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Abstract. We present a global and local algorithm for model checking
a weighted variant of PCTL with upper-bound weight constraints, on
probabilistic weighted Kripke structures where the weights are vectors
with non-zero magnitude. Both algorithms under- and over approximate
a fixed-point over a symbolic dependency graph, until sufficient evidence
to prove or disprove the given formula is found. Fixed-point computa-
tions are carried out in the domain of (multidimensional) probabilis-
tic step functions, encoded as interval decision diagrams. The global
algorithm works similarly to classic value iteration for PCTL in that
it evaluates all nodes of the dependency graph iteratively, while the
local algorithm performs a search-like evaluation of the given dependency
graph in an attempt to find enough evidence locally to prove/disprove a
given formula, without having to evaluate all nodes. Both algorithms are
evaluated on several experiments and we show that the local algorithm
generally outperforms the global algorithm.
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1 Introduction

The ubiquity of embedded systems in modern-day society calls for robust and
efficient methodologies for the design, production and implementation of more
and more complex systems. These systems usually interact with the physical
world, as well as the Internet, as a so called cyber-physical system. In this
area, model-driven development is gaining popularity as a way to deal with
early design-space exploration and automatic verification. Especially important
in this context is the incorporation of non-functional aspects, such as resource
consumption, timing constraints and probabilistic behavior. This has lead to
a large variety of mathematical models having been created for the purpose
of modeling these quantitative systems. In conjunction with these models, an
assorted landscape of logics have also been proposed for the sake of specify-
ing desired properties regarding the aforementioned models. Within the model-
checking community this has lead to tools such as UPPAAL [16], PRISM [14],
MRMC [12] and STORM [7], for analysis of systems involving continuous time,
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stochastic behavior and various types of resources, in an efficient manner. At the
heart of such tools are algorithms that verify user given properties on specified
models.

Our Contribution. We present two algorithms for model-checking a weighted
subset of probabilistic CTL (PCTL) [8] with upper-bound weight constraints,
on probabilistic weighted Kripke structures.

We allow for the weights of both the model and formula to be multidimen-
sional, i.e. vectors. This allows for the modeling of consumption/production of
resources in multiple dimensions. E.g. for cyber-physical systems we might be
interested in both the time and energy it takes to perform some action.

Both algorithms approximate a fixed point on a symbolic dependency graph
by repeated computation of under- and over-approximations. Termination is
guaranteed as the transition weight vectors are required to have non-zero magni-
tude, in addition to path-formulae having upper-bound weight-constraints. Our
symbolic dependency graphs extend the dependency graphs introduced by Liu
and Smolka [17] to cope with the multidimensional probabilistic domain. The
first algorithm, the global algorithm, is, with minor modifications, an instance
of the approach presented in our previous work in [18] which in turn is an exten-
sion of the global algorithm by Liu and Smolka. The second algorithm, the local
algorithm, was not a part of [18] and is our novel extension of the local algorithm
presented by Liu and Smolka.

Both algorithms have been implemented in a prototype tool written in
Python, using Interval Decision Diagrams [19] as the back-end data-structure
for symbolic computations. For experimental evaluation, we present results on
two case-studies based on PRISM [14] models and show that the local approach
is, also in this domain, generally more efficient than the global approach, espe-
cially in cases where complete exploration of the underlying dependency graph
is not needed to prove/disprove a property of the model. An extended version
of the paper, with proofs, can be found online at http://people.cs.aau.dk/∼am/
nfm19/ext.pdf.

Related Work. The framework of fixed point computations introduced by Liu
and Smolka has recently been extended in different ways. A distributed ver-
sion of the local algorithm, that also deals with negation has been developed
in [6]. The framework has also been extended to a weighted domain in [11] for
model-checking weighted CTL on weighted Kripke structures where a symbolic
graph encoding ensures an efficient local algorithm. An extension for Timed
Games has been developed in [4]. In [5] the global algorithm was extended for
parametric model-checking, used in [2] for model-checking on models with real-
valued random variables as weights. Our global algorithm is reminiscent of the
PCTL model-checking algorithm on which PRISM is based [13], in the sense
that we consider the parse-tree of the formula and recursively compute the sat-
isfaction of sub-formulae in an iterative manner. For MRMC, the algorithms
based on path graph generation presented in [1] are used to solver similar model-
checking problems, based on a local unfolding of the model as our local approach.

http://people.cs.aau.dk/~am/nfm19/ext.pdf
http://people.cs.aau.dk/~am/nfm19/ext.pdf
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Fig. 1. A simple PWKS with 2-dimensional weights and its associated SDG

Each node in a path graph represents a certain reward, associated with a number
of finite path fragments and their probabilities, in contrast to our approach where
nodes encode probabilities associated with the satisfaction of a given formulae
in a state.

