
Local Reasoning for Parameterized First
Order Protocols

Rylo Ashmore(B), Arie Gurfinkel(B), and Richard Trefler(B)

University of Waterloo, Waterloo, Canada
{rjashmor,arie.gurfinkel,trefler}@uwaterloo.ca

Abstract. First Order Logic (FOL) is a powerful reasoning tool for
program verification. Recent work on Ivy shows that FOL is well suited
for verification of parameterized distributed systems. However, specify-
ing many natural objects, such as a ring topology, in FOL is unexpect-
edly inconvenient. We present a framework based on FOL for specifying
distributed multi-process protocols in a process-local manner together
with an implicit network topology. In the specification framework, we
provide an auto-active analysis technique to reason about the protocols
locally, in a process-modular way. Our goal is to mirror the way design-
ers often describe and reason about protocols. By hiding the topology
behind the FOL structure, we simplify the modelling, but complicate the
reasoning. To deal with that, we use an oracle for the topology to develop
a sound and relatively complete proof rule that reduces reasoning about
the implicit topology back to pure FOL. This completely avoids the need
to axiomatize the topology. Using the rule, we establish a property that
reduces verification to a fixed number of processes bounded by the size
of local neighbourhoods. We show how to use the framework on two
examples, including leader election on a ring.

1 Introduction

Auto-active [7] and automated verification engines are now commonly used to
analyze the behavior of safety- and system-critical multi-process distributed sys-
tems. Applying the analysis techniques early in the design cycle has the added
advantage that any errors or bugs found are less costly to fix than if one waits
until the system is deployed. Therefore, it is typical to seek a proof of safety for
parametric designs, where the number of participating program components is
not yet determined, but the inter-process communication fits a given pattern,
as is common in routing or communication protocols, and other distributed sys-
tems. Recently, Ivy [16] has been introduced as a novel auto-active verification
technique (in the style of Dafny [7]) for reasoning about parameterized systems.
Ivy models protocols in First Order Logic (FOL). The verification conditions
are compiled (with user help) to a decidable fragment of FOL, called Effectively
Propositional Reasoning (EPR) [17]. Ivy is automatic in the sense that the verifi-
cation engineer only provides an inductive invariant. Furthermore, unlike Dafny,

c© Springer Nature Switzerland AG 2019
J. M. Badger and K. Y. Rozier (Eds.): NFM 2019, LNCS 11460, pp. 36–53, 2019.
https://doi.org/10.1007/978-3-030-20652-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20652-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-20652-9_3

Local Reasoning for Parameterized First Order Protocols 37

∀x, y, z · btw(x, y, z) ⇒ btw(y, z, x)

∀w, x, y, z · btw(w, x, y) ∧ btw(w, y, z) ⇒ btw(w, x, z)

∀w, x, y · btw(w, x, y) ⇒ ¬btw(w, y, x)

∀w, x, y · distinct(w, x, y) ⇒ (btw(w, x, y) ∨ btw(w, y, x))

∀a, b · (next(a, b) ⇐⇒ ∀x · x �= a ∧ x �= b ⇒ btw(a, b, x))

Fig. 1. A description of a unidirectional ring in FOL as presented by Ivy [16].

it guarantees that the verification is never stuck inside the decision procedure
(verification conditions are decidable).

In representing a protocol in Ivy, an engineer must formally specify the entire
protocol, including the topology. For instance, in verifying the leader election on
a ring, Ivy requires an explicit axiomatization of the ring topology, as shown in
Fig. 1. The predicate btw(x, y, z) means that a process y is between processes x
and z in the ring; similarly, next(a, b) means that b is an immediate neighbour
of a on the ring. All (finite) rings satisfy the axioms in Fig. 1. The converse is
not true in general. For instance, take the rationals Q and let btw(x, y, z) be
defined as x < y < z ∨ y < z < x ∨ z < x < y. All axioms of btw are
satisfied, but the only consistent interpretation of next is an empty set. This
satisfies all the axioms, but does not define a ring. For the axioms in Fig. 1, all
finite models of btw and next describe rings. This is not an issue for Ivy, since
infinite models do not need to be considered for EPR. Such reasoning is non-
trivial and is a burden on the verification engineer. As another example, we were
not able to come up with an axiomatization of rings of alternating red and black
nodes (shown in Fig. 2a) within EPR. In general, a complete axiomatization of
the topology might be hard to construct.

In this paper, we propose to address this problem by specifying the topology
independently of process behaviour. We present a framework which separates
the two and provides a clean way to express the topology. We then specify our
transitions locally, as this is a natural and common way to define protocols.
Once these preliminaries are done, we provide a process-local proof rule to ver-
ify properties of the system. To generate the proof rule, we offload topological
knowledge to an oracle that can answer questions about the topology. Finally,
we prove various properties of the proof rule.

In summary, the paper makes the following contributions. First, in Sect. 3, we
show how to model protocols locally in FOL. This is an alternative to the global
modelling used in Ivy. Second, in Sect. 4, we show a proof rule with verification
conditions (VC) in FOL, which are often in EPR. When the VC is in EPR,
this gives an engineer a mechanical check of inductiveness. This allows reasoning
about topology without axiomatizing it. Third, in Sect. 5, we show that our proof
rule (a) satisfies a small model property, and (b) is relatively complete. The first
guarantees the verification can be done on small process domains; the second
ensures that our proof rule is relatively expressive.

38 R. Ashmore et al.

We illustrate our approach on two examples. First, as a running example,
motivated by [13], is a protocol on rings of alternating red and black nodes.
These rings have only rotational symmetry, however, they have substantial local
symmetry [8,12,13] consisting of two equivalence classes, one of red nodes, and
one of black nodes. Second, in Sect. 6, we consider a modified version of the
leader election protocol from Ivy [16]. This is of particular interest, since the
local symmetry of [8,12,13] has not been applied to leader election. We thus
extend [8,12,13] by both allowing more symmetries and infinite-state systems.

2 Preliminaries

FOL Syntax and Semantics. We assume some familiarity with the standard
concepts of many sorted First Order Logic (FOL). A signature Σ consists of
sorted predicates, functions, and constants. Terms are variables, constants, or
(recursively) k-ary functions applied to k other terms of the correct sort. For
every k-ary predicate P and k terms t1, . . . , tk of the appropriate sort for P ,
the formula P (t1, . . . , tk) is a well-formed formula (wff). Wffs are then boolean
combinations of formulae and universally or existentially quantified formulae.
Namely, if ψ and ϕ are wffs, then so are (ψ ∧ ϕ), (ψ ∨ ϕ) ,(¬ψ), (ψ ⇒ ϕ),
(ψ ⇐⇒ ϕ), (∀x · ψ), and (∃x · ψ). A variable x in a formula ψ is bound if it
appears under the scope of a quantifier. A variable not bound is free. A wff with
no free variables is called a sentence. For convenience, we often drop unnecessary
parenthesis, and use � to denote true and ⊥ to denote false.

