
Learning-Based Testing of an Industrial
Measurement Device

Bernhard K. Aichernig1, Christian Burghard1,2(B), and Robert Korošec2

1 Institute of Software Technology, Graz University of Technology, Graz, Austria
{aichernig,burghard}@ist.tugraz.at

2 AVL List GmbH, Graz, Austria
{christian.burghard,robert.korosec}@avl.com

Abstract. Active automata learning algorithms have gained increas-
ing importance in the field of model-based system verification. For some
classes of systems - especially deterministic systems, like Mealy machines,
a variety of learning algorithm implementations is readily available.
In this paper, we apply this technique to a measurement device from
the automotive industry in order to systematically test its behaviour.
However, our system under learning shows sparse non-deterministic
behaviour, preventing the direct application of the available learning
tools.

We propose an implementation of the active automata learning frame-
work which masks this non-determinism. We repeat a previous model-
based testing experiment with faulty devices and show that we can detect
all injected faults. Most importantly, our technique was also able to find
unknown bugs.

Keywords: Active learning · Automata learning · Model inference ·
Testing · Mutation analysis · Automotive case study · Testbed

1 Introduction

Due to the ever increasing complexity of industrial software and mechatronical
systems, model-based testing (MBT) techniques have seen a popularity gain in
the past two decades [13,32]. The practice of model-based testing involves the
creation of a system model, using an appropriate abstraction of the system under
test (SUT). From this model, test cases are automatically derived according to
a specific test selection method. These test cases can then be executed on the
SUT to either strengthen the trust in its conformance to the system model or to
disprove said conformance. The sub-discipline of model-based mutation testing
(MBMT) [3] deserves special mentioning. In MBMT, a set of mutants, i.e. faulty
variants of the system model, is generated. Test cases are selected in order to
maximize the number of mutants which can be distinguished from the original.
Hence, MBMT is able to rule out the presence of specific faults and, under certain
circumstances, is also able to subsume other common test-selection criteria [27].
c© Springer Nature Switzerland AG 2019
J. M. Badger and K. Y. Rozier (Eds.): NFM 2019, LNCS 11460, pp. 1–18, 2019.
https://doi.org/10.1007/978-3-030-20652-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20652-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-20652-9_1

2 B. K. Aichernig et al.

However, the feasibility of MBT techniques strongly depends on the presence
of adequate system models which are not always available. Learning-based testing
(LBT) [6] is a complementary approach to the conformance testing approaches
described above. Here, a learning algorithm infers a system model through inter-
action with a black-box system. This learned model can then be checked for the
fulfilment of requirements [15,16] or for conformance to a reference model [31].
Due to its objective to explore the entire space of system behaviours without
regards to a specification (restricted only by the chosen abstraction), LBT can
be used for fuzzing, i.e. robustness testing [2,29]. The fact that LBT does not
require the presence of system models is an important factor in its industrial
application.

Industrial Use Case. The AVL List GmbH is the world’s leading supplier of auto-
motive test systems with over 9.500 employees worldwide. Its portfolio comprises,
among other things, a wide variety of measurement devices for engine exhaust,
fuel consumption, engine torque, etc. These measurement devices are usually
arranged in the form of a testbed (e.g. for engines, powertrains or entire vehi-
cles) and integrated into a testbed automation system which controls each device,
e.g., over an Ethernet connection. In the past, we have developed two MBMT
approaches to test this integration for a specific measurement device. Our first
approach [4,23] used UML [28] to specify the system model. The second app-
roach [10,11] used a domain-specific modelling language called MDML.

Summary and Contributions. In the work at hand, we present a case study
regarding the application of a learning-based testing approach to the same
exhaust measurement device. We further present our approach to mask sparse
non-deterministic behaviour of this device to enable the use of off-the-shelf
automata learning algorithms. We perform a mutation analysis on our LBT
approach—i.e. we evaluate its fault detection capability relative to a set of
mutated devices. Finally, we compare the results of the mutation analysis with
those of our MBMT approaches which have been evaluated against the same set
of mutants.

Our contributions are threefold: (1) Our case study provides further evidence
that LBT can be successfully applied in industry and, most importantly, that
it helps in finding bugs. (2) The mutation analysis shows that LBT finds more
injected faults than our previous approaches with model-based test-case gener-
ation. To the best of our knowledge this is the first comparison of this kind. (3)
We provide details of a mapper that speeds-up learning and masks occurrences
of non-determinism.

Structure. Section 2 defines used formalisms and gives a background on active
automata learning. In Sect. 3, we describe the measurement device under test
and the various components of our learning setup. The learning results based
on these implementations are presented in Sect. 4. We discuss related work in
Sect. 5 and draw our conclusions in Sect. 6.

Learning-Based Testing of an Industrial Measurement Device 3

2 Preliminaries

2.1 Notational Conventions and Mealy Machines

Let a ∈ A be a symbol from an alphabet A. We define words or sequences
over this alphabet as ā = [a1, a2, . . . , an] ∈ A∗ with the empty word ε and
A+ = A∗ \ {ε}. We lift symbols a ∈ A to words [a] ∈ A∗. The set of words over
A within a defined length range is written as A{m...n} = {ā ∈ A∗ | m ≤ |ā| ≤ n}.
We write the concatenation of words as ā = ā1 · ā2. We write the n-fold self-
concatenation of a word as ān with n ∈ N>0 and ā1 = ā, as well as ā∗ for
undefined finite n. We define last(ā) : A+ → A to return the last symbol an from
a sequence of length n. We furthermore define the set of non-empty prefixes of
a sequence pre(ā ∈ A+) = {āp ∈ A+ | ∃ ās ∈ A∗ : ā = āp · ās}.

Definition 1 (Finite-state transducer (FST)). A finite-state transducer is
a 6-tuple 〈Q, q0, I, O, δ, λ〉 with a sets of states Q, an initial state q0 ∈ Q, an
input alphabet I, an output alphabet O, a state transition relation δ ⊆ Q× I ×Q
and an output relation λ ⊆ Q × I × O.

If 〈q, i, q′〉 ∈ δ and 〈q, i, o〉 ∈ λ, we write q
i/o−−→ q′.

Definition 2 (Mealy machine). A Mealy machine is an FST M =
〈Q, q0, I, O, δ, λ〉 with δ and λ restricted to functions: δ : Q × I → Q and
λ : Q × I → O.