2 Models and Properties

For any set X, Xn is the set of all n-dimensional vectors with elements from
X. For x ∈ X we let xn denote the n-dimensional vector with all elements
being x. Hence Nn is the set of all n-dimensional vectors of natural numbers and
Nn

+ = Nn \ 0n restricts Nn to vectors with strictly positive magnitude. For the
remainder of the paper we assume a fixed dimensionality n, with n > 0. Any
vector is written in boldface e.g. x = (x1, . . . , xn),y = (y1, . . . , yn) are vectors.
Finally, we assume a fixed finite set of labels AP .

Definition 1 (Probabilistic Weighted Kripke Structure). A Probabilistic
Weighted Kripke Structure (PWKS) is a structure M = (M,→, �) where M is
a finite set of states, →⊆ M ×Nn

+ × (0, 1]×M is the finite weighted probabilistic
transition relation such that for all m ∈ M ,

∑
(m,wi,pi,mi)∈→ pi = 1 and � : M →

2AP is the labeling function, assigning to each state a set of atomic propositions.

Whenever (m,w, p,m′) ∈→ we write m
w ,p−−→ m′. A path from a state m0 is an

infinite sequence of transitions π = (m0,w0, p0,m1), (m1,w1, p1,m2), . . . with
mi

wi ,pi−−−→ mi+1 for any i ∈ N. We denote by π[j] the j’th state of π, mj and by
W(π)(j) the accumulated weight along path π up until mj . Hence W(π)(0) = 0
and W(π)(j) =

∑j−1
i=0 wi for j > 0. See Fig. 1a for an example PWKS with two

states and weights from N2.
As specification language we define the logic Probabilistic Weighted CTL

(PWCTL), extending a subset of Probabilistic CTL (PCTL), with weight-
vectors.
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Definition 2 (PWCTL). The set of PWCTL state formulae, L, is given by
the following grammar:

L : Φ ::= a | ¬a | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | P�λ(Ψ)

where a ∈ AP, λ ∈ [0, 1] and �= {>,≥}. The path formulae are given by the
following grammar, with k ∈ Nn:

Ψ ::= X≤kΦ | Φ1U≤kΦ2 .

We also define a set of symbolic unbounded until-formulae for later use,
namely S = {Φ1U≤?Φ2 | Φ1, Φ2 ∈ L} ∪ {X≥?Φ | Φ ∈ L}.

For the probabilistic modality P�λ(Ψ), the satisfaction is dependent on
the probability of picking a path satisfying the path-formulae Ψ , from some
state m. To this end we employ the standard cylinder-set construction (see
[3, Chapter 10]) to obtain a unique probability measure P, assigning probabilities
to sets of paths sharing a common prefix (a cylinder).

Definition 3 (PWCTL Semantics). For a PWKS M = (M,→, �) with state
m ∈ M , the satisfiability relation |= is inductively defined by:

M,m |= a iff a ∈ �(m)
M,m |= ¬a iff a /∈ �(m)
M,m |= Φ1 ∧ Φ2 iff M,m |= Φ1 and M,m |= Φ2

M,m |= Φ1 ∨ Φ2 iff M,m |= Φ1 or M,m |= Φ2

M,m |= P�λ(Ψ) iff P(π | π[0] = m,M, π |= Ψ) � λ

where, for any path π:

M, π |= X≤kΦ iff π[0]
w ,p−−→ π[1],M, π[1] |= Φ, and w ≤ k

M, π |= Φ1U≤kΦ2 iff there exists a j such that M, π[j] |= Φ2,

M, π[i] |= Φ1 for all i < j and W(π)(j) ≤ k.

If M is clearly implied by the context, we simply write m |= Φ if the state m of
PWKS M satisfies the formula Φ and similarly π |= Ψ if π is a path in M.

Example 1. For the PWKS M1 in Fig. 1a, we have that m0 |= P≥λ(aU≤k b)
with k = (8, 10) and λ = 5

8 as P(π | π[0] = m0, π |= aU≤(8,10) b) = 1
2 + 1

2 · 1
2 = 6

8 .
In fact, this is the case for any k ≥ (8, 10). Finally, if λ ≤ 1

2 , considering only the

path m0
(3,4), 12−−−−→ m1 · · · instead of the entire set of paths, would be sufficient.

3 Symbolic Dependency Graphs

As the semantics of PWCTL is given by induction in the structure of the formula,
a solution to the model-checking problem m |= Φ is dependent on the solution to
related model-checking problems involving sub-formulae of Φ and the reachable
states of m. We encode these dependencies as edges between nodes in a Sym-
bolic Dependency Graph and reduce the model-checking problem to fixed-point
computations on these graphs.
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Fig. 2. SDG construction rules for state m where m
w i ,pi−−−−→ mi for all i with 1 ≤ i ≤ j.

