
Julia M. Badger
Kristin Yvonne Rozier (Eds.)

11th International Symposium, NFM 2019
Houston, TX, USA, May 7–9, 2019
Proceedings

NASA
Formal MethodsLN

CS
 1

14
60

Fo
rm

al
 M

et
ho

ds

 123

Lecture Notes in Computer Science 11460

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison, UK Takeo Kanade, USA
Josef Kittler, UK Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland John C. Mitchell, USA
Moni Naor, Israel C. Pandu Rangan, India
Bernhard Steffen, Germany Demetri Terzopoulos, USA
Doug Tygar, USA

Formal Methods
Subline of Lectures Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, University of York, UK

Marie-Claude Gaudel, Université de Paris-Sud, France

Subline Advisory Board

Manfred Broy, TU Munich, Germany

Annabelle McIver, Macquarie University, Sydney, NSW, Australia

Peter Müller, ETH Zurich, Switzerland

Erik de Vink, Eindhoven University of Technology, The Netherlands

Pamela Zave, AT&T Laboratories Research, Bedminster, NJ, USA

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Julia M. Badger • Kristin Yvonne Rozier (Eds.)

NASA
Formal Methods
11th International Symposium, NFM 2019
Houston, TX, USA, May 7–9, 2019
Proceedings

123

Editors
Julia M. Badger
NASA
Houston, TX, USA

Kristin Yvonne Rozier
Iowa State University
Ames, IA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-20651-2 ISBN 978-3-030-20652-9 (eBook)
https://doi.org/10.1007/978-3-030-20652-9

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6718-2828
https://doi.org/10.1007/978-3-030-20652-9

Preface

This volume contains the papers presented at the 11th NASA Formal Methods
(NFM) Symposium held during May 7–9, 2019, at Rice University in Houston, Texas,
USA.

The widespread use and increasing complexity of mission-critical and safety-critical
systems at NASA and in the aerospace industry require advanced techniques that
address these systems’ specification, design, verification, validation, and certification
requirements. The NASA Formal Methods Symposium (NFM) is a forum to foster
collaboration between theoreticians and practitioners from NASA, academia, and
industry. NFM’s goals are to identify challenges and to provide solutions for achieving
assurance for such critical systems.

New developments and emerging applications like autonomous software for
uncrewed deep space human habitats, caretaker robotics, unmanned aerial systems
(UAS), UAS traffic management (UTM), and the need for system-wide fault detection,
diagnosis, and prognostics provide new challenges for system specification, develop-
ment, and verification approaches. The focus of these symposiums are on formal
techniques and other approaches for software assurance, including their theory, current
capabilities and limitations, as well as their potential application to aerospace, robotics,
and other NASA-relevant safety-critical systems during all stages of the software
life-cycle.

The NASA Formal Methods Symposium is an annual event organized by the NASA
Formal Methods (NFM) Steering Committee, comprising researchers spanning several
NASA centers. NFM 2019 was co-hosted by Rice University and NASA-Johnson
Space Center in Houston, TX. It was organized by a collaboration between Rice,
NASA JSC, and Iowa State University.

NFM was created to highlight the state of the art in formal methods, both in theory
and in practice. The series is a spinoff of the original Langley Formal Methods
Workshop (LFM). LFM was held six times, in 1990, 1992, 1995, 1997, 2000, and
2008, near NASA Langley in Virginia, USA. The 2008 reprisal of LFM led to the
expansion to a NASA-wide conference. In 2009 the first NASA Formal Methods
Symposium was organized at NASA Ames Research Center in Moffett Field, CA. In
2010, the symposium was organized by NASA Langley Research Center and NASA
Goddard Space Flight Center, and held at NASA Headquarters in Washington, D.C.
The third NFM symposium was organized by the Laboratory for Reliable Software at
the NASA Jet Propulsion Laboratory/California Institute of Technology, and held in
Pasadena, CA, in 2011. NFM returned to NASA Langley Research Center in 2012 in
nearby Norfolk, Virginia. NASA Ames Research Center organized and hosted NFM
2013, the fifth symposium in the series. NFM 2014 was organized via a collaboration
between NASA Goddard Space Flight Center, NASA Johnson Space Center, and
NASA Ames Research Center, and held at JSC. NASA JPL hosted the seventh NFM in
2015 in Pasadena, CA. In 2016, the eighth NFM Symposium visited the University of

Minnesota, hosted by a collaboration between academia and NASA. Then, 2017
brought the ninth NFM back to NASA Ames Research Center. NASA Langley hosted
NFM’s 10th anniversary edition in 2018.

NFM 2019 encouraged submissions on cross-cutting approaches that bring together
formal methods and techniques from other domains such as probabilistic reasoning,
machine learning, control theory, robotics, and quantum computing among others. The
topics covered by the symposium include but are not limited to: formal verification,
including theorem proving, model checking, and static analysis; advances in automated
theorem proving including SAT and SMT solving; use of formal methods in software
and system testing; run-time verification; techniques and algorithms for scaling formal
methods, such as abstraction and symbolic methods, compositional techniques, as well
as parallel and/or distributed techniques; code generation from formally verified
models; safety cases and system safety; formal approaches to fault tolerance; theoretical
advances and empirical evaluations of formal methods techniques for safety-critical
systems, including hybrid and embedded systems; formal methods in systems
engineering and model-based development; correct-by-design controller synthesis; and
formal assurance methods to handle adaptive systems.

Two lengths of papers were considered: regular papers describing fully-developed
work and complete results, and two categories of short papers: (a) tool papers
describing novel, publicly-available tools; (b) case studies detailing complete appli-
cations of formal methods to real systems with publicly-available artifacts, or sub-
stantial work-in-progress describing results from designing a new technique for a new
application, with appropriate available artifacts. Artifacts enabling reproducibility
of the paper’s major contributions were strongly encouraged and considered in PC
evaluations. Artifacts may appear in online appendices; websites with additional arti-
facts, e.g., for reproducibility or additional correctness proofs, were encouraged.

The symposium received 102 abstract submissions, 72 of which resulted in full
papers: 54 regular papers, and 18 short papers (ten tool papers and eight case studies) in
total. Out of these, a total of 28 papers, 20 regular papers and eight short papers, were
accepted, giving an overall acceptance rate of 39% (a 37% rate for regular papers and a
44% rate for short papers). All submissions went through a rigorous reviewing process,
where each paper was read by at least three (and on average 3.8) reviewers.

In addition to the refereed papers, the symposium featured two invited talks and a
NASA panel. Representing ONERA in France, Dr. Virginie Wiels delivered a keynote
talk on “Integrating Formal Methods Into Industrial Processes.” Professor Richard
Murray from Caltech gave a keynote talk on “Safety-Critical Systems: Rapprochement
Between Formal Methods and Control Theory.” NFM 2019 included a NASA panel on
“Challenges for Future Exploration” featuring four NASA civil servants: Dr. Kimberly
Hambuchen, Space Technology Principle Technologist for Robotics; Emily Nelson,
Deputy Chief, Flight Director Branch; Joe Caram, Gateway Systems Engineering and
Integration Lead; Bill Othon, Gateway Verification and Validation Lead. The panel
issued challenges to the formal methods research community as NASA pushes the state
of the art in certifying the integrated systems required for human spaceflight, including
unprecedented requirements for autonomy and safe operation in uniquely challenging
environments.

vi Preface

The organizers are grateful to the authors for submitting their work to NFM 2019
and to the invited speakers and panelists for sharing their insights. NFM 2019 would
not have been possible without the collaboration of the Steering Committee, the
Program Committee, our many external reviewers who pitched in during a U.S.
Government shutdown, and the support of the NASA Formal Methods community. We
are also grateful to our collaborators at Rice University’s Computer Science
Department, including for financial support and local organization. The NFM 2019
website can be found at https://robonaut.jsc.nasa.gov/R2/pages/nfm2019.html.

March 2019 Kristin Yvonne Rozier
Julia Badger

Preface vii

https://robonaut.jsc.nasa.gov/R2/pages/nfm2019.html

Organization

Program Committee

Erika Abraham RWTH Aachen University, Germany
Julia Badger NASA, USA
Dirk Beyer LMU Munich, Germany
Armin Biere Johannes Kepler University of Linz, Austria
Nikolaj Bjorner Microsoft, USA
Sylvie Boldo Inria, France
Jonathan Bowen London South Bank University, UK
Gianfranco Ciardo Iowa State University, USA
Darren Cofer Rockwell Collins, USA
Frederic Dadeau FEMTO-ST, France
Ewen Denney NASA, USA
Gilles Dowek Inria and ENS Paris-Saclay, France
Steven Drager AFRL, USA
Catherine Dubois ENSIIE-Samovar, France
Alexandre Duret-Lutz LRDE/EPITA, France
Aaron Dutle NASA, USA
Marco Gario Siemens Corporate Technology, USA
Alwyn Goodloe NASA, USA
Arie Gurfinkel University of Waterloo, Canada
John Harrison Amazon Web Services, USA
Klaus Havelund Jet Propulsion Laboratory, USA
Constance Heitmeyer Naval Research Laboratory, USA
Marieke Huisman University of Twente, The Netherlands
Shafagh Jafer Embry-Riddle University, USA
Xiaoqing Jin Apple Inc., USA
Rajeev Joshi Amazon Web Services, USA
Laura Kovacs Vienna University of Technology, Austria
Hadas Kress-Gazit Cornell University, USA
Joe Leslie-Hurd Intel, USA
Panagiotis Manolios Northeastern University, USA
Cristian Mattarei Stanford University, USA
Stefan Mitsch Carnegie Mellon University, USA
Cesar Munoz NASA, USA
Anthony Narkawicz Amazon Web Services, USA
Necmiye Ozay University of Michigan, USA
Corina Pasareanu CMU/NASA Ames Research Center, USA
Lee Pike Amazon Web Services, USA
Kristin Yvonne Rozier Iowa State University, USA

Johann Schumann NASA, USA
Cristina Seceleanu Mälardalen University, Sweden
Bernhard Steffen University of Dortmund, Germany
Stefano Tonetta FBK-irst, Italy
Ufuk Topcu University of Texas at Austin, USA
Christoph Torens German Aerospace Center, Institute of Flight Systems,

Germany
Michael Watson NASA, USA
Huan Xu University of Maryland, USA

Additional Reviewers

Al Ghazo, Alaa
Arechiga, Nikos
Asaadi, Erfan
Bainczyk, Alexander
Bharadwaj, Suda
Bonakdarpour, Borzoo
Chen, Xin
Chen, Yu-Ting
Cubuktepe, Murat
Devriendt, Jo
Dodds, Joey
Dureja, Rohit
Ehsan, Fauzia
Elliott, Trevor
Enoiu, Eduard Paul
Fedyukovich, Grigory
Filipovikj, Predrag
Foughali, Mohammed
Fried, Dror
Friedberger, Karlheinz
Frohme, Markus
Gallois-Wong, Diane
Garoche, Pierre-Loic
Haesaert, Sofie
Herlihy, Maurice
Heule, Marijn
Immler, Fabian
Jakobs, Marie-Christine
Jansen, Nils
Jeannin, Jean-Baptiste
Jiang, Shengbing
Jones, Benjamin
Kumar, Ankit
Kunnappilly, Ashalatha
Larus, James

Lathouwers, Sophie
Lemberger, Thomas
Li, Jianwen
Li, Meng
Liu, Zexiang
Mahmud, Nesredin
Melquiond, Guillaume
Micheli, Andrea
Moscato, Mariano
Müller, Andreas
Navas, Jorge A.
Neider, Daniel
Nilsson, Petter
Peled, Doron
Prez, Ivan
Raju, Dhananjay
Ravitch, Tristan
Ren, Hao
Renault, Etienne
Rieu-Helft, Raphaël
Rüthing, Oliver
Schieweck, Alexander
Schirmer, Sebastian
Schupp, Stefan
Seidl, Martina
Sogokon, Andrew
Spießl, Martin
Tabajara, Lucas
Urban, Caterina
Vardi, Moshe
Walter, Andrew
Xu, Zhe
Zhao, Ye
Zimmerman, Daniel M.

x Organization

Challenges for Future Exploration
(Panel Description)

A NASA Panel

NASA Johnson Space Center

Abstract. As NASA and the world look to exploration opportunities beyond
low Earth orbit, several challenges have been identified. Spacecraft and other
assets that will extend human presence beyond the vicinity of Earth will have
unprecedented requirements for autonomy. These systems will be subject to new
environments, latent and decreased communications bandwidth, sparse logistics
support, and complex system requirements. New systems, such as vehicle
system management, closed-loop environmental control and life support
systems, and internal robotic caretakers, are proposed to close the technology
gap between the current state of the art and future exploration needs. Current
approaches to integration, testing, verification, and validation are likely to be
insufficient to assure the operation of these vehicles and assets given their
safety-critical functions. This panel will explore the challenges NASA is
currently facing in the development of these systems, particularly from the
standpoint of certifying the integrated system for human spaceflight.

Panelists

– Joe Caram leads the Systems Engineering and Integration Team for concept
maturation of the cislunar spacecraft - Gateway. His agency wide team is respon-
sible for refining the overall concepts for the Gateway. His work includes defining
the integrated system requirements, concept of operations, and element functional
allocations that make up the Gateway spacecraft.
Prior to his current assignment, Joe has held key leadership roles in various projects,
programs, and organizations including the lead Flight Dynamics Officer for the
X-38 Project, Aerothermodynamics Team lead for the Columbia Accident
Investigation, the Systems Engineering and Integration Chief Engineer for the
Space Shuttle Return to Flight, Manager of the Integrated Systems Performance
Office in Constellation SE&I Office, held Deputy Manager positions in both the
Systems Architecture and Integration Office and the Technical Integration Office in
the JSC Engineering Directorate, and was the manager of the Exploration Mission
Planning Office of the JSC Exploration Integration and Science Directorate. He is
the author or co-author of 24 technical papers.

– Dr. Kimberly Hambuchen is currently the NASA Space Technology Mission
Directorate’s (STMD) Principal Technologist for Robotics. As Principal Technol-
ogist, she serves as the STMD technical expert and advocate for robotics across all

NASA centers for STMD programs. Prior to this, she was the project manager for
the Human Robotic Systems project, which focused on developing and advancing
technologies to integrate robotics into human exploration missions.
As a robotics engineer in the Robotics Systems Technology branch of the Software,
Robotics and Simulation division of engineering at NASA Johnson Space Center,
Dr. Hambuchen developed expertise in novel methods for remote supervision of
space robots over intermediate time delays and has proven the validity of these
methods on various NASA robots, including JSC’s Robonaut and Centaur robots.
She participated in the development of NASA’s Space Exploration Vehicle
(SEV) and bipedal humanoid, Valkyrie (R5), to which she extended her work
developing human interfaces for robot operations.

– Emily Nelson came to JSC as an employee of United Space Alliance (USA) in
September of 1998 as an International Space Station (ISS) Thermal Operations and
Resources Flight Controller (ThOR). She supported on-orbit operations in ISS
Expeditions 0-15, and supported ISS assembly missions ISS 2A.2A (STS-101), ISS
4A (STS-97), ISS 5A (STS-98), ISS 6A (STS-100), ISS 7A.1 (STS-105) and ISS
11A (STS-113). Emily served as lead ThOR for ISS Expeditions 3, 5, 7 and 8 and
the ISS 9A (STS-112) and ISS 12A.1 (STS-116) assembly flights. In 2004 she was
hired by NASA and continued to support the ISS program as a ThOR and the
Constellation program as a leader in information architecture development until
May, 2007.
In May of 2007, Emily was selected as a Flight Director and began ISS support with
Expedition 16 in December 2007. Emily served as an ISS Flight Director in
Houston’s Mission Control during the ISS 1J (STS-124), ISS ULF2 (STS-126) and
ISS ULF3 (STS-129) missions of the Space Shuttle to ISS. She also supported the
ISS 1JA (STS-123) and ISS 2JA (STS-127) missions as an International Partner
Liaison Flight Director from the Japanese Space Agency’s SSIPC Control Center in
Tsukuba, Japan. Emily served as lead Flight Director for ISS Expeditions 18, 27,
33, 46 and 49 and the lead ISS Flight Director for STS-132/ISS ULF4 and the third
mission of the Orbital-ATK Cygnus vehicle (the OA-2 mission).
Emily is currently serving as Deputy Chief of the Flight Director Office, is also the
lead Flight Director for a series of spacewalks to repair the Alpha Magnetic
Spectrometer research platform 2019, and continues to support continuous ISS
operations in Mission Control Houston.

Team Name Each NASA Flight Director chooses a symbol/color to represent his or
her team. Ms. Nelson has chosen Peridot as the symbol for her flight control team
because in addition to being a lovely stone, it’s a gemstone known to be found in
meteorites. This “space stone” represents all of the extraordinary things, familiar
and unfamiliar, we’re bound to find as we pursue exploration further and further
from our beautiful blue planet.

– Bill Othon is the acting lead of Verification and Validation for the Gateway
Program. Bill’s team is responsible for verifying the performance of the integrated
Gateway vehicle, assembled in cis-lunar space over a number of missions and with
contributions from US and international partners.

xii Challenges for Future Exploration

Bill is also the lead for Ground Testing for the NextSTEP cis-lunar habitat activity
in the AES program. The team will conduct evaluations on a number of ground
habitat prototypes developed by US Industry partners, in preparation for exploration
missions in the Proving Ground of cis-lunar space.
Bill has been at JSC for over 30 years, and involved in both spacecraft operations
and technology development projects. Bill has a Bachelors in Aerospace
Engineering from the University of Texas at Austin and a Masters in Computer
Science from the University of Houston Clear Lake.

Challenges for Future Exploration xiii

Abstracts of Invited Talks

Safety-Critical Systems: Rapprochement
Between Formal Methods and Control Theory

Richard Murray

California Institute of Technology, USA
murray@cds.caltech.edu

Abstract. In computer science, formal methods provide a set of
mathematically-based techniques for the specification, development, and
verification of software and hardware systems. The field of control provides the
principles and methods used to design engineering systems that maintain
desirable performance by automatically adapting to changes in the environment.
It turns out that both of these fields have been solving similar problems using
different mathematical languages for the past 50 years or so. In this talk I will
discuss how a convergent set of ideas from control theory and formal methods
are coming together to provide useful frameworks for reasoning about the safety
of these systems, motivated by applications in aerospace systems and
self-driving cars.

Biography

Richard M. Murray received the B.S. degree in Electrical Engineering from California
Institute of Technology in 1985 and the M.S. and Ph.D. degrees in Electrical
Engineering and Computer Sciences from the University of California, Berkeley, in
1988 and 1991, respectively. He joined the faculty at Caltech in 1991 in Mechanical
Engineering and helped found the Control and Dynamical Systems program in 1993.

In 1998–1999, Professor Murray took a sabbatical leave and served as the Director
of Mechatronic Systems at the United Technologies Research Center in Hartford, CT.
Upon returning to Caltech, Murray served as the Division Chair (dean) of Engineering
and Applied Science at Caltech from 2000–2005, the Director for Information Science
and Technology (IST) from 2006–2009, and interim Division Chair from 2008–2009.
He is currently the Thomas E. and Doris Everhart Professor of Control & Dynamical
Systems and Bioengineering at Caltech and an elected member of the National
Academy of Engineering (2013).

Murray’s research is in the application of feedback and control to networked
systems, with applications in biology and autonomy. Current projects include analysis
and design biomolecular feedback circuits, synthesis of discrete decision-making
protocols for reactive systems, and design of highly resilient architectures for
autonomous systems. Murray is a co-founder of Tierra Biosciences, a cell-free syn-
thetic biology company, and a member of the Defense Innovation Board.

Integrating Formal Methods into Industrial
Processes

Virginie Wiels

ONERA, France
Virginie.Wiels@onera.fr

Abstract. Formal techniques and tools have made significant progress for the
last twenty years. However, industrial adoption of these techniques is still slow,
despite some prominent successes. In this talk, I will identify missing bridges
between formal verification research and potential industrial deployment, such
as certification constraints or progressive shift between test and formal
verification, and present work done at ONERA on these subjects.

Biography

Virginie Wiels is Director of the Information Processing and Systems Department
(DTIS) at ONERA, the French aerospace laboratory. DTIS conducts study and research
related to methods and tools for certification, autonomy, multidisciplinary design,
systems of systems, intelligence and surveillance, applied mathematics. It gathers 300
persons including 80 PhD students. Virginie Wiels received her PhD in Computer
Science from ISAE in 1997. Her expertise and research interest is on formal
verification of critical systems and software, and the use of formal methods for the
certification of avionics software.

She has served as principal investigator on government-sponsored research
programs but also on industry-sponsored research programs (particularly in collaboration
with Airbus). She served on EUROCAE committeeWG-71 developing new certification
guidance for airborne software (DO-178C/ED-12C) with significant contributions on the
Formal Methods Supplement (DO-333/ED-216).

Contents

Learning-Based Testing of an Industrial Measurement Device. 1
Bernhard K. Aichernig, Christian Burghard, and Robert Korošec

ML�: A Distributed Real-Time Modal Logic . 19
James Ortiz, Moussa Amrani, and Pierre-Yves Schobbens

Local Reasoning for Parameterized First Order Protocols 36
Rylo Ashmore, Arie Gurfinkel, and Richard Trefler

Generation of Signals Under Temporal Constraints for CPS Testing 54
Benoît Barbot, Nicolas Basset, and Thao Dang

Traffic Management for Urban Air Mobility . 71
Suda Bharadwaj, Steven Carr, Natasha Neogi, Hasan Poonawala,
Alejandro Barberia Chueca, and Ufuk Topcu

Towards Full Proof Automation in Frama-C Using
Auto-active Verification . 88

Allan Blanchard, Frédéric Loulergue, and Nikolai Kosmatov

Using Standard Typing Algorithms Incrementally . 106
Matteo Busi, Pierpaolo Degano, and Letterio Galletta

Using Binary Analysis Frameworks: The Case for BAP and angr 123
Chris Casinghino, J. T. Paasch, Cody Roux, John Altidor,
Michael Dixon, and Dustin Jamner

Automated Backend Selection for PROB Using Deep Learning 130
Jannik Dunkelau, Sebastian Krings, and Joshua Schmidt

Optimizing a Verified SAT Solver . 148
Mathias Fleury

Model Checking of Verilog RTL Using IC3
with Syntax-Guided Abstraction . 166

Aman Goel and Karem Sakallah

Towards a Two-Layer Framework for Verifying Autonomous Vehicles 186
Rong Gu, Raluca Marinescu, Cristina Seceleanu, and Kristina Lundqvist

Clausal Proofs of Mutilated Chessboards . 204
Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere

Practical Causal Models for Cyber-Physical Systems 211
Amjad Ibrahim, Severin Kacianka, Alexander Pretschner,
Charles Hartsell, and Gabor Karsai

Extracting and Optimizing Formally Verified Code for Systems
Programming . 228

Eleftherios Ioannidis, Frans Kaashoek, and Nickolai Zeldovich

Structured Synthesis for Probabilistic Systems . 237
Nils Jansen, Laura Humphrey, Jana Tumova, and Ufuk Topcu

Design and Runtime Verification Side-by-Side in eTrice 255
Sudeep Kanav, Levi Lúcio, Christian Hilden, and Thomas Schuetz

Data Independence for Software Transactional Memory 263
Jürgen König and Heike Wehrheim

Transaction Protocol Verification with Labeled Synchronization Logic. 280
Mohsen Lesani

Symbolic Model Checking of Weighted PCTL Using Dependency Graphs . . . 298
Mathias Claus Jensen, Anders Mariegaard, and Kim Guldstrand Larsen

Composing Symmetry Propagation and Effective Symmetry Breaking
for SAT Solving . 316

Hakan Metin, Souheib Baarir, and Fabrice Kordon

Formal Methods Assisted Training of Safe Reinforcement
Learning Agents . 333

Anitha Murugesan, Mohammad Moghadamfalahi,
and Arunabh Chattopadhyay

Formalizing CNF SAT Symmetry Breaking in PVS 341
David E. Narváez

Fly-by-Logic: A Tool for Unmanned Aircraft System Fleet Planning
Using Temporal Logic . 355

Yash Vardhan Pant, Rhudii A. Quaye, Houssam Abbas, Akarsh Varre,
and Rahul Mangharam

A Mixed Real and Floating-Point Solver . 363
Rocco Salvia, Laura Titolo, Marco A. Feliú, Mariano M. Moscato,
César A. Muñoz, and Zvonimir Rakamarić

xx Contents

Online Parametric Timed Pattern Matching
with Automata-Based Skipping . 371

Masaki Waga and Étienne André

Author Index . 391

Contents xxi

Learning-Based Testing of an Industrial
Measurement Device

Bernhard K. Aichernig1, Christian Burghard1,2(B), and Robert Korošec2

1 Institute of Software Technology, Graz University of Technology, Graz, Austria
{aichernig,burghard}@ist.tugraz.at

2 AVL List GmbH, Graz, Austria
{christian.burghard,robert.korosec}@avl.com

Abstract. Active automata learning algorithms have gained increas-
ing importance in the field of model-based system verification. For some
classes of systems - especially deterministic systems, like Mealy machines,
a variety of learning algorithm implementations is readily available.
In this paper, we apply this technique to a measurement device from
the automotive industry in order to systematically test its behaviour.
However, our system under learning shows sparse non-deterministic
behaviour, preventing the direct application of the available learning
tools.

We propose an implementation of the active automata learning frame-
work which masks this non-determinism. We repeat a previous model-
based testing experiment with faulty devices and show that we can detect
all injected faults. Most importantly, our technique was also able to find
unknown bugs.

Keywords: Active learning · Automata learning · Model inference ·
Testing · Mutation analysis · Automotive case study · Testbed

1 Introduction

Due to the ever increasing complexity of industrial software and mechatronical
systems, model-based testing (MBT) techniques have seen a popularity gain in
the past two decades [13,32]. The practice of model-based testing involves the
creation of a system model, using an appropriate abstraction of the system under
test (SUT). From this model, test cases are automatically derived according to
a specific test selection method. These test cases can then be executed on the
SUT to either strengthen the trust in its conformance to the system model or to
disprove said conformance. The sub-discipline of model-based mutation testing
(MBMT) [3] deserves special mentioning. In MBMT, a set of mutants, i.e. faulty
variants of the system model, is generated. Test cases are selected in order to
maximize the number of mutants which can be distinguished from the original.
Hence, MBMT is able to rule out the presence of specific faults and, under certain
circumstances, is also able to subsume other common test-selection criteria [27].
c© Springer Nature Switzerland AG 2019
J. M. Badger and K. Y. Rozier (Eds.): NFM 2019, LNCS 11460, pp. 1–18, 2019.
https://doi.org/10.1007/978-3-030-20652-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20652-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-20652-9_1

2 B. K. Aichernig et al.

However, the feasibility of MBT techniques strongly depends on the presence
of adequate system models which are not always available. Learning-based testing
(LBT) [6] is a complementary approach to the conformance testing approaches
described above. Here, a learning algorithm infers a system model through inter-
action with a black-box system. This learned model can then be checked for the
fulfilment of requirements [15,16] or for conformance to a reference model [31].
Due to its objective to explore the entire space of system behaviours without
regards to a specification (restricted only by the chosen abstraction), LBT can
be used for fuzzing, i.e. robustness testing [2,29]. The fact that LBT does not
require the presence of system models is an important factor in its industrial
application.

Industrial Use Case. The AVL List GmbH is the world’s leading supplier of auto-
motive test systems with over 9.500 employees worldwide. Its portfolio comprises,
among other things, a wide variety of measurement devices for engine exhaust,
fuel consumption, engine torque, etc. These measurement devices are usually
arranged in the form of a testbed (e.g. for engines, powertrains or entire vehi-
cles) and integrated into a testbed automation system which controls each device,
e.g., over an Ethernet connection. In the past, we have developed two MBMT
approaches to test this integration for a specific measurement device. Our first
approach [4,23] used UML [28] to specify the system model. The second app-
roach [10,11] used a domain-specific modelling language called MDML.

Summary and Contributions. In the work at hand, we present a case study
regarding the application of a learning-based testing approach to the same
exhaust measurement device. We further present our approach to mask sparse
non-deterministic behaviour of this device to enable the use of off-the-shelf
automata learning algorithms. We perform a mutation analysis on our LBT
approach—i.e. we evaluate its fault detection capability relative to a set of
mutated devices. Finally, we compare the results of the mutation analysis with
those of our MBMT approaches which have been evaluated against the same set
of mutants.

Our contributions are threefold: (1) Our case study provides further evidence
that LBT can be successfully applied in industry and, most importantly, that
it helps in finding bugs. (2) The mutation analysis shows that LBT finds more
injected faults than our previous approaches with model-based test-case gener-
ation. To the best of our knowledge this is the first comparison of this kind. (3)
We provide details of a mapper that speeds-up learning and masks occurrences
of non-determinism.

Structure. Section 2 defines used formalisms and gives a background on active
automata learning. In Sect. 3, we describe the measurement device under test
and the various components of our learning setup. The learning results based
on these implementations are presented in Sect. 4. We discuss related work in
Sect. 5 and draw our conclusions in Sect. 6.

Learning-Based Testing of an Industrial Measurement Device 3

2 Preliminaries

2.1 Notational Conventions and Mealy Machines

Let a ∈ A be a symbol from an alphabet A. We define words or sequences
over this alphabet as ā = [a1, a2, . . . , an] ∈ A∗ with the empty word ε and
A+ = A∗ \ {ε}. We lift symbols a ∈ A to words [a] ∈ A∗. The set of words over
A within a defined length range is written as A{m...n} = {ā ∈ A∗ | m ≤ |ā| ≤ n}.
We write the concatenation of words as ā = ā1 · ā2. We write the n-fold self-
concatenation of a word as ān with n ∈ N>0 and ā1 = ā, as well as ā∗ for
undefined finite n. We define last(ā) : A+ → A to return the last symbol an from
a sequence of length n. We furthermore define the set of non-empty prefixes of
a sequence pre(ā ∈ A+) = {āp ∈ A+ | ∃ ās ∈ A∗ : ā = āp · ās}.

Definition 1 (Finite-state transducer (FST)). A finite-state transducer is
a 6-tuple 〈Q, q0, I, O, δ, λ〉 with a sets of states Q, an initial state q0 ∈ Q, an
input alphabet I, an output alphabet O, a state transition relation δ ⊆ Q× I ×Q
and an output relation λ ⊆ Q × I × O.

If 〈q, i, q′〉 ∈ δ and 〈q, i, o〉 ∈ λ, we write q
i/o−−→ q′.

Definition 2 (Mealy machine). A Mealy machine is an FST M =
〈Q, q0, I, O, δ, λ〉 with δ and λ restricted to functions: δ : Q × I → Q and
λ : Q × I → O.

If a Mealy machine M receives an input sequence ı̄ = [i1, i2, · · · , in], such

that q0
i1/o1−−−→ q1

i2/o2−−−→ q2 · · · in/on−−−−→ qn, producing an output sequence
ō = [o1, o2, · · · on], we write M(̄ı) = ō. Two Mealy machines M1 and M2 are
called equivalent iff ∀ ı̄ ∈ I+ : M1(̄ı) = M2(̄ı).

2.2 Active Automata Learning

Active automata learning [18] is the practice of inferring the internal behaviour of
a black-box system by stimulating it with inputs and observing the produced out-
puts. One of the most important contributions in this field was made by Angluin
[7] who proposed an algorithm called L* to infer regular sets of strings from
a minimally adequate teacher (MAT). With slight modifications, the L* algo-
rithm was later adapted to Mealy machines [26]. The MAT framework, depicted
in Fig. 1, consists of a learner who implements the learning algorithm, and a
teacher who usually encapsulates the system under learning (SUL). The learner
is able to pose two types of questions to the teacher:

Output Query1: Here, the learner supplies an input word ı̄ ∈ I+ to the teacher
who responds with an output word ō ∈ O+ with |ō| = |̄ı|. Before an output query
is executed, the teacher resets the SUL to a defined initial state. By posing output
queries, the learner constructs a hypothesis H of the Mealy machine S which is
1 Also known as membership query in literature.

4 B. K. Aichernig et al.

assumed to be implemented in the SUL. Output queries may be handled by a
component of the teacher called output oracle which resets the SUL, executes ı̄
symbol by symbol, records the SUL output and compiles it into ō. While this
task is trivial by itself, its position in the data flow allows the output oracle to
enact domain-specific performance-increasing caching operations as it is able to
analyse each ı̄ before it is executed on the SUL.

L*
Algorithm

Learner Minimally Adequate Teacher

Equivalence
Oracle

Output
Oracle

Sink State
Cache

Mapper

Reset

Input

Measurement
Device

TelegramCaching

Equivalence Query

Output Query

Yes or
Counterexample

Output Sequence Output

Response

Fig. 1. Minimally adequate teacher (MAT) framework, including our specific imple-
mentation of the teacher.

Equivalence Query: When the learner has formed a hypothesis H, it is for-
warded to the teacher. If H is equivalent to S, the teacher issues a posi-
tive response and the learning process concludes with H as its result. Oth-
erwise, the teacher responds with a counterexample to equivalence 〈̄ı, ō〉 with
S (̄ı) = ō
= H(̄ı). The learner uses this counterexample and subsequent out-
put queries to refine its hypothesis in a new round of learning. If the SUL is
a black-box, equivalence queries cannot be executed directly. In this case, the
teacher contains a component called equivalence oracle, which resolves an equiv-
alence query into a series of output queries. In essence, the equivalence oracle
performs a conformance test on the SUL with respect to the hypothesis [6]. As
this approach to equivalence checking is subject to the inherent incompleteness
of testing, it cannot guarantee that the learning result accurately captures the
behaviour of a black-box SUL. In the work at hand, we use a guided random
testing approach, described in Sect. 3.5.

2.3 Mapper

In most cases, an additional abstraction layer must be introduced between the
SUL and the rest of the MAT framework, e.g., to reduce the size of an excessively
large SUL state space or to augment the input or output alphabets [2]. For this
purpose, Aarts et al. [1] have proposed a stateful mapper component to abstract
the communication between the output oracle and the SUL.

Learning-Based Testing of an Industrial Measurement Device 5

Definition 3 (Mapper). A mapper is an 8-tuple 〈R, r0, CI , CO, I, O,Δ,∇〉
with a set of states R, an initial state r0 ∈ R, a concrete input alphabet CI ,
a concrete output alphabet CO, an abstract input alphabet I, an abstract output
alphabet O, a state transition function Δ : R×(CI ∪CO) → R and an abstraction
function ∇ : (R × CI → I) ∪ (R × CO → O).

The output oracle operates on the mapper via the abstract alphabets I and O
while the mapper uses the concrete alphabets CI and CO to interact with the
SUL. If Δ(r, c) = r′, we write r

c−→ r′. We also use the mapper to reset the
SUL to a defined initial state before performing an output query. Due to scope
limitations and no direct relevance to our contribution, we cannot give a more
detailed explanation of our reset operation in this work.

Definition 4 (Abstraction). Let S = 〈Q, q0, CI , CO, δ, λ〉 be an FST and let
A = 〈R, r0, CI , CO, I, O,Δ,∇〉 be a mapper. The abstraction of S via A is an
FST αS

A = 〈Q × R, 〈qo, ro〉, I, O ∪ {⊥}, δα, λα〉 so that δα and λα satisfy the
following inference rules:

q
ci/co−−−→ q′, r

ci−→ r′ co−→ r′′, ∇(r, ci) = i, ∇(r′, co) = o

(〈q, r〉, i, 〈q′, r′′〉) ∈ δα ∧ (〈q, r〉, i, o) ∈ λα

� ci ∈ CI : ∇(r, ci) = i

(〈q, r〉, i, 〈q, r〉) ∈ δα ∧ (〈q, r〉, i,⊥) ∈ λα

If an abstract input i ∈ I is received, a concrete input ci ∈ CI is chosen non-
deterministically, so that ∇(r, ci) = i. If no such ci can be found, the mapper
issues the output ⊥. The abstraction of a concrete output co ∈ CO is straight-
forward since ∇ contains exactly one abstract output for each co and r′ ∈ R.

In general, it is possible that αS
A introduces additional non-determinism

through A that has not been present in S. Aarts et al. [1] have defined an
abstraction αS

A to be adequate for a Mealy machine S if it introduces no non-
determinism and is itself perceived as a Mealy machine. Our definition of an
abstraction is based on non-deterministic SULs in the form of FSTs rather than
on deterministic SULs in the form of Mealy machines. As we will explain in detail
in Sect. 3, we use αS

A to mask non-determinism present in our SULs. We refer to
an abstraction as sufficiently adequate relative to a given learning algorithm2 if
the algorithm is unable in practice to distinguish the abstraction from a Mealy
machine.

3 Learning Setup

We implemented our learning setup in Java using LearnLib [20], a popular open-
source library for automata learning. LearnLib is available under the Apache
License 2.0 and provides a multitude of implementations for different compo-
nents of the MAT framework, including learning algorithms, output oracles and
2 Including the equivalence oracle, since both components produce output queries.

6 B. K. Aichernig et al.

equivalence oracles. With the exception of the learning algorithm, we have cre-
ated our own concrete implementations of these components, as described in the
remainder of this section. Unfortunately, LearnLib does not currently support
a learning algorithm for FSTs. Therefore, we will define a mapper which masks
the non-deterministic behaviour of our SULs to such an extent that the induced
abstraction approximates a Mealy machine well enough for L* and related algo-
rithms to perform successful, stable and repeatable learning runs.

3.1 System Under Learning: The AVL489 Particle Counter

The AVL Particle Counter—or AVL489 for short—is an automotive measure-
ment device designed to measure the particle concentration in engine exhaust
by means of laser scattering [8]. The device can be operated in one of several
discrete states corresponding to different activities, abbreviated by single letters:

DX =

⎧
⎨

⎩

P (Pause), S (Standby), U (Purging), R (ResponseCheck),
Z (ZeroCheck), M (Measurement), I (Integ. Measurement),
L (LeakageCheck)

⎫
⎬

⎭

The device can be remotely controlled by the testbed automation system via an
Ethernet connection by means of the AK protocol [21]. The automation system
always initiates the communication by sending an AK telegram, consisting of a
4-letter code. The device replies with an answer telegram, repeating back the
code, followed by a data payload. Telegrams of the form S*** initiate state
transitions while those of the form A*** are used to query specific device param-
eters or values. When transitioning between the operating states, the device may
have to perform physical activities (e.g. opening/closing of valves) during which
it may be unable to accept incoming commands. This behaviour is expressed by
a second, orthogonal state dimension:

DY = {R (Ready), B (Busy)}

In the event of an operating state change, the device may simultaneously
switch to Busy. In this case, incoming commands are refused until the device
autonomously switches back to Ready after a few seconds. In addition, the device
can be operated either remotely, as previously explained, or manually, as repre-
sented by a third state dimension:

DZ = {R (Remote), M (Manual)}

The device can be switched to Manual control via the AK command SMAN.
Usually, the only possible following interaction is a return to Remote via SREM.
Neither are the commands SMAN and SREM refused during Busy phases, nor do
they delay the return to Ready.

However, the observable device state D = DX × DY × DZ does not uniquely
identify the actual device state since the latter may also contain information
dependent on its history or timing aspects. Generally, the properties described

Learning-Based Testing of an Industrial Measurement Device 7

above are merely our expectations about the device’s behaviour (based on com-
mon practice), which we intend to either confirm or refute.

We aim for an acceptable runtime of our learning setup in an industrial
context. However, we also try to incorporate as little domain knowledge as pos-
sible into our learning setup, which limits our ability to perform domain-specific
optimizations. Therefore, we based our learning approach on a few assumptions
about our SUL which can be viewed as part of a testing hypothesis (cf. [17]):

Assumption 1. A: All variants of the AVL489 measurement device examined
in this work can be described as FSTs. B: The non-deterministic behaviours of
each examined FST are limited to only a few isolated instances.

Strictly speaking, we could regard each AK command as an input to our
SUL and the data payload of its response as its output. For reasons described in
Sect. 3.3, this is impractical. For each transition performed by our abstraction,
we send multiple AK commands to the SUL. We use some of these commands
to trigger a state transition and others to generate the output produced by
the abstraction. Instead of substantially changing the relatively commonly used
mapper definition [5,15] from Sect. 2.3, we will use the set of state setter actions
AKS, as well as the set of state retrieval actions AKA to describe our interactions
with the device. Elements of both sets are composed of the command code and
the data payload of the response. In the case of AKS, the payload contains
information about the success (Ok) or failure (Error)3 of the action and in case
of AKA, it contains the observable device state D:

AKS = S*** × {Ok,Error}

AKA = {ASTA} × D

Here, S*** denotes the set of all S-telegrams. The ASTA telegram retrieves the
observable device state D. Unless specified otherwise, we will use the symbols
x ∈ DX , y ∈ DY and z ∈ DZ to refer to unspecified elements of their respective
domains. We will abbreviate elements of D in the form xyz, e.g. PRR or UBz.

3.2 Masking Non-determinism with Sink States

Assumption 2. A: If the SUL responds to an S-telegram with an Error mes-
sage, the SUL state remains unchanged. B: If an ASTA response reveals no observ-
able SUL state change after an S-telegram has been issued, no change of the
actual SUL state has taken place.

Based on Assumption 2, we introduced several optimizations to increase the per-
formance and stability of the learning setup. In both cases of Assumption 2, we
redirected the transition to a sink state. To cover case B, we introduce a dedi-
cated output symbol Inert which is returned when the SUL performed a valid

3 Simplified for the purpose of this work. In reality, the response to an S-command is
either empty in the case of success or contains a specific error code.

8 B. K. Aichernig et al.

self-transition. In both cases, Error or Inert are returned for all subsequent
outputs until the SUL is reset. These behavioural augmentations are performed
with the help of a mapper, which is described in detail in Sect. 3.3. Consequently,
all self-transitions in the SUL are replaced with sink-transitions in the learned
model. In a hypothetical post-processing step, these sink transitions can be easily
turned back into self-transitions.

q′
1

i1/o′
1

q1start

i1/o1

τ/−

q′
2

i2/o′
2

i1/o′
1

i2/o′
2

q2

i1/o1
i2/o2

i2/o2

τ/−

Fig. 2. Timing-induced non-determinism.

q1start

q2

i1/o1i2/o2 qs

i1/s

i2/
s

i1/s

i2/s

τ/
−

τ/−

Fig. 3. Introducing a sink state qs.

Our reasons for the introduction of sink states were twofold: on one hand, we
attempted to prune the search space of the learning algorithm in order to increase
its performance. On the other hand, the description of the measurement device
as an FST yields instances of non-determinism like the one depicted in Fig. 2.
These instances occur when a state q1 exhibits both a self-transition as well as
an internal transition τ/−4 to another state q′

1 which is triggered after a certain
amount of time has been spent in q1. As the FST formalism does not account
for the passing of time, the state q1 is assumed to be unaltered after performing
the self-transition. In reality however, each S-telegram sent to the measurement
device takes several hundred milliseconds to process, effectively transitioning to
a state with a reduced retention time until the timed transition is triggered.
Therefore, a sequence of inputs i∗1 of sufficient length will eventually cause a
transition to q′

1. The number of possible self-transitions before the time-out will
most likely vary between experiments. If LearnLib encounters this behaviour
repeatedly with different numbers of performed self-transitions, it will abort the
learning process due to its inability to handle non-deterministic SULs.

This problem is mitigated by redirecting δ(q1, i1) to a sink state qs, as
depicted in Fig. 3. Once qs has been reached, all transitions will output its spe-
cific sink label s. This modification was sufficient to keep the algorithm stable
during hypothesis creation. However, in the case of loops of two or more tran-
sitions, the non-determinism cannot be masked by the introduction of a sink
state. If the execution of a long oscillating sequence [i2, i1]∗ exceeds the time-out,
4 In the notation for labelled transition systems, τ signifies an internal action which is

not triggered via an external input. τ and inputs can be arbitrarily interleaved. “−”
signifies quiescence—i.e. the absence of an output.

Learning-Based Testing of an Industrial Measurement Device 9

it will trigger a τ -transition in both Figs. 2 and 3. We will discuss our approach
to this problem further in Sect. 3.5.

3.3 Mapper Implementation

Assumption 3. The ASTA command always correctly retrieves the observable
device state without influencing the actual device state.

As explained in Sect. 3.1, the ASTA command retrieves the observable device
state. According to Assumption 3, it behaves like a status message as described
by Lee and Yannakakis [24]. Consequently, all interactions in AKS are indepen-
dent of those in AKA. To save further learning time, we directly incorporate
Assumption 3 into the learning setup. For each individual step of the abstrac-
tion, we let the SUL perform both a state transition step, which is treated like an
input, and a state retrieval step, which is treated like an output. The definition
of the set of concrete input actions CI ⊆ AKS

{0,1} ∪ AKA
{1...np} allows for both

S-telegrams as well as continuous polling for a timed device state change via
ASTA. Hence, we may either send an S-telegram or actively wait and poll. With
the maximum number of polls defined as np = �Tp · fp�, we choose the polling
time-out Tp = 25 s and the polling frequency fp = 10 Hz. We choose the set of
concrete output actions as CO ⊆ AKA

{0,1}. With these definitions in place, an
exemplary transition sequence on the concrete SUL S could look like this:

q0
〈SPUL,Ok〉/〈ASTA,UBR〉−−−−−−−−−−−−−−→ q1

〈SPAU,Error〉/εError−−−−−−−−−−−−→ q1
εSTBY/εError−−−−−−−→ q1

Note that, after S replies to SPAU with Error, only empty sequences of actions, i.e.
no actions at all, are performed on S. Simultaneously to this sequence performed
by S, we would like our abstraction αS

A to perform

a0
SPUL/UBR−−−−−−→ a1

SPAU/Error−−−−−−−→ aError
STBY/Error−−−−−−−→ aError

Table 1. Abstractions and state transitions performed by the mapper.

Mapper state r ∈ R Abstract symbol
∇(r, c)

Concrete symbol
c ∈ (CI ∪ CO)

Successor state
Δ(r, c)

Input abstraction

〈d, ⊥〉 i ∈ S*** 〈i, Ok〉 〈d, ⊥〉
〈d, ⊥〉 i ∈ S*** 〈i, Error〉 〈d, Error〉
〈d, ⊥〉 Wait poll(d) 〈d, ⊥〉
〈d, s ∈ {Error, Inert}〉 i ∈ I εi 〈d, s〉
Output abstraction

〈d, ⊥〉 d′ with d′ �= d 〈ASTA, d′〉 〈d′, ⊥〉
〈d, ⊥〉 Inert 〈ASTA, d〉 〈d, Inert〉
〈d, s ∈ {Error, Inert}〉 s εs 〈d, s〉

10 B. K. Aichernig et al.

Table 2. State transition and output behaviour of the sink cache.

Output λK(K, ı̄) Successor State δK(K, ı̄) Condition

αS
A(̄ı) K Λ(K, ı̄) = ⊥ ∧ last(αS

A(̄ı)) /∈ S

αS
A(̄ı) K ∪ {〈̄ı, αS

A(̄ı)〉} Λ(K, ı̄) = ⊥ ∧ last(αS
A(̄ı)) ∈ S

ōp · last(ōp)
n K Λ(K, ı̄) = ōp ∈ O+ ∧ n = |̄ı| − |ōp|

Here, SPAU triggers a transition to a sink state aError which enforces the out-
put symbol Error for all subsequent transitions. As suggested by this exam-
ple, we choose the abstract input alphabet I = S*** ∪ {Wait} as the set of
S-telegrams plus an additional Wait symbol to abstract the polling for timed
transitions. We choose our abstract output alphabet O ⊆ D ∪ S with the set of
sink labels S = {Error, Inert}. To achieve this behaviour, we designed a map-
per A = 〈R, r0, CI , CO, I, O,Δ,∇〉. The mapper states R ⊆ D × (S ∪ {⊥})
comprise the last observed device state and either a sink label or, alterna-
tively, ⊥. We define the state transition function Δ and the abstraction func-
tion ∇ as per Table 1. We define the polling sequence for timed transitions
as poll(d ∈ D) = [〈ASTA, d1〉 . . . 〈ASTA, dn〉] with (n ≤ np ∧ dn
= d ∧ ∀j ∈
{1 . . . n − 1} : dj = d) ∨ n = np.

3.4 Output Oracle Implementation

As previously mentioned in Sect. 2.2, an output oracle is ideally suited to perform
caching operations on output queries to increase the performance of the learning
setup5. In particular, we are interested in input words containing a prefix which
in the past has been observed to lead to a sink state. We now know beforehand
that each input word containing the same prefix will inevitably lead to the
same sink state which allows us to emulate the output word without performing
expensive SUL interactions. Therefore, we let our output oracle implement a
sink cache, as it was previously done by Stone et al. [30]. This technique is very
similar to the prefix closure filter for Discrete Finite Automata (DFAs) described
by Margaria et al. [25] as well as Hungar et al. [19]. Emulating output words led
to a substantial performance increase of our learning setup which allowed us to
perform learning runs of the AVL489 device overnight.

Definition 5 (Sink Cache). Let αS
A = 〈Q, q0, I, O, δ, λ〉 be a Mealy machine,

and let S ⊂ O be a set of sink labels. A sink cache is a Mealy machine
〈K, ∅, I+, O+, δK , λK〉 with K ⊂ P(I+ × O+) being the set of possible cache
states. δK and λK are defined in Table 2 utilizing the cache lookup function
Λ : K × I+ → O+ ∪ {⊥}:

Λ(K, ı̄) =

{
ōp if ∃! ı̄p ∈ pre(̄ı), ōp ∈ O+ : 〈̄ıp, ōp〉 ∈ K

⊥ otherwise

5 In addition to the caching operations defined above, we also filter redundant output
queries, as described by Margaria et al. [25].

Learning-Based Testing of an Industrial Measurement Device 11

3.5 Equivalence Oracle Implementation

Our equivalence oracle performs a random walk through the transitions of the
hypothesis and compares the transition outputs with those produced by the
abstract SUL. However, we were unable to use the standard random-walk oracle
implementation of LearnLib due to two additional requirements: (1) We want to
end the current sequence and start a new one when and only when the random
walk chooses a transition to a sink state. Otherwise we would either waste oracle
steps while being stuck in a sink state or squander the chance of testing a nearby
sink transition before ending the sequence. (2) We need the ability to terminate
a sequence early if the strict avoidance of sink transitions forces the random walk
into an oscillating sequence. In essence, we need to weaken our learning setup for
αS

A to be sufficiently adequate. We mitigate this problem through an empirically
chosen approach which we will describe informally due to scope limitations: After
reaching a state q within the hypothesis, we assign probabilities pi ∈ [0, 1] to
each outgoing transition such that their sum equals 1. If the transition leads
to a sink state, pi is diminished relative to the other transition probabilities
by a fixed factor. We also make pi indirectly proportional to the number of
times transition i has been chosen more often than the least-chosen transition
originating in q. If the structure of the hypothesis funnels the random exploration
into an oscillating sequence, this measure re-introduces an amount of fairness
into the random choice and will eventually allow a sink transition to overrule
the oscillating transitions. Dependent on the hypothesis, our equivalence oracle
yielded a mean sequence length of around 30±3 symbols and, within 3000 steps
performed in total, a longest occurring sequence of about 100 ± 20 symbols.

3.6 Testbed Simulation Model

The AVL Test Center is tasked with testing the integration of various automotive
measurement devices into the testbed automation system. As this integration
needs to be tested for a multitude of different measurement device combina-
tions and device firmware versions, it is infeasible to have all the actual devices
present at the Test Center. Instead, the test engineers use a Testbed Simulator
(TBSimu) which is able to emulate the AK interfaces of many different measure-
ment devices over Ethernet. For our experiments, the test engineers provided us
with a custom-made TBSimu model of AVL489 which can be configured to
exhibit one of sixteen different implementation faults. This setup was previ-
ously used to evaluate the effectivity of both the UML-based and MDML-based
MBMT approaches. Therefore, it stood to reason to use the same model for the
evaluation of our LBT approach. Using the terminology of mutation testing, we
will refer to the faulty configurations of the simulation model as SUL mutants.
We named the respective mutants S1 to S16, as well as S0 for the error-free SUL.
We refer to their respective learned models as M0 − M16. An overview of the
individual SUL mutants is given in Table 3.

12 B. K. Aichernig et al.

4 Results

4.1 Learned SUL Mutant Models

We ran the learning setup on each of the SUL mutants, as well as on S0. We
then converted each learned model into a human-readable transition table. These
transition tables were manually analysed and compared to the mutant specifica-
tions. Without exception, all learned mutant models showed differences to M0,
thereby revealing the presence of errors. Some of the learned models showed par-
tial deviations from the mutant specifications in Table 3 - either due to implemen-
tation errors or imprecise communication of the specification. Two of the learned
models (specifically, M10 and M11) suggested the presence of highly unexpected
behavioural anomalies within their respective SULs. These anomalies were later
confirmed by manual experiments. All models, including M0, showed one com-
mon fault respective to our expectations from Sect. 3.1: Although the SULs were
supposed to reject all commands except SMAN and SREM while in Manual mode,
all Manual states accepted the same inputs as their Remote counterparts and
reacted analogously. This effectively turned the Manual state space into a copy
of the Remote state space.

Table 3. An overview of the SUL mutants, as well as mutant detection results of the
LBT approach and both MBMT approaches.

ID Mutant description UML MDML LBT

1 SMAN (Manual) disabled in Measurement ✓ ✓ ✓

2 SMAN (Manual) disabled in Integ. Measurement ✓ ✓ ✓

3 SMAN (Manual) disabled in Purging ✓ ✓ ✓

4 No Busy phase when changing to Pause ✓ ✓ ✓

5 No Busy phase when changing to Standby ✓ ✓ ✓

6 No Busy phase when changing to LeakageCheck ✓ ✓ ✓

7 SREM (Remote) disabled in ZeroCheck ✗ ✗ ✓

8 SREM (Remote) disabled in Purging ✓ ✗ ✓

9 SREM (Remote) disabled in LeakageCheck ✗ ✗ ✓

10 Duration of Busy phases divided in half ✓ ✓ (✓)

11 Duration of Busy phases doubled ✓ ✓ ✓

12 SMGA (Measurement) disabled ✓ ✓ ✓

13 SINT (Integ. Measurement) disabled ✓ ✓ ✓

14 SPUL (Purging) disabled ✓ ✓ ✓

15 SNGA (ZeroCheck) disabled ✓ ✓ ✓

16 Additional Busy phase when re-entering Pause ✓ ✗ ✓

Mutation Score (mutant detection ratio): 87.5% 75.0% 100.0%

Learning-Based Testing of an Industrial Measurement Device 13

Disregarding this common error, the models M1 − M3, M7 − M9 and
M12−M15 were consistent with their respective mutant specifications. M4−M6

showed the specified mutation for transitions triggered by i ∈ S***, but not for
i = Wait. In contrast to the specification, M16 exhibited a general mutation

of all transitions q
i/PRz−−−−→ q′ to q

i/PBz−−−−→ q′′. For M10 and M11, the analysis of
the learning results was more complicated. We expected the algorithm to miss
S10 due to its shorter Busy phases. We also expected M11 to have the latter

transition of q
SPUL/UBz−−−−−−→ q′ Wait/PBz−−−−−−→ q′′ changed to q′ Wait/Inert−−−−−−−→ qInert due

to the Wait-transition exceeding our polling time-out Tp. Neither expectation
was reflected in the learning results. Instead, a closer examination of the learned
models and their respective SULs revealed an implementation error of the afore-
mentioned timed transition. In M10, the transition was changed in a way that
decoupled the timed transition from Purging to Pause from the Busy time-out,

resulting in q
SPUL/UBz−−−−−−→ q′ Wait/URz−−−−−−−→ q′′ Wait/PBz−−−−−−→ q′′′. Had S10 been imple-

mented correctly, our LBT approach would most likely have missed it. In S11,
the state Purging did not exhibit a lengthened Busy phase when left via Wait
but instead passed it on to Pause when prematurely left via SPAU. This caused
a split of Pause into two states with different Wait-transitions (see Fig. 4).

SPUL/UBz

Wait/PBz after 20 s

Wait/PRz after 8 s SPAU/PBz

Wait/PRz after 40 s Wait/Inert after Tpi/PRz

Fig. 4. Split of state 〈Pause, Busy, z〉 as captured by M11.

4.2 Discussion and Comparison to MBMT Approaches

In Table 4, we give an overview over a selection of learned mutant models with
their number of states, the total number of non-redundant output queries, the
number of queries executed on the SUL, the percentage of queries filtered by
the sink cache, the same quantities regarding the individual steps and the total
learning time. The percentage of filtered queries is consistent with the results of
another case study utilizing a prefix-closure filter [25] as well as one on a version
of L* optimized for prefix-closed automata [9]. With only few instances of hid-
den information, the device state is highly observable via the ASTA command.
Therefore, the learning algorithm managed to capture their behaviour correctly
in its initial hypothesis, without any counterexamples provided by the equiv-
alence oracle. The only exception to this was S10 which contained states that
could only be distinguished by at least two subsequent inputs. Hence, M10 was
the only model to require counterexample processing, thereby yielding a high
learning time despite the increased throughput of S10. In its particular case, the
equivalence oracle would need to find the sequence [STBY,Wait, SPUL,Wait,Wait]

14 B. K. Aichernig et al.

which constitutes the shortest possible counterexample to the initial hypothesis
produced by L*. However, our equivalence oracle is not guaranteed to produce
the shortest counterexample. Instead, it repeatably produced longer and more
indirect variants of the same counterexample.

Table 4. Comparison of selected learned mutant models in terms of state space and
learning effort: C (first hypothesis correct), F (faster SUL), S (slower SUL).

ID States Queries Steps Time
[hh:mm:ss]

Comment

Total SUL Filtered Total SUL Filtered

0 32 4737 1593 66.4% 27972 11532 58.8% 09:52:30 C

4 32 4735 1615 65.9% 27972 11640 58.4% 09:48:01 C

6 30 4464 1512 66.1% 26100 10932 58.1% 09:51:11 C

10 36 9160 2849 68.9% 100255 34433 65.7% 15:35:40 F

11 34 5075 1667 67.2% 29268 11640 60.2% 17:15:15 C, S

12 22 3298 970 70.6% 17748 7164 59.6% 06:43:17 C

14 28 4178 1370 67.2% 25380 10500 58.6% 07:12:50 C

The LBT approach managed to distinguish all SUL mutants from the orig-
inal, unlike both the UML- and MDML-based MBMT approaches. The UML-
based approach suffered from performance bottlenecks in the test case generation
algorithm and missed S7 and S9 due to its restricted exploration depth [4]. We
show the combined results from all three test suites examined in the UML case
study in Table 3. The MDML-based approach greatly improved upon the per-
formance of the UML-based approach. However, at the time of its evaluation
[10], it lacked an appropriate model de-factoring step which led to a detrimen-
tal relation between test model conciseness and test suite quality: If the system
model was encoded very efficiently, small model mutations on the syntactic level
could produce major changes on the semantic level. These coarse mutations led
to the generation of weaker test suites. The generation of negative tests (i.e.
testing the refusal of commands) was deliberately foregone in that case study to
demonstrate the ability to generate useful test suites from underspecified MDML
models. As a result, the common fault regarding the Manual mode was missed by
the MDML-based approach. In contrast, automata learning techniques are only
biased by the extent of the provided input alphabet and possible assumptions
implemented in the mapper. The UML-based approach was evaluated against
a different SUL implementation than both the MDML and LBT approaches,
which may not have contained this fault. The above factors highlight the impor-
tance of careful mutant selection in MBMT approaches, as well as the relevance
of fuzzing aspects in LBT approaches. While our learning runs take significantly
more time than the execution of the generated test suites (29–96 min for UML
and 12–15 min for MDML), they are still short enough to be performed overnight.

Learning-Based Testing of an Industrial Measurement Device 15

The AVL Test Center currently uses MDML models to generate test suites for
measurement devices. While the use of MDML has drastically reduced the effort
required for the creation and maintenance of test suites, it still requires an initial
modelling effort which, in the absence of complete specifications, may involve a
certain amount of guesswork. LBT on the other hand requires no a-priori mod-
elling effort. Only the definition of an adequate abstraction is required, which
can be re-used for similar SULs that share the same interface. It is also worth
noting that our LBT approach is based on a significantly smaller technology
stack than MDML-based test case generation, which comprised a substantial
tool chain [10]. These factors make LBT attractive for our industrial use case.

5 Related Work

The most relevant related work for our use case is that of Stone et al. [30], who
learned a common handshake protocol for Wi-Fi routers and had to deal with
non-determinism caused by a lossy communication medium which manifested in
time-out violations and message retransmissions. In contrast to our pre-emptive
usage of sink states, they redirect the learning algorithm to a sink state after a
non-deterministic re-transmission has already occurred. The non-determinisms
were later discarded from the learning results through the repetition of output
queries and a majority vote. Previously, Fiterău-Broştean et al. have employed
a number of measures to deal with the same problem when learning the TCP
protocol [14,15]. The authors masked time-outs by limiting the length of their
output queries. De Ruiter and Poll [29] have utilized LBT to analyse TLS imple-
mentations. In their application domain, a sink state implicitly occurs when a
TLS connection is closed. As their equivalence oracle, they used a modified vari-
ant of the W-Method [12] which filters prefixes navigating to this sink state. In
their work on the inference of the Session Initiation Protocol [1], Aarts et al.
introduced the technique of abstracting large SUL alphabets with the help of
a mapper. All of the above approaches are either fully or partially based on
LearnLib [20]. Both Hungar et al. [19] and Margaria et al. [25] present a number
of query filtering techniques based on domain knowledge and evaluate differ-
ent configurations thereof in their respective case studies. Berg et al. [9] have
examined the scalability of L* on DFAs and modified the learning algorithm to
perform prefix-closure filtering.

6 Conclusion and Outlook

We have created a learning setup based on LearnLib which offers a sufficiently
adequate abstraction to the AVL489 measurement device and which can be
executed within reasonable time. Our experiments have shown that the setup
masks non-deterministic behaviour of our SUL reliably enough to enable the use
of L* in AVLs industrial environment. We are confident that this method can be
used to learn other systems which exhibit similar sparse (timing-induced) non-
determinism. We have further shown that our learning setup is sensitive enough

16 B. K. Aichernig et al.

to uncover not only specified faults, but also unforeseen implementation errors
within a measurement device simulation model. In contrast to the previously
studied MBMT approaches, our LBT approach requires no initial modelling
effort which makes it attractive to our industrial setting.

However, our masking of non-deterministic behaviour is still imperfect, since
a hypothetical learning algorithm could issue membership queries containing
sufficiently long oscillating sequences to circumvent our masking mechanism. In
principle, our equivalence oracle is also able to produce oscillating sequences
although we took measures to reduce their probability of occurrence.

In fact, the non-deterministic behaviour of our SUL is rooted in its description
as an FST which lacks the concept of time. It is possible that AVL489 could
be described as a Mealy machine with timers, as introduced by Jonsson and
Vandraager [22] who also proposed a suitable learning algorithm. However, the
absence of a respective implementation is still an issue. From an industrial point
of view, LBT would lend itself to the automatic enhancement and maintenance
of MDML models for regression testing. Alternatively, MDML models containing
mere fragments of a device’s behaviour could be used to specify requirements
for the validation of learned device models.

Acknowledgements. Part of this work was supported by the TU Graz LEAD project
“Dependable Internet of Things in Adverse Environments”. We thank the four anony-
mous reviewers and Martin Tappler for their valuable feedback.

References

1. Aarts, F., Jonsson, B., Uijen, J.: Generating models of infinite-state communica-
tion protocols using regular inference with abstraction. In: Petrenko, A., Simão,
A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 188–204. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16573-3 14

2. Aarts, F., de Ruiter, J., Poll, E.: Formal models of bank cards for free. In: Sixth
IEEE International Conference on Software Testing, Verification and Validation,
ICST 2013 Workshops Proceedings, Luxembourg, Luxembourg, 18–22 March 2013,
pp. 461–468. IEEE (2013). https://doi.org/10.1109/ICSTW.2013.60

3. Aichernig, B.K.: Model-based mutation testing of reactive systems. In: Liu, Z.,
Woodcock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods.
LNCS, vol. 8051, pp. 23–36. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39698-4 2

4. Aichernig, B.K., et al.: Model-based mutation testing of an industrial measurement
device. In: Seidl, M., Tillmann, N. (eds.) TAP 2014. LNCS, vol. 8570, pp. 1–19.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09099-3 1

5. Aichernig, B.K., Bloem, R., Ebrahimi, M., Tappler, M., Winter, J.: Automata
learning for symbolic execution. In: 2018 Formal Methods in Computer Aided
Design, FMCAD 2018, Austin, TX, USA, 30 October–2 November 2018. IEEE
(2018). https://doi.org/10.23919/FMCAD.2018.8602991

https://doi.org/10.1007/978-3-642-16573-3_14
https://doi.org/10.1109/ICSTW.2013.60
https://doi.org/10.1007/978-3-642-39698-4_2
https://doi.org/10.1007/978-3-642-39698-4_2
https://doi.org/10.1007/978-3-319-09099-3_1
https://doi.org/10.23919/FMCAD.2018.8602991

Learning-Based Testing of an Industrial Measurement Device 17

6. Aichernig, B.K., Mostowski, W., Mousavi, M.R., Tappler, M., Taromirad, M.:
Model learning and model-based testing. In: Bennaceur, A., Hähnle, R., Meinke,
K. (eds.) Machine Learning for Dynamic Software Analysis: Potentials and Limits.
LNCS, vol. 11026, pp. 74–100. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96562-8 3

7. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

8. AVL List GmbH: AVL Particle Counter - Product Guide, AT2858E, Rev. 08 (2013)
9. Berg, T., Jonsson, B., Leucker, M., Saksena, M.: Insights to Angluin’s learning.

Electron. Notes Theoret. Comput. Sci. 118, 3–18 (2005). https://doi.org/10.1016/
j.entcs.2004.12.015

10. Burghard, C.: Model-based testing of measurement devices using a domain-specific
modelling language. Master’s thesis, Graz University of Technology, Institute
of Software Technology (2018). http://truconf.ist.tugraz.at/wp-content/uploads/
2018/04/MastersThesis ChristianBurghard.pdf

11. Burghard, C., Stieglbauer, G., Korošec, R.: Introducing MDML - a domain-specific
modelling language for automotive measurement devices. In: Joint Proceedings of
the International Workshop on Quality Assurance in Computer Vision and the
International Workshop on Digital Eco-Systems Co-Located with the 28th Inter-
national Conference on Testing Software and Systems (ICTSS), pp. 28–31. CEUR-
WS.org (2016). http://ceur-ws.org/Vol-1711/paperDECOSYS1.pdf

12. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Software Eng. 4(3), 178–187 (1978). https://doi.org/10.1109/TSE.1978.231496

13. Dias Neto, A.C., Subramanyan, R., Vieira, M., Travassos, G.H.: A survey on model-
based testing approaches: a systematic review. In: Proceedings of the 1st ACM
International Workshop on Empirical Assessment of Software Engineering Lan-
guages and Technologies: Held in Conjunction with the 22nd IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE) 2007, pp. 31–36.
ACM (2007). https://dl.acm.org/citation.cfm?id=1353681

14. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Learning fragments of the TCP
network protocol. In: Lang, F., Flammini, F. (eds.) FMICS 2014. LNCS, vol. 8718,
pp. 78–93. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10702-8 6

15. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Combining model learning and
model checking to analyze TCP implementations. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9780, pp. 454–471. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41540-6 25

16. Fiterau-Brostean, P., Lenaerts, T., Poll, E., de Ruiter, J., Vaandrager, F.W.,
Verleg, P.: Model learning and model checking of SSH implementations. In: Pro-
ceedings of the 24th ACM SIGSOFT International SPIN Symposium on Model
Checking of Software, Santa Barbara, CA, USA, 10–14 July 2017, pp. 142–151.
ACM (2017). https://doi.org/10.1145/3092282.3092289

17. Gaudel, M.-C.: Testing can be formal, too. In: Mosses, P.D., Nielsen, M.,
Schwartzbach, M.I. (eds.) CAAP 1995. LNCS, vol. 915, pp. 82–96. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-59293-8 188

18. Howar, F., Steffen, B.: Active automata learning in practice. In: Bennaceur, A.,
Hähnle, R., Meinke, K. (eds.) Machine Learning for Dynamic Software Analysis:
Potentials and Limits. LNCS, vol. 11026, pp. 123–148. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96562-8 5

19. Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata learn-
ing. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 315–327.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6 31

https://doi.org/10.1007/978-3-319-96562-8_3
https://doi.org/10.1007/978-3-319-96562-8_3
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/j.entcs.2004.12.015
https://doi.org/10.1016/j.entcs.2004.12.015
http://truconf.ist.tugraz.at/wp-content/uploads/2018/04/MastersThesis_ChristianBurghard.pdf
http://truconf.ist.tugraz.at/wp-content/uploads/2018/04/MastersThesis_ChristianBurghard.pdf
http://ceur-ws.org/Vol-1711/paperDECOSYS1.pdf
https://doi.org/10.1109/TSE.1978.231496
https://dl.acm.org/citation.cfm?id=1353681
https://doi.org/10.1007/978-3-319-10702-8_6
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1145/3092282.3092289
https://doi.org/10.1007/3-540-59293-8_188
https://doi.org/10.1007/978-3-319-96562-8_5
https://doi.org/10.1007/978-3-540-45069-6_31

18 B. K. Aichernig et al.

20. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib: A framework for
active automata learning. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015.
LNCS, vol. 9206, pp. 487–495. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-21690-4 32

21. Jogun, K.: A universal interface for the integration of emissions testing equipment
into engine testing automation systems: the VDA-AK SAMT-interface. Technical
report, SAE Technical Paper (1994). https://doi.org/10.4271/940965

22. Jonsson, B., Vaandrager, F.W.: Learning Mealy machines with timers (2018).
Preprint at http://www.sws.cs.ru.nl/publications/papers/fvaan/MMT/

23. Krenn, W., Schlick, R., Aichernig, B.K.: Mapping UML to labeled transition sys-
tems for test-case generation. In: de Boer, F.S., Bonsangue, M.M., Hallerstede,
S., Leuschel, M. (eds.) FMCO 2009. LNCS, vol. 6286, pp. 186–207. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17071-3 10

24. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines -
a survey. Proc. IEEE 84(8), 1090–1123 (1996). https://doi.org/10.1109/5.533956

25. Margaria, T., Raffelt, H., Steffen, B.: Knowledge-based relevance filtering for effi-
cient system-level test-based model generation. Innovations Syst. Softw. Eng. 1(2),
147–156 (2005). https://doi.org/10.1007/s11334-005-0016-y

26. Niese, O.: An integrated approach to testing complex systems. Ph.D. thesis, Techni-
cal University of Dortmund, Germany (2003). https://doi.org/10.17877/DE290R-
14871

27. Offutt, A.J., Voas, J.M.: Subsumption of condition coverage techniques by
mutation testing. Technical report, George Madison University, Fairfax, VA,
USA (1996). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.8904&
rep=rep1&type=pdf

28. OMG: OMG Unified Modeling Language (OMG UML), Version 2.5.1. Object Man-
agement Group, August 2017. http://www.omg.org/spec/UML/2.5.1

29. de Ruiter, J., Poll, E.: Protocol state fuzzing of TLS implementations. In: 24th
USENIX Security Symposium, USENIX Security 15, Washington, D.C., USA, 12–
14 August 2015, pp. 193–206. USENIX Association (2015). https://www.usenix.
org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter

30. McMahon Stone, C., Chothia, T., de Ruiter, J.: Extending automated protocol
state learning for the 802.11 4-way handshake. In: Lopez, J., Zhou, J., Soriano,
M. (eds.) ESORICS 2018. LNCS, vol. 11098, pp. 325–345. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99073-6 16

31. Tappler, M., Aichernig, B.K., Bloem, R.: Model-based testing IoT communication
via active automata learning. In: 2017 IEEE International Conference on Software
Testing, Verification and Validation, ICST 2017, Tokyo, Japan, 13–17 March 2017,
pp. 276–287. IEEE (2017). https://doi.org/10.1109/ICST.2017.32

32. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verification Reliab. 22(5), 297–312 (2012). https://doi.
org/10.1002/stvr.456

https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.4271/940965
http://www.sws.cs.ru.nl/publications/papers/fvaan/MMT/
https://doi.org/10.1007/978-3-642-17071-3_10
https://doi.org/10.1109/5.533956
https://doi.org/10.1007/s11334-005-0016-y
https://doi.org/10.17877/DE290R-14871
https://doi.org/10.17877/DE290R-14871
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.8904&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.8904&rep=rep1&type=pdf
http://www.omg.org/spec/UML/2.5.1
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://doi.org/10.1007/978-3-319-99073-6_16
https://doi.org/10.1109/ICST.2017.32
https://doi.org/10.1002/stvr.456
https://doi.org/10.1002/stvr.456

MLν: A Distributed Real-Time
Modal Logic

James Ortiz, Moussa Amrani(B), and Pierre-Yves Schobbens

Namur Digital Institute, Computer Science Faculty,
University of Namur, Namur, Belgium

{james.ortizvega,moussa.amrani,pierre-yves.schobbens}@unamur.be

Abstract. Distributed Real-Time Systems (DRTS) can be characterized
by several communicating components whose behavior depends on a
large number of timing constraints and such components can basically
be located at several computers spread over a communication network.
Extensions of Timed Modal Logics (TML) such as, Timed Propositional
Modal Logic (TPML), Timed Modal µ-calculus and Lν have been pro-
posed to capture timed and temporal properties in real-time systems.
However, these logics rely on a so-called mono-timed semantics for the
underlying Timed Labelled Transition Systems (TLTS). This semantics
does not capture complex interactions between components with their
associated local clocks, thus missing possible action sequences. Based on
Multi-Timed Labelled Transition Systems (MLTS), which are an exten-
sion of TLTS in order to cope with the notion of distributed clocks, we
propose MLν , an extension of Lν that relies on a distributed semantics for
Timed Automata (TA) instead of considering uniform clocks over the dis-
tributed systems, we let time vary independently in each TA. We define
the syntax and the semantics of MLν over executions of MLTS with such
a semantics and we show that its model checking problem against MLν

is EXPTIME-complete.

1 Introduction

Distributed Real-Time Systems (DRTS) can be characterized by several commu-
nicating components (or processes) whose behavior depends on a large number of
timing constraints. Such components can basically be located at several comput-
ers spread over a communication network. A DRTS can use synchronous clocks,
i.e. they refer to a general clock; or asynchronous clocks, i.e. components have
their own clocks, which are independent of each others and are therefore subject
to clock drifts [9]. Synchronous and asynchronous models depict two forms of
design, modeling and implementation of DRTS. However, the majority of cur-
rent implementations of DRTS combines the advantages of both models in the
so-called timed asynchronous models [9]. In such systems, the local clock of each
component runs at a given rate of the global time; and components commu-
nicate with each other by passing messages that can take an unbounded time
to be transmitted [9]. Formal verification methods have been used to verify the
c© Springer Nature Switzerland AG 2019
J. M. Badger and K. Y. Rozier (Eds.): NFM 2019, LNCS 11460, pp. 19–35, 2019.
https://doi.org/10.1007/978-3-030-20652-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20652-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-20652-9_2

20 J. Ortiz et al.

logical correctness of DRTS with respect to their specification, e.g. in distributed
vehicular coordination protocols [7], but also in various other areas [3,6,22,26].

To capture properties of interest in DRTS, several timed models and tem-
poral logics (e.g., Timed Propositional Modal Logic (TPML); μ-calculus [12];
Lν [15]; and Timed Computation Tree Logic (TCTL [24]), among others) have
been used to specify sequential (mono-timed) systems. However, in these log-
ics, the information about independent clocks and distributed components that
constitute a DRTS are abstracted away, and modeled in a global setting [23].
Consequently, these logics fail at explicitly capturing timing properties related
to local behavior, which shall hold only in selected parts of the whole system. In
essence, this comes from the underlying semantics of the logic: since they con-
sider automata that accept timed words, the logics adopt (variations of) Timed
Labelled Transition Systems (TLTS).

Along the years, several logics appeared for explicitly taking into account
distributed components and timing properties of DRTS (e.g., DRTL [17], APTL
[25] and DECTL [21], among others). Roughly speaking, these logics allow for
the definition of formulae whose truth values depend on (or are relative to) only
part of their underlying mathematical models. In the case of APTL and DRTL,
theses logics are an extension of First-Order and Second-Order Logics. In their
full generality, these timed logics are generally undecidable; however, some frag-
ments might become decidable when carefully drafted. For example for DECTL, a
distributed real-time logic with independent time evolutions has been proposed,
and automatically translated into a distributed event clock automaton for model-
checking purposes [21]. A general limitation of these logics is the inability, at the
semantic level, to distinguish transitions over different action labels and delays.
Timed modal logics, on the other hand, can distinguish such transitions, and
may consequently be useful for studying the behavioral equivalence by using
bisimulation [18].

Timed Automata (TA) [5,15] assume clocks that progress at the same rate,
and that are perfectly synchronized, with infinite precision. To achieve timed
bisimulation of TA (e.g. to verify behavior preservation), several logics were
proven decidable (e.g. TCTL [5] and Lν [15]). However, this theoretical back-
ground cannot be used in the context of DRTS where different processes make
use of clocks that may drift. We propose to capture DRTS as the composition
of several TAs, which allows us to define Multi-Timed Automata (MTAs) [20] as
the asynchronous clock product of TAs, where clocks are not synchronized. An
MTA defines a common alphabet for all distributed processes, which can then
interact in two ways: by synchronous discrete transitions and by asynchronous
delay transitions. DRTS have another important characteristic: their behaviour
may be unpredictable due to complex interactions between processes, making
them sometimes non-deterministic. Since TAs are neither determinisable, nor
complementable, and their inclusion is undecidable [5], we defined in [21] a for-
malism for capturing the behavior of non-deterministic DRTS that may be used
for that purposes and are compatible with our MTAs.

MLν : A Distributed Real-Time Modal Logic 21

MLν describes properties of states in a MLTS over a set of actions. We define
its syntax and multi-timed semantics, and spotlight the most important features
of MLν through the specification of DRTS.

Contributions. Our main contribution is the definition of MLν , an extension of
Lν [15] that copes with the multi-timed semantics of MTAs and their distributed
clocks, by describing properties of Multi-Timed Transition Systems’ states over
a set of actions. We define its syntax and (multi-timed semantics), and spotlight
the most important features of MLν through the specification of DRTS. We
show that the complexity of the model checking problem for our extended MLν

formula interpreted over MTA is EXPTIME-complete. We focus in particular on
their (multi-timed) bisimulation, and show that the extended MLν logic is sound
and complete. Furthermore, we show several possible properties specified in the
MLν logic for demonstrating its potential for specifying complex DRTS.

Structure of the Paper. Section 2 covers the background on multi-timed
automata and their multi-timed semantics. Section 3 defines MLν , the real-
time modal logic appropriate for specifying properties of interest on multi-timed
automata, and proves the decidability of the model-checking problem. Section 4
compares our work with existing contributions. Finally, Sect. 5 concludes by
summarizing the results and describing future research directions.

2 Preliminaries

This section introduces the notion of multi-timed automata as an extension of
the classical notion of Dill and Alur’s Timed Automata [5]: instead of reading
timed words denoting an action perceived by the automaton at a given time, a
multi-timed automaton reads multi-timed words where actions are perceived at
different times from each process composing the automaton.

2.1 Models of Time

Let N, R and R≥0 respectively denote the sets of natural, real and non-
negative real numbers. The set of all finite words over a finite alphabet of
actions Σ is denoted by Σ∗. A timed word [5] over Σ is a finite sequence θ
= (σi, ti)1≤i≤n ∈ Σ ×R≥0 of actions paired with nonnegative real numbers such
that the timestamps sequence t = (ti)1≤i≤n is nondecreasing. Sometimes θ will
be written as the pair θ = (σ, t) with σ ∈ Σ∗ and t a sequence of timestamps
with the same length.

2.2 Clocks

A clock is a real-valued variable that increases with time. Thus, the value of a
clock is the time elapsed since its last reset. Let X be a finite set of clock names.
A clock constraint φ ∈ Φ(X) is a conjunction of comparisons of a clock with a

22 J. Ortiz et al.

natural constant c: with x ∈ X, c ∈ N, and ∼ ∈ {<, >, ≤, ≥, =}, φ is defined
by the following grammar:

φ:: = true | x ∼ c | φ1 ∧ φ2

A clock valuation ν ∈ R
X
≥0 over X is a mapping ν : X → R≥0. For a time

value t ∈ R≥0, we note ν + t the valuation defined by (ν + t)(x) = ν(x) + t.
Given a clock subset Y ⊆ X, we note ν[Y → 0] the valuation defined as follows:
ν[Y → 0](x) = 0 if x ∈ Y and ν[Y → 0](x) = ν(x) otherwise. The projection of
ν on Y, written ν	Y, is the valuation over Y containing only the values in ν of
clocks in Y.

2.3 Rates

Let Proc be a non-empty set of processes. A time function local to a process q ∈
Proc is a function τq : R≥0 → R≥0 that maps the reference time to the process’
local time. Local functions must be continuous, strictly increasing, divergent,
and satisfy τq(0) = 0 for all q ∈ Proc. A rate is a tuple τ = (τq)q∈Proc of local
time functions for each considered process. For t ∈ R≥0, τ(t) denotes the tuple
(τq(t))q∈Proc) [2].

Several variants of timed automata have been proposed, extending the sem-
inal proposal by Alur and Dill [5] in many directions. In the remaining part of
this section, we briefly review multi-timed automata, with its associated notion
of multi-timed bisimulation [20], and finish by introducing the Lν [15] logic as
the basis of our own logic MLν .

2.4 Timed Automata

Timed Automata (TA) extend Finite-State Automata with a finite set of clocks
that are supposed to evolve synchronously [5]: time is thus global, and clocks are
perfectly precise and synchronized. Clocks may be reset on transitions: at any
instant, a clock’s value denotes the time elapsed since the last reset. Transitions
are guarded by clock constraints: a transition is enabled only if its associated
timing constraint is satisfied by the current values of the clocks. State invariants
are clock constraints assigned to locations that have to be satisfied while the
location is active.

Definition 1. A TA A is a tuple A = (Σ,X, S, s0,→ta, I, F) where Σ is a finite
alphabet, X a clock set, S a set of locations with s0 ∈ S the initial location and
F ⊆ S the set of final location, →ta⊆ S ×Σ ×Φ(X)×2X ×S is the automaton’s
transition relation, I : S → Φ(X) associates to each location a clock constraint

as invariant. For a transition (s, φ, a, Y, s′) ∈→ta, we classically write s
a,φ,Y−−−−→ s′

and call s and s′ the source and target locations, φ is the guard, a the action or
label, Y the set of clocks to be reset.

MLν : A Distributed Real-Time Modal Logic 23

During the execution of a TA A, a state is a pair (s, ν) ∈ S × R
X
≥0, where s

denotes the current location with its accompanying clock valuation ν, starting at
(s0, ν0) where ν0 maps each clock to 0. We only consider legal states, i.e. states
that satisfy ν � I(s) (i.e. valuations that map clocks to values that satisfy the
current invariant). The semantics of a timed automaton A traditionally given by
a TLTS(A) = (Q, q0, Σ
R≥0,→tlts) where Q is a set of legal states over A with
initial state q0 = (s0, ν0), Σ a finite alphabet and →tlts ⊆ Q × (Σ
R≥0) × Q is
the TLTS transition relation defined by:

1. Delay transition: (s, ν) t−→ (s, ν + t) for some t ∈ R≥0, iff ν + t � I(s),

2. Discrete transition: (s, ν) a−→ (s′, ν′), iff ∃ φ, Y s
a,φ,Y−−−−→ s′, ν � φ, ν′ = ν[Y → 0]

and ν′ = I(s′) and a ∈ Σ.

2.5 Multi-timed Word

A tuple d ∈ R
Proc
≥0 is smaller than d′, noted, d < d′ iff ∀i ∈ Proc di ≤ d′

i and
∃i ∈ Proc di < d′

i. A Monotone Sequence of Tuples (MST) is a sequence d =
d1d2 · · · dn of tuples of RProc

≥0 where: ∀j ∈ 1 · · · n − 1, dj ≤ dj+1 [20]. This is the
analog of a timed word [5].

Definition 2. A multi-timed word [20] on Σ is a pair θ = (σ,d) where σ =
σ1σ2 . . . σn is a finite word σ ∈ Σ∗, where d = d1d2 . . . dn is a MST of the same
length. A multi-timed word can equivalently be seen as a sequence of pairs in
Σ × R

Proc
≥0 .

Example 1. In Fig. 1, the timestamps of the sequence of actions {a1, a2, a3} gen-
erated by the local clocks xp, yq, zr associated to the processes Proc = {p, q, r}
are different for each action. A multi-timed word over Σ × R

Proc
≥0 is of the form

θ = ((a1, tp1 , tq1 , tr1), (a2, tp2 , tq2 , tr2), (a3, tp3 , tq3 , tr3)) where a1, a2, a3 ∈ Σ and
tpi

, tqi , tri
∈ R

Proc
≥0 for all i ∈ {1, 2, 3}.

x

y

z

a1

Reference time
a2 a3

Local clocks
of processes

p, q, and r

tp_1

tr_1

tq_1

tp_2

tq_2

tr_2

tp_3

tq_3

tr_3

((a1 = tp_1, , tq_1 tr_1,) , (a2 tp_2, , tq_2 tr_2,) , (a3 tp_3, , tq_3 tr_3,))

A set of actions or word
{a1, a2, a3}

A Multi-timed word

r

q

p

Fig. 1. Local clocks and reference time

24 J. Ortiz et al.

2.6 Multi-timed Automata

Several variants and extensions of TA exists: we focus here on formalisms that
allow a precise modeling of DRTS, namely Distributed Timed Automata (DTA)
[14] and Timed Automata with Independent Clocks (icTA) [2]. In both for-
malisms, clocks may not necessarily be synchronized. However, the semantics of
DTA and icTA are not expressive enough for fully modelling DRTS: their seman-
tics rely on timed words, thus missing potential actions that may be perceived
at different times by each components due to clock drifts.

We introduced in [20] the notion of Multi-timed Automata (MTA) to incor-
porate a multi-timed semantics, based on multi-timed words, for capturing and
analyzing the local behavior of the processes and distributed clocks. An MTA is
basically an icTA, but accepts multi-timed words and therefore rely on a multi-
timed semantics. MTA may be used to model DTS, such as the Controller Area
Network (CAN) [19], WirelessHART Networks [10], ARINC-659 protocol [11] and
Distributed Vehicular Coordination Protocols [9].

Definition 3 (MTA). A MTA is a pair A = (B, π) over Proc where:

1. B is a TA,
2. π : X → Proc maps each clock to a process.

Definition 4. Given π : X → Proc, a clock valuation ν : X → R≥0 and d ∈
R

Proc
≥0 : the valuation ν +π d is defined by (ν +π d)(x) = ν(x) + dπ(x) for all

x ∈ X.

The semantics of a multi-timed automaton is given by a MLTS [20].

Definition 5 (Semantics of MTA). Given A = (B, π) over Proc and τ ∈
Rates, the multi-timed semantics associated to an MTA is given by a family of
MLTS over Proc, denoted by MLTS(A, τ) = (Q,q0,Σ,→mlts). A state q ∈ Q is
composed of a location, a clock valuation and lastly the reference time, where is
Q = {(s, ν, t) ∈ S × R

X
≥0 × R≥0 | ν |= I(s)}. The starting state is q0 = (s0, ν0, 0),

where ν0 is the valuation that assigns 0 to all the clocks. Σ is the alphabet of A.
The transition relation →mlts ⊆ Q × (Σ
 R

Proc
≥0) × Q is the MLTS transition

relation defined by:

1. A transition (qi,d, q′
i) is denoted qi

d−→ q′
i, and is called a delay transition,

where qi = (si, νi, ti), q′
i = (si, νi +π d, ti+1), d = τ(ti+1) − τ(ti) and ∀t ∈

[ti, ti+1] : νi +π (τ(t) − τ(ti)) |= I(si).
2. A transition (qi, a, qi+1) is denoted qi

a−→ qi+1, and is called a discrete
transition, where qi = (si, νi, ti), qi+1 = (si+1, νi+1, ti+1), a ∈ Σ, there exists
a transition (si, a, φ, Y, si+1) ∈ →mlts, such that νi |= φ, νi+1 = νi[Y → 0],
νi+1 |= I(si+1), ti = ti+1.

A run of a MTA A for τ ∈ Rates is an initial path in MLTS(A, τ) where
discrete and continuous transitions alternate.

Example 2. Figure 2 shows an MTA M over the finite alphabet Σ = {a, b, c, d},
on processes Proc = {p, q}, using clocks X = {xp, yq} with the rate τ = (t2, t)
(i.e., τp(t) = t2 and τq(t) = t)).

MLν : A Distributed Real-Time Modal Logic 25

Fig. 2. A Multi-timed Automata M from [20]

2.7 Multi-timed Bisimulation

From a distributed approach, a mono-timed semantics is not adapted for model-
ing DRTS because the information about the evolution of the distributed clocks
(which are not running at the same rate) over the different components is miss-
ing. In [20], the classical definition of timed bisimulation [8] has been extended
towards a multi-timed semantics.