If a Mealy machine M receives an input sequence ı̄ = [i1, i2, · · · , in], such

that q0
i1/o1−−−→ q1

i2/o2−−−→ q2 · · · in/on−−−−→ qn, producing an output sequence
ō = [o1, o2, · · · on], we write M(̄ı) = ō. Two Mealy machines M1 and M2 are
called equivalent iff ∀ ı̄ ∈ I+ : M1(̄ı) = M2(̄ı).

2.2 Active Automata Learning

Active automata learning [18] is the practice of inferring the internal behaviour of
a black-box system by stimulating it with inputs and observing the produced out-
puts. One of the most important contributions in this field was made by Angluin
[7] who proposed an algorithm called L* to infer regular sets of strings from
a minimally adequate teacher (MAT). With slight modifications, the L* algo-
rithm was later adapted to Mealy machines [26]. The MAT framework, depicted
in Fig. 1, consists of a learner who implements the learning algorithm, and a
teacher who usually encapsulates the system under learning (SUL). The learner
is able to pose two types of questions to the teacher:

Output Query1: Here, the learner supplies an input word ı̄ ∈ I+ to the teacher
who responds with an output word ō ∈ O+ with |ō| = |̄ı|. Before an output query
is executed, the teacher resets the SUL to a defined initial state. By posing output
queries, the learner constructs a hypothesis H of the Mealy machine S which is
1 Also known as membership query in literature.

4 B. K. Aichernig et al.

assumed to be implemented in the SUL. Output queries may be handled by a
component of the teacher called output oracle which resets the SUL, executes ı̄
symbol by symbol, records the SUL output and compiles it into ō. While this
task is trivial by itself, its position in the data flow allows the output oracle to
enact domain-specific performance-increasing caching operations as it is able to
analyse each ı̄ before it is executed on the SUL.

L*
Algorithm

Learner Minimally Adequate Teacher

Equivalence
Oracle

Output
Oracle

Sink State
Cache

Mapper

Reset

Input

Measurement
Device

TelegramCaching

Equivalence Query

Output Query

Yes or
Counterexample

Output Sequence Output

Response

Fig. 1. Minimally adequate teacher (MAT) framework, including our specific imple-
mentation of the teacher.

Equivalence Query: When the learner has formed a hypothesis H, it is for-
warded to the teacher. If H is equivalent to S, the teacher issues a posi-
tive response and the learning process concludes with H as its result. Oth-
erwise, the teacher responds with a counterexample to equivalence 〈̄ı, ō〉 with
S (̄ı) = ō
= H(̄ı). The learner uses this counterexample and subsequent out-
put queries to refine its hypothesis in a new round of learning. If the SUL is
a black-box, equivalence queries cannot be executed directly. In this case, the
teacher contains a component called equivalence oracle, which resolves an equiv-
alence query into a series of output queries. In essence, the equivalence oracle
performs a conformance test on the SUL with respect to the hypothesis [6]. As
this approach to equivalence checking is subject to the inherent incompleteness
of testing, it cannot guarantee that the learning result accurately captures the
behaviour of a black-box SUL. In the work at hand, we use a guided random
testing approach, described in Sect. 3.5.

2.3 Mapper

In most cases, an additional abstraction layer must be introduced between the
SUL and the rest of the MAT framework, e.g., to reduce the size of an excessively
large SUL state space or to augment the input or output alphabets [2]. For this
purpose, Aarts et al. [1] have proposed a stateful mapper component to abstract
the communication between the output oracle and the SUL.

Learning-Based Testing of an Industrial Measurement Device 5

Definition 3 (Mapper). A mapper is an 8-tuple 〈R, r0, CI , CO, I, O,Δ,∇〉
with a set of states R, an initial state r0 ∈ R, a concrete input alphabet CI ,
a concrete output alphabet CO, an abstract input alphabet I, an abstract output
alphabet O, a state transition function Δ : R×(CI ∪CO) → R and an abstraction
function ∇ : (R × CI → I) ∪ (R × CO → O).

The output oracle operates on the mapper via the abstract alphabets I and O
while the mapper uses the concrete alphabets CI and CO to interact with the
SUL. If Δ(r, c) = r′, we write r

c−→ r′. We also use the mapper to reset the
SUL to a defined initial state before performing an output query. Due to scope
limitations and no direct relevance to our contribution, we cannot give a more
detailed explanation of our reset operation in this work.

Definition 4 (Abstraction). Let S = 〈Q, q0, CI , CO, δ, λ〉 be an FST and let
A = 〈R, r0, CI , CO, I, O,Δ,∇〉 be a mapper. The abstraction of S via A is an
FST αS

A = 〈Q × R, 〈qo, ro〉, I, O ∪ {⊥}, δα, λα〉 so that δα and λα satisfy the
following inference rules:

q
ci/co−−−→ q′, r

ci−→ r′ co−→ r′′, ∇(r, ci) = i, ∇(r′, co) = o

(〈q, r〉, i, 〈q′, r′′〉) ∈ δα ∧ (〈q, r〉, i, o) ∈ λα

� ci ∈ CI : ∇(r, ci) = i

(〈q, r〉, i, 〈q, r〉) ∈ δα ∧ (〈q, r〉, i,⊥) ∈ λα

If an abstract input i ∈ I is received, a concrete input ci ∈ CI is chosen non-
deterministically, so that ∇(r, ci) = i. If no such ci can be found, the mapper
issues the output ⊥. The abstraction of a concrete output co ∈ CO is straight-
forward since ∇ contains exactly one abstract output for each co and r′ ∈ R.

In general, it is possible that αS
A introduces additional non-determinism

through A that has not been present in S. Aarts et al. [1] have defined an
abstraction αS

A to be adequate for a Mealy machine S if it introduces no non-
determinism and is itself perceived as a Mealy machine. Our definition of an
abstraction is based on non-deterministic SULs in the form of FSTs rather than
on deterministic SULs in the form of Mealy machines. As we will explain in detail
in Sect. 3, we use αS

A to mask non-determinism present in our SULs. We refer to
an abstraction as sufficiently adequate relative to a given learning algorithm2 if
the algorithm is unable in practice to distinguish the abstraction from a Mealy
machine.

3 Learning Setup

We implemented our learning setup in Java using LearnLib [20], a popular open-
source library for automata learning. LearnLib is available under the Apache
License 2.0 and provides a multitude of implementations for different compo-
nents of the MAT framework, including learning algorithms, output oracles and
2 Including the equivalence oracle, since both components produce output queries.