Definition 4 (Symbolic Dependency Graph). For a PWKS M = (M,→
, �), a symbolic dependency graph (SDG) is a tuple, G = (C,EH , EC , EΣ), where

– C ⊆ M × L ∪ M × S ∪ {Σ} × M × S is a finite set of configurations (nodes),
– EH ⊆ C × 2C is a finite set of hyper-edges,
– EC ⊆ C × Nn× � ×[0, 1] × C is a finite set of cover-edges, and
– EΣ ⊆ C × 2N

n
+×[0,1]×C is a finite set of sum-edges.

We will refer to elements of: M × L as concrete-, M × S as symbolic-, and
{Σ}×M ×S as sum-configurations. For brevity, we will often write 〈Σ〉 for sum-
configurations when the state and symbolic formula is clear from context. If a
configuration s ∈ C can transition to another configuration t ∈ C using any type
of edge, we write s � t. Given a state m and formula Φ, one can construct the
SDG rooted in 〈m,Φ〉 by recursively applying the rules of Fig. 2. Singular hyper-
edges are used to encode conjunction (Fig. 2d) and multiple hyper-edges encode
disjunction (Fig. 2c). Cover-edges are used to abstract away concrete bounds on
probabilities and weights and introduces symbolic configurations (Fig. 2e and f).
Lastly, sum-edges encode the probabilistic weighted transitions of the underlying
model (Fig. 2g and f).

Example 2. Consider again the PWKS M1 of Fig. 1a and the formula Φ =
P≥ 5

8
(aU≤(13,16) b). The SDG obtained by applying the construction rules in

Fig. 2 can be seen in Fig. 1b.
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For the rest of this section we assume a fixed model, M = (M,→, �), with
m ∈ M and a fixed PWCTL-formula, Φ. Let G = (C,EH , EC , EΣ) be the SDG
constructed using the rules given in Fig. 2 with root s0 = 〈m,Φ〉. The semantics
of configurations is given by assignments, encoding the probability of satisfaction,
given a cost-bound (weight).

Definition 5 (Assignments). An assignment is a function, a : Nn → [0, 1],
assigning to each vector a probability.

We use A to denote the set of assignments.
For any a1, a2 ∈ A, a1 � a2 iff ∀w ∈ Nn. a1(w) ≤ a2(w).

Assignments naturally extends to SDGs.

Definition 6 (Assignment Mapping). An assignment mapping on G is a
function, A : C → A, mapping each configuration to an assignment.

We use CG to denote the set of assignment mappings over G.
For any A1, A2 ∈ CG, A1 �G A2 iff ∀s ∈ C.A1(s) � A2(s).

We define 0,1 ∈ A to be the assignments that map any vector to the prob-
abilities 0 and 1, respectively. We will refer to these assignments as Boolean
assignments. Similarly, we define A0, A1 to be the assignment mappings that
map any configuration to the Boolean assignments 0 and 1, respectively. Gen-
erally, concrete configurations will receive Boolean assignments. For symbolic
configurations, e.g. 〈m,Φ1 U≤?Φ2〉, assignments will be used to compute proba-
bilities associated with the sets of paths satisfying any concrete instance of the
formula induced by replacing ? with a cost-bound k ∈ Nn.

Clearly, (A,�) and (CG,�G) are complete lattices with 0, 1 and A0, A1, as
their respective bottom and top elements. We will use

⊔
X and

�
X to denote

the supremum and infimum of any subset X ⊆ A. As usual we let
⊔ ∅ = 0

and
� ∅ = 1. The supremum of X can be realised as the assignment defined,

for arbitrary w ∈ Nn, as (
⊔

X)(w) = sup{p ∈ [0, 1] | a ∈ X, a(w) = p}. The
infimum can be realised in a similar fashion. For a1, a2 ∈ A, we define (a1+a2) to
be the assignment given, for arbitrary w ∈ Nn as, (a1+a2)(w) = a1(w)+a2(w).
Another useful operation on assignments as that of shifting :

Definition 7 (Shifting). For w ∈ Nn, and p, q ∈ [0, 1], shiftw ,p,q : A → A
is a function that, given an assignment a ∈ A, produces a shifted assignment
shiftw ,p,q(a) ∈ A, defined for any v ∈ Nn as,

shiftw ,p,q(a)(v) =

{
a(v − w) · p if w ≤ v

q otherwise

Shifting an assignment increases the cost of satisfaction, represented by the
assignment, by an amount w while adjusting the degree of satisfaction by p
and setting the probabilities to q if the cost is below w.
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Fig. 3. Assignment shifting

Example 3. Suppose m
(1,1), 12−−−−→ m1 and m

(2,2), 12−−−−→ m2. Let the assignment in
Fig. 3a be a∗ with the property a∗(w) = P(π | π[0] = m1,m1 |= X≤w Φ) =
P(π | π[0] = m2,m2 |= X≤wΨ) for all w ∈ Nn and some state-formula Φ. a∗

thus encodes the exact probability of paths starting in m1 (or m2) that satisfy
X≤w Φ, for all w. By applying the shift operator, and addition on assignments,
we get am = Shift(1,1), 12 ,0(a

∗) + Shift(2,2), 12 ,0(a
∗). am has the desired property

that am(w) = P(π | π[0] = m,m |= X≤w Φ) for any w. Figure 3b shows the
result of the first term (q = 0, p = 1

2 ).