Let M1 and M2 be two MLTS over the same set of actions Σ and processes
Proc. Let QM1 (resp., QM2) be the set of states of M1 (resp., M2). Let R be a
binary relation over QM1

× QM2
. We say that R is a strong multi-timed bisimu-

lation whenever the following transfer property holds (note that technically this
is simply strong bisimulation over Σ
 R

Proc
≥0):

Definition 6 (Strong Multi-timed Bisimulation). A strong multi-timed
bisimulation over MLTS M1, M2 is a binary relation R ⊆ QM1 × QM2 such
that, for all qM1

RqM2
, the following holds:

1. For every a ∈ Σ and for every discrete transition qM1

a−−→M1 q′
M1

, there
exists a matching discrete transition qM2

a−−→M2 q′
M2

such that q′
M1

Rq′
M2

and symmetrically.
2. For every d = (d1, . . . , dn) ∈ R

Proc
≥0 , for every delay transition qM1

d−−→M1

q′
M1

, there exists a matching delay transition qM2

d−−→M2 q′
M2

such that
q′
M1

Rq′
M2

and symmetrically.

Two states qM1
and qM2

are multi-timed bisimilar, written qM1
≈ qM2

, iff
there is a multi-timed bisimulation that relates them. M1 and M2 are multi-
timed bisimilar, written M1 ≈ M2, if there exists a multi-timed bisimulation
relation R over M1 and M2 containing the pair of initial states.

The notion of multi-timed bisimulation extends to MTA and we have the
following definition:

Definition 7 (Multi-timed Bisimilar). Let A and B be two MTA. We say
the automata A and B are multi-timed bisimilar, denoted A ≈ B, iff ∀ τ ∈ Rates
MLTS(A, τ) ≈ MLTS(B, τ).

26 J. Ortiz et al.

Fig. 3. An example of multi-timed bisimulation from [20]

Example 3. Figure 3 depicts two MTA Ap (left) and Aq (right) over the alphabet
Σ = {a}, on processes Proc = {p, q}, with clocks X = {xp, yq}. Suppose the
rate given by τ = (t2, 3t) (meaning that τp(t) = t2, and τq(t) = 3t). Then Ap is
bisimilar to Aq.

2.8 Timed Modal Logic

The Timed Modal Logic Lν is a real-time extension of the Hennessy-Milner
Logic (HML) with greatest fixed-points [15]. Lν is a modal logic that describes
properties of states in a TLTS over the set of actions or symbols Σ. Lν is specified
with the following syntax:

Definition 8. Let Σ be a finite alphabet of actions and X be a finite set of
clocks, the formulae of Lν over Σ, X and Id are defined by the grammar:

ϕ :: = true | false | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | [a]ϕ | 〈a〉ϕ | ∃ϕ | ∀ϕ | x in ϕ | φ | Z

where a ∈ Σ, x ∈ X, φ ∈ Φ(X), Z ∈ Id, [a]ϕ, 〈a〉ϕ are two modalities of the
logic, and ∃ ϕ and ∀ ϕ are the two time modalities.

The meaning of the identifiers in Id is specified by a declaration D assigning
an Lν formula to every identifier in order to define properties with maximal
fixpoints. A declaration is of the form Zi = D(Z) where Z = (Z1, . . . ,Zn) and
D(Z) is a formula over identifiers in Z.

3 MLν : A Distributed Real-Time Modal Logic

We now describe MLν , a distributed real-time modal logic that extends Lν [15]
in order to deal with the distributed clocks that are part multi-timed automata.
This allows the analysis of the local behavior of processes and clocks, as opposed
to the mono-timed semantics of [15].

Syntactically, MLν extends Lν by allowing to refer to local clocks in two
modalities (namely, in in and ∼): clocks are related to their enclosing process
(e.g., xp says that clock x ∈ X belongs to process p ∈ Proc). In that sense, MLν

is a proper extension of Lν : when there is only one process, formulas from MLν

are compatible with formulas of Lν with the same meaning.
We adopt a classical presentation by first detailing the syntax, then the

semantics of MLν , interpreted over MTAs. We then prove a theorem that state
that bisimilar (semantic) states over the same clock valuation satisfy the same
MLν formulas, opening the way to prove that MTAs are bisimilar iff they satisfy
the same MLν formulae.

MLν : A Distributed Real-Time Modal Logic 27

3.1 Syntax of MLν

MLν is a multi-timed modal logic that extends the Lν over distributed clocks.
The syntax of MLν is given in the following definition.

Definition 9. Let Σ be a finite alphabet, X be a finite set of clocks, Proc be a
set of processes, π : X → Proc be a function mapping clocks to their owning
process, and Id a set of identifiers. The set MLν of formulas over Σ, X, π and
Id is defined by the following grammar:

ϕ :: = true | false | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | [a]ϕ | 〈a〉ϕ
| ∃ϕ | ∀ϕ | xp in ϕ | φ | xp + c ∼ yp + d | Z

where a ∈ Σ; p ∈ Proc; xp, yp ∈ X; c, d ∈ {0, · · · , k} (with k ∈ N>0); Z ∈ Id;
φ ∈ Φ(X) a clock constraint; ∼ ∈ {=, >,≥, <,≤}.
The meaning of identifiers is captured by a declaration environment D assigning
an MLν formula to each identifier. We abbreviate Z def= ϕ when D(Z) = ϕ and D
is clear from context.

Let A be a MTA over Proc and τ ∈ Rates and assume that MLTS(A, τ) =
(Q,q0,Σ,→mlts) gives its semantics. Now, we interpret Lν formulas over extended
states. An extended state over Q is a pair (q, μ), where q ∈ Q is a MLTS state
(Definition 5) and μ a valuation for the formula clocks in X. An extended state
satisfies an identifier Z if it belongs to maximal fixpoint of the equation Z =
D(Z). The formal semantics of MLν formulas interpreted over MLTS(A, τ) is
given by the satisfaction relation |= defined as the largest relation satisfying the
equivalences in Definition 9.

Intuitively, a formula xp in ϕ introduces a (formula) clock xp (for process
p ∈ Proc) and initializes it to 0: an extended state satisfies such a formula
provided the modified state with xp being reset to 0 satisfies ϕ. The introduced
formula clocks are used inside formulas with comparison ∼: an extended state
satisfies such a formula iff the values for clocks satifies the given comparison.
The operators ∃ and ∀ denote existential and universal quantification over delay
transitions: ∃ϕ (resp. ∀ϕ) holds in an extended state if there is a (resp. if every)
delay transition leads to a state satisfying ϕ. Similarly, the diamond and boxed
modal operators denote existential and universal quantification over discrete
transitions: 〈a〉ϕ (resp. [a]ϕ) holds on an extended state from which it is possible
to perform an a-action towards a state (resp. all states reachable from an a-
action) where ϕ holds. An extended state satisfies Z if the state satisifies the
declaration D(Z).

28 J. Ortiz et al.

3.2 Semantics of MLν

The following definition provides formal grounds for the intuitive explanation.

Definition 10. Let Σ be a finite alphabet, X be a finite set of clocks and Proc
be a set of processes. The semantics of formulae in MLν is implicitly given with
respect to a given MLTS inductively as follows:

(q, μ) |= true ⇔ true
(q, μ) |= false ⇔ false
(q, μ) |= ϕ1 ∧ ϕ2 ⇔ (q, μ) |= ϕ1 and (q, μ) |= ϕ2

(q, μ) |= ϕ1 ∨ ϕ2 ⇔ (q, μ) |= ϕ1 or (q, μ) |= ϕ2

(q, μ) |= φ ⇔ μ |= φ for φ ∈ Φ(X)
(q, μ) |= [a]ϕ ⇔ ∀q

a−−→mlts q′, (q′, μ) |= ϕ

(q, μ) |= 〈a〉ϕ ⇔ ∃q
a−−→mlts q′, (q′, μ) |= ϕ

(q, μ) |= xp in ϕ ⇔ (q, μ[xp → 0]) |= ϕ

(q, μ) |= ∃ϕ ⇔ ∃d ∈ R
Proc
≥0 ,∃q′ ∈ Q, such that q

d−−→mlts q′,
(q, μ +π d) |= ϕ

(q, μ) |= ∀ϕ ⇔ ∀d ∈ R
Proc
≥0 ,∀q′ ∈ Q, such that q

d−−→mlts q′,
(q, μ +π d) |= ϕ

(q, μ) |= xp + c ∼ yp + d ⇔ μ(xp) + c ∼ μ(yp) + d
(q, μ) |= Z the maximal fixpoint in D(Z)

Two formulae are equivalent iff they are satisfied by the same set of extended
states in every MLTS.

Definition 11. A state q in a MLTS satisfies a formula ϕ, iff (q, μ0) |= ϕ where
μ0 is the clock valuation that maps each formula clock to zero.

Definition 12. Let A be a MTA and ϕ ∈ MLν , then A |= ϕ iff ∀τ ∈ Rates,
MLTS(A, τ) |= ϕ.

Let ϕ be a closed formula, then the set of extended states satisfying ϕ is
independent of the valuation μ for the formula clocks. Hence, if ϕ is closed then
for each state q in a MLTS and valuations μ, μ′ for the formula clocks, we can
get that (q, μ) |= ϕ iff (q, μ′) |= ϕ. Therefore, when ϕ is closed it makes sense to
speak of a state q satisfying ϕ.

Theorem 1. Let Proc be a set of processes. Let M = (Q, q0, Σ,→mlts) be a
MLTS and q1, q2 be multi-timed bisimilar states in Q. Let μ be a clock valuation
for the formula clocks in X, then the extended states (q1, μ) and (q2, μ) satisfy
exactly the same formulae in MLν .

Proof. Assume that q1, q2 are multi-timed bisimilar states in Q. Let μ be a clock
valuation for the formula clocks in X. Assume that (q1, μ) |= ϕ for some formula
ϕ ∈ MLν . Using structural induction on ϕ, we shall prove that (q2, μ) |= ϕ. By
symmetry, this is enough to establish that (q1, μ) and (q2, μ) satisfy the same
formulae in MLν .

MLν : A Distributed Real-Time Modal Logic 29

The proof proceeds by a case analysis on the form of ϕ. Here, we present the
details only for four modalities ∀ ϕ1, the other modalities can be proved in the
same way. Our inductive hypothesis is that, for all states r1 and r2, if r1 and r2
are multi-timed bisimilar and (r1, μ′) |= ϕ1 for some valuation μ′ of the formula
clocks, then (r2, μ′) |= ϕ1. Using this hypothesis, we shall prove that:

– (q2, μ) |= ∀ ϕ1 : To this end, assume that, for every d ∈ R
Proc
≥0 , for all q′

2 ∈ Q,

q2
d−−→mlts q′

2. We wish to show that (q′
2, μ +π d) |= ϕ1. Now, since q1 and

q2 are multi-timed bisimilar and q2
d−−→mlts q′

2, there is a state q′
1 ∈ Q, q1

d−−→mlts q′
1 and q′

1 is multi-timed bisimilar to q′
2. By our supposition that

(q1, μ) |= ϕ, we have that (q′
1, μ +π d) |= ϕ1. The inductive hypothesis yields

that (q′
2, μ +π d) |= ϕ1. Since q′

2 and d were arbitrary we may conclude that
(q2, μ) |= ∀ ϕ1, which was to be shown.

– (q2, μ) |= ∃ ϕ1 : To this end, assume that, there is some d ∈ R
Proc
≥0 , there is

some q′
2 ∈ Q, q2

d−−→mlts q′
2. We wish to show that (q′

2, μ +π d) |= ϕ1. Now,
since q1 and q2 are multi-timed bisimilar and q2

d−−→mlts q′
2, there is a state q′

1

∈ Q, q1
d−−→mlts q′

1 and q′
1 is multi-timed bisimilar to q′

2. By our supposition
that (q1, μ) |= ϕ, we have that (q′

1, μπ + d) |= ϕ1. The inductive hypothesis
yields that (q′

2, μπ +d) |= ϕ1. Since q′
2 and d were arbitrary we may conclude

that (q2, μ) |= ∃ ϕ, which was to be shown.
– (q2, μ) |= yp in ϕ1. To this end, assume that, for some yp ∈ X, for p ∈ Proc,

such that (q2, μ[yp → 0]) |= ϕ1. Now, since q1 and q2 are multi-timed bisimilar
and by our supposition that (q1, μ) |= yp in ϕ for some yp ∈ X for p ∈ Proc,
we have that (q1, μ[yp → 0]) |= ϕ reset yp to 0.

– (q2, μ) |= yp + c ∼ xp + d. To this end, assume that, for some yp, xp ∈
X for p ∈ Proc, for some c, d ∈ N such that μ(yp) + c ∼ μ(xp) + d. Now,
since q1 and q2 are multi-timed bisimilar and by our supposition that (q1, μ)
|= yp + c ∼ xp + d for some yp, xp ∈ X for p ∈ Proc, for some c, d ∈ N,
we have that μ(yp) + c ∼ μ(xp) + d.

As an immediate consequence of Theorem 1, by instantiating its results to
the initial state of MLTS M1 and M2, we obtain the following result.

Lemma 1. If M1 and M2 are multi-timed bisimilar, i.e. M1 ≈ M2, and M1

|= ϕ then M2 |= ϕ.

Since MTA provide a formalism for the finite description of MLTS and the
clock constraints are exactly the same as those present in the syntax of the logic
MLν , then we obtain the following result.

Theorem 2. Let A1 and A2 be two MTA and ϕ ∈ MLν . If (A1 |= ϕ iff A2 |=
ϕ) then A1 ≈ A2.

Proof (sketch). A proof of this theorem may be obtained from the characteristic
property of TA [15].

30 J. Ortiz et al.

As an immediate consequence of the above Theorem 2 and Lemma 1, we
obtain the following result.

Lemma 2. Given two MTA A1 and A2, if A1 ≈ A2 and A1 |= ϕ then A2 |= ϕ.

3.3 Examples of Properties

Here, we use MLν formulas to express multi-timed properties.

Example 4. Consider the MTA Aq described in Fig. 3 right. The initial state
(q0, μ0) (i.e., q0 = (T0, ν0)) satisfies the following MLν formula ϕ:

ϕ = yq in ∃(3 ≥ yq ≥ 1 ∧ 〈a〉 true)

Intuitively, this formula means that the action a can be performed by the process
q after a delay between 1 and 3, for instance 2 time units.

Example 5. Consider the MTA M described in Fig. 2. The initial state (q0, μ0)
(i.e., q0 = (S0, ν0)) satisfies the following MLν formula ϕ:

ϕ = yq in ∃(3 ≥ yq ≥ 1 ∧ 〈a〉 S1) ∧ (xp ≥ 1 ∧ 〈a〉 S1)

Intuitively, this formula means that the action a can be performed by the process
q after a delay between 1 and 3, for instance 2 and the action a can be performed
by the process p after a delay 1 time units.

Example 6. Consider the MTA A described in Fig. 4. The state (q1, μ1) (i.e., q1
= (S1, ν1)) satisfies the following MLν formula ϕ:

ZS1 = xp in ∃(xp ≤ 10 ∧ 〈b〉 ZS1) ∧ [b] (xp ≤ 10 ∧ xp in ZS1) ∧ ∀ ZS1∨
yq in ∃(yq ≤ 9 ∧ 〈b〉 S0) ∧ xp in (〈b〉 S0)

Intuitively, this formula means that the action b can be performed by the process
p before a delay 10 time units (self-loop) or the action b can be performed by
the process q before a delay 9 time units.

Example 7. The initial state (q0, μ0) satisfies the following MLν formula ϕ:

ϕ = xp in ∃(xp ≥ 1 ∧ (〈a〉 true ∨ 〈b〉 true))

Intuitively, this formula means that the action a or b can be performed by the
process p before a delay 1 time units.

MLν : A Distributed Real-Time Modal Logic 31

Example 8. Consider the two MTA Ap (left) and Aq (right) in Fig. 3 with
the alphabet Σ = {a}, the set of processes Proc = {p, q}, the set of clocks
X = {xp, yq} and without invariants (i.e, all the invariants are true). We could
combine two MTA to a single new one, where their interactions are determined by
synchronous discrete transitions and asynchronous delay transitions (all clocks
of the composition evolve independently with time). For sake of readability, we
have renamed the action in Σ to ap and aq. Thus, we also could combine two
formulas to a single new one, where the initial state (q0, μ0) is the conjunction
the two initial state of Ap and Aq. We could describe the multi-timed bisimula-
tion with a single formula in MLν . The initial state (q0, μ0) satisfies the following
MLν formula ϕ:

ϕ = ([ap]〈aq〉 (xp in ∃(3 ≥ xp ≥ 1 ∧ 〈ap〉 true)))∧
([aq]〈ap〉 (yq in ∃(3 ≥ yq ≥ 1 ∧ 〈aq〉 true))).

Intuitively, this formula means that the action ap and aq can be performed by
the process p and q after a delay between 1 and 3, for instance 2 time units.

Fig. 4. A Multi-timed Automata A

3.4 Reachability Problem

Region graph and zone graph constructions can be used for analyzing reachability
and other properties in MTA (and TA) [5,20]. These graphs have sizes exponential
in the number of clocks of the (multi)-timed automaton. The algorithms for
model checking depend on the sizes of these graphs. Reachability algorithms
based on zone graphs were extended to deal with the parallel composition of
MTA [20]. Reachability problems for a single MTA as well as for a composition
of MTA (or Network of TA) are both PSPACE-complete [1,20]. Using the zone
graphs, we can define a symbolic multi-timed zone automaton for a MTA A (or
the parallel composition of two MTA A ‖ B) which is a finite transition system,
called the multi-timed zone graph [20], whose states are pairs q = (s,Z) where
s is a location of MTA A and Z a clock zone. Formulas in MLν can then be
interpreted over the states of the zone graph as it is done for Lν [15].

Theorem 3 ([1,20]). The reachability problem is PSPACE-complete for MTA
and TA.

32 J. Ortiz et al.

3.5 Model Checking

Here, we consider the model checking problem of MLν sentences on MTA models.
This problem consists, given a MLν sentence ϕ and an MTA A, in deciding
whether the relation A |= ϕ holds.

Theorem 4. The model checking problem of MLν on MTA is EXPTIME-
complete.

Proof. EXPTIME-hardness: The proof follows from the EXPTIME-hardness of the
model-checking of the logic Lν over TA [1], as MTA are an extension of TA and
MLν is the corresponding extension of Lν : If we use a single process, MLν = Lν

and MTA = TA.

Proof. EXPTIME-membership: To prove EXPTIME-membership, we use the idea
suggested in [15]. Let A be a MTA, ϕ ∈ MLν , K the number of clocks of the
automaton A, C the maximal constant of A and ϕ, n the nesting depth of
greatest fixpoint quantifier in ϕ. We consider the region graph Regions(A, ϕ) [5]
associated with A and the formula ϕ with clocks X. The region graph depends
on the maximal constants with which clocks are compared in A and ϕ. Using
the region graph Regions(A, ϕ), model checking MLν formulas can be done in
time that is exponential in the number of K, C and n. This can be shown in a
similar fashion as [15].

Following [4], A |= ϕ iff A′ |= ϕ, where A′ = untimed(A) is the untimed
automaton associated with A and ϕ (the region graph Regions(A, ϕ)). The size
of A′ is exponential in the length of the timing constraints of the given MTA
automaton and in the length of the formula ϕ (assuming binary encoding of
the constants), that is, |A′| = O((|S| + | →ta |) · K! · 2K · CK). The
region graph A′ can be constructed in linear time, which is also bounded by
O((|S| + | →ta |) · K! · 2K · CK) [4]. On the region graph, untimed model
checking can be performed in time O((|ϕ| · |A′|). Clearly we obtain an algorithm
of time complexity O(|ϕ| · (|S| + | →ta |) · K! · 2K · CK)|ϕ|.

4 Related Work

Similarly to the various extensions of Timed Automata for coping with dis-
tributed systems and their potential unsynchronized clocks, modal logics fol-
lowed to be able to capture properties of interest adequately. Modal logic has
been extended with time and recursion in [15]. The same authors showed that
model-checking and satisfiability (for a bounded number of clocks and values of
the constants) are decidable over TA. In [1], the model-checking problem for the
logic Lν over TA is PSPACE-complete. In [16], has been studied the Recursive
Weighted Logic (RWL), a modal logic that expresses qualitative and quantitative
properties. The satisfiability problem for RWL is decidable by applying a variant
of the region technique developed for TA.

MLν : A Distributed Real-Time Modal Logic 33

There are several logics that have been defined in order to capture aspects
of quantitative timing information and distributed properties, such as DRTL
[17], APTL [25] and DECTL [21]. In these logics it is possible to define formulae
whose truth values depend on (or are relative to) only part of their underly-
ing mathematical models. In the case of DRTL and APTL, theses logics are an
extension of Second-Order Logic (SOL) and First-Order Logic (FOL) where the
set of formulae are composed of constants, functions, predicates universal and
existential quantifiers and logical connectives from FOL. In the case of DECTL,
a distributed real-time logic with independent time evolutions is proposed. This
logic can be model-checked by translating a DECTL formula into a distributed
event clock automaton [21]. In general, this timed temporal logic do not make
use of different action labels and delay i.e. it is interpreted over Timed Labelled
Transition System (TLTS).

5 Conclusions

Distributed Real-Time Systems that are modeled with mono-timed semantics
[10,11,19] may cause actions or events generated at the same instant of a ref-
erence time to have different timestamps given by local clocks of distributed
processes. As a consequence, logics aligned with this semantics may not capture
such subtle behaviors. In this paper, we have proposed the basis of a framework
for specifying DRTS through of the introduction of distributed (or independent)
clocks, inspired by MTA [20]. We presented MLν , a logic interpreted on MTA,
which have the capability to accept multi-timed words, and possess a multi-
timed semantics [20]. MLν is an extension of the modal logic Lν [15], tailored
for multi-timed semantics over MTA. We defined its syntax and semantics, and
showed that the model-checking problem over Multi-Timed Automata is EXP-
TIME-complete, by analogy to Lν .

The satisfiability checking problem, which is the dual of the model checking
problem, is to check whether a given ϕ formulae is satisfied by a multi-timed
automaton A. Formally, let ϕ be a MLν formula and A be a MTA, then the
satisfiability problem (A |= ϕ) is decidable.

Currently, the satisfiability problem for Lν has been shown undecidable (in
fact, even for its non-recursive fragment) [13]. The satisfiability problem for the
Recursive Weighted Logic (RWL) has been shown decidable by applying a variant
of the region technique developed for TA [16]. We could explore the possibility
of using the technique presented in [16] in order to exploit a recent decidability
result [13,16].

As a future work, we plan to specify and implement a prototype algorithm
for model-checking, and envisage to study the satisfiability of MLν , by exploit-
ing recent decidability results on Recursive Weighted Logic [16], which presents
similar features.

34 J. Ortiz et al.

References

1. Aceto, L., Laroussinie, F.: Is your model checker on time? In: Kuty�lowski, M.,
Pacholski, L., Wierzbicki, T. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 125–136.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48340-3 12

2. Akshay, S., Bollig, B., Gastin, P., Mukund, M., Narayan Kumar, K.: Distributed
timed automata with independently evolving clocks. In: van Breugel, F., Chechik,
M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 82–97. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85361-9 10

3. Al-Bataineh, O.I., Reynolds, M., French, T., Woodings, T.: Verifying real-time
commit protocols using dense-time model checking technology. CoRR, volume
1201-3416 (2012)

4. Alur, R.: Techniques for automatic verification of real-time systems. Ph.D. thesis,
Stanford University, CA, USA (1992)

5. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

6. Anier, A., Vain, J., Tsiopoulos, L.: DTRON: a tool for distributed model-based
testing of time critical applications. Proc. Est. Acad. Sci. 66, 75 (2017)

7. Asplund, M.: Automatically proving the correctness of vehicle coordination. ICT
Express 4, 51–54 (2018). SI: CI & Smart Grid Cyber Security

8. Čerāns, K.: Decidability of bisimulation equivalences for parallel timer processes.
In: von Bochmann, G., Probst, D.K. (eds.) CAV 1992. LNCS, vol. 663, pp. 302–315.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56496-9 24

9. Cristian, F.: Synchronous and asynchronous. Commun. ACM 39, 273–297 (1996)
10. De Biasi, M., Snickars, C., Landernäs, K., Isaksson, A.: Simulation of process con-

trol with wirelesshart networks subject to clock drift. In: Proceedings of the 2008
32nd Annual IEEE International Computer Software and Applications Conference
COMPSAC 2008 (2008)

11. Gwaltney, D.A., Briscoe, J.M.: Comparison of communication architectures for
spacecraft modular avionics systems. Technical Report 214431, NASA (2006).
http://www.sti.nasa.gov/

12. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for
real-time systems. Inf. Comput. 111(2), 193–244 (1994)

13. Jaziri, S., Larsen, K.G., Mardare, R., Xue, B.: Adequacy and complete axioma-
tization for timed modal logic. Electr. Notes Theor. Comput. Sci. 308, 183–210
(2014)

14. Krishnan, P.: Distributed timed automata. In: Workshop on Distributed Systems,
vol. 28 (1999)

15. Laroussinie, F., Larsen, K.G., Weise, C.: From timed automata to logic — and
back. In: Wiedermann, J., Hájek, P. (eds.) MFCS 1995. LNCS, vol. 969, pp. 529–
539. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60246-1 158

16. Larsen, K.G., Mardare, R.: Complete proof systems for weighted modal logic.
Theor. Comput. Sci. 546, 164–175 (2014)

17. Mall, R., Patnaik, L.: Specification and verification of timing properties of dis-
tributed real-time systems (1990)

18. Milner, R.: Communication and Concurrency. PHI Series in Computer Science.
Prentice Hall, New York (1989)

19. Monot, A., Navet, N., Bavoux, B.: Impact of clock drifts on CAN frame response
time distributions. In: 16th IEEE International Conference on Emerging Technolo-
gies and Factory Automation - ETFA, Toulouse, France, p. 2011, September 2011

https://doi.org/10.1007/3-540-48340-3_12
https://doi.org/10.1007/978-3-540-85361-9_10
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/3-540-56496-9_24
http://www.sti.nasa.gov/
https://doi.org/10.1007/3-540-60246-1_158

MLν : A Distributed Real-Time Modal Logic 35

20. Ortiz, J., Amrani, M., Schobbens, P.-Y.: Multi-timed bisimulation for distributed
timed automata. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS,
vol. 10227, pp. 52–67. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
57288-8 4

21. Ortiz, J., Legay, A., Schobbens, P.-Y.: Distributed event clock automata. In:
Bouchou-Markhoff, B., Caron, P., Champarnaud, J.-M., Maurel, D. (eds.) CIAA
2011. LNCS, vol. 6807, pp. 250–263. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22256-6 23

22. Ramasamy, H.V., Cukier, M., Sanders, W.H.: Formal specification and verification
of a group membership protocol for an intrusion-tolerant group communication sys-
tem. In: Pacific Rim International Symposium on Dependable Computing (2002)

23. Raynal, M.: Parallel computing vs. distributed computing: a great confusion? (posi-
tion paper). In: Hunold, S., et al. (eds.) Euro-Par 2015. LNCS, vol. 9523, pp. 41–53.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27308-2 4

24. Tripakis, S., Yovine, S.: Analysis of timed systems using time-abstracting bisimu-
lations. Formal Methods Syst. Des. 18(1), 25–68 (2001)

25. Wang, F., Mok, A.K., Emerson, E.A.: Distributed real-time system specification
and verification in APTL. ACM Trans. Softw. Eng. Methodol. 2, 346–378 (1993)

26. Wang, X., Wang, J., Qi, Z.-C.: Automatic generation of run-time test oracles for
distributed real-time systems. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE
2004. LNCS, vol. 3235, pp. 199–212. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30232-2 13

https://doi.org/10.1007/978-3-319-57288-8_4
https://doi.org/10.1007/978-3-319-57288-8_4
https://doi.org/10.1007/978-3-642-22256-6_23
https://doi.org/10.1007/978-3-642-22256-6_23
https://doi.org/10.1007/978-3-319-27308-2_4
https://doi.org/10.1007/978-3-540-30232-2_13
https://doi.org/10.1007/978-3-540-30232-2_13

Local Reasoning for Parameterized First
Order Protocols

Rylo Ashmore(B), Arie Gurfinkel(B), and Richard Trefler(B)

University of Waterloo, Waterloo, Canada
{rjashmor,arie.gurfinkel,trefler}@uwaterloo.ca

Abstract. First Order Logic (FOL) is a powerful reasoning tool for
program verification. Recent work on Ivy shows that FOL is well suited
for verification of parameterized distributed systems. However, specify-
ing many natural objects, such as a ring topology, in FOL is unexpect-
edly inconvenient. We present a framework based on FOL for specifying
distributed multi-process protocols in a process-local manner together
with an implicit network topology. In the specification framework, we
provide an auto-active analysis technique to reason about the protocols
locally, in a process-modular way. Our goal is to mirror the way design-
ers often describe and reason about protocols. By hiding the topology
behind the FOL structure, we simplify the modelling, but complicate the
reasoning. To deal with that, we use an oracle for the topology to develop
a sound and relatively complete proof rule that reduces reasoning about
the implicit topology back to pure FOL. This completely avoids the need
to axiomatize the topology. Using the rule, we establish a property that
reduces verification to a fixed number of processes bounded by the size
of local neighbourhoods. We show how to use the framework on two
examples, including leader election on a ring.

1 Introduction

Auto-active [7] and automated verification engines are now commonly used to
analyze the behavior of safety- and system-critical multi-process distributed sys-
tems. Applying the analysis techniques early in the design cycle has the added
advantage that any errors or bugs found are less costly to fix than if one waits
until the system is deployed. Therefore, it is typical to seek a proof of safety for
parametric designs, where the number of participating program components is
not yet determined, but the inter-process communication fits a given pattern,
as is common in routing or communication protocols, and other distributed sys-
tems. Recently, Ivy [16] has been introduced as a novel auto-active verification
technique (in the style of Dafny [7]) for reasoning about parameterized systems.
Ivy models protocols in First Order Logic (FOL). The verification conditions
are compiled (with user help) to a decidable fragment of FOL, called Effectively
Propositional Reasoning (EPR) [17]. Ivy is automatic in the sense that the verifi-
cation engineer only provides an inductive invariant. Furthermore, unlike Dafny,

c© Springer Nature Switzerland AG 2019
J. M. Badger and K. Y. Rozier (Eds.): NFM 2019, LNCS 11460, pp. 36–53, 2019.
https://doi.org/10.1007/978-3-030-20652-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20652-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-20652-9_3

Local Reasoning for Parameterized First Order Protocols 37

∀x, y, z · btw(x, y, z) ⇒ btw(y, z, x)

∀w, x, y, z · btw(w, x, y) ∧ btw(w, y, z) ⇒ btw(w, x, z)

∀w, x, y · btw(w, x, y) ⇒ ¬btw(w, y, x)

∀w, x, y · distinct(w, x, y) ⇒ (btw(w, x, y) ∨ btw(w, y, x))

∀a, b · (next(a, b) ⇐⇒ ∀x · x �= a ∧ x �= b ⇒ btw(a, b, x))

Fig. 1. A description of a unidirectional ring in FOL as presented by Ivy [16].

it guarantees that the verification is never stuck inside the decision procedure
(verification conditions are decidable).

In representing a protocol in Ivy, an engineer must formally specify the entire
protocol, including the topology. For instance, in verifying the leader election on
a ring, Ivy requires an explicit axiomatization of the ring topology, as shown in
Fig. 1. The predicate btw(x, y, z) means that a process y is between processes x
and z in the ring; similarly, next(a, b) means that b is an immediate neighbour
of a on the ring. All (finite) rings satisfy the axioms in Fig. 1. The converse is
not true in general. For instance, take the rationals Q and let btw(x, y, z) be
defined as x < y < z ∨ y < z < x ∨ z < x < y. All axioms of btw are
satisfied, but the only consistent interpretation of next is an empty set. This
satisfies all the axioms, but does not define a ring. For the axioms in Fig. 1, all
finite models of btw and next describe rings. This is not an issue for Ivy, since
infinite models do not need to be considered for EPR. Such reasoning is non-
trivial and is a burden on the verification engineer. As another example, we were
not able to come up with an axiomatization of rings of alternating red and black
nodes (shown in Fig. 2a) within EPR. In general, a complete axiomatization of
the topology might be hard to construct.

In this paper, we propose to address this problem by specifying the topology
independently of process behaviour. We present a framework which separates
the two and provides a clean way to express the topology. We then specify our
transitions locally, as this is a natural and common way to define protocols.
Once these preliminaries are done, we provide a process-local proof rule to ver-
ify properties of the system. To generate the proof rule, we offload topological
knowledge to an oracle that can answer questions about the topology. Finally,
we prove various properties of the proof rule.

In summary, the paper makes the following contributions. First, in Sect. 3, we
show how to model protocols locally in FOL. This is an alternative to the global
modelling used in Ivy. Second, in Sect. 4, we show a proof rule with verification
conditions (VC) in FOL, which are often in EPR. When the VC is in EPR,
this gives an engineer a mechanical check of inductiveness. This allows reasoning
about topology without axiomatizing it. Third, in Sect. 5, we show that our proof
rule (a) satisfies a small model property, and (b) is relatively complete. The first
guarantees the verification can be done on small process domains; the second
ensures that our proof rule is relatively expressive.

38 R. Ashmore et al.

We illustrate our approach on two examples. First, as a running example,
motivated by [13], is a protocol on rings of alternating red and black nodes.
These rings have only rotational symmetry, however, they have substantial local
symmetry [8,12,13] consisting of two equivalence classes, one of red nodes, and
one of black nodes. Second, in Sect. 6, we consider a modified version of the
leader election protocol from Ivy [16]. This is of particular interest, since the
local symmetry of [8,12,13] has not been applied to leader election. We thus
extend [8,12,13] by both allowing more symmetries and infinite-state systems.

2 Preliminaries

FOL Syntax and Semantics. We assume some familiarity with the standard
concepts of many sorted First Order Logic (FOL). A signature Σ consists of
sorted predicates, functions, and constants. Terms are variables, constants, or
(recursively) k-ary functions applied to k other terms of the correct sort. For
every k-ary predicate P and k terms t1, . . . , tk of the appropriate sort for P ,
the formula P (t1, . . . , tk) is a well-formed formula (wff). Wffs are then boolean
combinations of formulae and universally or existentially quantified formulae.
Namely, if ψ and ϕ are wffs, then so are (ψ ∧ ϕ), (ψ ∨ ϕ) ,(¬ψ), (ψ ⇒ ϕ),
(ψ ⇐⇒ ϕ), (∀x · ψ), and (∃x · ψ). A variable x in a formula ψ is bound if it
appears under the scope of a quantifier. A variable not bound is free. A wff with
no free variables is called a sentence. For convenience, we often drop unnecessary
parenthesis, and use � to denote true and ⊥ to denote false.

An FOL interpretation I over a domain D assigns every k-ary predicate P
a sort-appropriate semantic interpretation I(P) : Dk → {T, F}; to every k-
ary function f a sort-appropriate interpretation I(f) : Dk → D, and to every
constant c an element I(c) ∈ D. Given an interpretation I and a sentence ψ,
then either ψ is true in I (denoted, I |= ψ), or ψ is false in I (denoted I �|= ψ).
The definition of the models relation is defined on the structure of the formula
as usual, for example, I |= (ϕ ∧ ψ) iff I |= ϕ and I |= ψ. We write |= ϕ if for
every interpretation I, I |= ϕ.

We write I(Σ′) to denote a restriction of an interpretation I to a signature
Σ′ ⊆ Σ. Given disjoint signatures Σ, Σ′ and corresponding interpretations I, I ′

over a fixed domain D, we define I ⊕ I ′ to be an interpretation of Σ ∪ Σ′ over
domain D defined such that (I ⊕ I ′)(t) = I(t) if t ∈ Σ, and (I ⊕ I ′)(t) = I ′(t)
if t ∈ Σ′. Given interpretation I and sub-domain D′ ⊆ D where D′ contains all
constants, we let I(D′) be the interpretation restricted to domain D′.

FOL Modulo Structures. We use an extension of FOL to describe structures,
namely graphs. In this case, the signature Σ is extended with some pre-defined
functions and predicates, and the interpretations are restricted to particular
intended interpretations of these additions to the signature. We identify a struc-
ture class C with its signature ΣC and an intended interpretation. We write
FOLC for First Order Logic over the structure class C. Common examples are
FOL over strings, FOL over trees, and other finite structures.

Local Reasoning for Parameterized First Order Protocols 39

A structure S = (D, I) is an intended interpretation I for structural predi-
cates/functions ΣC over an intended domain D. A set of structures is denoted
C. The syntax of FOLC is given by the syntax for FOL with signature Σ � ΣC

(where Σ is an arbitrary disjoint signature). For semantics, any FOL interpre-
tation I of signature Σ leads to an FOLC interpretation I ⊕ IC of the signature
Σ � ΣC . We write |=C ϕ iff every FOLC interpretation I satisfies I |= ϕ. We
introduce a process sort Proc and require the intended domain D to be exactly
the set of Proc-sorted elements, so that we put our intended structure on the
processes.

First Order Transition Systems. We use First Order Transitions Systems from
Ivy [15,16]. While the original definition was restricted to the EPR fragment of
FOL, we do not require this. A transition system is a tuple Tr = (S, S0, R), where
S is a set of states, S0 ⊆ S is a set of initial states, and R ⊆ S ×S is a transition
relation. A trace π is a (finite or infinite) sequence of states π = s0 · · · si · · · such
that s0 ∈ S0 and for every 0 ≤ i < |π|, (si, si+1) ∈ R, where |π| denotes the
length of π, or ∞ if π is infinite. A transition system may be augmented with
a set B ⊆ S of “bad” states. The system is safe iff all traces contain no bad
states. A set of states I is inductive iff S0 ⊆ I and if s ∈ I and (s, s′) ∈ R, then
s′ ∈ I. Showing the existence of an inductive set I that is disjoint from bad set
B suffices to show a transition system is safe.

A First-Order Transition System Specification (FOTSS) is a tuple (Σ,ϕ0, τ)
where Σ is an FOL signature, ϕ0 is a sentence over Σ and τ is a sentence over
Σ � Σ′, where � denotes disjoint union and Σ′ = {t′ | t ∈ Σ}. The semantics
of a FOTSS are given by First Order Transition Systems (FOTS). Let D be
a fixed domain. A FOTSS (Σ,ϕ0, τ) defines a FOTS over D as follows: S =
{I | I is an FOL interpretation over D}, S0 = {I ∈ S | I |= ϕ0}, and R =
{(I1, I2) ∈ S × S | I1 ⊕ I ′

2 |= τ}, where I ′ interprets Σ′. We may augment a
FOTSS with a FOL sentence Bad , giving bad states in the FOTS by I ∈ B iff
I � Bad . A FOTSS is safe if all of its corresponding FOTS Tr are safe, and is
unsafe otherwise. That is, a FOTSS is unsafe if there exists at least one FOTS
corresponding to it that has at least one execution that reaches a bad state.
A common way to show a FOTSS is safe is to give a formula Inv such that
|= ϕ0 ⇒ Inv and |= Inv ∧ τ ⇒ Inv ′. Then for any FOTS over domain D, the set
I ⊆ S given by I = {I ∈ S | I |= Inv} is an inductive set, and |= Inv ⇒ ¬Bad
then suffices to show that the state sets I,B in the FOTS are disjoint. Finding
an invariant Inv satisfying the above proves the system safe.

Example 1. Consider the following FOTSS:

Σ � {Even,+, 1, var} ϕ0 � Even(var)

τ � (var′ = (var + 1) + 1) ∧ Unch(Even,+, 1) Bad � ¬Even(var)

where Unch(Even,+, 1) means that Even, +, and 1 have identical interpreta-
tions in the pre- and post-states of τ .

Our intention is to model a program that starts with an even number in a
variable var and increments var by 2 at every transition. It is an error if var ever

40 R. Ashmore et al.

becomes odd. A natural invariant to conjecture is Inv � Even(var). However,
since the signature is uninterpreted, the FOTSS does not model our intention.

For example, let D = {0, 1, 2}, I0(Even) = {1, 2}, I0(1) = 1, I0(+)(a, b) =
a+b mod 3, and I0(var) = 1. Thus, I0 |= ϕ0. Let I1 be the same as I0, except
I1(var) = 0. Then, I0 ⊕ I ′

1 |= τ and I1 |= Bad . Thus, this FOTSS is unsafe.

One way to explicate our intention in Example 1 is to axiomatize the uninter-
preted functions and relations in FOL as part of ϕ0 and τ . Another alternative
is to restrict their interpretation to a particular structure. This is the approach
we take in this paper. We define a First-Order (relative to C) Transition System
Specification (FOCTSS).

We need to be able to talk about the structural objects in ΣC , and so we
require that every FOCTSS (Σ,ϕ0, τ) be an FOTSS with ΣC ⊆ Σ. Once we
have these structural objects, any structure (D, IC) ∈ C gives a FOCTS with
states I where I(ΣC) = IC , initial states I where I |= ϕ0, transitions (I1, I2)
where I1 ⊕ I ′

2 |= τ , and bad states I for which I |= Bad .

3 First-Order Protocols

We introduce the notion of a First-Order Protocol (FOP) to simplify and restrict
specifications in a FOTS. We choose restrictions to make our protocols asyn-
chronous compositions of processes over static network topologies. Each pro-
cess description is relative to its process neighbourhood. For example, a process
operating on a ring has access to its immediate left and right neighbours, and
transitions are restricted to these processes. This simplifies the modelling.

We begin with formalizing the concept of a network topology. As a running
example, consider a Red-Black-Ring (RBR) topology, whose instance with 4
processes is shown in Fig. 2a. Processes are connected in a ring of alternating
Red and Black processes. Each process is connected to two neighbours using two
links, labelled left and right , respectively. From the example it is clear how to
extend this topology to rings of arbitrary (even) size.

To formalize this, we assume that there is a unique sort Proc for processes.
Define ΣC = ΣC

E � ΣC
T to be a topological signature, where ΣC

E is a set of unary
Proc-sorted functions and ΣC

T is a set of distinct k-ary Proc-sorted predicates.
Functions in ΣC

E correspond to communication edges, such as left and right in
our example. Predicates in ΣC

T correspond to classes of processes, such as Red
and Black in our example. For simplicity, we assume that all classes have the
same arity k. We often omit k from the signature when it is contextually clear.
We are now ready to define the concept of a network topology:

Definition 1. A network topology C over a topological signature ΣC is a col-
lection of directed graphs G = (V,E) augmented with an edge labelling dir :
E → ΣC

E and k-node labelling kind : V k → ΣC
T . Given a node p in a graph

G = (V,E) from a network topology C, the neighbourhood of p is defined as
nbd(p) = {p} ∪ {q | (p, q) ∈ E}, and a neighbourhood of a tuple p = (p1, . . . , pk)
is defined as nbd(p) =

⋃k
i=1 nbd(pi). A network topology is deterministic if for

Local Reasoning for Parameterized First Order Protocols 41

every distinct pair q, r ∈ nbd(p) \ {p}, dir(p, q) �= dir(p, r). That is, each neigh-
bour of p corresponds to a distinct name in ΣE.

Given a deterministic network topology ΣC
T ∪ ΣC

E , the intended interpretation
of a predicate P ∈ ΣC

T is the set of all nodes in the network topology labelled by
P , and the intended interpretation of a function f ∈ ΣC

E is such that f(p) = q if
an edge (p, q) is labelled by f and f(p) = p, otherwise.

Each graph G in a network topology C provides a possible intended interpre-
tation for the sort of processes Proc, and the edge and node labelling provide
the intended interpretation for predicates and functions in ΣC .

p2
0 p2

1

p2
2p2

3

Black
Red

(a) Red-Black-Ring of 4 process. Dashed
arrows are right , and solid are left .

Init : var : =null

Tr : black ⇒ right .var : = r

red ⇒ right .var : = b

Bad : red ∧ var = b

(b) A simple protocol over Red-Black-
Ring topology.

Fig. 2. An example of a topology and a protocol. (Color figure online)

Example 2. For our running example, consider the protocol informally shown in
Fig. 2b described by a set of guarded commands. The protocol is intended to
be executed on the RBR topology shown in Fig. 2a. Initially, all processes start
with their state variable var set to a special constant null. Then, at each step,
a non-deterministically chosen process, sends a color to its right. Every black
process sends a red color r, and every red process sends a black color b. It is bad
if a Red process ever gets a black color.

To formalize the topology, for each n > 1, let Gn = (Vn, En), where Vn =
{pn

i | 0 ≤ i < 2n}, and En = {(pn
i , pn

j) | |i − j| mod 2n = 1}. The edge labelling
is given by dir(pn

i , pn
j) = right if j = (i+1) mod n and left if j = (i−1) mod n.

Processes have colour kind(pn
i) = Red if i is even, and Black if i is odd. Finally,

we define RBR = {Gn | n ≥ 2} as the class of Red-Black Rings (RBR). ��

Note that any set of graphs G with an upper bound on the out-degree of any
vertex can be given a finite labelling according to the above definition.

First-Order Protocols. Once we have specified the topology, we want to establish
how processes transition. We define the syntax and semantics of a protocol.

A protocol signature Σ is a disjoint union of a topological signature ΣC , a
state signature ΣS , and a background signature ΣB . Recall that all functions
and relations in ΣC are of sort Proc. All elements of ΣS have arity of at least 1
with the first and only the first argument of sort Proc. Elements of ΣB do not

42 R. Ashmore et al.

allow arguments of sort Proc at all. Intuitively, elements of ΣC describe how pro-
cesses are connected, elements of ΣS describe the current state of some process,
and elements of ΣB provide background theories, such as laws of arithmetic or
uninterpreted functions.

For an interpretation I, and a set of processes P ⊆ I(Proc), we write
I(ΣS)(P) for the interpretation I(ΣS) restricted to processes in P . Intuitively,
we look only at the states of P and ignore the states of all other processes.

Definition 2. A First-Order Protocol (FO-protocol) is a tuple P = (Σ, Init(p),
Mod(p),TrLoc(p), C), where Σ is a protocol signature; Init(p) is a formula
with k free variables p of sort Proc; Mod(p) is a set of terms {t(p) | t ∈
dir(E)} ∪ {p}; TrLoc(p) is a formula over the signature Σ ∪ Σ′ with free
process variable p, and C is a network topology. Furthermore, Init(p) is of the
form

∧
P∈ΣC

T
(P (p) ⇒ InitP (p)), and each InitP is a formula over Σ \ ΣC (an

initial state described without reference to topology for each relevant topological
class); and terms of sort Proc occurring in TrLoc(p) are a subset of Mod(p).

Note that the semantic local neighbourhood nbd(p) and the set of syntactic
terms in Mod(p) have been connected. Namely, for every edge (p, q) ∈ E, there
is a term t(p) ∈ Mod(p) to refer to q, and for every term t(p) ∈ Mod(p), we will
refer to some process in the neighbourhood of p.

Const = {null/0, r/0, b/0} Func = {left/1, right/1, var/1}
Pred = {Red/1, Black/1,=/2} Σ = (Const,Func,Pred)

Init(p) = (Red(p) ⇒ var(p) = null) ∧ (Black(p) ⇒ var(p) = null)

Mod(p) = {p, right(p), left(p)}
tr(p) = var′(right(p)) = b ∧ var′(p) = var(p) ∧ var′(left(p)) = var(left(p))

tb(p) = var′(right(p)) = r ∧ var′(p) = var(p) ∧ var′(left(p)) = var(left(p))

TrLoc(p) = (Red(p) ⇒ tr(p)) ∧ (Black(p) ⇒ tb(p))

Fig. 3. A FO-protocol description of the system from Fig. 2.

ϕ0 � ∀p · Init(p) τ � ∃p · TrLoc(p) ∧ Frame(p)

Frame(p) � UnMod ∧ (∀y · y �∈ Mod(p) ⇒ Unch(y)))

Unch(y) �

⎛
⎝ ∧

P∈PredS

∀v · P (y,v) ⇐⇒ P ′(y,v)

⎞
⎠ ∧

⎛
⎝ ∧

f∈FuncS

∀v · f(y,v) = f ′(y,v)

⎞
⎠

UnMod �

⎛
⎝ ∧

P∈PredB

∀v · P (v) ⇐⇒ P ′(v)

⎞
⎠ ∧

⎛
⎝ ∧

f∈FuncB

∀v · f(v) = f ′(v)

⎞
⎠

Fig. 4. An FOTS of the protocol in Fig. 3.

Local Reasoning for Parameterized First Order Protocols 43

A formal description of our running example is given in Fig. 3 as a FO-
protocol. We define the signature including ΣC = {left , right ,Red ,Black}, the
initial states Init(p) in the restricted form, and modification set Mod(p), where
we allow processes to only write to their local neighbourhood. Next we spec-
ify two kinds of transitions, a red tr and a black tb transition. Each writes to
their right neighbour the colour they expect that process to be. Each process
p does not change the var states of p, left(p) ∈ Mod(p). Finally, we specify our
local transitions TrLoc(p) by allowing each of the sub-transitions. Note that all
process-sorted terms in TrLoc(p) are in Mod(p) = {left(p), p, right(p)}, and we
are allowed to call on topological predicates in TrLoc, finishing our specification.

The semantics of a protocol P are given be a FOCTSS as shown in Fig. 4.
The protocol signature Σ is the same in the FOCTSS as in the FOP. Initially,
ϕ0 requires that all k-tuples of a given topology satisfy a topology-specific ini-
tial state. Second, to take a transition τ , some process takes a local transition
TrLoc(p) modifying states of processes that can be described using the terms in
Mod(p). Frame(p), Unch(y) guarantee that the transition does not affect local
state of processes that are outside of Mod(p). Finally, UnMod makes all functions
and predicates in the background signature retain their interpretation during the
transition. Overall, this describes a general multiprocess asynchronous protocol.

This definition of a FO-protocol places some added structure on the notion
of FOTSS. It restricts how transition systems can be specified, which might
seem like a drawback. On the contrary, the added structure provides two ben-
efits. First, it removes the need for axiomatizing the network topology, since
the topology is given semantically by C. Second, the system guarantees that we
model asynchronous composition of processes with local transitions – a common
framework for specifying and reasoning about protocols.

To show safety of such a system, we will be concerned with invariants which
only discuss a few processes, say Inv(p) where p = p1, . . . , pk. Then our FO-
invariants will be of the form ∀p · Inv(p), and substituting ϕ0 into our back-
ground, we find a natural check for when a given formula is inductive:

InvOk(Inv) � ((∀p·Init(p)) ⇒ (∀p·Inv(p)))∧((∀p·Inv(p))∧τ ⇒ (∀p·Inv ′(p)))

Indeed, by unpacking definitions, one sees that |=C InvOk means that every state
on any trace of a FOCTS satisfies ∀p · Inv(p), and thus it suffices to check that
|=C ∀p · Inv(p) ⇒ ¬Bad to prove safety. We, however, will focus on the task of
verifying a candidate formula as inductive or not.

To decide if a candidate is inductive or not requires reasoning in FOLC . How-
ever, reasoning about FOL extended with an arbitrary topology is difficult (or
undecidable in general). We would like to reduce the verification problem to pure
FOL. One solution is to axiomatize the topology in FOL – this is the approach
taken by Ivy [16]. Another approach is to use properties of the topology to reduce
reasoning about FO-protocols to FOL. This is similar to the use of topology to
reduce reasoning about parameterized finite-state systems to reasoning about
finite combinations of finite-state systems in [12]. In the next section, we show
how this approach can be extended to FO-protocols.

44 R. Ashmore et al.

4 Verifying FO-Protocols Using First Order Logic

In this section, we present a technique for reducing verification of FO-protocols
over a given topology C to a decision problem in pure FOL. We assume
that we are given a (modular) inductive invariant ∀q · Inv(q) of the form(
∀q ·

∧
Top∈ΣC

T
Top(q) ⇒ InvTop(q)

)
. That is, Inv has a local inductive invari-

ant InvTop(q) for each topological class Top.
Given a First-Order Protocol and candidate invariant, we want to know if

|=C InvOk . But deciding this is hard, and so we show that deciding validity of
InvOk can be done in pure FOL using modular verification conditions in the style
of Owicki-Gries [14] and Paramaterized Compositional Model Checking [12].

The input to our procedure is a formula InvTop over signature ΣB � ΣS for
each topological class Top ∈ ΣC

T . The VC is a conjunction of sentences ensuring
that for each tuple of processes q in a topological class Top, InvTop(q) is true
initially, is stable under a transition of one process in q, and is stable under
interference by any other process p whose execution might affect some qi ∈ q. If
the VC is FOL-valid, an inductive invariant has been found. If not, there will be
a local violation to inductiveness, which may correspond to a global violation.

Formally, VC (Inv) is a conjunction of statements of the following two forms:

∀q · (CrossInitTop(q) ⇒ InvTop(q)) (1)
∀p, q · ((CrossInvTop(Mod(p), q) ∧ τ) ⇒ Inv ′

Top(q)) (2)

Statements of form (1) require that every local neighbourhood of q that satisfies
all appropriate initial states also satisfies q’s invariant. Statements of form (2)
capture both transitions where p = qi for some i, or process p acts and modifies
qi ∈ nbd(p), since p is quantified universally. All that remains is to formally con-
struct the statements CrossInit ,CrossInv . In order to do so, we construct a local
characteristic formula χ(A, q) of a process q and neighbourhood A. Intuitively,
we aim for χ(A, q) to encode the available local neighbourhoods of processes in
A and q in C.

Let χTop(A, q) be the strongest formula that satisfies |=C ∀q · Top(q) ⇒
χTop(A, q), subject to the following syntactic restrictions. A formula is a candi-
date for χTop(A, q) when it is (1) over signature ΣC

T ∪ ΣC
E ∪ {=}, (2) contains

only terms A ∪ {qi | qi ∈ q}, and (3) is in CNF and all literals from ΣC
T

appear in positive form. The syntactic restrictions are to capture when elements
of A, q satisfy various topological notions given by signature ΣC

E ∪ {=}. We
also never force some processes to be outside of some topological class. Intu-
itively, χ is a formula that captures all topological knowledge derivable from the
topology given that we know that Top(q) holds. For instance, in RBR, we have
χRed(∅, q) = Red(q), while expanding this for A = {left(p), p, right(p)} results in
the following formula. We drop some trivial statements. For instance, left , right
are inverse functions.

Local Reasoning for Parameterized First Order Protocols 45

χRed({left(p), p, right(p)}, q) = Red(q) ∧ distinct(left(p), p, right(p))∧
((Red(left(p)) ∧ Black(p) ∧ Red(right(p)) ∧ p �= q)∨
(Black(left(p)) ∧ Red(p) ∧ Black(right(p)) ∧ distinct(left(p), right(p), q)))

These characteristics are illustrated in Fig. 5. When we just look at χRed(∅, q),
we find q is red. However, if we expand our local reasoning to the characteristic
χRed(Mod(p), q), we find that there are two options given by RBR. One option
is p is red, and q = p is optional (dotted lines), while q �= left(p), right(p).
Alternatively, p is black, and q �= p, but q could be left(p), right(p), or neither.

Once we have χTop(A, q), we can define our statements CrossInitTop ,
CrossInvTop . First, CrossInitTop(q) is obtained from χTop(∅, q) by replacing
every instance of Topi(q) with InitTopi

(q). We build our interference constraints
in a similar way. We construct CrossInvTop(q) by modifying χTop(Mod(p), q).
Namely, we obtain CrossInvTop(Mod(p), q) from χTop(Mod(p), q) by replacing
every instance of Topi(q) with Topi(q) ∧ InvTopi

(q).

Example 3. The VC generated by the RBR topology may be partitioned into
VCRed and VCBlack , each consisting of the statements whose conclusions are
InvRed , Inv ′

Red and Invblack , Inv ′
black , respectively. VCRed is shown in Fig. 6. The

conditions for VCBlack are symmetric. One can check that

Inv red(p) � var(p) �= b Invblack (p) � �

is an inductive invariant for the protocol in Fig. 2. ��

pq l(p)

r(p) q

p l(p)

r(p) q

Black
Red

Fig. 5. Characteristics χRed(∅, q) and χRed(Mod(p), q) for the RBR topology. (Color
figure online)

∀p · Initred(p) ⇒ Invred(p) (3)
∀p, q · (Red(q) ∧ Inv red(q) ∧ Red(left(p)) ∧ Inv red(left(p))∧
Black(p) ∧ Invblack (p) ∧ Red(right(p)) ∧ Inv red(right(p))∧

p �= q ∧ distinct(left(p), p, right(p))) ⇒ Inv ′
red(q) (4)

∀p, q · (Red(q) ∧ Inv red(q) ∧ Black(left(p)) ∧ Invblack (left(p))∧
Red(p) ∧ Inv red(p) ∧ Black(right(p)) ∧ Invblack (right(p))∧

distinct(left(p), right(p), q) ∧ distinct(left(p), p, right(p))) ⇒ Inv ′
red(q) (5)

V CP,1(Inv red , Invblack) � (3) ∧ (4) ∧ (5) (6)

Fig. 6. The verification conditions VCRed for the red process invariant.

46 R. Ashmore et al.

In practice, the role of the χ-computing oracle can be filled by a verification
engineer. A description of local neighbourhoods starts by allowing all possible
neighbourhoods. Then, a verifier may dismiss local configurations that cannot
occur on the topology as they occur.

5 Soundness and Completeness

In this section, we present soundness and relative completeness of our verification
procedure from Sect. 4.

Soundness. To show soundness, we present a model-theoretic argument to show
that whenever the verification condition from Sect. 4 is valid in FOL, then the
condition InvOk is valid in FOL extended with the given topology C.

Theorem 1. Given a FO-protocol P and a local invariant per topological class
InvTop1

(p), . . . , InvTopn
(p), if � V C(Inv), then �C InvOk(Inv).

Proof. Assume |= V C(Inv). We show that InvOk(Inv) is valid in FOLC by show-
ing that any pair of FOLC interpretations I and I ′ satisfy V C(Inv) as FOL
interpretations, and this is strong enough to guarantee I ⊕ I ′ |= InvOk(Inv).

Let I, I ′ be FOLC interpretations over some G = (V,E) ∈ C. Then I ⊕ I ′ |=
V C(Inv) because V C(Inv) is valid and I ⊕ I ′ is an FOL interpretation.

We first show that I |= (∀p · Init(p) ⇒ ∀p · Inv(p)). Suppose that
I � ∀p · Init(p). Let p be an arbitrary tuple in G. If I |= ¬Topi(p) for every
Topi ∈ ΣT , then Inv(p) follows vacuously. Otherwise, suppose I |= Topi(p).
Then by definition of χ, we obtain I |= χTopi

(∅,p) since I |= Topi(p) ⇒
χTopi

(∅,p). Since I |= ∀p · Init(p), this gives us that I |= CrossInit(p)
(for any Topj(p′) in χTopi

(∅,p), find that Init(p′), and thus Topj(p′) implies
InitTopj

(p′), giving CrossInit). Since I |= CrossInitTopi
(p) and I |= V C, we

get I |= CrossInitTopi
(p) ⇒ InvTopi

(p), finally giving us I |= InvTopi
(p), as

desired.
Second, we show that I ⊕ I ′ |= (∀p · Inv(p)) ∧ τ ⇒ (∀p · Inv(p)). Suppose

that I |= ∀p · Inv(p) and I ⊕ I ′ |= TrLoc(p) ∧ Frame(p) for some p ∈ V .
We show that I ′ |= ∀q · Inv ′(q). Let q ∈ V k be an arbitrary process tuple.
If I ′ � |= Topi(q) for all 1 ≤ i ≤ n, then I ′ |= Inv ′(q) vacuously. Suppose
I ′ |= Topi(q) for some Topi ∈ ΣT . Then I |= Topi(q) ⇒ χTopi

(Mod(p), q),
and so I |= χTopi

(Mod(p), q). Again by instantiating ∀p · Inv(p) on terms in
Mod(p), q, we may obtain that I |= CrossInv(Mod(p), q). Combined, we have
I ⊕ I ′ |= CrossInv(Mod(p), q)∧ τ . Applying V C finally gives InvTopi

(q). Thus
both conjuncts of InvOk(Inv) are satisfied, giving our result. ��

Intuitively, the correctness of Theorem 1 follows from the fact that any inter-
pretation under FOLC is also an interpretation under FOL, and all preconditions
generated for VC are true under FOLC interpretation.

Local Reasoning for Parameterized First Order Protocols 47

Small Model Property. Checking validity of universally quantified statements in
FOL is in the fragment EPR, and thus we obtain a result saying that we only
need to consider models of a given size. This means that a FOL solver needs
to only reason about finitely many elements of sort Proc. It further means that
topologies such as RBR may be difficult to compile to EPR in Ivy, but our
methodology guarantees our verifications will be in EPR.

Theorem 2. If |= V C(Inv) for all process domains of size at most |Mod(p)|+k,
then |=C InvOk(Inv).

Proof. By contrapositive, suppose ��C InvOk(Inv). Then, by Theorem 1, �|=
V C(Inv). Let I ⊕ I ′ be a falsifying interpretation. It contains an assignment
to Mod(p) and q, or to p that makes at least one statement in V C(Inv) false.
Then I ⊕ I ′(Mod(p) ∪ q) or I(p) is also a counter-model to V C(Inv), but with
at most |Mod(p)| + k elements of sort Proc.

Relative Completeness. We show that our method is relatively complete for
local invariants that satisfy the completability condition. Let ϕ(p) be a formula
of the form

∧n
i=1(Topi(p) ⇒ ϕTopi

(p)) with ϕTopi
(p) over the signature ΣS ∪

ΣB . Intuitively, ϕ(p) is completable if every interpretation I that satisfies ∀p ·
ϕ(p) and is consistent with some C-interpretation IG can be extended to a
full C-interpretation (not necessarily IG) that satisfies ∀p · ϕ(p). Formally, ϕ
is completable relative to topology C iff for every interpretation I with domain
U ⊆ V for G = (V,E) ∈ C with an intended interpretation IG such that (I �
IG)(U) |= ∀p · ϕ(p), there exists an interpretation J with domain V s.t. (J �
IG) |= ∀p · ϕ and I(U) = J (U). In addition to relative completeness, we need
a lemma for when a FOL interpretation can be lifted to a C interpretation.

Lemma 1. If FOL interpretation I of signature ΣC satisfies I |= χTop(A, q),
then there exists a C interpretation J of the same signature with J |=
χTop(A, q) and I |= ti = tj iff J |= ti = tj for terms ti, tj ∈ A ∪ q.

Proof. Let I |= χTop(A, q). Let ϕ(A, q) be the conjunction of all atomic for-
mulae over the signature {=} and statements ¬Topj(q′) that is true of ele-
ments of A, q in interpretation I. If no C interpretation J |= Top(q) ∧ ϕ(A, q),
then we can add the clause ¬ϕ(A, q) to χTop(A, q), thus strengthening it (this
is stronger since I |= Top(q), �|= ¬ϕ(A, q), and is true of every interpretation
modelling Top(q)). However, this violates the assumptions that χTop is as strong
as possible. Thus, some J |= Top(q) ∧ ϕ(A, q). Note that J already satisfies
ti = tj iff I satisfies ti = tj since every statement of =, �= is included in ϕ(A, q).
Finally, since J is a C interpretation and J |= Top(q), then J |= χTop(A, q) by
definition. ��

Theorem 3. Given an FO-protocol P , if |=C InvOk(Inv) and both Inv(p) and
Init(p) are completable relative to C, then |= V C(Inv).

Proof. By contra-positive, we show that given a completable local invariant
Inv(p), if V C(Inv) is falsifiable in FOL, then InvOk(Inv) is falsifiable in FOLC .

48 R. Ashmore et al.

Suppose V C(Inv) is not valid, and let I ⊕ I ′ by such that I ⊕ I ′ �|= V C(Inv).
We consider two cases – a violation initially or inductively.

Case 1: Initialization: For some processes p = (p1, . . . , pk) and 1 ≤ i ≤
|ΣC

T |, I |= CrossInitTopi
(p) and I �|= InvTopi

(p). Modify I(ΣT) for every q
so that Topj(q) is interpreted to be true iff InitTopj

(q) is true. Noting that
all initial conditions are outside of the signature ΣC

T , we observe that this is
done without loss of generality. Since I |= CrossInitTopi

(p), we conclude now
that I |= χTopi

(∅,p). Applying Lemma1 to I(ΣC), we get a C interpretation
J |= χTopi

(∅,pC). Since this model has the same equalities of terms pC in
J as p in I, we may copy the states I(ΣS)(pi) to J (ΣS)(pC

i). Set J (ΣB) =
I(ΣB). Since Init is completable by assumption, we complete J (ΣS ∪ ΣB)(p)
to J (ΣS ∪ ΣB), completing our construction of J interpreting ΣC ∪ ΣS ∪ ΣB .
Note that J |= ∀p · Init(p), but J |= Topi(pC) ∧ ¬InvTopi

(pC), thus showing
that InvOk(Inv) is falsifiable in FOLC .

Case 2: Inductiveness: For some p, q, and 1 ≤ i ≤ |ΣC
T |, we have

I |= CrossInvTopi
(Mod(p), q), (I ⊕ I ′) |= TrLoc(p) ∧ Frame(p), and I ′ �|=

InvTopi
(q). By construction, |= CrossInv(Mod(p), q) ⇒ χTopi

(Mod(p), q).
Applying Lemma 1 to I(ΣC) |= χTopi

(Mod(p), q), we get a C interpretation
of ΣC

T , J |= χTopi
(Mod(pC), qC). We extend this to a full model J ⊕ J ′ of

signature ΣC ∪ ΣS ∪ ΣB , and its primed copy. We set J ′(ΣC) = J (ΣC). Then,
since J and I, and J ′ and I ′ share equalities across terms in Mod(p) ∪ q and
Mod(pC) ∪ qC , we can lift states from terms t ∈ Mod(p) ∪ q by J (ΣS ∪ ΣB)(tC) �
I(ΣS ∪ ΣB)(t) and J ′(ΣS)(tC) � I ′(ΣS)(t). Since Inv is completable, we
complete this interpretation with J (ΣS ∪ ΣB) and clone the completion to
J ′(ΣS ∪ ΣB)(V \ (Mod(p) ∪ q)). Overall, this completes the interpretation
J ⊕ J ′.

Note that J |= ∀p · Inv(p) by construction. Similarly, J ⊕ J ′ |= τ since
I ⊕ I ′ |= τ(p) and Mod(p) terms are lifted directly from I and I ′ to J and J ′.
Finally, J ′ |= ¬Inv ′

Topi
(q) since J ′(ΣS) is lifted directly from I ′(ΣS ∪ ΣB),

which is the language of invariants. Thus, we have shown that InvOk(Inv) is
falsifiable in FOLC in this case as well. ��

How restrictive is the requirement of completability? Intuitively, suppose a
protocol is very restrictive about how processes interact. Then the system is likely
sufficiently intricate that trying to reason locally may be difficult independent of
our methodology. For instance, the invariant we later find for leader election is
not completable. However, if equivalence classes are small, then most reasonable
formulae satisfy the completability condition.

Theorem 4. If InvTopi
(p) is satisfiable over any domain for each 1 ≤ i ≤ n

and topological predicates are of arity k = 1, then Inv(p) is completable.

Proof. Let Inv i(p) be satisfiable for each 1 ≤ i ≤ n. Then let I(V ′) be an
interpretation of ΣB � ΣS over domain V ′ ⊆ V for G = (V,E) ∈ C. For each
p ∈ V \ V ′, suppose IG |= Topi(p) for some 1 ≤ i ≤ n. Then choose J (p) |=
InvTopi

(p) since InvTopi
(p) is satisfiable. Otherwise, if IG �|= Topi(p) for all

Local Reasoning for Parameterized First Order Protocols 49

1 ≤ i ≤ n, then J (p) is chosen arbitrarily. In either case, J |= Inv(p). Finally,
define J (p) = I(p) for p ∈ V ′. Then J completes the partial interpretation I.

Theorem 4 can be generalized to the case where the topological kinds ΣT

are non-overlapping, and individually completable, where by individually com-
pletable, we mean that if Top(p) and process states of p′ ⊂ p are given, then
there is a way to satisfy Inv(p) without changing the states of p′.

6 Example: Leader Election Protocol

In this section, we illustrate our approach by applying it to the well-known leader
election protocol [3]. This is essentially the same protocol used to illustrate Ivy
in [16]. The goal of the protocol is to choose a leader on a ring. Each process sends
messages to its neighbour on one side and receives messages from a neighbour
on the other side. Initially, all processes start with distinct identifiers, id , that
are totally ordered. Processes pass ids around the ring and declare themselves
the leader if they ever receive their own id .

We implement this behaviour by providing each process a comparison vari-
able comp. Processes then pass the maximum between id and comp to the next
process. A process whose id and comp have the same value is the leader. The
desired safety property is that there is never more than one leader in the protocol.

In [16], the protocol is modelled by a global transition system. The system
maintains a bag of messages for each process. At each step, a currently waiting
message is selected and processed according to the program of the protocol (or
a fresh message is generated). The network topology is axiomatized, as shown
in Sect. 1. Here, we present a local model of the protocol and verify it locally.

Network Topology. The leader election protocol operates on a ring of size at
least 3. For n ≥ 3, let Gn = (Vn, En), where Vn = {pn

i | 0 ≤ i < n} and
En = {(pn

i , pn
j) | 0 ≤ i < n, j = i + 1 mod n}. Let ΣE = {next} and ΣT =

{btw}, where btw is a ternary relation such that btw(pn
i , pn

j , pn
k) iff i < j < k,

j < k < i, or k < i < j. Finally, the network topology is BT W = {Gn | n ≥ 3}.
Note that while BT W can be axiomatized in FOL, we do not require such an
axiomatization. The definition is purely semantic, no theorem prover sees it.

Fig. 7. A model of the Leader Election protocol as a FO-protocol.

50 R. Ashmore et al.

Fig. 8. Local inductive invariant Invlead(x, y, z) for Leader Election from Fig. 7.

A formal specification of the leader election as an FO-protocol is shown
in Fig. 7, where LO(≤) is an axiomatization of total order from [16], and
x < y stands for x ≤ y ∧ x �= y. The model follows closely the informal
description of the protocol given above. The safety property is ¬Bad, where
Bad = btw(x, y, z) ∧ id(x) = comp(x) ∧ id(y) = comp(y). That is, a bad state is
reached when two processes that participate in the btw relation are both leaders.

A local invariant Invlead based on the invariant from [16] is shown in Fig. 8.
The invariant first says if an id passes from y to x through z, then it must witness
id(y) ≥ id(z) to do so. Second, the invariant says that if a process is a leader,
then it has a maximum id. Finally, the invariant asserts our safety property.

This invariant was found interactively with Ivy by seeking local violations
to the invariant. Our protocol’s btw is uninterpreted, while Ivy’s btw is explic-
itly axiomatized. The inductive check assumes that the processes p,next(p), q
all satisfy a finite instantiation of the ring axioms (this could be done by the
developer as needed if an axiomatization is unknown, and this is guaranteed
to terminate as there are finitely many relevant terms), and btw(q). Once the
invariants are provided, the check of inductiveness is mechanical1. Overall, this
presents a natural way to model protocols for engineers that reason locally.

An Uncompletable Invariant. The invariant for the leader election is not com-
pletable. To see this, we present a partial interpretation I over {p30, p

3
2} ⊆ V3

from G3 with no extension. We choose I(≤) to be ≤ over N, as intended. Then
we choose I(id) to map p30 �→ 1 and p32 �→ 2. We also choose I(comp) to map
p30 �→ 0 and p32 �→ 1. Since no tuple satisfies btw, this vacuously satisfies all
invariants thus far. Let J be a BT W interpretation agreeing on p30, p

3
2. Consider

id(p31). We know id(p31) �= 0, 1, 2 since we require distinct ids across the new btw
relation. But we also have id(p30) = comp(p32) and thus to satisfy Inv we must
have id(p30) ≥ id(p31). Thus we seek an n ∈ N such that 1 ≥ n, but n �= 0, 1,
which cannot exist. Thus Inv is uncompletable.

7 Related Work

Finite-state parameterized verification is undecidable [2]. We have shown how
analysis techniques for parametric distributed systems composed of components
running on locally symmetric topologies, introduced in [8–10,12,13], can be gen-
eralized and applied within a First Order Logic based theorem proving engine.
1 Ivy verifications for both examples, globally and locally, can be found at github.com/

ashmorer/fopExamples.

https://github.com/ashmorer/fopExamples
https://github.com/ashmorer/fopExamples

Local Reasoning for Parameterized First Order Protocols 51

We based our description of leader election on Ivy’s [16]. However, the analysis
carried out in Ivy [16] is global, while the analysis given in this paper is local,
where the local structures reason about triples of processes in the ring.

There has been extensive work on proving properties of parametric, dis-
tributed protocols. In particular the work in [1] offers an alternative approach to
parametric program analysis based on “views”. In that work, cut off points are
calculated during program analysis. As another example, in [8,12,13] the “cut-
offs” are based on the program topology and the local structural symmetries
amongst the nodes of the process interconnection networks.

The notion of a “cutoff” proof of safety for a parametric family of programs
was first introduced by [5]. For example, in [5], if a ring of 3 processes satisfies
a parametric property then the property must hold for all rings with at least
three nodes. The technique used here is somewhat different; rather than needing
to check a ring of 3 processes, we check all pseudo-rings of a given size.

Local symmetry reduction for multi-process networks and parametric families
of networks generalizes work on “global” symmetry reduction introduced by [6]
and [4]. Local symmetry is, in general, an abstraction technique that can offer
exponentially more reduction than global symmetry. In particular, ring struc-
tures are globally rotationally symmetric, but for isomorphic processes may be
fully-locally symmetric [12,13].

Recent work [18] has focused on modular reasoning in the proof or analy-
sis of distributed systems. In the current work, the modularity in the proof is
driven by a natural modularity in the program structures. In particular, for pro-
grams of several processes proofs are structured by modules that are local to a
neighborhood of one or more processes [8,12,13].

8 Conclusion

We have presented a framework for specifying protocols in a process-local manner
with topology factored out. We show that verification is reducible to FOL with
an oracle to answer local questions about the topology. This reduction results in a
decidable VC when the background theories are decidable. This cleanly separates
the reasoning about the topology from that of the states of the processes.

Many open questions remain. We plan to investigate our methodology
on other protocols and topologies, implement oracles for common topologies,
and explore complexity of the generated characteristic formulae. Finally, we
restricted ourselves to static topologies of bounded degree. Handling dynamic
or unbounded topologies, for example in the AODV protocol [11], is left open.

Acknowledgements. The authors’ research was supported, in part, by Individual
Discovery Grants from the Natural Sciences and Engineering Research Council of
Canada.

52 R. Ashmore et al.

References

1. Abdulla, P., Haziza, F., Hoĺık, L.: Parameterized verification through view abstrac-
tion. Int. J. Softw. Tools Technol. Transf. 18(5), 495–516 (2016)

2. Apt, K.R., Kozen, D.C.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 22(6), 307–309 (1986)

3. Chang, E., Roberts, R.: An improved algorithm for decentralized extrema-finding
in circular configurations of processes. Commun. ACM 22(5), 281–283 (1979)

4. Clarke, E.M., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal
logic model checking. Form. Methods Syst. Des. 9(1–2), 77–104 (1996)

5. Emerson, E.A., Namjoshi, K.S.: Reasoning about rings. In: Proceedings of the 22nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 1995, pp. 85–94. ACM, New York (1995)

6. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Form. Methods Syst.
Des. 9(1–2), 105–131 (1996)

7. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

8. Namjoshi, K.S., Trefler, R.J.: Local symmetry and compositional verification. In:
Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 348–362.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27940-9 23

9. Namjoshi, K.S., Trefler, R.J.: Uncovering symmetries in irregular process networks.
In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol.
7737, pp. 496–514. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-35873-9 29

10. Namjoshi, K.S., Trefler, R.J.: Analysis of dynamic process networks. In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 164–178. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46681-0 11

11. Namjoshi, K.S., Trefler, R.J.: Loop freedom in AODVv2. In: Graf, S., Viswanathan,
M. (eds.) FORTE 2015. LNCS, vol. 9039, pp. 98–112. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-19195-9 7

12. Namjoshi, K.S., Trefler, R.J.: Parameterized compositional model checking. In:
Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 589–606.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 39

13. Namjoshi, K.S., Trefler, R.J.: Symmetry reduction for the local Mu-Calculus. In:
Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 379–395.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3 22

14. Owicki, S.S., Gries, D.: Verifying properties of parallel programs: an axiomatic
approach. Commun. ACM 19(5), 279–285 (1976)

15. Padon, O., Hoenicke, J., Losa, G., Podelski, A., Sagiv, M., Shoham, S.: Reducing
liveness to safety in first-order logic. PACMPL 2(POPL), 26:1–26:33 (2018)

16. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety verifi-
cation by interactive generalization. In: Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2016,
Santa Barbara, CA, USA, 13–17 June 2016, pp. 614–630 (2016)

https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-27940-9_23
https://doi.org/10.1007/978-3-642-35873-9_29
https://doi.org/10.1007/978-3-642-35873-9_29
https://doi.org/10.1007/978-3-662-46681-0_11
https://doi.org/10.1007/978-3-319-19195-9_7
https://doi.org/10.1007/978-3-662-49674-9_39
https://doi.org/10.1007/978-3-319-89963-3_22

Local Reasoning for Parameterized First Order Protocols 53

17. Piskac, R., de Moura, L.M., Bjørner, N.: Deciding effectively propositional logic
using DPLL and substitution sets. J. Autom. Reason. 44(4), 401–424 (2010)

18. Taube, M., et al.: Modularity for decidability of deductive verification with appli-
cations to distributed systems. In: Proceedings of the 39th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI 2018, pp.
662–677. ACM, New York (2018)

Generation of Signals Under Temporal
Constraints for CPS Testing

Benôıt Barbot1(B), Nicolas Basset2(B), and Thao Dang2(B)

1 LACL, Université Paris-Est Créteil, Créteil, France
2 VERIMAG/CNRS, Université Grenoble Alpes, Grenoble, France

benoit.barbot@lacl.fr, Nicolas.Basset1@univ-grenoble-alpes.fr,

thao.dang@imag.fr

Abstract. This work is concerned with validation of cyber-physical sys-
tems (CPS) via sampling of input signal spaces. Such a space is infinite
and in general too difficult to treat symbolically, meaning that the only
reasonable option is to sample a finite number of input signals and sim-
ulate the corresponding system behaviours. It is important to choose
a sample so that it best “covers” the whole input signal space. We use
timed automata to model temporal constraints, in order to avoid spurious
bugs coming from unrealistic inputs and this can also reduce the input
space to explore. We propose a method for low-discrepancy generation of
signals under temporal constraints recognised by timed automata. The
discrepancy notion reflects how uniform the input signal space is sampled
and additionally allows deriving validation and performance guarantees.
To evaluate testing quality, we also show a measure of uniformity of
an arbitrary set of input signals. We describe a prototype tool chain and
demonstrate the proposed methods on a Kinetic Battery Model (KiBaM)
and a ΣΔ modulator.

1 Introduction

Cyber-physical systems (CPS) are integrations of computation with physical
processes, and have become a predominant component of modern engineering
systems. A major challenge in proving correct operations of industrial CPS is the
absence of rigorous mathematical models, and even when such models are avail-
able they are often intractable by exhaustive formal verification techniques, due
to computational complexity. Falsification methods, based on black-box testing,
are often used for industrial-size complex systems. These methods rely on a tester
that can execute/simulate the system under some input stimuli and observe the
corresponding outputs; their goal is to search for the worst case behaviours by
minimising robustness of satisfaction of some temporal logic formula (see for
example [2,15,18,29]). The most popular tools are S-Taliro [3] and Breach [16].
Generally, a challenge in this approach is the limitation of global optimisation
solvers which may converge to local optima. Also, most optimisers do not take
into account input constraints and may lead to trivial solutions that do not cor-
respond to realistic scenarios. Statistical model checking based on Monte Carlo
c© Springer Nature Switzerland AG 2019
J. M. Badger and K. Y. Rozier (Eds.): NFM 2019, LNCS 11460, pp. 54–70, 2019.
https://doi.org/10.1007/978-3-030-20652-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20652-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-20652-9_4

Generation of Signals Under Temporal Constraints for CPS Testing 55

methods has also been applied to CPS [1,7,13]. The reader is referred to a sur-
vey on CPS validation approaches [8]. We defer a discussion on related work to
Sect. 6 after our approach is described in detail.

It is clear that the efficiency of such a validation process depends on the
class of input signals under consideration. On one hand, this class should be
sufficiently expressive to capture all feasible configurations of the environment.
On the other hand, such permissible classes can be very large; therefore, it is
desirable to consider only the input stimuli which are realistic or relevant w.r.t.
the operation context of the system. In this work, we are interested in classes
of signals which satisfy temporal constraints modelled as timed automata (TA).
Indeed, in a CPS, computation processes interact with physical processes via
devices (such as sampling, measurement, actuation) the timing imprecision of
which can be appropriately modelled using TA. We now formulate the problems
we want to solve in order to address the above issues.

1. Generate a set of input signals satisfying some temporal constraints. Using
these signals to simulate or execute the system, one expects to find a
behaviour that falsifies the property. When no such behaviour is found, it
is important to provide guarantees, such as the portion of correct behaviours,
or the average robustness of property satisfaction.

2. Given an arbitrary set of input signals, determine its testing quality in terms
of property checking or performance evaluation.

To address the first problem, we extend the method for uniform random gen-
eration of runs of timed automata [6] to propose a new method based on low
discrepancy. The generated timed words are then mapped to input signals. To
address the second problem, we employ the well-known Kolmogorov-Smirnov
statistic [26] to measure the goodness of fit of a sample w.r.t. a given distribution.
Interestingly, this statistic can be interpreted in terms of the star discrepancy
[23] largely used in quasi-Monte Carlo methods.

The paper is organised as follows. Section 2 recalls important concepts,
namely the star discrepancy, timed automata and timed polytopes, and quan-
titative guarantees. The next three sections assume that a timed automaton
describing a class of input signals of interest is given, and focus on the prob-
lem of generation of timed words. Section 3 presents a transformation from the
unit box to a timed polytope (corresponding to the constraints on time delays
along a path). In the forward direction, by sampling over the unit box and then
applying the transformation we obtain a sampling over the timed polytope. In
Sect. 4, we describe a new method for low-discrepancy sampling which yields a
quasi-Monte Carlo method. Section 5 presents a measure of uniformity degree of
an arbitrary sample and discusses how this measure can be estimated, by using
again the above-described transformation but in the backward direction (which
is known as the Rosenblatt’s transformation [26]). Finally, based on these results
we propose in Sect. 6 a framework for testing CPS with guarantees. We include
here a comparison with related work to highlight the novelty of our approach.

56 B. Barbot et al.

We describe a tool chain which integrates an implementation of these methods,
and demonstrate the proposed methods on a Kinetic Battery Model and a ΣΔ
modulator.

2 Preliminaries

Star Discrepancy. By the (n-dimensional) unit box we mean the set [0, 1]n.
Given a point b = (b1, . . . , bn) inside the unit box, we define the box [0, b] =
[0, b1] × · · · × [0, bn]. The star discrepancy of a finite set S of points in the unit
box is defined as:

D�(S) = sup
b∈[0,1]n

∣
∣
∣
∣
Vol([0, b]) − |S ∩ [0, b]|

|S|
∣
∣
∣
∣
.

Intuitively, the star discrepancy is a measure of how equi-distributed a set of
points is over the unit box, or how different its distribution is compared to the
uniform distribution. This notion is used in number theoretic and quasi-Monte
Carlo methods. The lower the discrepancy is, the better the space is “filled” with
points. Asymptotically a sequence of uniform random points will homogeneously
fill the space P that is sampled such that for every subset of P, the density of
points in this subset will be proportional to its volume. In this work we use
two well-known low-discrepancy sequences: Halton [19] and Kronecker [25]. The
star discrepancy is a way of quantifying how homogeneously a sample covers the
sampling space for finite sequences. Its link with the n-dimensional Kolmogorov-
Smirnov statistic is provided later (see Sect. 5.2).

Timed Automata and Timed Polytopes. Let X be a finite set of non-
negative real-valued variables called clocks, which are assumed bounded by a
constant M ∈ N. A clock constraint has the form x ∼ c or x − y ∼ c where
∼∈ {≤, <,=, >,≥} with x, y ∈ X, c ∈ N. A guard is a finite conjunction of
clock constraints. For a clock vector x ∈ [0,M]X and a non-negative real t, we
denote by x + t the vector x + (t, . . . , t). A timed automaton (TA) A is a tuple
(Σ,X,Q, i0,F ,Δ) where Σ is a finite set of events; X is a finite set of clocks;
Q is a finite set of locations; i0 is the initial location; F ⊆ Q is a set of final
locations; and Δ is a finite set of transitions. A transition δ ∈ Δ has an origin
δ− ∈ Q, a destination δ+ ∈ Q, a label aδ ∈ Σ, a guard gδ and a reset function rδ
determined by a subset of clocks B ⊆ X; this transition resets to 0 all the clocks
in B and does not modify the other clocks. A state s = (q,x) ∈ Q × [0,M]X

is a pair of a location and a clock vector. The initial state of A is (i0,0). A
timed transition is a pair (t, δ) of a time delay t ∈ [0,M] followed by a discrete
transition δ ∈ Δ. The delay t represents the time before firing the transition δ. A
run is an alternating sequence (q0,x0)

t1,δ1−−−→ (q1,x1) . . .
tn,δn−−−→ (qn,xn) of states

and timed transitions with the following updating rules: qi is the successors of
qi−1 by δi, the vector xi−1 + t must satisfy the guard gδ and xi = rδ(xi−1 + t).
This run is labelled by the timed word (t1, a1) · · · (tn, an) where for every i ≤ n,

Generation of Signals Under Temporal Constraints for CPS Testing 57

q4

q5

q6

q3q2q1q0

x1 ∈ (1, 6)
x1 := 0

x2 ∈ (1, 6)
x2 := 0

x3 ∈ (1, 6)
x3 := 0

x4 ∈ (1, 6)
x4 := 0

x1 ∈ (0, 6)
x1 := 0

x2 ∈ (0, 6)
x2 := 0

x3 ∈ (0, 6)
x3 := 0

Fig. 1. A timed automaton for the running example.

ai is the label of δi. The set of timed words that label all the runs leading from
the initial state (i0,0) to a final state (qn ∈ F) is called the timed language of A.
Given a discrete path α = δ1 · · · δn of A the set of timed vectors t ∈ [0,M]n such

that (i0,0)
t1,δ1−−−→ (q1, t1) . . .

tn,δn−−−→ (qn, tn) is called the timed polytope associated
to the path α.

Example 1 (Running example). We consider the TA in Fig. 1. This automaton
has the property that after entering the cycle the time between 4 consecutive
events is between 1 and 6. Intuitively, they are loosely periodic as transitions
cannot be taken too early or too late. This automaton is used to model a quasi-
periodic pattern of signals with uncertain period ranging between 1 and 6. Its
first three locations before the cycle model the uncertain phase of the signals. To
illustrate the timed polytope notion, we consider the path of length 2 starting
at location q0 and ending at q2. The timed polytope corresponding to this path
is the triangle {(t1, t2) | t1 + t2 < 6, t1 > 0, t2 > 0}. Its 2-dimensional volume
is 62/2 = 18. Uniform sampling in this polytope is depicted in Fig. 2 (b1). More
generally, the timed polytope associated to the (unique) path of length n is
defined by 0 < tk−3 + tk−2 + tk−1 + tk < 6, for k = 1, . . . , 3 with the convention
that tj = 0 for j < 1, and 1 < tk−3+tk−2+tk−1+tk < 6, for k = 4, . . . , n−3. The
kth constraint is due to the guard xi ∈ (1, 6) (to be precise, with i = (k mod 4)+
1) because the clock xi contains the sum of the 4 last delays before taking the
kth transition. Computing the volume of such a timed polytope requires dynamic
programming algorithms (involving an integral operator per transition) which
can be found in [4,6].

Quantitative Guarantees and Sampling-Based Estimation. Quantitative
properties of CPS can be expressed by averaging some function f defined on the
set of input signals. For instance, such a function can be the indicator function
of the set of input stimuli that lead to incorrect behaviours, and the average
gives the probability that an input signal falls in this set. This is more generally
the problem of estimating a sub-language volume. In addition, given a property
expressed using temporal logics, f can be the (satisfaction) robustness which is a
function of the input. Such properties can thus be evaluated by sampling in the
input signal space, as in Monte Carlo and quasi-Monte Carlo methods. To obtain

58 B. Barbot et al.

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

Fig. 2. First line, left to right. (a1): we first draw 450 points uniformly at random in
the unit box; (b1): we then apply the inverse sampling method with the CDF of the
uniform sampling (see Theorem 1) to get 450 timed vectors in the timed polytope;
(c1): we do the same as for (b1) but using the CDF of the isotropic sampling; (d1): the
sample in (c1) is mapped back to the unit box with the CDF of the uniform sampling
to check its star discrepancy. Second line, we do the same as for the first line, but
starting with a low-discrepancy sequence of 450 points in the unit box (a2).

accurate results, the sampling process should generate the signals as uniformly
as possible to cover well the input signal space with high probability. In other
words, the probability that a generated signal falls in a set should be proportional
to the volume of this set. To solve this problem for timed automata we need a
transformation from the unit box to a timed polytope, which is explained in the
next section. We also use this transformation for a low-discrepancy generation
method presented in Sect. 4. We further exploit this transformation in Sect. 5 to
estimate a measure of uniformity degree for an arbitrary sample of timed words.

3 Transformation from the Unit Box to a Timed Polytope

Defining Probability Distributions to Sample Timed Languages. We
first emphasise that we want to sample uniformly timed words of a given length
from the timed language of a given TA. This uniform sampling is such that every
timed word of the language has the “same chance” of being sampled. Note that
the sampled space is uncountably infinite since the delays are real numbers. This
uniform sampling should not be confused with an intuitive sampling method,
called isotropic, which at each discrete step makes a uniform choice among the
possible delays. This isotropic sampling method is used as a “default” sampling
in several work (see [10] and references therein). The difference between the two
sampling methods will be illustrated in Example 2.