An FOL interpretation I over a domain D assigns every k-ary predicate P
a sort-appropriate semantic interpretation I(P) : Dk → {T, F}; to every k-
ary function f a sort-appropriate interpretation I(f) : Dk → D, and to every
constant c an element I(c) ∈ D. Given an interpretation I and a sentence ψ,
then either ψ is true in I (denoted, I |= ψ), or ψ is false in I (denoted I �|= ψ).
The definition of the models relation is defined on the structure of the formula
as usual, for example, I |= (ϕ ∧ ψ) iff I |= ϕ and I |= ψ. We write |= ϕ if for
every interpretation I, I |= ϕ.

We write I(Σ′) to denote a restriction of an interpretation I to a signature
Σ′ ⊆ Σ. Given disjoint signatures Σ, Σ′ and corresponding interpretations I, I ′

over a fixed domain D, we define I ⊕ I ′ to be an interpretation of Σ ∪ Σ′ over
domain D defined such that (I ⊕ I ′)(t) = I(t) if t ∈ Σ, and (I ⊕ I ′)(t) = I ′(t)
if t ∈ Σ′. Given interpretation I and sub-domain D′ ⊆ D where D′ contains all
constants, we let I(D′) be the interpretation restricted to domain D′.

FOL Modulo Structures. We use an extension of FOL to describe structures,
namely graphs. In this case, the signature Σ is extended with some pre-defined
functions and predicates, and the interpretations are restricted to particular
intended interpretations of these additions to the signature. We identify a struc-
ture class C with its signature ΣC and an intended interpretation. We write
FOLC for First Order Logic over the structure class C. Common examples are
FOL over strings, FOL over trees, and other finite structures.

Local Reasoning for Parameterized First Order Protocols 39

A structure S = (D, I) is an intended interpretation I for structural predi-
cates/functions ΣC over an intended domain D. A set of structures is denoted
C. The syntax of FOLC is given by the syntax for FOL with signature Σ � ΣC

(where Σ is an arbitrary disjoint signature). For semantics, any FOL interpre-
tation I of signature Σ leads to an FOLC interpretation I ⊕ IC of the signature
Σ � ΣC . We write |=C ϕ iff every FOLC interpretation I satisfies I |= ϕ. We
introduce a process sort Proc and require the intended domain D to be exactly
the set of Proc-sorted elements, so that we put our intended structure on the
processes.

First Order Transition Systems. We use First Order Transitions Systems from
Ivy [15,16]. While the original definition was restricted to the EPR fragment of
FOL, we do not require this. A transition system is a tuple Tr = (S, S0, R), where
S is a set of states, S0 ⊆ S is a set of initial states, and R ⊆ S ×S is a transition
relation. A trace π is a (finite or infinite) sequence of states π = s0 · · · si · · · such
that s0 ∈ S0 and for every 0 ≤ i < |π|, (si, si+1) ∈ R, where |π| denotes the
length of π, or ∞ if π is infinite. A transition system may be augmented with
a set B ⊆ S of “bad” states. The system is safe iff all traces contain no bad
states. A set of states I is inductive iff S0 ⊆ I and if s ∈ I and (s, s′) ∈ R, then
s′ ∈ I. Showing the existence of an inductive set I that is disjoint from bad set
B suffices to show a transition system is safe.

A First-Order Transition System Specification (FOTSS) is a tuple (Σ,ϕ0, τ)
where Σ is an FOL signature, ϕ0 is a sentence over Σ and τ is a sentence over
Σ � Σ′, where � denotes disjoint union and Σ′ = {t′ | t ∈ Σ}. The semantics
of a FOTSS are given by First Order Transition Systems (FOTS). Let D be
a fixed domain. A FOTSS (Σ,ϕ0, τ) defines a FOTS over D as follows: S =
{I | I is an FOL interpretation over D}, S0 = {I ∈ S | I |= ϕ0}, and R =
{(I1, I2) ∈ S × S | I1 ⊕ I ′

2 |= τ}, where I ′ interprets Σ′. We may augment a
FOTSS with a FOL sentence Bad , giving bad states in the FOTS by I ∈ B iff
I � Bad . A FOTSS is safe if all of its corresponding FOTS Tr are safe, and is
unsafe otherwise. That is, a FOTSS is unsafe if there exists at least one FOTS
corresponding to it that has at least one execution that reaches a bad state.
A common way to show a FOTSS is safe is to give a formula Inv such that
|= ϕ0 ⇒ Inv and |= Inv ∧ τ ⇒ Inv ′. Then for any FOTS over domain D, the set
I ⊆ S given by I = {I ∈ S | I |= Inv} is an inductive set, and |= Inv ⇒ ¬Bad
then suffices to show that the state sets I,B in the FOTS are disjoint. Finding
an invariant Inv satisfying the above proves the system safe.

Example 1. Consider the following FOTSS:

Σ � {Even,+, 1, var} ϕ0 � Even(var)

τ � (var′ = (var + 1) + 1) ∧ Unch(Even,+, 1) Bad � ¬Even(var)

where Unch(Even,+, 1) means that Even, +, and 1 have identical interpreta-
tions in the pre- and post-states of τ .

Our intention is to model a program that starts with an even number in a
variable var and increments var by 2 at every transition. It is an error if var ever

40 R. Ashmore et al.

becomes odd. A natural invariant to conjecture is Inv � Even(var). However,
since the signature is uninterpreted, the FOTSS does not model our intention.

For example, let D = {0, 1, 2}, I0(Even) = {1, 2}, I0(1) = 1, I0(+)(a, b) =
a+b mod 3, and I0(var) = 1. Thus, I0 |= ϕ0. Let I1 be the same as I0, except
I1(var) = 0. Then, I0 ⊕ I ′

1 |= τ and I1 |= Bad . Thus, this FOTSS is unsafe.

One way to explicate our intention in Example 1 is to axiomatize the uninter-
preted functions and relations in FOL as part of ϕ0 and τ . Another alternative
is to restrict their interpretation to a particular structure. This is the approach
we take in this paper. We define a First-Order (relative to C) Transition System
Specification (FOCTSS).