We now introduce the fixed-point operator from our previous work in [18].

Definition 8. For a SDG G = (C,EH , EC , EΣ), F : CG → CG is a function
that, given an assignment mapping A on G, produces a new updated assignment
mapping, F (A). F is given for any node s ∈ C as follows,

F (A)(s) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{
1 if A(t)(k) � λ

0 otherwise
if (s,k,�, λ, t) ∈ EC

∑

(w ,p,t)∈T

shiftw ,p,0 (A(t)) if (s, T ) ∈ EΣ

⊔

(s,T )∈EH

�

t∈T

A(t) otherwise

F is well-defined as all configuration have at most one type of outgoing edge.
For cover-edges we simply check the cover-condition. For sum-edges we compute
a sum over all assignments to targets, shifted by the corresponding weight and
probability as exemplified in Example 3. Lastly, for configurations with outgoing
hyper-edges or no outgoing edges we compute a supremum over all hyper-edges
and for each hyper-edge an infimum.

As F is monotonic (see [18]) on a complete lattice, we get, by Tarski’s fixed
point theorem [20], that F must have a unique least fixed point, Amin. The
following theorem states that our construction of a SDG from a pair 〈m,Φ〉
along with its associated least fixed point, Amin, as given by F , is indeed sound.
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Theorem 1 (Soundness). m |= Φ iff Amin(〈m,Φ〉) = 1.

Corollary 1. P(π | π[0] = m,π |= Φ1U≤kΦ2) = Amin(〈m,Φ1UΦ2〉)(k).

For any concrete configuration, i.e. on the form 〈m,Φ〉, we have that any assign-
ment mapping generated by F will be assigned either 0 or 1. Thus, we have the
following corollary.

Corollary 2. m �|= Φ iff Amin(〈m,Φ〉) = 0.

As (CG,�G) can be a lattice of infinite size, it is not given that we can construct
Amin through repeated applications of F on the bottom element 0. The following
theorem however states that F can be used to sufficiently approximate Amin,
from above and below, in a finite number of iterations, so that we may answer
our model checking query.

Theorem 2 (Realisability). There exists an i ∈ N such that,

m |= Φ ⇐⇒ F i(A0)(〈m,Φ〉) = 1 and m �|= Φ ⇐⇒ F i(A1)(〈m,Φ〉) = 0.

This theorem follows in part from our SDGs being finite. If the SDG is acyclic
then it is trivial to show. If not, then the only cycles that occur, occur within
the sub-tree of a node of type 〈P�λ(Φ1U≤kΦ2)〉, which is directly dependent on
〈m,Φ1U≤?Φ2〉. Since the weights of transitions are of positive magnitude, there is
only a finite number of ways to concretely unfold the symbolic node 〈m,Φ1U≤?Φ2〉
and its dependencies for any given k ∈ Nn. As such, there exists a j ∈ N, such that
F j(A0)(〈m,Φ1U≤?Φ2〉)(k) = F j(A1)(〈m,Φ1U≤?Φ2〉)(k) = Amin(k).

3.1 Global Algorithm

We now introduce an algorithm based on the function in Definition 8. This
algorithm will be referred to as the global algorithm as it updates the entire
assignment mapping of a given SDG each iteration, therefore in a sense, globally
applying the iterator. The algorithm is as follows: repeatedly apply F on all
configurations s ∈ C until F i(0)(s0) = 1 or F j(1)(s0) = 0 for some i, j ∈ N,
where s0 is the root of the SDG. Termination and correctness is guaranteed by
Theorems 1 and 2.

Example 4. Consider the repeated application of F on the root of the SDG
from Fig. 1b, starting from 0. Table 1 shows the results, with configurations in
bold and one row per iteration. Only configurations that change value from
0 are listed. Assignments are written as pairs of weights and probabilities e.g.
{((3, 4), 1

2 ), ((8, 10), 3
4 )} is the assignment a s.t a(w) = 0 for w < (3, 4), a(w) = 1

2
for (3, 4) ≤ w < (8, 10) and a(w) = 3

4 for w ≥ (8, 10). As seen, F 7 assigns 1 to
1 i.e m0 |= P≥ 5

8
(aU≤(8,10) b) as expected.
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Table 1. Lower bound assignments for Fig. 1b