Generation of Signals Under Temporal Constraints for CPS Testing 59

For a given TA, our previous work [6] proposes a method for generating
uniformly timed words of a given length. Such a uniform sampling is done by
adding probability distributions on time delays along a run of the automaton.
In [9] we treat the case of generating infinite timed words, based on the notion of
maximal entropy. Let us now explain the essence of these ideas. The constraints
on the delays along a discrete path define a timed polytope; sampling runs along
a discrete path thus reduces to sampling over a timed polytope. For simplicity
of presentation, we will explain only the generation of timed vectors in a timed
polytope, or in a sequence of timed polytopes along a single path. Discrete
branching can be handled similarly as in [6].

Given a discrete path α = δ1 · · · δn of the TA A, let P be the timed poly-
tope associated to this path. We want to evaluate

∫

P f(t)dt/Vol(P), the aver-
age over P of a function f : P → R (used to express a quantitative prop-
erty). Here the normalising constant Vol(P) =

∫

P 1dt is the n-dimensional
volume of P. More generally, we can give different weights to different timed
vectors of P by using a probability density function (PDF), namely a function
ω : P → R

+ such that
∫

P ω(t)dt = 1. Then the integral we want to evaluate
becomes

∫

P f(t)ω(t)dt, which is also called the expectation E(f(T)) of the ran-
dom variable T = (T1, . . . , Tn) distributed according to the PDF ω (and that
takes values as timed vectors in P).

The uniform distribution assigns the density of probability ω(t) = 1/Vol(P)
to every timed vector t ∈ P. A sampled timed vector t thus falls in a given subset
A of the timed polytope P with probability Vol(A)/Vol(P). If we define f as
the indicator function 1B of a set B of “bad” behaviours, and if T is distributed
according to the uniform distribution, then the expectation E(1B(T)) measures
the portion of bad behaviours in P, formally E(1B(T)) = Vol(B)/Vol(P).

To define the random variables T , it suffices to give its n-dimensional cumu-
lative distribution function (CDF) F (t) = Prob(T ≤ t) where the partial order
≤ is defined by (T1, . . . , Tn) ≤ (t1, . . . , tn) iff Ti ≤ ti for every i = 1 . . . n.
This CDF is usually given by the following sequence of conditional CDF:
Fi(ti | t1, . . . , ti−1) = Prob(Ti ≥ ti | T1 = t1, . . . , Ti−1 = ti−1). The follow-
ing chain rule gives the relation between the conditional CDF and the CDF of
T :

F (t1, . . . , tn) = F1(t1)F2(t2 | t1) . . . Fn(tn | t1, . . . , tn−1).

In [6] and in some other work, the conditional CDF Fi(ti | t), used to sample
ti, depends only on the current state (qi−1,xi−1), that is Fi(ti | t) = Gi(ti |
(qi−1,xi−1)) for some conditional CDF Gi. For the uniform distribution on a
timed polytope, the conditional CDF are characterised in [6], via the definition
of the conditional PDF (which are the derivatives of the CDF). These conditional
CDF for uniform sampling play a particular role in our subsequent development,
and is denoted specifically by F = (F1, . . . ,Fn). Theorem 1 summarises the
characterisation of the CDF for the uniform sampling of timed words. These
CDF can be effectively computed and their computation was implemented in
the tool chain of [6].

60 B. Barbot et al.

Theorem 1 ([6]). Given a path in a TA one can compute the CDF Fi in poly-
nomial time w.r.t. the length of the path. These CDF can be written in the
following form Fi(ti | t1, . . . , ti−1) = πi(t1, . . . , ti−1)/γi(t1, . . . , ti) with πi and γi

polynomials of degree at most i.

Example 2 (Example 1 continued). To show the difference between the isotropic
and uniform methods, we consider again the path q0 q1 q2 of the automaton of
Example 1. We sample timed vectors (t1, t2) in the 2-dimensional timed polytope
associated to this path (shown in the first line of Fig. 2). Using the isotropic sam-
pling, t1 is chosen uniformly in (0, 6) and then t2 is chosen uniformly in (0, 6−t1).
This is why in Fig. 2-(c1) the set of points generated by the isotropic sampling
gets more and more dense along the t1-axis. In particular, with the isotropic
sampling the set {(t1, t2) | t1 ∈ (0, 1), t1 + t2 < 6} has the same probability as
the small triangle {(t1, t2) | t1 ∈ (5, 6), t1 + t2 < 6}, while the former is 11 times
bigger than the latter. This is in contrast with the uniform sampling where the
chance of falling in a set is proportional to its area. With the uniform sampling
(see Fig. 2-(b1)), t1 is chosen according to the probability density function (PDF)
t1 	→ (1−t1)/18, and t2 according to t2 	→ 1/(1−t1). The PDF of a timed vector
(t1, t2) is hence ((1 − t1)/18)1/(1 − t1) = 1/18 = 1/Vol(P), as expected.

Transformation from the Unit Box to a Timed Polytope. We observe
further that if we use the conditional CDF F = (Fi)i=1..n to transform a
timed vector t to a vector u as follows: u1 = F1(u1), and for i = 2, . . . , n
ui = Fi(ti|t1, . . . , ti−1), then u = (u1, . . . , un) is in [0, 1]n. The following theo-
rem allows going back and forth between a timed polytope and the unit box.

Theorem 2 (Rosenblatt’s transformation [26]). Let F = (Fi)i=1..n be a
sequence of conditional CDF. Define the transformation U = F (T) between the
random vectors U and T by U1 = F1(T1), Ui = Fi(Ti | T1, . . . , Ti−1) for every
i = 2 . . . n. Then T is distributed according to the CDF F iff U1, . . . , Un are i.i.d
uniformly distributed random variables on [0, 1].

This theorem allows us to make use of the transformation F−1 for generat-
ing timed words, similarly to random sampling according to CDF as in inverse
transform sampling. Once t1, . . . , ti−1 are sampled, the next delay ti is randomly
sampled as follows. A real number ui is drawn uniformly in [0, 1], and then
one finds the unique ti such that Fi(ti | t1, . . . , ti−1) = ui using for instance
the Newton’s method. Ultimately, from n i.i.d uniformly distributed random
numbers u1, . . . , un in the unit interval, we get a timed vector (t1, . . . , tn) =
F−1(u1, . . . , un). This transformation F−1 implicitly underlies the uniform sam-
pling method presented in [6]. We can now use it for the two problems stated in
the introduction:

– In a forward manner for low-discrepancy generation (see Sect. 4).
– In a backward manner to evaluate the generation quality (see Sect. 5.2).

Generation of Signals Under Temporal Constraints for CPS Testing 61

4 Low-Discrepancy Generation and Quasi-Monte Carlo
Methods for Timed Polytopes

We exploit the forward use of F−1 (from the unit box to a timed polytope), to
generate points in a timed polytope with low discrepancy. To this end, it suffices
to start with a low-discrepancy set of points in the unit box and then apply
to it the transformation F−1. To obtain a low discrepancy point set in the unit
box, in this work we use, as mentioned earlier, the well-known low-discrepancy
sequences Halton [19] and Kronecker [25].

The use of low-discrepancy generation is motivated by the fact that when con-
sidering finite sequences, some (deterministic) low-discrepancy sequences behave
better than uniform sequences in terms of homogeneous space-filling. Our gen-
eration procedure indeed yields a quasi-Monte Carlo method [24] for estimating
or averaging integral functions which express quantitative properties of interest.
Note that using the uniform random generation, one can only provide statistical
guarantees, as Monte Carlo methods. This new generation method, in contrast,
allows characterising deterministic error bounds (that is, without probabilistic
uncertainty) in approximating the multi-dimensional integral of a function by
the average of the function values on a sample of points. A popular character-
isation is the Koksma-Hlawka (KH) inequality [20]. Formally, given a function
g : [0, 1]n → R and a sample S = (p(k))k=1..N , the Koksma-Hlawka inequality is

∣
∣
∣
∣
∣

1
N

N∑

n=1

g(p(n)) −
∫

[0,1]n
g(r)dr

∣
∣
∣
∣
∣
≤ V ∗(g)(D�(S))1/n (1)

where D�(S) is the star discrepancy of the set S, V ∗(g) is the variation in
the sense of Hardy and Krause, which does not depend on S, so it is constant
when we fix g. Using low-discrepancy sequences yields an upper-bound D�(S) ≤
Cn log(N)n/N where the constant Cn depends on the point dimension n and on
the type of the sequence but not on the number N of sampled points.

We now show how the above result can be applied to our testing context
where f is the function expressing the guarantee. Each timed word corresponds
to an input signal. To average f , we can use the quasi-Monte Carlo approach for
g = f ◦ F−1 (where F is the above-described CDF of the uniform generation in
a timed polytope P) as follows. We first generate a low-discrepancy sequence of
vectors in the unit box, next we apply F−1 and then f to the sequence, compute
the average to get an estimate of the expectation

∫

P f(t)dt/Vol(P). Another
application is to estimate the size (volume measure) of a subset E of the timed
polytope P (corresponding for instance to the set of input stimuli leading to
incorrect behaviours). To this end, it suffices to define g = χF(E) where χA is
the indicator function of a set A.

Providing different types of guarantees (statistical vs. deterministic), the uni-
form random and low-discrepancy generation methods are complementary. It is
important to emphasise that the low-discrepancy generation method does not
require estimating the star discrepancy, which is indeed computationally costly.
Only after the testing process is done, the star discrepancy or more generally the

62 B. Barbot et al.

Kolmogorov-Smirnov statistic (which will be introduced in the next section) are
estimated to evaluate the testing results. This information is useful for deciding
whether additional test cases are needed.

5 Evaluating the Uniformity Degree

To evaluate the level of confidence in the testing results, we now address the
second problem stated in the introduction. In the sampling-based framework
described thus far, this problem can be formulated as evaluating the quality of
an arbitrary sample in estimating a quantitative guarantee. Since the approxi-
mation quality of both Monte Carlo and quasi-Monte Carlo methods depends
on the uniformity degree of the sampled point set (which indicates how close
the distribution of this set is to the uniform distribution), we are interested in
evaluating the uniformity degree of a given point set.

5.1 Visualising n-dimensional Uniformity Degree via Histograms

One practical way to evaluate the uniformity degree is visualisation. For 2-
dimensional samples, we have already visualised in Fig. 2, the difference in the
uniformity degree between the sets sampled using different methods. For clouds
of points in dimensions higher than 2, we propose the following visualisation
method based on histograms.

Example 3. We modify slightly the TA of Fig. 1 to ensure that every delay is
bounded by 2. To do so, it suffices to add a clock y that is reset at each transition
and must satisfy the condition y < 2 for the transition to be taken. This ensures
that the timed polytope associated to the discrete path of length n is included
in the box [0, 2]n. We draw timed words (using a sampling method) and for each
box

∏n
i=1[bi, bi+1] we count the number of times this box is hit by a sampled

timed word. Since each box has volume 1, every box that is fully included in the
language has probability to be hit equal to 1/Vol(Ln). The other have a lower
probability which is proportional to the volume of their intersection with the lan-
guage. To visualise the boxes, we number each box with a binary representation
given by the lower bounds of the box. Formally,

∏n
i=1[bi, bi + 1] is numbered by

∑n
i=1 bi2n−i. For instance with n = 5, the number 25, the binary representation

of which is 11001, is assigned to the box [1, 2]×[1, 2]×[0, 1]×[0, 1]×[1, 2]. Figure 3
shows the histograms of the hitting count for each box included in [0, 2]5 after
drawing 5, 000, 000 timed words. All the boxes intersect the language, and the
purple bars correspond to the boxes fully included in the language that we call
hereafter purple boxes. We can observe from the histograms a great similarity
between the uniform and low-discrepancy sampling methods. As expected, when
restricted to the purple bars, their histograms are flat because the probability
for each purple box to be hit is the same and equal to 1/Vol(L5). We can see
that the isotropic sampling is clearly not uniform on the purple boxes and it
over-samples the green boxes.

Generation of Signals Under Temporal Constraints for CPS Testing 63

5 · 104

10 · 104

15 · 104

20 · 104

25 · 104

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

Uniform Low discrepancy Isotropic

Fig. 3. Histograms for Example 3 (Color figure online)

5.2 Measuring the Uniformity Degree

Another evaluation method is to characterise the uniformity degree using the
Kolmogorov-Smirnov (KS) test, which is a statistical test to measure how well a
sample S of points fits a distribution given by a known CDF F . We first point out
the relation between this test and the star discrepancy, which allows us to exploit
the backward use of F−1 (from a timed polytope to the unit box) to estimate
the KS statistic. The Kolmogorov-Smirnov statistic is defined by the following
value (which is a random variable when the sample is drawn at random):

KS(F, S) = sup
p∈Rn

|F (p) − F̃S(p)|

where F̃S is the empirical CDF associated with the sample S defined as F̃S(p) =
|{p′ ∈ S | p′ ≤ p}|/|S|, which is the ratio of the number of points in S that
falls in the box [−∞, p1] × . . . × [−∞, pn]. Let FU be the CDF associated to n
i.i.d. uniform random variables on [0, 1], then FU (p) is the volume of the box
[0,p], and the KS statistic KS(FU , S) is nothing else than D�(S), that is the
star discrepancy introduced in the preliminaries and used in the Koksma-Hlawka
inequality (1). This connection is known (see for example [21,23]). Theorem 2 is a
basis for the following observation. Given a sample S, one can translate KS(F, S)
into KS(FU , F (S)). The former is the multi-dimensional KS statistic of S w.r.t. a
CDF F , and the latter is the KS statistic of the transformed sample F (S) =
{F (p) | p ∈ P} w.r.t. the uniform distribution FU on the unit box. The latter is,
as mentioned before, the star discrepancy of F (S). Applying this observation to
the CDF F of the uniform distribution on a timed polytope, we have KS(F, S) =
D�(F(S)). Note that when S is obtained via uniform (resp. low-discrepancy)
sampling then S = F−1(S′) where S′ is a sample of uniform random vectors
(resp. a low-discrepancy sample). So in that case KS(F, S) = D�(F(F−1(S′))) =
D�(S′) and the KS test that requires the KS statistic to be below a threshold
passes with high probability (resp. for sure).

64 B. Barbot et al.

Example 4. For the running example, we compute D�(F(S)) of a sample S of
timed words drawn using the three sampling methods. After mapping the gen-
erated timed vectors back to the unit box, we estimate the star discrepancy
of the resulting points. The estimation based on a grid provides a lower and
an upper bound on the star discrepancy value [28]. For the set generated by
the low-discrepancy method (Fig. 2-(b1)), the star discrepancy estimation inter-
val is [0.009, 0.020], by the uniform method (Fig. 2-(a1)) [0.040, 0.047]; by the
isotropic method with a uniform random sequence (Fig. 2-(a4)) [0.256, 0.266],
and by the isotropic method with a low-discrepancy sequence (Fig. 2-(b4))
[0.250, 0.257]. From these results, regarding the KS statistics, we observe that
the low-discrepancy and uniform methods are clearly better than the isotropic
method. It is worth noting that although the points in the unit box generated
by the isotropic method from the low-discrepancy sequence look in the figure
more “regular”, their discrepancy is far larger.

6 Application to CPS Testing

6.1 CPS Testing

Our development thus far focuses on timed words, which can be thought of as
an abstraction of real-valued signals. In order to achieve a procedure for CPS
testing with guarantees, we show how to define real-valued signals from timed
words. We also discuss how timed automata can be used to specify temporal
constraints of input signals. Before continuing, let us sketch our procedure.

1. Specifying the temporal constraints on input signals by a timed automaton.
2. Generating a sample of timed words of the timed automaton, using either the

uniform method or the low-discrepancy method.
3. Mapping the generated timed words to input signals.
4. Simulating the model or executing the system under the input signals.
5. Determining the guarantees: the uniform method produces statistical guaran-

tees (such as, probability of satisfaction) while the low-discrepancy method
produces deterministic ones (such as, error bound on the ratio of correct
behaviours or on the satisfaction robustness).

If the testing process uses an arbitrary sample of timed words we can still evalu-
ate its generation quality by the step 5. The steps 2 and 5 have been discussed in
the previous sections. Before proceeding with the remaining steps, we point out
the novelty of our approach. The existing approaches, such as S-Taliro [3] and
Breach [16], use a parametrisation of input signals to reduce the involved infinite
dimensional optimisation problem to a finite dimensional one. Such a parametri-
sation (based on a fixed time discretisation producing to a fixed sequence of time
stamps) does not directly capture temporal constraints on input signals. This
may lead to a large number of non-realistic test scenarios that are explored by
the optimiser but then need to be discarded. With the ability of generating valid
signals satisfying temporal constraints, our approach can consider a larger vari-
ety of time discretisations leading to better coverage. Also, our approach can

Generation of Signals Under Temporal Constraints for CPS Testing 65

reduce the search space and aim at good coverage only over the valid signal
space. Furthermore, our generation methods can generate parametric signals;
for example, the signal values for the time intervals between the transitions need
not be fixed but are represented as parameters over which optimisation can be
used, as in the existing optimisation-based approaches. In terms of complexity,
if we use the existing optimisation-based approaches, the number of the param-
eters (that is the number of the optimisation variables) corresponds to the path
length in our approach. Both of the generation methods (low-discrepancy and
uniform) require computing the CDF which, as mentioned earlier, can be done
in polynomial time w.r.t. the path length. In other words, compared to these
methods, our signal generation methods do not add much computation efforts
and enable more efficient search since all the generated signals are relevant.

Specifying Temporal Constraints on Signals Using Timed Automata. Timed
automata are a popular tool for specifying temporal properties of various types
of systems [8]. In this section, we only illustrate the usefulness of timed automata
in specifying two common properties of signals arising in CPS applications. The
first is bounded variability, meaning that within any time period of duration Tp

there cannot be more than m events. Another definition is to state that for every
integer 1 ≤ k ≤ n−m the sum of delays tk + . . .+ tk+m−1 is always greater than
Tp. This can be measured by a clock that can be reused every m transitions,
so it suffices to have m clocks (one per congruence class modulo m). This is
illustrated in our running example: every sequence of m = 4 delays needs more
than Tp = 1 time units to occur.

The second property is a perturbed periodic pattern, which specifies that
some m events occur during a period of [Tp, Tp +Δp] time units and that during
this period the delays are in the prescribed intervals. This perturbed periodic
pattern is used in the sequel to create input signals to a model of ΣΔ modulator.

From Timed Words to Signals. A mapping can be directly defined when the
timed words yield directly Boolean signals which switch between True or False
values after a time delay. As we will show later, such Boolean signals can model
the fact that a battery is turned on or off in the KiBaM model used in our
experimentation. Another straightforward mapping can be defined to obtain
signals that are piecewise constant taking values in a finite set. In the above-
described case of uncertain periodic pattern, during a period the signals take
a predefined sequence of values (this can model for instance a discretised sinus
function) and each change of value occurs after a time delay. A more general
way of mapping is to use retiming functions, motivated by sampled-data systems
and more generally embedded control systems. A retiming function can specify
perturbation in terms of imprecision and delay in sampling and communication.

6.2 Experimentation

Our Tool Chain. We implemented our workflow using 4 tools: PRISM [22],
SageMath [27], Cosmos [5] and Simulink R©. The workflow is depicted in Fig. 4.
The first steps are similar to those in [6], their output is a stochastic process
generating timed words in the language of the automaton. Cosmos then simulates

66 B. Barbot et al.

Fig. 4. Tool chain for black-box CPS validation with input temporal constraints.

the stochastic process using Monte Carlo or quasi-Monte Carlo sampling (box
“Signal Generation” in Fig. 4). The obtained timed traces are used to generate
real-valued signals which are then fed to the Simulink model we want to test.

Example 1 - KiBaM Model. We first illustrate our workflow on an example of
a micro-controller powered by a battery using a Kinetic Battery Model (KiBaM)
depicted in Fig. 5. The goal is to show that if the micro-controller follows its
specification in terms of energy usage pattern then the battery will last a certain
amount of time. The KiBaM battery model is easily described by a system
of ODE. The main feature of this model is that it reflects well the ability of
the battery to “self-recharge” when idle. The controller oscillates between two
states: the idle state where it consumes a very small amount of power and the
active state where it consumes more. The energy usage pattern specification is
that the controller may not stay active for more than τ1 time units but needs
to be active every τ3 time units and when it is idle it waits at least τ2 time
units until it becomes active again. During the operation, the controller drains
the battery if it stays active for too long, but the battery restores itself when
the controller is idle. Eventually the battery will be completely drained. The
property we want to check is that the battery lasts more than T time units:
always_[0,T] (BatteryCharge > 0). Figure 6 depicts a simulation trace of the
battery and the controller. One can observe that when the controller is active, the

Fig. 5. KiBaM model: Simulink diagram and 2-state controller. When the state of the
controller is Idle (resp. Active), the input port (In) receives the value 0 (resp. 1).

Generation of Signals Under Temporal Constraints for CPS Testing 67

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

Bound Energy
Available Energy
Controller State

Fig. 6. Co-simulation of the automaton with uniform sampling and the KiBaM model.
The energy unit is a fraction of initial capacity.

available charge quickly drops, but as the controller quickly returns to the idle
state, the battery is able to self-recharge. This trace was sampled with uniform
sampling. We performed experiments with the three sampling methods using
10, 000 trajectories. For T = 271, the property holds on every trajectory for all
methods. For T = 272, the estimated satisfaction probability is in [0.948, 0.959]
for the uniform sampling and [0.953, 0.963] for the low-discrepancy sampling
using Halton’s sequence. The confidence level is 0.99 and the total computation
time is around 1 min, where a dominating part of 45 s was used for the CPS
simulation, and 15 s for the stochastic process simulation and signal generation.
The CPS simulation requires to numerically solve differential equations which is
costly.

Example 2 - ΣΔ Modulator. ΣΔ analog-to-digital converters are widely used
for analog signals of a large range of frequencies. This is a typical mixed-signal
circuit comprising of an analog component (modulator) and a digital component
(digital signal processor for filter and decimation). The most basic architecture
of the modulator contains a 1-bit DAC (comparator), a 1-bit DAC (switch),
and one or more integrators. ΣΔ modulator stability analysis is a challenging
problem. When instability occurs, low frequency signal at the input port of the
quantizer alternates between the minimum and maximum magnitudes, which
causes the quantizer output to get saturated and the modulator can no longer
track the input signal. This constitutes a major non-linearity of the modulator.
In this work we apply our methods of signal generation to test if a saturation can
occur in a ΣΔ modulator. We use a behavioral model of a second-order mod-
ulator specified using Simulink R©, which takes into account most non-idealities
[11] (see Fig. 7), including sampling jitter, integrator noise, op-amp parame-
ters (finite gain, finite bandwidth, slew-rate and saturation voltages). In terms
of model complexity, this Simulink model is heterogeneous including embed-
ded Matlab code and mixing discrete-time and continuous-time components,
which goes beyond the applicability of the existing formal verification tools. We
also remark that formal verification has previously applied to check the satura-
tion occurrence for a much simpler discrete-time ΣΔ modulator model without
non-idealities, for which it is possible to derive its dynamics equations and thus

68 B. Barbot et al.

b3

b2

b

b

b

Jitter

Sampling Jitter

kT/C

kT/C
-z -2

1+z -2

REAL
Resonator

OpNoise

-z -2

1+z -2

IDEAL
Resonator

Comparator

1

OutSat

1

In1

Fig. 7. High-level view of the ΣΔ model with non-idealities [11]

optimization can be formulated and solved [14]. This simple model was also
treated by a statistical model-checking approach which picks uniformly an input
value at random at each time step [12]. We consider a class of quasi-periodic
signals with the frequency spectrum satisfying the nominal range required for
the correct operation of the modulator. The temporal pattern of the considered
signals is specified by a variant of the automaton in Fig. 1. Each period ranges
between 10 et 16, and the delay between two transitions between 1 and 3. The sig-
nal value range is discretised into 4 integer values from 0 to 3. We generate a set
of 100 timed words of length 300 with the uniform sampling and low-discrepancy
methods. The signals are constructed by linear interpolation between the val-
ues at the time stamps and then fed to the Breach tool [16], which evalu-
ates the robustness of simulation traces. The STL specification [17] expressing
the absence of saturation is always_[0, sim_time] (abs(OutSat1[t]) < 2).
Note that we focus on the first integrator since its non-idealities cannot be
attenuated by the noise shaping. To test different frequency range, we scale
the time stamps with different factors. For the scaling factors κ ≥ 0.8 × 10−7,
the two methods detected a saturation situation. With κ = 0.6 × 10−7 the low-
discrepancy method detected a saturation while the uniform method did not.
For κ ≤ 0.5 × 10−7, both methods did not detect a saturation, which can be
explained by these high frequencies getting closer to the oversampling frequency
(Fs = 42 MHz). This experiment showed the interest of the low-discrepancy gen-
eration method. The timed word and signal generation took about 30 s, while
the average Simulink simulation time was 58 s for simulating 100 trajectories.

7 Conclusion

We have extended the work on uniform random generation of runs of timed
automata, leading to two new contributions. The first one is a new method for
low-discrepancy generation, which is an alternative to the uniform random gener-
ation, providing deterministic guarantees. The second contribution is a method
for validation of complex CPS models which go beyond the scalability of for-
mal verification and are treated in our approach as black boxes. The ability to
handle temporal constraints on input signals is also a novelty in this context.
This work opens a number of directions for future work. First, the star discrep-
ancy calculation is a difficult problem. The grid-based estimation method used in

Generation of Signals Under Temporal Constraints for CPS Testing 69

this work becomes expensive in high dimensions when a good estimate is needed.
We plan to explore methods based on the points in the sample to identify points
with jumps in the empirical CDF that affect the supremum result. Additionally,
we plan to combine the sampling-based approach with optimisation within the
signal value space.

Acknowledgements. This work is partially supported by the IDEX project SYMER,
funded by Université Grenoble Alpes.

References

1. Abbas, H., Fainekos, G., Sankaranarayanan, S., Ivančić, F., Gupta, A.: Proba-
bilistic temporal logic falsification of cyber-physical systems. ACM Trans. Embed.
Comput. Syst. 12(2s) (2013)

2. Adimoolam, A., Dang, T., Donzé, A., Kapinski, J., Jin, X.: Classification and
coverage-based falsification for embedded control systems. In: Majumdar, R.,
Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 483–503. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63387-9 24

3. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

4. Asarin, E., Basset, N., Degorre, A.: Entropy of regular timed languages. Inf. Com-
put. 241, 142–176 (2015)

5. Ballarini, P., Barbot, B., Duflot, M., Haddad, S., Pekergin, N.: HASL: a new app-
roach for performance evaluation and model checking from concepts to experimen-
tation. Perform. Eval. 90, 53–77 (2015)

6. Barbot, B., Basset, N., Beunardeau, M., Kwiatkowska, M.: Uniform sampling for
timed automata with application to language inclusion measurement. In: Agha, G.,
Van Houdt, B. (eds.) QEST 2016. LNCS, vol. 9826, pp. 175–190. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-43425-4 13

7. Barbot, B., Bérard, B., Duplouy, Y., Haddad, S.: Integrating simulink models into
the model checker cosmos. In: Khomenko, V., Roux, O.H. (eds.) PETRI NETS
2018. LNCS, vol. 10877, pp. 363–373. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-91268-4 19

8. Bartocci, E., et al.: Specification-based monitoring of cyber-physical systems: a
survey on theory, tools and applications. In: Lectures on Runtime Verification -
Introductory and Advanced Topics, pp. 135–175 (2018)

9. Basset, N.: A maximal entropy stochastic process for a timed automaton. In:
Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS,
vol. 7966, pp. 61–73. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-39212-2 9

10. Bohlender, D., Bruintjes, H., Junges, S., Katelaan, J., Nguyen, V.Y., Noll, T.: A
review of statistical model checking pitfalls on real-time stochastic models. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8803, pp. 177–192. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45231-8 13

11. Brigati, S., Francesconi, F., Malcovati, P., Tonietto, D., Baschirotto, A., Maloberti,
F.: Modeling sigma-delta modulator non-idealities in simulink(r). In: Proceedings
of the 1999 IEEE International Symposium on Circuits and Systems VLSI, ISCAS
1999, vol. 2, pp. 384–387, May 1999

https://doi.org/10.1007/978-3-319-63387-9_24
https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/978-3-319-43425-4_13
https://doi.org/10.1007/978-3-319-91268-4_19
https://doi.org/10.1007/978-3-319-91268-4_19
https://doi.org/10.1007/978-3-642-39212-2_9
https://doi.org/10.1007/978-3-642-39212-2_9
https://doi.org/10.1007/978-3-662-45231-8_13

70 B. Barbot et al.

12. Clarke, E.M., Donzé, A., Legay, A.: On simulation-based probabilistic model check-
ing of mixed-analog circuits. Formal Methods Syst. Des. 36(2), 97–113 (2010)

13. Clarke, E.M., Zuliani, P.: Statistical model checking for cyber-physical systems. In:
Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 1–12. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24372-1 1

14. Dang, T., Donzé, A., Maler, O.: Verification of analog and mixed-signal circuits
using hybrid system techniques. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004.
LNCS, vol. 3312, pp. 21–36. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-30494-4 3

15. Deshmukh, J., Jin, X., Kapinski, J., Maler, O.: Stochastic local search for falsifi-
cation of hybrid systems. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015.
LNCS, vol. 9364, pp. 500–517. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-24953-7 35

16. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 17

17. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

18. Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Jin, X., Deshmukh, J.V.: Effi-
cient guiding strategies for testing of temporal properties of hybrid systems. In:
Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp.
127–142. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17524-9 10

19. Halton, J.H.: Algorithm 247: radical-inverse quasi-random point sequence. Com-
mun. ACM 7(12), 701–702 (1964)

20. Hlawka, E.: Discrepancy and riemann integration. Stud. Pure Math., 121–129
(1971)

21. Justel, A., Peña, D., Zamar, R.: A multivariate Kolmogorov-Smirnov test of good-
ness of fit. Stat. Probab. Lett. 35(3), 251–259 (1997)

22. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

23. Liang, J.-J., Fang, K.-T., Hickernell, F., Li, R.: Testing multivariate uniformity
and its applications. Math. Comput. 70(233), 337–355 (2001)

24. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods.
Society for Industrial and Applied Mathematics, Philadelphia (1992)

25. Roberts, M.: The unreasonable effectiveness of quasirandom sequences. http://
extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/

26. Rosenblatt, M.: Remarks on a multivariate transformation. Ann. Math. Stat. 23(3),
470–472 (1952)

27. Stein, W.A., et al.: Sage Mathematics Software (Version 6.9). The Sage Develop-
ment Team (2015). http://www.sagemath.org

28. Thiémard, E.: An algorithm to compute bounds for the star discrepancy. J. Com-
plex. 17(4), 850–880 (2001)

29. Yaghoubi, S., Fainekos, G.: Falsification of temporal logic requirements using gra-
dient based local search in space and time. In: 6th IFAC Conference on Analysis
and Design of Hybrid Systems, ADHS 2018, Oxford, UK, 11–13 July 2018, pp.
103–108 (2018)

https://doi.org/10.1007/978-3-642-24372-1_1
https://doi.org/10.1007/978-3-540-30494-4_3
https://doi.org/10.1007/978-3-540-30494-4_3
https://doi.org/10.1007/978-3-319-24953-7_35
https://doi.org/10.1007/978-3-319-24953-7_35
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-319-17524-9_10
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/
http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/
http://www.sagemath.org

Traffic Management for Urban
Air Mobility

Suda Bharadwaj1(B), Steven Carr1, Natasha Neogi2, Hasan Poonawala3,
Alejandro Barberia Chueca1, and Ufuk Topcu1

1 The University of Texas at Austin, Austin, TX 78712, USA
{suda.b,stevencarr,utopcu}@utexas.edu

2 NASA-Langley Research Center, Hampton, VA, USA
natasha.a.neogi@nasa.gov

3 University of Kentucky, Lexington, KY 40506, USA
hasan.poonawala@uky.edu

Abstract. Urban air mobility (UAM) refers to on-demand air trans-
portation services within an urban area. We seek to perform mission
planning for vehicles in a UAM fleet, while guaranteeing system safety
requirements such as traffic separation. In this paper, we present a local-
ized hierarchical planning procedure for the traffic management problem
of a fleet of (potentially autonomous) UAM vehicles. We apply decentral-
ized policy synthesis for route planning on individual vehicles, which are
modeled by Markov decision processes. We divide the operating region
into sectors and use reactive synthesis to generate local runtime enforce-
ment modules or shields, each of which satisfies its own assume-guarantee
contract that encodes requirements of conflict management, safety, and
interactions with neighbouring sectors. We prove that the realization of
these contracts ensures that the entire network of shields satisfies the
safety specifications with each shield limited to acting in its local sector
of operation.

Keywords: Reactive synthesis · System safety ·
Air traffic management

1 Introduction

There is growing interest in on-demand aerial mobility over urban centers, for
both passenger and cargo carrying missions [2,18]. However, the airspace above
urban areas is rapidly evolving into a dynamic and complex environment, and the
urban air mobility (UAM) ecosystem will be characterized by a set of competing
requirements and priorities. Thus, UAM operations will likely be comprised of a
complex network of vehicles with a large range of traffic management and control
options. Planning for UAM fleet operations over a dense, complex airspace may
suit a localized, hierarchical approach. Centralized planning approaches typically
suffer computational costs that grow exponentially with the number of vehicles
c© Springer Nature Switzerland AG 2019
J. M. Badger and K. Y. Rozier (Eds.): NFM 2019, LNCS 11460, pp. 71–87, 2019.
https://doi.org/10.1007/978-3-030-20652-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20652-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-20652-9_5

72 S. Bharadwaj et al.

in the system [15]. Furthermore, the UAM ecosystem will encompass multiple
UAM service suppliers (USS), and for those vehicles that fly in uncontrolled
airspace (e.g., Class G [10]), there is currently no civil aviation authority bro-
kering information exchange and providing control guidance. Thus, the ability
to provide separation services will likely rest with the UAM vehicles and USS.

In this paper, we present a localized hierarchical planning procedure for the
traffic management problem of a fleet of (potentially autonomous) UAM vehicles.
We divide the planning problem into: (1) onboard route planning for the indi-
vidual vehicles, and (2) shielding airspace regions to enforce safety constraints.
We divide the airspace into regions or sectors, and use localized shield synthesis
to generate a shield for each sector. We employ a separation-of-concerns app-
roach to the traffic management problem. That is, we assume that the planner
is unaware of the state of the whole fleet and can thus take actions that may
result in a violation of a safety requirement. In such cases, there needs to be
an enforcement module that can interfere with the local plans of the vehicles at
runtime. We use localized shield synthesis to provide runtime enforcement and
present a decentralized synthesis procedure for shield generation.

1.1 Related Work

Currently, there is no established infrastructure to safely manage the widespread
use of low-altitude airspace over dense urban cores, under diverse piloting modes.
A traffic management system called UTM for unmanned aerial systems (UAS)
has been proposed to handle small unmanned aerial systems, and takes a volu-
metric approach to ensuring airspace access [23]. This approach will likely enable
the incorporation of multiple safety oriented services [20] such as aircraft separa-
tion [21] and geo-fencing [22]. However, this centralized volumetric approach is
not scalable to projected UAM traffic densities, and leaves a need for a localized
approach to UAM traffic management, possibly employing runtime enforcement
techniques.

Runtime verification is an active area of research, for example [3,5] allow for
checking whether a run of a system satisfies a given specification. An extension
to verification is runtime enforcement [11,26] of a specified property, by not only
detecting violations, but also altering the behaviour of the system in a way that
maintains the desired property. An existing approach called shielding [7,17] uses
reactive synthesis and assumes that the shield has full knowledge and control
of the whole system—in this case the entire UAM system and the vehicles it
handles.

A technique for synthesizing quantitative shields for multi-agent systems in a
fully centralized manner was presented in [6]. All these approaches rely on restric-
tive assumptions on runtime communication (i.e., full network coverage) and the
extent of awareness and control authority of the shield (e.g., the shield can affect
any agent in the network instantaneously). Removing these assumptions requires
a version of distributed synthesis. However, except for a few restricted classes of
architectures, the distributed synthesis problem is undecidable [25]. The decid-
able versions of the problem lack practical solutions due to their non-elementary

Traffic Management for Urban Air Mobility 73

complexity [24]. Significant effort in runtime monitoring in this area is focused
on providing efficient solutions by exploiting the structure of the system [8,12] or
the specification [4,13]. In approaching the UAM problem, we propose to avoid
the undecidability of distributed synthesis by leveraging the infrastructure in
the geography to divide the region into sectors, and separately synthesizing a
shield for each sector. Each shield is then only concerned with the behaviours of
neighbouring sectors. Similarly, we assume that specifications are decomposed
such that each shield is only responsible for safety violations in its own sector.

1.2 Contributions of the Paper

This work is the first that considers a quantitative, decentralized synthesis pro-
cedure for runtime enforcement modules (referred to as shields) for use in traffic
management on a UAM system. We break down our contributions as follows:
(1) We use a decentralized Markov decision process (MDP) policy synthesis
procedure to plan routes for individual vehicles in the UAM and dynamically
update routes on the fly if conflicts between vehicles occur. (2) We divide up
the operating region of the vehicles into sectors and synthesize a shield for each
sector that enforces local safety properties as well as assume-guarantee contract-
induced safety properties in their respective sectors. (3) We use these contracts
to prove correctness of the decentralized approach to synthesize shields that,
when all composed together, are correct with respect to the conjunction of all
local specifications.

2 Preliminaries

Basic Notations. We consider reactive systems with a finite set I (O) of
Boolean inputs (outputs). The input alphabet is ΣI = 2I, the output alphabet is
ΣO = 2O, and Σ = ΣI ×ΣO. The set of finite (infinite) words over Σ is denoted
by Σ∗ (Σω), and we define Σ∞ = Σ∗ ∪ Σω. We will also refer to words as (exe-
cution) traces. We write |σ| for the length of a trace σ ∈ Σ∗. For an infinite trace
σ ∈ Σω we define |σ| = ∞. For σI = x0x1 . . . ∈ Σ∞

I and σO = y0y1 . . . ∈ Σ∞
O , we

write σI ‖ σO for the composition (x0, y0)(x1, y1) . . . ∈ Σ∞. For i ∈ N and a word
σ = σ0σ1 . . . ∈ Σ∞, we define σ[i] = σi, and we define σ[i, j) = σiσi+1 . . . σj−1

if j ∈ N and σ[i, j) = σiσi+1 . . . if j = ∞. A language is a set L ⊆ Σ∞ of words.

Reactive Systems. A reactive system is defined by a 6-tuple D =
(Q, q0, ΣI, ΣO, δ, λ), where Q is a finite set of states, q0 ∈ Q is the initial state,
ΣI is the input alphabet, ΣO is the output alphabet, δ : Q×ΣI → Q is the com-
plete transition function, and λ : Q×ΣI → ΣO is the output function. Given an
input trace σI = x0x1 . . . ∈ Σ∞

I , a reactive system D produces an output trace
σO = P(σI) = λ(q0, x0)λ(q1, x1) . . . ∈ Σ∞

O with qi+1 = δ(qi, xi) for all i ≥ 0. The
set of words produced by D is denoted L(P) = {σI ‖ σO ∈ Σ∞ | D(σI) = σO}.

74 S. Bharadwaj et al.

Specifications. A specification ϕ defines a set L(ϕ) ⊆ Σ∞ of allowed traces.
A reactive system D realizes ϕ, denoted by D |= ϕ, iff L(D) ⊆ L(ϕ). Given
a set of propositions AP, a formula in linear temporal logic (LTL) describes a
language in (2AP)ω. In this paper we deal with fragment of LTL referred to as
safety specifications. ϕ is called a safety specification if every trace σ that is
not in L(ϕ) has a prefix τ such that all words starting with τ are also not in
the language L(ϕ). We represent a safety specification ϕ by a safety automaton
ϕ = (Q, q0, Σ, δ, F), where F ⊆ Q is a set of safe states.

Games. A game is a tuple G = (G, g0, Σ, δ,Acc), where G is a finite set of
states, g0 ∈ G is the initial state, δ : G × Σ → G is a complete transition
function, Acc : (G × Σ × G)ω → B is a winning condition and defines the qual-
itative objective of the game. The game is played by two players: the system
and the environment. In every state g ∈ G (starting with g0), the environment
chooses an input σI ∈ ΣI, and then the system chooses some output σO ∈ ΣO.
These choices define the next state g′ = δ(g, (σI, σO)), and so on. The result-
ing (infinite) sequence π = (g0, σI, σO, g1)(g1, σI, σO, g2) . . . is called a play. A
deterministic strategy for the environment is a function ρe : G∗ → ΣI. A non-
deterministic strategy for the system is a relation ρs : G∗ × ΣI → 2ΣO and a
deterministic strategy for the system is a function ρs : G∗ × ΣI → ΣO.

A play π is won by the system iff Acc(π) = 	. A strategy is winning for the
system if all plays π that can be constructed when defining the outputs using
the strategy result in Acc(π) = 	. The winning region Win is the set of states
from which a winning strategy exists. A maximally permissive winning strategy
ρs : G∗ × ΣI → 2ΣO is a strategy that is not only winning for the system, but
also contains all deterministic winning strategies. Simply, if a play π can be
constructed from a deterministic strategy it can also be constructed from the
maximally permissive strategy.

A safety game defines Acc via a set F ⊆ G of safe states: Acc(π) = 	 iff
gi ∈ F for all i ≥ 0, i.e., if only safe states are visited in the play π. Otherwise,
Acc(π) = ⊥. The quantitative objective of the system is to minimize Val(π),
while the environment tries to maximize it.

Markov Decision Processes. We define a single-agent MDP as a tuple Mz =
(Sz, sI , Actz, Pz,Rz, Tz) with a finite set Sz states, an initial state sI ∈ Sz a
finite set Actz of actions, a transition function Pz : Sz × Actz × Sz → [0, 1]
such that ∀s ∈ Sz ∀ a ∈ Actz :

∑
s′∈Sz

Pz(s, a, s′) ∈ {0, 1} and a cost function
Rz : S × Act → R such that Rz(s, a) represents the cost of taking action a in
state s and a target operator (or operators) Tz ⊂ Sz.

Given n agents, the overall MDP is formed from the product of the
MDPs describing each individual MDP: M = (S, sI , Act, P,R, T), where S =∏

z∈[1,n] Sz, Act =
∏

z∈[1,n] Actz, P and R are the transition and reward func-
tions for the new product state space as defined in a similar manner above and
the set of goal conditions for all agents is defined by T =

∏
z∈[1,n] Tz ⊂ S .

Traffic Management for Urban Air Mobility 75

3 Problem Setting

Consider an environment motivated by the setting for SkyGrid [2] consisting of
an operating space and a network formed from a series of k urban air mobility
(UAM) sectors labeled V1, · · · , Vk. Figure 1 depicts an example environment.

A set of UAM vehicles (henceforth referred to as vehicles) are tasked with
completing trips between origin-destination pairs in this environment. Each
sector is a designated region of control, wherein all vehicles have coordinated
responses and maintain the required separation minima between themselves (e.g.,
collision avoidance). If two vehicles are projected to lose separation, the sector
controller acts tactically to separate the vehicles, by issuing a rerouting com-
mand, or by blocking a vehicle’s entry to the sector (e.g., conflict management).
Note that, for example, sector controller V6 in Fig. 1 controls the operational
area defined by V6−(V6∩V5), and the area of overlap V5∩V6 is the region where
the handoff takes place, wherein the sector controller of the region the vehicle is
about to enter takes control of the vehicle. The sectors are distributed such that
the union of their regions cover the entire operating space.

The number of vehicles allowed inside each sector is upper bounded by the
separation standards between the vehicles, along with the complexity of the
airspace (e.g., intersection with general aviation traffic etc.). Sectors cannot
accept vehicles (i.e., accept a handoff) if the maximum operational density will
be exceeded, or if a conflict will ensue. However, sectors must ensure that if a
vehicle needs to pass through its region, it is eventually allowed to do so in order
to make progress towards its goal. Thus, a sector can send an idle vehicle out of
its region by requesting a handoff with a neighbour in order to make room for
transiting vehicles to enter. However, this action can cause violations of safety
requirements for the neighbouring regions. Hence, we propose the use of a run-
time monitor or shield that can correct the decisions of the sector as necessary
to avoid such violations.

V1

V2

V3

V4

V5

V6

Fig. 1. Example UAM operating environment. Green circles correspond to local sec-
tors. UAM vehicles (blue and black) start at the squares and finish at the crosses.
(Color figure online)

In the following section, we formulate the set of vehicles moving in the envi-
ronment as an MDP. We then synthesize a policy in this MDP for each vehicle

76 S. Bharadwaj et al.

to transit from its origin to its destination with minimal cost and dynamically
update the policy to avoid conflicts. We then formally define shields and their
composition with sector control in order to guarantee the individual vehicle poli-
cies do not violate safety specifications of the sectors it transits.

3.1 MDP Formulation of the Environment

First consider the case of a single vehicle labelled Gz transiting in the environ-
ment. We can model its behavior using a Markov decision process, defined by a
tuple Mz = (Sz, sI , Actz, Pz,Rz, Tz). We define a state si ∈ Sz as the condition
where sector controller Vi has authority over the vehicle. For each state si there
are two types of actions: loiter ai ∈ Actz or hand-off request aij ∈ Actz to state
sj . The loiter in state si corresponds to a self-transition with probability 1. We
define p as the probability of a successful hand-off, i.e. a transition from sector
Vi to sector Vj . Formally, we denote Pz(si, aij , sj) = p ∈ [0, 1]. An unsuccess-
ful hand-off can occur from events such as authority-responsibility mismatches
between the two sector controllers, communications interference, or the shield of
the sector denying entry. This results in the agent remaining inside its previous
states Pz(si, aij , si) = 1 − p.

Extending the problem to n vehicles, the overall model is formed
from the product of the MDPs describing each individual vehicle: M =
(S, sI , Act, P,R, T), where S =

∏
z∈[1,n] Sz, Act =

∏
z∈[1,n] Actz, P and R are

the transition and reward functions for the new product state space as defined in
a similar manner above and the set of goal operators for all vehicles is defined by
T =

∏
z∈[1,n] Tz ⊂ S . This product system scales exponentially with the number

of vehicles, |S| = |Sz|n and |Act| = |Actz|n. Instead of calculating the optimal
centralized policy, we decentralize through each agent computing (offline) an
optimal individual policy based upon its knowledge of the environment and co-
ordinating (online) with other agents as they interact [14] (see Sect. 4).

Since the policy is computed in a decentralized manner, we assume each vehi-
cle has only limited information on the status of the entire UAM airspace. This
limited information can result in vehicles potentially violating safety require-
ments that they are not aware of by trying to move into a sector that is at
capacity, thereby causing a conflict. A shield is needed to guarantee that a sec-
tor does not accept a vehicle that will create a conflict within its region.

3.2 Shields

Sector Model. We model the controller of each sector Vi as a reactive system
Di = (Qi, q0i , ΣIi , ΣOi

, δi, λi) and form a connected system which we define as
set of reactive systems D = [D1 · · · Dn] with a corresponding connectivity graph
GD.

We define a connectivity graph as a directed graph with each vertex cor-
responding to a reactive system. We say two reactive systems are connected if
they share an edge in the graph. Let connect(Di) be the set of reactive systems

Traffic Management for Urban Air Mobility 77

Dj ∈ D, i �= j that share an edge with Di. For example, in Fig. 1, overlapping
operational regions share an edge in the corresponding directed graph in Fig. 2
and therefore the corresponding reactive systems are connected. The inputs to
the reactive system Di denoted as ΣIi are produced by the strategy synthesized
in the MDP M and can correspond to the numbers of vehicles entering or leaving
the sector of the distributed system Di. In this example, the output ΣOi

takes
one of the following three actions: allow vehicles to enter, move vehicles inside
the sector to a neighboring sector, or force vehicles to loiter until the sector is
ready to allow them to enter.

D1 D3

D2

D5

D4

D6

e12

e13

e23

e24

e34

e35

e45

e56

Fig. 2. The connectivity graph GD of the UAM sector controllers D modeling the
sectors V in Fig. 1. Each edge eij corresponds to Di and Dj being connected, i.e., the
outputs of Di are inputs to Dj and vice versa.

Attaching a Shield. A shield Si = (Q′, q′
0, ΣIi×ΣOi , ΣOi , δ

′, λ′) corresponding
to sector Vi is a reactive system that is composed with the sector controller Di

where ΣIi = ΣIi × ΣOj
for Dj ∈ connect(Di). Simply, the outputs from all

neighbouring sectors is an input to Si. For example, if sector controller Dj ∈
connect(Di) sends a vehicle to Di, this output ΣOj

functions as an input to Si. In
response the shield produces a possibly corrected output ΣOi

. This architecture
is shown in Fig. 3. Each shield will need to make assumptions or contracts with its
neighbours in order to guarantee they will all be able to satisfy their individual
specifications (see Sect. 5).

Formally, we define the composition of Si and Di as Di ◦ Si =
(Q̂, q̂0, Σ̂I, Σ̂O, δ̂, λ̂), with states Q̂i = Qi×Q′

i, q̂0i = (q0i , q
′
0i), transition function

δ̂i((qi, q
′
i), σ̂I) = (δ(qi, σIi), δ

′(q′
i, (σIi, σ

′
Oi

)), and output function λ̂((qi, q
′
i), σIi) =

λ′
i(q

′
i, λ(qi, (σIi , σOi

))).

3.3 Requirements on the Shield

Now we define the basic requirements that a shield must satisfy: namely it should
enforce correctness without deviating from the system’s output unnecessarily.

Correctness. We say that S = (Q′, q′
0, Σ

′
I × Σ′

O, ΣO, δ′, λ′) ensures cor-
rectness with respect to a safety specification ϕ if for any reactive system
D = (Q, q0, ΣI, ΣO, δ, λ) it holds that (D ◦ S) |= ϕ.

78 S. Bharadwaj et al.

V2

V1

V3

(a)

MDP

D1

D2

D3

S1

S2

S3

ΣI

ΣI1

ΣI2

ΣI3

ΣO1

ΣO2

ΣO3

ΣO3

ΣO2

ΣO2

ΣO1

Σ′
O1

Σ′
O2

Σ′
O3

(b)

Fig. 3. (a) Example region space and (b) Corresponding sector controllers and shielding
architecture.

No Unnecessary Interference. A shield is only allowed to interfere when
the output of the reactive system is not correct. Formally, given a safety speci-
fication ϕ, a reactive system S = (Q′, q′

0, Σ
′
I × Σ′

O, ΣO, δ′, λ′) does not interfere
unnecessarily if for any reactive system D = (Q, q0, ΣI, ΣO, δ, λ) and any trace
(σI ‖ σO) ∈ (ΣI ×ΣO)∞ of D that is not wrong, we have that S(σI ‖ σO) = σO.

Localized Shields. A set of localized shields S = [S1 · · · Sn] for a conjunction of
specifications ϕ =

∧n
i ϕ is a set of reactive systems such that for Si ∈ S, where

Si = (Q′, q′
0, ΣIi × ΣOi

, ΣOi
, δ′, λ′), for any set of connected reactive systems

D = [D1 · · · Dn] where Di = (Qi, q0i , ΣIi , ΣOi , δi, λi) with connectivity graph
GD, it holds that Di ◦ Si |= ϕi with no unnecessary deviation. Additionally, it
must hold that the global composition is correct with respect to the conjunction
of specifications. Formally, (D1 ◦ S1) ◦ · · · ◦ (Dn ◦ Sn) |= ϕ1 ∧ · · · ∧ ϕn.

Problem Statement. Given a conjunction of safety specifications ϕ =
∧n

i ϕi,
synthesize a set of localized shields S = [S1 · · · Sn] for any set of reactive systems
D = [D1 · · · Dn] with connectivity graph GD, such that each Si is (1) correct
with respect to ϕi, (2) can only correct the outputs of Di, (3) can only observe
the outputs of sectors in connect(Di), and (4) global composition of the shields
and design is correct with respect to the conjunction of safety specifications.
Informally (4) states that Si must not only be correct with respect to ϕi, but also
must not prevent all connected shields from satisfying their safety specifications.

4 Decentralized Vehicle Policy Synthesis

We describe the process for decentralized synthesis of the optimal policies for
the individual UAM vehicles. The MDP M described in Sect. 3.1 serves as a
model for the coordination of n vehicles. The reward in M consists of a global
payoff function Val : Act → R. Since each action a ∈ Act is a collective action

Traffic Management for Urban Air Mobility 79

for the vehicles, solving the MDP M for an optimal policy yields an optimal
coordination strategy for the agents. Solving for the optimal policy in M with
this large action space Act is a centralized approach and is computationally
expensive.

In practice each vehicle interacts with only few other vehicles relative to the
total number of vehicles at any time. The concept of a coordination graph [14]
captures this sparsity of mutual influence of actions on the global payoff Val. The
sparse coordination graph implies that one can decompose Val as a sum of local
payoff functions Valj for each vehicle Gj so that the global coordination problem
can be replaced by a number of smaller local coordination problems. This decom-
position implies that the optimal collective action a is arg maxa∈Act(

∑
j Valj(a)).

The implemented algorithm from [14] involves the following steps: (1) Com-
pute an approximate value function V for the MDP M; (2) compute local payoff
functions Valj for agent Gj using value iterations involving V with one-step looka-
head; (3) instantiate for each Gj , its local payoff value Valj using its current state
s and the states of a limited set of vehicles defined by the coordination graph;
and (4) compute a locally optimal collective action for the MDP M via a variable
elimination algorithm and message passing. The first two steps are performed
offline, the last two are performed online.

The topology of the coordination graph determines the decomposition of Val.
The construction of a sparse coordination graph for the n vehicles is as follows.
The nodes of the coordination graph consist of the vehicles. We seek to penalize
the situation where two agents will act to occupy the same sector in the next
time instant. Therefore, an edge exists between vehicle Gi and vehicle Gj in the
coordination graph if both agents can take an action to move to the same sector
Vk. A necessary condition for two agents to be connected in the coordination
graph is that the sectors, which are nodes in graph GD, corresponding to their
current state be at distance two or less in the graph GD.

The local payoff functions that achieve the desired penalty given this topol-
ogy for the coordination graph are as follows. Let Neighbor[z] be vehicles in
sectors that are two edges away from the current sector occupied by Gz. Then,
Valz =

∑
j∈Neighbor[z] Valjz(ajk, azl), where Valjz(ajk, azl) = −q if l = k and

Valjz(ajk, azl) = 0 otherwise, for some penalty value q > 0.

5 Localized Shield Synthesis Framework

In this section, we present a correct-by-design approach to localized shield syn-
thesis with assume-guarantee contracts. We first formalize the notion of assume-
guarantee contracts that we use in the synthesis process. We then demonstrate
the incorporation of these contracts into a safety game, which we solve using
GR(1) synthesis.

80 S. Bharadwaj et al.

5.1 Assume-Guarantee Contracts

An assume-guarantee contract for a shield expresses the assumptions on the out-
puts of neighbouring sectors under which the shield provides the corresponding
individual guarantees for its own sector.

We employ a localized synthesis process, such that the synthesis process
for each shield is unaware of the specification and implementation details of
both the vehicles in the fleet, as well as the shields in connected sectors. The
only guarantees that the shield provides concern the duration and frequency
of vehicle entrance (and rejection) periods from neighbouring sectors. These
guarantees can in turn be taken into account in the shield synthesis process
for neighbouring sectors. Alternatively, one can use the contract to verify if the
controller implementation still satisfies its desired specification under the shield,
and in fact under any shield that meets the guarantees in the contract.

For ease of notation, the following definitions are with respect to the assump-
tions and guarantees of the ith shield. An assume-guarantee contract for a shield
Si attached to Di is a set of tuples CSi

Sj
= (ASi

Sj
, BSi

Sj
):

– ASi

Sj
is the assumption on the outputs of Sj as it pertains to Si.

– BSi

Sj
describes the guarantees which Si provides to Sj .

where Sj is the shield attached to Dj ∈ connect(Di)
The guarantees BSi

Sj
that Si provides to Sj bound the length of time Si can

refuse to accept vehicles from Sj when requested. Formally, we define BSi

Sj
=

(bSi

Sj
) ∈ N as the maximal length of a (contiguous) period of refusal for accepting

UVs from Sj . The assumptions that Si makes on the output of Sj , given by
ASi

Sj
= (aSi

Sj
) ∈ N are symmetric to the guarantees Bs

Sj
and will function as

guarantees for Sj . Formally we will have ASi

Sj
= B

Sj

Si
.

Remark: We note that the values in the assume-guarantee contracts are heavily
dependent on the topology of the environment and the connections. For example,
a shielded sector with many connecting sectors may not be able to guarantee
quick transit of vehicles through its regions, i.e., b

Sj

Si
may need to be large.

Generating these contracts automatically based on the given graph GD is a
subject of future work. In this paper, the contract values are chosen manually.

5.2 Synthesis Overview

We first present an overview of the synthesis procedure. The synthesis procedure
for a shield consists of the following three steps:

(1) For each shield Si, we construct a game GSi from the safety specification ϕi,
augmented with the contracts CSi

Sj
for the shields of all connected sectors.

(2) We then compute the permissive winning strategy ρSi , such that any shield
Si that implements ρSi ensures correctness (Di ◦ Si |= ϕi

∧
j BSi

Sj
) given the

assumptions ASi

Sj
for all shields Sj of connected sectors. This construction is

similar to the one in [17].

Traffic Management for Urban Air Mobility 81

(3) We compute a locally optimal deterministic strategy that implements ρSi

using GR(1) synthesis for each Si using a procedure detailed in [6].

5.3 Game Construction with Contract Guarantees

Let ϕi be a safety specification represented as a safety automaton ϕi =
(Q, q0, ΣI, δ, F). For each Si, we construct a game GSi such that its maximally
permissive strategy subsumes all possible shields that are correct w.r.t. ϕi as
well as the contract safety guarantees, given that the contract safety assump-
tions hold. Let J be the set of indices of sectors connected to Si. We first define
two boolean variables tj and uj for all j ∈ J :

– tj is true when a vehicle attempts to move from the sector shielded by Sj to
the sector of Si, and Si does not allow it to enter.

– uj is true when Si attempts to move a vehicle to a sector shielded by Sj and
Sj does not allow it to enter.

Given the contracts CSi

Sj
, the shield must additionally satisfy contract-induced

safety guarantees BSi

Sj
given assumptions A

Sj

Si
. To encode these contracts, the

state space GSi of GSi is constructed by augmenting the states Q of ϕ with two
tuples of integer variables: (vj) and (wj) for all j ∈ J , as is explained below.

We construct a game GSi = (GSi , gSi
0 , ΣI, ΣO, δSi ,AccSi) such that GSi = {(g⊗

j(vj , wj) | g ∈ Q, j ∈ J} is the state space, gSi
0 = (g0, (0, 0), . . . , (0, 0)) is

the initial state δs is the next-state function, such that δs((g, (vj , wj)), (σI, σO),
σ′
O) = (δ(g, σI, σ

′
O), (v′

j , w
′
j)). The transitions of variables vj and wj depend on

the values of the boolean variables tj and uj . Explicitly, we construct for all
j ∈ J :

– if vj ≤ bSi

Sj
, t′j = 	, then v′

j = vj + 1,
– if vj ≤ bSi

Sj
, and t′j = ⊥, then v′

j = 0,
– if vj = bSi

Sj
+ 1, then v′

j = bSi

Sj
+ 1,

– if wj ≤ aSi

Sj
, and u′

j = 	, then w′
j = wj + 1,

– if wj ≤ aSi

Sj
and t′j = ⊥, then w′

j = 0,
– if wj = aSi

Sj
+ 1, then w′

j = aSi

Sj
+ 1.

Intuitively, the counter wj tracks the number of consecutive times Sj refuses to
accept a vehicle, and is reset to 0 when the vehicle is accepted. If wj exceeds
the bound ASi

Sj
+ 1, it remains ASi

Sj
+ 1 forever. Similarly, the counter vj tracks

the number of consecutive times Si refuses to accept a vehicle from Sj and is
reset to 0 when a vehicle is accepted. Given a run in the game π, the acceptance
condition AccSi(π) = 	 iff for gSi

t = (gt, (vjt , wjt)), we have gt ⊆ F for all t and
one of the following conditions holds for (vjt , wjt) for all j ∈ J :

∃ t ≥ 0 with wjt > aSi

Sj
(1)

∀ t ≥ 0 :
∧

j

vjt ≤ bSi

Sj
(2)

82 S. Bharadwaj et al.

Using the counter wj , we encode the assumption Si makes on the behaviour
of Sj . This is captured in condition 1 which says that if at some point in the
play, the assumption made on Sj is violated. Specifically if Sj refuses to accept
a UAV from Si for more than aSi

Sj
consecutive times, then the play is winning as

the assumption has been violated.
Similarly, we use vj to encode the guarantee Si must give to Sj . This is

captured in condition 2 which states that Si has to accept a UAV from Sj in
fewer than bSi

Sj
time steps.

Lemma 1. Encoding the integers in this manner means AccSi is a safety accep-
tance condition and GSi is a safety game.

We use standard algorithms for safety games (e.g. [19]) to compute the maximally
permissive winning strategy ρSi : GSi × ΣI → 2ΣO of Gs.

5.4 Synthesis of Locally-Optimal Shields

Next, we propose a procedure to synthesize shields that minimize the cost per
deviation period, assuming that contract assumptions are satisfied. This allows
the user to specify a cost function c(σO, σ′

O) to tailor behaviour such as prior-
itizing vehicles entering from some sectors compared to others. More details of
possible cost functions can be found in [6].

We start with the game graph GSi = (GSi , gSi
0 , Σ,ΣO, δSi ,AccSi) and con-

struct a new game GSi
opt = (GSi , gSi

0 , Σ,ΣO, δSi ,AccSi ,ValSi
opt) with value func-

tion ValSi
opt(π) which is an accumulated cost objective using c as edge labeling:

costopt(ga, (σI, σO), σ′
O) = c(σO, σ′

O).
Using the procedure described in [6,16], we synthesize shields, that are win-

ning according to AccSi and optimize Valopt.

5.5 Proof of Correctness

In this section we prove that if there exists a set of localized shields synthesized
using the construction detailed earlier, they must correct with respect to the
conjunction of all safety properties for k UAM sectors ϕi where i = 1, . . . , k.

Theorem 1. (D1 ◦ S1) ◦ . . . ◦ (Dk ◦ Sk) |= ϕ1 ∧ . . . ∧ ϕk.

Proof. Recall we will have that if a Si is generated from the safety game then we
must have Di ◦ Si |= ϕi. There are two cases where the joint system will violate
the conjunction of specifications.

Case 1: Suppose the following holds for shield Si:

Di ◦ Si � ϕi

∧

j∈J

BSi

Sj
.

Traffic Management for Urban Air Mobility 83

By construction, if assumptions
∧

j∈J ASi

Sj
hold, each shield is synthesized

from the corresponding safety game GSi , whose acceptance condition is aug-
mented to become ϕi

∧
j∈J BSi

Sj
. Contradiction.

Case 2: Suppose assumption
∧

j∈J ASi

Sj
is violated. If so, there is no guarantee

that (Di ◦ Si) is correct with respect to ϕi and the contract-induced safety
requirements

∧
j∈J BSi

Sj
. However, by design, ASi

Sj
= B

Sj

Si
. Hence, if

∧
j∈J ASi

Sj

is violated, there exists j ∈ J such that Sj � ϕj ∧ B
Sj

Si
. As showed in case 1,

this is a contradiction. ��

We remark that this construction guarantees correctness if a set of localized
shields can be synthesized. However, since it requires the contract-induced guar-
antees to be manually constructed, the construction cannot always guarantee
that such a set of shields exists.

6 Validation via Simulation

We use the reactive synthesis tool Slugs [9] to compute the shields using the
procedure described in Sect. 5. All experiments were performed on an Intel
i5-5300U 2.30 GHz CPU with 8 GB of RAM.

6.1 Shield Synthesis Comparison

We compare the localized synthesis procedure presented in this paper with the
centralized procedure detailed in [6]. In a centralized setting, the synthesis time
grows exponentially with the number of sectors present.

In each sector the safety specification ϕi is to not exceed an upper bound of
vehicles in each sector. For simplicity, we use the same contract values CSi

Sj
=

(ASi

Sj
, BSi

Sj
) referred to as C in Table 1 and maximum vehicle upper bound for

the referred to as N for all sectors, though, in principle, this is not necessary.
Again, we use the same N for each sector. We compare the two procedures for

increasing numbers of sectors in Table 1. We report synthesis times for computing
the permissive strategy, along with the time for computing the cost-optimal
strategy from the permissive strategy. We use a cost function that assigns a
cost whenever the shield moves an idle vehicle out of its region in order to
disincentivize shields from moving vehicles when it is not required. Note that
the synthesis time in the decentralized procedure significantly outperforms that
of the centralized case. In the last two trials, the centralized shield synthesis
timed out unsuccessfully.

6.2 Traffic Management Case Study

In order to demonstrate empirical performance and behaviour of the proposed
system, we also implement the synthesis framework on an example environment
of 9 UAM sectors and 5 UAM vehicles (see Fig. 4). Each region has an upper

84 S. Bharadwaj et al.

Table 1. Synthesis time comparison between centralized and localized methods.

Sectors N C Perm. strategy time (s) Opt. strategy time (s)

Centralized 3 2 2 43 17

5 3 3 1840 1489

7 4 4 Time out Time out

9 5 5 Time out Time out

Localized 3 2 2 13 10

5 3 3 123 32

7 4 4 219 111

9 5 5 470 286

bound N = 1, except for sector V9 that has N = 2. Three of the vehicles (G1,
G2 and G3) have been assigned tasks, while two are loitering inside sector V9.
The MDP planner approaches this problem as a composed system M of the
MDPs associated with G1, G2 and G3, and a policy is synthesized for each one
and executed on-board each agent. We present two cases—an execution of the
system with and without a local shield in each region.

V1

V2

V3

V4

V5

V6

V7

V8

V9

Fig. 4. Example UAM environment with 9 regions (V1, · · · , V9), 5 UAM vehicles and
3 destinations. The initial locations and desired destinations of G1 (blue), G2 (red)
and G3 (magenta) are given by the squares and crosses respectively. Agents G4 and
G5 (black squares) are initially loitering in sector V9 with no task requirement. (Color
figure online)

Figure 5 shows the evolution of the decentralized strategy as the system pro-
gresses in time, in both the shielded and unshielded cases. Videos comparing
the policies in an open-air traffic simulator [1] are shown at: https://bit.ly/
2CjrET5. The initial trajectories of G1 (blue) and G2(red) are in conflict, and

https://bit.ly/2CjrET5
https://bit.ly/2CjrET5

Traffic Management for Urban Air Mobility 85

after one time-step the agents’ on-board planners coordinate and re-route such
that G1 moves to V3 and G2 loiters until G1 has cleared V2.

G1’s new route takes it through V9 as shown in Fig. 5b. However, since V9

already has two vehicles loitering, G1 cannot enter. In Fig. 5c, the sector controller
D9 allows G1 to enter, which will lead to a violation of ϕ9 that requires fewer
than 2 vehicles in V9 at all times.

The local shield S9 ensures that the one of the vehicles (G4 or G5) in V9 exits
from the sector so that the G1 can transit. G1 is forced to loiter while S9 can move
a vehicle out to make room as shown in Figs. 5d–f. At the next time interval, S7

moves the vehicle again so that G1 can transit through V7.

V1

V2

V3

V4

V5

V6

V7

V8

V9

(a) Unshielded: Time = 0

V1

V2

V3

V4

V5

V6

V7

V8

V9

(b) Unshielded: Time = 1

V1

V2

V3

V4

V5

V6

V7

V8

V9

(c) Unshielded: Time = 2

V1

V2

V3

V4

V5

V6

V7

V8

V9

(d) Shielded: Time = 2

V1

V2

V3

V4

V5

V6

V7

V8

V9

(e) Shielded: Time = 3

V1

V2

V3

V4

V5

V6

V7

V8

V9

(f) Shielded: Time = 4

Fig. 5. Snapshots of vehicles travelling through the sectors. The top and bottom rows
show the vehicle policies without and with shielded sectors respectively.

7 Conclusion

We presented a localized shield synthesis method to generate runtime enforce-
ment modules to perform traffic management for a UAM system. We exploit the
geographic separation of the traffic management problem to avoid the full dis-
tributed synthesis problem and focus on localized shield synthesis where shields

86 S. Bharadwaj et al.

can observe the outputs of neighbours. We make use of assume-guarantee con-
tracts between neighbouring shields to ensure that each shield can still satisfy its
safety requirement without violating the ability of neighbours to satisfy theirs.
In this paper, these contracts are manually generated. For future work we aim
to generate or learn these contracts in an automated way. We also aim to use
this framework to perform shielded multi-agent reinforcement learning where the
agents will have to learn and adjust their optimal policy during runtime.

Acknowledgement. The authors would like to thank Ali Husain and Dr. Bruce
Porter from Spark-Congition Inc. for inspiring discussions. This work was supported
in part by grants AFRL FA 8650-15-C-2546 and DARPA W911NF-16-1-0001.

References

1. Bluesky - the open air traffic simulator. https://github.com/ProfHoekstra/bluesky
2. Skygrid Technology. https://skygrid.com/technology/. Accessed 11 Dec 2018
3. Bartocci, E., Falcone, Y. (eds.): Lectures on Runtime Verification. LNCS, vol.

10457. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5
4. Bauer, A., Falcone, Y.: Decentralised LTL monitoring. Formal Methods Syst. Des.

48(1–2), 46–93 (2016). https://doi.org/10.1007/s10703-016-0253-8
5. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.

ACM Trans. Softw. Eng. Methodol. 20(4), 14:1–14:64 (2011). https://doi.org/10.
1145/2000799.2000800

6. Bharadwaj, S., Bloem, R., Dimitrova, R., Könighofer, B., Topcu, U.: Synthesis of
minimum-cost shields for distributed systems. In: 2019 Annual American Control
Conference, ACC 2019. IEEE, Philadelphia, 10–12 July (2019)

7. Bloem, R., Könighofer, B., Könighofer, R., Wang, C.: Shield synthesis: In: Baier,
C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 533–548. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 51

8. Cassar, I., Francalanza, A.: On implementing a monitor-oriented programming
framework for actor systems. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016.
LNCS, vol. 9681, pp. 176–192. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-33693-0 12

9. Chaudhuri, S., Farzan, A. (eds.): CAV 2016 Part II. LNCS, vol. 9780. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-41540-6

10. FAA: Order JO 7400.9Y Air Traffic Organization Policy (2014). https://www.faa.
gov/documentLibrary/media/Order/JO 7400.9Y.pdf

11. Falcone, Y.: You should better enforce than verify. In: Barringer, H., et al. (eds.)
RV 2010. LNCS, vol. 6418, pp. 89–105. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-16612-9 9

12. Falcone, Y., Jaber, M., Nguyen, T., Bozga, M., Bensalem, S.: Runtime verification
of component-based systems in the BIP framework with formally-proved sound and
complete instrumentation. Softw. Syst. Model. 14(1), 173–199 (2015). https://doi.
org/10.1007/s10270-013-0323-y

13. Francalanza, A., Seychell, A.: Synthesising correct concurrent runtime moni-
tors. Formal Methods Syst. Des. 46(3), 226–261 (2015). https://doi.org/10.1007/
s10703-014-0217-9

14. Guestrin, C., Koller, D., Parr, R.: Multiagent planning with factored MDPS. In:
Advances in Neural Information Processing Systems, pp. 1523–1530 (2002)

https://github.com/ProfHoekstra/bluesky
https://skygrid.com/technology/
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/s10703-016-0253-8
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1007/978-3-662-46681-0_51
https://doi.org/10.1007/978-3-319-33693-0_12
https://doi.org/10.1007/978-3-319-33693-0_12
https://doi.org/10.1007/978-3-319-41540-6
https://www.faa.gov/documentLibrary/media/Order/JO_7400.9Y.pdf
https://www.faa.gov/documentLibrary/media/Order/JO_7400.9Y.pdf
https://doi.org/10.1007/978-3-642-16612-9_9
https://doi.org/10.1007/978-3-642-16612-9_9
https://doi.org/10.1007/s10270-013-0323-y
https://doi.org/10.1007/s10270-013-0323-y
https://doi.org/10.1007/s10703-014-0217-9
https://doi.org/10.1007/s10703-014-0217-9

Traffic Management for Urban Air Mobility 87

15. Hopcroft, J.E., Schwartz, J.T., Sharir, M.: On the complexity of motion plan-
ning for multiple independent objects; pspace- hardness of the “warehouseman’s
problem”. Int. J. Robotic Res. IJRR 3, 76–88 (1984). https://doi.org/10.1177/
027836498400300405

16. Jing, G., Ehlers, R., Kress-Gazit, H.: Shortcut through an evil door: optimal-
ity of correct-by-construction controllers in adversarial environments. In: 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo,
Japan, pp. 4796–4802, 3–7 November 2013. https://doi.org/10.1109/IROS.2013.
6697048

17. Könighofer, B., et al.: Shield synthesis. Formal Methods Syst. Des. 51(2), 332–361
(2017). https://doi.org/10.1007/s10703-017-0276-9

18. Kottasová, I.: Uber invests millions to build flying taxis in France. CNN Business,
May 2018. https://www.cnn.com/2018/10/01/tech/uber-flying-taxi-france/index.
html

19. Mazala, R.: Infinite games. In: Grädel, E., Thomas, W., Wilke, T. (eds.) Automata
Logics, and Infinite Games. LNCS, vol. 2500, pp. 23–38. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-36387-4 2

20. Moore, A., et al.: Testing enabling technologies for safe UAS urban operations.
In: Proceedings of the 2018 Aviation, Technology, Integration, and Operations
Conference. No. AIAA-2018-3200, Atlanta, Georgia, June 2018

21. Narkawicz, A., Muñoz, C., Dutle, A.: Sensor uncertainty mitigation and dynamic
well clear volumes in DAIDALUS. In: Proceedings of the 37th Digital Avionics
Systems Conference (DASC). London, England, UK, September 2018

22. Neogi, N., Cuong, C., Dill, E.: A risk based assessment of a small UAS cargo
delivery operation in proximity to urban areas. In: Proceedings of the 37th Digital
Avionics Systems Conference (DASC). London, England, UK, September 2018

23. Prevot, T., Rios, J., Kopardekar, P., Robinson, J.E., Johnson, M., Jung, J.: UAS
Traffic Management (UTM) concept of operations to safely enable low altitude
flight operations. In: Proceedings of the 2018 Aviation, Technology, Integration,
and Operations Conference. No. AIAA-2016-3292, Washington, DC, June 2016

24. Schewe, S.: Synthesis of distributed systems. Ph.D. thesis, Saarland University,
Saarbrücken, Germany (2008)

25. Schewe, S.: Distributed synthesis is simply undecidable. Inf. Process. Lett.
114(4), 203–207 (2014). https://doi.org/10.1016/j.ipl.2013.11.012, http://www.
sciencedirect.com/science/article/pii/S0020019013002925

26. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000). https://doi.org/10.1145/353323.353382

https://doi.org/10.1177/027836498400300405
https://doi.org/10.1177/027836498400300405
https://doi.org/10.1109/IROS.2013.6697048
https://doi.org/10.1109/IROS.2013.6697048
https://doi.org/10.1007/s10703-017-0276-9
https://www.cnn.com/2018/10/01/tech/uber-flying-taxi-france/index.html
https://www.cnn.com/2018/10/01/tech/uber-flying-taxi-france/index.html
https://doi.org/10.1007/3-540-36387-4_2
https://doi.org/10.1016/j.ipl.2013.11.012
http://www.sciencedirect.com/science/article/pii/S0020019013002925
http://www.sciencedirect.com/science/article/pii/S0020019013002925
https://doi.org/10.1145/353323.353382

Towards Full Proof Automation in Frama-C
Using Auto-active Verification

Allan Blanchard1(B) , Frédéric Loulergue2 , and Nikolai Kosmatov3

1 Inria Lille—Nord Europe, Villeneuve d’Ascq, France
allan.blanchard@inria.fr

2 School of Informatics Computing and Cyber Systems, Northern Arizona University,
Flagstaff, USA

frederic.loulergue@nau.edu
3 CEA, List, Software Reliability and Security Lab, PC 174, Gif-sur-Yvette, France

nikolai.kosmatov@cea.fr

Abstract. While deductive verification is increasingly used on real-life code,
making it fully automatic remains difficult. The development of powerful SMT
solvers has improved the situation, but some proofs still require interactive theo-
rem provers in order to achieve full formal verification. Auto-active verification
relies on additional guiding annotations (assertions, ghost code, lemma functions,
etc.) and provides an important step towards a greater automation of the proof.
However, the support of this methodology often remains partial and depends on
the verification tool. This paper presents an experience report on a complete func-
tional verification of several C programs from the literature and real-life code
using auto-active verification with the C software analysis platform FRAMA-C
and its deductive verification plugin WP. The goal is to use automatic solvers
to verify properties that are classically verified with interactive provers. Based
on our experience, we discuss the benefits of this methodology and the current
limitations of the tool, as well as proposals of new features to overcome them.

1 Introduction

Formal verification enables obtaining a high level of assurance in software reliability,
but requires significant expertise and is still very costly to apply on real-world use cases.
The purpose of this experience report is to investigate how to achieve a higher level of
automation of formal verification. We address this problem in the context of FRAMA-C.

Context and Motivation. FRAMA-C [19] is a source code analysis platform that aims
at conducting verification of industrial-size programs written in C. FRAMA-C offers a
large range of analyzers, such as abstract interpretation based value analysis, deductive
verification, dependence analysis, program slicing, runtime verification, test generation,
etc., as well as a common specification language: ACSL [3].

WP is the deductive verification plugin of FRAMA-C. It is based on the weakest pre-
condition calculus [11]. WP can be used to prove functional correctness of C programs
with respect to a specification written in the form of ACSL annotations. Given an anno-
tated program, WP computes verification conditions (VCs) or proof obligations, that
c© Springer Nature Switzerland AG 2019

J. M. Badger and K. Y. Rozier (Eds.): NFM 2019, LNCS 11460, pp. 88–105, 2019.
https://doi.org/10.1007/978-3-030-20652-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20652-9_6&domain=pdf
http://orcid.org/0000-0001-7922-4880
http://orcid.org/0000-0001-9301-7829
http://orcid.org/0000-0003-1557-2813
https://doi.org/10.1007/978-3-030-20652-9_6

Towards Full Proof Automation in Frama-C Using Auto-active Verification 89

is, properties that must be proved to ensure that the program respects its specification.
These verification conditions can then be proved either automatically by SMT solvers
(for example, by Alt-Ergo [10], or—through the Why3 [14] platform—by CVC4 [2] or
Z3 [24]) or by interactive provers (like the Coq proof assistant [28]).

Generally, the verification engineer wants to achieve a maximal level of automation,
thus relying on SMT solvers whenever possible. In practice, it is not always possible.
For example, when the proof of some properties requires reasoning by induction, SMT
solvers often remain inefficient. Thus, most of the time the solution is to introduce
generic lemmas that can be directly instantiated by SMT solvers to prove verification
conditions, and to prove those lemmas using interactive provers like Coq. However,
producing a Coq proof often requires extensive background in formal methods, can
be time consuming and can increase the maintenance cost when a new version of the
verification condition generator is released. It makes the proof much harder for many
verification engineers.

Approach and Goals. Leino and Moskal [21] proposed the notion of auto-active ver-
ification to qualify verification approaches that suggest to enrich the code with more
annotations than just necessary to express function contracts. They are available to the
verification tool before the generation of the verification conditions, and so can be used
to optimize this generation. However, depending on the tools, auto-active features are
more or less developed and lead to different levels of automation.

In this experience report, we investigate the use of auto-active verification with
FRAMA-C/WPand apply it to verify the following three case studies1:

1. a memory allocation module [22],
2. a linked list module [5],
3. all examples of an independent benchmark called ACSL by Example [7].

The first two examples are taken from recent real-life case studies on formal verification
of the Contiki operating system [13]. The third artifact contains a rich set of annotated
programs verified with FRAMA-C/WP, maintained by Fraunhofer FOKUS. Previous
proofs of these programs essentially relied on some interactive proofs in Coq.

Our goal was to increase the level of automation and to demonstrate that, thanks to
auto-active verification, interactive proof was not needed anymore to achieve full for-
mal verification. Based on our experience, we analyze the results in terms of necessary
annotations and proof effort. We identify some features that are currently not available
in FRAMA-C, but appear to be necessary for a better auto-active verification. We also
provide some discussion and comparison with existing approaches.

Contributions. The contributions of this work include:

– a formal specification and a fully automatic proof of the aforementioned programs
using the auto-active verification approach;

– analysis of the effort that was needed to achieve this goal;
– identification of several features that could be helpful (and some workarounds we

used to overcome their absence);
– a comparison with existing work that could be integrated into FRAMA-C to improve

auto-active verification.

1 All source code available at: http://allan-blanchard.fr/code/auto-active-nfm-2019.zip.

http://allan-blanchard.fr/code/auto-active-nfm-2019.zip

90 A. Blanchard et al.

Fig. 1. The memory allocation function of MEMB and its (partial) specification

Outline. The paper is organized as follows. Section 2 presents a running example veri-
fied using a classic combination of automatic and interactive proof. Section 3 explains
how to avoid interactive proofs. Section 4 further details the results of our experiments.
Section 5 compares our approach with other tools. Section 6 discusses some lessons
learned and necessary features. Section 7 gives a conclusion and future work.

2 Classic Lemma-Based Verification in Frama-C

In this section, we briefly present ACSL, the specification language of FRAMA-C, its
deductive verification plugin WP and the way it is generally used to prove a particular
program. We illustrate it on a running example (shown in Fig. 1) taken from the Contiki
operating system: function memb_alloc of the memory management module MEMB.
This module simulates memory (de-)allocation using a set of pre-allocated blocks that
can be attributed (or released) on demand. Function memb_alloc iterates over blocks
and if it finds an available block, it marks it as allocated and returns its address.

Running Example. The memb structure contains the data required to manage a set of
memory blocks. The size field (line 2 in Fig. 1) indicates the size of a block in bytes,
while num (line 3) indicates the maximal number of allocable blocks. The pointer mem
(line 5) refers to the pre-allocated array of blocks (of total size num*size). The main
invariant to maintain in the module is the fact that it correctly keeps track of allocated
(i.e. attributed) and free (i.e. released) blocks. This is done in the busy field (line
4), which contains an array of length num whose i-th cell indicates for the i-th block
whether it is busy (value 1) or not (value 0). In the verification, we simply consider that

Towards Full Proof Automation in Frama-C Using Auto-active Verification 91

Fig. 2. The axiomatic definition of occurrence counting

a block of index i is free when the corresponding value at the cell of index i of busy
is 0, and allocated otherwise. From a specification point of view, this knowledge is also
used to ensure that after an allocation fewer memory blocks are available (and dually,
that after a free, more blocks are available). In this example, we will focus on this last
simple property and ignore some other aspects of the proof (for more detail see [22]).

In an ACSL contract, a precondition is specified in a requires clause. Here, the
function requires (line 8) that the received memb structure be valid (in the sense of the
memb invariant). There exist two kinds of postconditions. An assigns clause spec-
ifies a list of memory locations that the function is allowed to modify. An ensures
clause specifies properties that should be verified after the function call. Here, the func-
tion can potentially assign (cf. line 9) any memory cell of the busy array (even though
we know it will actually assign at most one)—the assigns clause has only to give a
correct over-approximation. The unmodified values can be further constrained by other
postconditions. We can specify different behaviors (or cases) for the function. Here,
when the function is called, either there exists a free block (lines 10–12), or not (lines
13–15). The condition that defines each case is stated using an assumes clause. Each
behavior can have its own postconditions. In this example we only consider postcon-
ditions on the number of free blocks. If some free blocks are available (line 11), the
function ensures that one more block is allocated, that is, one less block is free (line 12).
Otherwise, if all blocks are busy (line 14), the number of free blocks does not change
(line 15). Line 16 states that the specified behaviors are complete and disjoint, that is,
cover all possible cases and do not overlap. Notice that for convenience of the reader,
the ACSL annotations in this paper are slightly pretty-printed (using e.g. mathematical
notation Z, ∀, ∃, ⇒, �= instead of ACSL notation integer, \forall, \exists,
==>, !=, respectively).

To refer to program states at different program points in ACSL predicates, in addition
to the usual labels of C language (see e.g. line 7 in Fig. 5), ACSL predefines a few
additional labels, such as the current program point Here (used by default), the pre-
state Pre on entry and the post-state Post on exit of the current function.

92 A. Blanchard et al.

Fig. 3. Predicates and lemmas to reason about occurrence counting

The definition of the _memb_numfree is provided in Fig. 2 (line 16–17). It con-
sists in counting the number of occurrences of value 0 in the busy array of the MEMB
structure. The counting operation occ{L}(e,a,from,to) is defined axiomatically
(lines 1–15): it counts the number of occurrences of value e in array a at program label
L, from an index from to an (excluded) index to. Label L can be omitted (cf. line
18) and is then by default Here, the current program point. The definition considers
three cases. If the index range is empty then the number of occurrences is 0 (lines 4–6).
If there is at least one cell to visit then the number of occurrences is (recursively) the
number of occurrences in the array prefix of indices from from to to--1 (excluded),
incremented or not depending if the last value included in the initial range (that is,
a[to-1]) is equal to e (lines 8–10) or not (lines 12–14). The reads clause (line 3)
indicates the values that impact the result of the function and thus determines when a
memory modification invalidates the property.

Lines 18–21 of Fig. 1 define in a classic way a loop contract specifying which vari-
ables can be modified (line 20) and what other properties remain valid (lines 18–19)
after any number of complete loop iterations (i.e. each time the loop condition is eval-
uated), as well as a loop variant used to prove termination (line 21).

Lemmas and Assertions. Consider the instruction on line 24 of Fig. 1. It assigns a par-
ticular value of the busy array inside a loop. This value was previously 0 (line 23)
and becomes 1. Thus the number of 0’s decreases by 1. However, proving this property
requires some kind of reasoning by induction, to show how the counting can be split
into three segments: segment [0,i) preceding the value (possible empty), the modified

Towards Full Proof Automation in Frama-C Using Auto-active Verification 93

value itself, and segment [i + 1,m->num) that follows it (possibly empty again). We
also need to reason by induction to show that since the first and the last array segments
remain unchanged, the number of occurrences in them does not change either.

SMT solvers are not good at reasoning by induction. In our example, they cannot
prove the contract of the function if we do not give them more help. The classic app-
roach with WP is to provide lemmas that capture the inductive reasoning. These lemmas
can be directly instantiated by SMT solvers to deduce the required conclusion from the
premises without reasoning by induction.

Let us illustrate it with the three lemmas presented in Fig. 3. We state the lemma
one_change_means_inc_and_dec to prove our property on the number of
occurrences after a change in the array. This lemma states that if one (and only one)
value changes in an array from a label L1 to another label L2, then the number of
occurrences of the old value decreases, the number of occurrences of the new value
increases and the number of occurrences of other values does not change. While we
could directly prove this property in Coq, it is easier to state two more lemmas to ease
the process. Lemma occ_split allows splitting the total range of indices into two
subranges (segments). Lemma same_elems_means_same_occ states that when
all the values of an array remain unchanged between two labels, the number of occur-
rences does not change either. All these lemmas cannot be proved directly by most
SMT solvers, so classically they are proved using an interactive prover, e.g. the Coq
proof assistant.

Once these lemmas have been stated, they can be automatically used by SMT
solvers to discharge the different verification conditions generated by WP. How-
ever, depending on the property that needs to be proved, and on the proof context
(i.e., the different properties known about the program at the corresponding pro-
gram point), SMT solvers can fail to automatically trigger the use of these lem-
mas. For example, in the case when the function modifies the array, the ensures
clause on line 12 will not be proved because of the complexity of the proof con-
text. In this case, we use a first feature of auto-active verification: we add an asser-
tion (line 25 in Fig. 1) that makes the link between the current state (label Here)
and the state before the function starts (label Pre). It directly states the premise of
Lemma one_change_means_inc_and_dec (cf. line 23 in Fig. 3) and will allow
SMT solvers to trigger its application and to deduce that the number of 0’s decreased
(i.e. to deduce line 12 in Fig. 1 from line 24 in Fig. 3).

The more complex the proof context is, the harder is the automatic triggering
of lemmas. So it is common to add assertions, but sometimes, even with assertions,
triggering of lemmas can be hard to predict. The question is then to know whether we
can further increase proof automation, both in efficient triggering of SMT solvers and in
the ability to prove complex properties without interactive provers. Since this approach
can require adding more annotations, the question is also whether these annotations are
more costly to add compared to an interactive proof or not.

94 A. Blanchard et al.

3 Auto-active Verification Illustrated for the Running Example

As many other verification tools, FRAMA-C provides the ability to add ghost code in
annotations of the source code being analyzed. Ghost code is regular C code, except
that it is only visible by the verification tools. Ghost code must not interfere with the
behavior of the program: it can basically observe the real world but cannot influence it.

Lemma functions are a particular form of ghost code. They consist of ghost func-
tions that serve the same purpose as lemmas: to deduce some conclusions from some
general premises. Like for lemmas, the properties are proved separately—here as func-
tion contracts—and can then be used in a particular context by simply calling the corre-
sponding lemma function. Moreover, in lemma functions, some tricks can help to avoid
the limitations of SMT solvers, for example, on reasoning by induction.