We need to be able to talk about the structural objects in ΣC , and so we
require that every FOCTSS (Σ,ϕ0, τ) be an FOTSS with ΣC ⊆ Σ. Once we
have these structural objects, any structure (D, IC) ∈ C gives a FOCTS with
states I where I(ΣC) = IC , initial states I where I |= ϕ0, transitions (I1, I2)
where I1 ⊕ I ′

2 |= τ , and bad states I for which I |= Bad .

3 First-Order Protocols

We introduce the notion of a First-Order Protocol (FOP) to simplify and restrict
specifications in a FOTS. We choose restrictions to make our protocols asyn-
chronous compositions of processes over static network topologies. Each pro-
cess description is relative to its process neighbourhood. For example, a process
operating on a ring has access to its immediate left and right neighbours, and
transitions are restricted to these processes. This simplifies the modelling.

We begin with formalizing the concept of a network topology. As a running
example, consider a Red-Black-Ring (RBR) topology, whose instance with 4
processes is shown in Fig. 2a. Processes are connected in a ring of alternating
Red and Black processes. Each process is connected to two neighbours using two
links, labelled left and right , respectively. From the example it is clear how to
extend this topology to rings of arbitrary (even) size.

To formalize this, we assume that there is a unique sort Proc for processes.
Define ΣC = ΣC

E � ΣC
T to be a topological signature, where ΣC

E is a set of unary
Proc-sorted functions and ΣC

T is a set of distinct k-ary Proc-sorted predicates.
Functions in ΣC

E correspond to communication edges, such as left and right in
our example. Predicates in ΣC

T correspond to classes of processes, such as Red
and Black in our example. For simplicity, we assume that all classes have the
same arity k. We often omit k from the signature when it is contextually clear.
We are now ready to define the concept of a network topology:

Definition 1. A network topology C over a topological signature ΣC is a col-
lection of directed graphs G = (V,E) augmented with an edge labelling dir :
E → ΣC

E and k-node labelling kind : V k → ΣC
T . Given a node p in a graph

G = (V,E) from a network topology C, the neighbourhood of p is defined as
nbd(p) = {p} ∪ {q | (p, q) ∈ E}, and a neighbourhood of a tuple p = (p1, . . . , pk)
is defined as nbd(p) =

⋃k
i=1 nbd(pi). A network topology is deterministic if for

Local Reasoning for Parameterized First Order Protocols 41

every distinct pair q, r ∈ nbd(p) \ {p}, dir(p, q) �= dir(p, r). That is, each neigh-
bour of p corresponds to a distinct name in ΣE.

Given a deterministic network topology ΣC
T ∪ ΣC

E , the intended interpretation
of a predicate P ∈ ΣC

T is the set of all nodes in the network topology labelled by
P , and the intended interpretation of a function f ∈ ΣC

E is such that f(p) = q if
an edge (p, q) is labelled by f and f(p) = p, otherwise.

Each graph G in a network topology C provides a possible intended interpre-
tation for the sort of processes Proc, and the edge and node labelling provide
the intended interpretation for predicates and functions in ΣC .

p2
0 p2

1

p2
2p2

3

Black
Red

(a) Red-Black-Ring of 4 process. Dashed
arrows are right , and solid are left .

Init : var : =null

Tr : black ⇒ right .var : = r

red ⇒ right .var : = b

Bad : red ∧ var = b

(b) A simple protocol over Red-Black-
Ring topology.

Fig. 2. An example of a topology and a protocol. (Color figure online)

Example 2. For our running example, consider the protocol informally shown in
Fig. 2b described by a set of guarded commands. The protocol is intended to
be executed on the RBR topology shown in Fig. 2a. Initially, all processes start
with their state variable var set to a special constant null. Then, at each step,
a non-deterministically chosen process, sends a color to its right. Every black
process sends a red color r, and every red process sends a black color b. It is bad
if a Red process ever gets a black color.

To formalize the topology, for each n > 1, let Gn = (Vn, En), where Vn =
{pn

i | 0 ≤ i < 2n}, and En = {(pn
i , pn

j) | |i − j| mod 2n = 1}. The edge labelling
is given by dir(pn

i , pn
j) = right if j = (i+1) mod n and left if j = (i−1) mod n.

Processes have colour kind(pn
i) = Red if i is even, and Black if i is odd. Finally,

we define RBR = {Gn | n ≥ 2} as the class of Red-Black Rings (RBR). ��

Note that any set of graphs G with an upper bound on the out-degree of any
vertex can be given a finite labelling according to the above definition.

First-Order Protocols. Once we have specified the topology, we want to establish
how processes transition. We define the syntax and semantics of a protocol.

A protocol signature Σ is a disjoint union of a topological signature ΣC , a
state signature ΣS , and a background signature ΣB . Recall that all functions
and relations in ΣC are of sort Proc. All elements of ΣS have arity of at least 1
with the first and only the first argument of sort Proc. Elements of ΣB do not

42 R. Ashmore et al.

allow arguments of sort Proc at all. Intuitively, elements of ΣC describe how pro-
cesses are connected, elements of ΣS describe the current state of some process,
and elements of ΣB provide background theories, such as laws of arithmetic or
uninterpreted functions.

For an interpretation I, and a set of processes P ⊆ I(Proc), we write
I(ΣS)(P) for the interpretation I(ΣS) restricted to processes in P . Intuitively,
we look only at the states of P and ignore the states of all other processes.

Definition 2. A First-Order Protocol (FO-protocol) is a tuple P = (Σ, Init(p),
Mod(p),TrLoc(p), C), where Σ is a protocol signature; Init(p) is a formula
with k free variables p of sort Proc; Mod(p) is a set of terms {t(p) | t ∈
dir(E)} ∪ {p}; TrLoc(p) is a formula over the signature Σ ∪ Σ′ with free
process variable p, and C is a network topology. Furthermore, Init(p) is of the
form

∧
P∈ΣC

T
(P (p) ⇒ InitP (p)), and each InitP is a formula over Σ \ ΣC (an

initial state described without reference to topology for each relevant topological
class); and terms of sort Proc occurring in TrLoc(p) are a subset of Mod(p).

Note that the semantic local neighbourhood nbd(p) and the set of syntactic
terms in Mod(p) have been connected. Namely, for every edge (p, q) ∈ E, there
is a term t(p) ∈ Mod(p) to refer to q, and for every term t(p) ∈ Mod(p), we will
refer to some process in the neighbourhood of p.