6 B. K. Aichernig et al.

equivalence oracles. With the exception of the learning algorithm, we have cre-
ated our own concrete implementations of these components, as described in the
remainder of this section. Unfortunately, LearnLib does not currently support
a learning algorithm for FSTs. Therefore, we will define a mapper which masks
the non-deterministic behaviour of our SULs to such an extent that the induced
abstraction approximates a Mealy machine well enough for L* and related algo-
rithms to perform successful, stable and repeatable learning runs.

3.1 System Under Learning: The AVL489 Particle Counter

The AVL Particle Counter—or AVL489 for short—is an automotive measure-
ment device designed to measure the particle concentration in engine exhaust
by means of laser scattering [8]. The device can be operated in one of several
discrete states corresponding to different activities, abbreviated by single letters:

DX =

⎧
⎨

⎩

P (Pause), S (Standby), U (Purging), R (ResponseCheck),
Z (ZeroCheck), M (Measurement), I (Integ. Measurement),
L (LeakageCheck)

⎫
⎬

⎭

The device can be remotely controlled by the testbed automation system via an
Ethernet connection by means of the AK protocol [21]. The automation system
always initiates the communication by sending an AK telegram, consisting of a
4-letter code. The device replies with an answer telegram, repeating back the
code, followed by a data payload. Telegrams of the form S*** initiate state
transitions while those of the form A*** are used to query specific device param-
eters or values. When transitioning between the operating states, the device may
have to perform physical activities (e.g. opening/closing of valves) during which
it may be unable to accept incoming commands. This behaviour is expressed by
a second, orthogonal state dimension:

DY = {R (Ready), B (Busy)}

In the event of an operating state change, the device may simultaneously
switch to Busy. In this case, incoming commands are refused until the device
autonomously switches back to Ready after a few seconds. In addition, the device
can be operated either remotely, as previously explained, or manually, as repre-
sented by a third state dimension:

DZ = {R (Remote), M (Manual)}

The device can be switched to Manual control via the AK command SMAN.
Usually, the only possible following interaction is a return to Remote via SREM.
Neither are the commands SMAN and SREM refused during Busy phases, nor do
they delay the return to Ready.

However, the observable device state D = DX × DY × DZ does not uniquely
identify the actual device state since the latter may also contain information
dependent on its history or timing aspects. Generally, the properties described

Learning-Based Testing of an Industrial Measurement Device 7

above are merely our expectations about the device’s behaviour (based on com-
mon practice), which we intend to either confirm or refute.

We aim for an acceptable runtime of our learning setup in an industrial
context. However, we also try to incorporate as little domain knowledge as pos-
sible into our learning setup, which limits our ability to perform domain-specific
optimizations. Therefore, we based our learning approach on a few assumptions
about our SUL which can be viewed as part of a testing hypothesis (cf. [17]):

Assumption 1. A: All variants of the AVL489 measurement device examined
in this work can be described as FSTs. B: The non-deterministic behaviours of
each examined FST are limited to only a few isolated instances.

Strictly speaking, we could regard each AK command as an input to our
SUL and the data payload of its response as its output. For reasons described in
Sect. 3.3, this is impractical. For each transition performed by our abstraction,
we send multiple AK commands to the SUL. We use some of these commands
to trigger a state transition and others to generate the output produced by
the abstraction. Instead of substantially changing the relatively commonly used
mapper definition [5,15] from Sect. 2.3, we will use the set of state setter actions
AKS, as well as the set of state retrieval actions AKA to describe our interactions
with the device. Elements of both sets are composed of the command code and
the data payload of the response. In the case of AKS, the payload contains
information about the success (Ok) or failure (Error)3 of the action and in case
of AKA, it contains the observable device state D:

AKS = S*** × {Ok,Error}

AKA = {ASTA} × D

Here, S*** denotes the set of all S-telegrams. The ASTA telegram retrieves the
observable device state D. Unless specified otherwise, we will use the symbols
x ∈ DX , y ∈ DY and z ∈ DZ to refer to unspecified elements of their respective
domains. We will abbreviate elements of D in the form xyz, e.g. PRR or UBz.

3.2 Masking Non-determinism with Sink States

Assumption 2. A: If the SUL responds to an S-telegram with an Error mes-
sage, the SUL state remains unchanged. B: If an ASTA response reveals no observ-
able SUL state change after an S-telegram has been issued, no change of the
actual SUL state has taken place.

Based on Assumption 2, we introduced several optimizations to increase the per-
formance and stability of the learning setup. In both cases of Assumption 2, we
redirected the transition to a sink state. To cover case B, we introduce a dedi-
cated output symbol Inert which is returned when the SUL performed a valid

3 Simplified for the purpose of this work. In reality, the response to an S-command is
either empty in the case of success or contains a specific error code.

8 B. K. Aichernig et al.

self-transition. In both cases, Error or Inert are returned for all subsequent
outputs until the SUL is reset. These behavioural augmentations are performed
with the help of a mapper, which is described in detail in Sect. 3.3. Consequently,
all self-transitions in the SUL are replaced with sink-transitions in the learned
model. In a hypothetical post-processing step, these sink transitions can be easily
turned back into self-transitions.

q′
1

i1/o′
1

q1start

i1/o1

τ/−

q′
2

i2/o′
2

i1/o′
1

i2/o′
2

q2

i1/o1
i2/o2

i2/o2

τ/−

Fig. 2. Timing-induced non-determinism.

q1start

q2

i1/o1i2/o2 qs

i1/s

i2/
s

i1/s

i2/s

τ/
−

τ/−

Fig. 3. Introducing a sink state qs.

Our reasons for the introduction of sink states were twofold: on one hand, we
attempted to prune the search space of the learning algorithm in order to increase
its performance. On the other hand, the description of the measurement device
as an FST yields instances of non-determinism like the one depicted in Fig. 2.
These instances occur when a state q1 exhibits both a self-transition as well as
an internal transition τ/−4 to another state q′

1 which is triggered after a certain
amount of time has been spent in q1. As the FST formalism does not account
for the passing of time, the state q1 is assumed to be unaltered after performing
the self-transition. In reality however, each S-telegram sent to the measurement
device takes several hundred milliseconds to process, effectively transitioning to
a state with a reduced retention time until the timed transition is triggered.
Therefore, a sequence of inputs i∗1 of sufficient length will eventually cause a
transition to q′

1. The number of possible self-transitions before the time-out will
most likely vary between experiments. If LearnLib encounters this behaviour
repeatedly with different numbers of performed self-transitions, it will abort the
learning process due to its inability to handle non-deterministic SULs.