Let us illustrate on our running example how to completely remove the need for
the Coq proof assistant. Basically, we can provide a way of performing the reasoning
of the Coq proof of our lemma but using ghost code. The first step of the proof is to
split our array again into three segments, the first and the last being unchanged, and the
second containing the modified cell. We define a function that mimics the previously
introduced occ_split lemma as shown in Fig. 4.

Fig. 4. The lemma function occ_split with its proving code

The contract of the function expresses the lemma. The premise of the lemma is
specified in a precondition, and the conclusion as a postcondition. A lemma function
is pure, and thus assigns \nothing. The for loop provides, thanks to its loop
invariant (lines 5–6), a way to reason by induction on the distance between cut and
to. Indeed, the VC generation for this invariant creates the two cases to prove: either
the distance is zero, or the relation is known for rank i and must be verified for i + 1.
The function is fully proved by SMT solvers.

The lemma can then be instantiated in the memb_alloc function by calling it with
suitable parameters, as illustrated in Fig. 5, on lines 4–5 and 13–14. The first call splits
the global range of counting into segments [0, i) and [i,m->num), and then the latter is
split again into [i, i + 1) and [i + 1,m->num). Notice that we need to split the range
before and after the assignment since it invalidates any knowledge about occ over the
whole array (as defined by the reads clause on line 3 of Fig. 2).

Towards Full Proof Automation in Frama-C Using Auto-active Verification 95

Fig. 5. Function memb_alloc fully proved in auto-active fashion

To prove that the unmodified segments [0, i) and [i+1,m->num) contain the same
number of 0’s before and after the assignment, the notion of labels must be taken into
account, as is done for the lemma on lines 10–13 of Fig. 3. Therefore, we cannot use a
lemma function here since we cannot specify arbitrary labels in a function call.

Fig. 6. The same_elems_means_same_occ lemma macro

As a workaround, we directly inject proof-carrying code at the program point where
we want to prove that the number of occurrences did not change (cf. lines 10–11 of
Fig. 5) between labels BA and Here. This is done via a C macro2. This macro is defined
in Fig. 6, it receives two labels _L1 and _L2, the counted _value, and the _array
with the bounds of the considered segment. The assertion on lines 9–10 states the equal-
ity to be proved, and the for loop enables this proof thanks to the invariant on lines
3–4. We use the term lemma macro for such a proof-carrying macro.

Notice however that with this workaround, the proof is done each time we need an
instance of the lemma: each instance of the lemma macro generates annotations to be

2 Given a macro #define name(p1,...,pN) text, the C preprocessor replaces any
occurrence name(e1,...,eN) by text where named parameters are replaced accord-
ingly.

96 A. Blanchard et al.

proved. In contrast, the original occ_split lemma is proved once and for all, and
then instantiated as many times as necessary.

Another issue in creating a lemma macro in more complex cases is that it can be
difficult to design and to prove directly for a large proof context (where the proof can
be sensitive to other annotations). We propose to use a wrapper function that creates the
smallest possible relevant context for such a lemma macro.

Let us illustrate this point with the helper function (given by Fig. 7) that we used
to build the lemma macro same_elems_means_same_occ. The purpose of the
function on lines 9–13 is to create a sufficiently generic context that only establishes
the premises of the original lemma, in order to validate that our lemma macro can
indeed prove our property of interest in isolation of any other context. The lemma
same_elems_means_same_occ (Fig. 3, lines 10–13) states that if same_elems
holds for an array for two program labels L1 and L2 then the number of occurrences
does not change between L1 and L2. Let us consider that L1 is the Pre label of
the function, and L2, the Post label. We have to create a context that assures that
the Pre and Post labels of the function are two different memory states related by
same_elems, and that our lemma macro can assure the conclusion of the lemma.

We first use a function call side_effect_to_L2 (line 10) to introduce a dif-
ferent state before the use of the lemma macro. The function is specified (and does
not need an implementation) on lines 1–3. It assigns the array to invalidate any
previous knowledge about it (line 1) and ensures the premise that relates the two
labels of the lemma (line 2). By calling this function in the wrapper function, we
ensure that there exist two program states Pre (that corresponds to L1 in the lemma)
and SideEffectHappened (that corresponds to L2 in the lemma) that are dif-
ferent because some side effect happened in between, and related by the predicate
same_elems. Since the remaining part of the code is the call to the lemma macro
which is pure, the label Post is equivalent to SideEffectHappened. Finally, the
role of this wrapper function is thus to create a context where some labels L1 (= Pre)
and L2 (= SideEffectHappened = Post) are related by same_elems in order
to deduce, using the lemma macro we want to create, that the number of occurrences
between these two labels did not change (lines 6–7). Using this wrapper function, we
can now design the lemma macro of Fig. 7 and prove the wrapper function with it.

Fig. 7. Code produced to build the same_elems_means_same_occ macro (Fig. 6)

Towards Full Proof Automation in Frama-C Using Auto-active Verification 97

As the attentive reader might notice, this wrapper function is not pure anymore, and
the labels considered by the lemma macro are supposed to be ordered (while specified
labels in ACSL lemmas are not). We further discuss these aspects in Sect. 6.

4 Experiments Using Auto-active Verification

In order to evaluate the use of auto-active verification with FRAMA-C/WP and to com-
pare it to the classic lemma-based approach, we applied the auto-active approach to
verify several previously verified examples from the literature and real-life code: (1)
the memory allocation module MEMB (briefly presented in Sect. 2) and (2) the linked
list module [5] of Contiki, as well as (3) all programs of an independent benchmark
ACSL by Example [7]. For case studies (1) and (3), auto-active proofs were done with-
out knowing the earlier Coq proofs. The list module appears to be the most complex
case study. In all these case studies, we managed to achieve a fully automatic proof
with the auto-active approach, except only for two lemmas explained below.

Approach. For each case study, we begin with the annotated code previously verified
using interactively proved lemmas. First, we remove all lemmas from the annotations.
Then, we identify the assertions that are not proved anymore. For each assertion, we
consider the lemma(s) that are required to enable the verification. If such a lemma can
be fully automatically proved (without relying on other lemmas that require interactive
proof), it is preserved. Otherwise, we replace such a lemma by a lemma function or
a lemma macro necessary to enable the verification, and adapt the annotations of the
functions to verify.

For case studies (1) and (2), we also separately expressed and verified, in an auto-
active style, the lemmas that were not required anymore (and thus were not preserved)
with the auto-active approach. Our goal was to measure the time to verify all lemmas
of these case studies. (For ACSL by Example, this was not done because of the large
number of such lemmas.) In other statistics presented in the tables below for the auto-
active approach we count only lemmas that were required for the verification.

Table 1. Statistics for the considered case studies

Lemmas, incl. lemma functions
& lemma macros

Generated
goals

Goals proved
with Coq

Lines of code Execution
time

Lemmas, incl. l.fun./macros Guiding annotations

Case study (1). The memory management module MEMB (70 lines of C code)

Classic 15 134 15 33 20 47 s

Auto-active 3 217 1 25 25 19 s

Case study (2). The linked list module (176 lines of C code)

Classic 24 805 19 163 708 24 min

Auto-active 17 1631 1 366 629 21 min

Case study (3). ACSL by Example, v. 17.2.0 (630 lines of C code)

Classic 87 1398 40 594 485 92 min

Auto-active 53 1790 0 670 611 78 min

98 A. Blanchard et al.

Measured Indicators and Statistics. The MEMB module is composed of 5 functions;
we needed to adapt the proofs for 2 of them. This adaptation to the auto-active app-
roach took about 6 person-hours (including the proof of lemma functions that were not
required). The verified version of the list module is composed of 11 functions and 2
auxiliary functions. We had to write one more auxiliary function, and to adapt the veri-
fication for 9 functions. In total, the adaptation took about 20 person-hours. This effort
includes the time to validate that the proof remains valid on different list data-types
(see [5] for more detail). The ACSL by Example repository contains 76 proved examples
(some functions are proved with two different contracts, methods, or implementations),
12 of which needed to be adapted. This adaptation took about 30 person-hours.

Table 1 sums up the amount of annotation required by each approach for each use
case. The second column indicates the number of declared lemmas (including lemma
functions or lemma macros if any). The third column gives the number of proof obliga-
tions generated by WP from the annotated program. The fourth column indicates how
many of these goals required an interactive proof. The fifth column indicates how many
lines of code were required to write the lemma functions/macros (including function
bodies, assertions, and loop invariants for them). The sixth column corresponds to the
number of lines written to guide the proof, including loop invariants, and excluding the
lines needed to prove lemma functions/macros (as we count them in column 5). The
last column indicates the time needed to replay entirely the proofs of the goals3.

Analysis of Results. We notice that in each case study, we need fewer lemmas (including
lemma functions) in the full auto-active approach. The main reason for this result is that
for complex proofs it is common to “duplicate” a lemma with slightly different premises
or conclusions in order to make them easier to trigger by SMT solvers in the context
of a particular proof. Each version must be separately proved in Coq. In the auto-active
approach, since lemmas are manually instantiated, this duplication is not needed.

Furthermore, in the auto-active approach it is easier to know exactly which lemmas,
and in particular lemma functions, are used during the verification. An instance of a
lemma function is explicit: this is a function call (or an occurrence of a lemma macro).
On the contrary, to detect the required lemmas in the classic approach, we need to
proceed iteratively: (1) remove a lemma; (2) re-run all proofs to see whether some of
them fail; (3) if that is the case, put the lemma back; and (4) go back to (1). This process
is time-consuming, and it cannot be done before everything has been proved because
triggering of lemmas can be impacted e.g. when we add more assertions in the code to
prove. Thus, most of the time it is not done.

While the auto-active approach needs fewer lemmas/lemma-functions, lemma func-
tions often require more code to be written. This was expected: we need to express a
function contract, which is already longer than a lemma due to the format of the con-
tract. We also need to provide a body for each lemma function that basically carries out
the proof of the lemma. In our study, we noticed that we spent less time producing the
auto-active proofs of the lemmas that were previously proved with Coq. For both case
studies on Contiki modules, we proved all lemma function versions of the lemmas used

3 Executed on a Core i7 6700HQ with 16 GB DDR4. Versions of the tools: Frama-C 18 Argon,
Why3 0.88.3, Alt-Ergo 2.2, CVC3 2.4.1, CVC4 1.6, Z3 4.8.1, E Prover 2.1, Coq 8.7.2.

Towards Full Proof Automation in Frama-C Using Auto-active Verification 99

in the classic approach (even those that we removed later since they were not required),
it took about a day, while the corresponding Coq proofs took at least a week.

The Number of Generated Proof Obligations is Greater for the Auto-active Approach.
For the first two case studies, this number doubles. This increase was expected. Indeed,
in the classic approach, the proof of a lemma generates a single proof obligation. In the
auto-active approach, we need a proof obligation for the postcondition, but the body of
the function also generates other proof obligations (for assertions, function calls, loop
invariants or variants). The strong advantage is that all these obligations are automati-
cally verified by SMT solvers.

Moreover, as we already mentioned, we use lemma macros to inline the proof-
carrying code for lemmas that require multiple labels. Each time we use an instance
of such a lemma, we perform a new complete proof of its statement. This significantly
increases the number of proof obligations. The experiment on ACSL by Example, where
the number of proof obligations increased less significantly, tends to confirm this intu-
ition. Indeed, the semantic properties of the reads clause—stating that arrays with
unmodified values between two labels have the same properties—were simply stated as
axioms in the ACSL by Example case study, whereas we chose to prove them as lemmas
in the other two case studies. These lemmas required creating additional lemma macros,
resulting in more proof obligations.

Regarding guiding annotations needed in the verified code (that include assertions,
loop invariants and ghost code), the results of the first and the third case studies indicate
that the auto-active approach needs more guiding annotations. This is consistent with
the idea that lemmas must be triggered manually. For the list module the opposite situ-
ation is observed. To explain that, we presume that during the adaptation of the proofs,
we aggressively removed a lot of assertions to get faster results from SMT solvers. In
this way, we removed some assertions that were superfluous in the classic approach.

Overall, we expect that auto-active proofs will be easier to achieve for non-experts.
Using the auto-active approach does not require more expertise in FRAMA-C/WP than
needed for the classic approach (proving a lemma function is just like proving any other
C function). On the other hand, in the interactive approach, one also needs a strong
expertise in Coq to prove the Coq goals generated from ACSL lemmas by WP, which
involve a (relatively technical) encoding of the C memory model in Coq as well.

Resisting Lemmas. We were able to prove the great majority of lemmas without inter-
active proof. Only two lemmas had to be proved in Coq. The first one, used in the MEMB
module, states: ∀a, b ∈ Z, a ≥ 0 ⇒ b > 0 ⇒ (a ∗ b)/b = a. Indeed, the reasoning of
SMT solvers can become harder here since WP encodes the division with a particular
logic function that represents the C semantics of the division.

The second resisting lemma, used in the linked list module, is related to the encoding
of inductive definitions by WP. We illustrate the issue with a simple inductive predicate
(checking if a given vector a of length size contains only zeroes):
inductive null_vector(int* a, size_t size){
case len_0: ∀ int* a;

null_vector(a, 0);
case len_n: ∀ int* a, size_t s;

s > 0 ⇒ (null_vector(a+1, s-1) ∧ a[0] == 0) ⇒ null_vector(a, s);
}

100 A. Blanchard et al.

To reason about the cases of such an inductive definition, we need the following fact:
axiom empty_or_not: ∀ int* a, size_t s;

null_vector(a, s) ⇒ ((s == 0) ∨ (s > 0 ∧ null_vector(a+1, s-1) ∧ a[0] == 0));

Such a property is readily provided by Coq, but not by WP. This is why we have to
explicitly state it as a lemma and establish it with a simple one-line proof4 in Coq.

5 Related Work

The term auto-active verification was coined by Leino and Moskal [21] to designate
methods of verification that rely on specific annotations added into the source code to
help the generation of verification conditions. Auto-active is there pointed out as one of
the most efficient solutions to verify real-life programs.

This observation mainly came from several projects that involved some auto-active
verification. They include VCC [8], a verifier for concurrent C code where annotations
are extensively used to manipulate concurrency or ownership related properties, and
Spec# [1] for the object-oriented C# language. The latter strongly influenced the lan-
guage Dafny [20] and its verifier, which were specifically designed to ease verification
yet enabling the construction of realistic systems. It was for example used to verify the
secure execution of applications [16]. In object-oriented verification, AutoProof [15],
part of EVE (Eiffel Verification Environment), targets Eiffel language. It was used to
verify a container library [25]. OpenJML [9], for verification of Java programs, also
supports introducing lemma functions and assertions to assist an automatic proof.

In the field of functional languages, the tools Leon [4] for Scala and Why3 [14]
for the WhyML language are both based on auto-active features, in particular lemma
functions. The Why3 platform has for example been used to verify binary heaps [27]. It
is also used as a backend for FRAMA-C/WP to enable the use of different SMT solvers.

With FRAMA-C, we target the C programming language, mostly for critical applica-
tions. In addition to VCC that we already cited, the closest tool is the GNATprove [17]
verifier, used to prove programs written in SPARK 2014 [23]. The auto-active features
of GNATprove are extensively used for SPARK, in particular ghost code. It was for
example used to verify a red-black tree data structure [12]. Verifast [18] is a verifier
for C and Java based on separation logic, which is particularly powerful to verify heap-
related properties, the counterpart being an extensive use of code annotations that are
not related to the application of lemma functions or ghost code.

The closest work to the present study has been done recently in VerKer project [30].
In this work Volkov et al. use another deductive verification plugin of FRAMA-C, called
AstraVer, which is a fork of the Jessie plugin. They introduce the notion of lemma func-
tion in FRAMA-C and the corresponding verification process. The main idea consists in
giving the ability to declare a function as a “lemma” with a specific syntax, the contract
of the corresponding function being then automatically converted into a lemma. This
work also takes advantage of the fact that the AstraVer plugin supports function variant
clause decreases to prove recursion termination that makes the verifying code easier
to write. They tested the approach on a set of 8 functions, all of them being related to
string manipulations.

4 By introducing the variables and hypotheses, inverting the inductive hypothesis and automati-
cally verifying all remaining proof goals.

Towards Full Proof Automation in Frama-C Using Auto-active Verification 101

Our work continues these efforts and performs a large verification study over 23 dif-
ferent functions, proved almost fully automatically with FRAMA-C/WP, some of which
are related to array manipulations (in MEMB module and ACSL by Example), others to
linked-list manipulations, and yet others to intricate axiomatic definitions (in ACSL by
Example again). A particular focus of our work is a detailed comparison with an ear-
lier classic lemma-based verification of the same case studies based on our personal
experience and the discussion of the difficulties encountered and possible solutions.

6 Discussion

Logic Types. As pointed out by Volkov et al. [30], lemma functions in the particular case
of FRAMA-C often lead to a loss of generality. Indeed, contrary to other languages that
allow the use of logic types in the code, FRAMA-C does not, even in ghost code. That
means that we cannot use logic types when we declare lemma functions. For example,
if we compare the occ_split lemma (lines 2–5 of Fig. 3) and its equivalent lemma
function (Fig. 4), we can notice that the bounds are no longer mathematical integers but
machine integers. In all the cases we have currently verified, this is not a big problem.
It often suffices to declare functions with the same types as the ones used in the pro-
gram under verification (or with the largest one when multiple types exist), or to simply
duplicate the lemma with the suitable type, which is not really elegant, but works.

However, the current support of ghost code by FRAMA-C limits the ability to use
auto-active style depending on the needed ACSL features. For example, in a recent work,
we verified the linked list module of Contiki with another formalization, using ACSL

logic lists [6]. As some lemmas rely on purely logic types (the logic list), we would
be unable to express them as lemma functions in FRAMA-C, and to use them in ghost
code. The ACSL language allows the use of logic types in ghost code, however, adding
support to FRAMA-C for this feature would require a significant implementation effort.

Lemmas with Unique Labels. For the particular case of lemma functions with a single
label, a solution was proposed in the AstraVer tool. A function is declared as follows:

1 /*@ lemma
2 requires premise_1 ; ... requires premise_N ;
3 ensures conclusion ; */
4 void lemma_func_name(type_1 p1, ... type_M pM){ /* pure proof-carrying code */}

The lemma keyword indicates that the following function is a lemma, and consequently
that it must be pure (which has to be proved). From this function, the plugin automati-
cally generates an ACSL lemma supposed to be valid as soon as the lemma function is
proved:

1 /*@ lemma lemma_func_name{L}: ∀ type_1 p1, ... type_M pM ;
2 premise_1 ∧ ... ∧ premise_N ⇒ conclusion ; */

Lemmas with Multiple Labels. Our study allowed us to identify this point as an impor-
tant challenge used for many considered functions. In the case of multi-label lemmas,
the translation into a lemma function is still an open problem. Unlike other tools like
Why3 or SPARK/GNATprove, FRAMA-C and ACSL support the use of C labels in

102 A. Blanchard et al.

annotations, including lemmas and predicates, and this notion is often used to spec-
ify the behavior of a section of code that involves a memory modification. Currently,
we use lemma macros (cf. Sect. 3 and Fig. 6) to directly inject the proof when it is
needed. However, this is not completely satisfactory. Indeed, first, the system has to
prove the lemma again each time it is used, which is not modular, and second, it makes
the proof context bigger. In complex proofs, it can make the job of SMT solvers more
difficult, meaning that we need more time to get results during verification and, since
SMT solvers are sensitive to the context, making the proof less robust to new versions
of the VC generator.

As mentioned in the end of Sect. 3, to create and prove a lemma macro more easily
before inserting it in a more complex function. As a workaround we proposed to use a
wrapper function to prepare the lemma macro in isolation of the rest of the proof.

The first important observation is the fact that contrary to a lemma function, the
wrapper function we use to build the lemma macro should not be pure. For example,
it Fig. 7, the wrapper function can modify the whole array (line 5). This is not a prob-
lem: the wrapper is not meant to be called, it is a helper to build the lemma macro. If
it was pure, the states before and after the call would, from a memory point of view,
correspond to the same memory state, and we precisely do not want to have the same
memory state to validate that our lemma macro can indeed relate to different program
labels. However, the role of the side_effect_to_L2 function is not really to pro-
duce side-effects. It is just meant to create a new memory state and to invalidate the
knowledge we had at the beginning of the function and at the same time to establish
that we have some new knowledge that relates previous labels and the new label we
reached. The proof-carrying code is still pure.

Second, in a wrapper function, the labels are ordered, while this is not the case for
the labels specified in a lemma. In our study, since the code of the proof is directly
injected, it does not introduce a risk of unsoundness. However, if we want to provide a
lemma function mechanism that considers multiple labels, we must ensure that the VC
generation does not take into account a specific ordering, or at least force the labels to
be ordered at the calling point, which can be checked using the control flow graph.

Let Us Sum Up the Difficulties on Multi-label Lemma Functions. First, adapting ghost
functions to multiple labels would probably require modifying the kernel of FRAMA-C.
Second, since preconditions of a usual function contract describe only one state (Pre),
taking into account multi-label premises will require a new way to generate the VCs. On
the side of the proof-carrying code of the lemma function itself, we will have to consider
different memory states related by some predicates. On the call site, the verification of
the multi-label premises will require us to provide a suitable verification condition at
each label considered by the premises of the lemma. It radically differs from the way
WP currently generates those conditions.

Remaining Interactive Proofs. As two of our case studies show, with the current ver-
sions of the tools, it is not always possible to completely remove interactive proofs. The
first resisting lemma is about arithmetic properties. Its proof in Coq basically proceeds
in two steps. First, it relates the Coq encoding of the type of FRAMA-C logic integers
to the Z type of the Coq standard library. Then it applies a lemma that states the same

Towards Full Proof Automation in Frama-C Using Auto-active Verification 103

property for multiplication and division on Z. In this respect, it seems that this lemma
could be part of a standard library of FRAMA-C lemmas. The second lemma was neces-
sary only because WP currently does not generate the axiom we mentioned. WP could
be extended to generate this kind of axiom for any inductive definition. This extension
would avoid the need for interactive proof for the second resisting lemma as well.

Soundness. Soundness of axioms and inductive definitions is crucial for the verification
both for the classic and auto-active approach, so we do not discuss it in this comparison.
We put maximal effort in using sound statements for the case studies in this work.

7 Conclusion and Future Work

This experience report makes a step forward towards a better proof automation with
FRAMA-C/WP. While the classic approach still allows to get good results with a com-
bination of automatic and interactive proofs, we are convinced that auto-active verifi-
cation can provide a usable solution for users that do not have a strong background in
formal methods. While writing contracts can still remain relatively difficult, proving
and calling lemma functions to deduce necessary properties seems to be easier than
interactive proof since it avoids the need for a double expertise in both WP and Coq.

In this work, following the auto-active approach, we verified 23 functions from two
real-life modules and a rich suite of examples proved with FRAMA-C and WP. These
programs include functions that manipulate linked data-structures which are known to
be hard to verify with WP. The corresponding proofs were adapted rather fast, even
for examples that we had never verified by ourselves. This paper also reports on the
recorded results and identified limitations. In particular, we pointed out the problem
of multi-label lemmas, often needed for verification of real-life C programs involving
non-trivial memory manipulations, and proposed lemma macros as a workaround.

Regarding future work, while implementing the extension proposed in AstraVer [30]
is appealing, we plan to directly consider multi-label lemmas that would be more gen-
eral than the AstraVer extension. On the long run, allowing logic types in ghost code
seems to be another important feature to implement if we want to have more gen-
eral and more easily reusable lemmas. Future work also includes creating a detailed
methodology for auto-active verification, realizing an extensive user study to compare
the auto-active and classic approaches, as well as experiments on real-life code verifi-
cation applying the recently improved capacities of solvers to perform induction (e.g.
[26,29]).

Acknowledgment. This work was partially supported by a grant from CPER DATA and the
project VESSEDIA, which has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 731453. The authors thank the
FRAMA-C team for providing the tools and support, as well as Patrick Baudin, François Bobot
and Loı̈c Correnson for fruitful discussions and advice. Many thanks to David Cok, Denis Efre-
mov, Marieke Huisman and the anonymous referees for their helpful comments.

104 A. Blanchard et al.

References

1. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.: Specification
and verification: the Spec# experience. Commun. ACM 54(6), 81–91 (2011)

2. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1 14

3. Baudin, P., et al.: ACSL: ANSI/ISO C specification language. http://frama-c.com/acsl.html
4. Blanc, R., Kuncak, V., Kneuss, E., Suter, P.: An overview of the Leon verification system:

verification by translation to recursive functions. In: Proceedings of the 4th Workshop on
Scala, SCALA@ECOOP 2013, pp. 1:1–1:10 (2013)

5. Blanchard, A., Kosmatov, N., Loulergue, F.: Ghosts for lists: a critical module of Contiki
verified in Frama-C. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol.
10811, pp. 37–53. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77935-5 3

6. Blanchard, A., Kosmatov, N., Loulergue, F.: Logic against ghosts: comparison of two proof
approaches for a list module. In: Proceedings of the 34th Annual ACM Symposium on
Applied Computing, SAC 2019. ACM (2019, to appear)

7. Burghardt, J., Gerlach, J., Lapawczyk, T.: ACSL by example (2016). https://github.com/
fraunhoferfokus/acsl-by-example/blob/master/ACSL-by-Example.pdf

8. Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: Berghofer, S., Nip-
kow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 23–42. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9 2

9. Cok, D.R.: OpenJML: software verification for Java 7 using JML, OpenJDK, and Eclipse.
In: F-IDE (2014)

10. Conchon, S., Contejean, E., Iguernelala, M.: Canonized rewriting and ground AC completion
modulo Shostak theories: design and implementation. Logical Methods in Computer Science
(2012)

11. Dijkstra, E.W.: A constructive approach to program correctness. BIT Numer. Math. 8(3),
174–186 (1968). https://doi.org/10.1007/BF01933419

12. Dross, C., Moy, Y.: Auto-active proof of red-black trees in SPARK. In: Barrett, C., Davies,
M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 68–83. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-57288-8 5

13. Dunkels, A., Gronvall, B., Voigt, T.: Contiki - a lightweight and flexible operating system for
tiny networked sensors. In: LCN 2014. IEEE (2004)

14. Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet provers. In: Felleisen, M., Gard-
ner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-37036-6 8

15. Furia, C.A., Nordio, M., Polikarpova, N., Tschannen, J.: AutoProof: auto-active functional
verification of object-oriented programs. STTT 19(6), 697–716 (2017)

16. Hawblitzel, C., et al.: Ironclad apps: end-to-end security via automated full-system verifi-
cation. In: 11th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2014, pp. 165–181 (2014)

17. Hoang, D., Moy, Y., Wallenburg, A., Chapman, R.: SPARK 2014 and GNATprove - a compe-
tition report from builders of an industrial-strength verifying compiler. STTT 17(6), 695–707
(2015)

18. Jacobs, B., Piessens, F.: The VeriFast program verifier. Technical report. CW-520, KU Leu-
ven (2008)

19. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C: a software
analysis perspective. Formal Asp. Comput. 27(3), 573–609 (2015). http://frama-c.com

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
http://frama-c.com/acsl.html
https://doi.org/10.1007/978-3-319-77935-5_3
https://github.com/fraunhoferfokus/acsl-by-example/blob/master/ACSL-by-Example.pdf
https://github.com/fraunhoferfokus/acsl-by-example/blob/master/ACSL-by-Example.pdf
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/BF01933419
https://doi.org/10.1007/978-3-319-57288-8_5
https://doi.org/10.1007/978-3-642-37036-6_8
http://frama-c.com

Towards Full Proof Automation in Frama-C Using Auto-active Verification 105

20. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In: Clarke,
E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp. 348–370. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-4 20

21. Leino, K.R.M., Moskal, M.: Usable auto-active verification (2010). http://fm.csl.sri.com/
UV10/

22. Mangano, F., Duquennoy, S., Kosmatov, N.: Formal verification of a memory allocation
module of Contiki with FRAMA-C: a case study. In: Cuppens, F., Cuppens, N., Lanet, J.-
L., Legay, A. (eds.) CRiSIS 2016. LNCS, vol. 10158, pp. 114–120. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-54876-0 9

23. McCormick, J., Chapin, P.: Building High Integrity Applications with SPARK. Cambridge
University Press, Cambridge (2015). https://books.google.fr/books?id=Yh9TCgAAQBAJ

24. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78800-3 24

25. Polikarpova, N., Tschannen, J., Furia, C.A.: A fully verified container library. Formal Asp.
Comput. 30(5), 495–523 (2018)

26. Reynolds, A., Kuncak, V.: Induction for SMT solvers. In: D’Souza, D., Lal, A., Larsen, K.G.
(eds.) VMCAI 2015. LNCS, vol. 8931, pp. 80–98. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46081-8 5

27. Tafat, A., Marché, C.: Binary heaps formally verified in Why3. Research report RR-7780,
INRIA (2011). https://hal.inria.fr/inria-00636083

28. The Coq Development Team: The Coq proof assistant. http://coq.inria.fr
29. The Imandra Team: The Imandra verification tool. https://docs.imandra.ai/
30. Volkov, G., Mandrykin, M., Efremov, D.: Lemma functions for Frama-C: C programs as

proofs. In: Proceedings of the 2018 Ivannikov ISPRAS Open Conference (ISPRAS-2018),
pp. 31–38 (2018)

https://doi.org/10.1007/978-3-642-17511-4_20
http://fm.csl.sri.com/UV10/
http://fm.csl.sri.com/UV10/
https://doi.org/10.1007/978-3-319-54876-0_9
https://books.google.fr/books?id=Yh9TCgAAQBAJ
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-662-46081-8_5
https://doi.org/10.1007/978-3-662-46081-8_5
https://hal.inria.fr/inria-00636083
http://coq.inria.fr
https://docs.imandra.ai/

Using Standard Typing
Algorithms Incrementally

Matteo Busi1 , Pierpaolo Degano1 , and Letterio Galletta2(B)

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
{matteo.busi,degano}@di.unipi.it

2 IMT School for Advanced Studies, Lucca, Italy
letterio.galletta@imtlucca.it

Abstract. Modern languages are equipped with static type checking/in-
ference that helps programmers to keep a clean programming style and to
reduce errors. However, the ever-growing size of programs and their con-
tinuous evolution require building fast and efficient analysers. A promis-
ing solution is incrementality, aiming at only re-typing the diffs, i.e. those
parts of the program that change or are inserted, rather than the entire
codebase. We propose an algorithmic schema that drives an incremental
usage of existing, standard typing algorithms with no changes. Ours is
a grey-box approach: just the shape of the input, that of the results and
some domain-specific knowledge are needed to instantiate our schema.
Here, we present the foundations of our approach and the conditions for
its correctness. We show it at work to derive two different incremental
typing algorithms. The first type checks an imperative language to detect
information flow and non-interference, and the second infers types for a
functional language. We assessed our proposal on a prototypical imple-
mentation of an incremental type checker. Our experiments show that
using the type checker incrementally is (almost) always rewarding.

1 Introduction

Most of the modern programming languages are equipped with mechanisms for
checking or inferring types. Such static analyses prescribe programmers a clean
programming style and help them to reduce errors. The ever-growing size of
programs requires building fast and efficient analyzers. This quest becomes even
more demanding because many companies are recently adopting development
methodologies that advocate a continuous evolution of software, e.g. perpetual
development model [4]. In such a model a shared code base is altered by many pro-
grammers submitting small code modifications (diffs). Software systems are no
longer monolithic pieces of code, to which only new components/modules can be
compositionally added, rather their components grow and change incrementally.

The first two authors have been partially supported by U. Pisa project PRA 2018 66
DECLware: Declarative methodologies for designing and deploying applications. The
last author is supported by IMT project PAI VeriOSS.

c© Springer Nature Switzerland AG 2019
J. M. Badger and K. Y. Rozier (Eds.): NFM 2019, LNCS 11460, pp. 106–122, 2019.
https://doi.org/10.1007/978-3-030-20652-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20652-9_7&domain=pdf
http://orcid.org/0000-0002-5557-8139
http://orcid.org/0000-0002-8070-4838
http://orcid.org/0000-0003-0351-9169
https://doi.org/10.1007/978-3-030-20652-9_7

Using Standard Typing Algorithms Incrementally 107

Consequently, analyses and verification should only consider the diffs, rather
than the entire codebase. As recently observed by [7], it becomes crucial defining
algorithms that require an amount of work on the size of the diffs instead of
the whole codebase. The idea is to store summaries of the analysis results for
program components, and to only reanalyze changed parts, re-using the cached
summaries. Here we formalise this idea focussing on type systems.

The literature reports on some techniques, briefly surveyed below, which
introduce new typing algorithms that work incrementally. Instead, we propose
a method that takes an existing typing algorithm and uses it incrementally,
without re-doing work already done, but exploiting available summaries, through
caching and memoization. An advantage of our proposal is that it consists of an
algorithmic schema independent of any specific language and type system. In
addition, we put forward a mild condition on the summaries that guarantees
that the results of incremental typing match those of the original algorithm.

Roughly, our schema works as follows. We start from the abstract syntax
tree of the program, where each node is annotated with the result R provided
by the original typing algorithm A. We build then a cache, containing for each
subterm t the result R and other relevant contextual information needed by A to
type t (typically a typing environment binding the free variables of t). When the
program changes, its annotated abstract syntax tree changes accordingly and
typing the subterm associated with the changed node is done incrementally, by
reusing the results in the cache whenever possible and by suitably invoking A
upon need. Clearly, the more local the changes, the more information is reused.

Technically, our proposal consists of a set of rule schemata that drive the
usage of the cache and of the original algorithm A, as sketched above. Actually,
the user has to define the shape of caches and to instantiate a well-confined
part of the rule schemata. If the instantiation meets an easy-to-check criterion,
the typing results of A and of the incremental algorithm are guaranteed to be
coherent, i.e. the incremental algorithm behaves as the non-incremental one. All
the above provides us with the guidelines to develop a framework that makes
incremental the usage of a given typing algorithm.

Summing up, the main contributions of this paper include:

– a parametric, language-independent algorithmic schema that uses an existing
typing algorithm A incrementally (Sect. 3);

– a formalisation of the steps that instantiate the schema and yield the incre-
mental version of A: the resulting typing algorithm only types the diffs and
those parts of the code affected by them (Sect. 3);

– a characterisation of the rule format of standard typing algorithms in terms
of two functions tr and checkJoin (Sect. 3);

– a theorem that under a mild condition guarantees the coherence of results
between the original algorithm and its incremental version (Sect. 3);

– the instantiation of the schema for type checking and type inference algorithm
for an imperative (Sect. 4) and a functional language (Sect. 5);

108 M. Busi et al.

– a prototype of the incremental version of the type checker for MinCaml [20],1

showing that implementing the schema is doable (Sect. 6); and
– experimental results showing that the cost of using the type checker incre-

mentally depends on the size of diffs, and its performance increases as these
become smaller (Sect. 6).

All the proofs of our theorems, some additional material and the tables with
the experimental results on the time and space overheads are in the extended
version available online [3].

Related Work. To the best of our knowledge, the literature has some proposals
for incrementally typing programs. However, these approaches heavily differ from
ours, because all of them propose a new incremental algorithm for typing, while
we incrementally use existing algorithms as they are. Additionally, none of the
approaches surveyed below use a uniform characterisation of type judgements
as we do through the metafunctions tr and checkJoin.

Meertens [13] proposes an incremental type checking algorithm for the lan-
guage B. Johnson and Walz [9] treat incremental type inference, focussing on
identifying where type errors precisely arise. Aditya and Nikhil [1] propose an
incremental Hindley/Milner type system supporting incremental type checking
of top-level definitions. Our approach instead supports incremental type-checking
for all kinds of expressions, not only the top-level ones. Miao and Siek [14] intro-
duce an incremental type checker leveraging the fact that, in multi-staged pro-
gramming, programs are successively refined. Wachsmuth et al. [23] propose a
task engine for type checking and name resolution: when a file is modified a task
is generated and existing (cached) results are re-used where possible. The pro-
posal by Erdweg et al. [5] is the most similar to ours, but, given a type checking
algorithm, they describe how to obtain a new incremental algorithm. As in our
case, they decorate an abstract syntax tree with types and typing environments,
represented as sets of constraints, to be suitably propagated when typing. In this
way there is no need of dealing with top-down context propagation while types
flow bottom-up. Recently, Facebook released Pyre [6] a scalable and incremental
type checker specifically designed for Python.

Incrementality has also been studied for static analysis other than typing.
IncA [21] is a domain-specific language for the definition of incremental program
analyses, which represents dependencies among the nodes of the abstract syntax
tree of the target program as a graph. Infer [8] uses an approach similar to
ours in which analysis results are cached to improve performance [2]. Ryder and
Paull [18] present two incremental update algorithms, ACINCB and ACINCF,
that allow incremental data-flow analysis. Yur et al. [26] propose an algorithm
for an incremental points-to analysis. McPeak et al. [12] describe a technique
for incremental and parallel static analysis based on work units (self-contained
atoms of analysis input). The solutions are computed by a sort of processes called
analysis workers, all coordinated by an analysis master. Also, there are papers
that use memoization with a goal similar to the one of our cache, even if they
1 Available at https://github.com/mcaos/incremental-mincaml.

https://github.com/mcaos/incremental-mincaml

Using Standard Typing Algorithms Incrementally 109

consider different analysis techniques. In particular, Mudduluru et al. propose,
implement, and test an incremental analysis algorithm based on memoization
of (equivalent) boolean formulas used to encode paths on programs [15]. Leino
et al. [11] extend the verification machinery of Dafny with a way to cache the
results from earlier runs of the verifier, so as to only verify those parts of the
program most recently modified. Their cache mechanism is similar to ours, but
no formal condition is explicitly stated guaranteeing a safe re-use of cached
data, as we do. Also other authors apply memoization techniques to incremental
model-checking [10,24] and incremental symbolic execution [17,25].

2 An Overview of the Incremental Schema

In this section we illustrate how the algorithmic schema we propose can type
check a simple program using incrementally the standard algorithm for non-
interference by Volpano-Smith-Irvine [19,22] (see also Sect. 4). Suppose there is
a large program P including the following code snippet that causes no leaks

x := y + z; if y + z ≥ 42 then result := y + z else result := 42 (1)

where y, z, result are public and x is secret. After a shallow glance one may
optimise it obtaining the following code that leaks the value of x

x := y + z; if x ≥ 42 then result := x else result := 42 (2)

Rather than re-typing the whole program P , one would like to detect the unsafe
optimization by only type checking the diff, i.e. the if-then-else. To re-use as
much as possible the typing information of P , we consider the abstract syntax
tree of (1), we annotate its nodes with types, and we use this information to
type (2). More precisely, we proceed as follows.

First, we build a cache C associating each statement with its type and the
typing environment needed to obtain it. Then we incrementally use this infor-
mation to decide which existing results in the cache can be re-used and which
are to be recomputed for typing (2). This process is divided into four steps. For
the moment, we omit the last one that consists in proving the correctness of the
resulting algorithm, which is established by showing that a component of our
construction (the predicate compatenv used below) meets a mild condition.

Defining the Shape of Caches. The cache is a set of triples that associate with
each statement the typing environment needed to close its free variables, and
its type. For example, the first statement has the following entry in the cache,
recording in the environment the types of the variables (H and L for secret and
public) and the type H cmd of the assignment (it is a command of type H),

(x := y + z, {x �→ H var , y �→ L var , z �→ L var},H cmd) (3)

110 M. Busi et al.

Table 1. Tabular representation of the cache C for the program (1).

Expression Environment Type

(1) {x �→ H var, y �→ L var, z �→ L var, result �→ L var} L cmd

x := y + z {x �→ H var, y �→ L var, z �→ L var} H cmd

x {x �→ H var} H

y {y �→ L var} L

z {z �→ L var} L

result {result �→ L var} L

42 {} L

y + z {y �→ L var, z �→ L var} L

if y + z ≥ 42 then result := y + z else result := 42 {y �→ L var, z �→ L var, result �→ L var} L cmd

y + z ≥ 42 {y �→ L var, z �→ L var} L

result := y + z {y �→ L var, z �→ L var, result �→ L var} L cmd

result := 42 {result �→ L var} L cmd

Building Caches. We visit the given annotated abstract syntax tree of (1) in a
depth-first order and we cache the relevant triples for it and for its (sub-)trees.
Consider again the first assignment for which the cache records the triple in (3),
among others. All the entries for (1) are in Table 1.

Incremental Typing. The selected typing algorithm S is used to build the incre-
mental algorithm IS as follows. A judgement inputs an environment Γ , a cache
C and a statement c and it incrementally computes the type ς (see Sect. 4) and
C ′, with possibly updated cache entries for the sub-terms of c:

Γ,C �IS c : ς � C ′

The incremental algorithm is expressed as a set of inductively defined rules.
Most of these simply mimic the structure of the rules defining S. Consider the
assignment that requires two rules. The first rule says that we can reuse the
information available if the statement is cached and the environments Γ and Γ ′

coincide on the free variables of c (checked by the predicate compatenv (Γ, Γ ′, c)):

C(x := a) = 〈Γ ′, ς〉 compatenv (Γ, Γ ′, x := a)
Γ,C �IS x := a : ς � C

The second rule is for when nothing is cached (the side condition miss holds), or
the typing environments are not compatible. In this case, to obtain C ′, the new
cache, is obtained from C by inserting in it the triples for x, for the expression
a and for the assignment itself through IS.

Γ,C �IS x : τx � C ′′ Γ,C �IS a : τa � C ′′′ τa = τx

ς = τa cmd C ′ = C ′′ ∪ C ′′′ ∪ {(x := a, Γ|FV (x:=a), ς)}
Γ,C �IS x := a : ς � C ′ miss(C, x := a, Γ)

Back to our example, to discover the leak it suffices to type x ≥ 42 and result :=
x having already in the cache the types of x and result , while no re-typing is
needed for all the other statements of the whole program P .

Using Standard Typing Algorithms Incrementally 111

3 Formalizing the Incremental Schema

Here we formalise our algorithmic schema for incremental typing, exemplified in
Sect. 2. Remarkably, it is independent of both the specific type system and the
programming language (for that we use below t ∈ Term to denote an expres-
sion or a statement). We only assume to have variables x, y, . . . ∈ V ar, types
τ, τ ′, . . . ∈ Type, typing environments Γ : V ar → Type ∈ Env; and in addi-
tion that the original typing algorithm A is syntax-directed and defined through
inference rules; that it is invoked by writing Γ �A t : R, where R ∈ Res is the
result (not necessarily a type only).

Below we express the rules of A according to the following format. It is
convenient to order the subterms of t, by stipulating i ≤ j provided that tj
requires the result of ti to be typed (i, j ≤ nt).

∀i ∈ It . tr t
ti(Γ, {Rj}j<i ∧ j∈It

) �A ti : Ri checkJoint(Γ, {Ri}i∈It
, outR)

Γ �A t : R

where It ⊆ {1, . . . , nt}. The function tr t
ti maps Γ and a set of typing results

Ri into the typing environment needed by ti. The (conjunction of) predicate(s)
checkJoint checks that the subterms have compatible results Ri and combines
them in the overall result R. (Both tr and checkJoin are easily defined when
typing rules in the usual format are rendered in the format above.)

For example the standard typing rule for variables:2

x ∈ dom(Γ) τ = Γ (x)
Γ �A x : τ

is rendered in our format as follows (note that Ix = ∅ just as the function tr)

checkJoinx(Γ, ∅, out τ)

Γ �A x : τ
where checkJoinx(Γ, ∅, out τ) � x ∈ dom(Γ) ∧ τ = Γ (x)

As a further example consider the rule for the expression let x= e2 in e3 below

Γ �A e2 : τ2 Γ [x �→ τ2] �A e3 : τ3

Γ �A let x= e2 in e3 : τ3

that becomes as follows (we abuse the set notation, e.g. omitting ∅ or { and }).

tr let x= e2 in e3
e2

(Γ, ∅) �A e2 : τ2
tr let x= e2 in e3

e3
(Γ, τ2) �A e3 : τ3 checkJoin let x= e2 in e3(Γ, τ2, τ3, out τ)

Γ �A let x= e2 in e3 : τ

2 Instead with the axiom Γ ′[x �→ τ] �A x : τ one has Ix = ∅ and the same checkJoinx,
where Γ = Γ ′[x �→ τ].

112 M. Busi et al.

Note that the definition of function tr is immediate; that we need the type
of e2 for typing e3; and that the second parameter of tr let x= e2 in e3

e2
is empty,

because we only need the environment to type e2.

tr let x= e2 in e3
e2

(Γ, ∅) � Γ tr let x= e2 in e3
e3

(Γ, τ) � Γ [x �→ τ] (4)

Also the following definition is immediate

checkJoin let x= e2 in e3(Γ, τ2, τ3, out τ) � (τ = τ3)

To enhance readability, we will hereto highlight the occurrences of tr t
t′ (red in

the pdf) and checkJoint (blue in the pdf).

Defining the Shape of Caches. The shape of the cache is crucial for re-using
incrementally portions of the available typing results. A cache associates the
input data t and Γ with the result R, rendered by a set of triples (t, Γ,R), as
done in Sect. 2. More formally, the set of caches C is defined as:

Cache = ℘(Terms × Env × Res)

We write C(t) = 〈Γ,R〉 if the cache has an entry for t, and C(t) = ⊥ otherwise.

Building Caches. Given a term, we assume that the nodes of its abstract syntax
tree (called annotated abstract syntax tree or aAST) are annotated with the
result of the typing for the subterm they represent (written t : R, possibly t : ⊥
if t does not type). Let It, {ti}i∈It

, and tr t
ti be as above, and let Γ|FV (t) be the

restriction of Γ to the free variables of t. Then the following procedure visits the
aAST in a depth-first manner and builds the cache.

buildCache (t : R) Γ = {(t, Γ|FV (t), R)}∪
⋃

i∈It

(
buildCache (ti : Ri) tr t

ti(Γ, {Rj}j<i ∧ j∈It
)
)

The following theorem ensures that each entry of a cache returned by buildCache
represents correct typing information.

Theorem 1 (Cache correctness). For all t, R, Γ

(t, Γ,R) ∈ (buildCache (t : R) Γ) ⇐⇒ Γ �A t : R

Incremental Typing. The third step consists of instantiating the rule templates
that make typing incremental. We remark that no change to the original algo-
rithm A is needed: it is used as a grey-box—what matters are just the shape
of the original judgements, the rules and some domain-specific knowledge. The
judgements for the incremental typing algorithm IA have the form:

Γ,C �IA t : R � C ′

Using Standard Typing Algorithms Incrementally 113

We have three different rule templates defining the incremental typing algorithm.
The first template is for the case when there is a cache hit:

C(t) = 〈Γ ′, R〉 compatenv (Γ, Γ ′, t)
Γ,C �IA t : R � C

where compatenv (Γ, Γ ′, t) is a predicate testing the compatibility of typing envi-
ronments for the term t and means that Γ ′ includes the information represented
by Γ for t and that they are compatible (see the example in Sect. 2). Note that
this predicate must be defined for each algorithm A and, as discussed below, it
must meet a mild requirement to make the algorithm IA coherent with A.

The second rule template is for when there is a cache miss and the term in
hand has no subterms:

Γ �A t : R C ′ = C ∪ {(t, Γ|FV (t), R)}
Γ,C �IA t : R � C ′ miss(C, t, Γ)

where Γ �A t : R is the invocation to A, and the predicate miss is defined
below with the intuition that either there is no association for t in C, or if an
association (t, Γ ′, R) exists the typing environment Γ ′ is not compatible with
the current Γ .

miss(C, t, Γ) � �Γ ′, R.
(
C(t) = 〈Γ ′, R〉 ∧ compatenv (Γ, Γ ′, t)

)

Finally, the last template applies when there is a cache miss, but the term
t is inductively defined starting from its subterms. In this case the rule invokes
the incremental algorithm on the subterms, by composing the results available
in the cache (if any):

∀i ∈ It . trti
t (Γ, {Rj}j<i ∧ j∈It

) , C �IA ti : Ri � Ci

checkJoint(Γ, {Ri}i∈It
, outR) C ′ = {(t, Γ|FV (t), R)} ∪

⋃

i∈It

Ci

Γ,C �IA t : R � C ′ miss(C, t, Γ)

Typing Coherence. The resulting algorithm IA preserves the correctness of the
original one A, provided that the rule templates above, and especially the pred-
icate compatenv are carefully instantiated.

The following definition characterises when two environments are compatible,
and it helps in proving that our incremental typing correctly implements the
given non-incremental one.

Definition 1 (Typing environment compatibility). A predicate compatenv
expresses compatibility iff

∀Γ, Γ ′, t . compatenv (Γ, Γ ′, t) ∧ Γ ′ �A t : R =⇒ Γ �A t : R

114 M. Busi et al.

Note that the notion of compatibility guarantees that Γ and Γ ′ share all the
information needed to correctly type the term t. This is the basic condition to
ensure that the incremental typing algorithm is concordant with the original one.
In particular, the following theorem suffices to establish the correctness of the
incremental algorithm IA, provided that the original algorithm A is such. In its
statement, the cache is universally quantified because IA re-uses A to re-build
the needed cache as soon as a cache miss occurs.

Theorem 2 (Typing coherence). If compatenv expresses compatibility, then
for all terms t, caches C, typing environments Γ , and typing algorithm A

Γ �A t : R ⇐⇒ Γ,C �IA t : R � C ′.

4 Incremental Type Checking for Non-interference

Here we use incrementally the typing algorithm S of Volpano-Smith-Irvine [19,
22] for checking non-interference policies, obtaining the algorithm IS. We assume
that the variables of programs are classified either as high, H, or low L. Intu-
itively, a program enjoys the non-interference property when the values of low
level variables do not depend on those of high level ones.

As usual, assume a simple imperative language WHILE, whose syntax is below
(Var denotes the set of program variables).

AExpr � a ::= n | x | a1 opa a2 n ∈ N, opa ∈ {+, ∗, −, . . .}, x ∈ Var

BExpr � b ::= true | false | b1 or b2 | not b | a1 ≤ a2

Stmt � c ::= skip | x := a | c1; c2 | if b then c1 else c2 | while b do c

Phrase � p ::= a | b | c

DType � τ ::= H | L PType � ς ::= τ | τ var | τ cmd Env � Γ ::= ∅ | Γ [p 	→ ς]

The type checking algorithm has judgements of the form

Γ �S p : ς

where ς ∈ PType = Res, and its rules are in the extended version [3]. We have
coloured and framed the results of tr and checkJoin . In the following we assume
that the initial typing environment Γ contains the security level of each variable
occurring in the program at hand.

Defining the Shape of Caches. The shape of the caches is:

C ∈ Cache = ℘(Phrase × Env × PType)

Building Caches. We build the cache by visiting the aAST and “reconstructing”
the typing environment. The function buildCache is in Fig. 1, where for brevity
we have directly used the results of tr rather than writing the needed invocations.

Incremental Typing. In Fig. 2 we display the rules defining the algorithm IS
with judgements of the following form

Using Standard Typing Algorithms Incrementally 115

buildCache (c : L) Γ � {(c, ∅, L)} c ∈ N ∪ {true, false}
buildCache (x : τ) Γ � {(x, [x �→ τ var], τ)}
buildCache (a1 op a2 : τ) Γ � {(a1 op a2, Γ| FV (a1opa2), τ)}

∪ (buildCache (a1 : τ1) Γ) ∪ (buildCache (a2 : τ2) Γ)

buildCache (a1 ≤ a2 : τ) Γ � {(a1 ≤ a2, Γ| FV (a1≤a2), τ)}
∪ (buildCache (a1 : τ1) Γ) ∪ (buildCache (a2 : τ2) Γ)

buildCache (b1 or b2 : τ) Γ � {(b1 or b2, Γ| FV (b1orb2), τ)}
∪ (buildCache (b1 : τ1) Γ) ∪ (buildCache (b2 : τ2) Γ)

buildCache (not b : τ) Γ � {(not b, Γ| FV (notb), τ)} ∪ (buildCache (b : τ) Γ)

buildCache (skip : H cmd) Γ � {(skip, ∅, H cmd)}
buildCache (x := a : τ cmd) Γ � {(x := a, Γ| FV (x:=a), τ cmd)}

∪ (buildCache (x : τx) Γ) ∪ (buildCache (a : τa) Γ)

buildCache (if b then c1 else c2 : τ cmd) Γ � {(if b then c1 else c2, Γ| FV (if b then c1 else c2), τ cmd)}
∪ (buildCache (b : τb) Γ) ∪ (buildCache (c1 : τ1 cmd) Γ) ∪ (buildCache (c2 : τ2 cmd) Γ)

buildCache (while b do c : τ cmd) Γ � {(while b do c, Γ| FV (while b do c), τ cmd)}
∪ (buildCache (b : τb) Γ) ∪ (buildCache (c : τc cmd) Γ)

buildCache (c1; c2 : τ cmd) Γ � {(c1; c2, Γ| FV (c1; c2), τ cmd)}
∪ (buildCache (c1 : τ1 cmd) Γ) ∪ (buildCache (c2 : τ2 cmd) Γ)

Fig. 1. Definition of buildCache for the incremental type checking of WHILE.

Γ,C �IS p : ς � C ′

Most of the rules are trivial instantiations of rules in Sect. 3 that mimic those
of the original type checking algorithm. Of course, IS inherits unchanged the
subtyping relation of S and applies it when needed.

Typing Coherence. To prove that IS is coherent with S, we first show that
compatenv satisfies Definition 1.

Lemma 1. The predicate compatenv of Eq. (1) in Fig. 2 expresses compatibility.

The above lemma suffices to prove the following theorem, which is an instance
of Theorem 2.

Theorem 3. ∀Γ,C, e. Γ �S e : τ ⇐⇒ Γ,C �IS e : τ � C ′

5 Incremental Type Inference for a Functional Language

In this section we instantiate our schema in order to use incrementally the type
inference algorithm of a simple functional programming language, called FUN.
The syntax, the types and the semantics of FUN are standard, see e.g. [16].
Types are also now augmented with type variables α, β, . . . ∈ TVar . We only
recall some relevant aspects below.

116 M. Busi et al.

Fig. 2. Rules defining the incremental algorithm IS to type check WHILE.

Using Standard Typing Algorithms Incrementally 117

buildCache (c : (τc, θ)) Γ � {(c, ∅, (τc, θ))}
buildCache (x : (τx, θ)) Γ � {(x, [x �→ τx], (τx, θ))}
buildCache (λf x.e : (τf , θf)) Γ � {(λf x.e, Γ| FV (λf x.e), (τf , θf))} ∪ (buildCache (f : (τf , θf)) Γ)

∪ (buildCache (x : (τx, θx)) Γ) ∪ (buildCache (e : (τe, θe)) Γ [x �→ τx, f �→ τf])

buildCache (let x= e2 in e3 : (τlet, θlet)) Γ � {(let x= e2 in e3, Γ| FV (let x = e2 in e3), (τlet, θlet))}
∪ (buildCache (x : (τx, θx)) Γ) ∪ (buildCache (e2 : (τ2, θ2)) Γ)

∪ (buildCache (e3 : (τ3, θ3)) Γ [x �→ τx])

buildCache (e1 op e2 : (τop, θop)) Γ � {(e1 op e2, Γ| FV (e1ope2), (τop, θop))}
∪ (buildCache (e1 : (τ1, θ1) Γ) ∪ (buildCache (e2 : (τ2, θ2) Γ)

buildCache (e1 e2 : (τapp, θapp)) Γ � {(e1 e2, Γ| FV (e1 e2), (τapp, θapp))}
∪ (buildCache (e1 : (τ1, θ1)) Γ) ∪ (buildCache (e2 : (τ2, θ2)) Γ)

Fig. 3. Definition of buildCache for the incremental type inference of FUN.

Val � v ::= c | λf x.e op∈ {+, ∗,=,≤}
Expr � e ::= v | x | e1 op e2 | e1 e2 | if e1 then e2 else e3 | let x= e2 in e3

AType � τ ::= int | bool | τ1 → τ2 | α Env � Γ ::= ∅ | Γ [x �→ τ]

where in the functional abstraction f denotes the name of the (possibly) recursive
function we are defining. The judgements of the type inference algorithm W are

Γ �W e : (τ, θ)

where θ : (TVar → AType) ∈ Subst is a substitution mapping type variables
into augmented types. As usual, we write θ τ to indicate the application of the
substitution θ to τ , and θ2 ◦ θ1 stands for the composition of substitutions.

Hereafter, we assume to use the inference algorithm W (see e.g. [16]), where
constants c have a fixed and known type, and U denotes the standard type
unification algorithm.

Defining the Shape of Caches. Entries in the cache are (e, Γ, (τ, θ)) and a cache is

C ∈ Cache = ℘(Expr × Env × (AType × Subst))

Building Caches. The function buildCache is easily defined in Fig. 3.

Incremental Typing. In Fig. 4 we display the rules defining the algorithm IW
with judgements of the following form

Γ,C �IW e : (τ, θ) � C ′

Most of the rules mimic the behaviour of algorithm W, following the templates
of Sect. 3. Consider for example the rule (IW-Let-Miss): first, the types of e1
and e2 are incrementally inferred in the environments prescribed by the relevant
calls to the function tr . The result associated with the whole expression let-in
is then the pair (τ2, θ2 ◦ θ1), where θ1 and θ2 are the substitutions obtained
recursively from e1 and e2, respectively.

118 M. Busi et al.

Typing Coherence. To prove the incremental algorithm IW coherent with W,
we first show that compatenv satisfies Definition 1.

Lemma 2. The predicate compatenv of Eq. (6) in Fig. 4 expresses compatibility.

Again, the following theorem is an instance of Theorem 2, and follows from
the above lemma.

Theorem 4. ∀Γ,C, e. Γ �W e : (τ, θ) ⇐⇒ Γ,C �IW e : (τ, θ) � C ′

6 Implementation and Some Experiments

We have implemented in OCaml our proposal making incremental the usage the
type-checker of MinCaml [20].3 A formalization of MinCaml in our framework
and all tables and results of our experiments are available online in the extended
version [3]. In detail, caches and type environments are implemented as hash-
tables, so their handling is done almost in constant time. The memory overhead
due to the cache is O(n × m), where n is the size of the program under analysis
and m is the number of variables therein.

The other possible time consuming part concerns checking environment com-
patibility. The key idea to make compatenv efficient is to compute the sets of the
free variables beforehand, and to store them as additional annotations on the
aAST. Summing up, implementing our schema is not too demanding, since it
can be done with standard data structures.

Next, we show that (i) the cost of using the type checker incrementally
depends on the size of diffs; (ii) its performance increases as these become
smaller; and (iii) the incremental usage is almost always faster than re-using
the standard one. The comparison is done by type checking synthetic programs
with (binary and complete) aAST of increasing depth from 8 to 16, and with
a number of variables ranging from 1 to 215. All the internal nodes are binary
operators and the leaves are free variables. This test suites are intended to stress
our incremental algorithm in the worst, yet artificial case. The measures are
obtained using the library Benchmark that takes into account the overhead of
OCaml runtime.4

To test the efficiency of caching we first re-typed twice the program with no
changes, starting with an empty cache. We considered (binary and complete)
aAST of depth 16, and we collected the number of re-typings per second in
function of the number of variables in the program, ranging from 1 to 215.

The experiments show not only that the overhead for caching is negligible
but also that caching is beneficial when the number of free variables is not too
large w.r.t. the aAST depth because the results of common subtrees are re-used.

Then, we have simulated program changes by invalidating parts of caches
that correspond to the rightmost subexpression at different depths. Note that
invalidating cache entries for the diff subexpression e′ of e requires to invalidate

3 Available at https://github.com/mcaos/incremental-mincaml.
4 Available at https://github.com/Chris00/ocaml-benchmark.

https://github.com/mcaos/incremental-mincaml
https://github.com/Chris00/ocaml-benchmark

Using Standard Typing Algorithms Incrementally 119

Fig. 4. Rules defining incremental algorithm IW to infer FUN types.

(i) all the entries for the nodes in the path from the root of the aAST of e to e′

and (ii) all the entries for e′ and its subexpressions, recursively. We collected the
number of re-typings per second vs. the size of the diff for a few choices of aAST
depth (from 12 tp 16) and number of variables (from 27 to 216). The experimental
results show that our caching and memoization is faster than re-typing twice.
An exception is when aAST have the maximum number of variables and the
considered changes exceed 25% of the nodes. All in all, the advantage of using
incrementally a type checker decreases, as expected, when there is a significant
growth of the number of variables or in the size of the program. However, these
cases only show up with very big numbers, which are not likely to occur often.

We also measured the number of MBs allocated by our implementation for the
standard type checking and by its incremental usage with respect to the size of the

120 M. Busi et al.

synthetic aAST and the number of free variables.5 We considered aAST of depth
ranging from 10 to 16 and the number of variables ranging from 29 and 215, and
the results show that the ratio standard/incremental is .99, almost constant.

7 Conclusions

We have presented an algorithmic schema for incrementally using existing type
checking and type inference algorithms. Since only the shape of the input, the
output, and some domain-specific knowledge of the original algorithms are rele-
vant, our schema considers them as grey-boxes. Remarkably, the only real effort
for defining the incremental algorithm is required for establishing the notion of
compatibility between parts of the environments relevant for re-typing. We have
introduced the basic bricks of our approach and proved a theorem guaranteeing
the coherence of any original algorithm with its incremental version, and vice
versa. As a matter of fact, coherence follows from easily checking a mild condi-
tion on the environment compatibility. To illustrate the approach we have then
instantiated our proposal for checking non-interference within an imperative lan-
guage and for type inference within a functional language.

We have implemented the incremental version of the type checker of Min-
Caml, and we have assessed it on synthetic programs with varying size and num-
ber of variables. The experiments have shown our proposal worth using within
a continuous software development model where fast responsiveness is needed,
because only diffs are typed, possibly with those parts of the code affected by
them. Additionally, the cost of using the type checker incrementally depends on
the size of diffs, and its performance increases as these become smaller, a typi-
cal situation when applying local transformations, e.g. code motion, dead code
elimination, and code wrapping.

Future Work. We are confident that little extensions to our proposal are needed
to cover also type and effect systems. Also, other programming paradigms should
be easily accommodated in our incremental schema, as preliminary results on
process calculi suggest. More work is instead required to apply our ideas to other
syntax-directed static analyses, e.g. control flow analysis because of fixed-point
computations. We also plan to carry our proposal on Abstract Interpretation,
where the rich structure of the abstract domains poses some serious challenges.
Presently, we are extending our prototype with an incremental type inference
for MinCaml. Moreover, we plan to further automatize our proposal by mechani-
cally deducing the relation compatenv , based on the syntax and on some relevant
aspects of types, e.g. sub-typing. Since tr and checkJoin are directly inherited
from the given type checking or inference algorithm, one can implement a gen-
erator that automatically produces its corresponding incremental version.

More experiments on real programs are also in order to better assess the
performance of our proposal, as well as its scalability.

Finally, we would also like to apply the incremental schema to real-world
languages, e.g. OCaml.
5 As measured by the Landmarks library https://github.com/LexiFi/landmarks.

https://github.com/LexiFi/landmarks

Using Standard Typing Algorithms Incrementally 121

References

1. Aditya, S., Nikhil, R.S.: Incremental polymorphism. In: Hughes, J. (ed.) FPCA
1991. LNCS, vol. 523, pp. 379–405. Springer, Heidelberg (1991). https://doi.org/
10.1007/3540543961 19

2. Blackshear, S., Di Stefano, D., Luca, M., O’Hearn, P., Villard, J.: Finding
inter-procedural bugs at scale with infer static analyzer, September 2017. https://
code.facebook.com/posts/1537144479682247/finding-inter-procedural-bugs-at-
scale-with-infer-static-analyzer/

3. Busi, M., Degano, P., Galletta, L.: Using standard typing algorithms incrementally.
Extended Version http://arxiv.org/abs/1808.00225

4. Calcagno, C., et al.: Moving fast with software verification. In: Havelund, K.,
Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 3–11. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-17524-9 1

5. Erdweg, S., Bracevac, O., Kuci, E., Krebs, M., Mezini, M.: A co-contextual for-
mulation of type rules and its application to incremental type checking. In: Pro-
ceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pp. 880–897 (2015)

6. Facebook: Pyre - a performant type-checker for Python 3. https://pyre-check.org/
7. Harman, M., O’Hearn, P.: From start-ups to scale-ups: opportunities and open

problems for static and dynamic program analysis. In: IEEE International Working
Conference on Source Code Analysis and Manipulation (2018)

8. Infer, F.: Infer static analyzer. http://fbinfer.com/
9. Johnson, G.F., Walz, J.A.: A maximum-flow approach to anomaly isolation in

unification-based incremental type inference. In: Proceedings of the 13th Sympo-
sium on Principles of Programming Languages, pp. 44–57. ACM (1986)

10. Lauterburg, S., Sobeih, A., Marinov, D., Viswanathan, M.: Incremental state-space
exploration for programs with dynamically allocated data. In: 30th International
Conference on Software Engineering, ICSE 2008, pp. 291–300 (2008)

11. Leino, K.R.M., Wüstholz, V.: Fine-grained caching of verification results. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 380–397.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 22

12. McPeak, S., Gros, C., Ramanathan, M.K.: Scalable and incremental software bug
detection. In: Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
ESEC/FSE 2013, pp. 554–564 (2013)

13. Meertens, L.G.L.T.: Incremental polymorphic type checking in B. In: Wright, J.R.,
Landweber, L., Demers, A.J., Teitelbaum, T. (eds.) Proceedings of the 10th ACM
Symposium on Principles of Programming Languages, pp. 265–275. ACM (1983)

14. Miao, W., Siek, J.G.: Incremental type-checking for type-reflective metaprograms.
In: Visser, E., Järvi, J. (eds.) Proceedings of the Ninth International Conference on
Generative Programming and Component Engineering, pp. 167–176. ACM (2010)

15. Mudduluru, R., Ramanathan, M.K.: Efficient incremental static analysis using path
abstraction. In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 125–
139. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54804-8 9

16. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-3-662-03811-6

17. Qiu, R., Yang, G., Pasareanu, C.S., Khurshid, S.: Compositional symbolic exe-
cution with memoized replay. In: 37th IEEE/ACM International Conference on
Software Engineering, ICSE 2015, vol. 1, pp. 632–642 (2015)

https://doi.org/10.1007/3540543961_19
https://doi.org/10.1007/3540543961_19
https://code.facebook.com/posts/1537144479682247/finding-inter-procedural-bugs-at-scale-with-infer-static-analyzer/
https://code.facebook.com/posts/1537144479682247/finding-inter-procedural-bugs-at-scale-with-infer-static-analyzer/
https://code.facebook.com/posts/1537144479682247/finding-inter-procedural-bugs-at-scale-with-infer-static-analyzer/
http://arxiv.org/abs/1808.00225
https://doi.org/10.1007/978-3-319-17524-9_1
https://pyre-check.org/
http://fbinfer.com/
https://doi.org/10.1007/978-3-319-21690-4_22
https://doi.org/10.1007/978-3-642-54804-8_9
https://doi.org/10.1007/978-3-662-03811-6

122 M. Busi et al.

18. Ryder, B.G., Paull, M.C.: Incremental data-flow analysis. ACM Trans. Program.
Lang. Syst. 10(1), 1–50 (1988)

19. Smith, G.: Principles of secure information flow analysis. In: Christodorescu, M.,
Jha, S., Maughan, D., Song, D., Wang, C. (eds.) Malware Detection, vol. 27, pp.
291–307. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-44599-1 13

20. Sumii, E.: MinCaml: a simple and efficient compiler for a minimal functional lan-
guage. In: Findler, R.B., Hanus, M., Thompson, S. (eds.) Proceedings of the 2005
Workshop on Functional and Declarative Programming in Education, pp. 27–38.
ACM (2005)

21. Szabó, T., Erdweg, S., Voelter, M.: IncA: a DSL for the definition of incremental
program analyses. In: Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, pp. 320–331 (2016)

22. Volpano, D.M., Irvine, C.E., Smith, G.: A sound type system for secure flow anal-
ysis. J. Comput. Secur. 4(2/3), 167–188 (1996)

23. Wachsmuth, G.H., Konat, G.D.P., Vergu, V.A., Groenewegen, D.M., Visser, E.:
A language independent task engine for incremental name and type analysis. In:
Erwig, M., Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp. 260–
280. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02654-1 15

24. Yang, G., Dwyer, M.B., Rothermel, G.: Regression model checking. In: 25th IEEE
International Conference on Software Maintenance, ICSM 2009, pp. 115–124 (2009)

25. Yang, G., Person, S., Rungta, N., Khurshid, S.: Directed incremental symbolic
execution. ACM Trans. Softw. Eng. Methodol. 24(1), 3:1–3:42 (2014)

26. Yur, J., Ryder, B.G., Landi, W.: An incremental flow- and context-sensitive pointer
aliasing analysis. In: Proceedings of the 1999 International Conference on Software
Engineering, pp. 442–451 (1999)

https://doi.org/10.1007/978-0-387-44599-1_13
https://doi.org/10.1007/978-3-319-02654-1_15

Using Binary Analysis Frameworks:
The Case for BAP and angr

Chris Casinghino1, J. T. Paasch1, Cody Roux1(B), John Altidor2,
Michael Dixon3, and Dustin Jamner4

1 Draper, Cambridge, USA
{ccasinghino,jpaasch,croux}@draper.com
2 Cambridge Semantics Inc., Boston, USA
john.altidor@cambridgesemantics.com

3 Los Alamos National Laboratory, Los Alamos, USA
mdixon@lanl.gov

4 Northeastern University, Boston, USA
jamner.d@husky.neu.edu

Abstract. Binary analysis frameworks are critical tools for analyzing
software and assessing its security. How easy is it for a non-expert to use
these tools? This paper compares two popular open-source binary anal-
ysis libraries: BAP and angr, which were used by two of the top three
teams at the DARPA Cyber Grand Challenge. We describe a number of
experiments to evaluate the capabilities of the two tools. We have imple-
mented a value-set analysis and a call graph comparison algorithm with
each tool, and report on their performance, usability, and extensibility
for real-world applications.

Keywords: BAP · angr · Binary analysis · Differential analysis ·
Cyber security

1 Introduction

If you want to analyze the version of your program that actually gets executed,
you may need to examine its binary code directly. There are a variety of tools to
help with this task. Some of these tools are general libraries that can help you
build your own custom program analyses.

In this paper, we compare two popular, open-source binary analysis libraries:
BAP [5] and angr [13]. We examine how each library constructs call graphs
(CGs) and control flow graphs (CFGs). We have implemented a value-set analysis
(VSA) and an algorithm to compare call graphs in both BAP and angr, and
assess how easy it is to build real-world program analyses using each.

Our contributions include the following:

This work is sponsored by ONR/NAWC Contract N6833518C0107. Its content does
not necessarily reflect the position or policy of the US Government and no official
endorsement should be inferred.

c© Springer Nature Switzerland AG 2019
J. M. Badger and K. Y. Rozier (Eds.): NFM 2019, LNCS 11460, pp. 123–129, 2019.
https://doi.org/10.1007/978-3-030-20652-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20652-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-20652-9_8

124 C. Casinghino et al.

– We detail some technical differences in the way BAP and angr identify func-
tion starts, as well as how they construct CGs and CFGs.

– We provide a first-hand account of building custom analyses with these
libraries, and we profile the tools we built.

– We conclude by identifying the strengths and weaknesses of each tool, and
give our impression of their suitability for building sound, static program
analyses.

The data from our analyses is publicly accessible at https://github.com/
draperlaboratory/cbat tools/tree/master/bap-angr.

2 BAP and angr Overview

BAP and angr both begin by lifting a binary program to an intermediate rep-
resentation (IR), and then analyzing that IR. BAP lifts to its own IR, the BAP
Intermediate Language (BIL), while angr lifts to VEX, which is the IR used by
Valgrind. The differences between BIL, VEX, and other potential IR choices are
not the focus of this paper, but have been studied elsewhere [9].

Once a binary has been lifted to the IR, you can use built-in BAP or angr
program analyses, or write your own tools to explore the lifted program. BAP is
written in OCaml and angr is written in Python; it is easiest to write your own
tools in the host language.

The idiomatic use of each tool is similar: first you load a binary into a
“project,” and then perform your own analysis. For example, you might begin
by generating a CFG. In angr:

import angr

exe = "/bin/true"
project = angr.Project(exe)
cfg = project.analyses.CFGFast()
Now do something with the CFG...

In BAP, the process is similar. In the following example, we select byteweight [4]
to identify function starts, then we load the program into a project, retrieve the
lifted IR program, and generate a CG:

open Core_kernel.Std;;
open Bap.Std;;

let exe = Project.Input.file "/bin/true";;
let byteweight = Rooter.Factory.find "byteweight";;
let Ok proj = Project.create exe ?rooter:byteweight;;
let lifted_prog = Project.program proj;;
let cg = Program.to_graph lifted_prog;;
(* Now do something with the CG... *)

Both libraries are easy to use in a REPL. For instance, you can import angr
in a Jupyter console to explore a particular binary, and you can import BAP
into utop, or the baptop REPL that BAP provides.

https://github.com/draperlaboratory/cbat_tools/tree/master/bap-angr
https://github.com/draperlaboratory/cbat_tools/tree/master/bap-angr

Using Binary Analysis Frameworks: The Case for BAP and angr 125

For batch mode, angr analyses can be written as straight-forward Python
scripts that import angr and proceed from there. BAP offers a modular plugin
architecture: each plugin makes a pass over the program, where it extracts infor-
mation, alters the IR, or performs other tasks. Passes can be chained together.

Both tools offer a reasonably easy point of entry into programmatic binary
analysis, with library functions for common tasks such as generating a CG or
CFG. The communities for both projects are extremely helpful and responsive, to
the extent that most of our technical questions about the tools were immediately
answered.

For the experiments below, we worked on an Ubuntu 16.04.4 VM (Linux
4.4.0-87 and GCC 5.4.0) with 16 Gb of memory and eight 2.2 GHz Broadwell
family 6, 61 processors. We report results for angr 7.8.9 with vanilla Python
2.7, BAP 1.5.0 with OCaml 4.05.0. We also experimented with running angr
with PyPy 6.0 rather than Python. We found PyPy to be less efficient for small
programs and more efficient for larger ones. We ran BAP with a --no-cache
flag, but normally BAP caches disassembly and other information, so repeat
runs are significantly faster.

We estimated each library’s resource overhead by loading an empty C pro-
gram into a new project. On average, BAP took a half second with a max resident
set size (RSS) of 84 MB, while angr took one second with a max RSS of 82 MB.

3 Extracting and Using Control Flow Data

A basic requirement for analyzing or transforming code in any non-trivial manner
involves getting data and control flow information. For binary code, this can be
a complex operation, and both BAP and angr offer built-in support. In this
section, we compare the CFGs and CGs recovered by each tool, and describe a
CG-based analysis that we implemented in both BAP and angr as a comparison
of their capabilities and performance.

3.1 Control Flow Graphs

Both tools make CGs and CFGs easy to generate and manipulate. However,
they make different choices about how to lift various binary constructs, making
a direct comparison challenging.

First, angr generates a CFG for the whole program, while BAP generates
one per function. Additionally, the two tools represent binary control flow dif-
ferently. BAP’s CFGs include “dummy nodes” at branch points that do have
a direct analogue in the original binary but are created to make uplifting more
convenient. angr does not create similar nodes, but sometimes coalesces basic
blocks. Neither angr nor BAP resolve most indirect jumps, with the notable
exceptions of jump tables in angr, which are resolved using a heuristic. Some of
these issues, and a detailed analysis of the accuracy of CFG construction for sev-
eral binary analysis tools including (older versions of) BAP and angr is explored
in detail by Andriesse et al. [1].

126 C. Casinghino et al.

3.2 Call Graphs

We compared BAP and angr’s features for working with CGs in two ways. First,
we developed a script to directly compare the CGs produced by each tool, and
report here on their similarity. Second, we selected a CG-based program analysis
from the literature and implemented it twice, using each tool as a library.

Comparing CG Accuracy. Both tools make it simple to recover a program’s
CG and output it in the DOT graph description language. We implemented a
simple algorithm for comparing this output:

– Start with the program entry point of both graphs.
– Recursively fetch the reachable nodes from that point, excluding already seen

nodes.
– Compare the reachable nodes at step n as sets between the graphs.

While the tools agree well on small examples, differences appear quite early
in the CGs of larger programs. For example, we get around 6% difference 1 step
below main in the CG for the grep executable, and the errors snowball at lower
levels up to a significant fraction. The cause for these discrepancies is unclear,
but may be related to disagreements between what the tools consider to be
reachable function calls during CFG construction (see again [1]).

Implementing a CG-Based Program Analysis. One common use of CFGs
and CGs is to judge the similarity of two programs [6]. As a basis on which to
evaluate the usability and performance of each tool, we selected a well-regarded
algorithm for estimating the similarity of two CGs [7] and implemented it both
as a BAP plugin and as an angr script.

Implementation of this algorithm was mostly straightforward. One obstacle
was that the BAP’s plugin interface is designed to manipulate a single program at
a time. However, BAP does support saving a program’s Project data structure
to disk. Thus, we designed our plugin to take one binary from the command line
and compare with a previously saved Project structure.

For evaluation, we took 11 GNU applications of varying sizes and compiled
them on two optimization levels (-O0 and -01). We used the analysis to compare
the two versions of each program. Table 1 contains the results. Each column lists
BAP’s and angr’s results respectively, separated by a slash. A long dash indicates
that the analysis did not complete within 35 min.

The results show that our BAP OCaml implementation runs approximately
15% faster than our angr Python implementation on average, despite construct-
ing larger CGs. Profiling revealed that the running time in both cases is domi-
nated by a standard graph matching algorithm that the analysis uses, and thus
speaks more to differences in the efficiency of OCaml and Python code than to
differences in BAP and angr. The running time scales with the size of the graphs
(reported as a sum of the number of nodes and edges). Substantial differences
in graph sizes are a result of the discrepancies in CG recovery described above,
and the similarity scores computed by the algorithm also differed as a result.

Using Binary Analysis Frameworks: The Case for BAP and angr 127

Table 1. CG construction performance (BAP/angr)

Exe Time (s) Max RSS (Kb) Graph size

bison 1181/824 15182/16847 7717/6078

gawk 158/2004 20253/25680 5760/8661

grep 89/581 7184/7528 3339/4002

gnuchess 158/82 20253/10815 5760/868

gzip 58/162 7391/6122 2065/1706

less 113/— 3741/— 4142/—

make 313/552 15812/10440 4835/4436

nano 729/454 8060/10620 6500/4618

screen 699/964 12980/12054 7466/6094

sed 27.6/— 4536/— 2320/—

tar —/1321 —/8139 —/6520

4 Value-Set Analysis

As an example of a standard, more complex use of a binary analysis toolkit,
we experimented with value-set analysis (VSA) in both BAP and angr [2,3].
The angr tools include an experimental Value Flow Graph (VFG) module that
performs a VSA. It annotates the CFG with sets of values that registers and
memory locations can take on at various points during execution. At the time
of writing, BAP does not ship with a comparable module, so we implemented
our own VSA plugin using BAP’s built-in support for abstract interpretation.

Both implementations perform abstract interpretation, but use slightly
different abstract domains. Our VSA plugin for BAP uses circular linear
progressions [8,12]. The implementation found in angr uses an extension of
wrapped strided intervals [3,10,11]. These two representations are similar, and
the distinction made little difference for our purposes.

To evaluate the two VSA implementations, we used them to resolve indirect
jumps that BAP and angr CFG construction missed. We profiled runs on four
small test programs that contain indirect jumps that require some insight to
resolve. The results are in Table 2.

Table 2. Indirect jump resolution via VSA (BAP/angr)

Exe Time (s) Max RSS (Mb) Resolved jumps

Prog A 0.73/1.21 124/88 5 of 5 (100%)/4 of 5 (80%)

Prog B 0.72/1.59 124/91 8 of 8 (100%)/7 of 8 (88%)

Prog C 0.71/1.85 124/93 8 of 8 (100%)/7 of 8 (88%)

Prog D 0.70/4.20 124/104 8 of 8 (100%)/8 of 8 (100%)

128 C. Casinghino et al.

We found that our BAP VSA plugin resolved all jump targets, while angr’s
missed one in all but the last case. On further inspection, it looks like angr’s
VFG module has a bug that causes it to discard the contents of previous value
sets after successive iterations, thereby resulting in an under approximation. By
stopping after each iteration, we were able to observe that angr actually resolved
some of the missing jumps before discarding the results for the next iteration.

The BAP plugin runs faster, but uses more memory at a constant level for
our toy programs, while angr runs more slowly, but uses less memory. Neither
implementation scales well to larger programs. When run on the GNU utilities
described in the previous section, we typically encountered issues ranging from
memory exhaustion to unsupported constructs before the analysis completes.

As implementors, we found that BAP gave us more confidence in the VSA
results than angr. The simple Python interface and VFG module in angr made it
easy to get started and obtain initial results. However, the lack of documentation
and the presence of apparent bugs made it difficult to verify the correctness of
the analysis we built on angr’s capabilities. By contrast, since BAP ships with
no VSA, it was a fair amount of work to build our own. Nevertheless, BAP’s
module-based documentation and the static checking provided by its use of the
OCaml type system gave us more confidence that we were using it correctly.

5 Conclusion

Both BAP and angr enable analysis of binaries, providing a convenient interface
that hides the technical details of the binary formats and ISAs. In addition, they
each supply a suite of pre-built analyses to jump start the process.

We compared these tools in several ways. We described the process of imple-
menting program analyses using them, and differences in the call graphs and
control flow graphs they recover from binary programs. We implemented two
representative program analyses using each tool, and examined their usability
and performance.

In terms of resource usage, BAP is often more efficient, but not drastically
so. We found that angr was easier than BAP to pick up quickly and begin exper-
imenting with, and includes more-built in analyses. By contrast, BAP required
us to do more work to get started, but its comprehensive module-based docu-
mentation gave us more confidence that we were using the tool correctly, even
as new users.

References

1. Andriesse, D., Chen, X., van der Veen, V., Slowinska, A., Bos, H.: An in-depth
analysis of disassembly on full-scale x86/x64 binaries. In: 25th USENIX Security
Symposium (USENIX Security 2016), pp. 583–600. USENIX Association, Austin
(2016)

2. Balakrishnan, G., Reps, T.: Analyzing memory accesses in x86 executables. In:
Duesterwald, E. (ed.) CC 2004. LNCS, vol. 2985, pp. 5–23. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24723-4 2

https://doi.org/10.1007/978-3-540-24723-4_2

Using Binary Analysis Frameworks: The Case for BAP and angr 129

3. Balakrishnan, G., Reps, T.: WYSINWYX: what you see is not what you execute.
ACM Trans. Program. Lang. Syst. 32(6), 23:1–23:84 (2010)

4. Bao, T., Burket, J., Woo, M., Turner, R., Brumley, D.: BYTEWEIGHT: learning
to recognize functions in binary code. In: USENIX Security Symposium (2014)

5. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: BAP: a binary analysis plat-
form. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
463–469. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1 37

6. Chan, P.P.F., Collberg, C.: A method to evaluate CFG comparison algorithms. In:
2014 14th International Conference on Quality Software, pp. 95–104, October 2014

7. Hu, X., Chiueh, T.-c., Shin, K.G.: Large-scale malware indexing using function-call
graphs. In: Proceedings of the 16th ACM Conference on Computer and Commu-
nications Security, CCS 2009, pp. 611–620. ACM, New York (2009)

8. Källberg, L.: Circular linear progressions in SWEET. Technical report, Mälardalen
University, Embedded Systems (2014)

9. Kim, S., et al.: Testing intermediate representations for binary analysis. In: Pro-
ceedings of the 32nd IEEE/ACM International Conference on Automated Software
Engineering, ASE 2017, pp. 353–364. IEEE Press, Piscataway (2017)

10. Lee, J., Avgerinos, T., Brumley, D.: TIE: principled reverse engineering of types
in binary programs. In: Network and Distributed Systems Security Symposium
(NDSS). Internet Society, January 2011

11. Navas, J.A., Schachte, P., Søndergaard, H., Stuckey, P.J.: Signedness-agnostic pro-
gram analysis: precise integer bounds for low-level code. In: Jhala, R., Igarashi, A.
(eds.) APLAS 2012. LNCS, vol. 7705, pp. 115–130. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-35182-2 9

12. Sen, R., Srikant, Y.N.: Executable analysis using abstract interpretation with circu-
lar linear progressions. In: Proceedings of the 5th IEEE/ACM International Con-
ference on Formal Methods and Models for Codesign, MEMOCODE 2007, pp.
39–48. IEEE Computer Society, Washington, DC (2007)

13. Shoshitaishvili, Y., et al.: SOK: (state of) the art of war: offensive techniques in
binary analysis. In: IEEE Symposium on Security and Privacy, SP 2016, San Jose,
CA, USA, 22–26 May 2016, pp. 138–157 (2016)

https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.1007/978-3-642-35182-2_9

Automated Backend Selection for ProB
Using Deep Learning

Jannik Dunkelau1(B) , Sebastian Krings1,2 , and Joshua Schmidt1

1 Heinrich-Heine-University, Düsseldorf, Germany
{dunkelau,krings,schmidt}@cs.hhu.de

2 Niederrhein University of Applied Sciences, Mönchengladbach, Germany

Abstract. Employing formal methods for software development usu-
ally involves using a multitude of tools such as model checkers and
provers. Most of them again feature different backends and configuration
options. Selecting an appropriate configuration for a successful employ-
ment becomes increasingly hard. In this article, we use machine learn-
ing methods to automate the backend selection for the ProB model
checker. In particular, we explore different approaches to deep learning
and outline how we apply them to find a suitable backend for given input
constraints.

Keywords: Formal methods · Model checking ·
Automated configuration · Deep learning

1 Introduction and Motivation

The typical workflow when using formal methods consists of requirements engi-
neering, writing specifications and analysing them using proof techniques and
model checking. For all three tasks a variety of tools exists, each featuring a
multitude of configuration options.

However, selecting the best tool for a task or choosing the optimal configura-
tion is not trivial, even for domain experts. This is in alignment with the No Free
Lunch theorem [42,43], and also affirmed by empirical evaluation on verification
tasks as shown by Krings et al. [23] for the B method.

For instance, when solving constraints involving relations over sets, a SAT
solver often provides a better performance than an SMT solver or a solver based
on constraint logic programming [25]. However, especially when using integers,
an SMT solver is often preferable to a SAT solver: a SAT solver needs to restrict
the bitwidth which might result in integer overflows. Furthermore, an SMT solver
directly supports integers without translation into propositional logic.

However, one cannot easily generalise on which constraints different solvers
are efficient as it is impossible to set up universal selection rules. Consequently,

Computational support and infrastructure was provided by the “Centre for Information
and Media Technology” (ZIM) at the University of Düsseldorf (Germany).
c© Springer Nature Switzerland AG 2019
J. M. Badger and K. Y. Rozier (Eds.): NFM 2019, LNCS 11460, pp. 130–147, 2019.
https://doi.org/10.1007/978-3-030-20652-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20652-9_9&domain=pdf
http://orcid.org/0000-0003-0819-5554
http://orcid.org/0000-0001-6712-9798
http://orcid.org/0000-0001-8842-2993
https://doi.org/10.1007/978-3-030-20652-9_9

Automated Backend Selection for ProB Using Deep Learning 131

we decided to use statistical models in order to predict the constraint solver
which most likely provides the best performance for a given constraint.

In this paper, we present our work towards using machine learning for the
automated configuration of ProB [29–31], a model-checker and constraint solver
for the B method [1]. In particular, we try to automate the selection of back-
ends used for constraint solving in various places, e.g. for computing suitable
parameters to operations or for symbolic model checking.

2 Related Work

Using heuristics, statistics or machine learning for configuration or selection of
algorithms has been tried both for theorem provers and constraint solvers.

For the SETHEO theorem prover [28], Goller [16] employed folded archi-
tecture networks [17] to learn heuristic evaluation functions, i.e. performance
measures for individual inference steps within a proof. While the results were
promising, experiments were run for simple problems, with Goller stating that
‘the next step is to experiment in a more realistic application domain’ [16].

In the work of Bridge [7], support vector machines were used to automate the
heuristic selection for the theorem solver E [39]. Here, the problem was limited
to first order logic with equality. Bridge was able to improve E with his heuristic
selection as it outperformed fixed heuristics as well as the already implemented
auto-mode of E.

In the works of Healy [20,21], an SMT solver portfolio was conducted for
Why3. Why3 [4,13] is a platform for deductive program verification, which pro-
vides its own language, WhyML, to specify a program and bindings to multiple
different SMT solvers for the formal verification. The solver selection was done
via decision trees which predicted the runtime needed for each solver construct-
ing a ranking from fastest to slowest. The fastest solver is then proposed for
verification of a given proof obligation.

In contrast to the works of Goller or Bridge, this article concerns itself with
the higher-level language B. Besides first order logic with equality (c.f. Bridge’s
work) B also captures multiple different theories as is briefly outlined in the
upcoming Sect. 3, including functions, sets, quantifiers, and non-deterministic
assignments.

In contrast to Healy, this article concerns itself with a classification problem
rather than a regression task. Further, unknown is used as its own class to
capture instances neither of the involved backends is able to provide an answer
for. Although an unknown solvability of a given proof obligation is implicitly
detected in Healy’s work (predicted runtime for all backends is greater than the
timeout the data was generated for), having an actual probability of how likely a
backend would return no answer for a given constraint might be more expressive.
For instance, one might intervene early rather than sequentially querying each
solver in the ranked list, depending on a probability threshold. Further, the
calculated probability distribution also provides an implicit ranking ordering
the backends by descending probabilities.