Const = {null/0, r/0, b/0} Func = {left/1, right/1, var/1}
Pred = {Red/1, Black/1,=/2} Σ = (Const,Func,Pred)

Init(p) = (Red(p) ⇒ var(p) = null) ∧ (Black(p) ⇒ var(p) = null)

Mod(p) = {p, right(p), left(p)}
tr(p) = var′(right(p)) = b ∧ var′(p) = var(p) ∧ var′(left(p)) = var(left(p))

tb(p) = var′(right(p)) = r ∧ var′(p) = var(p) ∧ var′(left(p)) = var(left(p))

TrLoc(p) = (Red(p) ⇒ tr(p)) ∧ (Black(p) ⇒ tb(p))

Fig. 3. A FO-protocol description of the system from Fig. 2.

ϕ0 � ∀p · Init(p) τ � ∃p · TrLoc(p) ∧ Frame(p)

Frame(p) � UnMod ∧ (∀y · y �∈ Mod(p) ⇒ Unch(y)))

Unch(y) �

⎛
⎝ ∧

P∈PredS

∀v · P (y,v) ⇐⇒ P ′(y,v)

⎞
⎠ ∧

⎛
⎝ ∧

f∈FuncS

∀v · f(y,v) = f ′(y,v)

⎞
⎠

UnMod �

⎛
⎝ ∧

P∈PredB

∀v · P (v) ⇐⇒ P ′(v)

⎞
⎠ ∧

⎛
⎝ ∧

f∈FuncB

∀v · f(v) = f ′(v)

⎞
⎠

Fig. 4. An FOTS of the protocol in Fig. 3.

Local Reasoning for Parameterized First Order Protocols 43

A formal description of our running example is given in Fig. 3 as a FO-
protocol. We define the signature including ΣC = {left , right ,Red ,Black}, the
initial states Init(p) in the restricted form, and modification set Mod(p), where
we allow processes to only write to their local neighbourhood. Next we spec-
ify two kinds of transitions, a red tr and a black tb transition. Each writes to
their right neighbour the colour they expect that process to be. Each process
p does not change the var states of p, left(p) ∈ Mod(p). Finally, we specify our
local transitions TrLoc(p) by allowing each of the sub-transitions. Note that all
process-sorted terms in TrLoc(p) are in Mod(p) = {left(p), p, right(p)}, and we
are allowed to call on topological predicates in TrLoc, finishing our specification.

The semantics of a protocol P are given be a FOCTSS as shown in Fig. 4.
The protocol signature Σ is the same in the FOCTSS as in the FOP. Initially,
ϕ0 requires that all k-tuples of a given topology satisfy a topology-specific ini-
tial state. Second, to take a transition τ , some process takes a local transition
TrLoc(p) modifying states of processes that can be described using the terms in
Mod(p). Frame(p), Unch(y) guarantee that the transition does not affect local
state of processes that are outside of Mod(p). Finally, UnMod makes all functions
and predicates in the background signature retain their interpretation during the
transition. Overall, this describes a general multiprocess asynchronous protocol.

This definition of a FO-protocol places some added structure on the notion
of FOTSS. It restricts how transition systems can be specified, which might
seem like a drawback. On the contrary, the added structure provides two ben-
efits. First, it removes the need for axiomatizing the network topology, since
the topology is given semantically by C. Second, the system guarantees that we
model asynchronous composition of processes with local transitions – a common
framework for specifying and reasoning about protocols.

To show safety of such a system, we will be concerned with invariants which
only discuss a few processes, say Inv(p) where p = p1, . . . , pk. Then our FO-
invariants will be of the form ∀p · Inv(p), and substituting ϕ0 into our back-
ground, we find a natural check for when a given formula is inductive:

InvOk(Inv) � ((∀p·Init(p)) ⇒ (∀p·Inv(p)))∧((∀p·Inv(p))∧τ ⇒ (∀p·Inv ′(p)))

Indeed, by unpacking definitions, one sees that |=C InvOk means that every state
on any trace of a FOCTS satisfies ∀p · Inv(p), and thus it suffices to check that
|=C ∀p · Inv(p) ⇒ ¬Bad to prove safety. We, however, will focus on the task of
verifying a candidate formula as inductive or not.

To decide if a candidate is inductive or not requires reasoning in FOLC . How-
ever, reasoning about FOL extended with an arbitrary topology is difficult (or
undecidable in general). We would like to reduce the verification problem to pure
FOL. One solution is to axiomatize the topology in FOL – this is the approach
taken by Ivy [16]. Another approach is to use properties of the topology to reduce
reasoning about FO-protocols to FOL. This is similar to the use of topology to
reduce reasoning about parameterized finite-state systems to reasoning about
finite combinations of finite-state systems in [12]. In the next section, we show
how this approach can be extended to FO-protocols.

44 R. Ashmore et al.

4 Verifying FO-Protocols Using First Order Logic

In this section, we present a technique for reducing verification of FO-protocols
over a given topology C to a decision problem in pure FOL. We assume
that we are given a (modular) inductive invariant ∀q · Inv(q) of the form(
∀q ·

∧
Top∈ΣC

T
Top(q) ⇒ InvTop(q)

)
. That is, Inv has a local inductive invari-

ant InvTop(q) for each topological class Top.
Given a First-Order Protocol and candidate invariant, we want to know if

|=C InvOk . But deciding this is hard, and so we show that deciding validity of
InvOk can be done in pure FOL using modular verification conditions in the style
of Owicki-Gries [14] and Paramaterized Compositional Model Checking [12].

The input to our procedure is a formula InvTop over signature ΣB � ΣS for
each topological class Top ∈ ΣC

T . The VC is a conjunction of sentences ensuring
that for each tuple of processes q in a topological class Top, InvTop(q) is true
initially, is stable under a transition of one process in q, and is stable under
interference by any other process p whose execution might affect some qi ∈ q. If
the VC is FOL-valid, an inductive invariant has been found. If not, there will be
a local violation to inductiveness, which may correspond to a global violation.

Formally, VC (Inv) is a conjunction of statements of the following two forms:

∀q · (CrossInitTop(q) ⇒ InvTop(q)) (1)
∀p, q · ((CrossInvTop(Mod(p), q) ∧ τ) ⇒ Inv ′

Top(q)) (2)

Statements of form (1) require that every local neighbourhood of q that satisfies
all appropriate initial states also satisfies q’s invariant. Statements of form (2)
capture both transitions where p = qi for some i, or process p acts and modifies
qi ∈ nbd(p), since p is quantified universally. All that remains is to formally con-
struct the statements CrossInit ,CrossInv . In order to do so, we construct a local
characteristic formula χ(A, q) of a process q and neighbourhood A. Intuitively,
we aim for χ(A, q) to encode the available local neighbourhoods of processes in
A and q in C.