This problem is mitigated by redirecting δ(q1, i1) to a sink state qs, as
depicted in Fig. 3. Once qs has been reached, all transitions will output its spe-
cific sink label s. This modification was sufficient to keep the algorithm stable
during hypothesis creation. However, in the case of loops of two or more tran-
sitions, the non-determinism cannot be masked by the introduction of a sink
state. If the execution of a long oscillating sequence [i2, i1]∗ exceeds the time-out,
4 In the notation for labelled transition systems, τ signifies an internal action which is

not triggered via an external input. τ and inputs can be arbitrarily interleaved. “−”
signifies quiescence—i.e. the absence of an output.

Learning-Based Testing of an Industrial Measurement Device 9

it will trigger a τ -transition in both Figs. 2 and 3. We will discuss our approach
to this problem further in Sect. 3.5.

3.3 Mapper Implementation

Assumption 3. The ASTA command always correctly retrieves the observable
device state without influencing the actual device state.

As explained in Sect. 3.1, the ASTA command retrieves the observable device
state. According to Assumption 3, it behaves like a status message as described
by Lee and Yannakakis [24]. Consequently, all interactions in AKS are indepen-
dent of those in AKA. To save further learning time, we directly incorporate
Assumption 3 into the learning setup. For each individual step of the abstrac-
tion, we let the SUL perform both a state transition step, which is treated like an
input, and a state retrieval step, which is treated like an output. The definition
of the set of concrete input actions CI ⊆ AKS

{0,1} ∪ AKA
{1...np} allows for both

S-telegrams as well as continuous polling for a timed device state change via
ASTA. Hence, we may either send an S-telegram or actively wait and poll. With
the maximum number of polls defined as np = �Tp · fp�, we choose the polling
time-out Tp = 25 s and the polling frequency fp = 10 Hz. We choose the set of
concrete output actions as CO ⊆ AKA

{0,1}. With these definitions in place, an
exemplary transition sequence on the concrete SUL S could look like this:

q0
〈SPUL,Ok〉/〈ASTA,UBR〉−−−−−−−−−−−−−−→ q1

〈SPAU,Error〉/εError−−−−−−−−−−−−→ q1
εSTBY/εError−−−−−−−→ q1

Note that, after S replies to SPAU with Error, only empty sequences of actions, i.e.
no actions at all, are performed on S. Simultaneously to this sequence performed
by S, we would like our abstraction αS

A to perform

a0
SPUL/UBR−−−−−−→ a1

SPAU/Error−−−−−−−→ aError
STBY/Error−−−−−−−→ aError

Table 1. Abstractions and state transitions performed by the mapper.

Mapper state r ∈ R Abstract symbol
∇(r, c)

Concrete symbol
c ∈ (CI ∪ CO)

Successor state
Δ(r, c)

Input abstraction

〈d, ⊥〉 i ∈ S*** 〈i, Ok〉 〈d, ⊥〉
〈d, ⊥〉 i ∈ S*** 〈i, Error〉 〈d, Error〉
〈d, ⊥〉 Wait poll(d) 〈d, ⊥〉
〈d, s ∈ {Error, Inert}〉 i ∈ I εi 〈d, s〉
Output abstraction

〈d, ⊥〉 d′ with d′ �= d 〈ASTA, d′〉 〈d′, ⊥〉
〈d, ⊥〉 Inert 〈ASTA, d〉 〈d, Inert〉
〈d, s ∈ {Error, Inert}〉 s εs 〈d, s〉

10 B. K. Aichernig et al.

Table 2. State transition and output behaviour of the sink cache.

Output λK(K, ı̄) Successor State δK(K, ı̄) Condition

αS
A(̄ı) K Λ(K, ı̄) = ⊥ ∧ last(αS

A(̄ı)) /∈ S

αS
A(̄ı) K ∪ {〈̄ı, αS

A(̄ı)〉} Λ(K, ı̄) = ⊥ ∧ last(αS
A(̄ı)) ∈ S

ōp · last(ōp)
n K Λ(K, ı̄) = ōp ∈ O+ ∧ n = |̄ı| − |ōp|

Here, SPAU triggers a transition to a sink state aError which enforces the out-
put symbol Error for all subsequent transitions. As suggested by this exam-
ple, we choose the abstract input alphabet I = S*** ∪ {Wait} as the set of
S-telegrams plus an additional Wait symbol to abstract the polling for timed
transitions. We choose our abstract output alphabet O ⊆ D ∪ S with the set of
sink labels S = {Error, Inert}. To achieve this behaviour, we designed a map-
per A = 〈R, r0, CI , CO, I, O,Δ,∇〉. The mapper states R ⊆ D × (S ∪ {⊥})
comprise the last observed device state and either a sink label or, alterna-
tively, ⊥. We define the state transition function Δ and the abstraction func-
tion ∇ as per Table 1. We define the polling sequence for timed transitions
as poll(d ∈ D) = [〈ASTA, d1〉 . . . 〈ASTA, dn〉] with (n ≤ np ∧ dn
= d ∧ ∀j ∈
{1 . . . n − 1} : dj = d) ∨ n = np.

3.4 Output Oracle Implementation

As previously mentioned in Sect. 2.2, an output oracle is ideally suited to perform
caching operations on output queries to increase the performance of the learning
setup5. In particular, we are interested in input words containing a prefix which
in the past has been observed to lead to a sink state. We now know beforehand
that each input word containing the same prefix will inevitably lead to the
same sink state which allows us to emulate the output word without performing
expensive SUL interactions. Therefore, we let our output oracle implement a
sink cache, as it was previously done by Stone et al. [30]. This technique is very
similar to the prefix closure filter for Discrete Finite Automata (DFAs) described
by Margaria et al. [25] as well as Hungar et al. [19]. Emulating output words led
to a substantial performance increase of our learning setup which allowed us to
perform learning runs of the AVL489 device overnight.