132 J. Dunkelau et al.

3 Primer on B and ProB

B [1] is a formal verification language for specifying, designing, and coding soft-
ware systems as well as for performing formal proof of their properties. It fol-
lows the correct-by-construction approach and is based on first-order-logic and
the Zermelo-Fraenkel set theory with the axiom of choice [14,15]. Further, it
makes use of general substitution for state modifications, and of refinement cal-
culus [2,3] to describe models at different levels of abstraction [8].

B machines consist of variable and type definitions as well as possible initial
states. By defining machine operations, one is able to specify transitions between
states. These transitions consist of substitutions, which may be non-deterministic
depending on the level of abstraction. An operation can have a precondition
enabling or disabling execution based on the current state. To ensure certain
behaviour, the user can define machine invariants, i.e. safety properties that
have to hold in every reachable state. The correctness of a formal model hence
refers to the preservation of the specified properties in each reachable state.

For instance, consider the invariant ∀x ∈ S · (∃n · x = 2n) for a manually
assembled set S, and an operation with parameter n which adds 2n to the set
if not yet present: op(n) = PRE n:NAT & 2**n/:S THEN S:=S\/{2**n} END.
The invariant now poses a constraint onto S which has to be satisfied in each
reachable state including the states transitioned into by executing op.

Using Atelier B [11] or ProB [29–31] one can verify a B model and analyse its
state space. In particular, ProB allows the user to animate formal models, pro-
viding a model checker and constraint solver. ProB’s kernel [29] is implemented
in SICStus Prolog [10], using the CLP(FD) finite domain library [9]. Alterna-
tively, the backend can be substituted with a binding to a different solver. For
one, a constraint solving backend based on Kodkod [41] is available [34]. Fur-
thermore, an integration with the SMT solver Z3 [12] (connected to ProB as
outlined in [24]) can be used to solve constraints.

The different backends have their own strengths and weaknesses. As the
name suggests, CLP(FD) is particularly strong when dealing with variables hav-
ing finite domains. On unrestricted problems, CLP(FD) can fail even on trivial
problems such as X < Y ∧ Y < X, whereas it easily detects unsatisfiability if
we restrict the domains of X and Y .

The Kodkod backend performs well on problems involving relations between
different sets. However, it does not support the full range of constructs avail-
able in B. Consequently, ProB includes a fallback to the CLP(FD) backend for
untranslatable parts.

In contrast to CLP(FD), the SMT-based backend performs well on unre-
stricted problems. Its particular strength is detecting unsatisfiability, while it
does not perform as well for model finding, i.e. for finding variable valuations for
satisfiable constraints. Again, the backend can be used on its own, i.e. with Z3 as
the only solver involved. Comparable to Kodkod, Z3 can also be used together
with the CLP(FD) backend in an integrated solving procedure as described by
Krings et al. [24]. As we wanted to understand what influences the performance
of the different backends, we used the standalone backend in the following.

Automated Backend Selection for ProB Using Deep Learning 133

4 Machine Learning on B Constraints

In this article, we consider three different classification problems:

Singular ProB Classification Given a single constraint p, is it possible to
classify whether ProB’s default backend will be able to determine whether
p has a solution?

ProB+Kodkod Classification Given a single constraint p, is it possible to
classify whether the default backend or the one based on Kodkod can deter-
mine satisfiability of p faster than the other, or if both will answer with
unknown?

ProB+Z3 Classification Given a single constraint p, is it possible to classify
whether the default backend or the one based on Z3 can determine satisfia-
bility of p faster than the other, or if both will answer with unknown?

Initially, we aimed at creating an expert system able to propose a suitable
backend for a given task or constraint. However, soon we realised that we lack
deeper understanding of why a solver performs better on certain tasks than
another. Further, the assembly of an expert system of this magnitude of com-
plexity requires an unreasonable amount of pure programming work presumably
consisting of myriads of edge-cases.

Hence, we opted for machine learning techniques. We supposed a machine
learning algorithm might be capable of capturing any characteristics necessary
for selecting the most suited backend for a given constraint in a fast and auto-
mated way.

4.1 Brief Introduction to Deep Learning

A deep neural network (DNN) [36,37] aims to approximate a function y = f�(x)
by learning a function ŷ = f(x;W). Hereby, W is a matrix of parameters to
be learned, whereas ŷ is the prediction. During a training phase, the difference
between the prediction ŷ and the corresponding ground truth y is calculated
and minimised by adjustments to the parameters in W . This process is called
backpropagation (c.f. [38]). Internally, a neural network conducts a matrix multi-
plication ŷ = f(x;W) = g(WTx) with a chosen activation function g : R −→ R.
This matrix application can be layered by alternating parameters and activation
functions, resulting in multiple parameter matrices W1, . . . ,Wn. Such a neural
network is said to have n layers, with n − 1 hidden layers. For n > 1, a neural
network is said to be a deep neural network. Besides parameters to be learned,
a neural network further depends on a selection of hyperparameters, which are
manually selected configurations referring to a network’s architecture that are
not adjusted during training, e.g. the amount of layers n is a hyperparameter.

DNNs work over numeric vectors of fixed length d as input. Constraints how-
ever are neither vectors nor of fixed length. Hence, a translation from a given B
constraint into a vector x ∈ R

d is necessary. For this, d characterizing features
x1, . . . , xd are collected per constraint, resulting in a vector (x1, . . . , xd)T ∈ R

d.

134 J. Dunkelau et al.

Such features should be descriptive enough to characterise the sample they were
collected from sufficiently for the problem at hand. As an example for classifica-
tion purposes: it is easy to distinguish between cats and elephants by size, and
it is impossible to do so by number of legs.

We present two different translations from constraints as they would be pre-
sented to our backends into vectors, one based on 17, the other based on 185
features. All features are manually selected characteristics incorporating knowl-
edge of the problem domain. Note that these features are not invariant under
rewriting that preserves logical equivalence, i.e. two constraints that are logi-
cally equivalent possibly result in two different feature vectors. For instance, the
expressions x+x+x and 3*x have different features but equivalent semantics.

Additionally, we followed an alternative approach relying on convolutional
neural networks (CNNs). A CNN is a specialised kind of neural network, which
processes data with a grid-like topology, most notably images [18,27]. For this,
we translate B constraints into images of a predetermined size of n×n pixels. As
this translation requires no prior domain knowledge, it serves as a comparison
metric for the aforementioned hand-crafted features. Internally, a set of image
processing filters are learned during training, suitable to the very problem at
hand. Thus, one might say that a CNN learns necessary features itself.

4.2 The Initial Set of 17 Features

The initial set of features consists of 17 values mainly consisting of the absolute
numbers of certain operators used in a constraint. These features capture the
usages over the different theories supported in B mainly on an operator level.
For instance, the features include the number of arithmetic operators used in
the constraint, the number of set operations such as set memberships, as well as
the number of universal and existential quantifiers. Further, they aim to capture
some properties of the contained identifiers, e.g. the amount of unique identifiers
used, or the amount of identifiers with finite or infinite domains.

4.3 The Set of 185 Features

The second set of features grew bigger as we aimed to cover most of the operators
and theories used in the B method more precisely than the 17 features did. This
led to 185 distinct features. One of the main differences to the first set of features
is that the features formulate a ratio per operator over the corresponding theory
or the number of top-level conjuncts in the given constraint.

For instance, for a given theory T (such as integer arithmetic) for which B
implements n operators op1, . . . opn (e.g. +,×,÷,mod, succ, pred), some features
are: The amount of occurrences of an operator opi divided by the number of top-
level conjuncts in the respective constraint; The amount of operator occurrences
divided by the sum of all operators belonging to the theory T ; The sum of all of
T ’s operators divided by the sum of top-level conjuncts.

Automated Backend Selection for ProB Using Deep Learning 135

4.4 A Convolution Approach

Constraints are of dynamic size, i.e. their string representation can be arbitrarily
long. Furthermore, they do not inherit an obvious grid-like topology. Thus, CNNs
cannot be used for classification without appropriate preprocessing. However,
Loreggia et al. [33] proposed a promising approach of translating SAT, CSP, or
MIP problems into images, visualised by an example in Fig. 1.

The translation process makes use of the fact that ASCII character codes
range from 0 to 255. This makes the constraints conveniently mappable into
grey scale pixels by an identity mapping. A given constraint of length N is fit
into an M ×M matrix with M = �√N	. The missing entries are filled with the
value 32 (ASCII value for the space character). This matrix is a lossless mapping
from the original constraint with each entry being interpretable as a grey scale
pixel. The image now is scaled to an arbitrary target size of n × n pixels.

Choosing the space character as a filler is arbitrary, as it could have also been
the line feed character (10) or even a null byte (0). However, the space character
already has a natural occurrence in the ASCII version of a B constraint, as it
may separate variables from operators and such alike. Meanwhile, neither the
line feed nor the null byte occur in any of those constraints.

Although potential downscaling results in the translation no longer being
lossless, Loreggia et al. express the strong believe that structure and self-
similarity exposed by the instances remain throughout the scaling step: “While
scaling the images incurs a high loss in information it seems to be the case that
the retained structure is sufficient to address decision problems [. . .]” [33].

For this article, the resulting images are scaled to the sizes of 32 × 32 and
64 × 64 pixels, which hold up to 1024 and 4096 ASCII characters respectively.
As the constraints have no theoretical upper limit on their size, it is not possible
to find an image size that can contain any constraint losslessly (i.e. the resulting
image does not need to be down-scaled). However, of the training data gathered
for this article, around 64.6% of constraints fit into 1024 ASCII characters, and
even 92.0% of them fit into 4096 characters. Thus, the chosen sizes compromise
between fitting most of the data losslessly and having a part of the data being
downscaled to decrease computational complexity.

5 Methodology

For the training of the DNNs, the training data was randomly split into three
subsets. These are the training set, the validation, and the test set, consisting of
64%, 14%, and 20% of the training constraints respectively, and being pairwise
distinct.

During training, the training set is fed through the model multiple times,
referred to as epochs, in order to enable the model to learn to generalise over
it. The performance is then measured on the validation set. Usually, the perfor-
mance drops from training set to validation set, as the model has already adapted
to the training data. If the performance on the validation set can keep up, this
suggests that the model actually learned to generalise. Otherwise, the model is

136 J. Dunkelau et al.

Fig. 1. The translation of constraints into images. A given constraint is interpreted as
a sequence of characters. Those characters are then fit into a grid with each character’s
ASCII value being interpreted as a pixel value generating an image of size M × M .
The image is scaled to a fixed size, here 64× 64 pixels.

adjusted to increase performance on the validation set after a new training step.
At no point in time, the model is trained on any sample of the validation set.
The test set serves as a final sanity-check for performance. Training multiple
models, their performances on the validation set are implicitly dependent on
the choice of hyperparameters. Testing the performance of the most promising
models one can see whether the models generalise over the data, or only fit the
validation set. Samples from the test set are never used for training or validation
of the model. To find suitable architectures for the neural networks employed,
we used a random search approach. That is, we set up ranges of possible values
for any hyperparameters, and created new models by randomly choosing val-
ues from those given ranges. This was done to get a good intuition about what
hyperparameters work best for the problem at hand. Found architectures were
not reused for other experiments. We assumed it sensible to keep the architec-
tures between the different experimental settings independent from each other.
As they all shared the same search space, similar models should be found were
suitable. To reduce the time needed for the random search, the training process
for a model was terminated if it could not increase its performance for a set
number of training epochs.

Automated Backend Selection for ProB Using Deep Learning 137

6 Training Data

To obtain the necessary training set, the first step was to acquire a sufficient
amount of constraints. For this, we extracted invariants, preconditions of each
operation, properties, and more data from 3638 B machines1. These were gath-
ered from the chair of Software Engineering and Programming Languages at
the University of Düsseldorf stemming from different application areas and thus
varying in size and complexity.

These gathered constraints were then used to construct more complex ones.
This served two purposes. Firstly, the amount of examples at hand was increased.
Secondly, it ensured the presence of constraints which are harder to solve. In
total, the generation yielded 321,742 constraints. Measured on number of char-
acters in their ASCII representation, the average constraint length is 1,377.66
characters, with a minimum of 5 and a maximum of 15,383. The length distri-
bution throughout the constraints is shown in Fig. 2.

Fig. 2. Length distribution of the constraints in the training data.

Each constraint is annotated with the information of which backend is able
to find a solution or show unsatisfiability. For this, we measured the average run
time needed in three runs per backend. As timeout, ProB’s default setting of
2.5 s per constraint was used. The resulting dataset can be found on GitHub2.
From a classification point of view, constraints for which a backend can determine
whether they are satisfiable or unsatisfiable belong to the class of this backend’s
positive samples, while those for which a backend is unable to determine satisfi-
ability, for example, due to a timeout or unsupported constructs, belong to the
class of its negative samples.

1 www3.hhu.de/stups/downloads/prob/source/ProB_public_examples.tgz.
2 https://github.com/hhu-stups/prob-examples-metadata.

www3.hhu.de/stups/downloads/prob/source/ProB_public_examples.tgz
https://github.com/hhu-stups/prob-examples-metadata

138 J. Dunkelau et al.

Analysing the generated training data reveals that the data poses the class
imbalance problem as shown in Fig. 3. The class imbalance problem [22,26]
occurs in a training set for classification with a significant disproportion of class
representation. Ideally, the classes are equally distributed. Otherwise, one runs
at risk to train a dummy-classifier predicting only the stronger presented classes
but classifying poorly elsewise [26,32].

Fig. 3. Distribution of positive and negative samples throughout the training data.

Note, that the positive and negative samples may differ between two back-
ends. For instance, the 92.6% of positive samples for ProB might not necessarily
all be positive for Kodkod as well.

As a look at the intersatisfiability shows, there are indeed positive samples
for each backend, that are negative samples for another one:

ProB Kodkod Z3

ProB – 99.80% 49.78%
Kodkod 99.60% – 49.74%
Z3 94.76% 94.90% –

Each row states the percentages of positive samples of the solver on the left,
which also belong to the positive samples of the solver on the top. Omitted were
the trivial 100% entries where a solver is compared to itself.

The class distribution is unequal, except of Z3 where it is roughly equal.
To overcome this problem, Japkowicz et al. [22] proposed the method of ran-
dom under-sampling, where samples from the training data are randomly deleted
from the overrepresented classes, until all classes pose an equal distribution in
the data set. Following this approach, an individual training set was generated
by random under-sampling for each of the three aforementioned classification

Automated Backend Selection for ProB Using Deep Learning 139

problems. For the singular ProB classification the resulting training set con-
sisted of 47,850 remaining constraints, 49.9% of which ProB could determine
satisfiability for and with the satisfiability of the other 50.1% being unknown to
ProB. The training data for the ProB+Kodkod classification still contained
68,201 constraints, where both backends returned the result unknown for 33.4%
of the data, ProB determining satisfiability faster than KodKod for 33.4%, and
for the remaining 33.2% Kodkod being faster. The data of the ProB+Z3 classi-
fication consisted of 47,248 samples split into the classes unknown, ProB, and
Z3 to 33.4%, 33.2%, and 33.4% respectively.

7 Results

Before discussing the results of the training phase, a quick note about how the
performance of the resulting neural networks was measured. As in classification
each sample belongs to one class, the aim is to measure correctly and incorrectly
predicted classes. For each class, a sample constraint x in the training data can
be labelled with l ∈ {+,−}, where + indicates the belonging of x to the positive
class, and − indicates the belonging to the negative class respectively. Another
such labelling z ∈ {+,−} can be given to the prediction ŷ(x), indicating whether
x was predicted to belong to the class in question or not. From said labels one
can now build a confusion matrix [19] consisting of the number of true positives
(TP), true negatives (TN), false positives (FP), and false negatives (FN) as
entries:

z = + z = −
l = + TP FN

l = − FP TN

Using the confusion matrix, we can apply the common definitions of the
performance measurements precision, recall, and F1-score [19,40]:

p =
TP

TP + FP
(precision)

r =
TP

TP + FN
(recall)

F1 =
2pr
p+ r

. (F1-score)

Precision represents the predictive value of a label [40] and high precision for
a class indicates that predicting said class usually is correct. Recall represents
effectiveness for a single class [40] and high recall indicates that most of the
samples belonging to said class are predicted as such as well. Now, the F1-score
is defined as the harmonic mean of precision and recall. As we ultimately aim
for a predictor that achieves both, a high precision and recall, we will use the
F1-score as measure of performance.

140 J. Dunkelau et al.

Fig. 4. Best performing models for singular ProB classification. Learning curves over
the validation set are shown on the left, the table on the right summarises the best
performances achieved.

7.1 Results for Singular ProB Classification

For the singular ProB classification, the results appear to be promising. The
best performing models’ performances on the validation set are plotted against
the respective training epochs in Fig. 4.

In conclusion, the 185 B-features do not appear to be much more expressive
as the initial 17 already were, as can be seen by both models achieving an almost
identical performance on the validation set: 0.732 and 0.738 respectively. As in
the experiments the number and size of the hidden layers was chosen randomly,
the model for 17 happened to have more hidden layers of a larger size (namely
7 layers with 48 units each) than the one for 185 features (2 layers with 4 units
each). As hidden layers can be interpreted as more abstract features themselves,
the smaller architecture might suggest that a small and precise set of features is
sufficient for training a well-performing predictor.

For us, the most notable surprise was the performance of the image based
approach. With an F1-score of 0.823, the best performing CNN model topped
those models for hand-crafted features by a notable margin. This result can be
interpreted in two manners. Firstly, it appears that the structure of a constraint
observable in the ASCII representation is sufficient for classification. In con-
sequence, it may be that a hand-crafted feature set does not need to include
features which are counting nodes in the constraint’s syntax tree. Secondly, as
the CNNs could not rely on any domain knowledge and still outperformed the
models trained on specifically designed features, it may be that the crafted fea-
tures themselves still lack the crucial characteristics needed to properly classify
the constraints. On the other hand, it is possible that the CNN’s advantage lies
simply in the amount of parameters learned. The top CNN model learned 162,348

Automated Backend Selection for ProB Using Deep Learning 141

parameters, whereas the top FNN models only employed 14,736 parameters for
17 B-features, and 766 parameters for 185 B-features.

Overall, the reached F1-score of 0.823 appears to be a promising result, indi-
cating that this approach is indeed feasible. Verifying the performance on the
test set still yielded an F1-score of 0.819.

7.2 Results for ProB+Kodkod Classification

For the ProB+Kodkod classification, there exist three distinct classes as men-
tioned in Sect. 4. Thus, the base performance of a respective classifier has to
be greater than 0.333 to outperform uninformed guessing. The training perfor-
mances on the corresponding validation set are shown in Fig. 5.

Fig. 5. Best performing models for the ProB+Kodkod classification. Learning curves
over the validation set are shown on the left, the table on the right summarises the
best performances achieved.

Top performances for the 17 and 185 feature sets were 0.495 and 0.472
respectively. Again, the CNN approach takes the first place with an F1-score of
0.550 on the validation set. It even performed a bit better on the corresponding
test set achieving an F1-score of 0.562. Table 1 shows the corresponding test set
precision and recall performances for each class.

As can be seen, the average precision and recall are fairly close. On a per-
class basis, the model seems to predict unknown instances right most of the
time (precision of 0.768), whereas ProB appears to be a class that the model
struggles to recognise in the first place (recall of 0.369), tending to generally
predict in favour of Kodkod (high recall but moderate precision). While the
Kodkod selection models performed better than guessing, having a model which
is only correct in every other case appears not to be practical in the context
of backend selection. Under the assumption that one backend will be chosen

142 J. Dunkelau et al.

eventually, the model does not perform notably better than picking a backend
at random. The high precision on unknown constraints however may still help
to detect problematic constraints beforehand.

Table 1. Precision and recall for the ProB+Kodkod classification on the test set.

Class Precision Recall

Unknown 0.768 0.591
ProB 0.516 0.369
Kodkod 0.447 0.683
Average 0.577 0.548

7.3 Results for ProB+Z3 Classification

For the ProB+Z3 classification, the results outperformed the respective ones
from the Kodkod experiments notably. Although tackling a comparable problem,
the better performances might reside in the fact that ProB and Z3 excel on
more divergent problem classes than ProB and Kodkod do. Again, the image
based approach is the best, reaching an F1-score of 0.658 on the validation set,
and still one of 0.652 on the test set. Figure 6 summarises the learning curves
and validation set performances of the top models for each feature set, whereas
Table 2 displays the best model’s precision and recall on the test set.

Like in the ProB+Kodkod classification, the precision and recall values for
unknown instances are quite high compared to those of ProB or Z3. However,
this time the model appears to predict in favour of ProB, contrary to the
results in the ProB+Kodkod classification. While an F1-score of 0.652 is not
a satisfying rate of success, it notably outperforms uninformed guessing and,
contrary to the respective Kodkod variant, could already improve the selection
step. Further, a corresponding uninformed workflow could consist of defaulting
to one backend, then switching to the second one for instances where the first
one failed to provide a definite answer, rather than guessing. Considering the
high precision of the Z3 class, a workflow that defaults to ProB could already
be improved in overall-performance by using Z3 over ProB for instances where
the model predicts to do so.

Table 2. Precision and recall for the ProB+Z3 classification on the test set.

Class Precision Recall

Unknown 0.845 0.668
ProB 0.490 0.789
Z3 0.714 0.416
Average 0.683 0.624

Automated Backend Selection for ProB Using Deep Learning 143

Fig. 6. Best performing models for the ProB+Z3 classification. Learning curves over
the validation set are shown on the left, the table on the right summarises the best
performances achieved.

8 Conclusion and Future Work

In summary, we conducted a broad random search over different deep learning
models for the classification problems stated in Sect. 4. For this, we gathered a
training set consisting of various constraints, and crafted two feature sets, one of
17 and one of 185 features respectively, which incorporated domain knowledge
of the B language and method.

As an alternative approach to compare with, the constraints were translated
into images to train convolutional neural networks, as outlined in Sect. 4.4. To our
surprise, the image based approach outperformed the domain-specific features
notably. These results might suggest that our hand-crafted features are still too
domain-unspecific. This underlines the initial motivation to use machine learning
instead of an expert system, as we apparently do not understand the problem
domain well enough to precisely formulate meaningful characteristics as of why
a certain backend might outperform another.

We assume that a concise and domain-specific set of features should be able to
yield a better performance than the image based approach. Ideally, the learned
correlations between constraints and suitable backends can be extracted from
trained models. This could lead to a more sophisticated understanding of the
problem domain which allows to formulate more precise feature sets. Thus, it
might be sensible to change the machine learning algorithm to a more trans-
parent one, Refining the feature sets with the help of decision trees [6,35] and
random forests [5] is subject to future work.

Be that as it may, one of the main take-aways is that approaches which
require no domain knowledge can be preferred for initial performance probing
and kickstarting results. Regarding deep learning, such techniques include an
image based approach, as presented in this article, or a sequence based approach

144 J. Dunkelau et al.

with recurrent neural networks (RNNs). Comparing performances achieved by
an RNN to those of our CNNs would be quite interesting.

The performances of the best models lead us to the belief, that our app-
roach is feasible after all. Putting more work into fine-grained training of the
top-performing models should lead to even better results allowing to assemble
a portfolio of different backends from which the most suitable is selected auto-
matically on a per-instance base.

The classification problems which were concerned with selecting between
unknown and two backends tend to favour one of the backends over the other.
This is fine, as in such a case the corresponding uninformed workflow would
presumably consist of defaulting to one backend, then switching to the second
one for instances where the first one failed to provide a definite answer. As
already discussed for the ProB+Z3 classifier, the overall computation time could
be decreased for this workflow by only partially following the predictions (e.g. for
predictions with a high precision).

The performances for detecting instances for which both backends could not
return any answer were consistently the highest in the respective classification
problem, which falls also in line with the notably better performances achieved
for the singular ProB classification. In fact, if we revisit the best performing
model for ProB+Z3 classification and interpret it as a binary classifier between
the classes unknown and either ProB or Z3, it achieves an F1-score of 0.827
which is quite comparable to the singular ProB classifier.

Comparing the presented approach again with the regression approach of
Healy [20,21] it stands out that the latter is more extensible. Adding another
backend would consist of adding a new regression model for said backend’s run-
time under Healy’s approach, whereas in our approach we are not able to add
Kodkod easily to the ProB+Z3 model, since we would have to train a new neu-
ral network instead which classifies between the three backends and the class of
unknown samples. This is a huge drawback, rooted in the fact that the back-
ends’ runtimes are pairwise independent, but determining the fastest in the mix
directly depends on the performances of all.

As the prediction of unknown samples per backend appeared to work well as
stated above, implementing two models per backend might combine the best of
both worlds. On the one hand, a runtime regression model per backend would
easily allow for ranking the individual backends as in Healy’s work. On the
other hand, a singular classifier like the one presented for ProB in Sect. 7.1
can give an independently computed estimation over the backend’s capability of
finding an answer. For instance, given a ranking of ProB
 Z3
 Kodkod with
success probabilities of 62%, 51%, and 97% respectively, it might actually be
more feasible to directly run Kodkod instead of risking two timeouts by running
ProB and Z3 first. In fact the computed probability can be used for a weighted
and more informed ranking.

Automated Backend Selection for ProB Using Deep Learning 145

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Back, R.J., Wright, J.: Refinement Calculus: A Systematic Introduction. Springer
(2012)

3. Back, R.: On correct refinement of programs. J. Comput. Syst. Sci. 23(1), 49–68
(1981)

4. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages, Wrocław, pp. 53–64, August 2011. https://hal.inria.fr/hal-00790310

5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
6. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regres-

sion trees (1984)
7. Bridge, J.P.: Machine learning and automated theorem proving. Technical report,

University of Cambridge, Computer Laboratory (2010)
8. Cansell, D., Méry, D.: Foundations of the B method. Comput. Inform. 22(3–4),

221–256 (2012)
9. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint

solver. In: Glaser, H., Hartel, P., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292,
pp. 191–206. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0033845

10. Carlsson, M., et al.: SICStus Prolog User’s Manual, vol. 3. Swedish Institute of
Computer Science Kista, Sweden (1988)

11. ClearSy: Atelier B, user and reference manuals. Aix-en-Provence, France (2016).
http://www.atelierb.eu/

12. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

13. Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6_8

14. Fraenkel, A.A., Bar-Hillel, Y., Levy, A.: Foundations of Set Theory, vol. 67. Else-
vier, Burlington (1973)

15. Fraenkel, A.: Zu den Grundlagen der Cantor-Zermeloschen Mengenlehre. Mathe-
matische Annalen 86(3), 230–237 (1922)

16. Goller, C.: Learning search-control heuristics for automated deduction systems
with folding architecture networks. In: ESANN, pp. 45–50 (1999)

17. Goller, C., Kuchler, A.: Learning task-dependent distributed representations by
backpropagation through structure. In: Proceedings of International Conference
on Neural Networks (ICNN 1996), vol. 1, pp. 347–352. IEEE (1996)

18. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016). http://www.deeplearningbook.org

19. Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and
F -score, with implication for evaluation. In: Losada, D.E., Fernández-Luna, J.M.
(eds.) ECIR 2005. LNCS, vol. 3408, pp. 345–359. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31865-1_25

20. Healy, A.: Predicting SMT solver performance for software verification. Master’s
thesis, National University of Ireland Maynooth (2016)

https://hal.inria.fr/hal-00790310
https://doi.org/10.1007/BFb0033845
http://www.atelierb.eu/
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-37036-6_8
http://www.deeplearningbook.org
https://doi.org/10.1007/978-3-540-31865-1_25

146 J. Dunkelau et al.

21. Healy, A., Monahan, R., Power, J.F.: Evaluating the use of a general-purpose
benchmark suite for domain-specific SMT-solving. In: Proceedings of the 31st
Annual ACM Symposium on Applied Computing, SAC 2016, pp. 1558–1561. ACM,
New York (2016)

22. Japkowicz, N.: The class imbalance problem: Significance and strategies. In: Pro-
ceedings of the International Conference on Artificial Intelligence (2000)

23. Krings, S., Bendisposto, J., Leuschel, M.: From failure to proof: the ProB dis-
prover for B and Event-B. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS,
vol. 9276, pp. 199–214. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
22969-0_15

24. Krings, S., Leuschel, M.: SMT solvers for validation of B and Event-B models.
In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 361–375.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0_23

25. Krings, S., Schmidt, J., Brings, C., Frappier, M., Leuschel, M.: A translation from
alloy to B. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018.
LNCS, vol. 10817, pp. 71–86. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-91271-4_6

26. Kubat, M., Matwin, S., et al.: Addressing the curse of imbalanced training sets:
one-sided selection. In: ICML, Nashville, USA, vol. 97, pp. 179–186 (1997)

27. LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications
in vision. In: Proceedings of 2010 IEEE International Symposium on Circuits and
Systems (ISCAS), pp. 253–256. IEEE (2010)

28. Letz, R., Schumann, J., Bayerl, S., Bibel, W.: Setheo: a high-performance theorem
prover. J. Autom. Reasoning 8(2), 183–212 (1992)

29. Leuschel, M., Bendisposto, J., Dobrikov, I., Krings, S., Plagge, D.: From animation
to data validation: the ProB constraint solver 10 years on. In: Boulanger, J.L. (ed.)
Formal Methods Applied to Complex Systems: Implementation of the B Method,
pp. 427–446. Wiley ISTE, Hoboken (2014). Chapter 14

30. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
Int. J. Softw. Tools Technol. Transfer 10(2), 185–203 (2008)

31. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2_46

32. Lewis, D.D., Catlett, J.: Heterogeneous uncertainty sampling for supervised learn-
ing. In: Proceedings of the Eleventh International Conference on Machine Learning,
pp. 148–156 (1994)

33. Loreggia, A., Malitsky, Y., Samulowitz, H., Saraswat, V.A.: Deep Learning for
Algorithm Portfolios. In: AAAI, pp. 1280–1286 (2016)

34. Plagge, D., Leuschel, M.: Validating B,Z and TLA+ Using ProB and Kodkod.
In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 372–386.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9_31

35. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
36. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and

organization in the brain. Psychol. Rev. 65(6), 386 (1958)
37. Rosenblatt, F.: Principles of neurodynamics. perceptrons and the theory of brain

mechanisms. Technical report, Cornell Aeronautical Lab, Inc., Buffalo, NY (1961)
38. Rumelhart, D., Hinton, G., Williams, R.: Learning representations by back-

propagating errors. Nature 323(6088), 533–538 (1986)
39. Schulz, S.: E-A Brainiac theorem prover. AI Commun. 15(2, 3), 111–126 (2002)

https://doi.org/10.1007/978-3-319-22969-0_15
https://doi.org/10.1007/978-3-319-22969-0_15
https://doi.org/10.1007/978-3-319-33693-0_23
https://doi.org/10.1007/978-3-319-91271-4_6
https://doi.org/10.1007/978-3-319-91271-4_6
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1007/978-3-642-32759-9_31

Automated Backend Selection for ProB Using Deep Learning 147

40. Sokolova, M., Japkowicz, N., Szpakowicz, S.: Beyond accuracy, F-score and ROC:
a family of discriminant measures for performance evaluation. In: Sattar, A., Kang,
B. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 1015–1021. Springer, Heidelberg
(2006). https://doi.org/10.1007/11941439_114

41. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O., Huth,
M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71209-1_49

42. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Trans. Evol. Comput. 1(1), 67–82 (1997)

43. Wolpert, D.H., Macready, W.G., et al.: No free lunch theorems for search. Technical
Report SFI-TR-95-02-010, Santa Fe Institute (1995)

https://doi.org/10.1007/11941439_114
https://doi.org/10.1007/978-3-540-71209-1_49

Optimizing a Verified SAT Solver

Mathias Fleury1,2(B)

1 Max-Planck-Institut für Informatik,
Saarland Informatics Campus, Saarbrücken, Germany

mathias.fleury@mpi-inf.mpg.de
2 Saarbrücken Graduate School of Computer Science,

Saarland Informatics Campus, Saarbrücken, Germany

Abstract. In previous work, I verified a SAT solver with dedicated
imperative data structures, including the two-watched-literal scheme. In
this paper, I extend this formalization with four additional optimizations.
The approach is still based on refining an abstract calculus to a deter-
ministic program. In turn, an imperative version is synthesized from the
latter, which is then exported to Standard ML. The first optimization
is the extension with blocking literals. Then, the memory management
is improved in order to implement the heuristics necessary to imple-
ment search restart and forget, which were subsequently implemented.
This required changes to the abstract calculus. Finally, the solver uses
machine words until they overflow before switching to unbounded inte-
gers. Performance has improved and is now closer to MiniSAT without
preprocessing.

1 Introduction

SAT solvers are highly optimized programs full of tricks. This makes them an
interesting case study for verification, both for the calculi and the data struc-
tures involved. Since SAT solvers are a prototypical example of highly optimized
programs, it is interesting to see to what extent verification is feasible.

A common approach to increasing the trustworthiness of SAT solvers is to
make them return independently verifiable proofs that certify the correctness
of their answers. Such proofs were successfully produced by tools that solved
long-standing open problems such as the Pythagorean Triples Problem [20] or
Schur Number Five [19]. However, the production of proofs does not provide
total correctness guarantees: Although a correct proof guarantees that a solver
produced a correct result, it is not guaranteed that the solver will be able to
produce a proof in the first place. Moreover, proof checkers and SAT solvers
share similar techniques and data structures. They, thus, face similar efficiency
challenges, and the techniques presented here are applicable to checkers too.

In previous work with Blanchette, Lammich, and Weidenbach, I developed
a SAT solver, called IsaSAT [9], which I verified in Isabelle [34]. The first func-
tional implementation, IsaSAT-0, could not solve any problem on a collection
of problems from the SAT competitions. To improve performance, I extended
c© Springer Nature Switzerland AG 2019
J. M. Badger and K. Y. Rozier (Eds.): NFM 2019, LNCS 11460, pp. 148–165, 2019.
https://doi.org/10.1007/978-3-030-20652-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20652-9_10&domain=pdf
http://orcid.org/0000-0002-1705-3083
https://doi.org/10.1007/978-3-030-20652-9_10

Optimizing a Verified SAT Solver 149

IsaSAT with watched literals [15]. The resulting version, IsaSAT-17, could solve
390 problems. Watched literals are a well-known optimization [24] but there
is more to a modern SAT solver. In this article, I present four additional
optimizations.

IsaSAT is specified using stepwise refinement, starting from a non-determi-
nistic transition system [9] that is refined [15] in several steps using the Isabelle
Refinement Framework [27–29]. Each layer refines and restricts the possible
behavior until the program is fully deterministic. After that, Sepref [28] synthe-
sizes an imperative version of the functions which can be exported to Haskell,
OCaml, Scala, or Standard ML by Isabelle’s code generator. Each layer also
inherits properties from previous layers; for example, termination of the exe-
cutable solver is derived from the termination of the initial transition system
(Sect. 3).

Because some idioms made the proofs hard to maintain and slow to process,
I first refactored the Isabelle formalization (Sect. 4). The first optimization is the
use of blocking literals [12] to improve Boolean constraint propagation (Sect. 5).
The idea is to cache a literal for each clause—if the literal is true in the current
partial model of the solver, the clause can be ignored (saving a likely cache miss
by not accessing the clause).

To avoid focusing on hard parts of the search space, the search of a SAT
solver is heuristically restarted and the search direction changed. Clauses that
are deemed useless are also forgotten. However, the standard heuristics rely on
the presence of meta-information in clauses that can be efficiently accessed. To
make this possible, I redesigned the clause representation, which also allowed
me to implement the position saving [16] heuristic (Sect. 6). Extending the SAT
solver with restart and forget required the extension of the calculus with watched
literals: Both behaviors were already present in my abstract calculus but were
not implemented in the next refinement step. Heuristics are critical and easy to
verify, but hard to implement in a way that improves performance (Sect. 7).

Using machine integers instead of unbounded integers is another useful opti-
mization. The new IsaSAT thus uses machine integers until the numbers don’t
fit in them anymore, in which case unbounded integers are used to maintain
completeness (theoretically, IsaSAT could have to learn more than 264 clauses
before reaching the conclusion, which would overflow clause counters). The code
is duplicated in the solver but specified only once (Sect. 8).

I analyze the importance of the different features and compare IsaSAT with
state-of-the-art solvers (Sect. 9). Even though the new features improve IsaSAT
significantly, much more work is required to match the best unverified solvers.
The formalization is available online1 and is part of the Isabelle Formalization
of Logic (IsaFoL) effort [3]. The results presented here were briefly mentioned in
Blanchette’s invited talk at CPP 2019 [7, Section 3].

1 https://bitbucket.org/isafol/isafol/src/master/Weidenbach Book/.

https://bitbucket.org/isafol/isafol/src/master/Weidenbach_Book/

150 M. Fleury

2 The Isabelle Refinement Framework

The Isabelle Refinement Framework is at the center of my approach. Several
refinement layers are used and each layer inherits properties from previous steps.
Each step can change data structures and restrict the behavior of the program.

The framework allows me to express programs in a non-determinism monad.
A program can either fail if any execution fails (FAIL); otherwise, it returns a
set of all possible results (RESX where any element of X is a possible outcome).
RETURNx is a special case that returns the single value x; i.e., RES {x}. The
bind function bindmf applies f to every outcome of m and is most of the time
written with the Haskell-style ‘do’ notation do {a ← m; fa}. Then higher-level
constructs are defined such as ‘while’ loops.

The framework provides a way to express refinement relations between two
programs. First, a program can restrict the behavior of another program. The
framework provides a partial order ≤ such that RES X ≤ RES Y if and only
if X ⊆ Y and FAIL is the top element (for all programs r, r ≤ FAIL). Second,
data structures can also be refined. Given a relation R, g ≤ ⇓R f means that
every outcome of g is also an outcome of f up to conversion by R. To reason
on program refinement, the framework provides tactics that heuristically map
or align one instruction of the refined program to one instruction of the refining
one; for example, they can align RETURNx and RESX, yielding the goal x ∈ X.

Finally, the framework provides the Sepref tool [28], which can synthesize a
deterministic program with imperative data structures in Imperative HOL [10]
from a non-deterministic program. For example, it can refine lists to arrays if all
accesses are proven valid. Once synthesized, Isabelle’s code generator [18] can
be used to export the code to Haskell, OCaml, Scala, and Standard ML.

Code generation in Isabelle is built around a mapping from Imperative HOL
operations to concrete code in the target language. This mapping is composed
of code equations translating code and the correctness of the mapping cannot
be verified in Isabelle. For example, accessing the n-th element of an Imperative
HOL array is mapped to accessing the n-th element of the target language (e.g.,
Array.sub in Standard ML). These equations are the trusted code base.

3 IsaSAT

The IsaSAT solver, which this work extends, is organized in several refinement
layers. Each one restricts the behavior or refines the data structures.

The most abstract layer [9], called CDCL, describes a conflict-driven clause
learning (CDCL) transition system with dedicated transitions for restarts and
forget. CDCL builds a candidate model, called the trail or M . Each time a clause
is not satisfied by the trail, CDCL analyzes the clause to adapt the trail.

The second layer is a non-determinism transition system, called TWL, for two
watched literals, and is expressed using an inductive predicate. It is connected
to the previous calculus but restricts the behavior by forbidding restarts and
forgets. Each clause has two literals called watched ; the others are unwatched.

Optimizing a Verified SAT Solver 151

The calculus operates on states (M,N, U, D,NP ,UP ,WS , Q), where M is the
trail; N and U are the set of clauses of length greater than one; D is the conflict
that is analyzed or �; NP and UP are sets of clauses of length one; WS is a
multiset of pairs (L,C) in the clause C ∈ N +U such that L is a literal watched;
Q is a multiset of literals. The SAT solver must visit each clause once after
one of its watched literal has been set, i.e. the clause C in (L,C) of WS . Each
visit results in either a change of one watched literal in order to maintain the
two-watched-literal invariant or no change. The Ignore rule describes the latter:

Ignore (M,N,U,�,NP ,UP , {(L,C)} � WS , Q) =⇒TWL (M,N,U,�,NP ,UP ,
WS , Q) if L′ ∈ watched C and L′ ∈ M .

Informally, if the other watched literal L′ is true, then no change of the watched
literals of the clause C is required.

The third layer, called Algo, is expressed using the non-determinism monad
of the Refinement Framework. Compared with TWL, the non-deterministic pro-
gram fixes the order of rules, restricting its behavior.

In the first three layers, clauses are represented by multisets. In the fourth
layer, called List, clauses become lists that are accessed by indices. This layer
mostly features invariants stating that accesses using indices are in bounds. In
the fifth layer, called WList, watch lists are added. They keep a mapping from
a literal to all the clauses that are watching it. This mapping is critical for
performance (recalculating them when required is too costly), but it is easier to
introduce watch lists separately. In previous refinement steps, the mapping was
recalculated when required. In a sixth layer, we add some additional invariants.

All heuristics are defined in the seventh and last layer, called Heur, leading to
fully deterministic functions. Sepref is used to synthesize an imperative version
of the code. Following the DIMACS format used in the SAT Competition, the
generated code uses 32-bit machine words for the literals. Finally, Isabelle’s code
generator is used to export code in Standard ML, where it is combined with a
trusted parser to get an executable program. IsaSAT is correct:

Theorem 1 (End-to-End Correctness). If the literals in the input clauses
fit in 32-bits and the input clauses do no contain duplicate literals, then IsaSAT
returns a model if its input is satisfiable, or none if it is unsatisfiable.

4 Refactoring IsaSAT

The optimizations require changes in the proofs and in the code. My first step
is a refactoring to simplify maintenance and writing of proofs.

Proof Style. The original and most low-level proof style is the apply script: It
is a forward style and each tactic creates subgoals. It is ideal for proof explo-
ration and simple proofs. It is, however, hard to maintain. A more readable style
states explicit statements of properties in Isar [42]. The styles can be combined:

152 M. Fleury

Fig. 1. Comparison of the code of Ignore rule in Algo before and after refactoring

each intermediate step can be recursively justified by apply scripts or Isar. For
robustness, I use Isar where possible.

The tactics aligning goals are inherently apply style, but I prefer Isar. I
will show the difference on the example of the refinement of PCUIAlgo (Fig. 1a)
by PCUIList (Fig. 1b). Assume the arguments of the function are related by the
relation ((LC , S), (LC ′, S′)) ∈ Rstate. The first two goals stemming from aligning
PCUIAlgo with PCUIList are

∀L′ L C C ′. ((LC , S), (LC ′, S′)) ∈ Rstate ∧ LC = (L,C) ∧ LC ′ = (L′, C ′) →
(LC ,LC ′) ∈ Rwatched (1)

∀L′ L C C ′. ((LC , S), (LC ′, S′)) ∈ Rstate ∧ LC = (L,C) ∧ LC ′ = (L′, C ′)
∧ (LC ,LC ′) ∈ Rwatched →

RES (watched C − {L}) ≤⇓ Rother watched(RES (watched C ′ − {L′})) (2)

where Eq. (1) relates the two lets, Eq. (2) the two RES, and the relations Rwatched

and Rother watched are two schematic variables that have to be instantiated during
the proof (e.g., by the identity). Although I strive to use sensible variable names,
they are lost when aligning the programs, making the goals harder to understand.

A slightly modified version of Haftmann’s explore tool [17] transforms the
goals into Isar statements. The workflow to use it is the following. First, use
Sepref’s tactic to align two programs. Then, explore prints the structured state-
ments. Finally, those statements can be inserted in the theory, before the goal.
Figure 2a shows the output: Eqs. (1) and (2) corresponds to the two have state-
ments, where have Rx if P x and Qx for x stands for the unstructured goal
∀x. (P x ∧ Q x −�→ R x). Each goal can be named and used to solve one proof
obligations arising from the alignment of the two programs.

explore does not change the goals and hence, variables and assumptions
are not shared between proof steps, leading to duplication across goals. I later
expanded the explore to preprocess the goals before printing them: It uses
contexts (Fig. 2b) that introduces blocks sharing variables and assumptions.
These proofs are now faster to check and write and minor changes are easier to
do. There is no formal link between the statements and the goal obligations: If

Optimizing a Verified SAT Solver 153

the goal obligations changes, the Isar statements have to be updated by hand.
After big changes in the refined functions, it can be easier to regenerate the
new statements, re-add them to the theory, and reprove them than to adapt the
old one. Thanksfully, this only happens a few times, usually when significantly
changing the function anyway, which also significantly changes the proof.

Fig. 2. Different ways of writing the proof that PCUIList from Fig. 1a refines PCUIAlgo

Heuristics and Data Structures. At first, the implementation of heuristics
and optimized data structures was carried out in three steps:

1. use specification and abstract data structure in Heur (e.g., the conflict clause
is an optional multiset);

2. map the operations on abstract to concrete functions (e.g., the function con-
verting a clause to a conflict clause is refined to a specific function converting
a clause to a lookup table);

3. discharge the preconditions from step 2 with Sepref (e.g., no duplicate literal).

In principle, if step 2 is changed, Sepref can synthesize a new version of the code
without other changes, making it easy to generate several versions to compare
heuristics and data structures. However, in practice, this never happens because
optimizing code further always requires stronger invariants, requiring to change
the proofs for step 3. Moreover, Sepref’s failures to discharge preconditions are
tedious to debug. To address this, I switched to a different approach:

1′. introduce the heuristics and data structures in Heur (e.g., the conflict is a
lookup table);

2′. add assertions for preconditions on code generation to Heur.

The theorems used to prove steps 2 are now used during the refinement to Heur.
Sepref is also faster since the proofs of 2′ are now trivial. In one extreme case,

154 M. Fleury

Sepref took 24 min before failing with the old approach. After identifying the
error, the solution was to add another theorem, recall Sepref, and wait. Thanks
to this simpler approach and the entire-state based refinement, Sepref now takes
only 16 s to synthesize the code (or fail).

5 Adding Blocking Literals

Blocking literals [12] are an extension of the two-watched-literal scheme and are
composed of two parts: a relaxed invariant and the caching of a literal. Most SAT
solvers implement both aspects. Blocking literals reduce the number of memory
accesses (and, therefore, of cache misses).

Fig. 3. Refinement of the rule Ignore with blocking literals from Algo to WList

Invariant. IsaSAT-17’s version of the two-watched-literal scheme is inspired by
MiniSAT 1.13. The key invariant is the following [15]:

A watched literal can be false only if the other watched literal is true or all
the unwatched literals are false.

I now relax the condition by replacing “the other watched literal” by “any other
literal”. This weaker version means that there are fewer changes to the watched
literals to do: If there is a true literal, no change is required. Accordingly, the
side conditions of the Ignore rule of TWL can be relaxed from L′ ∈ watched C
to L′ ∈ C. Adapting the proof of correctness was relatively easy. The proofs are
easy to fix (after adding some key lemmas) thanks to Sledgehammer [8], a tool
that uses automatic theorem provers to find proofs.

The generalized Ignore rule is refined to the non-determinism monad (Fig. 3a).
Since the calculus has only been generalized, no change in the refinement would
have been necessary. In the code, the rule can be applied in three different ways:

Optimizing a Verified SAT Solver 155

Either L′, the other watched literal L′′, or another literal from the clause is true
(the last case is not shown in Fig. 3). Any literal (even the false watched literal
L) can be chosen for L′.

Caching of a Literal. Most SAT solvers contain an second part: When visiting
a clause, it is often sufficient to visit a single literal [37]. Therefore, to avoid a
likely cache miss, a literal per clause, called blocking literal, is cached in the
watch lists. If it is true, no additional work is required; otherwise, the clause is
visited: If a true literal is found, this literal is elected as new blocking literal,
requiring no update of the watch lists.

In the refinement step WList, the choice is fixed to the cached literal from
the watch list (Fig. 3b). The identity “let L′ = L′;” helps the tactics of the
Refinement Framework to recognize L′ as the choice for RES {L′ | L′ ∈ C}, i.e.
yielding the goal obligation L′ ∈ RES {L′ | L′ ∈ C}.

IsaSAT’s invariant on the blocking literal forces the blocking literal to be dif-
ferent from the associated watch literal (corresponding to the condition L = L′ in
Fig. 3). This is not necessary for correctness but offers better performance (since
L is always false) and enables special handling of binary clauses: No memory
access is necessary to know the content of the clause. IsaSAT’s watched lists
contain an additional Boolean indicating whether the clause is binary.

6 Improving Memory Management

The representation of clauses and their metadata used for heuristics is crucial
for the performance of SAT solvers. Most solvers use two ideas: First, they keep
the metadata and clauses together. For example, MiniSAT puts the metadata
before the clause. The second idea is that memory allocation puts clauses one
after the other in memory to improve locality.

Fig. 4. Example of arena module with two clauses A∨B ∨C (initial clause, ‘init’) and
¬A ∨ ¬B ∨ C ∨ D (learned clause, ‘learn’)

However, none of these two tricks can be directly obtained by refinement and
Isabelle offers no control over the memory allocator. Therefore, I implemented
both optimizations at once, similarly to the implementation in CaDiCaL [4].
The implementation uses a large array, the arena, to allocate each clause one
after the other, with the metadata before the clauses (Fig. 4): The lengths (here
3 and 4) precede the clause. Whereas the specifications allow the representation
to contain holes between clauses, the concrete implementation avoids it.

In IsaSAT-17, the clauses were a list of clauses, each one being a list of
literals (both list being refined to arrays). This representation could not be

156 M. Fleury

refined to an arena. Moreover, it was not compatible with removing clauses
without shifting the positions. For example, if the first clause was removed from
the list [A ∨ B ∨ C; ¬A ∨ ¬B ∨ C ∨ D], then the position of the second clause
changed. This was a problem as the indices are used in the trail. Therefore, I
first changed the representation from a list of lists to a mapping from natural
numbers to clauses. Then, every element of the domain was mapped to a clause
in the arena with the same index (for example, in Fig. 4, the clause 2 is A∨B∨C;
7 is ¬A ∨ ¬B ∨ C ∨ D; there are no other clauses).

Introducing arenas requires some subtle changes to the existing code base.
First, the arena contains natural numbers (clause length) and literals (clause
content). Therefore, I use a datatype (as a tagged union) that contains either
a literal or a natural number. Both types are refined to the same type, a
32-bits word and the datatype is removed when synthesizing code. An invariant
on the whole arena describes its content. Moreover, because literals are refined
to 32-bit machine words, the length has to fit in 32 bits. However, as the input
problems can contain at most 216 different atoms and duplicate-free tautologies,
the maximum length of a clause is 232. To make it possible to represent all clauses
including those of size 232, the arena actually keeps the number of unwatched
literals (i.e., the length minus 2), unlike Fig. 4.

While introducing the arena, I also optimized parts of the formalization. I
replaced loops on a clause starting at position C in the arena (i.e., iterations on
C+ i for i in [0, lengthC]) by loops on the arena fragment (i.e., iteration on i for
i in [C,C+lengthC]). This makes it impossible to compare IsaSAT-30 with and
without the memory module without changes in the formalization. The impact
of the arena was small (improvement of 2%, and a few more problems could be
solved), but arenas make it possible to add metadata for heuristics.

Position Saving. I implemented a heuristic called position saving [16], which
requires an additional metadata. It considers a clause as a circular buffer: When
looking for a new literal, the search starts from the last searched position instead
of starting from the first non-watched literal of the clause. The position is saved
as a metadata of the clause. Similarly to CaDiCaL [4], the heuristic is only used
for long clauses (length larger than four). Otherwise, the position field is not
allocated in the arena (i.e., the size of the metadata depends on the clause size).
Incorporating the heuristic was easy thanks to non-determinism. For example,
to apply the Ignore rule, finding a true literal is sufficient, how it is found is not
specified. This makes it easy to verify a different search algorithm.

Although there exist some benchmarks showing that this technique improve
the performance of solvers [5], only CaDiCaL and Lingeling [4] implement it
and I did not know if it would improve IsaSAT: The generated code is hardly
readable and hard to change in order to test such techniques. However, it was
easy to add and it improves performance on most problems (see Sect. 9).

Optimizing a Verified SAT Solver 157

7 Implementing Restarts and Forgets

CDCL-based SAT solvers have a tendency to get stuck in a fruitless area of
the search space and to clutter their memory with too many learned clauses.
Most modern SAT solvers offer two countermeasures. Restarts try to avoid focus-
ing on a hard part of the search space. Forgets limit the number of clauses because
too many of them slow down the solver.

Fig. 5. Skipping deleted clauses during iteration over the watch list

Completeness is not guaranteed anymore if restart and forget are applied
too often. To keep completeness, I delay them more and more. TWL does not
propagate clauses of length 1, because they do not fit in the two-watched-literal
scheme. These clauses are propagated during the initialization are cannot be
removed from the trail. However, such clauses will always be repropagated by
CDCL. Therefore, a TWL restart corresponds to a CDCL restart and some prop-
agations. If decisions are also kept, then IsaSAT can reuse parts of the trail [36].
This technique avoids redoing some work after a restart. The trail could even be
entirely reused if the decision heuristics would do the same decisions.

When forgetting several clauses at once, called one reduction step, IsaSAT
uses the LBD [1] (least block distance) to sort the clauses by importance, and
then keeps only linearly many (linear in the number restarts). All other learned
clauses are deleted. I have not yet implemented garbage collection for the arena,
so deleted clauses currently remain in memory forever.

After clauses have been marked as deleted, the watch lists are not garbage
collected. Instead, before accessing a clause, IsaSAT tests if the clause has been
deleted or not. However, this is an implementation-specific detail I don’t want
to mirror in Algo. To address this, I changed Algo in a less intrusive way. Before
Algo was iterating over WS . After the change, a finite number of no-ops is added
to the while loop (Fig. 5). When aligning the two programs, an iteration over a
deleted clause is mapped to a no-op. More precisely, there are two tests: whether
the blocking literal is true and whether the clause is marked as deleted. If the
blocking literal is true, the state does not change (whether the clause is deleted
or not). Otherwise, the clause has to be accessed. If the clause is deleted, it is
removed from the watch list.

158 M. Fleury

IsaSAT uses the EMA-14 heuristic [6], which is based on two exponential
moving averages of scores, implemented using fixed-points numbers: a “slow”
average measuring the long-term tendency of the scores and a “fast” one for the
local tendency. If the fast average is worse than the slow one, the heuristic is
triggered. Then, depending on the number of clauses, either restart or reduce is
triggered. The heuristic follows the unpublished implementation of CaDiCaL [4],
with fixed-point calculations. This is easier to implement than Glucose’s queue
for scores. Due to programming errors, it took several iterations to get EMA-14
right: The first version never restarted while the second did as soon as possible.
Although both versions were complete, the last version performed better.

8 Using Machine Integers

When I started to work on IsaSAT, it was natural to use unbounded integers
to index clauses in the arena (refined from Isabelle’s natural numbers). First,
they are the only way to write lists accesses in Isabelle (further refined to array
accesses). Second, they are also required for completeness to index the clauses
and there was also no code-generation setup for array accesses with machine
words. Finally, the Standard ML compiler I use, MLton [41], efficiently imple-
ments numbers first as machine words and then as unbounded GMP integers.
However, profiling showed that subtractions and additions took among them
around 10% of the time.

I decided to switch to machine words. Instead of failing upon overflow or
restarting the search from scratch with unbounded integers, IsaSAT switches in
the middle of the search:

while ¬ done ∧ ¬ overflow do
〈invoke the 64-bit version of the solver’s body〉;

if ¬ done then
〈convert the state from 64-bit to unbounded integers〉;
while ¬ done do

〈invoke the unbounded version of the solver’s body〉

The switch is done pessimistically. When the length of the arena is longer
than 264 − 216 − 5 (maximum size of a non-tautological clause without duplicate
literals is 216 and 5 is the maximal number of header fields), the solver switches
to unbounded integers, regardless of the size of the next clause. This bound is
large enough to make a switch unlikely in practice. In Isabelle, the two versions
of the solver’s body are just two instances of the same function where Sepref has
refined Isabelle’s natural numbers differently during the synthesis. To synthesize
machine words, Sepref must prove that numbers cannot overflow. For example,
if i is refined to the 64-bit machine word w, then the machine-word addition
w+1 refines i+1 if the addition does not overflow, i.e., i+1 < 264. The code for
data structures like resizable arrays (used for watch lists) has not been changed
and, therefore, still uses unbounded integers. However, some code was changed
to limit manipulation on the length of resizable arrays.

Optimizing a Verified SAT Solver 159

IsaSAT uses 64-bit machine words instead of 32-bit machine words. They are
used in the trail but mostly in the watch lists. Using 32-bits words would be
more cache friendlier for the trail. However, this would not make any difference
for watch lists. Each element in a watch list contains a clause index, a 32-bit
literal, and a Boolean. Due to padding, there is not size difference for 32 and
64-bit words. Moreover, the SAT Competition contains problems that require
more memory than fits in 32 bits: After hitting the limit, IsaSAT would switch
to the slower unbounded version of the solver, whereas no switch is necessary
for 64-bit indices.

9 Evaluation

I evaluated IsaSAT-30 on preprocessed problems from the SAT Competitions
2009 to 2017 and from the SAT Race 2015 using a timeout of 1800s. The hard-
ware was an Intel Xeon E5620, 2.40 GHz, 4 cores, 8 threads. Each instance
was limited to 10 GB of RAM. The problems were preprocessed by Crypto-
MiniSat [38]. The motivation behind this is that preprocessing can significantly
simplify the problem. Detailed results can be found on the companion web page2.

Fig. 6. Performance of some SAT solvers (N/A if no simplification is done by default)

State-of-the-art solvers solve more problems than IsaSAT with the default
options (Fig. 6). Since the instances have already been preprocessed, the differ-
ence comes from a combination of simplifications (pre- and inprocessing), better
heuristics, and a better implementation. To assess the difference, I have also
benchmarked the solvers without simplification (third column of Fig. 6). Heule’s
MicroSAT [21] aims at being very short (240 lines of code including comments).
Compared with IsaSAT, it has neither position saving nor blocking literals but
is highly optimized and its heuristics work well together. The version without
2 https://people.mpi-inf.mpg.de/∼mfleury/paper/results-NFM/results.html.

https://people.mpi-inf.mpg.de/~mfleury/paper/results-NFM/results.html

160 M. Fleury

Fig. 7. Benchmarks of variants of IsaSAT-30 before fixing the forget heuristic

the four presented optimizations differs from IsaSAT-17 by various minor opti-
mizations. IsaSAT performs better than the only other verified SAT solver with
efficient data structures I know of, versat [35].

I compared the impact of reduction, restart, position saving, and machine
words (Fig. 7). Since Standard ML is garbage-collected, the peak memory usage
depends on the system’s available memory. The results show that restarts and
machine words have a significant impact on the number of solved problems. The
results are less clear for the other features. Position saving mostly has a positive
impact. The negative influence of reduction hints at a bad heuristic: I later tuned
the heuristic by keeping clauses involved in the conflict analysis and the results
improved from 749 to 801 problems. The fact that garbage collection of the arena
is not implemented could also have an impact, as memory is wasted.

10 Discussion and Related Work

Extracting Efficient Code. When refining the code, it is generally not clear
which invariants will be needed later. However, I noticed that improvements on
data structures also require stronger properties. Therefore, proving them early
can help further refinement but also makes the proofs more complicated. Another
issue is that the generated code is not readable, which makes it extremely hard
to change in order to test if a data structure or a heuristic improves speed.

Profiling is crucial to obtain good performance. First, it shows if there are
some obvious gains. However, profiling Standard ML code is not easy. MLton
has a profiler which only gives the total amount of time spent in the function

Optimizing a Verified SAT Solver 161

(not including the function calls in its body) and not the time per path in the
call graph. So performance bugs in functions that don’t dominate run time are
impossible to identify. One striking example was the insertion sort used to sort
the clauses during reduction. It was the comparison function that was dominating
the run time, not the sort itself, which I changed to quicksort.

Continuous testing also turned out to be important. It can catch performance
regression before any change in the search behavior is done, allowing me to
debug them. One extreme example was the special handling of binary clauses:
A Boolean was added to every element of the watch list, changing the type from
word64 * word32 to word64 * (word32 * bool). This change in the critical
spot of any SAT solver caused a performance loss of around 20% due to 3.5
times as many cache misses. Since the search behavior had not changed, I took
a single problem and tried to understand where the regression came from. First,
word64 * (word32 * bool) is less efficient than word64 * word32 * bool as
it requires a pointer for word32 * bool. This can be alleviated by using a single
constructor datatype (the code generator generates the later version and the
single constructor is optimized away). However, there is a second issue: The
tuple uses three 64-bit words, whereas only two would be used in the equivalent
C structure. I added code equations to merge the word32 * bool into a single
word64 (with 31 unused bits), solving the regression. Developers of non-verified
SAT solvers face similar issues3 but they are more tools for C and C++.

While working on the SAT solver, I added several code equations to the
trusted code base. The additional code equations are either trying to avoid con-
versions to unbounded integers (IntInf) and back (as would happen by default
when accessing arrays) or related to printing statistics during the execution.
Whether or not the equations are safe is not always obvious. For example, the
code equations to access arrays without converting the numbers to unbounded
integers and back4 are safe as long as the array bounds are checked.

However, IsaSAT is compiled with an option that deactivates array-access
bound checks. When accessing elements outside of an array, the behavior is
undefined. As long as I am using Sepref and the assumptions of Theorem 1 hold,
validity of the memory accesses is proved. Without the custom code equations
and with bound checks, only 536 problems are solved, instead of 749.

Equivalent C code would be more efficient. First, as already mentioned,
there are differences in the memory guarantees. Standard ML does not pro-
vide information on the alignment. A second issue are spurious reallocations.
A simple example is the function fun (propa, s) => (propa + 1, s). This
simple function (counting the number of propagations) is responsible for 1.7% of
all allocations although I would expect no extra allocation. A third issue is that
the generated code is written in a functional style with many unit arguments
fun () => ... to ensure that side effects are done in the right order. Not every
compiler supports optimizing these additional constructs away.

3 E.g., https://www.msoos.org/2016/03/memory-layout-of-clauses-in-minisat/.
4 Although the Standard ML specification encourages compilers to optimize such code.

https://www.msoos.org/2016/03/memory-layout-of-clauses-in-minisat/

162 M. Fleury

All the optimizations have an impact on the length of the formalization. The
whole formalization is around 31 000 lines of proof for refinement from TWL to
the last layer Heur, 35 000 lines (Heur and code generation), and 9000 lines for
libraries. The entiree generated Standard ML code is 8100 lines long.

Related Work. This work is related to other verification attempts of fast code,
like Lammich’s GRAT toolchain [26,30]. One of the differences is that he uses
a C++ program to preprocess the certificates in order to be able to check them
more efficiently later. However, like a SAT solver, a checker uses many arrays
and therefore would likely benefit from machine words.

Unlike the top-down approach used here, the verification of the seL4 micro-
kernel [25] relies on abstracting the program to verify. An abstract specification
in Isabelle is refined to an Haskell program. Then, a C program is abstracted
and connected to the Haskell program. Unbounded integers are not supported in
C and therefore achieving completeness of a SAT solver would not be possible.
Other techniques to abstract programs exist, like Chargueraud’s characteristic
formulas [11]. Another option is Why3 [14] or a similar verification condition
generator like Dafny [31]. Some meta-arguments in Why3 (for example, incre-
menting a 64-bit machine integer initialized with 0 will not overflow in a reason-
able amount of time; therefore, machine integers are safe [13]) would simplify
the generation of efficient code. In any case, refinement helps to verify a large
program.

Isabelle’s code generator does not formally connect the generated code to the
original function. On the one hand, Hupel’s verified compiler [23] from Isabelle
to the semantics of the verified Standard ML compiler CakeML could bridge the
gap. However, code export from Imperative HOL is not yet supported. On the
other hand, HOL4 in conjunction with CakeML makes it possible to bridge this
gap and also to reason about input and output like parsing the input file and
printing the answer [22]. There is, however, no way to eliminate the array-access
checks. Moreover, CakeML uses boxed machine words unlike MLton, which prob-
ably leads to a significant slowdown.

Marić has developed another verified SAT solver [33] in Isabelle without
refinement, making his formalization impossible to extend. Moreover, a different
version of watched literals, no efficient data structures (only lists), nor heuristics
are used. Oe et al. use a different verification approach without refinement for
versat. The Guru proof assistant [39] is used to generate C code. Termination
or correctness of the generated model is not proven. Similarly to IsaSAT, versat
uses machine words—it relies on int to be 32 bits, which is not guaranteed in C—
but cannot solve larger instances. The SAT competition includes such problems
which usually can be solved easily if the decision heuristic initially makes literals
false. There is no bound checking for arrays. versat features a different flavor
of watched literals but neither blocking literals nor restart or forget.

Among SAT solvers, there are two main lines of research: Solvers derived from
MiniSAT, like Glucose [2] and MapleSAT [32], focus on improving CDCL (and
especially the heuristics) whereas solvers like CaDiCaL [4], CryptoMiniSat [38]
and Lingeling [4] also feature inprocessing.

Optimizing a Verified SAT Solver 163

11 Conclusion

I have extended a verified SAT solver, IsaSAT, with four additional optimiza-
tions to improve performance and I have verified those extensions. Even if the
refinement approach is helpful, adding these optimizations is a significant effort.
Lammich is currently working on generating LLVM code which could give more
control on the generated code (e.g., the tuples representation is more efficient).

I now plan to extend my calculus to be able to represent CDCL(T), the
calculus behind SMT solvers. The theory of linear arithmetic has already been
implemented by Thiemann [40].

Acknowledgment. Jasmin Blanchette discussed several earlier drafts with me. This
work would not have been possible without Christoph Weidenbach and Peter Lammich.
Marijn Heule, Benjamin Kiesl, Peter Lammich, Hans-Jörg Schurr, Petar Vukmirović,
and the anonymous reviewers suggested many textual improvements.

References

1. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Boutilier, C. (ed.) IJCAI 2009, pp. 399–404. Morgan Kaufmann Publishers Inc.
(2009). http://ijcai.org/Proceedings/09/Papers/074.pdf

2. Audemard, G., Simon, L.: Glucose 2.1: aggressive–but reactive–clause database
management, dynamic restarts. In: Workshop on the Pragmatics of SAT 2012
(2012)

3. Becker, H., Bentkamp, A., Blanchette, J.C., Fleury, M., From, A.H., Jensen, A.B.,
Lammich, P., Larsen, J.B., Michaelis, J., Nipkow, T., Peltier, N., Popescu, A.,
Robillard, S., Schlichtkrull, A., Tourret, S., Traytel, D., Villadsen, J., Petar, V.:
IsaFoL: Isabelle Formalization of Logic. https://bitbucket.org/isafol/isafol/

4. Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT entering the SAT
competition 2017. In: Balyo, T., Heule, M., Järvisalo, M. (eds.) SAT Competition
2017: Solver and Benchmark Descriptions, pp. 14–15. University of Helsinki (2017)

5. Biere, A.: Deep bound hardware model checking instances, quadratic propaga-
tions benchmarks and reencoded factorization problems. In: Balyo, T., Heule, M.,
Järvisalo, M. (eds.) SAT Competition 2017: Solver and Benchmark Descriptions,
pp. 37–38. University of Helsinki (2017)

6. Biere, A., Fröhlich, A.: Evaluating CDCL restart schemes. In: Proceedings POS-15.
Sixth Pragmatics of SAT Workshop (2015)

7. Blanchette, J.C.: Formalizing the meta theory of logical calculi and automatic
provers in Isabelle/HOL (invited talk). In: Mahboubi, A., Myreen, M.O. (eds.)
CPP 2019. pp. 1–13. ACM (2019). https://doi.org/10.1145/3293880.3294087

8. Blanchette, J.C., Böhme, S., Fleury, M., Smolka, S.J., Steckermeier, A.: Semi-
intelligible ISAR proofs from machine-generated proofs. J. Autom. Reasoning
56(2), 155–200 (2016). https://doi.org/10.1007/s10817-015-9335-3

9. Blanchette, J.C., Fleury, M., Weidenbach, C.: A verified SAT solver framework
with learn, forget, restart, and incrementality. In: Olivetti, N., Tiwari, A. (eds.)
IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 25–44. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-40229-1 4

http://ijcai.org/Proceedings/09/Papers/074.pdf
https://bitbucket.org/isafol/isafol/
https://doi.org/10.1145/3293880.3294087
https://doi.org/10.1007/s10817-015-9335-3
https://doi.org/10.1007/978-3-319-40229-1_4
https://doi.org/10.1007/978-3-319-40229-1_4

164 M. Fleury

10. Bulwahn, L., Krauss, A., Haftmann, F., Erkök, L., Matthews, J.: Imperative func-
tional programming with Isabelle/HOL. In: Mohamed, O.A., Muñoz, C., Tahar, S.
(eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 134–149. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-71067-7 14

11. Charguéraud, A.: Characteristic formulae for the verification of imperative pro-
grams. In: ICFP, pp. 418–430. ACM (2011). https://doi.org/10.1145/2034773.
2034828

12. Chu, G., Harwood, A., Stuckey, P.J.: Cache conscious data structures for Boolean
satisfiability solvers. JSAT 6(1–3), 99–120 (2009)

13. Clochard, M., Filliâtre, J.-C., Paskevich, A.: How to avoid proving the absence
of integer overflows. In: Gurfinkel, A., Seshia, S.A. (eds.) VSTTE 2015. LNCS,
vol. 9593, pp. 94–109. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
29613-5 6

14. Filliâtre, J.-C., Paskevich, A.: Why3—Where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6 8

15. Fleury, M., Blanchette, J.C., Lammich, P.: A verified SAT solver with watched
literals using Imperative HOL. In: CPP, pp. 158–171. ACM (2018). https://doi.
org/10.1145/3167080

16. Gent, I.P.: Optimal implementation of watched literals and more general tech-
niques. J. Artif. Intell. Res. 48, 231–251 (2013). https://doi.org/10.1613/jair.4016

17. Haftmann, F.: Draft toy for proof exploration, August 2013. www.mail-archive.
com/isabelle-dev@mailbroy.informatik.tu-muenchen.de/msg04443.html

18. Haftmann, F., Nipkow, T.: Code Generation via Higher-Order Rewrite Systems.
In: Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp.
103–117. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12251-
4 9

19. Heule, M.J.H.: Schur Number Five. In: McIlraith, S.A., Weinberger, K.Q. (eds.)
Proceedings of AAAI 2018, pp. 6598–6606. AAAI Press (2018). https://www.aaai.
org/ocs/index.php/AAAI/AAAI18/paper/view/16952

20. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the Boolean
Pythagorean triples problem via cube-and-conquer. In: Creignou, N., Le Berre, D.
(eds.) SAT 2016. LNCS, vol. 9710, pp. 228–245. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-40970-2 15

21. Heule, M.: microsat (2014). https://github.com/marijnheule/microsat
22. Ho, S., Abrahamsson, O., Kumar, R., Myreen, M.O., Tan, Y.K., Norrish, M.:

Proof-producing synthesis of CakeML with I/O and local state from monadic HOL
functions. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS
(LNAI), vol. 10900, pp. 646–662. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-94205-6 42

23. Hupel, L., Nipkow, T.: A verified compiler from Isabelle/HOL to CakeML. In:
Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp. 999–1026. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89884-1 35

24. Katebi, H., Sakallah, K.A., Marques-Silva, J.P.: Empirical study of the anatomy of
modern sat solvers. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol.
6695, pp. 343–356. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21581-0 27

25. Klein, G., et al.: seL4: formal verification of an operating-system kernel. Commun.
ACM 53(6), 107–115 (2010). https://doi.org/10.1145/1743546.1743574

26. Lammich, P.: GRAT–efficient formally verified SAT solver certification toolchain.
http://www21.in.tum.de/∼lammich/grat/

https://doi.org/10.1007/978-3-540-71067-7_14
https://doi.org/10.1145/2034773.2034828
https://doi.org/10.1145/2034773.2034828
https://doi.org/10.1007/978-3-319-29613-5_6
https://doi.org/10.1007/978-3-319-29613-5_6
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1145/3167080
https://doi.org/10.1145/3167080
https://doi.org/10.1613/jair.4016
www.mail-archive.com/isabelle-dev@mailbroy.informatik.tu-muenchen.de/msg04443.html
www.mail-archive.com/isabelle-dev@mailbroy.informatik.tu-muenchen.de/msg04443.html
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-642-12251-4_9
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16952
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16952
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-319-40970-2_15
https://github.com/marijnheule/microsat
https://doi.org/10.1007/978-3-319-94205-6_42
https://doi.org/10.1007/978-3-319-94205-6_42
https://doi.org/10.1007/978-3-319-89884-1_35
https://doi.org/10.1007/978-3-642-21581-0_27
https://doi.org/10.1007/978-3-642-21581-0_27
https://doi.org/10.1145/1743546.1743574
http://www21.in.tum.de/~lammich/grat/

Optimizing a Verified SAT Solver 165

27. Lammich, P.: Automatic data refinement. In: Blazy, S., Paulin-Mohring, C.,
Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 84–99. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39634-2 9

28. Lammich, P.: Refinement to Imperative/HOL. In: Urban, C., Zhang, X. (eds.) ITP
2015. LNCS, vol. 9236, pp. 253–269. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-22102-1 17

29. Lammich, P.: Refinement based verification of imperative data structures. In: Avi-
gad, J., Chlipala, A. (eds.) CPP 2016, pp. 27–36. ACM (2016). https://doi.org/
10.1145/2854065.2854067

30. Lammich, P.: Efficient verified (UN)SAT certificate checking. In: de Moura, L.
(ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 237–254. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63046-5 15

31. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

32. Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching
heuristic for SAT solvers. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS,
vol. 9710, pp. 123–140. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40970-2 9

33. Marić, F.: Formal verification of a modern SAT solver by shallow embedding into
Isabelle/HOL. Theor. Comput. Sci. 411(50), 4333–4356 (2010). https://doi.org/
10.1016/j.tcs.2010.09.014

34. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

35. Oe, D., Stump, A., Oliver, C., Clancy, K.: versat: a verified modern SAT solver. In:
Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012, vol. 7148, pp. 363–378. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-27940-9 24

36. Ramos, A., van der Tak, P., Heule, M.J.H.: Between restarts and backjumps. In:
Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 216–229. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21581-0 18

37. Ryan, L.: Efficient algorithms for clause-learning SAT solvers. Master’s thesis,
Simon Fraser University (2004)

38. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2 24

39. Stump, A., Deters, M., Petcher, A., Schiller, T., Simpson, T.W.: Verified program-
ming in Guru. In: Altenkirch, T., Millstein, T.D. (eds.) PLPV 2009, pp. 49–58.
ACM (2009). https://doi.org/10.1145/1481848.1481856

40. Thiemann, R.: Extending a verified simplex algorithm. In: Barthe, G., Korovin, K.,
Schulz, S., Suda, M., Sutcliffe, G., Veanes, M. (eds.) LPAR-22 Workshop and Short
Paper Proceedings. Kalpa Publications in Computing, vol. 9, pp. 37–48. EasyChair
(2018). https://easychair.org/publications/paper/6JF3

41. Weeks, S.: Whole-program compilation in MLton. In: ML, p. 1. ACM (2006).
https://doi.org/10.1145/1159876.1159877

42. Wenzel, M.: Isabelle/Isar–A generic framework for human-readable proof docu-
ments. In: Matuszewski, R., Zalewska, A. (eds.) From Insight to Proof: Festschrift
in Honour of Andrzej Trybulec, Studies in Logic, Grammar, and Rhetoric, vol.
10(23). University of Bia�lystok (2007)

https://doi.org/10.1007/978-3-642-39634-2_9
https://doi.org/10.1007/978-3-319-22102-1_17
https://doi.org/10.1007/978-3-319-22102-1_17
https://doi.org/10.1145/2854065.2854067
https://doi.org/10.1145/2854065.2854067
https://doi.org/10.1007/978-3-319-63046-5_15
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1016/j.tcs.2010.09.014
https://doi.org/10.1016/j.tcs.2010.09.014
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-642-27940-9_24
https://doi.org/10.1007/978-3-642-21581-0_18
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1145/1481848.1481856
https://easychair.org/publications/paper/6JF3
https://doi.org/10.1145/1159876.1159877

Model Checking of Verilog RTL Using
IC3 with Syntax-Guided Abstraction

Aman Goel(B) and Karem Sakallah

University of Michigan, Ann Arbor, USA
{amangoel,karem}@umich.edu

Abstract. While bit-level IC3-based algorithms for hardware model
checking represent a major advance over prior approaches, their reliance
on propositional clause learning poses scalability issues for RTL designs
with wide datapaths and complex word-level operations. In this paper we
present a novel technique that combines IC3 with syntax-guided abstrac-
tion (SA) to allow scalable word-level model checking using SMT solvers.
SA defines the abstraction implicitly from the syntax of the input prob-
lem, has high granularity and an abstract state-space size completely
independent of the bit widths of the design’s registers. We show how to
efficiently integrate IC3 with SA, and demonstrate its effectiveness on
a suite of open-source and industrial Verilog RTL designs. Additionally,
SA aligns easily with data abstraction using uninterpreted functions. We
demonstrate how IC3+SA with data abstraction allows reasoning that
is completely independent of the bit width of variables, and becomes
scalable irrespective of the state-space size or complexity of operations.

1 Introduction

IC3 [13] (also known as PDR [25]) is arguably the most successful technique for
hardware model checking. Bit-level engines using IC3 (e.g. ABC [8], IIMC [14],
PDTRAV [16], AVY [49]) have shown exceptional performance in hardware
model checking competitions (HWMCC) [10]. As the size and complexity of
the problem increases, the bit-level IC3 algorithm suffers from two main scala-
bility issues: poor SAT solver performance, and learning too many weak proposi-
tional frame restrictions. Several techniques have been proposed to address these
challenges (e.g. [20,31–33,40,48,50]), including different ways of adding a layer
of abstraction refinement [22,37] to reduce the burden on reasoning engines.
Approaches like [20,40] suggest raising IC3 to the word level by exploiting high-
level information missing at the bit level. These techniques replace bit-level
reasoning using SAT solvers with word-level clause learning in first order logic
(FOL) using SMT [7] solvers.

The Averroes system [39,40] demonstrated how EUF abstraction [4,5,15] can
be exploited to perform word-level IC3 on control-centric Verilog RTL designs.
The technique performed backward reachability using a weakest precondition
algorithm, effectively causing an implicit unrolling of the transition relation

c© Springer Nature Switzerland AG 2019
J. M. Badger and K. Y. Rozier (Eds.): NFM 2019, LNCS 11460, pp. 166–185, 2019.
https://doi.org/10.1007/978-3-030-20652-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20652-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-20652-9_11

Model Checking of Verilog RTL Using IC3 with Syntax-Guided Abstraction 167

which leads to poor performance and possible non-termination in some situa-
tions. This typically happens when the property being checked is strongly depen-
dent on data operations, for which EUF abstraction is ill-suited, and leads to an
excessive number of data refinement iterations to repair the abstraction.

In this paper we address these issues by extending the Averroes approach
beyond control-centric problems using syntax-guided abstraction (SA). Inspired
by EUF abstraction, SA implicitly creates an abstraction using the terms present
in the syntax of the problem yielding an abstract domain whose size is completely
independent of the bit widths of the registers or the sequential depth [43] of
the design. SA offers high granularity and captures all equality relations among
the terms present in the syntax of the problem, while also interpreting data
operations. Any spurious behavior is eliminated by adding new terms that were
missing in the original problem. We show how to efficiently combine IC3 with
SA (IC3+SA), and extend IC3+SA with data abstraction using uninterpreted
functions (UF). IC3+SA with data abstraction allows for abstract reasoning
that is completely independent of the design’s bit widths and offers scalability
irrespective of the problem size or complexity of operations.
Our main contributions are as follows:

– We present syntax-guided abstraction to implicitly capture the most relevant
details from the syntax of the system with negligible computation cost.

– We present an efficient syntax-guided cube generalization procedure for word-
level IC3 that is quantifier-free, doesn’t require any solver calls, and does not
perform any implicit or explicit unrolling of the transition relation.

– We suggest a fully incremental procedure to refine SA and eliminate any
spurious behavior in the abstract domain.

– We show how IC3+SA can be easily extended with data abstraction using
UF for complete and scalable model checking on control-intensive problems.

The paper is organized as follows: Sect. 2 presents the relevant background to
describe the detailed SA approach in Sect. 3. Section 4 shows how SA is inte-
grated within the IC3 framework, and the correctness of this method is proved
in Sect. 5. Section 6 covers implementation details and presents an experimental
evaluation on a diverse set of RTL benchmarks. The paper concludes with a brief
survey of related work in Sect. 7, and a discussion of future directions in Sect. 8.

2 Background

2.1 Notation

Our setting is standard first-order logic with the notions of sort, universe, sig-
nature, and structure defined in the usual way [7]. A term is a constant symbol,
or an n-ary function symbol applied to n terms. An atom is �, ⊥ or an n-ary
predicate symbol applied to n terms. A literal is an atom or its negation, a cube
is a conjunction of literals, and a clause is a negation of a cube, i.e., a disjunc-
tion of literals. A quantifier-free formula is a literal or the application of logical
connectives to formulas.

168 A. Goel and K. Sakallah

We will refer to all terms with a non-boolean range as words, and refer to
words with 0-arity as ground words. A partition assignment for a formula ϕ is
defined as a boolean assignment to each predicate in ϕ, and a set of partitions
(one for each sort) dividing the words in ϕ into equivalence classes. An interpre-
tation I assigns a meaning to terms by means of a uniquely determined (total)
mapping (� �I) of such terms into the universe of its structure. A model of a for-
mula ϕ for an interpretation I is a structure that satisfies ϕ (i.e. �ϕ�I = �). For
example, the interpretation for the theory of free sort and function symbols (call
it IP) maps terms into the universe of partition assignments. The interpretation
for the theory of bitvectors (call it IB) maps terms into a universe composed of
bitvector assignments.

Given a transition system, we will use primes to represent a variable after
a single transition step. Given a set of variables X, X ′ is the set obtained by
replacing each variable in X with its primed version. We will use ϕ (resp. ϕ′) as
a shorthand for a formula ϕ(X) (resp. ϕ(X ′)).

2.2 Model Checking

A model checking problem P can be described by a 4-tuple 〈X, I, T, P 〉, where
X denotes the set of present state variables, I(X) is a formula representing the
initial states, T (X, X ′) is a formula for the transition relation, and P (X) is a
formula for a given safety property. Given P, the model checking problem can
be stated as follows: either prove that P (X) holds for any sequence of executions
starting from a state in I(X), or disprove P (X) by producing a counterexample.

We assume that T is expressed as a conjunction of equalities that express
next-state variables as functions of present-state variables. Input variables are
conveniently modeled as state variables whose corresponding next states are
completely unconstrained. Our focus is on verifying Verilog RTL designs which
we encode as finite transition systems that are naturally expressed in the QF BV
theory of SMT-LIB.

3 Syntax-Guided Abstraction

Predicate abstraction (PA) [28] encodes the abstract state space using a set of
predicates whose boolean assignments encode the abstract states. In contrast,
syntax-guided abstraction (SA) encodes the abstract state space using the set
of terms present in the word-level syntax of the problem. Abstract states in SA
correspond to partition assignments that capture the equality relations among
the problem’s terms. The relevant parts of the abstract transition relation in both
implicit PA [20,21] and SA are constructed incrementally, as needed, during the
reachability search using bitvector queries. We will use P to denote the original
concrete problem and P̂ to denote its syntactically-abstracted version. Models
in P use the interpretation IB, i.e. exact bitvector assignments, whereas models
in P̂ use the IP interpretation, i.e. partition assignments. Effectively, SA hides
away irrelevant bit-level details and is able to infer higher-level equality relations
among the words in the problem description.

Model Checking of Verilog RTL Using IC3 with Syntax-Guided Abstraction 169

Example 1: Let P = 〈{u, v}, (u = 1) ∧ (v = 1), (u′ = ite(u < v, u + v, v +
1)) ∧ (v′ = v + 1), ((u + v) �= 1)〉, where u, v are k-bit wide. P has 1 predicate
(u < v) and 5 words (1, u, v, u+ v, v +1). Consider a concrete state s := (u, v) =
(1, 2). Its corresponding abstract state is obtained by evaluating the problem’s
predicates and terms using the concrete state assignment and creating a partition
assignment based on these evaluations. In this example, the abstract state is
easily seen to be ŝ := (u < v) ∧ { 1, u | v | u + v, v + 1 }1.

The biggest advantage of SA is that the abstract state-space size is completely
independent of the bit-width of variables while still accounting for all relations
among terms in the original problem. Given P with, say, m total state bits, the
concrete system has 2m states. On the other hand, the total number of abstract
states is bounded by 2p × Bn, where p is the number of predicates in P̂, n is
the number of words in P̂, and Bn is the nth Bell number [46] (the number of
unique partitions on n terms). For example, let k = 16 in Example 1. The size of
the concrete state space is 22×16 i.e. ∼4.2 billion, while the number of abstract
states is 21 × B5 = 104, completely independent of k.

Given a formula ϕ, we use concrete theory reasoning (i.e. QF BV) for abstract
SMT solving (similar to [20,21]) with the modification that the solution (i.e.
model) of ϕ in the abstract domain is expressed as a partition assignment on
terms in ϕ, i.e. for a partition assignment ŝ, ŝ |= ϕ iff there exists a bitvector
assignment s such that s |= ϕ and ŝ = α(ϕ, s), where α is the abstraction
function that converts a bitvector assignment s to a partition assignment on
terms in ϕ. We perform a simple evaluation of each term in the formula to
construct a partition assignment based on the bitvector assignment.

Example 2: Consider P from Example 1. Let k = 2. Consider the formula ϕ =
P ∧ T ∧ ¬P ′ and a satisfying concrete solution s := (u, v, u′, v′) = (0, 2, 2, 3).
Terms in ϕ evaluate as (u < v, u+v, v+1, u′+v′) = (�, 2, 3, 1) under s, resulting
in the abstract solution to be ŝ := (u < v)∧{ u | 1, u′+v′ | v, u+v, u′ | v+1, v′ }.

We can always construct a unique abstract solution ŝ given a formula ϕ
and its concrete solution s. Modern SMT solvers (e.g. [23,24]) have support to
give the bitvector assignment for each term in the formula without any extra
cost. Words with the same assigned value go in the same equivalence class of a
partition, while different assignments mean different classes.

An abstract solution is complete if it contains all the terms in P. The abstract
state space is defined by the universe of complete abstract solutions. An abstract
solution can be projected on any subset of symbols (a projection set) by co-
factoring the solution to eliminate all terms with any symbol outside the projec-
tion set, i.e. by simply dropping terms from the partition assignment that contain
symbol(s) outside the projection set. An abstract solution can be converted to
an equivalent cube by adding all constraints needed to cover the solution.

1 In this notation, vertical bars separate the equivalence classes of the partition. Thus
{a, b|c} should be interpreted to mean {{a, b}, {c}} in the standard notation for
partitions.

170 A. Goel and K. Sakallah

Example 3: Consider ŝ from Example 2. ŝ can be projected on the projection set
σ = {+, 1, u′, v′} to get a partial abstract solution representing the destination
states as ŝ|σ := { 1, u′ + v′ | u′ | v′ }. The corresponding cube representation is
cube(ŝ|σ) = ((u′ + v′) = 1) ∧ (u′ �= 1) ∧ (v′ �= 1) ∧ (u′ �= v′).

The SA abstract state space induces a partition on the concrete state space
such that each concrete state is mapped to a single abstract state. An abstract
state, thus, corresponds to a (possibly empty) set of concrete states causing the
abstract transition relation to be non-deterministic. This abstraction is sound
but may lead to spurious behavior.

Example 4: Consider the following abstract path from P in Example 2:

ŝ1 := ¬(u < v) ∧ { 1, u, v | u+ v, v + 1 }
ŝ2 := ¬(u < v) ∧ { 1 | u, v | u+ v | v + 1 }
ŝ3 := ¬(u < v) ∧ { 1, v + 1 | u, v, u+ v }

2,2
3,3

0,0
1,1

Concrete state (u,v)Abstract state Abstract transition Concrete transition

ŝ1 has a concrete transition to ŝ2, ŝ2 can concretely transition to ŝ3, though
there isn’t a continuous 2-step concrete path from ŝ1 to ŝ3 via ŝ2. SA can be
refined by adding new terms. For example, we can add the constant term 2 (or
3) to eliminate the spurious behavior of Example 4.

To better understand how SA compares to PA, consider P from Example 2.
There are 16 concrete states in P. The four predicates in P, i.e. p1: (u = 1),
p2: (v = 1), p3: ((u + v) = 1) and p4: (u < v) are a natural choice as initial
predicates for PA. Table 1 compares the abstract domain for SA and PA against
the concrete state space. PA with p1−4 as predicates partitions the concrete states
into 9 feasible abstract states. SA on the other hand offers higher expressiveness
and partitions the concrete states into 13 feasible abstract states.
Syntax-guided abstraction has the following advantages over PA:

– Unlike predicate abstraction or its variants [6,28], SA is implicitly defined
by the original syntax and does not require a user-specified set of initial
predicates or solver queries to generate the abstract state space.

– By construction, SA accounts for all equality relations among terms in the
syntax and offers higher granularity and expressiveness than implicit predi-
cate abstraction [20,21], resulting in less spurious behavior.

– SA is refined by adding new terms that are absent in the original problem
syntax, while PA relies on adding new predicates for refinement. Furthermore,
equality propagation, which is at the heart of SA, allows all equality relations
involving a newly-introduced term to be automatically detected; in PA such
relations are discovered one by one in multiple refinement iterations.

