vs 2% at 256 threads), there are
a two promising things to note. First, this is a worst-case application for fine-
points, MiniFE has a highly optimized communication pattern, sending as little
data as possible in it’s halo exchange. Given this, application developers can
use finepoints to leverage multithreaded communication patterns with a small
to negligible impact in application performance. Second, the application use of
finepoints is unoptimized and cannot take advantage of variations in compute
time. In the current implementation, MiniFE exits the parallel region and then
starts a new parallel region for communication. This means the time still includes
the TWait portion model A and no early bird communication can occur. This is
an example of how an unoptimized finepoints code can perform significantly bet-
ter than current multithreaded communication models. Leveraging knowledge of
the data dependencies and thread behavior, application developers could inte-
grate these communication calls into their compute threads and enable more
early-bird communication reducing runtime. This case highlights the fact that,
while there are cases where applications will need to be optimized to see benefit
from finepoints, the overhead from finepoints is low enough that the impacts to a
“worst case” application, with small halo exchanges and little noise are minimal.
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Fig. 5. Finepoints impact on MiniFE performance

SimpleMOC, a reactor physics proxy application from MIT and Argonne
National Laboratory, is part of the DOE’s ECP application set. We chose this
code because it simulates a real problem (albeit not easily adaptable to other
problems, which is why it is a proxy application). Also, we can convert its exist-
ing communication pattern to partitioned communication without the need to
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re-factor its data packing routines, making it possible to ensure continued pro-
gram validity when modified by non–reactor physics experts. This also means
that the volume of code changes for such applications are less than 100 lines
of code. The changes that need to be made to adopt finepoints should also be
easy to implement for application developers who are domain area specialists.
We expect that all codes that utilize halo-type message exchanges can benefit
from our approach.

SimpleMOC demonstrates the method-of-characteristics technique to solve
partial differential equations with a specific application to 3D neutron transport
in a light-water nuclear reactor at full scale. SimpleMOC requires multiples of
four for MPI process count and communicates only in groups of four; therefore,
we have used four KNL nodes for our tests allowing us to use 1024 cores total,
with 256 threads per node. Using a larger number of nodes will not provide
more insight. Due to the communication pattern used by the code scaling up the
number of nodes will simply duplicate the communication pattern. Therefore out
results demonstrate the improvement in a given “cell” of the problem breakdown
that will be applicable to much larger problem sizes.

For experimental purposes, we have added barriers to the communication
portion of the code and included code that allows artificial injection of noise in
proportion to the compute loop time. This modification is useful, as we have
observed 2%–5% noise impacts in regular runs of the SimpleMOC communi-
cation section. By using barriers and artificial injection, we can tightly control
the occurrence of this noise in the communication region, making experimen-
tation and understanding easier. We have also run tests without noise controls
to demonstrate production performance expectations. In order to let communi-
cation begin as soon as possible, we have eliminated the synchronization bar-
rier entirely, allowing the first thread to complete to begin communication (and
report the solver completion time). This is the best case for computation as
the time reported for our unconstrained finepoints application is the time the
first thread gets to the communication point. However, this makes the commu-
nication time longer as the communication cannot complete until all compute
threads have completed, the performance variation is observed in the communi-
cation time and is similar to our large variance case, where overlap occurs, but
its benefits are degraded due to the time spent waiting for laggard threads in
which there is no communication to perform. The net effect of allowing commu-
nication to begin as soon as possible is that the performance variation between
threads is observed in the communication phase. Overall this is similar to the
time required when 2%–3% variation is injected in the communication phase, but
the speedups in overall time shows up in the solve completion due to our eager
recording of the solve time and our early start time for communication. All data
for SimpleMOC is an average of 10 runs, and we use our aggregation-optimized
MPI library with Open MPI 3.0. SimpleMOC was configured according to the
recommended small problem size and then scaled in terms of azimuth values (32)
and height (1200) to expand the problem size to the MCDRAM capacity on the
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KNL. The KNLs were run in quad mode with 100% of MCDRAM operating in
cache mode.

The results of this testing are shown in Fig. 6. We can observe that fine-
points provides a significant improvement in application performance in both
communication time and application total runtime compared to the single-send
model optimized version of SimpleMOC. SimpleMOC supports varying numbers
of threads in its main compute loop, and we present results using a sweep from
64 threads to 256 threads on each of the 4 KNL nodes.

For the noise controlled runs, communication time improvement sees a low
point of 18.5% at 256 compute threads and 10% noise, and it peaks at 26.1% at
64 compute threads and 2% noise. Application runtime improvement ranges from
2.6% for 64 compute threads and 0% noise to 4.8% with 128 compute threads
and 2% noise. Overall, both runtime and communication time improvements are
relatively similar over the ranges of artificial noise injection because of the nature
of the communication that occurs: the communication is small enough in size
(approx. 130 MiB total) that even small noise percentages allow good early-bird
communication.
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Fig. 6. Finepoints impact on SimpleMOC performance versus the single-send model

5 Related Work

There have been past attempts to integrate threading within MPI, such as
FG-MPI [13]. FG-MPI promoted threads to being the equivalent of MPI pro-
cesses, which while it allowed many concurrent threads, creates a large amount
of state for each thread/process. Other efforts have included work on provid-
ing benchmarks for testing and profiling MPI RMA multithreaded behavior [8].
The general concept of composing RDMA messages into a large transaction has
been explored for application in unreliable datagram networks at the hardware
level [9,17]. Similar benchmarks have also been developed for other one-sided
communication APIs like OpenSHMEM [19]. Lastly, commercial MPI’s such as
MPI/Pro, which were designed for internal concurrency and the option of block-
ing completion notification (to avoid polling), are no longer widely available [4].
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Message aggregation is a well known method for networks, having been
explored for one-sided communication methods [12], these methods are also
common with TCP/Ethernet networking.

The MPI forum had a proposal before it to enhance support for threads
through endpoints [5], in which each thread can be assigned a unique rank in
an endpoint communicator. However, endpoints never attempted to address the
underlying communication model, only add the ability to address messages to
specific threads. This work differs from previous efforts by the requirements it
places on applications and the corresponding decrease both in resources needed
by MPI and in synchronization overhead achieved.

6 Conclusions and Future Work

In this work, we introduced finepoints, a partitioned buffer communication two-
sided approach for MPI. Partitioned sends allow data to be transmitted as com-
pleted by the application, or else be aggregated by MPI. We discussed the exist-
ing concurrency models in MPI and illustrated how desirable features of each
model can be combined, resulting in our design of finepoints. Providing thread-
ing support with partitioned operations allows for ultra-low overhead thread
safety that beats a current highly optimized threading-optimized MPI imple-
mentation and fits the existing application code methodologies. A prototype
implementation that incorporates early-bird communication provides up to 4.8%
improvement in runtime and 26.1% improvement in communications for a reac-
tor physics neutron transport code. Furthermore, this performance improvement
did not require major application reformulation, unlike MPI 1-sided communi-
cation (RMA).

Partitioned send is only a part of the overall finepoints concept. It is possible
to extend finepoints to receive-partitioning. Receive-side partitioning solves a
different problem than send-side partitioning; that is, it is an independent con-
cept. The flexibility of receive-side partitioning must be juxtaposed against the
increased cost of notification (with reduction of maximum message rate), making
it a subject for future study.
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