1 2 4 5 6 7 9

1 - - 1 - - 1 -

2 - - - - 1 - -

3 - - - {((3, 4), 1
2
)} - - {((1, 0), 1)}

4 - {((3, 4), 1
2
)} - - - - -

5 - - - {((3, 4), 1
2
), ((8, 10), 3

4
)} - - -

6 - {((3, 4), 1
2
), ((8, 10), 3

4
)} - - - - -

7 1 - - - - - -

In practice, we need a finite representation of assignments. To this end we use
Interval Decision Diagrams (IDDs) [19], a generalization of Binary Decision Dia-
grams (BDDs). IDDs, like BDDs, test on variables but now the values of variables
are partitioned into disjoint intervals that must be independent, in the sense that
any two values within the same interval must produce the same function value.

x1

x2x2 x2

1
30 2

3

[0, 1)
[1, 2)

[2,∞)

[0,∞)
[0, 2)

[2,∞)

[0, 1)

[1, 2) [2,∞)

Fig. 4. Example IDD

Recall that all assignments are of the form α :
Nn → [0, 1] i.e. functions that, given a vector of nat-
ural numbers, yields some probability. The simplest
assignments, 0 and 1 are encoded directly as IDD
terminals. In the general case, we have n variables,
where n is the dimension of the weight-vectors. As
all assignments of interest are built from 0 and
1 by applying operations shiftw ,p,q(a),

⊔{a, b},�{a, b}, and a + b, where a, b ∈ A, we only need
that IDDs are closed under these operations. For the
binary operations, this is a straight-forward exten-
sion of the procedure for BDDs and it is easy to show that IDDs are closed under
shifting.

Example 5. As an example of an IDD encoding a non-trivial assignment, see
Fig. 4, here encoding the assignment a∗ of Fig. 3a. a∗ can be generated by the
assignment shift(1,2), 13 ,0(1) + shift(2,1), 13 ,0(1).

4 Local Algorithm

As an alternative to globally updating the assignment to all nodes in each iter-
ation, we propose a local algorithm. The pseudocode for the local algorithm can
be seen in Algorithm 1. It takes as input a SDG G = (C,EH , EC , EΣ) and a
configuration s0 = 〈m,Φ〉 and outputs Amin(s0). The fixed-point computation
is done in the while loop (lines 15–17) by calling nextlower and nextupper to
compute the next lower and upper bound of Amin, respectively. To this end,
single edges are processed locally according to the type of the edge. Assignments
to configurations are now from the domain A∪{⊥,�}, ⊥(�) being the smallest
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(largest) assignment w.r.t �. The SDG G is assumed to be constructed according
to the rules in Fig. 2 for a model-checking problem m |= Φ. For termination, we
define a required precision k = supK(Φ) on assignments, as the supremum of
all the weight-bounds found in Φ. Given k, we are only interested in assignment
with this precision. We therefore introduce a k-ordering of assignments.

Definition 9 (k-ordering). For a given k ∈ Nn, we define the binary rela-
tion �k on assignments by a1 �k a2 iff ∀w ≤ k . a1(w) ≤ a2(w), where
a1, a2 ∈ A and let a1 =k a2 if a1 �k a2 and a2 �k a1. For a given
SDG G = (C,EH , EC , EΣ), we extend the relation to assignment mappings by
A1 �k A2 iff ∀s ∈ C . A1(s) �k A2(s), where A1, A2 ∈ CG.

Algorithm 1. Symbolic Local Algorithm
input : SDG G = (C, EH , EC , EΣ) and configuration s0 = 〈m, Φ〉 ∈ C
output : Amin(s0)

1 k = sup K(Φ);
2 foreach v ∈ {L, U} do
3 foreach s ∈ C do Rv(s) = ∅ ;
4 foreach (s, T ) ∈ EΣ do
5 foreach (w, p, t) ∈ T do Σv

Δ(s)(t) = 0 ;

6 foreach s ∈ C do
7 AL(s) = ⊥;

8 AU (s) = 	;

9 AL(s0) = aL
def = aU

max = 0;

10 AU (s0) = aU
def = aL

max = 1;

11 W ↓
L = W ↓

U = succ(s0);

12 W ↑
L = W ↑

U = ∅;

13 while (W ↓
L ∪ W ↑

L) �= ∅ ∧ (W ↓
U ∪ W ↑

U ) �= ∅ do
14 nextlower();
15 nextupper();

16 if (W ↓
L ∪ W ↑

L) = ∅ then return AL(s0) ;

17 else return AU (s0) ;

Given k, termination and correctness does not rely on computing both the upper
and lower bound and as the two functions are almost identical, we only show
pseudo-code responsible for computing lower bounds. In practice, computing
upper bounds can be beneficial in cases where the query is unsatisfied. The
pseudo-code for nextlower can be seen in Algorithm 2, with edge processing
functions in Algorithm 4.
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Algorithm 2. nextlower

1 function nextlower():
2 Pop e from W ↓

L or W ↑
L;

3 s = source(e);
4 if Crt(s) = a then
5 AL(s) = a;
6 W ↑

L = W ↑
L ∪ D(s);

7 else if e ∈ EH then
8 HyperEdgeLower(e);
9 else if e ∈ EΣ then

10 SumEdgeLower(e);
11 else if e ∈ EC then
12 CoverEdgeLower(e);

Functions nextlower and nextupper
utilize different data-structures to pro-
cess edges of the graph. Let α ∈ {L,U}.
Then the data-structures are: Crt : C ⇀
A, AL : C → A ∪ {⊥}, AU : C → A ∪
{�},W ↓

α,W ↑
α ⊆ 2E ,Σα

Δ : C → (C → A),
Rα : C → 2C and aα

def , aα
max ∈ A.