SA+UF: SA uses bit-precise QF BV queries and may not scale for large problems
with complex operations. Since SA requires only a partition assignment on terms

Model Checking of Verilog RTL Using IC3 with Syntax-Guided Abstraction 171

Table 1. Mapping of abstract states on concrete states for SA and PA

Index SA: partition assignment on
{u < v, 1, u, v, u + v, v + 1}

Concrete
states: (u, v)

PA: p1p2p3p4

1 ¬(u < v) ∧ { 1, v + 1 | u, v, u + v } (0, 0) 0000

2 ¬(u < v) ∧ { 1, v + 1 | u, u + v | v } (2, 0), (3, 0)

3 ¬(u < v) ∧ { 1 | u, v | u + v | v + 1 } (2, 2), (3, 3)

4 (u < v) ∧ { 1 | u | v, u + v | v + 1 } (0, 2) 0001

5 (u < v) ∧ { 1 | u, v + 1 | v, u + v } (0, 3)

6 ¬(u < v) ∧ { 1, u + v | u, v + 1 | v } (3, 2) 0010

7 (u < v) ∧ { 1, u + v | u | v | v + 1 } (2, 3) 0011

8 ¬(u < v) ∧ { 1, v | u, v + 1 | u + v } (2, 1) 0100

9 ¬(u < v) ∧ { 1, v | u | u + v | v + 1 } (3, 1)

10 (u < v) ∧ { 1, v, u + v | u | v + 1 } (0, 1) 0111

11 (u < v) ∧ { 1, u | v | u + v, v + 1 } (1, 2), (1, 3) 1001

12 ¬(u < v) ∧ { 1, u, u + v, v + 1 | v } (1, 0) 1010

13 ¬(u < v) ∧ { 1, u, v | u + v, v + 1 } (1, 1) 1100

Others: (21 × B5 − 13 = 91) Infeasible Others: (24 − 9 = 7)

and not exact bitvector assignments, it aligns perfectly with data abstraction
where data operations (like arithmetic, shift, etc.) are treated as uninterpreted
functions [4,5,15,40]. SA+UF is most appropriate for control-centric proper-
ties where correctness is largely independent of data state. IC3 with SA+UF
extends [40] and allows for efficient reasoning using QF UF queries regardless of
the bit-width of variables or complexity of data operations.

Example 5: Consider P from Example 1. Using SA+UF, the abstract problem
becomes P̄ = 〈X̄, Ī, T̄ , P̄ 〉:

X̄ = { ū, v̄ } Ī = (ū = 1̄) ∧ (v̄ = 1̄) P̄ = (ADD(ū, v̄) �= 1̄)
T̄ = (ū′ = ite(LT (ū, v̄), ADD(ū, v̄), ADD(v̄, 1̄)) ∧ (v̄′ = ADD(v̄, 1̄))

SA+UF uses uninterpreted sorts instead of bitvectors (indicated by)̄, and con-
verts data operations (e.g. <, +) to UFs (e.g. LT , ADD) and ground terms to
UFs with 0-arity.

4 IC3 with Syntax-Guided Abstraction (IC3+SA)

IC3+SA uses SMT solving to raise reasoning from propositional to FOL, sim-
ilar in spirit to [19–21,34,40]. The IC3+SA algorithm performs the core IC3
procedure in the syntactically-abstracted state space and tightens the abstrac-
tion using a typical CEGAR loop [22,37]. There are 2 key differences between
IC3+SA and bit-level IC3.

172 A. Goel and K. Sakallah

– How to generalize a satisfiable query from a particular solver solution?
– How to refine spurious counterexamples?

Most other concepts in IC3 remain identical to the bit level and can be equiv-
alently applied in IC3+SA using word-level clauses and SMT solvers (as elabo-
rated in [11,19,40]).

4.1 Generalization of a Satisfiable Query

Consider a 1-step reachability query from frame m to a destination cube c (i.e.
SAT ? [Fm ∧ T ∧ c′]). If the query is satisfiable, it is essential for performance
to generalize the particular solution returned by the solver into a generalized
cube cm (as indicated in [11,13,25]). For the propositional case, the authors of
[25] suggest ternary simulation to generalize the particular solution into a cube.
This generalization (as well as cube generalization suggested in the original IC3
algorithm [13]) ensures strict continuity.

Definition 1 (Strict Continuity). Given a destination cube c, every state in
the generalized cube cm should have a transition under T to the destination cube
c, i.e. ∀s SAT ? [s ∧ T ∧ c′] is satisfiable, where {s ∈ cm | s is a state }.

Strict continuity is not necessary for IC3, though it is sufficient to guarantee
“relaxed” continuity.

Definition 2 (Continuity). Given a sequence of cubes C = 〈cm, . . . , cn〉 with
cn = ¬P , there exists a path π = 〈sm, . . . , sn〉 such that {si ∈ ci | si is a state }
for all i ∈ {m, . . . , n}.

For correctness, the necessary condition for any cube generalization proce-
dure is to ensure continuity (Definition 2), i.e. there should exist a path from the
generalized cube cm to ¬P . After all, any cube with a continuous path to a bad
state (i.e. a state satisfying ¬P) needs to be checked for reachability from the
initial states.

It is unclear how to extend ternary simulation to word-level semantics, since
ternary simulation inherently relies on modeling the system as a boolean cir-
cuit. Instead, we use a syntax-guided generalization technique that exploits the
word-level structure of the problem to cheaply generalize a particular abstract
solution. The procedure exploits structural cone-of-influence (COI) and model-
based justification to identify relevant portions that are sufficient to justify the
particular solution (similar to justification in test pattern generation [47]), and
creates a projection set with relevant symbols. The particular solution is pro-
jected on these relevant symbols to get the generalized cube.

Algorithm 1 presents the syntax-guided generalization procedure using COI
with model-based justification. Given the particular abstract solution ŝ and the
destination cube c′, the procedure traverses the concrete structural COI of c′

and collects symbols encountered in the process (line 3, 7–25). The key idea
is that during the traversal we can syntactically prune away portions that are

Model Checking of Verilog RTL Using IC3 with Syntax-Guided Abstraction 173

Algorithm 1. Syntax-guided Generalization
1. procedure Generalize(ŝ, c′)� ŝ is a particular abstract solution, c′ is a destination cube
2. σ ← σrefine � initialize projection set (initially σrefine = ∅)
3. JustifyCOI(ŝ, c′, σ) � build projection set σ
4. σ ← σ − X′ � get rid of next state symbols
5. ŝ|σ ← Project(ŝ, σ) � project ŝ on σ
6. return cube(ŝ|σ) � convert to a cube and return

7. procedure JustifyCOI(ŝ, ϕ, σ) � ϕ is a FOL expression, σ is passed by reference
8. if ϕ is a conditional operation then � if ϕ is an if-then-else expression
9. 〈cond, v�, v⊥〉 ← BreakCondition(ϕ) � get condition and arguments
10. JustifyCOI(ŝ, cond, σ)
11. val ← Evaluate(cond, ŝ) � evaluate cond under ŝ
12. JustifyCOI(ŝ, (val = �) ? v� : v⊥, σ) � recurse only on the relevant branch
13. else if ϕ is a logical operation then
14. val ← Evaluate(ϕ, ŝ) � evaluate ϕ under ŝ
15. if IsControlling(val, ϕ) then � if assigned a controlling value (⊥ for ∧, � for ∨)
16. JustifyCOI(ŝ, GetControlling(ϕ, ŝ), σ) � recurse only on controlling arg.
17. else
18. for each a ∈ Argument(ϕ) do
19. JustifyCOI(ŝ, a, σ)

20. else
21. for each a ∈ Argument(ϕ) do
22. JustifyCOI(ŝ, a, σ)

23. if ϕ is a next state variable then
24. JustifyCOI(ŝ, GetRelation(ϕ), σ) � get the next state relation for ϕ from T

25. Add symbol(ϕ) to σ � add symbol of ϕ to the projection set

not important under the given particular solution (lines 12, 16) and only visit
portions that justify leading to the destination. Once the relevant symbols are
collected, the algorithm projects ŝ on these symbols to get the generalized cube
(lines 5–6).

Algorithm 1 guarantees abstract continuity (Definition 2), with the general-
ized cube always having an abstract path to ¬P in P̂. The algorithm however
does not guarantee strict continuity (Definition 1), as evident from the following
example:

Example 6: Let P = 〈{u, v, w}, (u = 1) ∧ (v = 1) ∧ (w = 1), (u′ = ite((u <
v) ∨ (v < w), u + v, v + 1)) ∧ (v′ = v + 1) ∧ (w′ = w + 1), ((u + v) �= 1))〉, with u,
v, w being 3-bit wide. Consider the following query and its particular solution:

F1 = P ϕ = F1 ∧ T ∧ ¬P ′

Q1 := SAT ? [ϕ] gives SAT with solution s

s = (u, v, w, u′, v′, w′) = (0, 4, 2, 4, 5, 3) ŝ = α(ϕ, s)
ŝ = (u < v) ∧ ¬(v < w) ∧ { u | 1, u′ + v′ | w | w + 1 | v, u + v, u′ | v + 1, v′ }

Generalize(ŝ, ¬P ′) creates the generalized cube c1 as follows:

σ = { +, u′, v′, 1, <, u, v } − { u′, v′, w′ }
= { +, <, u, v, 1 }

c1 = cube(ŝ|σ) = (u < v) ∧ { u | 1 | v, u + v | v + 1 }

174 A. Goel and K. Sakallah

On careful analysis one can see that not all abstract states in c1 have an abstract
transition to the destination (¬P ′). For example, consider the abstract state
â1 = (u < v) ∧ ¬(v < w) ∧ { u | 1, w | v, u + v, w + 1 | v + 1 }. â1 is an abstract
state in the cube c1, but it does not have a transition under T to any destination
state, i.e. SAT ? [cube(â1) ∧ T ∧ ¬P ′] is UNSAT.

We believe non-determinism in the word-level abstract domain is the reason
why Algorithm 1 does not follow strict continuity. Even though Definition 1 is
violated, Algorithm1 still guarantees continuity (Definition 2) in the abstract
domain. This is because the Generalize algorithm ensures that all terms in P̂
that are required to lead to the destination c′ under the particular abstract solu-
tion ŝ are retained in the generalized cube cube(ŝ|σ) as is from ŝ. As a result, even
though cube(ŝ|σ) has abstract states that do not have an abstract transition to
the destination c′, this cannot result in an abstract path discontinuity while still
limiting to terms in P̂. The Generalize procedure acts as a quick sweeper that
removes irrelevant terms that will never get involved with any query that satis-
fies cube(ŝ|σ) ∧ T ∧ c′, and encodes the sufficient information using the relevant
symbols in cube(ŝ|σ).
The proposed generalization procedure has the following advantages:

– In contrast to solver-based methods suggested in [11,18,34], syntax-based
generalization is inexpensive since it does not required any solver query.

– Since the generalization is driven from the syntactic cone of the destination,
the procedure only captures the relevant information leading to a bad state.

– The technique guarantees continuity with no need for lifting refinement [11].
– Unlike [39,40], the technique does not use weakest preconditions (WP) for

generalization, which can be regarded as implicitly unrolling the transition
relation. WP-based techniques generate new terms through function compo-
sitions, which complicates the abstract state space and can often cascade to
cause incompleteness and poor SMT solving.

Syntax-based generalization offers an inexpensive and effective procedure to
expand a single solver solution to a set of solutions for word-level IC3. An
identical generalization procedure can be used for SA+UF and possibly even
for PA.

4.2 Refinement

Running IC3 in the abstract domain either generates an inductive invariant that
proves the property to be true, or produces an abstract counterexample evidence
C. An abstract counterexample C of length n + 1 is represented by a sequence of
n + 1 abstract cubes 〈c0, c1, c2, . . . , cn〉, where cn = ¬P .

We concretize C by restoring the interpretation to IB, i.e. exact bitvector
assignments. C can be spurious when the terms in the original problem are
insufficient to express the bit-precise nature of the concrete problem.

One way to identify spurious behavior in C is by checking the satisfiabil-
ity of a single concrete path query along C with explicit unrolling, i.e. SAT ?

Model Checking of Verilog RTL Using IC3 with Syntax-Guided Abstraction 175

[I ∧ (n−1∧

i=0

ci
i ∧ T i

) ∧ cn
n] (where ϕi denotes the formula ϕ at ith transition step)

using QF BV SMT solving. Checking satisfiability of such a query with multiple
copies of T is not scalable in practice as the length of C increases. We instead
perform incremental refinement along the counterexample (Algorithm 2) which
uses 1-step queries to perform forward image computation [29] along C. We for-
mulate at most n queries Qi := SAT ? [pi−1∧ci−1∧T ∧c′

i] (1 ≤ i ≤ n) such that
p0 = I, and pi equals the symbolic post image [29,42] of pi−1 ∧ ci−1 under the
solution of the query Qi. To compute pi after a satisfiable query Qi (say with
solution s), we use fresh symbolic constants to replace unconstrained variables
at that step and syntactically evaluate T under s to get the symbolic post image
of pi−1 ∧ ci−1 for the next step (line 6). This generates new terms and results
in an implicit unrolling of T , which in practice is simpler compared to explicit
unrolling. We check for the satisfiability of Qi in increasing order (from i = 1 to
n) and stop as soon as a query is found unsatisfiable (lines 3–14). From the unsat-
isfiable query, we extract a minimal unsatisfiable subset [41,45] (MUS) m and
get rid of any symbolic constant in m using substitution or rarely instantiation
using last solver assigned value if substitution is not possible (lines 8–9). Since
the unsatisfiability is due to a concrete path infeasiblity, m necessarily contains
constraints from the forward image computation that include new terms gener-
ated from substitution. These new terms are important to eliminate the spurious
counterexample. We add these newly discovered terms to the abstract domain
by deriving a refinement (path) axiom by negating m (line 10). We refine the
abstract problem P̂ by conjoining the refinement axiom to the transition relation
T (line 11).

Algorithm 2. Refinement of SA
1. procedure Refine(C)
2. p0 ← I
3. for i = 1 to n do
4. ψi ← pi−1 ∧ ci−1 ∧ T ∧ c′

i
5. if SAT ? [ψi]: solution s then
6. pi ← PostImage(pi−1 ∧ ci−1, s) � compute image(pi−1 ∧ ci−1) under s
7. else � i.e. C is spurious
8. m ← MUS(ψi) � find MUS for the UNSAT query
9. m ← Substitute(m) � eliminate symbolic constants
10. Φ ← ¬m
11. T ← T ∧ Φ � conjoin axiom to T̂
12. σnew ← symbols(NewTerms(Φ)) � find symbols in new terms
13. σrefine ← σrefine ∪ σnew � add permanent symbols
14. return ∅
15. return C � i.e. C is a true counterexample

New terms created are crucial to eliminate spurious counterexamples. They
were absent in the original problem and hence the abstract domain wasn’t expres-
sive enough to capture infeasibilities involving them. Adding the refinement
axiom with these new terms automatically augments the abstract problem and
makes them part of future iterations of IC3+SA. We add the symbols in the
new terms as permanent members of all projection sets computed using Algo-
rithm 1 so as to ensure that future iterations of Generalize doesn’t ambitiously

176 A. Goel and K. Sakallah

generalize them away (lines 12–13). This is essential since these new terms are
not part of the original problem syntax but are required to eliminate spurious
counterexamples.

If all queries Qi are satisfiable, it means that C is indeed including true coun-
terexample(s) that disprove the property. One instance of a true counterexample
can be easily retrieved by keeping tracking of solutions to the queries Qi.

After learning a refinement axiom, IC3+SA incrementally resumes the
abstract IC3 procedure from the last top frame. Since the abstraction refine-
ment procedure is completely monotonic with each iteration making the abstract
domain more precise and finer by adding new terms, we can reuse all of the
reachability information and abstract clauses from previous iterations.
The refinement procedure provides the following advantages:

– All concrete queries involve a single instance of the transition relation and
avoids explicit unrolling.

– There is no path explosion since the refinement is constrained to the paths
along the abstract counterexample.

– Symbolic constants for unconstrained variables allow avoiding enumerative
simulation on exact variable assignments returned by the solver.

– The procedure is completely incremental and allows reuse of all previous
abstract clause learning.

SA+UF: Data abstraction using UF can introduce additional spurious behavior
with inconsistencies resulting from the usage of UF instead of concrete data
operations. Given C = 〈c0, . . . , cn〉, we can check for such inconsistencies using
at most n concrete queries Qi := SAT ? [ci−1 ∧ T ∧ c′

i] (0 < i ≤ n) in any
order (similar to [40]). In the case any query returns UNSAT, we can learn a
refinement (data) axiom to constrain T . Data axioms will never add any new
term and therefore will never increase the size of the abstract state space. They
eliminate spurious abstract states/transitions that got introduced due to data
abstraction, while path axioms add more granularity.

5 Proof of Correctness

Inspired from [13,20,25], we list the properties on frames preserved by IC3+SA.

(p1) F0 = I (p2) Fi → P

(p3) The clauses Fi+1 is a subset of Fi for i > 0 (p4) Fi → Fi+1

(p5) Fi+1 is an over-approximation of the image of Fi

(p1-5) are true and preserved by the IC3 algorithm [13,25]. After a refinement
iteration, all frame clauses remain valid since the refinement procedure (Algo-
rithm 2) is monotonic with respect to the terms describing the abstract state
space. After each refinement iteration Tnew |= T , implying Fnew |= F , preserving
(p1-5).

Model Checking of Verilog RTL Using IC3 with Syntax-Guided Abstraction 177

Lemma 1 (Correctness). If IC3+SA(P) returns an invariant Φ, then Φ is
inductive and Φ → P under P.

Proof. From the IC3 algorithm, let Fconv be the frame that reached the fixed
point (i.e. Fconv = Fconv+1). Let Φ = Fconv. Due to (p5) and (p2), Φ is inductive
and Φ → P .

Lemma 2 (Correctness). If IC3+SA(P) returns a counterexample C, then C
has a path under T starting from I and violating P .

Proof. Let C = 〈c0, . . . , cn〉. By construction, cn = ¬P . From Sect. 4.1, C is
abstractly continuous. The refinement procedure (Algorithm2) will return C iff

(I ∧ (n−1∧

i=0

ci
i ∧ T i

) ∧ cn
n) is satisfiable, implying C is concretely continuous and a

true counterexample.

Lemma 3 (Termination). IC3+SA(P) will eventually terminate.

Proof. For a given abstract problem P̂, the IC3 algorithm will eventually ter-
minate since all abstract queries are decidable, the number of abstract states is
finite, and the maximum number of frames is bounded by the number of abstract
states (due to (p2-5)). Each refinement iteration introduces new term(s) making
the abstract state space more precise with respect to the concrete state space.
The number of new terms that can be added is limited by the sequential depth
of the concrete problem P (which is finite), making the number of refinement
iterations finite. Hence, IC3+SA will eventually terminate.

Theorem 1. IC3+SA(P) is sound and complete.

Proof. From Lemmas 1, 2 and 3, IC3+SA is sound and complete.

6 Implementation and Evaluation

We implemented IC3+SA in C++ in the Averroes system [40]. We made a
complete rewrite to the frontend and backend of Averroes, with a primary focus
on model checking of Verilog RTL. The new version [26] (Averroes 2, or avr in
short) uses yosys [51] as the preprocessor frontend to allow direct translation
of Verilog RTL and SystemVerilog assertions (SVA) into a word-level model
checking problem. yosys parses the Verilog RTL, removes any hierarchy, and
exports the flat word-level design to avr in the .ilang format2. avr uses Yices
2 [24] (version 2.6) for solving abstract SMT queries and Z3 [23] (version 2.5)
for concrete SMT queries.

2 .ilang is a format for textual representation of the yosys’s design.

178 A. Goel and K. Sakallah

Setup: We analyzed a total of 535 invariant checking problems (Verilog RTL
files with SVA) that can be classified as follows:

– opensource: a set of 141 problems collected from benchmark suites accom-
panying tools vcegar [36] (#23), v2c [44] (#32) and verilog2smv [35] (#86).
Problems include cores from picoJava, USB 1.1, CRC generation, Huffman
coding, mutual exclusion algorithms, simple microprocessor, etc.

– industry : a set of 370 problems collected from industrial collaborators3. Of
these, 124 were categorized as easy (code sizes between 155 and 761 lines; # of
flip-flops between 514 and 931), and 235 as challenging (code sizes between
109 and 22065 lines; # of flip-flops between 6 and 7249). The remaining
11 problems involved sequential equivalence checking on a multiplier design
before and after clock gating optimization.

– crafted : a set of 24 simple problems synthetically created for calibration
(includes both control- and data-centric problems).

We compared the following techniques:
From ABC version 1.01 [8]:

– pdr: pdr is one of the best implementations of the bit-level IC3 algorithm.
– dprove: dprove employs a preprocessing stage using a portfolio of techniques

(BMC [9], retiming, fraiging, simulation, interpolation, etc.) with carefully-
tuned heuristics to quickly solve/reduce the problem. If the problem remains
unsolved, dprove invokes pdr on the reduced problem.

– pdr-nct: the -nct flags configure pdr to use better generalization [30] and
enable localization abstraction [33].

From nuXmv version 1.1.1 [17]:

– nuxmv-ic3ia: a word-level IC3 implementation in nuXmv using implicit pred-
icate abstraction [20].

From Averroes version 2.0 [26]:

– avr-ic3sa: IC3+SA i.e. IC3 with syntax-guided abstraction.
– avr-ic3sa-uf : IC3+SA+UF i.e. IC3+SA with data abstraction using UF.

For comparison against bit-level IC3, we chose implementations from ABC
since these have shown exceptional performance in HWMCC [10]. We also consid-
ered including other abstraction based IC3 techniques like L-IC3 [48], UFAR [31]
and PDR-WLA [32]. However, PDR-WLA was not able to process the designs
due to input format issues, while L-IC3 and UFAR do not have, to the best of our
knowledge, a publicly available implementation. Techniques like [11,12,34,38] do
not have implementations that can handle hardware designs.

We used yosys [51] as the common frontend. The Verilog designs and SVA
were parsed by yosys, which removes any hierarchy and produces flat RTL

3 We obtained these designs under non-disclosure agreements and, unfortunately, can-
not make them publicly available.

Model Checking of Verilog RTL Using IC3 with Syntax-Guided Abstraction 179

Verilog. For nuxmv-ic3ia and avr-*, the flat word-level format is syntactically
exported by yosys into the equivalent word-level input formats used by these
tools. Since ABC based tools cannot exploit word-level information and operate
at the bit level, we used yosys to synthesize the flat RTL to an And-Inverter
Graph (AIG) and exported to ABC in .blif format. All experiments were con-
ducted on a cluster of 163 2.5 GHz Intel Xeon E5-2680v3 processors (cores) run-
ning 64-bit Linux. Each verification run was given exclusive access to a single
core, with a memory limit of 16 GB and a time limit of 5 h.

6.1 Results

Even though experimental evaluations are necessarily biased by the suite of
problems used, we nonetheless believe that useful insights can still be gained
from a careful analysis of the results. The raw data along with detailed bench-
mark statistics and plots along with opensource and crafted benchmarks can
be retrieved from a publicly-accessible repository [1]. The three tool packages
used ABC, nuXmv and Averroes 2 are publicly available from [2,3] and [26]
respectively.

The reader is referred to [27] for a summary on the performance of avr-ic3sa-
uf, which demonstrates the effectiveness of IC3+SA with data abstraction. Here,
we provide an in-depth analysis compared to avr-ic3sa to better understand the
strengths and weaknesses of SA and SA+UF.
Aggregate Results: Table 2 and Fig. 1 provide an overview on the performance
of each tool. Overall, techniques from ABC, nuXmv and Averroes 2 solved 480,

Table 2. Number of problems solved. TO: timed out, MO: out of memory, Unique:
solved uniquely (not solved by others), IN: industry, OS: opensource, CR: crafted

Tool Solved (535) TO MO Error Unique IN (370) OS (141) CR (24)

pdr 466 69 0 0 1 308 137 21

dprove 477 57 0 1 3 315 138 24

pdr-nct 466 68 1 0 1 308 137 21

nuxmv-ic3ia 389 92 46 8 0 232 133 24

avr-ic3sa 461 69 5 0 0 302 135 24

avr-ic3sa-uf 526 0 9 0 52 368 134 24

Fig. 1. Survival plot comparing the number of problems solved versus time

180 A. Goel and K. Sakallah

Fig. 2. avr-ic3sa runtime comparisons. avr-ic3sa’s times are better (resp. worse) above
(resp. below) the diagonal.

Fig. 3. Number of solver calls (SAT solver calls for pdr, SMT solver calls for others)

Fig. 4. IC3 statistics

Fig. 5. Number of refinements
avr-ic3sa is always on x-axis. All plots exclude runs in which a tool reported an error

or ran out of memory, and all runtime refer to CPU time in seconds.

Model Checking of Verilog RTL Using IC3 with Syntax-Guided Abstraction 181

389 and 527 problems respectively in total. IC3+SA with data abstraction (avr-
ic3sa-uf) performed the best, particularly in the industry category. The perfor-
mance of avr-ic3sa is competitive to ABC tools even though ABC tools have a
highly tuned and efficient implementation developed over years of innovation.
Runtime Comparison: Figure 2 compares avr-ic3sa’s runtime against other
tools. ABC tools marginally dominated avr-ic3sa, though there is a signifi-
cant number where avr-ic3sa performed better. Bit-level techniques enjoy the
advancements in hardware synthesis that can significantly reduce the complex-
ity in the synthesized design, though they loose this advantage for larger and
complex designs. Compared to nuxmv-ic3ia, avr-ic3sa shows good benefits and
demonstrates the benefits of SA over implicit predicate abstraction [20]. Data
abstraction helps avr-ic3sa-uf to outperform avr-ic3sa in the industry category
(where the property is control intensive), while avr-ic3sa is better in the data-
dependent opensource category.

Solver Calls: Figure 3 shows the comparison of the total number of solver calls.
Bit-level IC3 (represented by pdr) makes orders-of-magnitude more SAT solver
calls compared to the number of SMT calls made by word-level tools. Even with
many more solver calls, bit-level techniques are competitive to word-level tech-
niques w.r.t. runtime (Fig. 2), indicating the advancement gap between SAT ver-
sus SMT solving. Structural cube generalization and syntax-guided abstraction
allows avr-ic3sa to require fewer solver calls than nuxmv-ic3ia. The large num-
ber of solver calls made by avr-ic3sa-uf compared to avr-ic3sa in the opensource
category reflects the importance of correct abstraction procedure and suggests
possible benefits from a hybrid abstraction on a subset of data operations that
can tune automatically based on the nature of the property.

Clause Learning: Figure 4a–b compares the number of frame clauses derived
by avr-ic3sa versus pdr and nuxmv-ic3ia. avr-ic3sa requires orders-of-magnitude
fewer clauses compared to pdr, showing the benefits of word-level clause learning
as against weak propositional learning. Fewer frame clauses derived by avr-ic3sa
as compared to nuxmv-ic3ia reflects that SA is better in capturing the important
details of the problem compared to implicit predicate abstraction.

Number of Refinements: Figure 5 shows the comparison of the number of
refinements required for the techniques that use an abstraction refinement pro-
cedure (pdr-nct, nuxmv-ic3sa, avr-*). The number of refinements required by
avr-ic3sa is the least compared to all others, demonstrating the effectiveness
of syntax-guided abstraction. As expected, avr-ic3sa-uf has to undergo several
refinement iterations for the data-dependent opensource category.

Invariant Size: Model checking on Verilog RTL instead of post-synthesis
netlist has the additional benefit of producing human-readable word-level induc-
tive invariants. avr-ic3sa produces a concise and informative word-level inductive
invariant with much fewer clauses than one produced by pdr (Fig. 4c).

182 A. Goel and K. Sakallah

7 Related Work

Several approaches from different domains have been suggested to extend the
bit-level IC3 procedure. From the hardware domain, the authors of [48] suggest
lazy abstraction using “visible variables”. The authors of [31] use UF to abstract
away expensive data operations, followed by bit-blasting. The authors of [32]
use unconstrained new primary inputs to abstract away parts of the system.
The authors of [33] suggest using localization abstraction to cut away irrelevant
logic. All these approaches [31–33,48] use bit-level IC3 as the core engine and
suffer with the same scalability issues as with bit-level IC3.

Certain approaches propose performing word-level IC3 using SMT solvers.
The authors in [50] generalize IC3 to the theory of bitvectors by using polytopes
and interval simulation. The authors of [39,40] suggest performing word-level
IC3 with data abstraction using uninterpreted functions.

Beyond hardware, different approaches propose to lift the IC3 procedure to
richer logics and infinite state systems [11,12,19,34,38]. Our approach differ
significantly from these techniques as IC3+SA does not rely on theory specific
under-approximation of the pre-image, quantifier elimination, weakest precon-
ditions or interpolation. The authors of [20,21] suggest using implicit predicate
abstraction that performs a word-level IC3 procedure (IC3IA), and refines the
abstraction by adding new predicates. Our approach is partly similar to IC3IA,
but with better granularity and expressiveness resulting in fewer occurrences of
spurious behavior. We also suggest an inexpensive syntax-driven cube general-
ization procedure for word-level IC3, along with a fully incremental refinement
procedure without using multiple copies of the transition relation. Unlike CTI-
GAR [11], our cube generalization technique does not require any lifting solver
query to eliminate non-essential symbols and still guarantees continuity.

Data abstraction using UF has been applied for both hardware [4,15,39,40]
and software [5]. IC3+SA allows for an easy and scalable extension to data
abstraction, and unlike [39,40], it does not face non-termination issues.

8 Conclusions and Future Work

Syntax-guided abstraction suggests an alternative way to raise bit-level IC3 pro-
cedure to the word level. SA is implicitly defined by the terms in the syntax
of the problem and offers high granularity. We demonstrate how to integrate
IC3 with SA efficiently, and propose a word-level structural cube generalization
procedure without any need for additional solver queries or unrolling. We show
the correctness of the technique and evaluate the effectiveness of the approach
on a suite of open-source and industrial hardware problems.

Future work include extending SA to theories beyond bitvector, adding
hybrid data abstraction on a subset of data operations, and performing a rig-
orous analysis against other model checking tools including techniques beyond
IC3.

Model Checking of Verilog RTL Using IC3 with Syntax-Guided Abstraction 183

Acknowledgement. We would like to thank the reviewers for their valuable com-
ments. The authors thank developers of Yosys [51], Yices 2 [24] and Z3 [23] for making
their tools openly available. The authors thank Alberto Griggio for providing a custom
version of nuXmv with detailed statistics output.

References

1. https://github.com/aman-goel/nfm2019exp
2. ABC: System for Sequential Logic Synthesis and Formal Verification. https://

github.com/berkeley-abc/abc
3. The nuXmv model checker. https://nuxmv.fbk.eu
4. Andraus, Z.S., Liffiton, M.H., Sakallah, K.A.: Reveal: a formal verification tool for

Verilog designs. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS
(LNAI), vol. 5330, pp. 343–352. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-89439-1 25

5. Babić, D., Hu, A.J.: Structural abstraction of software verification conditions.
In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 366–378.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73368-3 41

6. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and cartesian abstraction for model
checking C programs. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol.
2031, pp. 268–283. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
45319-9 19

7. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB) (2016). www.SMT-LIB.org

8. Berkeley Logic Synthesis and Verification Group: ABC: A system for sequential
synthesis and verification (2017). http://www.eecs.berkeley.edu/∼alanmi/abc/

9. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y., et al.: Bounded model
checking. Adv. Comput. 58(11), 117–148 (2003)

10. Biere, A., van Dijk, T., Heljanko, K.: Hardware model checking competition 2017.
In: FMCAD, p. 9 (2017)

11. Birgmeier, J., Bradley, A.R., Weissenbacher, G.: Counterexample to induction-
guided abstraction-refinement (CTIGAR). In: Biere, A., Bloem, R. (eds.) CAV
2014. LNCS, vol. 8559, pp. 831–848. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-08867-9 55

12. Bjørner, N., Gurfinkel, A.: Property directed polyhedral abstraction. In: D’Souza,
D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 263–281.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46081-8 15

13. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4 7

14. Bradley, A.R., Somenzi, F., Hassan, Z.: IIMC: incremental inductive model checker.
http://www.github.com/mgudemann/iimc

15. Burch, J.R., Dill, D.L.: Automatic verification of pipelined microprocessor control.
In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 68–80. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-58179-0 44

16. Cabodi, G., Nocco, S., Quer, S.: The PdTRAV tool. http://fmgroup.polito.it/
index.php/download/viewcategory/3-pdtrav-package

17. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 22

https://github.com/aman-goel/nfm2019exp
https://github.com/berkeley-abc/abc
https://github.com/berkeley-abc/abc
https://nuxmv.fbk.eu
https://doi.org/10.1007/978-3-540-89439-1_25
https://doi.org/10.1007/978-3-540-89439-1_25
https://doi.org/10.1007/978-3-540-73368-3_41
https://doi.org/10.1007/3-540-45319-9_19
https://doi.org/10.1007/3-540-45319-9_19
www.SMT-LIB.org
http://www.eecs.berkeley.edu/~alanmi/abc/
https://doi.org/10.1007/978-3-319-08867-9_55
https://doi.org/10.1007/978-3-319-08867-9_55
https://doi.org/10.1007/978-3-662-46081-8_15
https://doi.org/10.1007/978-3-642-18275-4_7
http://www.github.com/mgudemann/iimc
https://doi.org/10.1007/3-540-58179-0_44
http://fmgroup.polito.it/index.php/download/viewcategory/3-pdtrav-package
http://fmgroup.polito.it/index.php/download/viewcategory/3-pdtrav-package
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22

184 A. Goel and K. Sakallah

18. Chockler, H., Ivrii, A., Matsliah, A., Moran, S., Nevo, Z.: Incremental formal ver-
ification of hardware. In: Proceedings of the International Conference on Formal
Methods in Computer-Aided Design, pp. 135–143. FMCAD Inc. (2011)

19. Cimatti, A., Griggio, A.: Software model checking via IC3. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 277–293. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31424-7 23

20. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 modulo theories via implicit
predicate abstraction. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 46–61. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54862-8 4

21. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Infinite-state invariant checking
with IC3 and predicate abstraction. Formal Methods Syst. Des. 49(3), 190–218
(2016)

22. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

23. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

24. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9 49

25. Een, N., Mishchenko, A., Brayton, R.: Efficient implementation of property
directed reachability. In: FMCAD, pp. 125–134 (2011)

26. Goel, A., Sakallah, K.: Averroes 2. http://www.github.com/aman-goel/avr
27. Goel, A., Sakallah, K.: Empirical evaluation of IC3-based model checking tech-

niques on Verilog RTL designs. In: Proceedings of the Conference on Design,
Automation and Test in Europe. EDA Consortium (2019)

28. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: Grum-
berg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-63166-6 10

29. Gupta, A., Yang, Z., Ashar, P., Gupta, A.: SAT-based image computation with
application in reachability analysis. In: Hunt, W.A., Johnson, S.D. (eds.) FMCAD
2000. LNCS, vol. 1954, pp. 391–408. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-40922-X 22

30. Hassan, Z., Bradley, A.R., Somenzi, F.: Better generalization in IC3. In: FMCAD,
pp. 157–164 (2013)

31. Ho, Y.S., Chauhan, P., Roy, P., Mishchenko, A., Brayton, R.: Efficient uninter-
preted function abstraction and refinement for word-level model checking. In:
FMCAD, pp. 65–72 (2016)

32. Ho, Y.S., Mishchenko, A., Brayton, R.: Property directed reachability with word-
level abstraction. In: FMCAD, pp. 132–139 (2017)

33. Ho, Y.S., Mishchenko, A., Brayton, R., Eén, N.: Enhancing PDR/IC3 with local-
ization abstraction (2017)

34. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31612-8 13

35. Irfan, A., Cimatti, A., Griggio, A., Roveri, M., Sebastiani, R.: Verilog2SMV: a
tool for word-level verification. In: Proceedings of the 2016 Conference on Design,
Automation & Test in Europe, pp. 1156–1159. EDA Consortium (2016)

https://doi.org/10.1007/978-3-642-31424-7_23
https://doi.org/10.1007/978-3-642-54862-8_4
https://doi.org/10.1007/978-3-642-54862-8_4
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
http://www.github.com/aman-goel/avr
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/3-540-40922-X_22
https://doi.org/10.1007/3-540-40922-X_22
https://doi.org/10.1007/978-3-642-31612-8_13

Model Checking of Verilog RTL Using IC3 with Syntax-Guided Abstraction 185

36. Jain, H., Kroening, D., Sharygina, N., Clarke, E.: VCEGAR: Verilog CounterEx-
ample guided abstraction refinement. In: Grumberg, O., Huth, M. (eds.) TACAS
2007. LNCS, vol. 4424, pp. 583–586. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-71209-1 45

37. Kurshan, R.P.: Computer-aided verification of coordinating processes. Princeton
series in computer science (1994)

38. Lange, T., Neuhäußer, M.R., Noll, T.: IC3 software model checking on control
flow automata. In: Proceedings of the 15th Conference on Formal Methods in
Computer-Aided Design, pp. 97–104. FMCAD Inc. (2015)

39. Lee, S.: Unbounded scalable hardware verification (2016)
40. Lee, S., Sakallah, K.A.: Unbounded scalable verification based on approximate

property-directed reachability and datapath abstraction. In: CAV, pp. 849–865
(2014)

41. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. J. Automated Reasoning 40(1), 1–33 (2008)

42. McMillan, K.L.: Applications of craig interpolants in model checking. In: Halb-
wachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 1–12. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-1 1

43. Mneimneh, M., Sakallah, K.: Sat-based sequential depth computation. In: Proceed-
ings of the 2003 Asia and South Pacific Design Automation Conference, pp. 87–92.
ACM (2003)

44. Mukherjee, R., Tautschnig, M., Kroening, D.: v2c – a Verilog to C translator. In:
Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 580–586.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 38

45. Oh, Y., Mneimneh, M.N., Andraus, Z.S., Sakallah, K.A., Markov, I.L.: Amuse: a
minimally-unsatisfiable subformula extractor. In: Proceedings of the 41st Annual
Design Automation Conference, pp. 518–523. ACM (2004)

46. Rota, G.C.: The number of partitions of a set. Am. Math. Monthly 71(5), 498–504
(1964)

47. Tafertshofer, P., Ganz, A.: Sat based ATPG using fast justification and propagation
in the implication graph. In: Proceedings of the 1999 IEEE/ACM International
Conference on Computer-Aided Design, pp. 139–146. IEEE Press (1999)

48. Vizel, Y., Grumberg, O., Shoham, S.: Lazy abstraction and sat-based reachability
in hardware model checking. In: FMCAD, pp. 173–181 (2012)

49. Vizel, Y., Gurfinkel, A.: Interpolating property directed reachability. In: CAV, pp.
260–276 (2014)

50. Welp, T., Kuehlmann, A.: QF BV model checking with property directed reachabil-
ity. In: Proceedings of the Conference on Design, Automation and Test in Europe,
pp. 791–796. EDA Consortium (2013)

51. Wolf, C.: Yosys open synthesis suite. http://www.clifford.at/yosys/

https://doi.org/10.1007/978-3-540-71209-1_45
https://doi.org/10.1007/978-3-540-71209-1_45
https://doi.org/10.1007/978-3-540-31980-1_1
https://doi.org/10.1007/978-3-662-49674-9_38
http://www.clifford.at/yosys/

Towards a Two-Layer Framework
for Verifying Autonomous Vehicles

Rong Gu(B), Raluca Marinescu, Cristina Seceleanu, and Kristina Lundqvist

Mälardalen University, Väster̊as, Sweden
{rong.gu,raluca.marinescu,cristina.seceleanu,kristina.lundqvist}@mdh.se

Abstract. Autonomous vehicles rely heavily on intelligent algorithms
for path planning and collision avoidance, and their functionality and
dependability can be ensured through formal verification. To facilitate
the verification, it is beneficial to decouple the static high-level plan-
ning from the dynamic functions like collision avoidance. In this paper,
we propose a conceptual two-layer framework for verifying autonomous
vehicles, which consists of a static layer and a dynamic layer. We focus
concretely on modeling and verifying the dynamic layer using hybrid
automata and uppaal smc, where a continuous movement of the vehi-
cle as well as collision avoidance via a dipole flow field algorithm are
considered. In our framework, decoupling is achieved by separating the
verification of the vehicle’s autonomous path planning from that of the
vehicle autonomous operation in its continuous dynamic environment.
To simplify the modeling process, we propose a pattern-based design
method, where patterns are expressed as hybrid automata. We demon-
strate the applicability of the dynamic layer of our framework on an
industrial prototype of an autonomous wheel loader.

1 Introduction

Autonomous vehicles such as driverless construction equipment bear the promise
of increased safety and industrial productivity by automating repetitive tasks
and reducing labor costs. These systems are being used in safety- or mission-
critical scenarios, which require thorough analysis and verification. Traditional
approaches such as simulation and prototype testing are limited in their scope of
verifying a system that interacts autonomously with an unpredictable environ-
ment that assumes the presence of humans and varying site conditions. These
techniques are either applied later in the system’s development cycle (testing), or
they simply cannot prove, exhaustively or statistically, the satisfaction of prop-
erties related to autonomous behaviors such as path planning, path following,
and collision avoidance (simulation). Formal verification is usually adopted to
compensate such shortage, yet verifying such a complex system in a continuous
and dynamic environment is still considered a big challenge [1,4].

In this paper, we approach this challenge by proposing a two-layer framework
consisting of a static and a dynamic layer, which facilitates verifying autonomous
vehicles. The structure of the framework separates the static high-level path
c© Springer Nature Switzerland AG 2019
J. M. Badger and K. Y. Rozier (Eds.): NFM 2019, LNCS 11460, pp. 186–203, 2019.
https://doi.org/10.1007/978-3-030-20652-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20652-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-20652-9_12

Towards a Two-Layer Framework for Verifying Autonomous Vehicles 187

planning that assumes an environment with a predefined sequence of milestones
that need to be reached, as well as static obstacles, from the dynamic functions
like collision avoidance, thus providing a separation of concerns for the system’s
design, modeling, and verification. To improve on existing formal models of vehi-
cle movement [17,26], in the dynamic layer, we propose a continuous model of
the vehicle’s motion, together with a model of the environment, where moving
obstacles are either predefined or dynamically generated. The resulting models
are hybrid automata, as accepted by the input language of uppaal Statistical
Model Checker (SMC). The vehicle’s dynamics is modeled as ordinary differ-
ential equations assigned to locations in the hybrid automata. In this paper,
the hybrid automata only have non-deterministic time-bounded delays that are
encoded based on the default uniform distributions assigned by uppaal smc.
We also consider the embedded control system of the autonomous vehicle includ-
ing the involved processes, as well as the scheduling and communication among
them. The path planning is following the Theta* algorithm [6], and the collision
avoidance relies on the dipole flow field one [29]. Both algorithms are encoded as
C-code functions in uppaal smc, within the dynamic layer of our framework.
Once this is accomplished, we can statistically model check the resulting net-
work of hybrid automata, against probabilistic invariance properties expressed in
weighted metric temporal logic [5]. To simplify the modeling process, we propose
a pattern-based design method to provide reusable templates for various com-
ponents of the framework. We demonstrate the applicability of our approach for
modeling and analyzing the dynamic layer on an industrial autonomous wheel
loader prototype that should meet certain safety-critical requirements.

This paper is organized as follows. In Sect. 2, we overview hybrid automata
and uppaal smc, as well as the Theta* algorithm for path planning, and the
dipole flow field algorithm for collision avoidance. Section 3 describes the function
of the autonomous wheel loader and its architecture. In Sect. 4, we present the
conceptual two-layer framework, and in Sect. 5 we propose the pattern-based
modeling of the components (of the dynamic layer) and their formal encoding.
Next, we demonstrate the applicability of the framework on the autonomous
wheel loader, and we present the verification results in Sect. 6. We compare to
related work in Sect. 7, before concluding and outlining future lines of research
in Sect. 8.

2 Preliminaries

In this section, we overview the background information needed for the rest of
the paper, that is, hybrid automata and uppaal smc, as well as the Theta* and
dipole flow field algorithms.

2.1 Hybrid Automata and UPPAAL SMC

uppaal smc [7] is an extension of the tool uppaal [21], which supports statis-
tical model checking of hybrid automata (HA). A HA is defined as the following
tuple:

188 R. Gu et al.

HA =< L, l0,X,Σ,E, F, I >, (1)

where: L is a finite set of locations, l0 ∈ L is the initial location, X is a finite
set of continuous variables, Σ = Σi � Σo is a finite set of actions that are
partitioned into inputs (Σi) and outputs (Σo), E is a finite set of edges of the
form (l, g, a, ϕ, l′), where l and l′ are locations, g is a predicate on R

X , a ∈ Σ
is an action label, and ϕ is a binary relation on R

X , F (l) is a delay function
for the location l ∈ L, and I assigns an invariant predicate I(l) in/of L, which
bounds the delay time in the respective location. In uppaal smc, locations are
marked as urgent (denoted by encircled u) or committed (denoted by encircled
c), indicating that time cannot progress in such locations. Committed locations
are more restrictive, requiring that the next edge to be traversed needs to start
from a committed location. The delay function F (l) for a simple clock variable
x, which is used in (priced) timed automata, is encoded as the linear differential
equation x′ = 1 or x′ = e appearing in the invariant of l.

The semantics of the HA is defined over a timed transition system, whose
states are pairs (l, u) ∈ L × R

X , with u � I(l), and transitions defined as: (i)
delay transitions (< l, u >

d−→< l, u + d > if u � I(l) and (u + d′) � I(l), for
0 ≤ d′ ≤ d), and (ii) discrete transitions (< l, u >

a−→< l′, u′ > if edge l
g,a,r−−−→ l′

exists such that a ∈ Σ, u � g, clock valuation u′ in the target state (l′, u′) is
derived from u by resetting all clocks in the reset set r of the edge, such that
u′ � I(l′)).

In uppaal smc, the automata have a stochastic interpretation based on:
(i) the probabilistic choices between multiple enabled transitions, and (ii) the
non-deterministic time delays that can be refined based on probability distribu-
tions, either uniform distributions for time-bounded delays or user-defined expo-
nential distributions for unbounded delays. In this paper, only the default uni-
form distributions for time-bounded delays are used. Moreover, the uppaal smc
model is a network of HA that communicate via broadcast channels and global
variables. Only broadcast channels are allowed for a clean semantics of purely
non-blocking automata, since the participating HA repeatedly race against each
other, that is, they independently and stochastically decide on their own how
much to delay before delivering the output, with the “winner” being the automa-
ton that chooses the minimum delay.

uppaal smc supports an extension of weighted metric temporal logic for
probability estimation, whose queries are formulated as follows: Pr[bound]
(ap), where bound is the simulation time, ap is the statement that supports two
temporal operators: “Eventually” (♦) and “Always” (�). Such queries estimate
the probability that ap is satisfied within the simulation time bound. Hypoth-
esis testing (Pr[bound](ψ) ≥ p0) and probability comparison (Pr[bound](ψ1)
≥ Pr[bound](ψ2)) are also supported.

2.2 Theta* Algorithm

In this paper, we employ the Theta* algorithm to generate an initial path for our
autonomous wheel loader. The Theta* algorithm has been firstly proposed by

Towards a Two-Layer Framework for Verifying Autonomous Vehicles 189

Nash et al. [6] to generate smooth paths with few turns, from the starting position
to the destination, for a group of autonomous agents. Similar to the A* algorithm
that we have used in our previous study [17], the Theta* algorithm explores
the map and calculates the cost of nodes by the function f(n) = g(n) + h(n),
where n is the current node being explored, g(n) is the Euclidean distance from
the starting node to n, and h(n) is the estimated cheapest cost from n to the
destination. In this paper, we use Manhattan distance [2] for h(n). In each search
iteration, the node with the lowest cost among the nodes that have been explored
is selected, and its reachable neighbors are also explored by calculating their
costs. The iteration is eventually ended if the destination is found or all reachable
nodes have been explored. As an optimized version of A*, Theta* determines
the preceding node of a node to be any node in the searching space instead of
only neighbor nodes. In addition, Theta* adds a line-of-sight (LOS) detection to
each search iteration to find an any-angle path that is less zigzagged than those
generated by A* and its variants. For the detailed description of the algorithm,
we refer the reader to the literature [6].

2.3 Dipole Flow Field for Collision Avoidance

Searching for a path from the starting point to the goal point, assuming a large
map, is not an easy task and it is usually computationally intensive. Hence,
some studies have adopted methods to generate a small deviation from the ini-
tial path, which is much easier to compute than an entirely new path, while
being able to avoid obstacles. To avoid collisions, Trinh et al. [29] propose an
approach to calculate the static flow field for all objects, and the dynamic dipole
field for the moving objects in the map. In the theory of dynamic dipole field,
every object is assumed to be a source of magnetic dipole field, in which the
magnetic moment is aligned with the moving direction, and the magnitude of
the magnetic moment is proportional to the velocity. In this approach, the static
flow field is created within the neighborhood of the initial path generated by the
Theta* algorithm. The flow field force is a combination of the attractive force
drawing the autonomous wheel loader to the initial path, and the repulsive force
pushing it away from obstacles. Unlike the dipole field force, the flow field force
always exists, regardless of whether the vehicle is moving or not. As soon as the
vehicle equipped with this algorithm gets close enough to a moving obstacle, the
magnetic moment around the objects keeps them away from each other. The
combination of the static flow field and the dynamic dipole field ensures that
the vehicle moves safely by avoiding all kinds of obstacles and that it eventu-
ally reaches the destination, as long as a safe path exists. Compared with other
methods [16,30], this algorithm provides a novel method for path planning of
mobile agents, in the shared working environment of humans and agents, which
suits our requirements well. For details, we refer the reader to the literature [29].

190 R. Gu et al.

3 Use Case: Autonomous Wheel Loader

In this section, we introduce our use case, which is an industrial prototype of an
autonomous wheel loader (AWL) that is used in construction sites to perform
operations without human intervention [17]. On one hand, like other autonomous
vehicles, autonomous wheel loaders need to be equipped with path-planning and
collision-avoidance capabilities. On the other hand, they also ought to accom-
plish several special missions, e.g., autonomous digging, loading and unloading,
often in a predefined sequence. Furthermore, autonomous wheel loaders usually
work in unpredictable environments – dust and various sunlight conditions (from
dim to extremely bright) that might cause inaccuracy or even errors in image
recognition and obstacle detection. Moving entities, e.g., humans, animals, and
other machines, might also behave unpredictably, for there are no traffic lights
and lanes. Despite such disadvantages, the AWL’s movements are less restricted
if compared to, for instance, self-driving cars, as there are only a few traffic rules
in sites. They can also stop and wait as long as they need without influencing the
vehicles behind them. All these characteristics make our path-planning (Theta*)
and collision-avoidance (Dipole Flow Field) algorithms applicable.

Fig. 1. The architecture of the AWL’s embedded control system

The architecture of the AWL’s control system, presented in Fig. 1, consists
of three main units: a vision unit, a control unit, and an execution unit, which
are connected by CAN buses. In this paper, we mainly focus on the control
unit that consists of three parallel processes, namely ReadSensor, Main, and
CalculateNewPath, as depicted in Fig. 2. These three processes are executed
in parallel on independent cores. The process ReadSensor acquires data from
sensors (e.g., LIDAR, GPS, angle and speed sensors, etc.) and sends them to
the shared memory before they are accessed by process Main that runs the
path-planning algorithm and invokes a function called Execution Function,
in which three sub-functions are called. The function AdjustAngle adjusts the
moving angle of the AWL, based on its own and the obstacles’ positions. Func-
tion Turn judges if the AWL arrives at one of the milestones on its initial path
calculated by the path-planning algorithm, and changes its direction based on
the result. Function Arrive judges if the AWL reaches the destination and sends
the corresponding commands. Basically, the processes Main and ReadSensor are

Towards a Two-Layer Framework for Verifying Autonomous Vehicles 191

Fig. 2. Process allocation in the control system

responsible for the AWL’s regular routine. However, when an unforeseen obsta-
cle suddenly appears in its vision, the process Main sends a request to process
CalculateNewPath, in which the collision-avoidance algorithm is executed and
a new and safe path segment is generated if it exists. Note that, although the
AWL has more functionality, e.g., digging and loading, we focus only on the path
planning and collision avoidance in this paper.

The loader’s architecture (Figs. 1, 2), including the parallel processes and
functions, is hierarchical. Moreover, the distributed nature of the AWL’s com-
ponents, and the dynamic nature of its movement (including collision avoidance)
call for a separation of concerns along the static and the dynamic dimensions of
the system. Hence, in the following, we propose a two-layer framework to model
and verify autonomous vehicles on different levels.

4 A Two-Level Framework for Planning and Verifying
Autonomous Vehicles

As it is shown in Fig. 3, our two-level framework consists of a static layer and
a dynamic layer, between which data is exchanged according to a defined/cho-
sen communication protocol. The static layer is responsible for path and mis-
sion planning for the AWL, according to possibly incomplete information of the

Fig. 3. Two-layer framework for planning and verifying autonomous vehicles

192 R. Gu et al.

environment. In this layer, known static obstacles are assumed, together with
milestones representing points of operation of the loader. The dynamic layer is
dedicated to simulating and verifying the system following the reference path
given by the static layer, while considering continuous dynamics in an environ-
ment containing moving and unforeseen obstacles.

Static Layer. The static layer is defined as a tuple < Es, Ss,Ms >, where Es

denotes a discrete environment, Ss is a set of known static obstacles, and Ms

is a set of milestones associated to missions (e.g., digging, loading, unloading,
charging), including the order of execution, and timing requirements. As the
path found by the path-planning algorithm is a connection of several straight-line
segments on the map, realistic trajectories and continuous dynamics do not need
to be considered in this layer. Hence, the environment is modeled as a discrete
Cartesian grid whose resolution is defined appropriately to present various sizes
of static obstacles, e.g., holes, rocks, signs, etc. Even if not entirely faithful to
reality, the Cartesian grid provides a proper abstraction of the map for path and
mission planning. As the static layer is still at the conceptual stage currently,
we propose several possible options for modeling and verification of this layer.
DRONA [10] is a programming framework for building safe robotics systems.
which has been applied in collision-free mission planning for drones. Rebeca is
a generic tool for actor-based modeling and has been proven to be applicable
for motion planning for robots [18]. Mission Management Tool (MMT) is a tool
allowing a human operator an intuitive way of creating complex missions for
robots with non-overlapping abilities [25].

Dynamic Layer. The dynamic layer is defined as a tuple < Ed, Ts, Sd,Md,
Dd >, where Ed is a continuous environment, Ts is the trajectory plan input by
the static layer, Sd is a set of static obstacles, Md is a set of moving obstacles that
are predefined, Dd is a set of unforeseen moving obstacles that are dynamically
generated. The speed and direction of a moving obstacle m0 ∈ Md are predefined
as constant values in our model. The dynamically generated moving obstacle
d0 ∈ Dd is instantiated during the verification when its initial location, mov-
ing speed and angle are randomly determined. Collision-avoidance algorithms
are executed in this layer if the vehicle meets moving obstacles or unforeseen
static obstacles. Ordinary differential equations (ODEs) are adopted to model
the continuous dynamics of moving objects (e.g., vehicle, human, etc.), and the
embedded control system of the autonomous vehicle is modeled in this layer.

This two-layer design has many benefits. Firstly, it provides a separation
of concerns for the system’s design, modeling, and verification. As a path plan
does not concern the continuous dynamics of the vehicle, the discrete model
in the static layer is a proper abstraction, which sacrifices some unnecessary
realistic elements but preserves the possibility of exhaustive verification. The
dynamic layer, which concerns the actual trajectories of moving objects, consists
of hybrid models that contain relatively more realistic details of the system
and environment, which enhance the truthfulness of the model. However, as a
tradeoff, only probabilistic verification is supported in this layer. In addition,
modification of algorithms or design is only restricted within the corresponding

Towards a Two-Layer Framework for Verifying Autonomous Vehicles 193

layer, so potential errors will not propagate in the entire system. Secondly, the
two-layer framework is open for extension. It provides a possibility to add layers
for new functions, such as artificial intelligence or centralized control.

5 Pattern-Based Modeling of the Dynamic Layer

A classic control system consists of four components: a plant containing the
physical process that is to be controlled, the environment where the plant oper-
ates, the sensors that measure some variables of the plant and the environment,
and the controller that determines the system state and outputs timed-based
signals to the plant [22]. In our case, as shown in Fig. 1, the execution unit is
the “plant” that describes the continuous dynamics of the AWL. The “sensors”
are divided into two classes: vision sensors (LiDAR) connecting to the vision
unit, and motion sensors (GPS, IMU, Angle and Speed sensors) connecting to
the execution unit.

5.1 Patterns for the Execution Unit

Currently, the vision unit and vision sensors have no computation ability, so they
are simply modeled as data structures. The execution unit is modeled in terms
of hybrid automata, in which the motion of the AWL is given by a system of
three ordinary differential equations:

ẋ(t) = v(t)cosθ(t) ẏ(t) = v(t)sinθ(t) (2)

θ̇(t) = ω(t), (3)

where, ẋ(t) and ẏ(t) are the projections of the linear velocity on x and y axes,
ω(t) is the angular velocity, and v(t) is the linear velocity, which follows the
Newton’s Law of Motion: v(t) = F−k×M

M , where F is the force acting on the
AWL, k is the friction coefficient, and M is the mass of the AWL.

(a) The skeleton of the pattern (b) The hybrid automaton of the pattern

Fig. 4. The pattern of the linear motion component in the execution unit

194 R. Gu et al.

The pattern of the execution unit is a hybrid model consisting of two hybrid
automata, namely linear motion and rotation. Here we use the linear motion
component as an example to present the idea. As depicted in Fig. 4(a), there are
four locations indicating four moving states of the AWL, that is, stop at Idle,
acceleration at Acc, moving at a constant speed at Constant, and deceleration
at Dec. Therefore, the derivatives of the position (pcx′, pcy′) and the veloc-
ity (v′) are assigned to zero at Idle for the stop state. According to different
moving states, variations of Eq. 2 should be encoded in the refinement of each
location in the blank boxes in Fig. 4(a). Figure 4(b) is an instance of the pattern,
where v′ is set to a positive value (v′ == (AF − k ∗ m)/m) at location Acc to
present acceleration. Once the velocity reaches the maximum value (maxS) or
the automaton receives a brake signal (denoted as a channel brake), it goes to
location Constant or Dec, where the ODEs are changed to make the AWL move
at a constant speed or decelerate.

5.2 Patterns for the Control Unit

As a part of an embedded system, the control unit model has three basic com-
ponents: a scheduler, a piece of memory, and a set of processes. Currently, the
memory is modeled as a set of global variables, hence the scheduler pattern and
the processes patterns are the essence. Due to its safety-critical nature, the con-
trol unit is assumed to be a multi-core system and the processes are scheduled
in a parallel, predictable, and non-preemptive fashion. This scheduling policy is
inspired by Timed Multitasking [22], which tackles the real-time programming
problem using an event-driven approach. However, instead of the preemptive
scheduling, we apply a non-preemptive strategy. To illustrate this scheduling
strategy, we use the three processes in the control unit (Fig. 2) as an example.
The process ReadSensor is firstly triggered at the moment Trigger1 when the
process reads data from sensors and runs its function as illustrated in Fig. 5.
Regardless of the exact execution time of a process, the inputs are consumed
and the outputs are produced at well-defined time instances, namely trigger and
deadline. As the input of Main is the output of ReadSensor, the former is trig-
gered after the latter finishes. At same the moment, CalculateNewPath finishes
its execution immediately as no input comes. This is actually reasonable, since

Fig. 5. Process scheduling

Towards a Two-Layer Framework for Verifying Autonomous Vehicles 195

process CalculateNewPath does not need to be executed every round, as it is
responsible for generating a new path segment only when the AWL encounters
an obstacle. For the benefits brought by the explicit execution time and deadline,
we refer the interested readers to the literature [22] for detail.

The pattern of a process consists of two parts: a state module and an oper-
ation module. Similar to the state machine function-block and modal function-
block in related work [19], the state module describes the mode transition struc-
ture of the processes, and the operation module describes the procedure or
computation of the process. Because of their definition, the state modules are
modeled as discrete automata, and the operation modules are modeled as dis-
crete automata or computation formulas according to their specific functionality.
Figure 6 shows the inputs of the process coming to the state module in which
the state of the process transfers according to the inputs. Some state transitions
of the state module are detailed by the functions in the operation module in
the sense that the former invokes the latter for concrete computation. Specifi-
cally, functions in the operation module could be modeled as discrete automata
when they involve logic, or executable code when they are purely about com-
putation. After executing the corresponding functions in the operation module,
some results are sent out of the process as output, and some are sent back to
the state module for state transitions, which might also produce output. The
designs of the state module and operation module for different processes have
both similarities and differences. They all need to be scheduled, to receive input,
produce output, etc., but their specific functionality is different. To make our
patterns reusable, we design fixed skeletons of the process patterns, which are
presented as hybrid automata.

Fig. 6. A process model example

5.3 Encoding the Control Unit Patterns as Hybrid Automata

Scheduler. To model the scheduler as a hybrid automaton in uppaal smc,
we first discretize the continuous time as a set of basic time units to mimic
the clock in an embedded system. As depicted in Fig. 7, we use an invariant
at location Init (clock xd ≤ UNIT), and a guard on its outgoing edge (xd ==
UNIT) to capture the coming basic time unit. We also declare a data structure
representing processes, as follows:

196 R. Gu et al.

typedef struct{

int id; //process id

bool running; // whether the process is being executed

int period; //counter for the period of the process

int executionTime; //counter for the execution time of the

process

}PROCESS;

When a basic time unit comes, the scheduler transfers to location Updating. In
the function update(), the period counters of all processes are decreased by one,
and so are the execution time counters if the variable running in the process
structure is true. When the period of a process equals zero, its id is inserted
into a queue called ready and the variable readyLen indicating the length of
the queue is increased by one. Similarly, when the executionTime equals zero,
the process’s id is inserted into a queue called done. The fact that the queue
done is not empty (doneLen > 0) implies that the execution times of some
processes have elapsed, so the scheduler changes from Updating to Finishing
to generate the outputs of those processes. The self loop at location Finishing
indicates that the outputs of all the processes in queue done are generated orderly
by the synchronization between the scheduler and the corresponding process
automaton via the channel output. If the queue ready is not empty (readyLen
> 0), similarly, the scheduler moves to location Execution to trigger the top
process in ready via the channel execute, and waits there until the process
finishes, when the scheduler is then synchronized again with the process via
channel finish. Note that the process finishes its function instantaneously and
stores its output in the local variables, which will only be transferred to the
other processes via global variables when the execution time passes.

Fig. 7. The pattern of the scheduler

Process. A typical state module of a process consists of four states: being trig-
gered, doing its own function, idle, and output. A typical pattern for it is shown
in Fig. 8(a). Except locations Start and Idle, all locations are urgent because
the execution is instantaneous, and the output is generated when the execution
time is finished. From location Start to O1, the process is being triggered by

Towards a Two-Layer Framework for Verifying Autonomous Vehicles 197

the scheduler by synchronizing on channel execute[id], in which id is the pro-
cess’s ID. If the input is valid (input == true), the process starts to execute by
leaving O1 to the next location, otherwise, it finishes its execution immediately
by going back to Start without any output generated, just as the description
of the scheduling policy in Sect. 5.2. The blank box indicates the process’s own
function that is created in an ad-hoc fashion, so it is not part of the fixed skele-
ton of the pattern. After executing its own function, the process synchronizes
again with the scheduler on channel finish[id], when the process finishes and
gives control back to the scheduler. The output is generated from location Idle
to Notification. The broadcast channel notify[id] is for notifying other pro-
cesses waiting for the output of the current process. Based on this idea, we
give an example instantiated from this pattern in Fig. 8(b). The automaton goes
from O2 to O3 through two possible edges based on data1, which is the out-
come of function ownJob1(). The concrete computation is encoded in functions
ownJob2() and ownJob3(), which are the counterparts of the functions in the
operation module of Fig. 6. If the specific function of the process is more complex
than in this example, or it includes function invocation, this blank box can be
extended with synchronizations with other automata. We will elaborate this by
revisiting our use case in the next section.

(a) The skeleton of the pattern (b) An instance of the pattern

Fig. 8. The pattern of a generic process

6 Use Case Revisited: Applying Our Method on AWL

As the patterns of linear motion and rotation components and the scheduler are
totally applicable in the use case, they are simply transplanted in the model
of the AWL with parameter configuration. Hence, in this section, we mainly
demonstrate how the processes in AWL’s control unit are modeled using the
proposed patterns, and present the verification results.

6.1 Formal Model of the Control Unit

The control unit contains three parallel processes (Fig. 2). ReadSensor and
CalculateNewPath are relatively simple because they do not invoke other func-
tions, while Main calls function Execution, which calls other three functions:

198 R. Gu et al.

AdjustAngle, Turn, and Arrive. Therefore, The state modules of ReadSensor
and CalculateNewPath are modeled as single automata and the operation mod-
ules are the functions at edges encoding the computation of their functional-
ity. Differently, the state module of Main is a mutation of the process pattern
extended with a preprocessing step calculating an initial path by running Theta*
algorithm. Figure 9 depicts the automaton of the state module of Main, in which
another automaton representing the function Execution is invoked via channel
invoke[0], where 0 is the ID of the function Execution. Note that the tran-
sition from the location Init to Moving is the preprocessing step and Theta*
algorithm is implemented in the function main, which will be moved to the
static layer eventually after the entire framework is accomplished. As the pro-
cess Main invokes other functions, its operation module is a network of automata
containing the function Execution, AdjustAngle, Turn, and Arrive, which are
called by using synchronizations between the state module automata and opera-
tion module automata (channels invoke, respond, finish). After calling other
functions, Main goes to the location Idle via three edges based on the return
values of the invoked functions and waits to generate output there.

Fig. 9. The automaton of the state module of the process Main

6.2 Statistical Model Checking of the AWL Formal Model

Environment Configuration. In the following we consider a continuous map
with the size 55 × 55, where five static obstacles and two moving obstacles are
predefined, and another moving obstacle is dynamically generated during the
verification. In order to achieve this, we leverage the spawning command of
UPPAAL SMC to instantiate new time automata instance of the moving obstacle
that “appears” in the map whenever it is generated by the automaton called
generator and “disappears” from the map when its existence time terminates.
The speed of the moving obstacles is a constant value indicating that they move
one unit distance per second and their moving directions are either opposite
or the same as it of the AWL. The parameters of the AWL are the weight of
it, acceleration and deceleration force, friction coefficient and maximum speed,
which are defined as constant values in UPPAAL SMC.

Towards a Two-Layer Framework for Verifying Autonomous Vehicles 199

Path Generation and Following. Given a start and a goal and a set of
milestones, the AWL must be able to calculate a safe path passing through them
orderly avoiding static obstacles if the path exists and follow it. To verify this
requirement, we first simulate the model in UPPAAL SMC using the command:

simulate 1[<= 110] {pcx, pcy} (4)

where pcx and pcy are the real-valued coordinate of the AWL. Figure 10(a)
shows the result of the simulation, and the result data is exported into Excel
to depict the moving trajectory of the AWL shown in Fig. 10(b). The AWL
perfectly follows the generated path that avoids all the static obstacles. But the
simulation only runs one possible execution trace of the AWL model. Hence, we
further verify the model with a query:

(a) Coordinate changing of the AWL (b) Moving trajectory of the AWL in Excel

Fig. 10. Moving trajectory of the AWL generated by the command {simulate
1[<=110] pcx,pcy} in UPPAAL SMC and exported in Excel

Pr[<= 70](<> arrived && counter <= 60) (5)

Pr[<= 110]([] followedPath) (6)

where arrived and counter in query 5 are a Boolean variable and a clock that
reflect if the AWL arrives at the destination and what the minimum time does it
take, followedPath in query 6 is a Boolean variable indicating if the AWL has
reached the destination and come back to the start by visiting all the milestones
orderly. To update the value of followedPath timely and periodically during the
verification, we create an independent automaton called monitor that checks the
index of the model. The monitor is triggered by the scheduler every time unit
that is small enough to ensure the position of the AWL does not change much
during this time interval. The probability interval of satisfying these queries is
[0.902606, 1] with 95% confidence obtained from 36 runs.

Collision Avoidance. By the nature of the Theta* algorithm, AWL is able
to avoid the static obstacles as long as it sticks to the initial path. When it
meets an unforeseen static obstacle or a moving obstacle, the AWL must run

200 R. Gu et al.

the dipole flow field algorithm timely to avoid it. Two queries are designed to
get the simulated moving trajectory and estimate the probability of satisfaction:

simulate 1[<= 110] {pcx, pcy, ocx[0], ocy[0], ocx[1], ocy[1], ocx[3], ocy[3]} (7)

Pr[<= 110]([] !collided) (8)

Arrays ocx and ocy in query 7 represent the positions of moving obstacles at
x and y axes. The trajectories got from query 7 is shown in Fig. 11, where
“A” and “B” are two predefined moving obstacles and “C” is a dynamically
generated obstacle that moves “recklessly” towards the AWL, so the latter turns
around to avoid the obstacle. The overlap of two trajectories at “C” does not
imply a collision because the AWL and the moving obstacle are not at the
same position at the same moment. To prove this, query 8 is designed, where
collided is a Boolean variable indicating if the AWL has collided with any static
or moving obstacles during the verification time. Similar to the verification of
path generation and following, the automaton monitor is extended to update
this variable periodically by checking if the current coordinate of the AWL is
close to any obstacle in the map, and the threshold of the distance is 0.8 in this
case. The probability interval of satisfying this query is [0.902606,1] with 95%
confidence obtained from 36 runs.

Fig. 11. The trajectory of the AWL in a map with three moving obstacles

7 Related Work

Automata-based methods [12,20,26,28] have been used for path or motion plan-
ning. Different from our work, these studies aim to solve the vehicle-routing prob-
lem by using temporal logic. These studies accomplish many typical autonomous
tasks like searching for an object, avoiding an obstacle, and missions sequencing.
However, as they focus on achieving collision avoidance in design, uncertainties
in the real deployment like transmission time of sensors data in the embedded
system and unforeseen obstacles have not been considered.

Towards a Two-Layer Framework for Verifying Autonomous Vehicles 201

Runtime verification that monitors the behavior of autonomous systems com-
plements this shortage to some extend [11,15,23,24]. This technique extracts
information from a running system, based on which the behavior of the sys-
tem is verified. Runtime overhead caused by the monitor is the most common
problem introduced by this method.

Agent-based method is another widely studied approach for autonomous sys-
tems [3,8,11,13,14]. As the predominant form of rational agent architecture is
that provided through the Beliefs, Desires, and Intentions (BDI) approach, these
studies aim to translate the agent-based language to a formal language to verify
the behavior of the agent. But this method usually does not concern the detail
of the embedded control system and continuous dynamics of the vehicle.

There are also some studies providing a framework for verification of
autonomous vehicles or robots. In [27], the authors captured the behavior of
an unmanned aerial vehicle performing cooperative search mission into a Kripke
model to verify it against the temporal properties expressed in Computation
Tree Logic (CTL). Their model contains a decision making layer and a path
planing layer. In [9], the authors propose an approach combining model check-
ing with runtime verification to bridge the gap between software verification
(discrete) and the actual execution of the software on a real robotic platform in
the physical world. The software stack of a robotics system providing different
verification capability focusing on different functionality has inspired our work.
However, our framework provides an ability to encode the collision avoidance
algorithm in the model and verifying it in a continuous environment.

8 Conclusions and Future Work

We have proposed a conceptual two-layer framework for formally verifying
autonomous vehicles that decouples the high-level static planning from dynamic
functions like collision avoidance, etc. The framework provides a separation of
concerns for the complex modeling and verification of autonomous vehicles. The
static layer focuses on making the optimal plan for the vehicle to accomplish a
sequence of missions based on the incomplete information of the environment.
While the dynamic layer concerns the execution of the plan with vehicle dynam-
ics in a continuous environment model where unforeseen moving obstacles appear
randomly. Hence, a collision avoidance algorithm relying on dipole flow field is
implemented in the model of the embedded control system in this layer. We are
currently engaged in modeling the dynamic layer using hybrid automata and
UPPAAL SMC, and designing a pattern-based method to simplify the modeling
process and increase reusability. The dynamic layer has been applied to model
and verify a prototype of an autonomous wheel loader and the verification result
shows the capability and applicability of statistical model checking adopted in
autonomous vehicles. We expect to report our research of the static layer and
the combination of these two layers in the years to come.

202 R. Gu et al.

Acknowledgement. The research leading to the presented results has been per-
formed within the research profile DPAC - Dependable Platform for Autonomous
Systems and Control project, funded by grant 20150022 of the Swedish Knowledge
Foundation that is gratefully acknowledged.

References

1. Bhatia, A., Maly, M.R., Kavraki, L.E., Vardi, M.Y.: Motion planning with complex
goals. IEEE Rob. Autom. Mag. 18(3), 55–64 (2011)

2. Black, P.E.: Manhattan distance. Dictionary Algorithms Data Struct. 18, 2012
(2006)

3. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying multi-agent pro-
grams by model checking. Auton. Agent. Multi-Agent Syst. 12(2), 239–256 (2006)

4. Branicky, M.S., Borkar, V.S., Mitter, S.K.: A unified framework for hybrid con-
trol: model and optimal control theory. IEEE Trans. Autom. Control 43(1), 31–45
(1998)

5. Bulychev, P., et al.: Monitor-based statistical model checking for weighted met-
ric temporal logic. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol.
7180, pp. 168–182. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28717-6 15

6. Daniel, K., Nash, A., Koenig, S., Felner, A.: Theta*: any-angle path planning on
grids. J. Artif. Intell. Res. 39, 533–579 (2010)

7. David, A., et al.: Statistical model checking for stochastic hybrid systems. arXiv
preprint arXiv:1208.3856 (2012)

8. Dennis, L.A., Fisher, M., Webster, M.P., Bordini, R.H.: Model checking agent
programming languages. Autom. Softw. Eng. 19(1), 5–63 (2012)

9. Desai, A., Dreossi, T., Seshia, S.A.: Combining model checking and runtime ver-
ification for safe robotics. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol.
10548, pp. 172–189. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
67531-2 11

10. Desai, A., Saha, I., Yang, J., Qadeer, S., Seshia, S.A.: DRONA: a framework for safe
distributed mobile robotics. In: Proceedings of the 8th International Conference
on Cyber-Physical Systems, pp. 239–248. ACM (2017)

11. Doherty, P., Kvarnström, J., Heintz, F.: A temporal logic-based planning and exe-
cution monitoring framework for unmanned aircraft systems. Auton. Agent. Multi-
Agent Syst. 19(3), 332–377 (2009)

12. Fainekos, G.E., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning
for mobile robots. In: Proceedings of the 2005 IEEE International Conference on
Robotics and Automation, ICRA 2005, pp. 2020–2025. IEEE (2005)

13. Fisher, M., Bordini, R.H., Hirsch, B., Torroni, P.: Computational logics and agents:
a road map of current technologies and future trends. Comput. Intell. 23(1), 61–91
(2007)

14. Fisher, M., Dennis, L., Webster, M.: Verifying autonomous systems. Commun.
ACM 56(9), 84–93 (2013)

15. Gat, E., Slack, M.G., Miller, D.P., Firby, R.J.: Path planning and execution moni-
toring for a planetary rover. In: Proceedings of the IEEE International Conference
on Robotics and Automation, pp. 20–25 (1990)

16. Golan, Y., Edelman, S., Shapiro, A., Rimon, E.: Online robot navigation using
continuously updated artificial temperature gradients. IEEE Rob. Autom. Lett.
2(3), 1280–1287 (2017)

https://doi.org/10.1007/978-3-642-28717-6_15
https://doi.org/10.1007/978-3-642-28717-6_15
http://arxiv.org/abs/1208.3856
https://doi.org/10.1007/978-3-319-67531-2_11
https://doi.org/10.1007/978-3-319-67531-2_11

Towards a Two-Layer Framework for Verifying Autonomous Vehicles 203

17. Gu, R., Marinescu, R., Seceleanu, C., Lundqvist, K.: Formal verification of an
autonomous wheel loader by model checking. In: Proceedings of the 6th Conference
on Formal Methods in Software Engineering, pp. 74–83. ACM (2018)

18. Jafari, A., Nair, J.J.S., Baumgart, S., Sirjani, M.: Safe and efficient fleet operation
for autonomous machines: an actor-based approach. In: Proceedings of the 33rd
Annual ACM Symposium on Applied Computing, pp. 423–426. ACM (2018)

19. Ke, X., Sierszecki, K., Angelov, C.: COMDES-II: a component-based framework
for generative development of distributed real-time control systems. In: 13th IEEE
International Conference on Embedded and Real-Time Computing Systems and
Applications, pp. 199–208. IEEE (2007)

20. Kloetzer, M., Mahulea, C.: A petri net based approach for multi-robot path plan-
ning. Discrete Event Dyn. Syst. 24(4), 417–445 (2014)

21. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J. Softw. Tools
Technol. Transf. 1(1–2), 134–152 (1997)

22. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems: A Cyber-Physical
Systems Approach. MIT Press, Cambridge (2016)

23. Lotz, A., Steck, A., Schlegel, C.: Runtime monitoring of robotics software compo-
nents: increasing robustness of service robotic systems. In: 2011 15th International
Conference on Advanced Robotics (ICAR), pp. 285–290. IEEE (2011)

24. Luo, C., et al.: Runtime verification of robots collision avoidance case study. In:
2018 IEEE 42nd Annual Computer Software and Applications Conference (COMP-
SAC), pp. 204–212. IEEE (2018)

25. Miloradović, B., Cürüklü, B., Ekström, M., Papadopoulos, A.: Extended colored
traveling salesperson for modeling multi-agent mission planning problems. In: Pro-
ceedings of the 8th International Conference on Operations Research and Enter-
prise Systems - Volume 1, ICORES, pp. 237–244, INSTICC. SciTePress (2019).
https://doi.org/10.5220/0007309002370244

26. Quottrup, M.M., Bak, T., Zamanabadi, R.: Multi-robot planning: a timed
automata approach. In: 2004 IEEE International Conference on Robotics and
Automation, Proceedings, ICRA 2004, vol. 5, pp. 4417–4422. IEEE (2004)

27. Sirigineedi, G., Tsourdos, A., White, B.A., Zbikowski, R.: Modelling and verifica-
tion of multiple UAV mission using SMV. arXiv preprint arXiv:1003.0381 (2010)

28. Smith, S.L., Tumova, J., Belta, C., Rus, D.: Optimal path planning for surveillance
with temporal-logic constraints. Int. J. Rob. Res. 30(14), 1695–1708 (2011)

29. Trinh, L.A., Ekström, M., Cürüklü, B.: Toward shared working space of human
and robotic agents through dipole flow field for dependable path planning. Front.
Neurorob. 12 (2018)

30. Valbuena, L., Tanner, H.G.: Hybrid potential field based control of differential
drive mobile robots. J. Intell. Rob. Syst. 68(3–4), 307–322 (2012)

https://doi.org/10.5220/0007309002370244
http://arxiv.org/abs/1003.0381

Clausal Proofs of Mutilated Chessboards

Marijn J. H. Heule1, Benjamin Kiesl2,3, and Armin Biere4(B)

1 Department of Computer Science, The University of Texas, Austin, USA
2 Institute of Logic and Computation, TU Wien, Vienna, Austria

3 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
4 Institute for Formal Models and Verification, JKU Linz, Linz, Austria

armin.biere@gmail.com

Abstract. Mutilated chessboard problems have been called a “tough
nut to crack” for automated reasoning. They are, for instance, hard
for resolution, resulting in exponential runtime of current SAT solvers.
Although there exists a well-known short argument for solving mutilated
chessboard problems, this argument is based on an abstraction that
is challenging to discover by automated-reasoning techniques. In this
paper, we present another short argument that is much easier to compute
and that can be expressed within the recent (clausal) PR proof system
for propositional logic. We construct short clausal proofs of mutilated
chessboard problems using this new argument and validate them using
a formally-verified proof checker.

1 Introduction

The success of automated reasoning presents us with an interesting peculiarity:
While modern solving tools can routinely handle gigantic real-world instances,
they often fail miserably on supposedly easy problems. Their poor performance
is frequently caused by the weakness of their underlying proof systems, which
only allow them to derive facts that are logically implied. A recently proposed
proof system, called PR [6], overcomes this issue by allowing the derivation of
facts that are not necessarily implied but whose addition preserves satisfiability.

A well-known family of problems on which traditional reasoning approaches
fail are the mutilated chessboard problems. Given a chessboard of size n×n from
which two opposite corner squares have been removed (see Fig. 1), a mutilated
chessboard problem asks if the remaining squares can be fully covered with
dominos (i.e., with stones that cover exactly two squares). The answer is no,
based on a simple argument: Assume to the contrary that a mutilated chessboard
can be fully covered with dominos. Then, since every domino covers exactly one
black square and one white square, the number of covered black squares must
equal the number of covered white squares. But the number of black squares
on a mutilated chessboard is different from the number of white squares since
opposite corner squares (of which two were removed) are of the same color.

Supported by NSF under grant CCF-1813993, by AFRL Award FA8750-15-2-0096,
Austrian Science Fund (FWF) under projects W1255-N23 and S11409-N23 (RiSE)
and the LIT Secure and Correct Systems Lab funded by the State of Upper Austria.

c© Springer Nature Switzerland AG 2019
J. M. Badger and K. Y. Rozier (Eds.): NFM 2019, LNCS 11460, pp. 204–210, 2019.
https://doi.org/10.1007/978-3-030-20652-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20652-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-20652-9_13

Clausal Proofs of Mutilated Chessboards 205

Fig. 1. An empty (left), almost full (middle), and reduced (right) mutilated chessboard.

Automated-reasoning methods on various representations have severe diffi-
culties finding this argument because they do not have colored squares, so they
need to come up with this abstraction themselves in order to use a similar argu-
ment. John McCarthy has called the mutilated chessboard problems a “tough
nut to crack” for automated reasoning [10], and it has been shown that these
problems admit only proofs of exponential size within the propositional resolu-
tion proof system, which forms the basis of many SAT solvers [1,3].

In this paper, we show that the recently introduced PR proof system facil-
itates a completely different but equally short argument for solving mutilated
chessboard problems. The new argument rules out possible patterns for the domi-
nos by generalizing—without loss of generality—from certain specific patterns
that are similar to them. Moreover, the argument also seems to be well suited for
automated reasoning since we discovered it when analyzing PR proofs that were
found by one of our tools [7]. We argue that the key to automatically solving the
mutilated chessboard problems and many other hard problems is not to simulate
human thinking but to equip computers with capabilities to find their own short
arguments. Moreover, our example demonstrates that automated-reasoning tools
cannot only provide us with simple yes/no answers but that they can also help
us gain further insights into the nature of a problem.

2 Representation

A successful approach to solving hard combinatorial problems is to encode them
into propositional logic and to solve the resulting propositional formulas with a
SAT solver. Mutilated chessboard problems can be naturally encoded in propo-
sitional logic: We consider only propositional formulas in conjunctive normal
form (CNF). Such formulas are conjunctions of clauses where each clause is a
disjunction of literals and each literal is either a variable or the negation of a
variable. We use a distinct Boolean variable for each possible placement of
a domino on the chessboard. On each square (apart from some border squares),
a domino can be placed either horizontally or vertically, having the square
either left or top. Intuitively, a variable should be true if and only if a domino

206 M. J. H. Heule et al.

is placed on the corresponding location in the corresponding way (horizontally or
vertically). The number of variables is thus roughly twice the number of squares.

Only one constraint needs to be encoded for mutilated chessboard problems:
Each square must be covered by exactly one domino. This constraint can be
easily expressed in propositional logic, resulting in two clauses for corner squares,
four clauses for border squares, and seven clauses for center squares: One clause
(consisting only of positive literals) expresses that the square is covered by at
least one domino whereas the other clauses (each containing exactly two negative
literals) express that the square is covered by at most one domino.

Mutilated chessboard problems using this encoding were part of the SAT
Competition 2018 (in the main, parallel, and no-limits tracks). The problems
used in the competition encoded mutilated chessboards of size n × n, with
n ∈ {15, 16, 17, 18, 19, 20}. None of the solvers were able to solve the two largest
instances within the time limit of 5000 seconds. In this paper, we consider sig-
nificantly larger mutilated chessboards with n ∈ {20, 30, 40, 50}.

Notice that the problem encoding does not include any information regarding
the colors of squares as in the illustrations. It would be possible to include this
information using only a subset of the clauses, allowing at most one domino for
white squares and requiring at least one domino for black squares (assuming that
the removed corner squares are black). These formulas would still be hard for
resolution (using a subset of the clauses cannot yield shorter resolution proofs)
but they would become easy for cutting-plane reasoning [8].

3 Clausal Proofs

Informally, a clausal proof system allows us to show the unsatisfiability of a
CNF formula by continuously deriving more and more clauses until we obtain
the empty clause. Thereby, the addition of a derived clause to the formula and
all previously derived clauses must preserve satisfiability. As the empty clause
is trivially unsatisfiable, a clausal proof shows the unsatisfiability of the original
formula. Moreover, it must be checkable in polynomial time that each derivation
step does preserve satisfiability. This requirement ensures that the correctness
of proofs can be efficiently verified. In practice, this is achieved by allowing only
the derivation of specific clauses that fulfill some efficiently checkable criterion.

Formally, clausal proof systems are based on the notion of clause redundancy.
A clause C is redundant with respect to a formula F if F and F ∧C are equisatis-
fiable (i.e., they are either both satisfiable or both unsatisfiable). Given a formula
F = C1∧· · ·∧Cm, a clausal proof of F is a sequence (Cm+1, ωm+1), . . . , (Cn, ωn)
of pairs where each Ci is a clause, each ωi (called the witness) is a string, and Cn

is the empty clause [6]. Such a sequence gives rise to formulas Fm, Fm+1, . . . , Fn,
where Fi = C1 ∧ · · · ∧ Ci. A clausal proof is correct if every clause Ci (i > m)
is redundant with respect to Fi−1, and if this redundancy can be checked in
polynomial time (with respect to the size of the proof) using the witness ωi.

An example for a clausal proof system is the resolution proof system, which
only allows the derivation of resolvents (with no/empty witnesses). Moreover,

Clausal Proofs of Mutilated Chessboards 207

Fig. 2. Two equivalent placements of five dominos on a mutilated chessboard.

the recently introduced proof system PR [6] is a clausal proof system that allows
to derive a clause Ci if that clause is propagation redundant with respect to Fi−1.
For the details of propagation redundancy, we refer to the original paper [6]. Here,
we just note that (1) propagation-redundant clauses are clauses for which it can
be checked efficiently that their addition preserves satisfiability, and (2) every
resolvent is a propagation-redundant clause but not vice versa.

The key to constructing short clausal proofs is to aim for deriving short
clauses to quickly obtain the empty clause. One approach to achieve this is
the clause learning technique based on first unique implication points [9] used in
modern SAT solvers. Starting from a falsifying assignment (found by the solver),
this technique derives a redundant clause by computing a subassignment of the
falsifying assignment. The derived clause is then the maximal clause that is
falsified by that subassignment, thereby ruling out the subassignment and all
its extensions. Thus, if the subassignment makes x true and y false, then the
derived clause is x∨ y. When the empty clause is eventually derived, all possible
assignments are ruled out, implying that the formula is unsatisfiable.

On mutilated chessboards, clauses intuitively rule out possible placements
of dominos. For instance, if a SAT solver arrives at the falsifying placement of
the 30 dominos shown on the middle of Fig. 1, it is able to derive the clause
that rules out the placement of 14 dominos on the right of Fig. 1, resulting in
a 14 literal redundant clause. Deriving this clause rules out all placements that
extend the smaller placement, including the falsifying placement of 30 dominos.

Can we immediately learn way shorter clauses, ruling out way more place-
ments? Yes, but not within the resolution proof system. Within the PR proof
system, however, much shorter clauses—consisting of only two literals—can be
derived. Placements that are represented by such clauses will be discussed below.

4 Without Loss of Satisfaction

Consider the placements of dominos in Fig. 2. Although the placement on the left
is different from the one on the right, they are equivalent in the sense that both
cover exactly the same squares. A common way in mathematics to deal with such
similar cases is to argue without loss of generality, thereby generalizing a specific

208 M. J. H. Heule et al.

case to other similar cases. Within the PR proof system, we can formalize such
arguments by deriving clauses that rule out cases that are similar to others.

For mutilated chessboard problems, PR allows us to derive clauses that rule
out placements where two horizontal dominos are placed below each other (like
the left two dominos on the left mutilated chessboard of Fig. 2). The reasoning is
as follows: If it were possible to extend such a placement to a valid placement that
covers the whole board, then this would also be possible for the similar placement
where two vertical dominos are placed next to each other (such as the left pattern
on the right chessboard of Fig. 2). We thus argue without loss of satisfaction:
If there was a satisfying assignment before ruling out a placement, then there will
be a satisfying assignment afterwards. Ruling out all the placements where two
horizontal dominos are placed below each other shrinks the number of possible
placements aggressively, thus leading to short proofs.

We observed that this pattern and others can be ruled out within the PR
proof system when we analyzed automatically generated PR proofs produced by
a modified version of the SAT solver Lingeling. This modified version of Lin-
geling is based on our recently introduced satisfaction-driven clause learning
(SDCL) paradigm [7]. In the proofs, derived clauses represent the ruled out as-
signments while the witnesses represent the equivalent placements. Our modified
Lingeling is not particularly strong on the mutilated chessboard problems but
these binary clauses stood out since they are so short. We thus believe that the
solver might be able to solve large mutilated chessboard problems efficiently if we
can equip it with the right decision heuristics.