Definition 5 (Sink Cache). Let αS
A = 〈Q, q0, I, O, δ, λ〉 be a Mealy machine,

and let S ⊂ O be a set of sink labels. A sink cache is a Mealy machine
〈K, ∅, I+, O+, δK , λK〉 with K ⊂ P(I+ × O+) being the set of possible cache
states. δK and λK are defined in Table 2 utilizing the cache lookup function
Λ : K × I+ → O+ ∪ {⊥}:

Λ(K, ı̄) =

{
ōp if ∃! ı̄p ∈ pre(̄ı), ōp ∈ O+ : 〈̄ıp, ōp〉 ∈ K

⊥ otherwise

5 In addition to the caching operations defined above, we also filter redundant output
queries, as described by Margaria et al. [25].

Learning-Based Testing of an Industrial Measurement Device 11

3.5 Equivalence Oracle Implementation

Our equivalence oracle performs a random walk through the transitions of the
hypothesis and compares the transition outputs with those produced by the
abstract SUL. However, we were unable to use the standard random-walk oracle
implementation of LearnLib due to two additional requirements: (1) We want to
end the current sequence and start a new one when and only when the random
walk chooses a transition to a sink state. Otherwise we would either waste oracle
steps while being stuck in a sink state or squander the chance of testing a nearby
sink transition before ending the sequence. (2) We need the ability to terminate
a sequence early if the strict avoidance of sink transitions forces the random walk
into an oscillating sequence. In essence, we need to weaken our learning setup for
αS

A to be sufficiently adequate. We mitigate this problem through an empirically
chosen approach which we will describe informally due to scope limitations: After
reaching a state q within the hypothesis, we assign probabilities pi ∈ [0, 1] to
each outgoing transition such that their sum equals 1. If the transition leads
to a sink state, pi is diminished relative to the other transition probabilities
by a fixed factor. We also make pi indirectly proportional to the number of
times transition i has been chosen more often than the least-chosen transition
originating in q. If the structure of the hypothesis funnels the random exploration
into an oscillating sequence, this measure re-introduces an amount of fairness
into the random choice and will eventually allow a sink transition to overrule
the oscillating transitions. Dependent on the hypothesis, our equivalence oracle
yielded a mean sequence length of around 30±3 symbols and, within 3000 steps
performed in total, a longest occurring sequence of about 100 ± 20 symbols.

3.6 Testbed Simulation Model

The AVL Test Center is tasked with testing the integration of various automotive
measurement devices into the testbed automation system. As this integration
needs to be tested for a multitude of different measurement device combina-
tions and device firmware versions, it is infeasible to have all the actual devices
present at the Test Center. Instead, the test engineers use a Testbed Simulator
(TBSimu) which is able to emulate the AK interfaces of many different measure-
ment devices over Ethernet. For our experiments, the test engineers provided us
with a custom-made TBSimu model of AVL489 which can be configured to
exhibit one of sixteen different implementation faults. This setup was previ-
ously used to evaluate the effectivity of both the UML-based and MDML-based
MBMT approaches. Therefore, it stood to reason to use the same model for the
evaluation of our LBT approach. Using the terminology of mutation testing, we
will refer to the faulty configurations of the simulation model as SUL mutants.
We named the respective mutants S1 to S16, as well as S0 for the error-free SUL.
We refer to their respective learned models as M0 − M16. An overview of the
individual SUL mutants is given in Table 3.

12 B. K. Aichernig et al.

4 Results

4.1 Learned SUL Mutant Models

We ran the learning setup on each of the SUL mutants, as well as on S0. We
then converted each learned model into a human-readable transition table. These
transition tables were manually analysed and compared to the mutant specifica-
tions. Without exception, all learned mutant models showed differences to M0,
thereby revealing the presence of errors. Some of the learned models showed par-
tial deviations from the mutant specifications in Table 3 - either due to implemen-
tation errors or imprecise communication of the specification. Two of the learned
models (specifically, M10 and M11) suggested the presence of highly unexpected
behavioural anomalies within their respective SULs. These anomalies were later
confirmed by manual experiments. All models, including M0, showed one com-
mon fault respective to our expectations from Sect. 3.1: Although the SULs were
supposed to reject all commands except SMAN and SREM while in Manual mode,
all Manual states accepted the same inputs as their Remote counterparts and
reacted analogously. This effectively turned the Manual state space into a copy
of the Remote state space.

Table 3. An overview of the SUL mutants, as well as mutant detection results of the
LBT approach and both MBMT approaches.

ID Mutant description UML MDML LBT

1 SMAN (Manual) disabled in Measurement ✓ ✓ ✓

2 SMAN (Manual) disabled in Integ. Measurement ✓ ✓ ✓

3 SMAN (Manual) disabled in Purging ✓ ✓ ✓

4 No Busy phase when changing to Pause ✓ ✓ ✓

5 No Busy phase when changing to Standby ✓ ✓ ✓

6 No Busy phase when changing to LeakageCheck ✓ ✓ ✓

7 SREM (Remote) disabled in ZeroCheck ✗ ✗ ✓

8 SREM (Remote) disabled in Purging ✓ ✗ ✓

9 SREM (Remote) disabled in LeakageCheck ✗ ✗ ✓

10 Duration of Busy phases divided in half ✓ ✓ (✓)

11 Duration of Busy phases doubled ✓ ✓ ✓

12 SMGA (Measurement) disabled ✓ ✓ ✓

13 SINT (Integ. Measurement) disabled ✓ ✓ ✓

14 SPUL (Purging) disabled ✓ ✓ ✓

15 SNGA (ZeroCheck) disabled ✓ ✓ ✓

16 Additional Busy phase when re-entering Pause ✓ ✗ ✓

Mutation Score (mutant detection ratio): 87.5% 75.0% 100.0%

Learning-Based Testing of an Industrial Measurement Device 13

Disregarding this common error, the models M1 − M3, M7 − M9 and
M12−M15 were consistent with their respective mutant specifications. M4−M6

showed the specified mutation for transitions triggered by i ∈ S***, but not for
i = Wait. In contrast to the specification, M16 exhibited a general mutation

of all transitions q
i/PRz−−−−→ q′ to q

i/PBz−−−−→ q′′. For M10 and M11, the analysis of
the learning results was more complicated. We expected the algorithm to miss
S10 due to its shorter Busy phases. We also expected M11 to have the latter

transition of q
SPUL/UBz−−−−−−→ q′ Wait/PBz−−−−−−→ q′′ changed to q′ Wait/Inert−−−−−−−→ qInert due

to the Wait-transition exceeding our polling time-out Tp. Neither expectation
was reflected in the learning results. Instead, a closer examination of the learned
models and their respective SULs revealed an implementation error of the afore-
mentioned timed transition. In M10, the transition was changed in a way that
decoupled the timed transition from Purging to Pause from the Busy time-out,

resulting in q
SPUL/UBz−−−−−−→ q′ Wait/URz−−−−−−−→ q′′ Wait/PBz−−−−−−→ q′′′. Had S10 been imple-

mented correctly, our LBT approach would most likely have missed it. In S11,
the state Purging did not exhibit a lengthened Busy phase when left via Wait
but instead passed it on to Pause when prematurely left via SPAU. This caused
a split of Pause into two states with different Wait-transitions (see Fig. 4).