Let χTop(A, q) be the strongest formula that satisfies |=C ∀q · Top(q) ⇒
χTop(A, q), subject to the following syntactic restrictions. A formula is a candi-
date for χTop(A, q) when it is (1) over signature ΣC

T ∪ ΣC
E ∪ {=}, (2) contains

only terms A ∪ {qi | qi ∈ q}, and (3) is in CNF and all literals from ΣC
T

appear in positive form. The syntactic restrictions are to capture when elements
of A, q satisfy various topological notions given by signature ΣC

E ∪ {=}. We
also never force some processes to be outside of some topological class. Intu-
itively, χ is a formula that captures all topological knowledge derivable from the
topology given that we know that Top(q) holds. For instance, in RBR, we have
χRed(∅, q) = Red(q), while expanding this for A = {left(p), p, right(p)} results in
the following formula. We drop some trivial statements. For instance, left , right
are inverse functions.

Local Reasoning for Parameterized First Order Protocols 45

χRed({left(p), p, right(p)}, q) = Red(q) ∧ distinct(left(p), p, right(p))∧
((Red(left(p)) ∧ Black(p) ∧ Red(right(p)) ∧ p �= q)∨
(Black(left(p)) ∧ Red(p) ∧ Black(right(p)) ∧ distinct(left(p), right(p), q)))

These characteristics are illustrated in Fig. 5. When we just look at χRed(∅, q),
we find q is red. However, if we expand our local reasoning to the characteristic
χRed(Mod(p), q), we find that there are two options given by RBR. One option
is p is red, and q = p is optional (dotted lines), while q �= left(p), right(p).
Alternatively, p is black, and q �= p, but q could be left(p), right(p), or neither.

Once we have χTop(A, q), we can define our statements CrossInitTop ,
CrossInvTop . First, CrossInitTop(q) is obtained from χTop(∅, q) by replacing
every instance of Topi(q) with InitTopi

(q). We build our interference constraints
in a similar way. We construct CrossInvTop(q) by modifying χTop(Mod(p), q).
Namely, we obtain CrossInvTop(Mod(p), q) from χTop(Mod(p), q) by replacing
every instance of Topi(q) with Topi(q) ∧ InvTopi

(q).

Example 3. The VC generated by the RBR topology may be partitioned into
VCRed and VCBlack , each consisting of the statements whose conclusions are
InvRed , Inv ′

Red and Invblack , Inv ′
black , respectively. VCRed is shown in Fig. 6. The

conditions for VCBlack are symmetric. One can check that

Inv red(p) � var(p) �= b Invblack (p) � �

is an inductive invariant for the protocol in Fig. 2. ��

pq l(p)

r(p) q

p l(p)

r(p) q

Black
Red

Fig. 5. Characteristics χRed(∅, q) and χRed(Mod(p), q) for the RBR topology. (Color
figure online)

∀p · Initred(p) ⇒ Invred(p) (3)
∀p, q · (Red(q) ∧ Inv red(q) ∧ Red(left(p)) ∧ Inv red(left(p))∧
Black(p) ∧ Invblack (p) ∧ Red(right(p)) ∧ Inv red(right(p))∧

p �= q ∧ distinct(left(p), p, right(p))) ⇒ Inv ′
red(q) (4)

∀p, q · (Red(q) ∧ Inv red(q) ∧ Black(left(p)) ∧ Invblack (left(p))∧
Red(p) ∧ Inv red(p) ∧ Black(right(p)) ∧ Invblack (right(p))∧

distinct(left(p), right(p), q) ∧ distinct(left(p), p, right(p))) ⇒ Inv ′
red(q) (5)

V CP,1(Inv red , Invblack) � (3) ∧ (4) ∧ (5) (6)

Fig. 6. The verification conditions VCRed for the red process invariant.

46 R. Ashmore et al.

In practice, the role of the χ-computing oracle can be filled by a verification
engineer. A description of local neighbourhoods starts by allowing all possible
neighbourhoods. Then, a verifier may dismiss local configurations that cannot
occur on the topology as they occur.

5 Soundness and Completeness

In this section, we present soundness and relative completeness of our verification
procedure from Sect. 4.

Soundness. To show soundness, we present a model-theoretic argument to show
that whenever the verification condition from Sect. 4 is valid in FOL, then the
condition InvOk is valid in FOL extended with the given topology C.

Theorem 1. Given a FO-protocol P and a local invariant per topological class
InvTop1

(p), . . . , InvTopn
(p), if � V C(Inv), then �C InvOk(Inv).

Proof. Assume |= V C(Inv). We show that InvOk(Inv) is valid in FOLC by show-
ing that any pair of FOLC interpretations I and I ′ satisfy V C(Inv) as FOL
interpretations, and this is strong enough to guarantee I ⊕ I ′ |= InvOk(Inv).

Let I, I ′ be FOLC interpretations over some G = (V,E) ∈ C. Then I ⊕ I ′ |=
V C(Inv) because V C(Inv) is valid and I ⊕ I ′ is an FOL interpretation.

We first show that I |= (∀p · Init(p) ⇒ ∀p · Inv(p)). Suppose that
I � ∀p · Init(p). Let p be an arbitrary tuple in G. If I |= ¬Topi(p) for every
Topi ∈ ΣT , then Inv(p) follows vacuously. Otherwise, suppose I |= Topi(p).
Then by definition of χ, we obtain I |= χTopi

(∅,p) since I |= Topi(p) ⇒
χTopi

(∅,p). Since I |= ∀p · Init(p), this gives us that I |= CrossInit(p)
(for any Topj(p′) in χTopi

(∅,p), find that Init(p′), and thus Topj(p′) implies
InitTopj

(p′), giving CrossInit). Since I |= CrossInitTopi
(p) and I |= V C, we

get I |= CrossInitTopi
(p) ⇒ InvTopi

(p), finally giving us I |= InvTopi
(p), as

desired.
Second, we show that I ⊕ I ′ |= (∀p · Inv(p)) ∧ τ ⇒ (∀p · Inv(p)). Suppose

that I |= ∀p · Inv(p) and I ⊕ I ′ |= TrLoc(p) ∧ Frame(p) for some p ∈ V .
We show that I ′ |= ∀q · Inv ′(q). Let q ∈ V k be an arbitrary process tuple.
If I ′ � |= Topi(q) for all 1 ≤ i ≤ n, then I ′ |= Inv ′(q) vacuously. Suppose
I ′ |= Topi(q) for some Topi ∈ ΣT . Then I |= Topi(q) ⇒ χTopi

