
Fly-by-Logic: A Tool for Unmanned
Aircraft System Fleet Planning Using

Temporal Logic

Yash Vardhan Pant1(B), Rhudii A. Quaye1, Houssam Abbas2, Akarsh Varre1,
and Rahul Mangharam1

1 Department of Electrical and Systems Engineering,
University of Pennsylvania, Philadelphia, PA 19104, USA
{yashpant,quayerhu,akarshv,rahulm}@seas.upenn.edu

2 Department of Electrical Engineering and Computer Science,
Oregon State University, Corvallis, OR 97330, USA

houssam.abbas@oregonstate.edu

Abstract. Safe planning for fleets of Unmaned Aircraft Systems (UAS)
performing complex missions in urban environments has typically been
a challenging problem. In the United States of America, the National
Aeronautics and Space Administration (NASA) and the Federal Aviation
Administration (FAA) have been studying the regulation of the airspace
when multiple such fleets of autonomous UAS share the same airspace,
outlined in the Concept of Operations document (ConOps). While the
focus is on the infrastructure and management of the airspace, the
Unmanned Aircraft System (UAS) Traffic Management (UTM) ConOps
also outline a potential airspace reservation based system for operation
where operators reserve a volume of the airspace for a given time inter-
val to operate in, but it makes clear that the safety (separation from
other aircraft, terrain, and other hazards) is a responsibility of the drone
fleet operators. In this work, we present a tool that allows an operator to
plan out missions for fleets of multi-rotor UAS, performing complex time-
bound missions. The tool builds upon a correct-by-construction planning
method by translating missions to Signal Temporal Logic (STL). Along
with a simple user interface, it also has fast and scalable mission planning
abilities. We demonstrate our tool for one such mission.

Keywords: UAS mission planning · Signal Temporal Logic ·
Correct-by-construction planning · Multi-rotor UAS

1 Introduction

It is inevitable that autonomous UAS will be operating in urban airspaces [1].
In the near future, operators will increasingly rely on fleets of multiple UAS to

Y. V. Pant and R. A. Quaye—Are contributed equally.

c© Springer Nature Switzerland AG 2019
J. M. Badger and K. Y. Rozier (Eds.): NFM 2019, LNCS 11460, pp. 355–362, 2019.
https://doi.org/10.1007/978-3-030-20652-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20652-9_24&domain=pdf
https://doi.org/10.1007/978-3-030-20652-9_24

356 Y. V. Pant et al.

perform a wide variety of complicated missions which could consist of a combi-
nation of: (1) spatial objectives, e.g. geofenced no fly zones, or delivery zones,
(2) temporal objectives, e.g. a time window to deliver a package, (3) reactive
objectives, e.g. action when battery is low.

In this paper, we present a tool1 that allows an operator to specify such
requirements over a fleet of UAS operating in a bounded workspace and generates
trajectories for all UAS such that they all satisfy their given mission in a safe
manner. In order to generate these flights paths, or trajectories, our tool relies on
interpreting the mission objectives as Signal Temporal Logic (STL) specifications
[2]. We then formulate the problem of mission satisfaction as that of maximizing
a notion of robustness of STL specifications [3]. Using the approach of [4], we
generate trajectories for all the UAS involved such that they satisfy the given
mission objectives.

1.1 Related Work

Existing mission planner software for autonomous drone operations like ArduPi-
lot mission planner [5] and QGroundControl [6] offer UAS enthusiasts the abil-
ity to quickly plan out autonomous UAS flights by sequencing multiple sim-
ple operations (like take-off, hover, go to a way-point, land) together. However
these planners either cannot handle missions involving multiple UAS and compli-
cated requirements like co-ordination between UAS or completing tasks within
given time intervals, or require hand-crafted sequences of maneuvers to meet
the requirements in a safe manner. We propose a tool that can inherently deal
with multi-agent missions as well as timing constraints on completion of tasks
while guaranteeing that planned flight paths are safe. As opposed to existing
mission planning software, our tool does not require the user to explicitly plan
out maneuvers for the drones to execute to follow out a mission, e.g. in the case
where two UAS have to enter the same region during the same time interval, our
method generates trajectories that ensure the two UAS do so without crashing
into each other without any user based scheduling of which drones enters first.