SPUL/UBz

Wait/PBz after 20 s

Wait/PRz after 8 s SPAU/PBz

Wait/PRz after 40 s Wait/Inert after Tpi/PRz

Fig. 4. Split of state 〈Pause, Busy, z〉 as captured by M11.

4.2 Discussion and Comparison to MBMT Approaches

In Table 4, we give an overview over a selection of learned mutant models with
their number of states, the total number of non-redundant output queries, the
number of queries executed on the SUL, the percentage of queries filtered by
the sink cache, the same quantities regarding the individual steps and the total
learning time. The percentage of filtered queries is consistent with the results of
another case study utilizing a prefix-closure filter [25] as well as one on a version
of L* optimized for prefix-closed automata [9]. With only few instances of hid-
den information, the device state is highly observable via the ASTA command.
Therefore, the learning algorithm managed to capture their behaviour correctly
in its initial hypothesis, without any counterexamples provided by the equiv-
alence oracle. The only exception to this was S10 which contained states that
could only be distinguished by at least two subsequent inputs. Hence, M10 was
the only model to require counterexample processing, thereby yielding a high
learning time despite the increased throughput of S10. In its particular case, the
equivalence oracle would need to find the sequence [STBY,Wait, SPUL,Wait,Wait]

14 B. K. Aichernig et al.

which constitutes the shortest possible counterexample to the initial hypothesis
produced by L*. However, our equivalence oracle is not guaranteed to produce
the shortest counterexample. Instead, it repeatably produced longer and more
indirect variants of the same counterexample.

Table 4. Comparison of selected learned mutant models in terms of state space and
learning effort: C (first hypothesis correct), F (faster SUL), S (slower SUL).

ID States Queries Steps Time
[hh:mm:ss]

Comment

Total SUL Filtered Total SUL Filtered

0 32 4737 1593 66.4% 27972 11532 58.8% 09:52:30 C

4 32 4735 1615 65.9% 27972 11640 58.4% 09:48:01 C

6 30 4464 1512 66.1% 26100 10932 58.1% 09:51:11 C

10 36 9160 2849 68.9% 100255 34433 65.7% 15:35:40 F

11 34 5075 1667 67.2% 29268 11640 60.2% 17:15:15 C, S

12 22 3298 970 70.6% 17748 7164 59.6% 06:43:17 C

14 28 4178 1370 67.2% 25380 10500 58.6% 07:12:50 C

The LBT approach managed to distinguish all SUL mutants from the orig-
inal, unlike both the UML- and MDML-based MBMT approaches. The UML-
based approach suffered from performance bottlenecks in the test case generation
algorithm and missed S7 and S9 due to its restricted exploration depth [4]. We
show the combined results from all three test suites examined in the UML case
study in Table 3. The MDML-based approach greatly improved upon the per-
formance of the UML-based approach. However, at the time of its evaluation
[10], it lacked an appropriate model de-factoring step which led to a detrimen-
tal relation between test model conciseness and test suite quality: If the system
model was encoded very efficiently, small model mutations on the syntactic level
could produce major changes on the semantic level. These coarse mutations led
to the generation of weaker test suites. The generation of negative tests (i.e.
testing the refusal of commands) was deliberately foregone in that case study to
demonstrate the ability to generate useful test suites from underspecified MDML
models. As a result, the common fault regarding the Manual mode was missed by
the MDML-based approach. In contrast, automata learning techniques are only
biased by the extent of the provided input alphabet and possible assumptions
implemented in the mapper. The UML-based approach was evaluated against
a different SUL implementation than both the MDML and LBT approaches,
which may not have contained this fault. The above factors highlight the impor-
tance of careful mutant selection in MBMT approaches, as well as the relevance
of fuzzing aspects in LBT approaches. While our learning runs take significantly
more time than the execution of the generated test suites (29–96 min for UML
and 12–15 min for MDML), they are still short enough to be performed overnight.

Learning-Based Testing of an Industrial Measurement Device 15

The AVL Test Center currently uses MDML models to generate test suites for
measurement devices. While the use of MDML has drastically reduced the effort
required for the creation and maintenance of test suites, it still requires an initial
modelling effort which, in the absence of complete specifications, may involve a
certain amount of guesswork. LBT on the other hand requires no a-priori mod-
elling effort. Only the definition of an adequate abstraction is required, which
can be re-used for similar SULs that share the same interface. It is also worth
noting that our LBT approach is based on a significantly smaller technology
stack than MDML-based test case generation, which comprised a substantial
tool chain [10]. These factors make LBT attractive for our industrial use case.

5 Related Work

The most relevant related work for our use case is that of Stone et al. [30], who
learned a common handshake protocol for Wi-Fi routers and had to deal with
non-determinism caused by a lossy communication medium which manifested in
time-out violations and message retransmissions. In contrast to our pre-emptive
usage of sink states, they redirect the learning algorithm to a sink state after a
non-deterministic re-transmission has already occurred. The non-determinisms
were later discarded from the learning results through the repetition of output
queries and a majority vote. Previously, Fiterău-Broştean et al. have employed
a number of measures to deal with the same problem when learning the TCP
protocol [14,15]. The authors masked time-outs by limiting the length of their
output queries. De Ruiter and Poll [29] have utilized LBT to analyse TLS imple-
mentations. In their application domain, a sink state implicitly occurs when a
TLS connection is closed. As their equivalence oracle, they used a modified vari-
ant of the W-Method [12] which filters prefixes navigating to this sink state. In
their work on the inference of the Session Initiation Protocol [1], Aarts et al.
introduced the technique of abstracting large SUL alphabets with the help of
a mapper. All of the above approaches are either fully or partially based on
LearnLib [20]. Both Hungar et al. [19] and Margaria et al. [25] present a number
of query filtering techniques based on domain knowledge and evaluate differ-
ent configurations thereof in their respective case studies. Berg et al. [9] have
examined the scalability of L* on DFAs and modified the learning algorithm to
perform prefix-closure filtering.