All data-structures with α = L (α =
U) are only used in nextlower (nextupper)
Crt is a partial function with Crt(s) = a
if s has received its fixed-point assign-
ment a. Crt is used to skip the process-
ing edges for which the source configura-
tion has already received its fixed point
assignment. AL and AU contain the cur-
rent approximations of the fixed point. If AL(s) = ⊥ (AU (s) = �) then configu-
ration s has no under-approximation (over-approximation) yet. W ↓

α and W ↑
α are

sets containing all edges to be processed for exploration and back-propagation,
respectively. For a sum-edge (s, T ) with T = {(w1, p1, t1), . . . (wj , pj , tj)},
Σα

Δ(s)(ti) contains the contribution from the partial sum-edge (s,wi , pi, ti) to
the assignment of s. For two configuration s, t ∈ C, s ∈ Rα(t) indicates that the
assignment to s, Aα(s) is dependent on the assignment to t, Aα(t) and that Aα(t)
was changed since the last update to Aα(s). When processing an edge e with
s as the source (source(e) = s), we can thus safely skip any t ∈ targets(e)
for which s /∈ Rα(t), when updating Aα(s). We will refer to Rα(t) as the
read list of t. aα

def is the default assignment given to newly discovered con-
figurations and aα

max is the maximal possible assignment any configuration can
get. All data structures are initialized in Algorithm 1 and are used throughout
Algorithms 1–3. For any edge e, we let source(e) be its source configuration and
targets(e) = {t | source(e) � t} be its set of targets. For any configuration
s we let succ(s) = {(s, T ) ∈ EH ∪ EΣ} ∪ {(s,w,�, p, t) ∈ EC} be the set of
edge-successors of s and D(s) = {e | e ∈ EH ∪ EΣ ∪ EC ∧ s ∈ targets(e)} the
set of edges dependent on the assignment to s. Informally, if the assignment to
s is changed, edges from D(s) should be processed.
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Algorithm 3. Helper functions
1 function InitLower(s):
2 AL(s) = aL

def ;
3 W ↓

L = W ↓
L ∪ succ(s);

4 foreach e ∈ succ(s) do
5 foreach t ∈ targets(e) do
6 if AL(t) �= ⊥ then
7 RL(t) = RL(t) ∪ {s};

8 function BackPropLower(s, anew):
9 foreach e ∈ D(s) do

10 if AL(source(e)) = ⊥ then
11 InitLower(source(e));
12 RL(s) = RL(s) ∪ {source(e)};
13 W ↑

L = W ↑
L ∪ {e};

14 if anew = aL
max then

15 Crt(s) = aL
max;

For edge processing, we uti-
lize helper functions. Algorithm 3
shows the pseudo-code. We use
InitLower(t) when a new tar-
get t is discovered. The assign-
ment of t is set to the spec-
ified default value aL

def and a
forward exploration is prepared
from t by adding all succes-
sors of t to W ↓

L. Finally, t is
added to all relevant read lists.
BackPropLower(s, anew) is used
when updating assignment AL(s)
to anew. If it cannot be fur-
ther improved, Crt(s) = anew.
Back-propagation is prepared by
adding all dependent edges, D(s),
to W ↑

L. If the source of any such
edge has not been discovered and
therefore has assignment ⊥, it is
initialized. Finally, for any edge in D(s), the newly updated assignment should
be read. Hence the read list of s, RL(s) is updated to include the sources of all
such edges.

We now present our termination and correctness theorems, saying that the
while loop in Algorithm 1 terminates and that the computed assignments for
explored nodes are equal to the assignment given by the minimal fixed-point
Amin, within the given precision k.

Lemma 1 (Termination). The local algorithm (Algorithm 1) terminates with

(W ↓
L ∪ W ↑

L) = ∅ or (W ↓
U ∪ W ↑

U ) = ∅.

Theorem 3 (Correctness). Upon termination, the local algorithm has com-
puted assignments AL, AU , such that for any s ∈ C,

– If (W ↓
L ∪ W ↑

L) = ∅ then AL(s) �= ⊥ =⇒ AL(s) =k Amin(s).
– If (W ↓

U ∪ W ↑
U ) = ∅ then AU (s) �= � =⇒ AU (s) =k Amin(s).