The tool presented here relies on interpreting a mission as a STL specification
and generating trajectories that satisfy it. While there are multiple methods
and tools that aim to solve such a problem, e.g. Mixed Integer Programming-
based [7] and based on stochastic heuristics [8], we use an underlying method [4]
that is tailored for generating trajectories for multi-rotor UAS, including those
that allow hovering, to satisfy STL specifications in continuous-time. A detailed
comparison can be found in [4,9].

1.2 Contributions

With this proposed tool we aim to bridge the gap between the ease-of-use of
the UAS mission planning software popular among amateur drone enthusiasts,

1 https://github.com/yashpant/FlyByLogic.

https://github.com/yashpant/FlyByLogic

Fly-by-Logic 357

and the capabilities of academic tools [7,8] for control/planning with STL spec-
ifications. By doing this, we generate trajectories for multi UAS fleets that can
satisfy complicated mission requirements while providing strong guarantees on
mission satisfaction as well as the ability of the multi-rotor UAS to follow out
their planned trajectories [4]. The main contributions of our tool are:

Graphical User Interface
(MATLAB)

Fly-by-Logic: Library for
maximization of smooth
robustness of STL (C++)

Mission
Parameters

(YAML)

UAS
Trajectories

(YAML)

User Inputs

CasADi

Optimization
formulation

IPOPT

Optimization
solver

ROS planning and
control stack

To UAS

The Fly-by-Logic tool

Fig. 1. The Fly-by-Logic tool-chain. Through a MATLAB-based graphical interface
(Fig. 2), the user defines the workspace and the multi UAS mission. This mission is
interpreted as an STL specification (of the form in Eq. 1), the parameters of which
are passed from the interface to the Fly-by-Logic C++ library. Through interfacing
with off-the-shelf optimization tools, trajectories that satisfy the mission are generated
for each UAS and visualized through the user interface. The way-points that gener-
ate these trajectories can also be sent to a Robot Operating Systems (ROS) imple-
mentation of trajectory following control to be deployed on board actual robots (e.g.
bit.ly/varvel8).

1. An easy to use graphical interface to specify mission requirements for multi-
rotor UAS fleets,

2. The ability to interpreting these as missions as STL specifications and auto-
matically generate an optimization to maximize a notion of robustness of this
STL specification,

358 Y. V. Pant et al.

3. By interfacing to an off-the-shelf optimization solver, generation of trajecto-
ries that satisfy the mission requirements, are optimal with respect to mini-
mizing jerk [10], and respect (potentially different) kinematic constraints for
all UAS.

4. Does not require the UAS fleet operator to know how to write specifications
in STL, but through an object-oriented C++ library allows the advanced user
to generate custom missions specifications with even more flexibility than the
graphical interface.

2 Fly-by-Logic: The Tool

2.1 Architecture and Outline

Figure 1 shows the architecture of the Fly-by-Logic tool. Through the user inter-
face in MATLAB, the user defines the missions (more details in Sect. 2.2). The
mission specific spatial and temporal parameters are then read in by the Fly-by-
Logic C++ back-end. Here, these parameters are used to generate a function for
the continuously differentially approximation of the robustness of the STL spec-
ification associated with the mission. An optimization to maximize this function
[4] value is then formulated in Casadi [11]. Solving this optimization via IPOPT
[12] results in a sequence of way-points for every UAS (uniformly apart in time).
Also taken into account in the formulation is the motion to connect these way-
points, which is via jerk-minimizing splines [10] and results in trajectories for
each UAS. Through the Fly-by-Logic library, the (original non-smooth) robust-
ness of these trajectories is evaluated for the mission STL specification and
displayed back to the user via the MATLAB interface. A positive value of this
robustness implies that the generated trajectories satisfy the mission and can be
flown out, while a negative value (or 0) implies that the trajectories do not satisfy
the mission [13] and either some additional parameters need to be tweaked (e.g.
allowable velocity and acceleration bounds for the UAS, time intervals to visit
regions, or a constant for the smooth robustness computation) or that the solver
is incapable of solving this particular mission from the given initial positions of
the UAS.

2.2 The Mission Template

Through the interface, the user starts by defining the number of way-points N
(same number for each drone), as well as the (fixed) time, T that the UAS take
to travel from one way-point to the next. These way-points are the variables
that the tool optimizes over, and the overall duration of the mission is then
H = NT seconds. Next, the user defines regions in a bounded 3-dimensional
workspace (see Fig. 2). These regions are axis-aligned hyper-rectangles and can
be either Unsafe no-fly zones (in red), or Goal regions that the UAS can fly to.
For each UAS, the user specifies their starting position in the workspace, as well
as the velocity and acceleration bounds that their respective trajectories should
respect. Finally, the user also specifies the time intervals within which the UAS
need to visit some goal sets.