6 Conclusion and Outlook

We have created a learning setup based on LearnLib which offers a sufficiently
adequate abstraction to the AVL489 measurement device and which can be
executed within reasonable time. Our experiments have shown that the setup
masks non-deterministic behaviour of our SUL reliably enough to enable the use
of L* in AVLs industrial environment. We are confident that this method can be
used to learn other systems which exhibit similar sparse (timing-induced) non-
determinism. We have further shown that our learning setup is sensitive enough

16 B. K. Aichernig et al.

to uncover not only specified faults, but also unforeseen implementation errors
within a measurement device simulation model. In contrast to the previously
studied MBMT approaches, our LBT approach requires no initial modelling
effort which makes it attractive to our industrial setting.

However, our masking of non-deterministic behaviour is still imperfect, since
a hypothetical learning algorithm could issue membership queries containing
sufficiently long oscillating sequences to circumvent our masking mechanism. In
principle, our equivalence oracle is also able to produce oscillating sequences
although we took measures to reduce their probability of occurrence.

In fact, the non-deterministic behaviour of our SUL is rooted in its description
as an FST which lacks the concept of time. It is possible that AVL489 could
be described as a Mealy machine with timers, as introduced by Jonsson and
Vandraager [22] who also proposed a suitable learning algorithm. However, the
absence of a respective implementation is still an issue. From an industrial point
of view, LBT would lend itself to the automatic enhancement and maintenance
of MDML models for regression testing. Alternatively, MDML models containing
mere fragments of a device’s behaviour could be used to specify requirements
for the validation of learned device models.

Acknowledgements. Part of this work was supported by the TU Graz LEAD project
“Dependable Internet of Things in Adverse Environments”. We thank the four anony-
mous reviewers and Martin Tappler for their valuable feedback.

References

1. Aarts, F., Jonsson, B., Uijen, J.: Generating models of infinite-state communica-
tion protocols using regular inference with abstraction. In: Petrenko, A., Simão,
A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 188–204. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16573-3 14

2. Aarts, F., de Ruiter, J., Poll, E.: Formal models of bank cards for free. In: Sixth
IEEE International Conference on Software Testing, Verification and Validation,
ICST 2013 Workshops Proceedings, Luxembourg, Luxembourg, 18–22 March 2013,
pp. 461–468. IEEE (2013). https://doi.org/10.1109/ICSTW.2013.60

3. Aichernig, B.K.: Model-based mutation testing of reactive systems. In: Liu, Z.,
Woodcock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods.
LNCS, vol. 8051, pp. 23–36. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39698-4 2

4. Aichernig, B.K., et al.: Model-based mutation testing of an industrial measurement
device. In: Seidl, M., Tillmann, N. (eds.) TAP 2014. LNCS, vol. 8570, pp. 1–19.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09099-3 1

5. Aichernig, B.K., Bloem, R., Ebrahimi, M., Tappler, M., Winter, J.: Automata
learning for symbolic execution. In: 2018 Formal Methods in Computer Aided
Design, FMCAD 2018, Austin, TX, USA, 30 October–2 November 2018. IEEE
(2018). https://doi.org/10.23919/FMCAD.2018.8602991

https://doi.org/10.1007/978-3-642-16573-3_14
https://doi.org/10.1109/ICSTW.2013.60
https://doi.org/10.1007/978-3-642-39698-4_2
https://doi.org/10.1007/978-3-642-39698-4_2
https://doi.org/10.1007/978-3-319-09099-3_1
https://doi.org/10.23919/FMCAD.2018.8602991

Learning-Based Testing of an Industrial Measurement Device 17

6. Aichernig, B.K., Mostowski, W., Mousavi, M.R., Tappler, M., Taromirad, M.:
Model learning and model-based testing. In: Bennaceur, A., Hähnle, R., Meinke,
K. (eds.) Machine Learning for Dynamic Software Analysis: Potentials and Limits.
LNCS, vol. 11026, pp. 74–100. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96562-8 3

7. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

8. AVL List GmbH: AVL Particle Counter - Product Guide, AT2858E, Rev. 08 (2013)
9. Berg, T., Jonsson, B., Leucker, M., Saksena, M.: Insights to Angluin’s learning.

Electron. Notes Theoret. Comput. Sci. 118, 3–18 (2005). https://doi.org/10.1016/
j.entcs.2004.12.015

10. Burghard, C.: Model-based testing of measurement devices using a domain-specific
modelling language. Master’s thesis, Graz University of Technology, Institute
of Software Technology (2018). http://truconf.ist.tugraz.at/wp-content/uploads/
2018/04/MastersThesis ChristianBurghard.pdf

11. Burghard, C., Stieglbauer, G., Korošec, R.: Introducing MDML - a domain-specific
modelling language for automotive measurement devices. In: Joint Proceedings of
the International Workshop on Quality Assurance in Computer Vision and the
International Workshop on Digital Eco-Systems Co-Located with the 28th Inter-
national Conference on Testing Software and Systems (ICTSS), pp. 28–31. CEUR-
WS.org (2016). http://ceur-ws.org/Vol-1711/paperDECOSYS1.pdf

12. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Software Eng. 4(3), 178–187 (1978). https://doi.org/10.1109/TSE.1978.231496

13. Dias Neto, A.C., Subramanyan, R., Vieira, M., Travassos, G.H.: A survey on model-
based testing approaches: a systematic review. In: Proceedings of the 1st ACM
International Workshop on Empirical Assessment of Software Engineering Lan-
guages and Technologies: Held in Conjunction with the 22nd IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE) 2007, pp. 31–36.
ACM (2007). https://dl.acm.org/citation.cfm?id=1353681

14. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Learning fragments of the TCP
network protocol. In: Lang, F., Flammini, F. (eds.) FMICS 2014. LNCS, vol. 8718,
pp. 78–93. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10702-8 6

15. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Combining model learning and
model checking to analyze TCP implementations. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9780, pp. 454–471. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41540-6 25