5 Experiments

Both the local and global algorithm have been implemented in a prototype tool
written in Python. For both algorithms, we use two separate processes to com-
pute the under- and over-approximations in parallel. For the local algorithm,
successors of configurations are generated on-the-fly. Both algorithms terminate
when the root configuration is fixed. For the local algorithm we may also termi-
nate when the waiting lists of either the under- or over-approximator are empty.
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Algorithm 4. Processing functions for nextlower

1 function HyperEdgeLower(e = (s, T )):
2 if ∃t ∈ T.AL(t) = 0 then return ;

3 else if ∃t ∈ T.A(t)L = ⊥ then InitLower(t) ;
4 else
5 a =

⊔{�{AL(t) | t ∈ T}, AL(s)};

6 if a �k AL(s) then
7 BackPropLower(s, a);

8 AL(s) = a;

9 function SumEdgeLower(e = (s, T )):
10 a = AL(s);
11 foreach (w, p, t) ∈ T do
12 if AL(t) �= ⊥ ∧ s ∈ RL(t) then
13 RL(t) = RL(t) \ {s};

14 Δnew = shiftw ,p,0(A
L(t));

15 Δold = ΣL
Δ(s)(t);

16 if Δnew �=k Δold then

17 a = a +
(
Δnew − Δold

)
;

18 ΣL
Δ(s)(t) = Δnew;

19 if a �k AL(s) then
20 BackPropLower(s, a);

21 AL(s) = a;

22 if ∃(w, p, t) ∈ T.AL(t) = ⊥ then InitLower(t) ;

23 if ∃(w, p, t) ∈ T.AL(t) = ⊥ then W ↓
L = W ↓

L ∪ {e} ;

24 function CoverEdgeLower(e = (s,k, �, λ, t)):
25 if AL(t) = ⊥ then InitLower(t) ;

26 if AL(t)(k) � λ and AL(s) �= 1 then
27 BackPropLower(s, 1);
28 AL(s) = 1;

For experimental evaluation, our prototype tool supports DTMC models
(with transition rewards/costs), written in the PRISM language [14]. PRISM
cannot directly handle our models with weights from Nn with n > 1. To this
end, we interpret multiple reward structures as defining a vector in n dimensions,
with n being the number of reward structures. Hence one can define a proper
PWKS in the PRISM language and use it as input to our tool.

We run both the global and local algorithm on two PRISM models (syn-
chronous leader election [10] and the bounded retransmission protocol [9]),
derived from DTMC models of the PRISM benchmark suite [15]. All models
can be found online at http://people.cs.aau.dk/∼am/nfm19/code/prism ex/.

http://people.cs.aau.dk/~am/nfm19/code/prism_ex/


Symbolic Model Checking of Weighted PCTL Using Dependency Graphs 311

For all models, the model-checking query is an instance of cost-bounded
probabilistic reachability: m |= P�λ(tt U≤k prop), where m is the initial state
of the underlying DTMC and prop is a label assigned to all states satisfying
the property of interest. Our tool invokes PRISM on a given model and exports
the underlying DTMC (with transition rewards), which our tool then parses to
construct a PWKS. For each instantiation of a PRISM model we run four queries
with a fixed cost-bound k ∈ Nn where n is the arity. These four queries differ in
the comparison of probabilities in the formula. For comparator and probability
we use the following four configurations: > p + 1−p

10 , > p − p
10 , > 0, and ≥ 1;

where p is the exact probability of picking a path from state m, that satisfies
the given until-formula. The expressions > 0 and ≥ 1 encode existential and
universal quantification, respectively.

5.1 Results

We evaluate different hyper-parameters on the case-studies consisting of data-
structures for the waiting lists and the weights associated with preferring forward
exploration to back-propagation. For waiting lists we experimented with queues
(Q), stacks (S), and counters (C), where a counter is a priority queue with
priority given by the number of times an element is added. We weigh the decision
of either forward exploring or back-propagating with integers weights in [1, 5].

For what follows, we present only the results of experiments involving the
global algorithm and the local algorithm with the best hyper-parameters. We
will use weighted tuples of data-structures to indicate the hyper-parameters of
the local algorithm, e.g. (Q1,S3) would indicate that we used the local algorithm
with a queue for forward exploration, a stack for backwards propagation, and
that when given the choice, we are 3 times more likely to back-propagate than
forward explore. Additionally, we will use GMC to indicate the use of the global
algorithm. All experiments were run using 2 cores of an AMD Opteron 6376
processor allowing for parallelism.

Synchronous Leader Election. Table 2 shows our results for synchronous leader
election protocol. The data is an average over the run times using 1-, 2-, and
3-dimensional weights. We find that the local algorithm outperforms the global
one, with average speedups of around 6 when answering the non-existential or -
universal queries. For the existential and universal queries we find that the local
algorithm is on average 400 times faster. In Table 3 we compare the relative
speedup across 1-, 2-, and 3-dimensional weights.
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Table 2. Results for synchronous leader election.