Fly-by-Logic 359

Fig. 2. The user interface and the planned trajectories for a two UAS patrolling mission
(see Example 1). Real-time playback can be seen at http://bit.ly/fblguiexmpl (Color
figure online)

Through the user interface, the user-defined missions result in specifications
corresponding to the following fragment of STL:

ϕ = ∧U
u=1 ∧D

d=1(�I¬(pd ∈ Unsafeu)) ∧ ∧d�=d′(�I(||pd − pd′ ||2 ≥ dmin))∧
∧G
g=1 ∧D

d=1(♦I1
g,d

(pd ∈ Goalg) ∧ . . . ∧ ♦Ic
g,d

(pd ∈ Goalg))
(1)

Here, D, U , G are the number of UAS, Unsafe sets and Goal sets in the
mission respectively. I = [0, NT] is an interval that covers the entire mission
duration, while Iig,d ⊆ I, ∀i = 1, . . . , c is the ith interval in which UAS d must
visit Goal g. ¬ is the boolean negation operator. pd is the position of UAS d.

The symbol �Iφ corresponds to the Always operator of STL and encodes the
requirement that a boolean formula φ should be true through the time interval
I. We use this operator to enforce that the UAS never enter the Unsafe zones
or get closer than dmin meters of each other. Similarly, ♦Iφ corresponds to the
Eventually operator which encodes the requirement that φ should be true at
some point in time in the interval I. We use this to capture the requirement that
the a UAS visits a Goal region within the user defined interval I. More details
on STL and its grammar can be found in [14].

http://bit.ly/fblguiexmpl

360 Y. V. Pant et al.

Example 1. Two UAS patrolling mission. Two UAS, starting off at posi-
tions [2, 2, 0] and [−2,−2, 0], are tasked with patrolling two sets (in green), while
making sure not to enter the set in red, and also maintaining a minimum dis-
tance of 0.5 m from each other. For a mission of time 20 s, we set the number
of way-points to 20, and the time between them to be 1 s. The timing constraints
on the patrolling are as follows: UAS 1 has to visit the first set in green in an
interval of time [0, 5] seconds from the missions starting time, has to visit the
other green set in the interval [5, 10] seconds, re-visit the first set in the interval
[10, 15], and the second set again in the interval [15, 20]. UAS 2 has a similar
mission, visiting the first set in the intervals the UAS 1 has to visit the sec-
ond set and so on. Figure 2 shows the trajectories generated by our method, and
http:// bit.ly/ fblguiexmpl shows a real-time playback of the planned trajectories
visualized through the user interface.

For the mission of Example 1, the temporal logic specification is:

ϕ = ∧2
u=1 ∧2

d=1(�[0,20]¬(pd ∈ Unsafeu)) ∧ �[0,20](||p1 − p2||2 ≥ 0.5)∧
♦[0,5](p1 ∈ Goal1) ∧ ♦[5,10](p1 ∈ Goal2) ∧ ♦[10,15](p1 ∈ Goal1)∧
♦[15,20](p1 ∈ Goal2) ∧ ♦[0,5](p2 ∈ Goal2) ∧ ♦[5,10](p2 ∈ Goal1)∧
♦[10,15](p2 ∈ Goal2) ∧ ♦[15,20](p2 ∈ Goal1)

(2)

The tool comes pre-loaded with some example missions, and offers the user
the ability to save new missions, as well save and load workspaces as text files.
More details on the usage of the tool are in [15].

Note: Through the C++ library that forms the back-end for the tool, specifi-
cations involving the nested operators �I1♦I2 and ♦I1�I2 can be used in con-
junction with the template of Eq. 1. This functionality will be added to the user
interface at a later time.

2.3 Behind-the-Scenes: Generating the Trajectories

In order to generate the trajectories that satisfy the mission specification, an
optimization is solved (in the C++ back-end) to maximize, over N way-points
for each drone, the smooth robustness of the mission STL specification evaluated
for the UAS trajectories of NT seconds in duration. The constraints in the
optimization ensure that the resulting trajectories are such that the resulting
trajectories have velocity and accelerations within the user-defined bounds for
each UAS, i.e. are kinematically feasible for the UAS to fly. See [4] for details.