(Mod(p), q),
and so I |= χTopi

(Mod(p), q). Again by instantiating ∀p · Inv(p) on terms in
Mod(p), q, we may obtain that I |= CrossInv(Mod(p), q). Combined, we have
I ⊕ I ′ |= CrossInv(Mod(p), q)∧ τ . Applying V C finally gives InvTopi

(q). Thus
both conjuncts of InvOk(Inv) are satisfied, giving our result. ��

Intuitively, the correctness of Theorem 1 follows from the fact that any inter-
pretation under FOLC is also an interpretation under FOL, and all preconditions
generated for VC are true under FOLC interpretation.

Local Reasoning for Parameterized First Order Protocols 47

Small Model Property. Checking validity of universally quantified statements in
FOL is in the fragment EPR, and thus we obtain a result saying that we only
need to consider models of a given size. This means that a FOL solver needs
to only reason about finitely many elements of sort Proc. It further means that
topologies such as RBR may be difficult to compile to EPR in Ivy, but our
methodology guarantees our verifications will be in EPR.

Theorem 2. If |= V C(Inv) for all process domains of size at most |Mod(p)|+k,
then |=C InvOk(Inv).

Proof. By contrapositive, suppose ��C InvOk(Inv). Then, by Theorem 1, �|=
V C(Inv). Let I ⊕ I ′ be a falsifying interpretation. It contains an assignment
to Mod(p) and q, or to p that makes at least one statement in V C(Inv) false.
Then I ⊕ I ′(Mod(p) ∪ q) or I(p) is also a counter-model to V C(Inv), but with
at most |Mod(p)| + k elements of sort Proc.

Relative Completeness. We show that our method is relatively complete for
local invariants that satisfy the completability condition. Let ϕ(p) be a formula
of the form

∧n
i=1(Topi(p) ⇒ ϕTopi

(p)) with ϕTopi
(p) over the signature ΣS ∪

ΣB . Intuitively, ϕ(p) is completable if every interpretation I that satisfies ∀p ·
ϕ(p) and is consistent with some C-interpretation IG can be extended to a
full C-interpretation (not necessarily IG) that satisfies ∀p · ϕ(p). Formally, ϕ
is completable relative to topology C iff for every interpretation I with domain
U ⊆ V for G = (V,E) ∈ C with an intended interpretation IG such that (I �
IG)(U) |= ∀p · ϕ(p), there exists an interpretation J with domain V s.t. (J �
IG) |= ∀p · ϕ and I(U) = J (U). In addition to relative completeness, we need
a lemma for when a FOL interpretation can be lifted to a C interpretation.

Lemma 1. If FOL interpretation I of signature ΣC satisfies I |= χTop(A, q),
then there exists a C interpretation J of the same signature with J |=
χTop(A, q) and I |= ti = tj iff J |= ti = tj for terms ti, tj ∈ A ∪ q.

Proof. Let I |= χTop(A, q). Let ϕ(A, q) be the conjunction of all atomic for-
mulae over the signature {=} and statements ¬Topj(q′) that is true of ele-
ments of A, q in interpretation I. If no C interpretation J |= Top(q) ∧ ϕ(A, q),
then we can add the clause ¬ϕ(A, q) to χTop(A, q), thus strengthening it (this
is stronger since I |= Top(q), �|= ¬ϕ(A, q), and is true of every interpretation
modelling Top(q)). However, this violates the assumptions that χTop is as strong
as possible. Thus, some J |= Top(q) ∧ ϕ(A, q). Note that J already satisfies
ti = tj iff I satisfies ti = tj since every statement of =, �= is included in ϕ(A, q).
Finally, since J is a C interpretation and J |= Top(q), then J |= χTop(A, q) by
definition. ��

Theorem 3. Given an FO-protocol P , if |=C InvOk(Inv) and both Inv(p) and
Init(p) are completable relative to C, then |= V C(Inv).

Proof. By contra-positive, we show that given a completable local invariant
Inv(p), if V C(Inv) is falsifiable in FOL, then InvOk(Inv) is falsifiable in FOLC .

48 R. Ashmore et al.

Suppose V C(Inv) is not valid, and let I ⊕ I ′ by such that I ⊕ I ′ �|= V C(Inv).
We consider two cases – a violation initially or inductively.

Case 1: Initialization: For some processes p = (p1, . . . , pk) and 1 ≤ i ≤
|ΣC

T |, I |= CrossInitTopi
(p) and I �|= InvTopi

(p). Modify I(ΣT) for every q
so that Topj(q) is interpreted to be true iff InitTopj

(q) is true. Noting that
all initial conditions are outside of the signature ΣC

T , we observe that this is
done without loss of generality. Since I |= CrossInitTopi

(p), we conclude now
that I |= χTopi

(∅,p). Applying Lemma1 to I(ΣC), we get a C interpretation
J |= χTopi

(∅,pC). Since this model has the same equalities of terms pC in
J as p in I, we may copy the states I(ΣS)(pi) to J (ΣS)(pC

i). Set J (ΣB) =
I(ΣB). Since Init is completable by assumption, we complete J (ΣS ∪ ΣB)(p)
to J (ΣS ∪ ΣB), completing our construction of J interpreting ΣC ∪ ΣS ∪ ΣB .
Note that J |= ∀p · Init(p), but J |= Topi(pC) ∧ ¬InvTopi

(pC), thus showing
that InvOk(Inv) is falsifiable in FOLC .