Another pattern that can be ruled out in the PR proof system is the placement
of a horizontal domino on top of two vertical dominos as in the right pattern
on the left mutilated chessboard of Fig. 2. Such a pattern can be replaced by
moving the two vertical dominos one square up and the horizontal domino two
squares down as in the right pattern on the right mutilated chessboard of Fig. 2.

Deriving clauses to rule out both patterns—no two horizontal dominos and
no horizontal domino on top of two vertical dominos—on all positions of the
mutilated chessboard exponentially reduces the number of placements that a
solver explores. We require O(n3) PR clauses to rule out these patterns for a
n × n mutilated chessboard. The resulting formula can be easily solved using a
usual SAT solver. The observed runtime and number of conflicts is also O(n3).

5 Proof Production and Validation

We constructed and validated PR proofs of reasonably large mutilated chess-
board problems. Both the problem encodings and the proofs are available at
https://github.com/marijnheule/mchess. The proofs consist of a first part that
eliminates the earlier mentioned patterns by deriving PR clauses and a second
part that refutes the remaining cases using resolution. We generated the first part
of the proofs with a dedicated tool that enumerates the required PR clauses. For
the second part, we used a SAT solver. Both proof parts are roughly equal in
size. The largest problem instance for which we produced a proof is a 50 × 50

https://github.com/marijnheule/mchess

Clausal Proofs of Mutilated Chessboards 209

Table 1. Overview of the proof validation results. The second and third column show
the numbers of variables and clauses in the encodings of mutilated chessboard problems.
The fourth and fifth column show the numbers of clause addition steps in the PR and
DRAT proofs, respectively. The last four columns show the runtimes (in CPU seconds,
2.9 GHz Intel Core i7) of non-verified PR proof checking, PR to DRAT conversion, DRAT
proof optimization, and verified DRAT proof checking (certification), respectively.

size #var #cls #PR #DRAT check convert optimize certify

20 × 20 760 2 552 7 598 501 766 0.71 0.99 7.06 10.78
30 × 30 1 740 5 932 22 879 2 489 657 5.74 11.11 85.38 99.45
40 × 40 3 120 10 712 48 967 7 776 380 32.77 62.57 488.40 518.38
50 × 50 4 900 16 892 91 665 18 845 988 134.24 252.01 1 862.03 1 702.61

chessboard. Proof production took only a second. Recall that not even the 20×20
mutilated chessboard problem could be solved in the SAT Competition 2018.

To increase the confidence in the correctness of the proofs, we converted
the PR proofs into DRAT proofs for which formally-verified checkers exist. We
used the tool pr2drat [4] for the conversion, optimized the DRAT proofs using
the drat-trim tool [12] and validated the optimized proofs using the formally-
verified tool ACL2check [5]. Table 1 provides an overview of the results. Notice
that there is a significant gap between verified and non-verified proof checking.
This gap is mainly caused by the blowup of the proofs during the conversion.

6 Conclusion and Challenges

We constructed and validated short propositional proofs of mutilated chessboard
problems in the PR proof system. Our proofs show the unsatisfiability of problem
instances that are much larger than the largest instances that can be solved by
state-of-the-art SAT solvers. The proofs are based on an argument we found when
analyzing automatically generated PR proofs. This argument allows us to rule
out two small patterns, which exponentially reduces the number of placements
that need to be explored. There is an enormous gap between the size of the
proofs generated by the modified Lingeling solver and the ones we constructed
manually. We believe that an SDCL solver should be able to produce proofs that
are close in size to our manual proofs when using the right heuristics and restart
strategy, which we consider an important challenge for future research.

Even though the usage of PR clauses in mutilated chessboard problems
goes beyond plain symmetry reasoning—existing symmetry-breaking techniques,
both static [2] and dynamic [11], are not effective on these formulas—the general
argument has a symmetry-reasoning flavor. To further illustrate the power of the
PR proof system, we are seeking examples where PR clauses give an exponential
benefit without this kind of global and semantic symmetry argument.

Acknowledgements. The authors thank Alexey Porkhunov for contributing the
mutilated chessboard formulas to the 2018 SAT Competition and for his suggestion
to study these formulas in the context of the PR proof system, and also thank Jasmin
Blanchette for his comments on an earlier version of this paper.

210 M. J. H. Heule et al.

References

1. Alekhnovich, M.: Mutilated chessboard problem is exponentially hard for resolu-
tion. Theoret. Comput. Sci. 310(1–3), 513–525 (2004)

2. Aloul, F.A., Markov, I.L., Sakallah, K.A.: Shatter: efficient symmetry-breaking
for Boolean satisfiability. In: Proceedings of the 40th Annual Design Automation
Conference, DAC 2003, pp. 836–839. ACM (2003)

3. Dantchev, S.S., Riis, S.: “Planar” tautologies hard for resolution. In: Proceedings of
the 42nd Annual Symposium on Foundations of Computer Science (FOCS 2001),
pp. 220–229. IEEE Computer Society (2001)

4. Heule, M.J.H., Biere, A.: What a difference a variable makes. In: Beyer, D.,
Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 75–92. Springer, Cham
(2018)

5. Heule, M.J.H., Hunt Jr., W.A., Kaufmann, M., Wetzler, N.D.: Efficient, verified
checking of propositional proofs. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP
2017. LNCS, vol. 10499, pp. 269–284. Springer, Cham (2017)

6. Heule, M.J.H., Kiesl, B., Biere, A.: Short proofs without new variables. In: de
Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 130–147. Springer,
Cham (2017)

7. Heule, M.J.H., Kiesl, B., Seidl, M., Biere, A.: PRuning through satisfaction. In:
Strichman, O., Tzoref-Brill, R. (eds.) HVC 2017. LNCS, vol. 10629, pp. 179–194.
Springer, Cham (2017)

8. de Klerk, E., van Maaren, H., Warners, J.P.: Relaxations of the satisfiability prob-
lem using semidefinite programming. J. Autom. Reason. 24(1), 37–65 (2000)

9. Marques-Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

10. McCarthy, J.: A tough nut for proof procedures. Stanford Artificial Intelligence
Project Memo 16 (1964)

11. Metin, H., Baarir, S., Colange, M., Kordon, F.: CDCLSym: introducing effective
symmetry breaking in SAT solving. In: Beyer, D., Huisman, M. (eds.) TACAS
2018. LNCS, vol. 10805, pp. 99–114. Springer, Cham (2018)

12. Wetzler, N.D., Heule, M.J.H., Hunt Jr., W.A.: DRAT-trim: efficient checking and
trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014.
LNCS, vol. 8561, pp. 422–429. Springer, Cham (2014)

Practical Causal Models
for Cyber-Physical Systems

Amjad Ibrahim1(B), Severin Kacianka1, Alexander Pretschner1,
Charles Hartsell2, and Gabor Karsai2

1 Technical University of Munich, Munich, Germany
{amjad.ibrahim,severin.kacianka,alexander.pretschner}@tum.de

2 Vanderbilt University, Nashville, TN, USA
{charles.a.hartsell,gabor.karsai}@vanderbilt.edu

Abstract. Unlike faults in classical systems, faults in Cyber-Physical
Systems will often be caused by the system’s interaction with its phys-
ical environment and social context, rendering these faults harder to
diagnose. To complicate matters further, knowledge about the behavior
and failure modes of a system are often collected in different models. We
show how three of those models, namely attack trees, fault trees, and
timed failure propagation graphs can be converted into Halpern-Pearl
causal models, combined into a single holistic causal model, and analyzed
with actual causality reasoning to detect and explain unwanted events.
Halpern-Pearl models have several advantages over their source mod-
els, particularly that they allow for modeling preemption, consider the
non-occurrence of events, and can incorporate additional domain knowl-
edge. Furthermore, such holistic models allow for analysis across model
boundaries, enabling detection and explanation of events that are beyond
a single model. Our contribution here delineates a semi-automatic pro-
cess to (1) convert different models into Halpern-Pearl causal models,
(2) combine these models into a single holistic model, and (3) reason
about system failures. We illustrate our approach with the help of an
Unmanned Aerial Vehicle case study.

Keywords: Causal reasoning · Halpern-Pearl Causality ·
Timed Failure Propagation Graphs · Cyber-Physical Systems

1 Introduction

When Cyber-Physical Systems (CPS) are causally involved in accidents or
unwanted events, rapid diagnosis of the underlying fault is paramount. On the
one hand, this builds public trust in those systems, and on the other hand, this
is necessary to prevent similar accidents with identically constructed systems.

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under grant
no. PR1266/3-1, Design Paradigms for Societal-Scale Cyber-Physical Systems. Amjad
Ibrahim and Severin Kacianka contributed equally to this paper.

c© Springer Nature Switzerland AG 2019
J. M. Badger and K. Y. Rozier (Eds.): NFM 2019, LNCS 11460, pp. 211–227, 2019.
https://doi.org/10.1007/978-3-030-20652-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20652-9_14&domain=pdf
https://doi.org/10.1007/978-3-030-20652-9_14

212 A. Ibrahim et al.

However, the analysis of faults and the attribution of accountability in CPS [15]
is especially hard, because these systems interact with their physical environ-
ment, have no clear boundaries, and the necessary knowledge is often spread
across different models. An example is an Unmanned Aerial Vehicle (UAV) that
violates a no-fly zone (NFZ). NFZs are areas in which a UAV is not permitted
to fly, and are typically enforced around sensitive sites such as nuclear facilities,
prisons, or airports. Airspace regulators like the FAA [8] in the United States
and Eurocontrol [7] in Europe publish maps of NFZs, and manufacturers embed
instructions in the operating systems of their UAVs to ensure these vehicles do
not violate NFZs (e.g., [5]). Thus, if a UAV enters an NFZ despite these tech-
nical precautions, it is always an unwanted event and often also a security and
safety-critical event. Rapid identification of the reasons for such events is cru-
cial, given the likelihood that the same error will affect all identically constructed
systems. For example, if the cause is a programming mistake, it will affect all
UAVs running the same code, if it is a mistake in the map data, many other
UAVs will use the same faulty data; and if a security vulnerability is abused by
a third party, it is likely that the same vulnerability affects all UAVs controlled
by the same software. Insights into these errors can be gained from models of
the systems, such as fault trees, attack trees, Timed Failure Propagation Graphs
(TFPGs), or information external to the system, e.g., eye-witness reports. Thus,
to determine the ultimate cause of an unwanted event, experts currently need to
scrutinize different system models, incorporate external information, propose a
likely causal model and argue, usually in natural language, for its verisimilitude.

In this paper, we investigate the problem of automatically creating a holistic
causal model of a system that allows us to (1) incorporate additional domain
knowledge and (2) formally reason about causes for events. As a solution, we
propose to convert three system models, namely attack trees, fault trees, and
TFPGs, into Halpern-Pearl [11] causal models, then combine them into a sin-
gle, holistic model and use causal reasoning to explain events. To this end, our
primary contribution is a semi-automatic process to convert these three models
into HP models. Additionally, we show under which circumstances models can
be automatically combined, how they can be enriched with domain knowledge,
and how causal reasoning can be automated.

2 Background and Related Work

TFPGs [1,2] are directed acyclical graphs which model the failure propagation
routes for typical systems, taking into account modal and temporal constraints.
Nodes within TFPGs represent either failure modes (i.e., root causes that are
not directly observable) or discrepancies (i.e., off-nominal effects resulting from
failure modes which may be observable). Discrepancies that can be detected at
run-time (e.g., with a dedicated sensor) are associated with an alarm node. Edges
in TFPGs represent the cause-effect relationships in failure propagation, are
directional, and may be parameterized with activation conditions based on the
current system mode and propagation time limits. Figure 1a depicts an example

Practical Causal Models for Cyber-Physical Systems 213

TFPG constructed in the Systems Engineering and Assurance Modeling toolset1

and Fig. 1b shows a more detailed TFPG for the GPS sensor.

(a) System architecture view. (b) The detailed view of the UAV’s
GPS module. F - Failure Mode, A -
Anomaly/Discrepancy, T - Test/Alarm.

Fig. 1. An example of a UAV’s timed failure propagation graph.

Simon et al. presented a model-based, fault-adaptive control architecture
which combined multiple fault-modeling paradigms to diagnose and mitigate
faults in complex dynamic systems [28]. Their architecture uses TFPGs for dis-
crete diagnosis alongside temporal causal graphs for fault diagnosis via transient-
effect analysis. This approach fuses domain knowledge from multiple models for
more effective fault identification and mitigation. Similarly, Dubey et al. intro-
duced a software health management system which combines TFPGs for rea-
soning at the system-level with finite state machines at the component-level [6].
However, in both approaches, each type of model was evaluated independently
instead of being combined into a single common language. Additionally, the
models do not provide a concept for incorporating additional information which
may become available in an offline, post-mortem analysis of the system.

Because of TFPGs’ run-time nature, the faults in these models focus on func-
tional failures of the system’s hardware and software components. In practical
applications, failure modes are usually abstracted to the lowest level that can be
uniquely identified using information available to run-time diagnosis engines. For
example, a Byzantine fault (as in Fig. 1b) is a common failure mode in each soft-
ware component. Typically, it cannot be determined at run-time if a Byzantine
fault is the result of a latent fault in the software, a radiation-induced single-
event upset, a malicious attacker, etc., so this additional information is omitted
from the TFPG model. Additionally, faults which are not related to a specific
component failure often have a broad impact on the system which complicates
the disambiguation of faults at run-time. For these reasons non-functional faults,
such as process or operator errors, are modeled using an appropriate domain-
specific modeling language.

Fault trees are an essential top-down artifact in the domain of safety, relia-
bility, and risk assessment methodology [16]. The quantitative (e.g., calculating
1 Accessible at http://modelbasedassurance.org.

https://modelbasedassurance.org/

214 A. Ibrahim et al.

the probabilities of failure), and qualitative (e.g., determining the minimal cut
sets) analysis of fault trees investigates the system resilience to faults at design
time [25]. Moreover, fault trees have been used to monitor systems at run-time
and detect failures [21]. Narayanan and Viswanadham [20] have used fault trees
to represent and reason about knowledge of system failures. In contrast to the
approach presented later in this paper, the authors use rule-oriented reasoning,
akin to that used by human experts. In contrast, our approach enables reason-
ing about actual causality in a way that matches human intuition [10], without
explicitly stating all the rules.

A fault tree [30] is the (often graphical) representation of possible compo-
nent faults leading to system failures, and their relationship to each other. There
are two general elements within a fault tree: events and gates. Events represent
happenings (faults) that can possibly result in an undesired event in the root
of the fault tree, e.g., a system failure. In [30], the authors distinguish between
basic, conditioning, undeveloped, external, and intermediate events. Gates allow
for connecting two or more events or other gates to express particular relation-
ships between events. For instance, it may be the case that two events must
occur together to cause a third event. This would be expressed using an AND
gate. Additionally, [30] defines OR, EXCLUSIVE OR, PRIORITY AND, and
INHIBIT gates. A different symbol is used for different types of gates and events.
Figure 2a depicts an example fault tree for a UAV.

Fig. 2. Part of the UAV’s fault and attack tree.

Attack trees [26,27] model and describe potential security threats within a
system and the steps necessary to successfully perform an attack. Attack trees
are mainly used to represent and assess security scenarios in a system at design
time [16]. However, Poolsapassit and Ray [24] used attack trees in a way similar
to our approach. They do not convert it to another model, but rather combine
it with an attacker’s intent to predict malicious activity. In [23] they used attack
trees to investigate logs. These two papers are related to our goal but differ in
the approach of converting attack trees to causal models and combining them
for after the fact analysis.

Practical Causal Models for Cyber-Physical Systems 215

Similar to fault trees, a hierarchical tree representation is used in attack trees.
The root node contains the ultimate goal of an attack tree (e.g., violate the NFZ)
and sub-nodes describe activities that are necessary to accomplish the respective
parent activity/goal (e.g., spoof GPS). The relationship between a parent node
and its children can be either OR or AND, i.e., either any child activity/goal
will fulfill the parent activity, or all child activities/goals together are required.
Figure 2b shows an example attack tree for a UAV.

Causal Models, specifically Halpern and Pearl (HP for short) models of
causality, [10–12,22], model the world using a set of variables which are charac-
terized as endogenous or exogenous, and a set of structural equations. The value
of the exogenous variables is determined by factors outside the model. In a sense,
they are the state of the world and the input to the causal model. The endoge-
nous variables model our understanding of the causal relations, and their value is
ultimately determined by the exogenous variables. Additionally, a causal model
incorporates equations that model the influence of all these variables upon one
another. The causality conditions provided in [10] define under which circum-
stances one or more (endogenous) variables within a causal model need to be
considered as causes for a specific state of other variables. The specific state of
the variables is called a context and, essentially, is a setting of their values.

Formally, Definition 1 describes a binary causal model. A causal model is
visualized as a causal network where a variable is presented as a graph node,
and dependency among variables from the structural equations is presented as
an edge (see Sect. 4 for examples).

Definition 1. Binary Causal Model [10]
A binary causal model M is a tuple M = ((U ,V,R),F), where

– U is a set of exogenous variables,
– V is a set of endogenous variables,
– R : associates every variable with a value ∈ {true, false},
– F associates with each variable X ∈ V a function that determines the value

of X (from the set of possible values R(X)) given the values of all other
variables FX : (×U∈UR(U)) × (×Y ∈V−{X}R(Y)) → R(X).

We present the required notations to define the Actual Cause according to
HP. A primitive event, given (U ,V,R), is a formula of the form X = x for X ∈ V
and x ∈ R(X). A causal formula is of the form [Y1 ← y1, . . . , Yk ← yk]ϕ, where
ϕ is a Boolean combination of primitive events. Y1, . . . , Yk (abbreviated

−→
Y) are

distinct variables in V, and yi ∈ R(Yi). Intuitively, this notation says that ϕ
would hold if Yi were set to yi for each i. (M,−→u) |= X = x if the variable X
has value x in the unique solution to the equations in M in context −→u (i.e., the
specific values of the variables). An intervention on a model is expressed either
by setting the values of

−→
X to −→x , written as [X1 ← x1, ..,Xk ← xk], or by fixing

the values of
−→
X in the model, written as M−→

X←−→x . So, (M,−→u) |= [
−→
Y ← −→y]ϕ is

identical to (M−→
Y ←−→y ,−→u) |= ϕ.

216 A. Ibrahim et al.

Definition 2. Actual Cause (latest/modified version [10])−→
X = −→x is an actual cause of ϕ in (M,−→u) if the following three conditions hold:
AC1. (M,−→u) |= (

−→
X = −→x) and (M,−→u) |= ϕ.

AC2. There is a set
−→
W of variables in V and a setting −→x ′ of the variables in

−→
X

such that if (M,−→u) |= −→
W = −→w , then (M,−→u) |= [

−→
X ← −→x ′,

−→
W ← −→w]¬ϕ.

AC3.
−→
X is minimal, i.e., no subset of

−→
X fulfills AC1 and AC2.

This definition and its theoretical foundation enable us to handle the main
challenges faced by causality definitions [17]: With causal models, we have the
advantage of choosing what to count as a possible cause (endogenous) and what
not to (exogenous), enabling the irrelevance of causal factors to be judged.
This enables us to limit our attribution or explanation based on the goal of
the analysis. If we are interested in legal liability, we include possible human
actors. If we are looking for an explanation for a technical failure, we include
components as endogenous variables.

In complex systems, one cause can frequently preempt others. An example is
an empty battery of a UAV will preclude any emergency maneuvers. In contrast
to the HP definition, simple counter-factual definitions cannot identify the actual
cause for such cases of preemption (examples by Lewis [18]).

Using the HP definition, we can also identify the non-occurrence of one or
more events (i.e., the value of Vi = 0) as a cause for another event. For example,
we can infer that an operator failing to add the coordinates for an NFZ is a
cause. HP is able to specify an actual cause or effect as a conjunction and
disjunction of events. This is a crucial aspect in our approach since we reason
about factors that originated from different models, like a sensor failure in a fault
tree and a malicious action in an attack tree. For example, a UAV may violate
a no-fly zone because the GPS sensor was disabled and the remote-control pilot
was deliberately steering it into the NFZ.

Finally, in complex modern systems like UAVs, we often have to deal with
uncertain situations using partial knowledge. Uncertainty is embedded in HP
at two levels [10]. First, the model that represents our understanding of the
causal relations (Definition 1), and second, the context (−→u) that represents a
specific scenario defining the environment of a model. Uncertainty in the model
reflects the cases where there is incomplete understanding of the causal relations
between events, and uncertainty in the context reflects situations where there is
incomplete understanding of the exact situation.

3 Methodology

A causal model (as described in Definition 1) is required to enable reasoning
about actual causality. While there has been work on learning causal models from
data [29], in this paper, we aim to combine different threat and hazard models
into a single, holistic causal model. Our approach is motivated by the fact that we
often have different models for describing the cause and effect relations that lead

Practical Causal Models for Cyber-Physical Systems 217

Table 1. Comparison of formats.

Fault tree Attack tree TFPG Causal model

Inner element

or gate

Describes a failure

which occurs as a

consequence of

other failures

connected by an

operator

Describes an

attack/subgoal

achieved by

executing its

child-attacks

Describes off-nominal

conditions resulting

from a set of failure

modes being present

An endogenous

variable which is

defined by other

endogenous

variables composed

to a formula

Leaf elements Describes a basic

failure which is

not a consequence

of other failures

Describes a basic

attack which does

not rely on others

and can be

executed as is

Describes failure

modes of a component

at the lowest level of

abstraction which is

useful at run-time

An endogenous

variable defined by

an exogenous

variable. Describes

whether or not a

specific event

occurred

Operators OR, AND, XOR,

PRIORITY AND,

PRIORITY OR,

INHIBIT,

ORMORE,

ORLESS

Conjunctive (i.e., AND), disjunctive (i.e.,

OR)

AND, OR, NOT,

XOR, IFF, NAND,

NOR,

ATLEAST(min),

CARDINAL-

ITY(min,max)

to unwanted behavior. Although such models are generally used for risk assess-
ment and mitigation during system design or run-time, we use the knowledge
gleaned from these models to explain behavior in the post-mortem analysis of a
failure. Commonly, attack trees, fault trees, and TFPGs model causal relations,
represent binary events, allow for combining events using propositional logic rela-
tions like AND and OR, and are acyclic (see Table 1 for a comparison). These
properties make the transformation of these models to causal models, based on
Definition 1, rather straightforward. However, such transformations entail assign-
ing new, possibly different, semantics to those utilized within the source models.
Hence, showing the equivalence of these semantics is required to prove the cor-
rectness of the mapping. However, our methodology does not examine specific
semantic details, but rather shows that the idea works in general. As such, we
consider the equivalence proof to be beyond the scope of this paper, but believe
that this fact does not detract from our conclusions. Here we focus on incorpo-
rating these transformations as explicit parts of our methodology, to create a
holistic causal model that incorporates different design-time models focusing on
different aspects, and possibly created by different teams.

Figure 3 shows the three steps of our methodology, together with their corre-
sponding input and output. In the transformation step, we show how to create
a causal model from each input model. Next, we use notions of causal model
compatibility defined by Alrajeh et al. [3], and Friedenberg and Halpern [9] to
combine those models into a single model. Finally, domain experts can edit the
combined model to include additional factors from other system models, specific
un-formalized knowledge, or the social context.

Ultimately, this methodology generates a holistic causal model that is derived
from several source models. Such a model can then be used by investigators to rea-
son about the actual causes of an observed behavior in hindsight. To incorporate
additional domain knowledge, an investigator can edit, update, and rephrase these
assumptions to incorporate additional knowledge at any point in the process.

218 A. Ibrahim et al.

Domain
knowledge

Domain
knowledge

Source to Causal
Model

Transformation

Causal Model
Combination

Model
Refinement

TFPG

TFPG

Attack
Tree

Fault
Tree

Combined
Causal
Model

Holistic
Causal
ModelAttack Tree

Fault Tree
Causal
Model

Fig. 3. Process diagram of the methodology.

3.1 Transforming Trees into Causal Models

Although fault and attack trees emerged from different domains to address dif-
ferent purposes, their syntax are similar. Thus, we present a common definition
for both fault and attack trees. Definition 3 follows from Mauw and Oostdijk’s
[19] formalization of attack trees. However, we do not use their multi-set seman-
tics for the trees. Instead, Bruns and Anderson [4] introduced a propositional
semantics for fault trees and Hansen et al. [13] proposed a similar semantics that
uses duration calculus to express leaves. We follow the propositional semantics
because it matches the semantics of binary structural equations used in causal
models. Therefore, each non-leaf node in the tree is expressed with a proposi-
tional formula of its parents, e.g., out = in1 ∧ in2.

Definition 3. Attack/Fault Tree
A(F)T is a 3-tuple A(F)T = (N ,→,n0) where N is a finite set of nodes, n0 ∈ N
is the root node and →⊆ N × N is a finite set of acyclic relations.

Definition 4 now shows how to map Definition 3 to Definition 1. We want to
consider each node as a possible cause, hence we consider each node within these
trees as an endogenous variable that defines whether or not a specific failure
occurred (fault trees) or an attack has been conducted (attack trees). In this
paper, we only consider Boolean variables, but plan to generalize our approach
in the future. Since the nodes are connected with different operators, we can
reuse them to construct necessary structural equations and therefore express
relationships between the variables.

In fault and attack trees, leaf nodes represent a failure event or an atomic
attack activity that is not refined further [26]. However, when transferring such
nodes into variables of a causal model, we have to respect the requirement that,
according to HP [11], each endogenous variable needs to be defined by other
endogenous or exogenous variables. Therefore, for each endogenous variable cre-
ated from a leaf node, we define an exogenous variable (having the same name,
but with an exo suffix appended) that will supply the value for the former.
Because they are now endogenous variables, we can identify leaf nodes (or a
combination of leaf nodes) as a cause of an event. It is also important to note
that in both tree types, the same element can occur multiple times (e.g., same
failure event in a different situation). However, in our causal model, exactly one
instance of each variable exists.

Practical Causal Models for Cyber-Physical Systems 219

Definition 4. Attack/Fault Tree To Causal Model
T = (N ,→,n0) is mapped to a M = ((U ,V,R),F), i.e., T → M as follows

– U = E(T, exo), where E(T, suffix) returns a renamed copy of the leaf nodes
of a tree T with a suffix “exo”.

– V = N .
– R = {true, false}.
– F associates with each X ∈ V − E(T) a propositional formula based on the

tree gates; and with each X ∈ E(T) a formula of the form X = X exo.

3.2 TFPG

TFPGs are represented as a tuple (F,D,E,M,ET,EM,DE), where F is a non-
empty set of failure modes which are always root nodes, meaning that these
modes cannot be the destination of an edge. This makes these modes equiva-
lent to U , the exogenous variables. However, since we would like to include the
failure modes as possible causes which may be refined further by other mod-
els (described in Sect. 3.3), we include F within endogenous variables. We use
a similar technique as with fault and attack trees, i.e., we copy the set F and
rename the items with the suffix exo. D is a non-empty set of discrepancy nodes,
which cannot be root nodes and must be the successor for either a failure mode
of another discrepancy node. This equates them to the endogenous variables,
V, in the HP model. E ⊆ V × V is the set of all edges; V = F ∪ D. M is a
non-empty set of system modes; at each time instance t the system can only be
in one mode. While HP models usually do not model time, it can be modeled
using time-index variables. We can enforce the restriction of system modes in
the valid set of exogenous variables in this case.

ET : E → I associates every edge with a time interval [t1, t2] ∈ I and
EM : E → P(M) associates every edge with a system mode. In HP, we can
model these with the structural equations. DC : D → {AND,OR} maps each
discrepancy to an AND or an OR node. DS : D → {A, I} defines the monitoring
status of a discrepancy as either active or inactive. These last two functions can
be expressed in a binary causal model.

Definition 5. TFPG To Causal Model
TFPG = (F,D,E,M,ET,EM,DE) is mapped to a M = (U ,V,R,F) i.e.,
TFPG → M as follows: U = rename(F, exo), V = F ∪ D, R = {true, false},
F associates with each X ∈ V a propositional formula based on DC which maps
a D → {AND,OR}; and with each X ∈ F a formula of the form X = X exo.

3.3 Combining Causal Models

In safety and security, among other domains, we need models for two distinct
purposes: to detect abnormal behavior and to explain any course of events.

Detection works by comparing the actual behavior of a system to some
ideal behavior model of the system. In this paper, we consider two models for

220 A. Ibrahim et al.

detection: TFPGs model the system and help developers place alarms that detect
deviations from the expected behavior. The second model we implicitly consider
is the mental model of the users or any observers: such observers will expect a
particular occurrence, and, if it does not occur, they will attempt to garner an
explanation. Unfortunately, this second model is difficult to formalize ahead of
time. The advantage of HP causal models is they are very good at capturing the
expectations and any deviation from them a posteriori. This ad-hoc formalization
can then be combined with existing causal models in fault or attack trees to
furnish an explanation for observed deviations from expected chains of events.

Explanations can be given by dissecting the system and then building a
mental model of how it should work. Fault and attack trees simplify this process
by capturing expected failure patterns in easy-to-navigate trees. TFPGs also
serve as a causal model that can give explanations for expected faults. Their
analysis, however, may not yield an explanation of sufficient detail, but instead,
end in generic nodes like “Byzantine fault”. Since faults in CPS often transcend
the system boundary, we require additional models to find a satisfactory expla-
nation for a fault. For example, a TFPG model might tell us that the GPS is
faulty; however, only an attack tree can explain to us that this may be because
of a spoofing attack. This emphasizes further the strength of HP causal models:
they allow us to reason about the absence of evidence and show us where we
need to look for additional evidence.

A

B C

X Y

(a) Refine.
A

B Y

(b) Extend.

Fig. 4. Merging causal models.

Cross-model Explanations are required
when no single model has all the details
to explain an event. However, since we are
using different models that may describe the
same incident from different perspectives, the
models from the previous step may overlap,
and, hence, can be combined to provide an
explanation. In this case, one causal model
can either refine or extend another one. A
refinement means that the two models share
a common node, but that one model has
more details about that node (see Fig. 4a).
An example is the TFPG can point to a faulty GPS, and the fault tree can then
point to an error in setting up the antenna. Conversely, an extension, happens
when two models share a node (which may only be the top-level node), and
adding those two models gives us an alternative explanation (see Fig. 4b). Such
explanations may be in some preemption-relation: an example would be that we
know that the UAV’s propellers stopped spinning mid-flight, and that an expla-
nation from the fault tree could be that the battery ran out, while an alternative
explanation from the attack tree could be that an attacker switched them off. In
this case, an empty battery would preempt any action from an attacker. For the
model refinement step, we borrow the notions of model dominance, compatibil-
ity, and combination from the domain of decision-making described by Alrajeh
et al. [3], allowing us to combine models where the modelers agree on the causal
relationships among the common variables but use different levels of detail to
describe how the variables are affected by other variables.

Practical Causal Models for Cyber-Physical Systems 221

Informally, the work by Alrajeh et al. provides conditions for the compati-
bility of causal models as a prerequisite for combining them. To that end, they
introduce the notion of a dominant relation, essentially comparing the informa-
tion expressiveness of two models about a variable C. One model, M1, dominates
another, M2 in expressing variable C, denoted as M1 �C M2, if they agree on
the causal dependence of C, but M1 provides a more detailed picture. For each
common variable, if the two models have a dominance relation (regardless of
which model is dominating the other), the models are compatible. Only compat-
ible models can then be combined, denoted as M1 ⊕ M2.

Definition 6. Domination relation [3]. Let M1 = ((U1, V1, R1), F1) and
M2 = ((U2, V2, R2), F2). Let ParM (C) denote the variables that are parents of
C in M . M1 strongly dominates M2 with respect to C, denoted M1 �C M2, if
the following conditions hold:
MI1M1,M2,C The parents of C in M2 are the immediate M2-ancestors of C in
M1.
MI2M1,M2,C every path from an exogenous variable to C in M1 goes through a
variable in ParM2(C).
MI3M1,M2,C Let X = ((U1 ∪ V1) ∩ (U2 ∪ V2)) − {C} then for all settings x of
the variables in X, all values c of C, all contexts u1 for M1, and all contexts
u2 for M2 (M1,

−→u1) |= [
−→
X ← −→x](C = c) iff (M2,

−→u2) |= [
−→
X ← −→x](C = c).2

The idea of refinement as shown in Fig. 4a can be considered as a special
case of the combination step. We limit our work to refining causal models on the
leaf nodes. That is, we only consider a detailed model M1 to be appended to a
more abstract model M2 if the root, or the root of a sub-tree, of M1 is identical
to one of the leaf-nodes of M2 (of the causal graph with exogenous variables
omitted). In this specific case, according to the strong domination definition in
[3] (Definition 6), the two causal models are always compatible. Hence, they can
be combined resulting in a new model M as defined in Definition 7.

Definition 7. Combination [3]. If M1 = ((U1, V1, R1), F1) and M2 =
((U2, V2, R2), F2), then M1 and M2 are compatible if (1) for all variables
C ∈ ((U1 ∪ V1) ∩ (U2 ∪ V2)), we have R1(C) = R2(C) and (2) for all variables
C ∈ (V1 ∩ V2), either M1 �C M2 or M2 �C M1. If M1 and M2 are compatible,
then M1 ⊕M2 is the causal model ((U, V,R), F), where U = U1 −U2 − (V1 ∪V2);
V = V1 ∪ V2; if C ∈ U1 ∪ V1, then R(C) = R1(C), and iff C ∈ U2 ∪ V2, then
R(C) = R2(C) if C ∈ V1 − V2 or if both C ∈ V1 ∩ V2 and M1 �C M2 then
F (C) = F1(C); if C ∈ V2 − V1 or if both C ∈ V1 ∩ V2 and M2 �C M1, then
F (C) = F2(C).

Combining Extensions (Fig. 4b) is, unfortunately, more complex than merg-
ing refinements. In general, extensions will be incompatible and cannot be merged
automatically. If two models disagree on the variables and their causal relation-
ships, we have to defer the merging decision to an expert. To illustrate this

2 For more details on the notations see Sect. 2.

222 A. Ibrahim et al.

using an example, we can think of two models that explain why a UAV enters a
NFZ. One model blames a broken GPS receiver, and the other model blames an
attacker for spoofing the GPS signal. Without more information, it is impossible
to decide which model is correct. The same applies when merging FTs, ATs, and
TFPGs: often we will need an expert’s input to merge the models and decide
upon preemption relations and the overall causal structure.

For some specific models, Friedenberg and Halpern [9] provide an automatic
way of joining the models. Such FH-compatible models are causal models that
are extended with a focus function G : U ∪ V → 2(U∪V) that, given a variable
C, provides the set of variables that the modeler considered as having an effect
on C. Using this additional information, if one model “can explain and has
everything considered by” some other model, these two models can be merged.
The intuition is that if both models consider the same variable C, they consider
the same parents of a variable C, and, thus one model can explain all of the other
model’s observations, they are compatible in a similar sense as Alrajeh et al. [3]
consider a model to be compatible. If one of the two models provides additional
information, this information can be merged into a joint model. As an example,
if a TFPG model explains that a power loss caused an engine failure and a fault
tree shows that power loss can cause a loss of control, these two models can be
merged into one.

4 Example

In this paper, we introduced four sources of knowledge to analyze CPS: domain
knowledge, fault trees, attack trees, and TFPGs. We convert them all into HP
causal models and then combine them using the rules presented in Sect. 3. While
merging the models is not commutative, any order of combination will yield a
valid causal model. We found that we get the most “natural” results by starting
with the domain knowledge, continuing with the TFPG, and then using the
attack tree and fault tree to refine cover areas where the TFPG ends in Byzantine
faults.

In Fig. 5 we provide highly simplified causal models for our example. Mod-
els (a)–(d) were created from the corresponding source models and model (e) is
the combined model. In real applications, such models will be significantly larger
and more detailed. While this complicates the merging process, we have shown
in previous work that, as long as the causal models are binary, reasoning can be
performed in a fast and efficient manner, even for very large models [14].

The combination process can now follow our semi-automatic methodology.
First, we use the domain model to initialize the combined model: this models
the knowledge that the UAV can either be human-controlled or fly on autopilot.
If there is human control, the human can preempt the autopilot; however, even
if a human is in control, they might not intervene. Next, the TFPG is added:
this models the fact that a GPS fault can be caused by no GPS data, which we
can detect and go into a fail-stop state, or by incorrect data, which we cannot
detect at run-time, and leads to a Byzantine fault. Adding the TFPG to the

Practical Causal Models for Cyber-Physical Systems 223

Fig. 5. All causal models color coded by their source model. Dashed edges represent
preemption relations, and solid edges are normal causal relations. (Color figure online)

Autopilot can be done automatically because we can link the Controller node in
the TFPG (see Fig. 1a) directly to the Autopilot in the causal model. To combine
those two models, we can use a simple refine operation. The attack tree is slightly
more complicated and models two main attack vectors: social engineering and
technical attacks. In our example, we restrict ourselves to the blackmailing of
the pilot and either spoofing the GPS signal or hacking the GPS database.
Joining the attack tree can be done semi-automatically: the connection between
the nodes Human Control and Social can be made automatically, but mapping
the Technical attacks to the Byzantine Fault requires an expert’s intervention.
The fault tree, finally, provides reasons why a loss of control may happen. The
GPS antenna may fail and yield erratic values, the pilot may make an error,
or the RF link may break. A broken link also preempts a pilot error, because
it prevents all actions by the pilot. Combining the fault tree is also the most
complex operation: first, we require expert knowledge to join the Damaged GPS
antenna to the Byzantine Fault. It is also an extend operation and, thus, requires
us to check that it does not contradict the attack tree nodes. If the respective
focus sets are given, this process can be automated, otherwise we need an expert’s
judgment. Adding Broken RF Link also requires an expert’s intervention. For
one, because it is another extension operation, but also because a Broken RF
Link will preempt Blackmail Pilot. So even if pilots were blackmailed, they could
not carry out any orders, because the broken link would prevent them from doing
so. This means that the blackmail would not be a cause for the violation of the
NFZ. Additionally Broken RF Link will influence Intervention, in the sense that
a broken RF link would make any intervention impossible.

To evaluate the effectiveness of our generated causal model, we briefly show
its usage to explain the violation of the NFZ in three different scenarios. The
scenarios are represented by different contexts (see Fig. 6 for graphical repre-
sentations and Fig. 7 for the equations). A context is a specific setting (true or
false values) of the exogenous variables. Usually, these settings are collected from

224 A. Ibrahim et al.

Fig. 6. Graphical representation of the three scenarios.

monitors, logs, or eyewitness reports. For this example, the contexts are simpli-
fied and contrived. All reasoning, however, is automated with the tool-support
described in our previous work [14]. The tool answers causal queries of the form
is

−→
X = −→x an actual cause (based on Definition 2) of

−→
Y = −→y , given a context−→

U = −→u ? The output of the tool, if the answer is yes, is a 3-tuple(
−→
X,

−→
x′ ,

−→
W),

corresponding to the elements defined in the definition.

Fig. 7. The equations for the scenarios. Dashed Boxes
highlight preemption relations.

Scenario 1. In this context
the variables that are set
to true, i.e., were observed,
are Broken RF Link exo,
Pilot Error exo, and Dam-
aged GPS antenna exo. We
then used the HP defini-
tion to check which endoge-
nous variable (corresponding
to the mentioned exogenous
variables) is the cause of
Enter NFZ= true. Although
we have a Damaged GPS
antenna, this is not the
actual cause, because this
damage is preempted by the
Human control, since the
domain knowledge specifies
that the commands from the
remote have a higher priority than the autopilot. However, we found that
the actual cause is the Broken RF Link because it precludes any command
from reaching the UAV, and, thus, also any Pilot Error. This scenario repre-
sents cases of preemption between factors coming from different sources. The
causal queries were executed in a total of 3 ms (performed on Ubuntu 16.04

Practical Causal Models for Cyber-Physical Systems 225

LTS machine equipped with an Intel R© CoreTM i7-3740QM CPU and 8 GB
RAM), the result for Broken RF Link query was yes with the 3-tuple(

−→
X =

{BrokenRFLink},
−→
x′ = {false},

−→
W = {Autopilot, P iloterror}).

Scenario 2. Here, the only variable set to true is Damaged GPS antenna exo.
We then check if Damaged GPS antenna is the cause for Enter NFZ=true,
and the answer is yes with the 3-tuple(

−→
X = {DamagedGPSantenna},

−→
x′ =

{false},
−→
W = ∅). In the same context, the causal model of the TFPG (Fig. 5(d))

is only able to explain the scenario with a Byzantine Fault. This scenario rep-
resents cases where the refinement, which we did as part of the methodology, is
beneficial. The causal query was executed in ≤1 ms.

Scenario 3. In this context only Broken RF Link exo is set to true. We then
use the HP definition to check if the absence of human intervention, Interven-
tion=false, is the cause for Enter NFZ=true, and the answer is yes with the
3-tuple(

−→
X = {Intervention},

−→
x′ = {true},

−→
W = ∅). This scenario represents

cases where the non-occurrence of events is attributed as the actual cause. The
causal query was also executed in ≤ 1 ms.

5 Conclusion

In this paper, we presented an approach to convert Timed Failure Propagation
Graphs, Attack Trees and Fault Trees into Halpern-Pearl causal models, combine
these into a single holistic causal model, and then enrich this holistic model with
additional domain knowledge. Besides making the expert’s knowledge explicit,
the causal model enables us to use automated tools to reason about causes of
violations even in cases of preemption, non-occurrence of events, or cross-model
refinements. Using HP causal models has the unique advantage that we can
use a machine to reason about causality as a human would. Halpern and Pearl
have shown that their approach can solve even complex philosophical problems
in a way that is congruent with human intuition as detailed in the literature.
We expect our semi-automatic approach not only to reduce the workload for
modelers, but also to provide a systematic process to create models that can
then be enriched with domain knowledge. Nonetheless, modeling is still an art
and very subjective, meaning that the models will be biased and their answers
model-relative. Furthermore, we have no measure for the quality or completeness
of a model. Another area requiring future research is finding and describing
heuristics to merge models. While refinements are easy to merge, extensions
are notoriously difficult and often require manual intervention. Incorporating
information on the socio-technical context will allow us to improve the merging
process, develop more sophisticated heuristics and improve our understanding
of vaguely defined “expert interventions”.

226 A. Ibrahim et al.

References

1. Abdelwahed, S., Dubey, A., Karsai, G., Mahadevan, N.: Model-based tools and tech-
niques for real-time system and software health management. In: Srivastava, A.,
Han, J. (eds.) Machine Learning and Knowledge Discovery for Engineering Systems
Health Management. Chapman and Hall/CRC, London (2011). Chapter 9

2. Abdelwahed, S., Karsai, G., Biswas, G.: A consistency-based robust diagnosis app-
roach for temporal causal systems. In: The 16th International Workshop on Prin-
ciples of Diagnosis, pp. 73–79 (2005)

3. Alrajeh, D., Chockler, H., Halpern, J.Y.: Combining experts’ causal judgments.
In: Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-2018) (2018)

4. Bruns, G., Anderson, S.: Validating safety models with fault trees. In: Górski, J.
(ed.) SAFECOMP 1993, pp. 21–30. Springer, London (1993). https://doi.org/10.
1007/978-1-4471-2061-2 3

5. DJI: Fly safe - geo zone map (2018). https://www.dji.com/en/flysafe/geo-map.
Accessed 03 Dec 2018

6. Dubey, A., Karsai, G., Mahadevan, N.: Model-based software health manage-
ment for real-time systems. In: 2011 Aerospace Conference, pp. 1–18, March 2011.
https://doi.org/10.1109/AERO.2011.5747559

7. Eurocontrol: Useful information on UAS no-fly areas (2018). https://www.
eurocontrol.int/articles/useful-information-uas-no-fly-areas. Accessed 03 Dec 2018

8. FAA: Airspace restrictions (2018). https://www.faa.gov/uas/where to fly/
airspace restrictions/. Accessed 03 Dec 2018

9. Friedenberg, M., Halpern, J.Y.: Combining the causal judgments of experts with
possibly different focus areas (2018). http://www.cs.cornell.edu/home/halpern/
papers/focus.pdf

10. Halpern, J.Y.: A modification of the Halpern-Pearl definition of causality. In: Inter-
national Joint Conference on Artificial Intelligence, pp. 3022–3033 (2015). https://
www.aaai.org/ocs/index.php/IJCAI/IJCAI15/paper/view/11058/11085

11. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach.
Part I: causes. Br. J. Philos. Sci. 56(4), 843–887 (2005). https://doi.org/10.1093/
bjps/axi147

12. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach.
Part II: explanations. Br. J. Philos. Sci. 56(4), 889–911 (2005). https://doi.org/
10.1093/bjps/axi148

13. Hansen, K.M., Ravn, A.P., Stavridou, V.: From safety analysis to software require-
ments. IEEE Trans. Software Eng. 24, 573–584 (1998). https://doi.org/10.1109/
32.708570. doi.ieeecomputersociety.org/10.1109/32.708570

14. Ibrahim, A., Rehwald, S., Pretschner, A.: Efficiently checking actual causality with
sat solving. In: Dependable Software Systems Engineering (2019, to appear)

15. Kacianka, S., Pretschner, A.: Understanding and formalizing accountability for
cyber-physical systems. In: IEEE International Conference on Systems, Man, and
Cybernetics (SMC), October 2018. https://arxiv.org/abs/1810.09704

16. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: DAG-based attack and defense
modeling: don’t miss the forest for the attack trees. Comput. Sci. Rev. 13, 1–38
(2014)

17. Leitner-Fischer, F., Leue, S.: Causality checking for complex system models. In:
Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp.
248–267. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35873-
9 16

https://doi.org/10.1007/978-1-4471-2061-2_3
https://doi.org/10.1007/978-1-4471-2061-2_3
https://www.dji.com/en/flysafe/geo-map
https://doi.org/10.1109/AERO.2011.5747559
https://www.eurocontrol.int/articles/useful-information-uas-no-fly-areas
https://www.eurocontrol.int/articles/useful-information-uas-no-fly-areas
https://www.faa.gov/uas/where_to_fly/airspace_restrictions/
https://www.faa.gov/uas/where_to_fly/airspace_restrictions/
http://www.cs.cornell.edu/home/halpern/papers/focus.pdf
http://www.cs.cornell.edu/home/halpern/papers/focus.pdf
https://www.aaai.org/ocs/index.php/IJCAI/IJCAI15/paper/view/11058/11085
https://www.aaai.org/ocs/index.php/IJCAI/IJCAI15/paper/view/11058/11085
https://doi.org/10.1093/bjps/axi147
https://doi.org/10.1093/bjps/axi147
https://doi.org/10.1093/bjps/axi148
https://doi.org/10.1093/bjps/axi148
https://doi.org/10.1109/32.708570
https://doi.org/10.1109/32.708570
http://doi.ieeecomputersociety.org/10.1109/32.708570
https://arxiv.org/abs/1810.09704
https://doi.org/10.1007/978-3-642-35873-9_16
https://doi.org/10.1007/978-3-642-35873-9_16

Practical Causal Models for Cyber-Physical Systems 227

18. Lewis, D.: Causation. J. Philos. 70(17), 556–567 (1973). https://doi.org/10.2307/
2025310

19. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). https://
doi.org/10.1007/11734727 17

20. Narayanan, N.H., Viswanadham, N.: A methodology for knowledge acquisition and
reasoning in failure analysis of systems. IEEE Trans. Syst. Man Cybern. 17(2),
274–288 (1987)

21. Papadopoulos, Y.: Model-based system monitoring and diagnosis of failures using
statecharts and fault trees. Reliab. Eng. Syst. Saf. 81(3), 325–341 (2003)

22. Pearl, J., Mackenzie, D.: The Book of Why. Basic Books, New York (2018)
23. Poolsapassit, N., Ray, I.: Investigating computer attacks using attack trees. In:

Craiger, P., Shenoi, S. (eds.) DigitalForensics 2007. ITIFIP, vol. 242, pp. 331–343.
Springer, New York (2007). https://doi.org/10.1007/978-0-387-73742-3 23

24. Ray, I., Poolsapassit, N.: Using attack trees to identify malicious attacks from
authorized insiders. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.)
ESORICS 2005. LNCS, vol. 3679, pp. 231–246. Springer, Heidelberg (2005).
https://doi.org/10.1007/11555827 14

25. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015)

26. Schneier, B.: Attack trees - modeling security threats. DR DOBBS J. (1999).
http://www.schneier.com/paper-attacktrees-ddj-ft.html

27. Schneier, B.: Secrets and Lies - Digital Security in a Networked World: With New
Information About Post-9/11 Security. Wiley, Indianapolis (2004)

28. Simon, G., et al.: Model-based fault-adaptive control of complex dynamic systems.
In: Proceedings of the 20th IEEE Instrumentation Technology Conference (Cat.
No. 03CH37412), vol. 1, pp. 176–181, May 2003. https://doi.org/10.1109/IMTC.
2003.1208147

29. Triantafillou, S., Tsamardinos, I.: Constraint-based causal discovery from multiple
interventions over overlapping variable sets. J. Mach. Learn. Res. 16, 2147–2205
(2015)

30. Vesely, W., Goldberg, F., Roberts, N., Haasl, D.: Fault tree handbook (1981)

https://doi.org/10.2307/2025310
https://doi.org/10.2307/2025310
https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/978-0-387-73742-3_23
https://doi.org/10.1007/11555827_14
http://www.schneier.com/paper-attacktrees-ddj-ft.html
https://doi.org/10.1109/IMTC.2003.1208147
https://doi.org/10.1109/IMTC.2003.1208147

Extracting and Optimizing Formally
Verified Code for Systems Programming

Eleftherios Ioannidis(B), Frans Kaashoek, and Nickolai Zeldovich

Massachusetts Institute of Technology, Cambridge, UK
elefthei@mit.edu

Abstract. MCQC is a compiler for extracting verified systems programs
to low-level assembly, with no runtime or garbage collection requirements
and an emphasis on performance. MCQC targets the Gallina functional
language used in the Coq proof assistant. MCQC translates pure and
recursive functions into C++17, while compiling monadic effectful func-
tions to imperative C++ system calls. With a few memory and perfor-
mance optimizations, MCQC combines verifiability with memory and
runtime performance. By handling effectful and pure functions sepa-
rately MCQC can generate executable verified code directly from Gallina,
reducing the effort of implementing and executing verified systems.

Keywords: Formal verification · Functional compiler · Extraction ·
Systems

1 Introduction

The formal verification of computer systems has been a continuous subject of
research over the last decade, with verified file systems [1,5], kernels [10,14], dis-
tributed systems [23] and cryptographic algorithms [4,9]. Formal proofs about
programs are developed in a dependently-typed language [24], inside a mecha-
nized proof-assistant, like Coq [3,24]. Coq has its own programming language,
Gallina which together with the proof-language Ltac enable the development of
formally verified algorithms. The compilation and execution of formally verified
software written in Gallina, for systems programming with side-effects and an
emphasis on performance, is the focus of this paper.

1.1 The Problem of Code Generation

The functional, dependent nature of Gallina makes it difficult to execute outside
Coq. There are a few roadblocks to generating performant, effectful code from
Gallina, which must be addressed:

1. Coq relies on a runtime system (RTS) and garbage collection (GC) for mem-
ory management, which makes it hard to execute verified code on bare hard-
ware (OS, embedded systems, firmware etc).

c© Springer Nature Switzerland AG 2019
J. M. Badger and K. Y. Rozier (Eds.): NFM 2019, LNCS 11460, pp. 228–236, 2019.
https://doi.org/10.1007/978-3-030-20652-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20652-9_15&domain=pdf
https://doi.org/10.1007/978-3-030-20652-9_15

Extracting and Optimizing Formally Verified Code 229

2. Integral and bitfield types are inductively defined in Coq and they do not fit
into CPU registers, making the performance overhead of executing Gallina
prohibitive.

3. Gallina is completely pure and it cannot generate any observable effects.
4. The performance of dynamic memory datastructures such as lists, maps and

trees, suffers during extraction. Coq passes arguments by value, which leads
to excessive copying and a dependence on GC.

There are currently two approaches to generating formally verified, exe-
cutable code and they each address a subset of the issues stated above; by verified
compilation of deep embeddings and by extraction of shallow embeddings [2,17].
The first method requires advanced knowledge of programming language theory
and involves defining, proving and compiling an embedded Domain Specific Lan-
guage (eDSL) inside Coq, with varying degrees of proof automation available.

This paper focuses on the second approach of shallow embeddings and intro-
duces the Monadic Coq Compiler (MCQC), a compiler for Gallina by means of
extraction using C++17 as an intermediate representation. C++17 is a suitable
intermediate language as it offers parametric polymorphism through templates,
algebraic datatypes (ADTs) through variants and GC through smart pointers.
The output C++17 can be compiled by any modern C compiler with no external
dependencies. We chose the clang C compiler [15] for MCQC.

1.2 Previous Work

The CertiCoq compiler [2] implements Coq’s language inside the Coq proof-
assistant, allowing for the verified compilation of Gallina. However, CertiCoq
depends on a runtime GC and cannot generate static, stand-alone assembly. The
Œuf verified extractor [20] reifies Gallina into an abstract syntax tree (AST) that
it then translates to CompCert’s intermediate representation [16] but does not
target full Gallina, only a small subset of it relevant to reactive systems. The
Fiat compiler does verified compilation of an eDSL down to static C but is only
applicable to the domain of cryptographic algorithms [9].

1.3 Contributions

MCQC is a compiler, a library of native bitfield types and an IO library for inter-
acting with the real world. The MCQC native library is modeled after the Coq
standard library and obeys the same semantics, while offering fast, native com-
putations. MCQC supports pure functional programming and effectful monadic
IO operations, similar to the Haskell IO monad. Although side-effects cannot
be executed inside Coq, they are compiled to real system calls by MCQC and
executed by the underlying OS.

Using MCQC we have successfully compiled multiple types and functions
from Coq’s standard library. We have also written a proof-of-concept web appli-
cation for online payments, with the web server written in Gallina and compiled
to C++17 and the client written in Gallina and compiled to Webassembly. In

230 E. Ioannidis et al.

both cases, a minimal amount of boilerplate code and proofs was required, while
MCQC made it possible to write and test verified client and server code without
leaving the Coq proof-assistant.

MCQC has some limitations compared to Gallina executed inside Coq.
MCQC cannot generate code for Gallina typeclass instances, as typeclasses
offer a model for ad-hoc polmorphism more general than C++ templates [22].
MCQC has limited multi-threading support. As part of Proc MCQC implements
spawn : ∀T, (T → unit) → T → proc unit which can execute functions with no
return values in parallel via std::future. To support parallel execution with
return types, a promises interface would be more effective [18] in the future.
Finally, the library of base types in C++17 is not formally verified. To ensure
correctness with respect to the Coq standard library, a property-based testing
suite is used [6].

2 Design

This section covers the most interesting part of the design; the full design is
described in a master thesis [11]. MCQC is a compiler and a library of base types
and system calls in C++17. The compiler is written in Haskell and accepts as
input Gallina abstract syntax trees (AST) in a JSON format, extracted by the
Coq JSON extraction plugin (Coq-8.5.1). MCQC compiles the Gallina AST to
C++17 which then clang compiles to assembly [15] and links with the library,
as shown in Fig. 1.

Fig. 1. MCQC block diagram. Coq files are the input, MCQC generates C++17 code
and clang compiles it and links with the base type library to produce an executable.
The white box is the input Gallina program, green boxes show imported libraries and
yellow boxes show auto-generated files. (Color figure online)

The input Gallina AST is described by an input grammar which is defined
in the MCQC thesis [11] and is the starting point for MCQC. The top level
structure is a Module, which contains multiple top-level Declarations. Gallina
declarations can be either inductive types, type aliases, named fixpoints or named

Extracting and Optimizing Formally Verified Code 231

expressions. MCQC breaks the compilation process into five stages; type infer-
ence, base semantics, algebraic datatypes, monadic effects and pretty-printing
C++17.

2.1 Type Inference

Coq extraction transforms dependently typed Gallina to a simpler Hindley-
Milner (HM) language similar to ML [8]. Type inference starts at each func-
tion declaration, which is always guaranteed to be well-typed by Coq prior to
extraction. Each binder is added to the local context as a constraint and those
constraints are solved while traversing the AST by standard HM type infer-
ence [8].

The C++17 type system does not have support for function types. MCQC
preserves function types until the pretty-printing stage, when they are trans-
formed to C++ templates. We chose function templates over std::function
as clang will inline functional arguments when they are passed as templates,
offering better performance for higher-order functions. In addition, MCQC adds
a type annotation in the return type with the std::invoke result t template
function, to help clang type resolution [13].

2.2 Base Semantics

Using Coq’s standard library of base types can have a significant performance
overhead as Coq defines base types inductively. MCQC substitutes slow Coq
base types with their corresponding C++17 native, safe types. More details on
safety of the base type library can be found in the MCQC thesis [11]. Base types
are always passed by value in MCQC and conversely, ADTs are always passed
by smart pointer.

Pattern matching in Coq corresponds to the polymorphic high-order func-
tion match in C++17, which is implemented differently for each type as seen in
Fig. 2. As native types are susceptible to weak typing MCQC strengthens the
C++17 type system with template metaprogramming (TMP) as seen is Fig. 2. A
substitution failure at std::enable if t means the function will quietly disap-
pear at clang compile-time without errors, a pattern known in C++ as SFINAE
(Substitution Failure Is Not An Error) [13].

2.3 Algebraic Data Types (ADTs)

MCQC transforms Coq ADT definitions, like lists, trees etc, to a reference-
counted, pointer datastructure in C++17. Sum types are transformed to tagged-
unions implemented by std::variant [7] and product types are implemented
by C structs. The combination of sums and products allows MCQC to define any
algebraic data type in C++17 [19]. Finally, pattern-matching for those types is
auto-generated as the polymorphic, high-order match function. ADTs are passed
by smart pointer, a reference counted pointer that requires no GC, implemented

232 E. Ioannidis et al.

Inductive nat : Set :=
| O : nat
| S : nat -> nat.

// Nat type alias for bitvector type
using nat = unsigned int;

// Pattern matching on nat
template<typename F0, typename FS,

typename = enable_if_t<CallableWith<F0>>,
typename = enable_if_t<CallableWith<FS, nat>>>

constexpr auto match(nat a, F0 f, FS g) {
switch(a) {
case 0: return f(); // Call 0 clause
default: return g(a-1); // Call S clause
}

}

Fixpoint fib(n: nat) :=
match n with

| 0 => 1
| S sm =>

match sm with
| 0 => 1
| S m =>

(fib m) + (fib sm)
end

end.

nat fib(nat n) {
return match(n,

[=]() { return 1; },
[=](nat sm) { return match(sm,

[=]() { return 1; },
[=](nat m) {

return add(fib(m), fib(sm));
});

});
}

Fig. 2. Compiling the fibonacci function on the left in C++17, on the right. The
shaded box surrounds Coq and C++17 boilerplate code for natural numbers. The
definitions are almost isomorphic, except for overflow exceptions in native types which
are safely detected and propagated to the caller.

via std::shared ptr. An example of generating a pointer list from the ADT
list definition in Coq can be seen in Fig. 3 and more details on ADT generation
can be found in the MCQC thesis [11].

2.4 Monadic Effects (Proc)

Coq is so pure it has no way of interacting with the underlying OS in an effectful
way. MCQC offers an interface for effectful computations by means of monadic
composition with the Proc monad, similar to the Haskell IO monad [12]. Effectful
monads in Gallina elaborate to imperative-style C++ statements, as shown in
Fig. 4. An example of generating an implementation for the cat utility is shown
in Fig. 4.

2.5 Pretty-Print C++17

In order to apply transformations and finally pretty-print C++17, MCQC trans-
forms the input Coq AST to an intermediate representation closer to C++17.
Going from that representation to a .cpp file is a matter of implementing a
Wadler/Leijen prettyprinter [21].

Extracting and Optimizing Formally Verified Code 233

Inductive list (T:Type) : Type :=
| nil : list T
| cons : T -> list T -> list T.

template<class T>
struct Coq_nil {};
// Forward declarations
template<class T>
struct Coq_cons;
template<class T>
// Reference counted tagged-union
using list = std::shared_ptr<

std::variant<Coq_nil<T>, Coq_cons<T>>>;

template<class T>
struct Coq_cons {

T a;
list<T> b;

};

// Pattern match
template<class T, class U, class V>
auto match(list<T> self, U f, V g) {

return std::visit(*self, overloaded {
[=](Coq_nil<T> _) { return f(); },
[=](Coq_cons<T> _) { return g(_.a, _.b); }

});
}

Fig. 3. Polymorphic list definition in Coq, MCQC generates the pointer data structure
on the right, as well as match to deconstruct it.

(** Filedescriptor type *)
Definition fd := nat.

(** Effect composition *)
Inductive proc: Type -> Type :=
| open : string -> proc fd
| read: fd -> proc string
| close : fd -> proc unit
| print : string -> proc unit
(** Monad *)
| ret: forall T, T -> proc T
| bind: forall T T',

proc T
-> (T -> proc T')
-> proc T'.

Notation "p1 >>= p2" :=
(bind p1 p2).

// Filedescriptor type
using fd = nat;

static proc<fd> open(string s) {
if (int o = sys::open(FWD(s).c_str(), O_RDWR) {

return static_cast<fd>(o);
}
throw IOException("File not found");

}
static proc<string> read(fd f, nat size) {

auto dp = string(size, '\0');
sys::read(f, &(dp[0]), sizeof(char)*size);
return dp;

}
static proc<void> close(fd f) {

if(sys::close(f)) {
throw IOException("Could not close file");

}
}
static proc<void> print(string s) {

std::cout << s << std::endl;
}

Definition cat (path fn: string):=
open (path ++ "/" ++ fn) >>=

(fun f => read f >>=
(fun data => close f >>=

(fun _ => print data >>=
(fun _ => ret unit)))).

proc<void> cat(string path, string fn) {
fd f = open(append(path, append("/", fn)));
string data = read(f);
close(f);
print(data);

}

Fig. 4. The cat UNIX utility that displays a text file. Instances of proc are trans-
lated to imperative C++ system calls. The shaded box surrounds Coq and C++17
boilerplate code, part of the MCQC library.

234 E. Ioannidis et al.

3 Implementation and Evaluation

In this section we present the runtime properties and performance of programs
compiled with MCQC. The three questions we try to answer are; can we link
verified and unverified code to create end-to-end applications, can we get better
memory performance than extracted Haskell and can we get runtime perfor-
mance comparable to Haskell compiled with GHC.

MCQC is open source under an MIT license and can be found here https://
github.com/mit-pdos/mcqc. MCQC is implemented in 1800 lines of Haskell and
600 lines of C++17 code for the base type and proc library.

3.1 Linking Verified Applications

In order to demonstrate MCQC’s capabilities we have developed a demo web
application for payments, the verified Zoobar server. The Zoobar server demon-
strates the ease of linking code compiled with MCQC, as both the server and
client were built and proven in Coq and extracted to C++17 before linking with
the HTTP libraries. The proof effort required for proving the transaction logic
is minimal and focuses on the code that is most important. With the Zoobar
demo we demonstrate a hybrid approach to verification, by combining verified
logic with unverified trusted code. The design and implementation details of the
Zoobar server are presented in full detail in the mcqc thesis [11].

3.2 Benchmarks

MCQC compares fairly well against GHC in terms of run-time performance
and total memory used. The execution time of MCQC programs is on average
14.8% faster than GHC programs, as seen in Fig. 5a. MCQC reduces the memory
footprint of executing verified programs by 66.25% on average compared to GHC,
as seen in Fig. 5b.

We compare the performance of C++17 code generated with MCQC against
Haskell code extracted from Coq with native types to ensure the comparison is
fair. The clang-7.0 compiler compiles generated C++17 and GHC-8.4.4 compiles
extracted Haskell. More details on the hardware and profiling tools used can be
found in the MCQC thesis [11].

The results in Fig. 5 show MCQC extracted code performs with consider-
ably less memory compared to Haskell and at comparable run-time. Tail-call
optimization is supported in clang so it is supported in MCQC, even across pat-
tern matching. For fact, we see no heap or stack usage which confirms TCO
has optimized recursion away. Finally, in algorithms that rely on GC we show
that MCQC uses less memory compared to Haskell and in most cases, MCQC
is faster.

https://github.com/mit-pdos/mcqc
https://github.com/mit-pdos/mcqc

Extracting and Optimizing Formally Verified Code 235

(a) Run-time in logarithmic scale. (b) Memory; shared libraries, heap and stack.

Fig. 5. Performance and memory benchmarks for four Coq programs compiled with
MCQC versus GHC. Increasing values for N were used for calculating Fig. 5a and only
the highest value N was used for memory benchmarks.

4 Conclusion

We have presented the MCQC compiler, a novel approach to generating exe-
cutable formally verified code directly from the Gallina functional specification.
Code compiled with MCQC has a TCB comparable to standard Coq extraction
mechanisms [17]. The MCQC TCB includes the clang compiler and MCQC itself,
as well as the base types library. Coq extraction to Haskell and Ocaml includes
the compiler and runtime in the TCB, which MCQC does not. We hope to see
MCQC used as part of the Coq ecosystem, for the execution of formally verified
code without scraping the full stack.

References

1. Amani, S., et al.: Cogent: verifying high-assurance file system implementations.
ACM SIGOPS Oper. Syst. Rev. 50(2), 175–188 (2016)

2. Anand, A., et al.: Certicoq: a verified compiler for coq. In: The Third International
Workshop on Coq for Programming Languages (CoqPL) (2017)

3. Barras, B., et al.: The Coq proof assistant reference manual: Version 6.1. Ph.D.
thesis, Inria (1997)

4. Bhargavan, K., et al.: Everest: towards a verified, drop-in replacement of https. In:
LIPIcs-Leibniz International Proceedings in Informatics, vol. 71. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2017)

5. Chen, H., Ziegler, D., Chajed, T., Chlipala, A., Kaashoek, M.F., Zeldovich, N.:
Using crash hoare logic for certifying the FSCQ file system. In: Proceedings of the
25th Symposium on Operating Systems Principles, pp. 18–37. ACM (2015)

6. Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of
haskell programs. ACM SIGPLAN Not. 46(4), 53–64 (2011)

7. Cock, D.: Bitfields and tagged unions in C: verification through automatic gener-
ation. VERIFY 8, 44–55 (2008)

8. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: Pro-
ceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pp. 207–212. ACM (1982)

236 E. Ioannidis et al.

9. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Simple high-level code
for cryptographic arithmetic-with proofs, without compromises. In: Simple High-
Level Code for Cryptographic Arithmetic-With Proofs, Without Compromises,
p. 0. IEEE

10. Gu, L., Vaynberg, A., Ford, B., Shao, Z., Costanzo, D.: Certikos: a certified kernel
for secure cloud computing. In: Proceedings of the Second Asia-Pacific Workshop
on Systems, p. 3. ACM (2011)

11. Ioannidis, E.: Extracting and optimizing low-level bytecode from high-level verified
coq (2019)

12. Jones, S.P., Hall, C., Hammond, K., Partain, W., Wadler, P.: The glasgow haskell
compiler: a technical overview. In: Proceedings of the UK Joint Framework for
Information Technology (JFIT) Technical Conference, vol. 93 (1993)

13. Josuttis, N.M.: C++ Templates: The Complete Guide. Addison-Wesley Profes-
sional, Boston (2003)

14. Klein, G., et al.: sel4: formal verification of an OS kernel. In: Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles, pp. 207–220.
ACM (2009)

15. Lattner, C.: LLVM and clang: Next generation compiler technology. In: The BSD
Conference, pp. 1–2 (2008)

16. Leroy, X., et al.: The compcert verified compiler. Documentation and user’s man-
ual, INRIA Paris-Rocquencourt (2012)

17. Letouzey, P.: Extraction in Coq: an overview. In: Beckmann, A., Dimitracopoulos,
C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 359–369. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-69407-6 39

18. Liskov, B., Shrira, L.: Promises: linguistic support for efficient asynchronous pro-
cedure calls in distributed systems, vol. 23. ACM (1988)

19. Magalhães, J.P., Dijkstra, A., Jeuring, J., Löh, A.: A generic deriving mechanism
for haskell. ACM SIGPLAN Not. 45(11), 37–48 (2010)

20. Mullen, E., Pernsteiner, S., Wilcox, J.R., Tatlock, Z., Grossman, D.: Œuf: mini-
mizing the coq extraction TCB. In: Proceedings of the 7th ACM SIGPLAN Inter-
national Conference on Certified Programs and Proofs, pp. 172–185. ACM (2018)

21. Wadler, P.: A prettier printer. In: The Fun of Programming, Cornerstones of Com-
puting, pp. 223–243 (2003)

22. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad hoc. In: Proceed-
ings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pp. 60–76. ACM (1989)

23. Wilcox, J.R., et al.: Verdi: a framework for implementing and formally verifying
distributed systems. In: ACM SIGPLAN Notices, vol. 50, pp. 357–368. ACM (2015)

24. Xi, H., Pfenning, F.: Dependent types in practical programming. In: Proceedings
of the 26th ACM SIGPLAN-SIGACT symposium on Principles of Programming
Languages, pp. 214–227. ACM (1999)

https://doi.org/10.1007/978-3-540-69407-6_39

Structured Synthesis for Probabilistic
Systems

Nils Jansen1(B), Laura Humphrey2, Jana Tumova3, and Ufuk Topcu4

1 Radboud University, Nijmegen, The Netherlands
nilsjansen123@gmail.com

2 Air Force Research Laboratory, Dayton, USA
3 KTH Royal Institute of Technology, Stockholm, Sweden

4 University of Texas at Austin, Austin, USA

Abstract. We introduce the concept of structured synthesis for Markov
decision processes. A structure is induced from finitely many pre-specified
options for a system configuration. We define the structured synthesis
problem as a nonlinear programming problem (NLP) with integer vari-
ables. As solving NLPs is not feasible in general, we present an alternative
approach. A transformation of models specified in the PRISM proba-
bilistic programming language creates models that account for all possi-
ble system configurations by nondeterministic choices. Together with a
control module that ensures consistent configurations throughout a run
of the system, this transformation enables the use of optimized tools
for model checking in a black-box fashion. While this transformation
increases the size of a model, experiments with standard benchmarks
show that the method provides a feasible approach for structured syn-
thesis. We motivate and demonstrate the usefulness of the approach along
a realistic case study involving surveillance by unmanned aerial vehicles
in a shipping facility.

1 Introduction

The problem introduced in this paper is motivated by the following sce-
nario stemming from the area of physical security. Consider a shipping facility
equipped with a number of ground sensors to discover potential intruders. The
facility operates unmanned aerial vehicles (UAVs) to perform surveillance and
maintenance tasks. Intruders appear randomly, there are uncertainties in sensor
performance, and the operation of the UAVs is driven by scheduling choices and
the activation of sensors. Suitable models to capture such randomization, uncer-
tainty, and scheduling choices are Markov decision processes (MDPs), where
measures such as “the probability to encounter dangerous states of the system”
or “the expected cost to achieve a certain goal” are directly assessable.

System designers may have to choose among a pre-specified family of possibly
interdependent options for the system configuration, such as different sensors or

U. Topcu—Partially supported by AFRL FA8650-15-C-2546 and Sandia National Lab
801KOB.

c© Springer Nature Switzerland AG 2019
J. M. Badger and K. Y. Rozier (Eds.): NFM 2019, LNCS 11460, pp. 237–254, 2019.
https://doi.org/10.1007/978-3-030-20652-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20652-9_16&domain=pdf
https://doi.org/10.1007/978-3-030-20652-9_16

238 N. Jansen et al.

the operating altitude of UAVs. Each of these options triggers different system
behavior, such as different failure probabilities and acquisition cost. We call such
possible design choices an underlying structure of the system; all concrete instan-
tiations of the system adhere to this structure. For instance, imagine a structure
describing the option of installing one of two types of sensors. The cheaper sen-
sor induces a smaller expected cost, while the more expensive sensor induces a
higher probability of discovering intruders. The changes in the instantiations of
the system are necessarily according to the structure, i. e., the replacement of
one sensor type with the other. A question of interest is then which instantia-
tion yields the lowest cost while it guarantees to adhere to a target specification
regarding the desired probability.

We introduce multiple–instance MDPs (MIMDPs) as underlying semantic
model for structured synthesis. Arbitrary expressions over system parameters
capture a structure that describes dependencies between uncertain behavior and
system cost. Each parameter has an associated finite set of values out of which
it can be instantiated. Thereby, a MIMDP induces a finite family of MDPs.
MIMDPs are inspired by parametric MDPs [2,24,27,33] (pMDPs), whose tran-
sition probabilities are defined by functions over yet-to-be-specified parameters.
However, the existing definitions of pMDPs only allow restrictions on parame-
ter valuations in the form of continuous intervals. State-of-the-art methods as
implemented in the tools PARAM [9], PRISM [10], or PROPhESY [19] do not support
the definition of discrete sets of valuations. Consequently, to the best of our
knowledge, these techniques cannot directly handle the scenarios we consider.

Another related approach to modeling structured systems is feature-based
modeling [29], which allows to specify families of stochastic systems. Although
feature-based modeling supports discrete parametrization, it does not directly
offer parametrization of probabilities. Furthermore, it analyses a family in an
all-in-one fashion as opposed to focusing on individual instantiations.

The formal problem considered in this paper is to compute an optimal instan-
tiation of parameters and a control strategy for a given MIMDP subject to
reachability specifications and cost minimization. We define this problem natu-
rally as a non–linear integer optimization problem (NLIP). As a computation-
ally tractable alternative, we present a transformation of an MIMDP to an
MDP where all possible parameter instantiations are relayed to nondetermin-
istic choices. The common language used for model specification in all available
tools is the probabilistic programming language [17] originally developed for
PRISM. We define the transformation of the MIMDP as a program transforma-
tion. By adding control variables to the transformed program, we keep track of
all instantiations, ensuring system executions that are in accordance with the
given structure. Computing a solution to the original problem is thereby reduced
to MDP model checking, which is equivalent to solving a linear program (LP).
From a practical viewpoint, the transformation enables the use of all capabilities
of model checkers such as PRISM [10], Storm [28], or IscasMC [18].

We illustrate the feasibility of the proposed approach on several basic case
studies from the PRISM benchmark suite [12]. We also report promising results

Structured Synthesis for Probabilistic Systems 239

for a more realistic case study based on the shipping facility example. In our
experiments, we observe that the transformation from a MIMDP to an MDP
involves an increase in the number of states or transitions of up to two orders of
magnitude. However, using an efficient model checker, we are able to demonstrate
the applicability of our approach in examples with millions of states.

In summary, the contribution of this paper is threefold: (i) We define a para-
metric model supporting discrete valuation sets and formalize the structured
synthesis problem. (ii) We develop a transformation of the parametric model to
the PRISM language allowing us to practically address the structured synthesis
problem. (iii) We present a detailed, realistic case study of a shipping facility as
well as experimental evaluation on standard benchmarks.

Fig. 1. A shipping facility that uses UAVs to perform surveillance tasks.

2 Case Study

In this section we introduce the case study that originally motivated the problem
and the proposed approach. Several technical details are available in [31].

Scenario. Consider a shipping facility which uses one or more UAVs equipped
with electro-optical (EO) sensors to perform surveillance tasks over various facil-
ity assets as shown in Fig. 1. These assets include an Airfield with a Runway and
Airfield Office, a Truck Depot, a Warehouse, a Main Office, a Shipyard with a
Shipyard Office, and a small bay that is partitioned into West Bay, East Bay,
and Shipyard areas. An external Highway connects to the Main Gate, and a
nearby Bridge crosses a Stream that cuts through the facility and empties into

240 N. Jansen et al.

the bay. The facility is surrounded by a fence, but points where waterways run
under the fence might allow intruders to enter. These points and the bay are
monitored by Sensor 1, Sensor 2, Sensor 3, and a Bay Sensor Network. All of
these ground sensors can detect intruders with a certain false alarm rate.

UAVs take off and land from an area near the Ground Control Station (GCS).
For each of the facility assets, a UAV can be tasked to perform a point, line, or
area search as indicated in Fig. 1. Each of these search tasks requires the UAV to
fly a certain distance to get to the task location, carry out the task, and fly back
to the GCS. For point searches, simply flying to the point and back is enough.
For line searches, the UAV must fly to one end, follow the line, and fly back from
the other end. For area searches, the UAV must fly to one corner of the area,
perform sequential parallel passes over it until the entire area has been covered
by the UAV’s sensor footprint, then fly back from the terminating corner. Note
that the sensor footprint size increases with altitude, so more passes are needed
to cover an area as a UAV’s altitude decreases.

If a ground sensor reports that an intruder has been detected, a UAV may
be tasked to fly to the respective area and perform a search; otherwise, the
UAV can return to the GCS and continue on to another task. Probabilities for
which areas intruders are likely to head toward might be estimated over time or
assumed to be uniform if data are not available. We assume surveillance occurs
frequently enough that at most one intruder will pass by a ground sensor before
it is queried by a UAV. Similar problems involving UAVs searching for intruders
based on ground sensor information are discussed in, e.g., [15] and [22].

System Configuration, Safety, and Cost. A configuration of the shipyard facility
refers to the types of ground sensors and EO sensors installed onboard the UAVs.
Safety of the shipping facility refers to the probability to successfully detect
intruders, and performance describes the expected cost for the shipping facility.

Our goal is to find a configuration that ensures a certain safety probability on
detecting intruders while minimizing cost. Different sensor types result in safety
and performance tradeoffs for several reasons. First, each sensor type has a dif-
ferent one-time purchase cost. In turn, each sensor type has tunable parameters
that result in a tradeoff between the probability of detecting an intruder and
cost in terms of UAV flight time, with sensors that have a higher purchase cost
providing a better tradeoff. The tradeoff between intruder detection and UAV
flight time is also affected by the adjustable UAV operating altitude.

This tradeoff can be understood using two factors. The first is ground sample
distance (GSD) [25], i. e., the number of meters per pixel of images sent back by
a UAV, which depends on UAV altitude and EO sensor resolution. The second is
the ground sensor receiver operating characteristic (ROC) [7], i. e., the tunable
true positive versus false positive rate. Both true and false positives result in a
UAV performing an area search for intruders. We now describe how probabilistic
parameters relating to GSD and ROC can be adjusted by acquiring different
types of sensors, tuning sensor parameters, or changing UAV operating altitude.

Structured Synthesis for Probabilistic Systems 241

Basic Task Costs. For tasks that do not involve intruder detection, cost is driven
mainly by manpower, logistics, and maintenance requirements, which roughly
corresponds to cost per flight second cf . Suppose the UAVs in this scenario all
fly at some standard operating ground speed vg measured in meters per second.
The cost c(t) = d(t)cf/vg for a task t that does not involve intruder detection
depends in a straightforward way on the distance d(t) that a UAV must fly.

Image GSD. An important consideration for UAV surveillance tasks is the
amount of visual detail a human operator needs to analyze, depending on the
number of pixels comprising objects of interest in the images. GSD can be
decreased by decreasing altitude or increasing horizontal resolution of the EO
sensor. For this scenario, we consider three common EO sensor resolution options
(480p, 720p, 1080p), with hypothetical purchase prices ($15k, $30k, $45k).

We use GSD in conjunction with the Johnson criteria [1] to estimate the
probability that a human operator successfully analyzes an object. For each type
of task and a corresponding digital image, a quantity n50 defines the number of
pairs of pixel lines across the “critical” or smaller dimension of an object needed
for a 50% probability of task success. For instance, n50 = 1 for object detection.

Given n50 and the number of pixels pairs n across the critical dimension of
an object (which depends on the size of the object and GSD), the probability
for analysis success pd given sufficient time to analyze the image is estimated as

pd =
(n/n50)x0

1 + (n/n50)x0
where x0 = 2.7 + 0.7(n/n50). (1)

Ground Sensor ROC. The ROC curve of a sensor performing binary classifica-
tion describes the tradeoff between the sensor’s true positive rate/probability
versus false positive rate/probability as the sensor’s discrimination threshold is
varied. Consider the three solid curves in Fig. 2. These represent hypothetical
“low”, “mid”, and “high” cost ground sensors, with one-time purchase costs of
$15k, $30k, and $45k, respectively. For each such ground sensor, the discrimina-
tion threshold can be varied to achieve an operating point on the corresponding
curve. In order to reliably detect intruders, we need true positive rates to be
fairly high. As the curves show, a high cost ground sensor provides the best
tradeoff, since for each false positive rate, it provides a higher true positive rate.
In our approach, we use quadratic approximations of the curves.

To help understand the effect ground sensors have on system costs and prob-
abilistic parameters, suppose we choose to purchase a high cost sensor for Sensor
1. Clearly the purchase cost is higher than if we had chosen a mid or low cost
sensor. However, each time the ground sensor generates a false positive, a UAV
has to perform an unnecessary area search, which incurs additional system oper-
ational cost. To counteract this, we could decrease the ground sensor’s false
positive rate, but this would also decrease its true positive rate, resulting in a
higher false negative rate. When a false negative occurs, the sensor fails to detect
the presence of an intruder. A high cost sensor then mitigates operational cost
by providing a lower false positive rate. Given these tradeoffs between purchase

242 N. Jansen et al.

False Positive Rate
0 0.2 0.4 0.6 0.8 1

T
ru

e
P

os
iti

ve
 R

at
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

High Cost
Mid Cost
Low Cost

Fig. 2. ROC curves for different cost ground sensors. Linear and quadratic approxi-
mations are shown as green dashed lines and traces of black dots, respectively.

cost, operational cost, and probability of intruder detection, it is not clear which
sensor minimizes cost while meeting safety specifications on intruder detection.

3 Preliminaries

A probability distribution over a finite set X is a function μ : X → [0, 1] ⊆ R

with
∑

x∈X μ(x) = μ(X) = 1. The set of all distributions on X is Distr(X).

Definition 1 (MDP). A Markov decision process (MDP) M = (S, sI ,A,P)
consists of a finite set of states S, a unique initial state sI ∈ S, a finite set A of
actions, and a probabilistic transition function P : S × A × S → [0, 1] ⊆ R with∑

s′∈S P(s, α, s′) = 1 for all s ∈ S, α ∈ A.

The enabled actions at state s ∈ S are A(s) = {α ∈ A | ∃s′ ∈ S.P(s, α, s′) >
0}. A cost function C : S → R≥0 for an MDP M adds cost to a state. If |A(s)| = 1
for all s ∈ S, all actions can be disregarded and the MDP M reduces to a
discrete-time Markov chain (MC), also denoted by D. To define a probability
measure and expected cost on MDPs, the nondeterministic choices of actions are
resolved by strategies. We restrict ourselves to memoryless strategies, see [34] for
details.

Definition 2 (Strategy). A randomized strategy1 for an MDP M is a func-
tion σ : S → Distr(A) such that σ(s)(a) > 0 implies a ∈ A(s). A strategy with
σ(s)(a) = 1 for a ∈ A and σ(b) = 0 for all b ∈ A \ {a} is called deterministic.
The set of all strategies over M is denoted by StrM.

Applying strategy σ ∈ StrM to MDP M yields an induced Markov chain
Mσ.
1 If needed, we extend the state space of the original MDP to account for memory.

Structured Synthesis for Probabilistic Systems 243

Definition 3 (Induced MC). Let MDP M = (S, sI ,A,P) and strategy σ ∈
StrM. The MC induced by M and σ is Mσ = (S, sI ,Pσ) where

Pσ(s, s′) =
∑

a∈A(s)

σ(s)(a) · P(s, a, s′) for all s, s′ ∈ S .

PRISM’s Guarded Command Language. We briefly introduce the probabilistic
programming language used to specify probabilistic models in PRISM. For a finite
set Var of integer variables, let V(Var) denote the set of all variable valuations.

Definition 4 (Probabilistic program). A probabilistic program (Var, sI ,M)
consists of Var, an initial variable valuation sI ∈ V(Var), and a finite set of
modules M = {M1, . . . , Mk}. A module Mi = (Vari,Ai, Ci) consists of Vari ⊆
Var such that Vari∩Varj = ∅ for i �= j, a finite set Ai of (synchronizing) actions,
and a finite set Ci of commands.

A command has the form [α] g → p1 : f1 + . . . + pn : fn with α ∈ Ai, g a
Boolean guard over the variables in Var, pj ∈ [0, 1] ⊆ R with

∑n
j=1 pj = 1, and

fj : V(Var) → V(Vari) a variable update function.

A model with several modules is equivalent to a single module, obtained by
the parallel composition using synchronizing actions. For details we refer to [21].

Specifications. For threshold λ ∈ [0, 1] and MC D, a reachability specification
ϕ = P≤λ(♦T) asserts that a set of target states T ⊆ S is to be reached with
probability at most λ. The expected cost of reaching a set of goal states G
is denoted by ECD(♦G). Using recent results from [30], we also consider the
probability PrD(♦T ∧ C < n), where the total cost C, i. e., the sum of the costs
of all paths satisfying ♦T , is bounded by n. For MDPs, one needs to compute
minimizing/maximizing strategies. Formal definitions are given in e.g., [34].

4 Structured Synthesis

We first introduce multiple–instance Markov decision process (MIMDP) over a
finite set V = {p1, . . . , pn} of parameters. Each parameter p ∈ V has a finite
range of values Val(p) = {v1, . . . , vm} ⊆ R. A valuation is a function u : V →⋃

p∈V Val(p) that respects the parameter ranges, meaning that for a parameter
p, u(p) = v ∈ Val(p). Let U(V) denote the (finite) set of valuations on V .

Let Expr(V) denote the set of expressions over V and p ∈ l state that
parameter p occurs in expression l ∈ Expr(V). Val(l) denotes the (finite) set of
possible values for l ∈ Expr(V) according to the parameters p ∈ l and their value
ranges Val(p). With a slight abuse of notation, we lift valuation functions from
U(V) to expressions: u : Expr(V) → ⋃

l∈Expr(V) Val(l). In particular, u(l) = v ∈
Val(l) is the valuation of l obtained by the instantiation of each p ∈ l with u(p).

Remark 1. A valuation of two expressions l, l′ in Expr(V) does not guaran-
tee consistent parameter valuations. A parameter valuation u(p) that results
in expression valuation u(l) might be different than a u′(p) that results in u(l′).

244 N. Jansen et al.

Example 1. For V = {p, q}, Val(p) = {0.1, 0.2}, Val(q) = {0.3, 0.4}, and
Expr(V) = {p + q, p + 2 · q}, the ranges of values for the expressions are
Val(p + q) = {0.4, 0.5, 0.6}, and Val(p + 2 · q) = {0.7, 0.8, 0.9, 1}. For param-
eter valuation u(p) = 0.1, u(q) = 0.3, the associated valuation on expressions is
u(p+q) = 0.4, u(p+2·q) = 0.7. For a valuation on the expressions υ(p+q) = 0.4,
υ(p+2 · q) = 1, there is no consistent parameter valuation: the first is consistent
with u(p) = 0.1 and u(q) = 0.3, the second with u(p) = 0.2 and u(q) = 0.4.

Fig. 3. An example MIMDP and its possible valuations.

Definition 5 (MIMDP). A multiple-instance MDP M = (S, V, sI ,A,P) has
a finite set S of states, a finite set V of parameters with associated finite sets of
valuations from Val(V), a unique initial state sI ∈ S, a finite set A of actions,
and a transition function P : S × A × S → Expr(V).

A cost function C : S → Expr(V) associates (parametric) cost to states. For
each valuation u ∈ Val(V) of parameters, the instantiated MIMDP is M[u]. We
denote the set of all expressions occurring in the MIMDP by LM.

Remark 2. An MIMDP is a special kind of parametric MDP (pMDP) [9,26] in
the sense that each parametric cost and probabilities can only take a finite num-
ber of values, i. e., there are multiple but finite instantiations of a MIMDP. The
state–of–the–art tools such as PARAM [9], PRISM [10], or PROPhESY [19], however,
only allow for defining continuous intervals to restrict parameter valuations.

Example 2. Figure 3(a) shows a MIMDP M with parametric transition proba-
bilities p, q, r and s. Costs are p + q and 2 · p. The valuations of parameters are
Val(p) = {0.4, 0.6},Val(q) = {0.3, 0.7},Val(s) = {0.7, 0.3},Val(r) = {0.6, 0.4},
Val(p + q) = {0.7, 1.1, 0.9, 1.3}, and Val(2 · p) = {0.8, 1.2}. The sets of valua-
tions are depicted in Fig. 3(b) to show all instantiations of the MIMDP. E.g., a
valuation u with u(p) = 0.4 and u(r) = 0.4 is not well–defined as it induces no
probability distribution, thereby not yielding an MDP.

Formal Problem Statement. For a MIMDP M, a specification ϕ = P≤λ(♦T),
and a set of goal states G, the structured synthesis problem is to determine a
valuation u ∈ U(V) and a strategy σ for the MDP M[u] such that M[u]σ |= ϕ,
and the expected cost ECM[u]σ (♦G) is minimal.

Structured Synthesis for Probabilistic Systems 245

5 An Integer Programming Approach

We first observe that the synthesis problem is in fact a multi-objective verifica-
tion problem that requires randomized strategies as in Definition 2 [8,11,14]. We
formulate the corresponding optimization problem using the following variables:

– cs ∈ R≥0 for each s ∈ S represents the expected cost to reach G ⊆ S from s.
– ps ∈ [0, 1] for each s ∈ S represents the probability to reach T ⊆ S from s.
– σα

s ∈ [0, 1] for each s ∈ S and α ∈ A represents the probability to choose
action α ∈ A(s) at state s.