Leader election, N = number of processes, K = number of probabilistic choices

N K > p + 1−p
10

> p − p
10

> 0 ≥ 1

GMC Q5,Q1 GMC C5,Q1 GMC Q1,C3 GMC Q1,C3

4 3 10.59 1.71 12.41 2.32 6.01 0.09 1.60 0.11

4 39.98 9.49 47.96 6.33 17.51 0.13 42.22 0.23

5 45.25 11.70 101.87 13.95 46.96 0.13 104.22 0.15

6 102.77 20.40 264.65 46.69 118.33 0.29 275.88 0.28

8 259.07 121.42 657.20 200.43 354.57 0.94 752.16 0.83

5 2 7.80 0.91 9.60 0.93 3.92 0.09 10.53 0.17

3 44.56 9.13 57.28 9.59 22.89 0.13 60.59 0.16

4 227.02 25.64 265.09 34.36 117.54 0.35 264.75 0.36

5 385.77 110.85 958.42 179.50 394.71 0.67 93.05 0.67

6 921.52 395.49 2040.88 433.37 1182.46 1.71 283.81 1.91

6 2 21.45 2.29 29.47 2.68 10.31 0.08 30.68 0.17

3 199.64 73.93 247.00 71.63 100.63 0.30 23.18 0.36

4 1670.63 315.67 1742.46 346.03 724.10 0.89 2008.89 0.88

Table 3. Average relative speedup for synchronous leader election per arity.

Leader election

Arity GMC/(Q5,Q1) GMC/(Q1,C3)

> p + 1−p
10

> p − p
10

> 0 ≥ 1

1 4.65 6.34 112.71 144.92

2 5.40 7.69 230.29 343.69

3 6.09 9.21 364.82 503.89

Bounded Retransmission Protocol. Table 4 shows our results for the bounded
retransmission protocol. All data is for 1-dimensional weights. Again, we find
that the local algorithm outperforms the global. In the unsatisfied and satisfied
case we see speedups averaging around 25 and 30, respectively. For the existential
queries we find the local algorithm to be, on average, 850 times faster than the
global. In the universal case we see only a speedup of about 30.
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Table 4. Results for the bounded retransmission protocol.

BRP, M = max number of retransmissions, N = number of chunks

N M > p + 1−p
10

> p − p
10

> 0 ≥ 1

GMC S1,S3 GMC S1,S3 GMC S1,Q5 GMC S1,S3

16 2 191.20 11.93 229.28 6.94 8.02 0.03 227.62 6.75

3 253.99 16.80 313.45 9.65 13.15 0.03 315.30 9.64

4 327.73 20.65 395.51 11.37 18.78 0.03 396.06 11.34

5 503.98 23.59 621.86 13.72 33.50 0.04 593.56 13.57

32 2 420.88 27.26 507.14 14.71 16.92 0.03 506.48 14.58

3 522.58 37.05 650.74 19.59 26.10 0.03 649.89 19.32

4 864.38 49.78 660.95 24.41 49.91 0.04 669.76 24.26

5 810.14 52.34 959.49 28.76 52.58 0.05 958.92 28.87

62 2 797.97 54.61 961.92 28.87 31.13 0.04 961.50 28.67

3 1051.64 75.64 1319.02 38.43 51.60 0.05 n/a 37.96

4 1339.32 92.68 1631.08 47.91 75.77 0.05 n/a 47.50

5 1610.09 108.73 1923.06 57.34 102.77 0.06 n/a 57.18

6 Conclusion

We have presented two approaches for model-checking a variant of PCTL, inter-
preted over probabilistic weighted Kripke structures. We introduce a reduction to
fixed-point computations on symbolic dependency graphs where nodes represent
model-checking problems and edges explicitly encode dependencies among said
problems. The first approach, the global algorithm, is a minor extension of the
algorithm presented in [18] which iteratively computes an update to each node
of the entire graph. The second approach, the local algorithm, is a novel adap-
tation of existing dependency graph algorithms, to our probabilistic weighted
domain. The algorithm performs a local search-like exploration of the graph
and lends itself to an on-the-fly unfolding. Both algorithms were implemented
in a prototype tool, using Interval Decision Diagrams (IDDs) as the back-end
data-structure. It is shown that the local algorithm generally outperforms the
global algorithm, especially in cases where a complete exploration of the model
is not needed to prove or disprove a property of the model. Our work could be
extended to incorporate negation in the logic as shown in [6].

Future work includes investigating clever memoization schemes to deal with
the expensive IDD operations, as has been previously done for BDDs. Prelimi-
nary experiments by the authors with a näıve caching mechanism has shown that
it provides a significant speed-up, especially for the global algorithm. A process
calculus is another direction that could be promising as our local approach lends
itself to a local-unfolding of the model, instead of an up-front construction of
the entire state-space. Lastly, more research is required to develop better search
strategies such that the local algorithm more robustly can efficiently solve most
queries.
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