Case 2: Inductiveness: For some p, q, and 1 ≤ i ≤ |ΣC
T |, we have

I |= CrossInvTopi
(Mod(p), q), (I ⊕ I ′) |= TrLoc(p) ∧ Frame(p), and I ′ �|=

InvTopi
(q). By construction, |= CrossInv(Mod(p), q) ⇒ χTopi

(Mod(p), q).
Applying Lemma 1 to I(ΣC) |= χTopi

(Mod(p), q), we get a C interpretation
of ΣC

T , J |= χTopi
(Mod(pC), qC). We extend this to a full model J ⊕ J ′ of

signature ΣC ∪ ΣS ∪ ΣB , and its primed copy. We set J ′(ΣC) = J (ΣC). Then,
since J and I, and J ′ and I ′ share equalities across terms in Mod(p) ∪ q and
Mod(pC) ∪ qC , we can lift states from terms t ∈ Mod(p) ∪ q by J (ΣS ∪ ΣB)(tC) �
I(ΣS ∪ ΣB)(t) and J ′(ΣS)(tC) � I ′(ΣS)(t). Since Inv is completable, we
complete this interpretation with J (ΣS ∪ ΣB) and clone the completion to
J ′(ΣS ∪ ΣB)(V \ (Mod(p) ∪ q)). Overall, this completes the interpretation
J ⊕ J ′.

Note that J |= ∀p · Inv(p) by construction. Similarly, J ⊕ J ′ |= τ since
I ⊕ I ′ |= τ(p) and Mod(p) terms are lifted directly from I and I ′ to J and J ′.
Finally, J ′ |= ¬Inv ′

Topi
(q) since J ′(ΣS) is lifted directly from I ′(ΣS ∪ ΣB),

which is the language of invariants. Thus, we have shown that InvOk(Inv) is
falsifiable in FOLC in this case as well. ��

How restrictive is the requirement of completability? Intuitively, suppose a
protocol is very restrictive about how processes interact. Then the system is likely
sufficiently intricate that trying to reason locally may be difficult independent of
our methodology. For instance, the invariant we later find for leader election is
not completable. However, if equivalence classes are small, then most reasonable
formulae satisfy the completability condition.

Theorem 4. If InvTopi
(p) is satisfiable over any domain for each 1 ≤ i ≤ n

and topological predicates are of arity k = 1, then Inv(p) is completable.

Proof. Let Inv i(p) be satisfiable for each 1 ≤ i ≤ n. Then let I(V ′) be an
interpretation of ΣB � ΣS over domain V ′ ⊆ V for G = (V,E) ∈ C. For each
p ∈ V \ V ′, suppose IG |= Topi(p) for some 1 ≤ i ≤ n. Then choose J (p) |=
InvTopi

(p) since InvTopi
(p) is satisfiable. Otherwise, if IG �|= Topi(p) for all

Local Reasoning for Parameterized First Order Protocols 49

1 ≤ i ≤ n, then J (p) is chosen arbitrarily. In either case, J |= Inv(p). Finally,
define J (p) = I(p) for p ∈ V ′. Then J completes the partial interpretation I.

Theorem 4 can be generalized to the case where the topological kinds ΣT

are non-overlapping, and individually completable, where by individually com-
pletable, we mean that if Top(p) and process states of p′ ⊂ p are given, then
there is a way to satisfy Inv(p) without changing the states of p′.

6 Example: Leader Election Protocol

In this section, we illustrate our approach by applying it to the well-known leader
election protocol [3]. This is essentially the same protocol used to illustrate Ivy
in [16]. The goal of the protocol is to choose a leader on a ring. Each process sends
messages to its neighbour on one side and receives messages from a neighbour
on the other side. Initially, all processes start with distinct identifiers, id , that
are totally ordered. Processes pass ids around the ring and declare themselves
the leader if they ever receive their own id .

We implement this behaviour by providing each process a comparison vari-
able comp. Processes then pass the maximum between id and comp to the next
process. A process whose id and comp have the same value is the leader. The
desired safety property is that there is never more than one leader in the protocol.

In [16], the protocol is modelled by a global transition system. The system
maintains a bag of messages for each process. At each step, a currently waiting
message is selected and processed according to the program of the protocol (or
a fresh message is generated). The network topology is axiomatized, as shown
in Sect. 1. Here, we present a local model of the protocol and verify it locally.

Network Topology. The leader election protocol operates on a ring of size at
least 3. For n ≥ 3, let Gn = (Vn, En), where Vn = {pn

i | 0 ≤ i < n} and
En = {(pn

i , pn
j) | 0 ≤ i < n, j = i + 1 mod n}. Let ΣE = {next} and ΣT =

{btw}, where btw is a ternary relation such that btw(pn
i , pn

j , pn
k) iff i < j < k,

j < k < i, or k < i < j. Finally, the network topology is BT W = {Gn | n ≥ 3}.
Note that while BT W can be axiomatized in FOL, we do not require such an
axiomatization. The definition is purely semantic, no theorem prover sees it.

Fig. 7. A model of the Leader Election protocol as a FO-protocol.

50 R. Ashmore et al.

Fig. 8. Local inductive invariant Invlead(x, y, z) for Leader Election from Fig. 7.

A formal specification of the leader election as an FO-protocol is shown
in Fig. 7, where LO(≤) is an axiomatization of total order from [16], and
x < y stands for x ≤ y ∧ x �= y. The model follows closely the informal
description of the protocol given above. The safety property is ¬Bad, where
Bad = btw(x, y, z) ∧ id(x) = comp(x) ∧ id(y) = comp(y). That is, a bad state is
reached when two processes that participate in the btw relation are both leaders.

A local invariant Invlead based on the invariant from [16] is shown in Fig. 8.
The invariant first says if an id passes from y to x through z, then it must witness
id(y) ≥ id(z) to do so. Second, the invariant says that if a process is a leader,
then it has a maximum id. Finally, the invariant asserts our safety property.

This invariant was found interactively with Ivy by seeking local violations
to the invariant. Our protocol’s btw is uninterpreted, while Ivy’s btw is explic-
itly axiomatized. The inductive check assumes that the processes p,next(p), q
all satisfy a finite instantiation of the ring axioms (this could be done by the
developer as needed if an axiomatization is unknown, and this is guaranteed
to terminate as there are finitely many relevant terms), and btw(q). Once the
invariants are provided, the check of inductiveness is mechanical1. Overall, this
presents a natural way to model protocols for engineers that reason locally.

An Uncompletable Invariant. The invariant for the leader election is not com-
pletable. To see this, we present a partial interpretation I over {p30, p

3
2} ⊆ V3

from G3 with no extension. We choose I(≤) to be ≤ over N, as intended. Then
we choose I(id) to map p30 �→ 1 and p32 �→ 2. We also choose I(comp) to map
p30 �→ 0 and p32 �→ 1. Since no tuple satisfies btw, this vacuously satisfies all
invariants thus far. Let J be a BT W interpretation agreeing on p30, p

3
2. Consider

id(p31). We know id(p31) �= 0, 1, 2 since we require distinct ids across the new btw
relation. But we also have id(p30) = comp(p32) and thus to satisfy Inv we must
have id(p30) ≥ id(p31). Thus we seek an n ∈ N such that 1 ≥ n, but n �= 0, 1,
which cannot exist. Thus Inv is uncompletable.