3 Conclusions and Ongoing Work

In this paper we presented Fly-by-Logic, a tool for planning for multi-rotor
UAS missions. By interpreting the missions as STL specifications, the underly-
ing method generates kinematically feasible trajectories to satisfy missions with

http://bit.ly/fblguiexmpl

Fly-by-Logic 361

complicated spatial and temporal requirements while ensuring safety. Through
an example, we introduce the kind of missions that can be specified in the tool.
At the time of writing this paper, the tool is suitable only for offline trajectory
generation for UAS missions. In [4] the underlying method has been shown to
work in an online manner as well (see bit.ly/varvel2), and current work on
the tool is focused on wrapping the Fly-by-Logic C++ library as a ROS package
to seamlessly integrate with off-the-shelf planning and control implementations.
Also planned is a method to import 3-d maps for actual geographical locations
with Unsafe zones covering landmarks.

References

1. Federal Aviation Administration. Concept of operations v1.0 (2018). https://utm.
arc.nasa.gov/docs/2018-UTM-ConOps-v1.0.pdf. Accessed 19 Nov 2018

2. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

3. Fainekos, G.: Robustness of temporal logic specifications. Ph.D. dissertation,
University of Pennsylvania (2008). http://www.public.asu.edu/∼gfaineko/pub/
fainekos thesis.pdf

4. Pant, Y.V., Abbas, H., Quaye, R.A., Mangharam, R.: Fly-by-logic: control of multi-
drone fleets with temporal logic objectives. In: Proceedings of the 9th ACM/IEEE
International Conference on Cyber-Physical Systems, pp. 186–197. IEEE Press
(2018)

5. Ardupilot Mission Planner. ardupilot.org/planner/. Accessed 15 Dec 2018
6. QGROUNDCONTROL. Intuitive and powerful ground control station for PX4

and ArduPilot UAVs. qgroundcontrol.com. Accessed 15 Dec 2018
7. Raman, V., Donze, A., Maasoumy, M., Murray, R.M., Sangiovanni-Vincentelli, A.,

Seshia, S.A.: Model predictive control with signal temporal logic specifications. In:
53rd IEEE Conference on Decision and Control, pp. 81–87, December 2014

8. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo:
a tool for temporal logic falsification for hybrid systems. In: Abdulla,
P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–
257. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9 21.
http://dl.acm.org/citation.cfm?id=1987389.1987416

9. Pant, Y.V., Abbas, H., Mangharam, R.: Smooth operator: control using the smooth
robustness of temporal logic. In: 2017 IEEE Conference on Control Technology and
Applications (CCTA), pp. 1235–1240. IEEE (2017)

10. Mueller, M.W., Hehn, M., DÁndrea, R.: A computationally efficient motion prim-
itive for Quadrocopter trajectory generation. IEEE Trans. Robot. 31, 1294–1310
(2015)

11. Andersson, J.: A general-purpose software framework for dynamic optimization.
Ph.D. thesis, Arenberg Doctoral School, KU Leuven (2013)

12. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–
57 (2006)

13. Fainekos, G., Pappas, G.: Robustness of temporal logic specifications for
continuous-time signals. Theor. Comput. Sci. 410, 4262–4291 (2009)

https://utm.arc.nasa.gov/docs/2018-UTM-ConOps-v1.0.pdf
https://utm.arc.nasa.gov/docs/2018-UTM-ConOps-v1.0.pdf
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
http://www.public.asu.edu/~gfaineko/pub/fainekos_thesis.pdf
http://www.public.asu.edu/~gfaineko/pub/fainekos_thesis.pdf
http://ardupilot.org/planner/
http://qgroundcontrol.com/
https://doi.org/10.1007/978-3-642-19835-9_21
http://dl.acm.org/citation.cfm?id=1987389.1987416

362 Y. V. Pant et al.

14. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

15. Fly-by-Logic: User documentation. https://github.com/yashpant/FlyByLogic.
Accessed 15 Dec 2018

https://doi.org/10.1007/978-3-642-15297-9_9
https://github.com/yashpant/FlyByLogic

	Fly-by-Logic: A Tool for Unmanned Aircraft System Fleet Planning Using Temporal Logic
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Fly-by-Logic: The Tool
	2.1 Architecture and Outline
	2.2 The Mission Template
	2.3 Behind-the-Scenes: Generating the Trajectories

	3 Conclusions and Ongoing Work
	References