16. Fiterau-Brostean, P., Lenaerts, T., Poll, E., de Ruiter, J., Vaandrager, F.W.,
Verleg, P.: Model learning and model checking of SSH implementations. In: Pro-
ceedings of the 24th ACM SIGSOFT International SPIN Symposium on Model
Checking of Software, Santa Barbara, CA, USA, 10–14 July 2017, pp. 142–151.
ACM (2017). https://doi.org/10.1145/3092282.3092289

17. Gaudel, M.-C.: Testing can be formal, too. In: Mosses, P.D., Nielsen, M.,
Schwartzbach, M.I. (eds.) CAAP 1995. LNCS, vol. 915, pp. 82–96. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-59293-8 188

18. Howar, F., Steffen, B.: Active automata learning in practice. In: Bennaceur, A.,
Hähnle, R., Meinke, K. (eds.) Machine Learning for Dynamic Software Analysis:
Potentials and Limits. LNCS, vol. 11026, pp. 123–148. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96562-8 5

19. Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata learn-
ing. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 315–327.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6 31

https://doi.org/10.1007/978-3-319-96562-8_3
https://doi.org/10.1007/978-3-319-96562-8_3
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/j.entcs.2004.12.015
https://doi.org/10.1016/j.entcs.2004.12.015
http://truconf.ist.tugraz.at/wp-content/uploads/2018/04/MastersThesis_ChristianBurghard.pdf
http://truconf.ist.tugraz.at/wp-content/uploads/2018/04/MastersThesis_ChristianBurghard.pdf
http://ceur-ws.org/Vol-1711/paperDECOSYS1.pdf
https://doi.org/10.1109/TSE.1978.231496
https://dl.acm.org/citation.cfm?id=1353681
https://doi.org/10.1007/978-3-319-10702-8_6
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1145/3092282.3092289
https://doi.org/10.1007/3-540-59293-8_188
https://doi.org/10.1007/978-3-319-96562-8_5
https://doi.org/10.1007/978-3-540-45069-6_31

18 B. K. Aichernig et al.

20. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib: A framework for
active automata learning. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015.
LNCS, vol. 9206, pp. 487–495. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-21690-4 32

21. Jogun, K.: A universal interface for the integration of emissions testing equipment
into engine testing automation systems: the VDA-AK SAMT-interface. Technical
report, SAE Technical Paper (1994). https://doi.org/10.4271/940965

22. Jonsson, B., Vaandrager, F.W.: Learning Mealy machines with timers (2018).
Preprint at http://www.sws.cs.ru.nl/publications/papers/fvaan/MMT/

23. Krenn, W., Schlick, R., Aichernig, B.K.: Mapping UML to labeled transition sys-
tems for test-case generation. In: de Boer, F.S., Bonsangue, M.M., Hallerstede,
S., Leuschel, M. (eds.) FMCO 2009. LNCS, vol. 6286, pp. 186–207. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17071-3 10

24. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines -
a survey. Proc. IEEE 84(8), 1090–1123 (1996). https://doi.org/10.1109/5.533956

25. Margaria, T., Raffelt, H., Steffen, B.: Knowledge-based relevance filtering for effi-
cient system-level test-based model generation. Innovations Syst. Softw. Eng. 1(2),
147–156 (2005). https://doi.org/10.1007/s11334-005-0016-y

26. Niese, O.: An integrated approach to testing complex systems. Ph.D. thesis, Techni-
cal University of Dortmund, Germany (2003). https://doi.org/10.17877/DE290R-
14871

27. Offutt, A.J., Voas, J.M.: Subsumption of condition coverage techniques by
mutation testing. Technical report, George Madison University, Fairfax, VA,
USA (1996). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.8904&
rep=rep1&type=pdf

28. OMG: OMG Unified Modeling Language (OMG UML), Version 2.5.1. Object Man-
agement Group, August 2017. http://www.omg.org/spec/UML/2.5.1

29. de Ruiter, J., Poll, E.: Protocol state fuzzing of TLS implementations. In: 24th
USENIX Security Symposium, USENIX Security 15, Washington, D.C., USA, 12–
14 August 2015, pp. 193–206. USENIX Association (2015). https://www.usenix.
org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter

30. McMahon Stone, C., Chothia, T., de Ruiter, J.: Extending automated protocol
state learning for the 802.11 4-way handshake. In: Lopez, J., Zhou, J., Soriano,
M. (eds.) ESORICS 2018. LNCS, vol. 11098, pp. 325–345. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99073-6 16

31. Tappler, M., Aichernig, B.K., Bloem, R.: Model-based testing IoT communication
via active automata learning. In: 2017 IEEE International Conference on Software
Testing, Verification and Validation, ICST 2017, Tokyo, Japan, 13–17 March 2017,
pp. 276–287. IEEE (2017). https://doi.org/10.1109/ICST.2017.32

32. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verification Reliab. 22(5), 297–312 (2012). https://doi.
org/10.1002/stvr.456

https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.4271/940965
http://www.sws.cs.ru.nl/publications/papers/fvaan/MMT/
https://doi.org/10.1007/978-3-642-17071-3_10
https://doi.org/10.1109/5.533956
https://doi.org/10.1007/s11334-005-0016-y
https://doi.org/10.17877/DE290R-14871
https://doi.org/10.17877/DE290R-14871
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.8904&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.8904&rep=rep1&type=pdf
http://www.omg.org/spec/UML/2.5.1
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://doi.org/10.1007/978-3-319-99073-6_16
https://doi.org/10.1109/ICST.2017.32
https://doi.org/10.1002/stvr.456
https://doi.org/10.1002/stvr.456

	Learning-Based Testing of an Industrial Measurement Device
	1 Introduction
	2 Preliminaries
	2.1 Notational Conventions and Mealy Machines
	2.2 Active Automata Learning
	2.3 Mapper

	3 Learning Setup
	3.1 System Under Learning: The AVL489 Particle Counter
	3.2 Masking Non-determinism with Sink States
	3.3 Mapper Implementation
	3.4 Output Oracle Implementation
	3.5 Equivalence Oracle Implementation
	3.6 Testbed Simulation Model

	4 Results
	4.1 Learned SUL Mutant Models
	4.2 Discussion and Comparison to MBMT Approaches

	5 Related Work
	6 Conclusion and Outlook
	References