7 Related Work

Finite-state parameterized verification is undecidable [2]. We have shown how
analysis techniques for parametric distributed systems composed of components
running on locally symmetric topologies, introduced in [8–10,12,13], can be gen-
eralized and applied within a First Order Logic based theorem proving engine.
1 Ivy verifications for both examples, globally and locally, can be found at github.com/

ashmorer/fopExamples.

https://github.com/ashmorer/fopExamples
https://github.com/ashmorer/fopExamples

Local Reasoning for Parameterized First Order Protocols 51

We based our description of leader election on Ivy’s [16]. However, the analysis
carried out in Ivy [16] is global, while the analysis given in this paper is local,
where the local structures reason about triples of processes in the ring.

There has been extensive work on proving properties of parametric, dis-
tributed protocols. In particular the work in [1] offers an alternative approach to
parametric program analysis based on “views”. In that work, cut off points are
calculated during program analysis. As another example, in [8,12,13] the “cut-
offs” are based on the program topology and the local structural symmetries
amongst the nodes of the process interconnection networks.

The notion of a “cutoff” proof of safety for a parametric family of programs
was first introduced by [5]. For example, in [5], if a ring of 3 processes satisfies
a parametric property then the property must hold for all rings with at least
three nodes. The technique used here is somewhat different; rather than needing
to check a ring of 3 processes, we check all pseudo-rings of a given size.

Local symmetry reduction for multi-process networks and parametric families
of networks generalizes work on “global” symmetry reduction introduced by [6]
and [4]. Local symmetry is, in general, an abstraction technique that can offer
exponentially more reduction than global symmetry. In particular, ring struc-
tures are globally rotationally symmetric, but for isomorphic processes may be
fully-locally symmetric [12,13].

Recent work [18] has focused on modular reasoning in the proof or analy-
sis of distributed systems. In the current work, the modularity in the proof is
driven by a natural modularity in the program structures. In particular, for pro-
grams of several processes proofs are structured by modules that are local to a
neighborhood of one or more processes [8,12,13].

8 Conclusion

We have presented a framework for specifying protocols in a process-local manner
with topology factored out. We show that verification is reducible to FOL with
an oracle to answer local questions about the topology. This reduction results in a
decidable VC when the background theories are decidable. This cleanly separates
the reasoning about the topology from that of the states of the processes.

Many open questions remain. We plan to investigate our methodology
on other protocols and topologies, implement oracles for common topologies,
and explore complexity of the generated characteristic formulae. Finally, we
restricted ourselves to static topologies of bounded degree. Handling dynamic
or unbounded topologies, for example in the AODV protocol [11], is left open.

Acknowledgements. The authors’ research was supported, in part, by Individual
Discovery Grants from the Natural Sciences and Engineering Research Council of
Canada.

52 R. Ashmore et al.

References

1. Abdulla, P., Haziza, F., Hoĺık, L.: Parameterized verification through view abstrac-
tion. Int. J. Softw. Tools Technol. Transf. 18(5), 495–516 (2016)

2. Apt, K.R., Kozen, D.C.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 22(6), 307–309 (1986)

3. Chang, E., Roberts, R.: An improved algorithm for decentralized extrema-finding
in circular configurations of processes. Commun. ACM 22(5), 281–283 (1979)

4. Clarke, E.M., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal
logic model checking. Form. Methods Syst. Des. 9(1–2), 77–104 (1996)

5. Emerson, E.A., Namjoshi, K.S.: Reasoning about rings. In: Proceedings of the 22nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 1995, pp. 85–94. ACM, New York (1995)

6. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Form. Methods Syst.
Des. 9(1–2), 105–131 (1996)

7. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

8. Namjoshi, K.S., Trefler, R.J.: Local symmetry and compositional verification. In:
Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 348–362.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27940-9 23

9. Namjoshi, K.S., Trefler, R.J.: Uncovering symmetries in irregular process networks.
In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol.
7737, pp. 496–514. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-35873-9 29

10. Namjoshi, K.S., Trefler, R.J.: Analysis of dynamic process networks. In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 164–178. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46681-0 11

11. Namjoshi, K.S., Trefler, R.J.: Loop freedom in AODVv2. In: Graf, S., Viswanathan,
M. (eds.) FORTE 2015. LNCS, vol. 9039, pp. 98–112. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-19195-9 7

12. Namjoshi, K.S., Trefler, R.J.: Parameterized compositional model checking. In:
Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 589–606.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 39

13. Namjoshi, K.S., Trefler, R.J.: Symmetry reduction for the local Mu-Calculus. In:
Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 379–395.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3 22

14. Owicki, S.S., Gries, D.: Verifying properties of parallel programs: an axiomatic
approach. Commun. ACM 19(5), 279–285 (1976)

15. Padon, O., Hoenicke, J., Losa, G., Podelski, A., Sagiv, M., Shoham, S.: Reducing
liveness to safety in first-order logic. PACMPL 2(POPL), 26:1–26:33 (2018)

16. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety verifi-
cation by interactive generalization. In: Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2016,
Santa Barbara, CA, USA, 13–17 June 2016, pp. 614–630 (2016)

https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-27940-9_23
https://doi.org/10.1007/978-3-642-35873-9_29
https://doi.org/10.1007/978-3-642-35873-9_29
https://doi.org/10.1007/978-3-662-46681-0_11
https://doi.org/10.1007/978-3-319-19195-9_7
https://doi.org/10.1007/978-3-662-49674-9_39
https://doi.org/10.1007/978-3-319-89963-3_22

Local Reasoning for Parameterized First Order Protocols 53

17. Piskac, R., de Moura, L.M., Bjørner, N.: Deciding effectively propositional logic
using DPLL and substitution sets. J. Autom. Reason. 44(4), 401–424 (2010)

18. Taube, M., et al.: Modularity for decidability of deductive verification with appli-
cations to distributed systems. In: Proceedings of the 39th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI 2018, pp.
662–677. ACM, New York (2018)

	Local Reasoning for Parameterized First Order Protocols
	1 Introduction
	2 Preliminaries
	3 First-Order Protocols
	4 Verifying FO-Protocols Using First Order Logic
	5 Soundness and Completeness
	6 Example: Leader Election Protocol
	7 Related Work
	8 Conclusion
	References