We also introduce a characteristic variable xu ∈ {0, 1} for each valuation u ∈
U(V). If xu is set to 1, all parameters and expressions are evaluated using u.

minimize csI (2)
subject to

psI ≤ λ (3)
∀s ∈ T. ps = 1 (4)
∀s ∈ G. cs = 0 (5)

∀s ∈ S.
∑

α∈A

σα
s = 1 (6)

∑

u∈U(V)

xu = 1 (7)

∀s ∈ S. ps =
∑

α∈A(s)

σα
s ·

(∑

s′∈S

∑

u∈U(V)

xu · u(P(s, α, s′)) · ps′
)

(8)

∀s ∈ S. cs =
∑

α∈A(s)

σα
s ·

(∑

s′∈S

∑

u∈U(V)

xu · (u(C(s)) + u(P(s, α, s′)) · cs′)
)

(9)

∀s ∈ S, α ∈ A(s).
∑

s′∈S

∑

u∈U(V)

xu · u(P(s, α, s′)) = 1 (10)

Theorem 1 (Soundness and completeness). The optimization problem (2)–
(10) is sound in the sense that each minimizing assignment induces a solution
to the synthesis problem. It is complete in the sense that for each solution to the
problem there is a minimizing assignment for (2)–(10).

Proof Sketch. The first two equations induce satisfaction of the specifications:
(2) minimizes the expected cost to reach goal states G ⊆ S at sI ; (3) ensures
that the probability to reach the target states T ⊆ S from sI is not higher than
the threshold. (4) and (5) set the probability and the expected cost at target and
goal states to 1 and 0, respectively. (6) ensures well-defined strategies, and (7)
ensures for all possibles values u ∈ U(V) that exactly one characteristic variable
xu is set to 1. In (8), ps is assigned the probability of reaching T from s by
multiplying the probability to reach successor s′ with the probability of reaching
T from s′, depending on the scheduler variables σαs . Variables cs are analogously
assigned the expected cost in (9). (10) ensures that the concrete instantiations
chosen at each transition form well–defined probability distributions.

246 N. Jansen et al.

Any satisfying assignment yields a well-defined randomized strategy and a
well-defined assignment of parameters. Moreover, such an assignment necessarily
satisfies the safety specification ϕ = P≤λ(♦T), as the probability to reach T is
ensured to be smaller than or equal to λ. Likewise, the expected cost to reach G
from the initial state is minimized while at each state the cs variables are assigned
the exact expected cost. We need to assume that the probability to reach G is
one under all strategies. If this assumption is not true, additional constraints
can enforce that property for each solution of the optimization problem. Thus, a
satisfying assignment induces a solution to the synthesis problem. Completeness
is given by construction, as the optimization problem encodes each instantiation
of the problem.

Complexity of the Optimization Problem. Consider constraint (8), where an inte-
ger variable xv is multiplied with the real–valued variable ps′ and the strategy
variable σα

s . Such constraints render this program a non–linear integer optimiza-
tion problem. The number of constraints is governed by the number of state and
action pairs and the number of possible instantiations of expressions i. e., the
size of the problem is in O(|Sr| · |A| · |Val(LM)|2). The problem is, that already
solving nonlinear problems without integer variables is NP-hard [4,35]. Sum-
marized, despite the compact problem representation in form of a MIMDP, the
problem is hard.

6 Transformation of PRISM Programs

As a feasible—yet not optimal—solution to the synthesis problem, we present
a transformation of MIMDPs specified as probabilistic programs in the PRISM
language as in Definition 4. Similar to [26], we see the possible choices of
parameter values as nondeterminism. Say, a parameter p ∈ V has valuations
Val(p) = {v1, v2} and state s has cost C(s) = 2 · p. First, the MIMDP is trans-
formed in the following way. From state s, a nondeterministic choice between
actions αv1 and αv1 replaces the original transitions. Each action leads with
probability one to a fresh state having cost 2 · v1 or 2 · v2, respectively. From
these states, the original transitions of state s emanate. Minimal or maximal
expected cost in this transformed MDP correspond to upper and lower bounds
to the optimal solution of the synthesis problem. Intuitively, we relax dependen-
cies between parameters. That is, if at one place p is assigned its value v1, it is
not necessarily assigned the same everywhere in the MIMDP, leading to incon-
sistent valuations. To tighten these bounds, a further program transformation
ensures parameter dependencies for each execution of the model. Intuitively, in
the resulting MDP each nondeterministic choice corresponding to a parameter
value leads to a (sub-)MDP where the assignment of that value is fixed.

Structured Synthesis for Probabilistic Systems 247

Remark 3 (Nondeterminism and continuous parameters). If the original MIMDP
has nondeterministic choices, we introduce a new level of nondeterminism. We
then assume that both types of nondeterminism minimize the expected cost for
our problem. Alternatively, one can generate and evaluate a stochastic game [13].

If the original problem has continuous parameters in addition, we gain a
parametric MIMDP. In that case, mature tools for pMDPS like PARAM [9] or
PROPhESY [19] may be employed following the program transformation.

Program Transformation 1—Parametric Cost. Intuitively, for each state sat-
isfying a certain guard, transitions with the same guard are added. Each of
the transitions leads to new states with an instantiated rewards. From these
states, the transitions of the original system emanate. Assume a PRISM program
M = (Var,A, C) as in Definition 4, and a parametric reward structure of the
form:

rewards
g1 : l
end rewards

with g1 the guard and l ∈ Expr(Var). Let Val(l) = {v1, . . . , vm} be the finite
set of instantiations of l with vi ∈ R for 1 ≤ i ≤ m. We introduce a fresh
(characteristic) variable xl with dom(xl) = {0, . . . , m}. Intuitively, there is a
unique variable value for xl for each valuation from Val(l). Consider now all
commands c ∈ C of the form

[α] g → p1 : f1 + . . . + pn : fn;

with g |= g1, i. e., the guard of the command satisfies the guard of the reward
structure. Replace each such commands c by the following set of commands:

[] g → 1: x′
l = 1;

...
[] g → 1: x′

l = m;
[α]

∨

1≤i≤m

xl = i → p1 : f1 + . . . + pn : fn;

and replace the reward structure for each command c by

rewards
xl = 1: v1;

...
xl = m : vm;
end rewards

This transformation corresponds to a nondeterministic choice between the con-
crete reward values.

248 N. Jansen et al.

Program Transformation 2—Parametric Transitions. For all parameters values,
transitions with concrete probabilities are introduced. As all transitions satisfy
the same guard, we have again a nondeterministic choice between these transi-
tions. For program M = (Var,A, C), consider a command c ∈ C of the form

[α] g → p1 : f1 + . . . + pn : fn

with p1, . . . , pn ∈ Expr(Var). Let Val(p1, . . . , pn) = {vn
1 , . . . , vn

m} with vn
i =

(vi1, . . . , vin) for 1 ≤ i ≤ n and vij ∈ R for 1 ≤ j ≤ m.
Replace each such command c by the following set of commands:

[α] g → v11 : f1 + . . . + v1n : fn;
...

[α] g → vm1 : f1 + . . . + vmn : fn;

For a program M , we denote the program after Transformation 1 and Transfor-
mation 2 by M ′. The induced MIMDP of M is denoted by MM and the induced
MDP of M ′ by MM ′ .

Program Transformation 3—Parameter Dependencies. We finally propose a
transformation of the transformed MDP MM ′ which enforces that once a param-
eter is assigned a specific value, this assignment is always used throughout a sys-
tem execution. Therefore, we add a control module to the PRISM formulation.

In the transformed MDP, taking actions αv1 or αv2 induces that parameter
p is assigned its value v1 or v2. In the PRISM encoding, the corresponding
commands are of the form

[αv1] g1 → . . . ;
[αv2] g2 → . . . ;

where g1 and g2 are arbitrary guards. Now, for each of these actions αv1 and
αv2 , we use control variables qv1 and qv2 and build a control module of the form:

module control
qv1 : bool init 0;
qv2 : bool init 0;
[αv1] ¬qv1 → (q′

v1 = true);
[αv1] qv1 → (q′

v1 = true);
[αv2] ¬qv2 → (q′

v2 = true);
[αv2] qv2 → (q′

v2 = true);
endmodule

If this module is included in the parallel composition, a control variable is set to
true once the corresponding action is taken in the MDP. We can now guard the
commands such that only non–conflicting assignments are possible. The original
commands are transformed in the following way:

[αv1] g1 ∧ ¬qv2 → . . . ;
[αv2] g2 ∧ ¬qv1 → . . . ;

Structured Synthesis for Probabilistic Systems 249

With the control module, consistent choices are enforced for any execution of
the system, while there may be inconsistencies in parameter valuations at states
or transitions that are not visited by the same run of the system. In these
(rare) cases, the resulting strategy does not offer any guarantees. Specifically, an
optimal strategy does not necessarily induce consistent parameter assignments,
which is an NP-hard problem and handled in [32].

Technically, we transform an integer nonlinear optimization problem to a
linear program at the cost of increasing the size of the underlying MDP. We
exploit highly optimized model checking tools. Aggressive state space reduction
techniques together with a preprocessing that removes inconsistent combinations
of parameter values beforehand render the MIMDP synthesis problem feasible.

7 Experiments

We first report on results for the case study from Sect. 2. We created a PRISM
program for the MIMDP underlying all aspects of the shipyard example with
430 lines of code. We use the program to generate an explicit Markov chain
(MC) model where the parameter instantiations are fixed. That explicit model
has 1 728 states and 5 145 transitions. From the MIMDP model, we generate the
MDP according to the transformations in Sect. 6. The underlying (extended)
PRISM program has 720 lines of code. The explicit MDP generated from the
transformed program has 2 912 states and 64 048 transitions. For our case study,
the size of the transformed MDP is reasonable: From the MIMDP to the MDP,
states increase by a factor of 1.8, transitions by a factor of 12.5. We performed
all experiments on a MacBook Pro with a 2.3 GHz Intel Core i5 CPU and 8 GB
of RAM with the standard configuration of the Storm model checker.

Results Case Study. The experiments show several (partially unforeseeable)
intricacies of the case study. We have the following structure for the MIMDP
defined by parameters and their valuation sets. For details see Sect. 2.

– EO sensor for the UAV: VEO = {480p, 720p, 1080p}.
– Deviation from the UAV operational altitude: VAlt = {−60,−30, 0, 30, 60}.
– ROC ground sensors (Sensor 1, Sensor 2, Sensor 3, Bay Area Network):

VROC = {low,med,high}.
– False positive rates for each ROC ground sensor: Vfp = {0.2, 0.3, . . . , 1.0}.

This structure induces 1 440 possible system configurations. However, as we
restrict ground sensors to have the same quality, we have only 360 possibilities.
We implemented benchmark scripts using the Python interface of Storm. For the
results presented below, we iteratively try all possible combinations for measures
of interest, and compare the time to compute an optimal value obtained from
the transformed MDP to these cumulated model checking times.

250 N. Jansen et al.

Probability of Recognition Error. First, we investigate the probability of not
recognizing an intruder—after a ground sensor was triggered—in dependence of
the number of missions an UAV flies. The curves shown in Fig. 4(a) depend on
the deviation from the standard UAV operational altitude and on the type of EO
sensor. The cheap 480p EO sensor has the lowest probability for a recognition
error at a low altitude. For all other sensors and altitudes, the probability quickly
approaches one. The cumulated model checking time was 78.13 s, computing the
optimal result on the transformed MDP took 2.3 s.

Fig. 4. Safety and performance measures per number of missions.

Probability of False Alarms. For the ROC sensors, we measured the probability
for a false alarm, depending again on the number of missions. The curves in
Fig. 4(b) depend on the quality of the ROC sensor and on the false positive
rates. The high-quality sensor is the only one with relatively low false alarm
probabilities. The cumulated model checking time was 52.13 s, computing the
optimal result on the transformed MDP took less than one second.

Probability and Cost Tradeoffs. Finally, we show the expected cost in dependence
of the number of missions in Fig. 4(c). Additionally, for each data point, the
probability for a recognition error needs to be below 50%. The violation of this

Structured Synthesis for Probabilistic Systems 251

property is indicated by the maximum value 4.5 ·10−5. The results show that for
this kind of property indeed the low-resolution (480p) sensor at lowest altitude
is the best choice, as it has relatively low initial cost. While the task cost at low
altitude is slightly larger than at higher altitudes, with this sensor, the UAV is
able to maintain the probability threshold of safely recognizing an intruder. The
cumulated model checking time was 59.1 s, computing the optimal result on the
transformed MDP took 1.2 s.

Table 1. Parametric benchmarks

Model Type States Transitions MC (s) SE (s)

Die parametric 13 20 — 0.04

transformed 13 48 0.04 —

controlled 37 60 0.02 —

Zeroconf1 parametric 1 004 2 005 — 60.3

transformed 1 004 6 009 0.18 —

controlled 9 046 18 075 0.19 —

Zeroconf2 parametric 100 004 200 005 — TO

transformed 100 004 600 009 0.90 —

controlled 900 046 1 800 075 7.36 —

Crowds1 parametric 7 421 12 881 — 5.80

transformed 7 421 20 161 0.08 —

controlled 66 826 116 148 0.42 —

Crowds2 parametric 572 153 1 698 233 — 18.81

transformed 572 153 2 261 273 4.39 —

controlled 5 149 474 15 284 736 33.70 —

Crowds3 parametric 2 018 094 7 224 834 — TO

transformed 2 018 094 9 208 354 17.15 —

controlled 18 162 973 65 024 355 137.71 —

Further Benchmarks. We additionally assessed our approach on well-known
parametric Markov chain examples from the PARAM-website [20], that originally
stem from the PRISM benchmark suite [12]. We tested a parametric version of
the Knuth-Yao Die (Die), several instances of the Zeroconf protocol [5], and the
Crowds protocol [3]. For all benchmarks, we introduced three discrete values as
domain for each parameter. Table 1 shows the results, where we list the number of
states and transitions as well as the model checking times (MC): “transformed”
refers to the MDP after Transformation 1 and 2, “controlled” refers to the MDP
after Transformations 1–3. For the original parametric Markov chains, we tested
the time to perform state elimination (SE), which is the standard model checking
method for such models [6,9]. We used a timeout (TO) of 600 s.

252 N. Jansen et al.

We draw the following conclusions: (1) The first two program transformations
only increase the number of transitions with respect to the MIMDP model, the
third transformation increases the states and transitions by up to one order of
magnitude. (2) Except for the Crowds2 instance, model checking the transformed
and controlled MDP is superior to performing state elimination. (3) For these
benchmarks, we are able to handle instances with millions of states.

8 Conclusion and Future Work

We introduced structured synthesis for MDPs. Driven by a concrete case study
from the area of physical security, we defined MIMDPs and demonstrated the
hardness of the corresponding synthesis problem. As a feasible solution, we pre-
sented a transformation to an MDP where nondeterministic choices represented
the underlying structure of the MIMDP. Our experiments showed that we are
able to analyze meaningful measures for such problems. In the future, we will
investigate further intricacies of the case study regarding continuous state spaces.
Moreover, we will extend our approaches to account for so-called high-level coun-
terexamples, that provide insight on errors in the system on the level of the PRISM
language [16,23].

Acknowledgements. We want to thank Sebastian Junges for providing us with valu-
able insights on the correctness of our approaches.

References

1. Johnson, J., Analysis of image forming systems. In: Image Intensifer Symposium,
pp. 249–273 (1958)

2. Satia, J.K., Lave Jr., R.E.: Markovian decision processes with uncertain transition
probabilities. Oper. Res. 21(3), 728–740 (1973)

3. Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transactions. ACM Trans.
Inf. Syst. Secur. 1(1), 66–92 (1998)

4. Lasserre, J.B.: Global optimization with polynomials and the problem of moments.
SIAM J. Optim. 11(3), 796–817 (2001)

5. Bohnenkamp, H., Van Der Stok, P., Hermanns, H., Vaandrager, F.: Cost-
optimization of the IPv4 zeroconf protocol. In: DSN, pp. 531–540. IEEE CS (2003)

6. Daws, C.: Symbolic and parametric model checking of discrete-time markov chains.
In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31862-0 21

7. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–
874 (2006)

8. Etessami, K., Kwiatkowska, M.Z., Vardi, M.Y., Yannakakis, M.: Multi-objective
model checking of Markov decision processes. Logical Meth. Comput. Sci. 4(4),
1–21 (2008)

9. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. Softw. Tools Technol. Transfer 13(1), 3–19 (2010)

https://doi.org/10.1007/978-3-540-31862-0_21

Structured Synthesis for Probabilistic Systems 253

10. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

11. Forejt, V., Kwiatkowska, M., Parker, D.: Pareto curves for probabilistic model
checking. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, pp. 317–
332. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33386-6 25

12. Kwiatkowska, M., Norman, G., Parker, D.: The PRISM benchmark suite. In:
QEST, pp. 203–204. IEEE CS (2012)

13. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: PRISM-games: a
model checker for stochastic multi-player games. In: Piterman, N., Smolka, S.A.
(eds.) TACAS 2013. LNCS, vol. 7795, pp. 185–191. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36742-7 13

14. Baier, C., Dubslaff, C., Klüppelholz, S.: Trade-off analysis meets probabilistic
model checking. In: CSL-LICS, pp. 1:1–1:10. ACM (2014)

15. Chen, H., Kalyanam, K., Zhang, W., Casbeer, D.: Continuous-time intruder iso-
lation using Unattended Ground Sensors on graphsround sensors on graphs. In:
ACC (2014)

16. Dehnert, C., Jansen, N., Wimmer, R., Ábrahám, E., Katoen, J.-P.: Fast debug-
ging of PRISM models. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS,
vol. 8837, pp. 146–162. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11936-6 11

17. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: Future of Software Engineering (FOSE), pp. 167–181. ACM Press
(2014)

18. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: a web-based
probabilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014.
LNCS, vol. 8442, pp. 312–317. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06410-9 22

19. Dehnert, C., et al.: PROPhESY: a probabilistic parameter synthesis tool. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 13

20. PARAM Website (2015). http://depend.cs.uni-sb.de/tools/param/
21. PRISM Website (2015). http://prismmodelchecker.org
22. Rasmussen, S., Kingston, D.: Development and flight test of an area monitoring

system using unmanned aerial vehicles and unattended ground sensors. In: Inter-
national Conference on Unmanned Aircraft Systems, pp. 1215–1224 (2015)

23. Wimmer, R., Jansen, N., Vorpahl, A., Ábrahám, E., Katoen, J.-P., Becker, B.:
High-level counterexamples for probabilistic automata. Logical Meth. Comput. Sci.
11(1), 1 (2015)

24. Delgado, K.V., de Barros, L.N., Dias, D.B., Sanner, S.: Real-time dynamic pro-
gramming for markov decision processes with imprecise probabilities. Artif. Intell.
230, 192–223 (2016)

25. Kingston, D., Rasmussen, S., Humphrey, L.: Automated UAV tasks for search and
surveillance. In: CCA, pp. 1–8. IEEE (2016)

26. Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.-P.: Parameter syn-
thesis for Markov models: faster than ever. In: Artho, C., Legay, A., Peled, D.
(eds.) ATVA 2016. LNCS, vol. 9938, pp. 50–67. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46520-3 4

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-33386-6_25
https://doi.org/10.1007/978-3-642-36742-7_13
https://doi.org/10.1007/978-3-319-11936-6_11
https://doi.org/10.1007/978-3-319-11936-6_11
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1007/978-3-319-21690-4_13
http://depend.cs.uni-sb.de/tools/param/
http://prismmodelchecker.org
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-319-46520-3_4

254 N. Jansen et al.

27. Cubuktepe, M., et al.: Sequential convex programming for the efficient verification
of parametric MDPs. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol.
10206, pp. 133–150. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54580-5 8

28. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming: a modern prob-
abilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9 31

29. Chrszon, P., Dubslaff, C., Klüppelholz, S., Baier, C.: Profeat: feature-oriented engi-
neering for family-based probabilistic model checking. Formal Asp. Comput. 30(1),
45–75 (2018)

30. Hartmanns, A., Junges, S., Katoen, J.-P., Quatmann, T.: Multi-cost bounded
reachability in MDP. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol.
10806, pp. 320–339. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
89963-3 19

31. Jansen, N., Humphrey, L.R., Tumova, J., Topcu, U.: Structured synthesis for prob-
abilistic systems. CoRR, abs/1807.06106 (2018)

32. Ceska, M., Jansen, N., Junges, S., Katoen, J.-P.: Shepherding hordes of Markov
chains. CoRR, abs/1902.05727 (2019)

33. Junges, S., et al.: Parameter synthesis for Markov models. arXiv preprint
arXiv:1903.07993 (2019)

34. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

35. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1999)

https://doi.org/10.1007/978-3-662-54580-5_8
https://doi.org/10.1007/978-3-662-54580-5_8
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-89963-3_19
https://doi.org/10.1007/978-3-319-89963-3_19
http://arxiv.org/abs/1903.07993

Design and Runtime Verification
Side-by-Side in eTrice

Sudeep Kanav1(B), Levi Lúcio1, Christian Hilden2, and Thomas Schuetz2

1 fortiss GmbH, Munich, Germany
{kanav,lucio}@fortiss.org

2 PROTOS Software GmbH, Munich, Germany
{christian.hilden,thomas.schuetz}@protos.de

Abstract. eTrice is a mature open-source model-based software engi-
neering tool, based on the ROOM methodology. It is currently used
in the industry for the development of solutions for domains such as
health, heavy machinery and the automotive. eTrice natively incorpo-
rates mechanisms for runtime verification. At the request of the develop-
ers of eTrice, we have incorporated model checking in their tool chain, by
partly reusing the existing runtime verification architecture. We report
on the implementation of the tool, experiments that we conducted,
and lessons learned regarding the synergies between the two verification
techniques.

1 Introduction

Protos GmbH is a company that develops model-based software solutions for a
range of domains, such as health, heavy machinery and the automotive. Since
2003, Protos has continuously been developing their own open-source model-
based development environment named eTrice [2]. eTrice is used to model com-
ponent based event-driven systems where components communicate by message
passing.

eTrice implements the ROOM (Real-Time Object-Oriented Modeling)
methodology [12,13] and relies technically on the Eclipse Modeling Framework
(EMF). It is an open source tool mainly developed and used by Protos GmbH.

A large number of Protos’ solutions aim at improving the reliability of exist-
ing systems, or, to a lesser extent, at developing new systems that are intrin-
sically reliable. Examples of concretely implemented solutions are: to protect
human or machine interfaces in the medical domain from unforeseen and poten-
tially dangerous interactions; to prevent undesired messages, resulting from poor
system integration, from being passed between components of heavy machinery;
to generate model-based test cases for automotive and industrial ECUs.

Being that reliability is high priority for Protos, eTrice uses runtime verifica-
tion (Rv) as a means to log, debug and even protect behaviors of the system. Rv
has repeatedly proven itself at Protos as a verification technique that is efficient,
robust and easy to implement and operate.
c© Springer Nature Switzerland AG 2019
J. M. Badger and K. Y. Rozier (Eds.): NFM 2019, LNCS 11460, pp. 255–262, 2019.
https://doi.org/10.1007/978-3-030-20652-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20652-9_17&domain=pdf
https://doi.org/10.1007/978-3-030-20652-9_17

256 S. Kanav et al.

Runtime monitors are currently specified at the level of eTrice models as
contracts, which are used to generate the Rv code. Rv then allows reacting to
contract violations in the form of raising alarms, shutting down the system, or
moving it to a failsafe state. Moreover, Rv provides Protos with precise logging
of the events leading to a contract violation, from which message sequence charts
(MSCs) can be automatically generated for debugging purposes. Other uses of
Rv at Protos include: protecting components at runtime against unreliable com-
munication coming from third party components; pruning the input space when
generating test cases by filtering out messages not pertaining to the expected
protocol; detecting contract violations while executing test cases.

The work we present in this paper investigates the application of design-
time formal verification to eTrice, as a means to complement and enhance Rv
at Protos1. Given that the solutions developed for eTrice are model-based, the
use of model checking (Mc) follows naturally. Protos is keen on experimenting
with the use of design-time verification (Mc) in practice, as they believe the
technique will allow deeper verification that will find seldom-occurring errors
(e.g. race conditions), earlier in the software development process. The work
presented in this paper reports our findings while building Mc into eTrice.

The paper is organized as follows: Sect. 2 describes the background for this
work; Sect. 3 explains our solution for integrating Mc in eTrice; Sect. 4 describes
a case study for our approach; Sect. 5 considers related work; and finally Sect. 6
discusses our findings and concludes.

2 Background

In this section we provide a brief introduction to eTrice and then go on to explain
how contracts are specified and verified at runtime in eTrice. This existing frame-
work provided the starting point for our work on design-time verification.

eTrice: eTrice is an open source model based development tool for embedded
systems, based on the ROOM [12] methodology. It aims at reducing the struc-
tural and behavioral complexity of a system by using (de)composition, layering
and inheritance – the main concepts supported by ROOM. The tool itself uses
a set of domain specific languages (DSLs) to describe ROOM models. eTrice
supports both graphical and textual editors with features such as validation,
highlighting and code completion. It also supports code generation and includes
runtime environments for Java, C++ and C.

For our work on design-time verification we restrict eTrice models to using
finite types: enumerations, words, and booleans. As well, we use linear arithmetic
as the expression language for declaring transition guards and action code.

1 The models and generated artifacts can be found at: https://github.com/skanav/
rv mc etrice artifacts.

https://github.com/skanav/rv_mc_etrice_artifacts
https://github.com/skanav/rv_mc_etrice_artifacts

Design and Runtime Verification Side-by-Side in eTrice 257

Fig. 1. An example PSM Fig. 2. PSM with the Error state (Color figure
online)

Fig. 3. Fv and Rv of a PSM contract defined in eTrice

Contract Specification: Protos uses contracts specified in eTrice to allow for
Rv. A contract is specified on a communication channel in the form of a protocol
state machine (PSM) (Fig. 1) – a simplified form of statecharts. (1© in Fig. 3).

Rv: As a first step to allow for Rv, a model transformation is used to convert
the contract PSM into an eTrice component. This new component is interjected
between the two eTrice components whose communication is being verified (2© in
Fig. 3). This allows reading, forwarding, and filtering the messages being passed.
The new component (a) reads the messages being communicated; (b) forwards
an expected message, i.e., one for which a transition is defined in the PSM; and
(c) filters out the unexpected messages, i.e., a message for which no transition
in the PSM can be triggered. At runtime each message being communicated is
logged and an alert is raised when an unexpected message is encountered (3© in
Fig. 3).

258 S. Kanav et al.

This interpretation of the PSM contract can be seen as a way to avoid haz-
ardous situations by monitoring and sanitizing the inputs to a component –
the contract provides an benign environment for a component to operate. The
adopted contract semantics allows only the communication patterns described
in the contract, rejecting the others. Protos highlights several advantages in the
usage of Rv: only expected states of the system are reached; state explosion is
much reduced in systems that are protected by the runtime monitors generated
from contracts; the analysis and debugging of contract violations using MSCs to
display executions is of great practical value.

3 Solution

In this section first we explain how we convert a PSM into a formal specification
for the model checker. We then briefly describe the transformation of the eTrice
specification to NuSMV [7] and the lifting of the results of Mc back to eTrice.

Contract Interpretation: Rv allows the system to keep on executing when an
unexpected message is encountered, whereas for Mc we are interested in finding
out if the messaging protocol between two components does not respect the con-
tract. With Mc, we do not filter the unexpected messages as Rv does – we rather
transform the PSM contract to a state machine (Fig. 2) such that it transitions
to an error state (colored red in Fig. 2) on receiving an unexpected message.
We can then formally verify the reachability of the error state; the contract is
satisfied if this state is not reachable, meaning that the communication between
the components always respects the protocol defined in the PSM.

Verification Domain Specific Language (DSL): We have defined an EMF
[1] core based DSL for the input language of NuSMV to ease integration with
eTrice via model transformations. This allows further using the model-to-text
transformation to generate the textual specification to be consumed by the model
checker. Our verification DSL enables us to describe a system consisting of com-
ponents communicating over typed channels. We have created this DSL instead
of developing a direct transformation from eTrice to NuSMV. In the future we
plan on generalizing our approach to other model-based software development
environments.

Integration with NuSMV: We have designed the eTrice-to-NuSMV trans-
formation as a composition of several small step transformations. For this we
reused the Java based transformation composition framework described in [10],
used to allow formal verification of AutoFOCUS3 [3] specifications. Additionally,
we have reused the underlying machinery we developed for [10] which calls the
NuSMV model checker and parses its output.

Lifting the Results: In case of a runtime failure, eTrice displays the informa-
tion to the user in the form of a MSC. This MSC is generated based on the
messages logged during runtime. We lift the trace from the model checker to the

Design and Runtime Verification Side-by-Side in eTrice 259

Fig. 4. The controller model in eTrice Fig. 5. The counterexample lifted to
eTrice

MSC and then reuse the machinery built in eTrice to view the results. Again,
similarly to the transformation into NuSMV, for lifting also we have reused the
concept for counterexample interpretation and lifting mechanism in [10].

4 Real-World Case Study

Protos often encounters in practice a control pattern where a central controller
issues commands to subcomponents dealing with the physical world. Specific
instances of this pattern might be for instance to move a certain machine part
by a certain distance or change the temperature of a machine part by certain
amount. The concrete example we will use to illustrate the use of Mc in practice
consists of a main controller and two axes controllers for an industrial front
loader. In production, to achieve moving the loader’s bucket to the expected
position, the controller dispatches a command to each of the axis controllers
which responds back with success or failure of the move. Because of the real-world
variability of the parts and of the environment in which the loader operates, the
two commands can be completed in any sequence. As such, the controller must be
implemented to accommodate such behaviors. The complexity of the controller
increases quickly with the number of subcomponents (Fig. 5).

Liveness Check: The controller in Fig. 4 is a reactive system, meaning it is
supposed to run in an infinite loop. As such, it should be possible to visit all
states of the controller infinitely often. This translates into a liveness analysis
of the states of the controller, when the controller specification is composed
with the contracts on the communication channels with the axes controllers.
Note that during model-checking the contracts act as the environment for the
controller. In particular, the liveness check fails for the controller in Fig. 4 as the
controller stagnates when the acknowledgments from the axes controllers arrive
in a different order than expected.

Reachability Check: We have used the mechanism described in Fig. 2 to
check that the communication protocol between the controller and the axes
controllers is always respected. Here we have equally found an error, reported
in the native MSC viewer in eTrice. The error happens because of duplicate

260 S. Kanav et al.

message sending code occurring in the entry action and incoming transition of
the state MoveRequested. According to Protos, this is a typical and hard-to-catch
copy/paste mistake that often happens during development.

5 Related Work

To the best of our knowledge there exists, at the time of the writing of this
paper, no modeling tool which can simultaneously perform runtime and design-
time verification. The idea of combining Mc and Rv has been discussed in the
literature [9] and explored mostly at the programming level [5,6,11]. The key
idea of such research is to apply static analyses to the code (including Mc) and to
use the results thereof to optimize the runtime verification. Both [5] and [11] use
such techniques to reduce the required instrumentation, thereby reducing the
runtime overhead. In our work we use Mc to find bugs at the design time, and
keep the Rv intact – as intended by Protos due to business considerations. The
Clara framework [5] performs static typestate checks [14] on Java programs and
tries to find out the safe locations of those programs. Events triggered from a safe
location do not cause a property to fail – thus a safe location does not need to be
monitored. The Rv is optimized to monitor only unsafe locations, thus reducing
overhead. The work in [11] uses static analysis (information flow analysis and
model checking) to find the security vulnerabilities in web applications. As in
Clara, the results of the static checks are then used to optimize the dynamic
checks by reducing the required instrumentation for Rv, thereby decreasing the
runtime overhead. In [4,6] a model checker is used to generate the inputs for
the test case and Rv is partly as an oracle during the test case execution. Desai
et al. [8] discuss using explicit state model checking for verifying properties under
certain assumptions and using Rv to guarantee those assumptions in a robotic
application, whereas we use symbolic model checking for our work.

6 Discussion and Conclusion

Despite its success in the academia, design-time verification using model check-
ing is not yet in use in the practical day-by-day of software development. The
reasons for this state of affairs are outside of the scope of this paper (we refer the
interested reader to e.g. [9]), but it is commonly understood that the formality
of the logical input specification languages for model checkers play an important
role in the lack of practical adoption. In this paper we have described our inte-
gration of the NuSMV model checker in eTrice. In order to do so, we have made
heavy reuse of the existing Rv infrastructure already in place: on the one hand
we have used the existing contract language as a means to have input specifi-
cations for the model checker; on the other hand we have leveraged the MSC
viewer for the existing eTrice Rv mechanism in order to output counterexample
traces. Because we have also reused some of our previous model transformation
work for verifying AutoFOCUS3 specifications, the integration of Mc in eTrice
was accomplished in a short time span of a couple of weeks. The experience of

Design and Runtime Verification Side-by-Side in eTrice 261

integrating Mc in a model-based software development tool such as eTrice has
emboldened us to think that such integration (also having in mind contracts
has properties to be checked) might be extended to other IDEs in an affordable
fashion.

Our results are very promising for Protos and its business. It has been often
highlighted during our discussions how theoretically simple checks such as the
ones described in Sect. 4 can be of high impact in practice. We have shown with
a real-world example that liveness and reachability properties can be checked
on eTrice specifications while not intruding whatsoever in the currently existing
specification language. Due to our work, liveness properties that could not be
proved with Rv can now be checked in eTrice specifications. Additionally, while
violations of the protocol stated in the contract PSMs can indeed eventually
be caught by Rv, model checking allows doing so efficiently, at design time and
covering corner cases that might occur very sparsely in practice. Although Rv
is currently used by Protos in production, this naturally incurs in decreased
efficiency at runtime and does not prevent faults from occurring in practice.

Our next steps are to make design-time verification an intrinsic part of Protos’
software development cycle. This implies on the one hand bringing the technical
integration with NuSMV up-to-speed to the professional software development
requirements of Protos, while on the other hand further investigating the scalabil-
ity of our approach. In this paper we have provided hints on how model-checking
could be used in the software development lifecycle at Protos, but clearly the
methodological aspects of such usage by software developers would also need to
be understood and fine-tuned to achieve increased productivity in practice.

References

1. Eclipse modeling project. http://www.eclipse.org/modeling/emf/
2. eTrice (2012–2017). http://www.eclipse.org/etrice//
3. Aravantinos, V., Voss, S., Teufl, S., Hölzl, F., Schätz, B.: AutoFOCUS 3: tooling

concepts for seamless, model-based development of embedded systems. In: ACES-
MB&WUCOR@ MoDELS, pp. 19–26 (2015)

4. Artho, C., et al.: Combining test case generation and runtime verification. Theoret.
Comput. Sci. 336(2–3), 209–234 (2005)

5. Bodden, E., Lam, P., Hendren, L.: Clara: a framework for partially evaluating
finite-state runtime monitors ahead of time. In: Barringer, H., et al. (eds.) RV
2010. LNCS, vol. 6418, pp. 183–197. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-16612-9 15

6. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: Exe: automat-
ically generating inputs of death. ACM Trans. Inf. Syst. Secur. (TISSEC) 12(2),
10 (2008)

7. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic model
verifier. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 495–
499. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48683-6 44

8. Desai, A., Dreossi, T., Seshia, S.A.: Combining model checking and runtime ver-
ification for safe robotics. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol.
10548, pp. 172–189. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
67531-2 11

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/etrice//
https://doi.org/10.1007/978-3-642-16612-9_15
https://doi.org/10.1007/978-3-642-16612-9_15
https://doi.org/10.1007/3-540-48683-6_44
https://doi.org/10.1007/978-3-319-67531-2_11
https://doi.org/10.1007/978-3-319-67531-2_11

262 S. Kanav et al.

9. Hinrichs, T.L., Sistla, A.P., Zuck, L.D.: Model check what you can, runtime verify
the rest. In: HOWARD-60, pp. 234–244 (2014)

10. Kanav, S., Aravantinos, V.: Modular transformation from AF3 to nuXmv. MoD-
eVVa @ MoDELS (2017)

11. Lam, M.S., Martin, M., Livshits, B., Whaley, J.: Securing web applications
with static and dynamic information flow tracking. In: Proceedings of the 2008
ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, pp. 3–12. ACM (2008)

12. Selic, B., Gullekson, G., Ward, P.: Real-time object oriented modeling and design
(1994)

13. Selic, B., et al.: Real-time object-oriented modeling (ROOM). In: RTAS, p. 214.
IEEE (1996)

14. Strom, R.E., Yemini, S.: Typestate: a programming language concept for enhancing
software reliability. IEEE Trans. Softw. Eng. 1, 157–171 (1986)

Data Independence for Software
Transactional Memory

Jürgen König(B) and Heike Wehrheim

Department of Computer Science, Paderborn University, Paderborn, Germany
jkoenig@mail.upb.de

Abstract. Software Transactional Memory (STM) algorithms provide
programmers with a synchronisation mechanism for concurrent access to
shared variables. Basically, programmers can specify transactions (read-
ing from and writing to shared state) which then execute in a “seem-
ing” atomicity. This property is captured in a correctness criterion called
opacity. For model checking the opacity of an STM algorithm, we – in
principle – need to check opacity for all possible combinations of transac-
tions with all possible values to be written. This leads to several sources
of infinity during model checking: infinitely many data values, infinitely
many possible accesses in transactions, and unboundedly many transac-
tions being executed.

In this paper, we propose a technique for avoiding the first source of
infinity: infinitely many different data values. To this end, we employ
a notion of data independence and provide two results. First, we prove
that opacity as a correctness criterion is data independent. Second, we
develop conditions for checking data independence of STM algorithms
and show their soundness. Together, these results allow to reduce model
checking (of data independent STMs) to transactions with a single choice
for values written.

1 Introduction

Today, multi-core processors are widely utilized since their usage yields a large
increase in computing power. This additional computing power can best be used
in concurrent programs. When writing programs with concurrent threads access-
ing shared state, programmers – however – have to provide appropriate synchro-
nisation among threads as to avoid access to inconsistent memory values. Soft-
ware Transactional Memory (STM) (as proposed by Shavit and Touitou [17])
aims at providing programmers with an easy to use synchronisation technique
for such an access to shared state.

STMs allow programmers to define software transactions, much alike data-
base transactions. A transaction consists of a number of read and write opera-
tions to the shared state, and the STM algorithm should guarantee these opera-
tions to take place “seemingly atomic”, while ideally also allowing transactions
to run concurrently. This seeming atomicity is formalized in a correctness cri-
terion called opacity [12]. As the consequences of incorrect behaviour may be
severe, it is necessary to show all proposals for STM algorithms to be opaque.
c© Springer Nature Switzerland AG 2019
J. M. Badger and K. Y. Rozier (Eds.): NFM 2019, LNCS 11460, pp. 263–279, 2019.
https://doi.org/10.1007/978-3-030-20652-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20652-9_18&domain=pdf
https://doi.org/10.1007/978-3-030-20652-9_18

264 J. König and H. Wehrheim

Current approaches for proving opacity of STMs are either deductive ver-
ification or model checking. The typical approach for deductive verification
(e.g. [7,8]) is showing a refinement relationship to exist between the actual algo-
rithm and an intermediate specification called TMS2 [9]. As TMS2 has been
shown to be opaque, the actual STM algorithm is then opaque as well. A dif-
ferent approach by Lesani et al. uses a decomposition of opacity into several
properties called markability which can be shown to hold via deductive ver-
ification [15]. For model checking STMs, there are less approaches. Guerraoui
et al. [10,11] propose to carry out model checking on two variables (in the shared
state) and two transactions only, and justify this restriction by a reduction the-
orem. A similar approach is taken by Abdulla et al. [1] for a hybrid TM, i.e.,
a combination of hardware and software transactional memory. However, both
their correctness conditions are not exactly opacity as they ignore the values
written and read by transactions. A model checking approach for opacity is pro-
posed in [3]. However, in this approach checking is only carried out for a fixed
STM instantiation (i.e., a fixed number of transactions executing a fixed number
of reads and writes with fixed values).

In general, all techniques using some form of automatic state space explo-
ration like model checking for proving opacity of STM algorithms have to tackle
the problem of (in principle) needing to show infinitely many STM instantia-
tions to be opaque. This infinity has three sources: we have (a) unboundedly
many possibilities for threads using the STM, (b) transactions with unbound-
edly many options for reading and writing shared state and (c) infinitely many
different values to be written in these transactions.

In this paper we address the latter source of infinity. We tackle the problem
of unboundedly many different possible values to be written by employing the
notion of data independence (first introduced by Wolper et al. [19]). When a
program is data independent – roughly speaking – its inputs do not influence
its control flow. For STMs that means that specific values written by any trans-
action do not determine the outcome of itself or other transactions. Similarly, a
correctness property is data independent if the fulfillment of the property does
not dependent on specific values.

Here, we define data independence in our context and prove opacity to be
a data independent property. We furthermore provide conditions on STM algo-
rithms which ensure an algorithm to be data independent. Together, this allows
for model checking STMs without needing to check all possible values for inputs
to write operations.

2 Foundations

We start with giving an example of an STM algorithm which we use throughout
this paper. Afterwards we present the basic definitions of data independence.

Transactional Mutex Lock. Figure 1 gives a simple example of an STM algorithm.
It is the Transactional Mutex Lock (TML) of Dalessandro et al. [6].

Data Independence for Software Transactional Memory 265

Init: glb = 0

:timmoC:nigeB

B1 do loc := glb E1 if (loc & 1)

B2 while (loc & 1); E2 glb ++;

B3 return ok; E3 return commit;

Read(addr): Write(addr ,val):

R1 tmp := *addr; W1 if (loc & 0)

R2 if (glb = loc) W2 if (!CAS(&glb ,loc ,loc +1))

R3 return tmp; W3 return abort;

R4 else return abort; W4 else loc ++;

W5 *addr := val;

W6 return ok;

Fig. 1. The Transactional Mutex Lock (TML)

Like other STM algorithms, TML provides four operations to the program-
mer: Begin to start a transaction, Read to read from and Write to write to some
shared location and Commit to commit it. For achieving the necessary synchroni-
sation, TML uses a global counter glb (initially 0) and local variables loc (stor-
ing a copy of glb) and tmp (temporarily storing the value read from a location).
These variables are sometimes also called meta data because they are used for
synchronisation only. The shared state to be concurrently accessed are the values
of parameters addr of Read and Write. The operation CAS (compare-and-swap)
atomically executes a comparison and an assignment: CAS (var, v1, v2) compares
the value of var to v1 and sets var to v2 in case that these are equal, and does
not change var else. It returns the result of the comparison.

TML allows for transactions to be executed concurrently as long as no write
operation has been called. The variable glb records whether there is a live writ-
ing transaction. Namely, glb is odd if there is a writing transaction and even
otherwise. The first execution of Write in a writing transaction attempts to
increment glb by using a CAS. If the CAS attempt fails, a write by another
transaction must have occured, and hence, the current transaction aborts. If the
CAS succeeds, glb becomes odd, which prevents other transactions from start-
ing, and causes all concurrent live transactions still wanting to read or write to
abort.

In the following, we assume that programmers use transactions correctly,
i.e., a transaction is always started with a call to Begin, then a number of calls
to Read and Write follow ending with a call to Commit (unless some previous
operation has aborted). We furthermore assume w.l.o.g. that transactions only
write once to each location. During an execution of a program, method calls give
rise to invocation and response events. We say that invocations and responses
of the same call match. In the following, we let Loc be the set of all locations
which transactions want to access and Val be the values these locations can
take. We always assume loc ∈ Loc and val ∈ Val . We furthermore use a set

266 J. König and H. Wehrheim

T of thread identifiers and let t ∈ T . For simplicity we assume every thread
t ∈ T to execute a single transaction only and thus identify a transaction by the
executing thread. Table 1 lists the events arising in executions of transactions.
We see that operations can also return with abort. In TML, the Begin operation
never aborts.

Table 1. Events of STM algorithms

Invocations Possible matching responses

Inv(Begin())t Resp(Begin(ok))t,Resp(Begin(abort))t

Inv(Read(loc))t Resp(Read(loc, val, ok))t,Resp(Read(abort))t

Inv(Write(loc, val))t Resp(Write(loc, ok))t,Resp(Write(abort))t

Inv(Commit())t Resp(Commit(ok))t,Resp(Commit(abort))t

The purpose of model checking is now to check whether an STM algorithm
actually ensures the desired “seeming atomicity” of transactions. This requires
running different transactions with different numbers of reads and writes, and
different values being written (i.e., passed as argument to Write). In order to
avoid having to check “atomicity” for all possible data values, we apply a data
independence argument.

Data Independence. We build on the definition of data independence as given by
Abdulla et al. [2] which itself builds on that of Wolper [19]. Data independence
is defined on traces which are sequences of events.

An event m(v1, . . . , vk, d1, . . . , dn), k, n ∈ N consists of an identifier m, a
number of non-data values1 vj (out of an arbitrary domain) and a number of
data values di from some domain D. In our setting of STMs, the identifiers will
denote the invocations or responses of operations like Begin or Write together
with the thread identifiers. The non-data values are the addresses of shared
locations Loc and the data values the values to be written, i.e. D = Val .

The number of data values in an event is fixed per identifier m and we denote
it by dpar(m). We let M be the set of all identifiers and Σ the set of traces over
events. A correctness property is then simply a subset of traces, namely the ones
satisfying the property.

Definition 1. A correctness property is a set P ⊆ Σ.

A program satisfies a correctness property P if all traces arising from executing
the program are in P .

1 This is the main difference to [2]: Abdulla et al. only have data values as they consider
operations on concurrent data structures where the data structure is fixed and thus
need not be a parameter to the method.

Data Independence for Software Transactional Memory 267

Events describe executions of methods in which the di values are concrete
actual parameters or return values. We denote v1, . . . , vn by v and d1, . . . , dn by
d. If m(v, d) is occurring in a trace σ, we also write m(v, d) ∈ σ.

For the definition of data independence, we need to distinguish between data
values in events which are inputs and those which are outputs. For instance, the
value in a Write is an input whereas in a Read it is an output. As an example
(for brevity without invocation and response events and using w/r instead of
Write/Read) we will consider the domain D = Z with events w(v, d) (write)
and r(v, d) (read), v being a non-data value and d ∈ D a data value.

Definition 2. An input function is a mapping I : M → 2N such that I(m) ⊆
{1, . . . , dpar(m)} for all m ∈ M .

In the example, I is defined as follows: I(w) = {1}2 and I(r) = ∅. The second
argument of w is the value to be written and the read has no inputs.

With input functions at hand, we can define the notion of differentiated trace,
meaning that all the inputs in a trace take different values.

Definition 3. A trace σ = m1(v, d1) . . . mk(v, dk) is differentiated w.r.t. an
input function I if the following holds:

∀i, i′, 1 ≤ i, i′ ≤ k, i �= i′ : ∀j ∈ I(mi), j′ ∈ I(mi′) : di,j �= di′,j′

Let ΣI be the set of traces differentiated w.r.t. I. For example, the trace σex =
w(x, 1)w(x, 0)r(x, 1) is differentiated. Note that the value in r does not matter
since it is not an input value.

A renaming (of data values) is a function f : D → D and we let
F be the set of all renamings. We apply renamings to events by letting
f(m(v1, . . . , vm, d1, . . . , dn)) be m(v1, . . . , vm, f(d1), . . . , f(dn)) (i.e., the renam-
ing is applied on data values only) and also lift this to entire traces. For exam-
ple, for fex(x) = x + 1 the renaming of our example trace by fex would be
fex(σex) = w(x, 2)w(x, 1)r(x, 2), which is also a differentiated trace. This lets us
define data independence.

Definition 4. A set of traces X ⊆ Σ is data independent w.r.t. an input func-
tion I iff the following holds for all σ ∈ X:

– ∀f ∈ F : f(σ) ∈ X,
– ∃f ∈ F,∃σd ∈ X ∩ ΣI : f(σd) = σ.

In our example, let X be {w(x, a)w(x, b)r(x, a) | a, b ∈ Z}. This set is data
independent. For every σ ∈ X each renaming of it is still in X since the identical
values for the first w and the r will be preserved by the fact that renamings are
functions. Furthermore, all traces σ = w(x, a)w(x, b)r(x, a) can be obtained as
renamings of σex by setting f(1) = a and f(0) = b.

Next we define the key correctness property for STMs which is opacity and
investigate data independence of opacity.
2 Note that non-data values are not counted here.

268 J. König and H. Wehrheim

3 Opacity

The traces we consider in this paper are histories generated by software transac-
tional memory executions consisting of the events defined in Table 1. In STMs,
the data domain consists of values Val read from or written to the shared state.
In our setting, we furthermore have a single input parameter, namely the value
to be written by a write event. The input function ISTM thus returns {1} (first
data value) for Inv(Write)t and the empty set for all other identifiers.

In the following, we will refer to traces over this set of events as histories.
We will use the histories h1, h2, h3 in Fig. 2 as running examples. To save space
Begint represents the consecutive invoke and ok response of the Begin method
of t, similarly for Committ.

h1 = Begint1Inv(Write(x, 1))t1Resp(Write(x, ok))t1Committ1

h2 = Begint2Inv(Read(x))t2Resp(Read(x, 1, ok))t2Committ2

h3 = Begint1Inv(Write(x, 1))t1Resp(Write(x, ok))t1Begint2Committ1

Inv(Read(x))t2Resp(Read(x, 2, ok))t2Inv(Commit())t2

Fig. 2. Example histories

For a history h, the transaction view of a transaction t ∈ T , h|t, is the
sequence of all events indexed with t. Opacity studies well formed histories only.

Definition 5. A history h is well formed iff for each transaction t ∈ T , h|t
satisfies the following requirements:

– It starts with Inv(Begin())t,
– every response event is directly preceded by a matching invocation,
– when a commit response or a response returning abort exists, it is the last

element of the sequence h|t.
For example the history Inv(Begin())tResp(Write(x, ok))t is not well formed
since it contains a response before a matching invoke event but histories h1, h2

and h3 are. We will only consider well formed histories from now on.
A transaction t is commit pending in a history, if a commit invocation of that

transaction exists but there is no commit response afterwards; t is committed if
a successful commit response of t exists; t is aborted if a response of t returning
abort exists. If a Begin invocation exists in t and none of the previous terms
apply, the transaction is live. In h3, t2 is commit pending. Adding an abort
response would make it aborted. Removing the Commit invoke would make it
live. In h1, t1 is committed.

A given history may thus be incomplete: it might contain pending invoca-
tions without matching responses. The history h3 is incomplete for example.
For the definition of opacity, we first need to make it complete. To this end, we

Data Independence for Software Transactional Memory 269

add for all live transactions t – to the end of h – events Resp(Commit(ok))t
or Resp(Commit(abort))t if t is commit pending, the corresponding return-
ing abort if t has another pending operation, or the sequence Inv(Commit())t
Resp(Commit(abort))t in all other cases. The set of all such completions is denoted
complete(h). For example, h3 can be completed by adding Resp(Commit(ok))t2 ,
since it is commit pending.

Opacity is defined by reordering transactions in a history into a sequential
history. This reordering has to keep certain orders among transactions. Trans-
actions t, t′ are real time ordered in a history h = ev0 . . . evn, denoted t <h t′,
if

∃i, j ∈ N, i < j < n : (evi ∈ {Resp(Commit(ok))t,Resp(Commit(abort))t,
Resp(Write(abort))t,Resp(Read(abort))t})

∧ evj = Inv(Begin())t′

In the concatenation h1h2, t1 <h1h2 t2 holds. A history h is sequential if all
transactions t, t′ which are executed in h (i.e., for which h|t �= ε ∧ h|t′ �= ε) are
real time ordered in one or the other way: t <h t′ or t′ <h t. For opacity, we
need to ensure that read operations only read valid writes. To this end, we need
to determine the last write to a variable.

Definition 6. In a sequential history h = ev0 . . . evn for an event evi, 0 ≤ i ≤ n,
of a transaction t, the event evj = Inv(Write(loc, val))t′ , 0 ≤ j < i, is the last
write on loc before evi if either

– t = t′3, or
– t′ is committed and there is no j′, val′, t′′, j < j′ < i such that evj′ =

Inv(Write(loc, val′))t′′ and t′′ is committed or t′′ = t.

The second condition implicitly includes the existence of a write response, since
it is implied by the existence of a write invocation in a committed transaction.

In a sequential history h, a read response evi = Resp(Read(loc, val, ok))t
is legal if the last write on val before evi is evj = Inv(Write(loc, val))t′ . The
existence of a read response implies the existence of a matching invocation in a
well formed sequential history. We say a history is legal if all its read responses
are legal. A history h is furthermore equivalent to another history h′ (h ≡ h′)
if all of their transaction views are identical. With this at hand, we can finally
define the correctness property opacity [12].

Definition 7. A history h is opaque if there exists a sequential legal history hs

and a history h′ ∈ complete(h) such that hs ≡ h′ and <h′ ⊆ <hs.

For any pair h, hs as occurring in this definition we say hs witnesses the opacity
of h. History h3 is opaque because the completion h4 = h3Resp(Commit(ok))t2
is equivalent to the sequential legal history h1h2. For history h2h1 one may think

3 Note that a transaction writes at most once to a location.

270 J. König and H. Wehrheim

that h1h2 (the only possible sequential equivalent history) can be used as proof
of opacity. But their real time orders are different: <h2h1 �⊆<h1h2 . Thus it is not
opaque.

Key to a model checking technique not needing to check all possible inputs
to writes is now the following theorem.

Theorem 1. The set of all opaque histories is data independent w.r.t. the input
function ISTM .

Due to lack of space the proof is omitted here.

4 Modelling STMs

Besides knowing that our correctness property opacity is data independent, we
also need to be able to check when the STM algorithm is data independent.
To this end, we next introduce a simple programming language allowing for the
description of STMs. We first describe the syntax of the language and then its
semantics.

We allow for variables of two types: integers (i.e., Val is the set of integers)
and pointers. They are further grouped into local and global variables. For each
combination of visibility and type a set of (pairwise disjoint) variables is defined:

– GV are global integer variables (i.e., shared among threads),
– LV are local integer variables (i.e., every thread has its own version) and
– GPV and LPV are global and local pointer variables, respectively.

Note that the set GV both contains the locations the threads write to and read
from via the STM operations as well as the meta data of the STM. We let
PV = GPV ∪ LPV be the set of pointer variables and Var = PV ∪ LV ∪ GV
the set of all variables. In TML the variable glb is in GV , addr in LPV and
tmp in LV .

To allow for methods to receive arguments and return values we require that
input variables and one output variable are part of the local variables. The
variables representing the inputs to methods will be called inj (for some index
j) and are elements of LV ∪ LPV , and the output variable is out ∈ LV . For
example addr would correspond to in0.

Variables may occur inside expressions. We distinguish arithmetic and
boolean expressions. The set of arithmetic expressions AExp contains all (in the
arithmetic sense) well formed combinations of variables, integers and +,−, ·, ∗,
mod and all expressions consisting of a single &v with v ∈ GV . Here & is
the reference operator while ∗ is the dereference operator. The set of boolean
expressions BExp is the set of well formed boolean terms containing the oper-
ators ∧,∨,¬,≤, <,>,≥,=, �= and ∗. Additionally the following set of terms are
in BExp:

{&v′ == &v | v, v′ ∈ GV } and
{CAS (x, a, a′),¬CAS (x, a, a′) | (x ∈ PV ∨ x ∈ {&v′ | v′ ∈ GV }), a, a′ ∈ AExp}

Data Independence for Software Transactional Memory 271

If a boolean condition b occurs in one of the CAS instructions, we write b ∈ CAS .
Next we define (sequential) programs. In this, we assume the set of all method

names is MID . We use these names to call methods.

Definition 8. A single-threaded program Prog is defined by the following gram-
mar (in BNF) where ε is the empty program and v ∈ Var , v0, . . . , vn ∈ GV ∪
GPV , a ∈ AExp, b ∈ BExp,m ∈ MID:

Prog :: = ε | v := a | ∗p := a |
m(v0, . . . , vn) | return (v | ok | abort) | Prog ;Prog |
while(b){Prog} | if(b){Prog} else {Prog}

We use brackets {and} to define blocks. For simplicity we assume that there
are no nested method calls.

A software transactional memory algorithm defines a program for every
method it provides. More generally, a library is a function lib : MID → Prog ,
assigning a program to every method identifier. Additionally there is a function
arg : MID → (LPV ∪ LV)∗ assigning to each method an ordered sequence of
pairwise different local variables, the formal parameters of the method. Since lib
is always clear from the context, we do not use it in notation to avoid obfuscation.

For the semantics, we first of all need to define the states of programs. Pro-
gram states consist of two elements: A mapping of threads to programs and a
memory function mapping variables to values. The set T = {0, . . . , n} with n
fixed contains all thread identifiers. Since we have different sorts of variables
(local and global, integers and pointers), we need memory functions with differ-
ent domains and ranges. In the following definition, we thus overload the name
mem.

Definition 9. A memory function is a function mem with one of the following
signatures:

– mem : GV → Z or mem : GPV → GV ∪ {null} (for global variables) or
– mem : LV × T → Z or mem : LPV × T → GV ∪ {null} (for local variables).

Note that pointers only have a non-pointer global variable as their value, other
cases are excluded for simplicity. The memory view of thread t on variable v ∈
Var is denoted memt(v) which either is mem(v), if v ∈ GV ∪GPV , or mem(t, v),
if v ∈ LV ∪ LPV . To evaluate expressions we overload the memory function
further by adding arithmetic and boolean expressions to its domain. For this
we first define the memory view of thread t on a dereference call on v ∈ PV :
memt(∗v), which either equals = mem(memt(v)) if memt(v) ∈ GV and returns
an error symbol otherwise.

The term memt(a) with a ∈ AExp, t ∈ T in case of a being a standard
arithmetic term returns the evaluation of a to an integer (where each variable
and dereference is replaced by its memory view) or when a = &v, v ∈ GV ,
returns v. Then memt(b) denotes the evaluation to 1 or 0 of b ∈ BExp, where
each arithmetic term a occurring in b is replaced by the value of memt(a) and the
remaining part of the expression is evaluated as standard for boolean expressions.

272 J. König and H. Wehrheim

A CAS (x, a, a′) instruction evaluates to true iff memt(x) == memt(v). Given
this memory function we can define a program state.

Definition 10. A program state is a pair ps = (tf ,mem), where tf : T → Prog
is the thread function and mem is a memory function.

We use dot notation like ps.tf (t) to refer to the elements of such pairs. A program
execution is defined by an initial program state, called start state, the set of
actions AC, the set of all program states PS and the transition relation δ ⊆
PS × AC × PS. We give the semantics of actions in the style of IO-automata
(see e.g. [13]) defining a precondition and an effect for all actions. An action is
called enabled in a program state when its precondition is met. A definition of all
actions and their transitions can be found in Fig. 3. This figure does not include
the negated CAS actions which are defined analogously to the non negated CASs.

The semantics uses the symbol ret which marks the end of a method, making
it possible to define a jump to the end of a method when a response statement
is executed. For simplicity we assume each instruction to contain well formed
arguments, which includes that any variable having null as its value is never
read or used in expressions in any way and that pointers are not assigned to
integer variables and vice versa. If there is a transition with action ac enabled
in a state ps0 and its effect results in state ps1, we write ps0

ac→ ps1. The start
state has all variables initialized.

Definition 11. A start state is a program state ps with the following properties:

– ∀v ∈ LV ,∀t ∈ T : ps.memt(v) = 0,
– ∀v ∈ LPV ,∀t ∈ T : ps.memt(v) = null ,
– ∀v ∈ GV : ps.mem(v) = 0 and ∀v ∈ GPV : ps.mem(v) = null .

A program state is called terminated if tf (t) = ε for all t ∈ T . A program run
is a sequence of program states ps0 . . . psn starting in a start state ps0, ending
in a terminated program state psn, and where each following state is derived by
executing an enabled transition on the previous state, i.e., ∀0 ≤ i < n,∃ac ∈
AC : psi

ac→ psi+1. The program trace for a run ps0 . . . psn is the sequence
tr = ac0 . . . acn−1 such that psi

aci→ psi+1, for all i, 0 ≤ i < n − 2.
In case of STMs, the library and the programs using it take the following shape:

– The method identifiers are “Begin, Write, Read, Commit”,
– Methods Begin and Commit have no formal parameters, i.e., arg(Begin) =

arg(Commit) = ε, method Write takes two and Read one argument:
arg(Write) = var0var1, var0 ∈ LPV , var1 ∈ LV , arg(Read) = var′

0,
var′

0 ∈ LPV ,
– the start state for each thread is a well formed transaction,
– for a start state ps the program of a thread t is either empty or a well-formed

transaction.

Data Independence for Software Transactional Memory 273

State variables: ps : PS, tf = ps.tf , mem = ps.mem
Auxiliary variables: Prog ,Prog ′ : arbitrary programs
Transition relation:

m(v0, . . . , vn)t
Pre: tf (t) = m(iv0, . . . , ivn);Prog

∀i, 0 ≤ i ≤ n :
memt(arg(m, i)) = vi

Eff: tf (t) = lib(m) ret;Prog
∀i, 0 ≤ i ≤ n :
memt(arg(m, i)) = memt(ivi)

v := nt

Pre: tf (t) = v := a;Prog
n = memt(a)

Eff: tf (t) = Prog
memt(v) = memt(a)

v := nt

Pre: tf (t) = ∗v′ := a;Prog
n = memt(a)
v = memt(v′)

Eff: tf (t) = Prog
memt(memt(v)) = memt(a)

whilet, true
Pre: tf (t) = while(b)

{Prog};Prog ′

memt(b) = 1
b �= CAS(v, a, a′)

Eff: tf (t) = Prog ;
while(b) {Prog};Prog ′

whilet, false
Pre: tf (t) = while(b) {Prog};Prog ′

memt(b) = 0
Eff: tf (t) = Prog ′

ift, true
Pre: tf (t) = if(b){Prog}

else{Prog ′};Prog ′′

memt(b) = 1
b �= CAS(v, a, a′)

Eff: tf (t) = Prog ;Prog ′′

ift, false
Pre: tf (t) = if(b){Prog}

else{Prog ′};Prog ′′

memt(b) = 0
Eff: tf (t) = Prog ′;Prog ′′

return nt

Pre: tf (t) = return (v);
Prog ret;Prog ′

n = memt(v)
Eff: tf (t) = Prog ′

memt(out) = v
return (ok)t
Pre: tf (t) = return (ok);Prog ret;

Prog ′

Eff: tf (t) = Prog ′

return (abort)t
Pre: tf (t) = return (abort);

Prog ret;Prog ′

Eff: tf (t) = ε

CAS(v, n, n′)t
Pre: tf (t) = if(CAS(v′, a, a′)){Prog}

else {Prog ′};Prog ′′

memt(memt(v′)) = memt(a)t
v = memt(v′)
n = memt(a), n′ = memt(a′)

Eff: tf (t) = Prog ;Prog ′′

memt(mem(v)) = memt(a′′)

CAS(v, n, n′)t
Pre: tf (t) = while(CAS(v, a, a′))

{Prog};Prog ′

memt(memt(v′)) = memt(a′)
v = memt(v′)
n = memt(a), n′ = memt(a′)

Eff: tf (t) = while(CAS(v, a, a′))
{Prog};Prog ′

memt(memt(v)) = memt(a′)

Fig. 3. The semantics of instructions

274 J. König and H. Wehrheim

Table 2. Corresponding history event for each action

evi :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Inv(Begin())t if aci = Begin()t
Inv(Read(loc))t if aci = Read(loc)t
Inv(Write(loc, val))t if aci = Write(loc, val)t
Inv(Commit())t if aci = Commit(v)t
Resp(Read(loc, val, ok))t if aci = return (val)t ∈ Read(loc)
Resp(Write(loc, ok))t if aci = return (ok)t ∈ Write(loc, val)
Resp(Commit(ok))t if aci = return (ok)t ∈ Commit()
Resp(Begin(ok))t if aci = return (ok)t ∈ Begin()
Resp(Write(abort))t if aci = return (abort)t ∈ Write()
Resp(Read(abort))t if aci = return (abort)t ∈ Read()
Resp(Commit(abort))t if aci = return (abort)t ∈ Commit()
ε else

To be able to uniquely reason about the inputs to methods and executions being
independent of this input data, we give the arguments a unique name: the first
argument will always be called in0, the second in1 and so on. Instead of using
the formal parameters as stated in the algorithm (like addr for write), we thus
use in0, in1,

A well formed transaction is a program p0; . . . ; pn such that p0 = Begin(),
pn = Commit(), and ∀0 < i < n : pi ∈ {Read(loc),Write(loc, val)) | loc ∈
GV , val ∈ Z \ {0}, loc does not occur in any method}4. We exclude 0 so that it
is recognizable if a variable has been written to by a transactional write or not.

Finally, to extract histories from the traces of concurrent programs calling
transactional methods we need to relate calls to invocation events and returns
to response events. We say that return (v)t ∈ m(iv0, . . . , ivn) if it is a return
from method m called by t with arguments iv0, . . . , ivn. This can be determined
for any program trace by searching for the last method call before the return.

Definition 12. The history of a given program trace tr = ac0 . . . acn is a
sequence h = ev0 . . . evn where for all i s.t. 0 ≤ i ≤ n evi is given in Table 2.

The ε events are elided at the end.

5 Data Independence of STMs

With a definition of the semantics of STM libraries in place, we can study when
a particular STM algorithm is data independent. Basically, we would like to
ensure that (1) the input values to writes do not influence the control flow of

4 Meta data cannot be accessed via TM operations.

Data Independence for Software Transactional Memory 275

the program (in particular, do not influence whether the transaction aborts or
commits), and (2) a change in the input values of writes results in a corresponding
change in the output of reads reading from that write.

Next, we formalize some static conditions on STMs (i.e., conditions on the
library) which are sufficient to ensure these two requirements and thereby guar-
antee data independence. To formalize the conditions we need to introduce a few
more definitions. We denote that a term t is occurring somewhere in an arith-
metic expression a ∈ AExp by t ∈ a, analogously for b ∈ BExp. When a boolean
expression b or arithmetic expression a occurs in an instruction p we denote it
as a ∈ p or b ∈ p respectively.

First, we define a dependency relationship between variables. A variable v
depends on another variable v′ in a specific statement whenever v′ is directly
or indirectly assigned to v. Note that assignments to pointer variables set a
dependency in both directions, since modifications to either one can influence
the other one.

Definition 13. We say v ∈ Var potentially depends on v′ ∈ Var (in a library
lib) iff there exists m ∈ MID , lib(m) = Prog and Prog contains a statement p
such that

1. p is v := a, and either v′ ∈ a or ∗v′ ∈ a,
2. p is ∗v := a and either v′ ∈ a or ∗v′ ∈ a,
3. p is v := &v′ or p = v′ := &v,
4. b ∈ p and b = CAS(v, a, a′) ∨ b = ¬CAS (v, a, a′) and v′ ∈ a′,
5. or p = resp(v′) and v = out.

For the last case, note that in our semantics return statements write their return
values to the variable out. In TML (Fig. 1) loc potentially depends on glb.

Using these definitions we can next define the closure of a variable, which is
the set of variables which the variable directly or indirectly depends on. We are
interested in closures of input variables only.

Definition 14. The closure of an input variable in ∈ Var in a library lib is
defined as the smallest set cl(in) such that

– in ∈ cl(in) and
– when v potentially depends on v′ and v′ ∈ cl(in), then v ∈ cl(in).

We will give the closure for TML. Note that out = tmp, in0 = addr and in1 =
val. Then cl(val) is {val,addr,tmp}.

Using this we can formalize our conditions on an STM. Conditions 1 and 2
below ensure that no boolean condition is influenced by an input value, while
conditions 3, 4 and 5 ensure that only unmodified input values can be returned
by a read. Recall that the input function ISTM returns 1 for writes and the first
data input to writes is stored in variable in1.

276 J. König and H. Wehrheim

Theorem 2. An STM library is data independent w.r.t. input function ISTM

if the following holds for all methods m ∈ MID, statements p ∈ lib(m) and
arithmetic and boolean expressions a ∈ AExp, b ∈ BExp and all variables v ∈
Var:

1. If b ∈ p, b /∈ CAS, then v ∈ b implies v /∈ cl(in1),
2. if b ∈ p, b = CAS (x, a, a′) ∨ b = ¬CAS (x, a, a′), then v ∈ a ∨ v ∈ a′ ∨ x = v

implies v /∈ cl(in1),
3. if a ∈ p, then v ∈ a ∧ v ∈ cl(in1) implies a = v ∨ a = &v ∨ a = ∗v,
4. if v ∈ cl(in1), p is not any assignment of a variable v′ /∈ cl(in1) to v,
5. out ∈ cl(in1).

Due to lack of space the proof is omitted here. These requirements were chosen
to ensure data independence on the level of program execution, e.g. that if a
program is correct (opaque) for a set of inputs, it is also correct for another set
of inputs. We will illustrate the requirements of Theorem2 on TML.

1. If Line R2 (if (glb = loc)), would be changed to glb = tmp, then the
success or abortion of the read function could depend on val.

2. Analogous for CAS conditions, e.g. if W2 would instead compare &glb to val
the control flow would depend on the input to the write value.

3. For requirement 3 assume R1 tmp:=*addr (fulfilling the requirement) would
be changed to tmp:=(*addr * 2)-1. Thus a read may not return a value
corresponding to an input value, e.g. if *addr is 2.

4. Analogous to the above: if e.g. R1 would be tmp := glb an output event may
not have a corresponding input event.

5. If tmp is not in the closure then the returned value of the read would not be
influenced by the inputs at all which could result in events not corresponding
to each other.

From the previous theorem we will derive a corollary stating that for data inde-
pendent STMs whenever for a given start state with differentiated inputs (all
writes contain pairwise different second arguments) each possible trace results
in an opaque history, then for any renaming of that start state the histories of
all possible traces are also opaque.

We first have to formally define what a renaming of a start state for a given
function f is. For a transaction program Prog , its renaming by f (denoted as
f(Prog)) is the replacement of every occurrence of write(v, x) where v ∈ GV
and x ∈ Z \ {0} by write(v, f(x)). For a thread function ps.tf , a renaming by f
is denoted as f(ps).tf and is defined as f(ps).tf (t) = f(ps.tf (t)). The renaming
of a start state ps0 is then denoted as f(ps0) = (f(ps0).tf , ps0.mem).

Corollary 1. Let lib be an STM library that fulfils the requirements of Theo-
rem2. Let ps0 be a start state with differentiated inputs. If the history of every
trace starting in ps0 is opaque, then for every renaming f the history of every
trace starting in f(ps0) is also opaque.

Data Independence for Software Transactional Memory 277

Thus when model checking a transactional memory it is sufficient for each
workload (the set of all start states executing the same set of transactions, only
differing the second argument of Write invokes) to only check one set of pairwise
different values which results in a large reduction of the state space that needs
to be generated for each workload.

6 Related Work

In Sect. 1 a overview over works concerning STM verification can be found. There
is a large body of work concerning utilizing data independence for validating
software (e.g. [2,4,5,18]). There is to the best of our knowledge no approach
combining STMs and data independence. Here we will only focus on the works
closest to our approach.

Guerraoui et al. present a state space reduction approach for a variation
of opacity [11]. It is data independent in a literal way, as it does not contain
any values at all. We have proven this variation to be different from opacity
even under limiting assumptions [14]. They have shown that – under certain
conditions for STMs – proving the STM conflict opaque can be reduced to proofs
for 2 threads and 2 variables. However, no explicit approach for checking these
conditions is given. The conditions and proofs are not easily, if at all, applicable
to the value based definition of opacity.

In the related literature Shacham et al. come closest to our approach verify-
ing another atomicity correctness criterion, namely linearisability for composed
operations on maps [16]. They divide these operations into three types which all
have different degrees of data independence. The first class where one key and
one value can be input and be used to invoke put, get and remove comes clos-
est to our approach. They state syntactical requirements for such an operation
to be data independent. As in this work they require that their inputs cannot be
changed or reassigned, and – except for one exception – cannot be (transitively)
used in boolean conditions. The exception allows - contrary to our requirement
- to check whether an input value has been written to. Additionally they have
map specific requirements which have no equivalent in our case. Then they apply
a state space reduction theorem for more efficient model checking. While they
focus on the model checking itself, we focus more on the formal groundwork a
model checking approach can be based on.

An approach similar to the previous one is used in [5] for the linearisability
verification of priority queues, although they completely focus on checking the
property and already assume the checked queues to be data independent.

7 Conclusion

In our paper, we have adapted the notion of data independence to STMs and
their correctness condition. Our main result is that when checking opacity of
data independent STMs, it is sufficient to look at one set of input values for each
workload. To achieve this, we have proven that opacity is a data independent

278 J. König and H. Wehrheim

correctness criterion, have given a specification language for STMs and then have
formalized statically checkable conditions which imply data independence of an
STM algorithm. This work is one step towards reducing the state space to be
inspected during model checking STMs.

Future work regarding this specific approach will involve implementing a
model checking approach to evaluate how well these results improve performance.
The checker should include an automatic test if an STM is data independent and
then should use the results of this paper to conduct efficient model checking of
opacity. One example of using the results could be to abstract from the actual
values of input variables and only save actual values for meta data variables.

References

1. Abdulla, P.A., Dwarkadas, S., Rezine, A., Shriraman, A., Zhu, Y.: Verifying safety
and liveness for the FlexTM hybrid transactional memory. In: DATE 2013, pp.
785–790 (2013)

2. Abdulla, P.A., Haziza, F., Hoĺık, L., Jonsson, B., Rezine, A.: An integrated
specification and verification technique for highly concurrent data structures. In:
Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 324–338.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 23

3. Baek, W., Bronson, N.G., Kozyrakis, C., Olukotun, K.: Implementing and evalu-
ating a model checker for transactional memory systems. In: ICECCS 2010, pp.
117–126 (2010)

4. Bouajjani, A., Enea, C., Guerraoui, R., Hamza, J.: On verifying causal consistency.
SIGPLAN Not. 52(1), 626–638 (2017)

5. Bouajjani, A., Enea, C., Wang, C.: Checking linearizability of concurrent priority
queues. In: CONCUR 2017. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
(2017)

6. Dalessandro, L., Dice, D., Scott, M., Shavit, N., Spear, M.: Transactional mutex
locks. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010. LNCS,
vol. 6272, pp. 2–13. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15291-7 2

7. Derrick, J., Dongol, B., Schellhorn, G., Travkin, O., Wehrheim, H.: Verifying opac-
ity of a transactional mutex lock. In: Bjørner, N., de Boer, F. (eds.) FM 2015.
LNCS, vol. 9109, pp. 161–177. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-19249-9 11

8. Doherty, S., Dongol, B., Derrick, J., Schellhorn, G., Wehrheim, H.: Proving opacity
of a pessimistic STM. In: OPODIS 2016. LIPIcs, vol. 70, pp. 35:1–35:17. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

9. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Towards formally specifying and
verifying transactional memory. Formal Aspects Comput. 25(5), 769–799 (2013)

10. Guerraoui, R., Henzinger, T.A., Singh, V.: Completeness and nondeterminism in
model checking transactional memories. In: van Breugel, F., Chechik, M. (eds.)
CONCUR 2008. LNCS, vol. 5201, pp. 21–35. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85361-9 6

11. Guerraoui, R., Henzinger, T.A., Singh, V.: Model checking transactional memories.
Distrib. Comput. 22(3), 129–145 (2010)

https://doi.org/10.1007/978-3-642-36742-7_23
https://doi.org/10.1007/978-3-642-15291-7_2
https://doi.org/10.1007/978-3-642-15291-7_2
https://doi.org/10.1007/978-3-319-19249-9_11
https://doi.org/10.1007/978-3-319-19249-9_11
https://doi.org/10.1007/978-3-540-85361-9_6
https://doi.org/10.1007/978-3-540-85361-9_6

Data Independence for Software Transactional Memory 279

12. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In: Pro-
ceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2008, pp. 175–184 (2008)

13. Kaynar, D.K., Lynch, N.A., Segala, R., Vaandrager, F.W.: The Theory of Timed
I/O Automata. Synthesis Lectures on Distributed Computing Theory, 2nd edn.
Morgan & Claypool Publishers, San Rafael (2010)

14. König, J., Wehrheim, H.: Value-based or conflict-based? Opacity definitions for
STMs. In: Hung, D., Kapur, D. (eds.) ICTAC 2017. LNCS, vol. 10580, pp. 118–
135. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67729-3 8

15. Lesani, M., Palsberg, J.: Decomposing opacity. In: Kuhn, F. (ed.) DISC 2014.
LNCS, vol. 8784, pp. 391–405. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-45174-8 27

16. Shacham, O., et al.: Verifying atomicity via data independence. In: Proceedings of
the 2014 International Symposium on Software Testing and Analysis, pp. 26–36.
ACM (2014)

17. Shavit, N., Touitou, D.: Software transactional memory. Distrib. Comput. 10(2),
99–116 (1997)

18. Wang, C., Lv, Y., Wu, P.: Decomposable relaxation for concurrent data structures.
In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T.
(eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 188–202. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-51963-0 15

19. Wolper, P.: Expressing interesting properties of programs in propositional temporal
logic. In: POPL, pp. 184–193 (1986)

https://doi.org/10.1007/978-3-319-67729-3_8
https://doi.org/10.1007/978-3-662-45174-8_27
https://doi.org/10.1007/978-3-662-45174-8_27
https://doi.org/10.1007/978-3-319-51963-0_15

Transaction Protocol Verification
with Labeled Synchronization Logic

Mohsen Lesani(B)

University of California, Riverside, USA
lesani@cs.ucr.edu

Abstract. Synchronization algorithms that provide the transaction
interface are intricate. We present an algorithm description language
that explicitly captures the type of the used synchronization objects and
associates labels to method calls to explicitly capture their intra-thread
order. We use the language to capture architecture independent repre-
sentations of transactional memory (TM) algorithms. We present a novel
logic that enables reasoning about synchronization algorithms that are
described in the language. The logic quantifies over program labels and
provides specific predicates and intuitive inference rules to reason about
the inter-thread execution and linearization orders of labeled method
calls. In particular, the logic assertions can directly capture orders that
are fundamental to the correctness of transactions. We present a deno-
tational semantics for the language and prove the soundness of the logic.
We have formalized the logic in the PVS proof assistant and mechanically
constructed the challenging correctness proof of the TL2 TM algorithm.

1 Introduction

Synchronization algorithms such as mutual exclusion, concurrent data structures
and transactional memory are subtle. Designing a synchronization algorithm
involves choosing synchronization objects and programming the coordination
logic using them. There is a trade-off in the choice between consistency and
efficiency of a synchronization object. For example, although an atomic register
maintains consistency in every concurrent execution, it is less efficient than a
basic register that does not provide any guarantee in the presence of race. In
addition, algorithm designers have to decide and properly program the order of
method calls in each thread. These orders are crucial to the correctness of the
algorithm in every possible interleaving. Intra-thread orders are usually specified
using architecture-dependent fence instructions. As a result, a synchronization
algorithm is complicated, low-level and prone to bugs. Engineering reliable soft-
ware stacks built on top of these algorithms requires their precise description and
rigorous verification. In this paper, we present a description language for syn-
chronization algorithms, a novel logic to reason about synchronization algorithm
descriptions and apply the logic to mechanize the verification of TM algorithms.

Dekker Example in the Description Language. The language explicitly
captures the type of the base synchronization objects and the intra-thread order
c© Springer Nature Switzerland AG 2019
J. M. Badger and K. Y. Rozier (Eds.): NFM 2019, LNCS 11460, pp. 280–297, 2019.
https://doi.org/10.1007/978-3-030-20652-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20652-9_19&domain=pdf
https://doi.org/10.1007/978-3-030-20652-9_19

Transaction Protocol Verification with Labeled Synchronization Logic 281

(a)

T : f1, f2 : AtomicRegister
D :
def init() def tryLock1() def tryLock2()
W01 � f1.write(0), W1 � f1.write(1), W2 � f2.write(1),
W02 � f2.write(0), R2 � x2 = f2.read(), R1 � x1 = f1.read(),

if (x2 = 0), if (x1 = 0)
C1t � return true C2t � return true

else else
C1f � return false, C2f � return false,
{W1 → R2}, {W2 → R1},

P : L0 � init(),
L1 � l1 = tryLock1() ‖ L2 � l2 = tryLock2()

X2L
T (o) ∈ LT

π, Γ � obj(l) = obj(l′) = o π, Γ � l ≺ l′

π, Γ � l ≺o l′

P2X
c1 →π c2

π, Γ � exec(ς’c1) π, Γ � exec(ς’c2)
π, Γ � ς’c1 ≺ ς’c2

(b)

Fig. 1. (a) Dekker description πD = (T , D, P). (b) Example inference rules.

of method calls on them. As an example, consider the description of the Dekker
mutual exclusion algorithm [10] in Fig. 1(a). The description comprises three
sections. The first section, typing T , describes the base synchronization objects
that the algorithm uses. Dekker uses two atomic registers as flags. Using basic
registers as flags can lead to a race and violation of mutual exclusion. The second
section, definitions D, describes the definition of methods. The initialization
method initializes the two flags to zero. In the two try-lock methods, each thread
first writes to its own flag and then reads from the flag of the other thread. Each
try-lock method allows entry to the critical region only if it finds the flag of
the other thread unset. Every method call in the description is uniquely marked
with a label. The order of writing the flag of the current thread and then reading
the flag of the other thread is crucial to the correctness. Reordering these two
method calls can violate mutual exclusion. The required orders for the body
of each method definition are declared after the body. For example, the order
W1 → R2 requires the methods call W1 to be executed before the method call
R2. The third section, program P, represents the concurrent client program
for the defined methods. First, the initialization method is called and then two
concurrent threads are executed, each calling one of the try-lock methods.

Reasoning and Orders. The mutual exclusion property states that at most one
of the two threads can enter the critical section. More precisely, if either of the
two methods calls labeled L1 and L2 returns true, the other one returns false.
An intuitive classical proof for the mutual exclusion property of the Dekker
algorithm is as follows. We directly reason about execution and linearization
orders across threads and use the properties of linearizable registers such as the
totality of the linearization order. In particular, we use the real-time-preservation
property [19] of linearizability that states that if a method call is executed before
another on a linearizable object, then the former is linearized before the latter

282 M. Lesani

as well. Assume that L1 returns true, we prove that L2 does not return true.
If L1 has returned true, it should have been by C1t. Therefore, the condition
of the if statement is satisfied (that is x2 = 0). Therefore, the read operation
R2 from the flag f2 returns 0. There are two write method calls W02 and W2

on f2. The initialization method call W02 is executed before both R2 and W2;
therefore, by the real-time preservation property, is linearized before them. Now,
W2 can either linearize before or after R2. The first case is not possible because
otherwise, W2 would be the last write to f2 before R2. Therefore, R2 would
return the value that W2 writes. However, W2 writes 1, and R2 has returned 0.

In the second case, the method call R2 linearizes before W2. Therefore, (1)
R2 is executed before or concurrent to W2. (This holds because otherwise, R2

would be executed after W2. Thus, by the real-time-preservation property, R2

would be linearized before W2 as well that contradicts the assumption of this
case.) According to the explicit program orders, (2) W1 is executed before R2

and (3) W2 is executed before R1. From the transitivity of the execution order
on the three orders 2, 1, and 3 above, we have that W1 is executed before R1.
Therefore, W1 linearizes before R1 as well. The initialization method call W01 is
executed before R1 and W1 and is therefore linearized before the two. Therefore,
W1 is the last write to f1 before R1. Therefore, R1 returns the value that W1

writes that is 1. Therefore, x1 = 1. Therefore, as the condition of the if statement
is not satisfied, C2f is executed. Therefore, L2 returns false.

Labeled Synchronization Logic. Can we build a rigorous foundation for this
intuitive style of reasoning? Is it possible to construct formal proofs in this style?
We present a novel first-order logic called labeled synchronization logic (LSL)
that enables reasoning about synchronization algorithms based on the execution
and linearization orders of method calls on the base synchronization objects.
It quantifies over program labels and provides specific predicates for execution
order, execution overlap and linearization orders of labeled method calls across
threads. These assertions capture critical orders between concurrent operations.
In addition, LSL provides simple-to-use inference rules to reason about these
orders and deduce algorithm correctness. For example, we applied LSL to stated
and prove the mutual exclusion property of the Dekker algorithm. The following
theorem states that for the Dekker description (πD) with no prior assumptions
(·), it can be inferred that if L1 returns true, then L2 returns false. If the first
thread can enter the critical section, then the second cannot. The symmetric
property can be state and proved similarly.

Theorem 1. πD, · � (retv(L1) = true) ⇒ (retv(L2) = false).

The full proof is available in the appendix [27] §10 and the mechanised proof
is available at [26]. We show two inference rules of LSL as examples in Fig. 1(b).
LSL uses dynamic labels l to uniquely identify method call instances. For exam-
ple, the label L2’W2 is a call string that refers to the instance of the method
call labeled W2 (in the definitions section D) that is executed in the body of the
caller method labeled L2 (in the program section P).

Transaction Protocol Verification with Labeled Synchronization Logic 283

Fig. 2. Illustration of read-preservation

The rule X2L states the real-time-preservation property of linearizabil-
ity [19]: the execution order ≺ of method calls on an object o of a linearizable
type LT is preserved in the linearization order ≺o of the object o. If a method
call is executed before another on a linearizable object, then the former is lin-
earized before the latter as well. Using the rule X2L, a step that we saw in the
informal proof of the Dekker algorithm can be formalized as follows. From the
fact that method call L0’W02 is executed before ≺ the method call L2’W2 and
that both are on the atomic register f2,

πD, Γ � obj(L0’W02) = obj(L2’W2) = f2 ∧ L0’W02 ≺ L2’W2

we can deduce that L0’W02 is before L2’W2 in the linearization order ≺f2 of the
atomic register f2

πD, Γ � L0’W02 ≺f2 L2’W2

In the sequent, Γ is any set of assumption assertions.
The rule P2X states the program-order-preservation property: the program

order is preserved in the execution order. (The prefix label variable is denoted
by ς.) For example, the Dekker description πD declares the method call W1 to
be ordered before the method call R2 i.e. W1 →π R2. Using the rule P2X, from
the declared order and that both L1’W1 and L1’R2 are executed

πD, Γ � exec(L1’W1) ∧ exec(L1’R2)

we can deduce that L1’W1 is executed before L1’R2

πD, Γ � L1’W1 ≺ L1’R2

Correctness of Transactional Memory. Execution and linearization orders
of method calls on the base synchronization objects play a critical role in the
reasoning about the correctness of transactional memory algorithms. In a pre-
vious work [30], we represented a decomposition called markability of the TM
correctness condition opacity [14]. Markability decomposes opacity to separate
intuitive invariants that can be separately verified. An execution history is mark-
able if there is a specific ordering relation on the set of transactions and their
read operations called marking such that three invariants are satisfied.

284 M. Lesani

A marking of a transaction history is a relation on the union of the transac-
tions and the read operations in the history. We can think of the marking as the
union of a collection of orders: The effect order : The effect order is a total order
of the transactions. It represents the order in which the transactions appear to
take effect. The access orders: Let us refer to the committed transactions that
have write operation(s) to location i as writers of i. Consider an unaborted read
operation R on a location i. For each such R, the access order is an antisymmet-
ric relation that orders R and every writer of i. The access order of R represents
where R has read i between the writers of i.

For example, Fig. 2 presents the sketch of a transaction history with two
transactions T1 and T2. The horizontal lines from left to right show the time for
the two threads executing T1 and T2, and the boxes show execution of method
calls on the transactional interface. These method calls may call multiple meth-
ods on the base synchronization objects. The dark circles show the effect points
of the two transactions and the solid arrow shows the effect order. The transac-
tion T2 takes effect before T1. The transaction T2 is a writer of both i1 and i2.
The white circles show the access points for the two reads R1 and R2. The read
R1 reads i1 before T2 writes to it. Similarly, the read R2 reads i2 after T2 writes
to it. The relation is called marking as these points can be usually marked as
particular method calls on the base synchronization objects in the algorithm and
the orders are defined as execution and linearization orders on these calls.

As an example, the second invariant of markability called read-preservation
requires that the location read by a read operation is not overwritten between the
two points that the read takes place and the transaction takes effect. Consider
an unaborted read operation R from a location i by a transaction T . Intuitively,
read-preservation requires that no writer of i comes between R and T in the
marking relation. The read-preservation property is violated in Fig. 2. The read
R1 is an unaborted read from i1 in T1. The transaction T2 is a writer of i1.
The read R1 is before T2 in the access order and T2 is before T1 in the effect
order. The value that R1 reads is overwritten by T2 before T1 is committed. The
transaction T2 writes a new value to both i1 and i2. The read R1 reads the old
value of i1 and R2 reads the new value of i2 that can be inconsistent. Read-
preservation is usually simply verified by the validations checks in the commit
and read operations.

In this project, we have used LSL to construct a new mechanized proof of
TL2 [9], in the PVS proof assistant. Specifically, we have expressed markability
in the assertion language and then applied LSL inference rules to deduce the
markability assertion. This result shows that LSL is scalable to complicated
transactional memory algorithms. We have proved the soundness of LSL: If an
assertion is deduced using valid assumptions, then the deduced assertion is valid
as well. An assertion is valid if it evaluates to true in every execution.

The Structure of the Paper. In Sects. 2 and 3, we present the description lan-
guage and LSL, and In Sect. 4, we state a marking for TL2 and prove the mark-
ability of TL2 in LSL. We present the related works in Sect. 5 before conclusion.

Transaction Protocol Verification with Labeled Synchronization Logic 285

2 Description Language

We now present the language that we describe concurrent algorithms in. An
algorithm description π is a triple (T ,D,P) where T is the type declarations
for the used synchronization objects, D is the method definitions, and P is a
concurrent client program that calls the defined methods. The set of descriptions
Π is defined as follows:

π ∈ Π ::= (T , D, P)
T ::= (φ : ot)∗

D ::= d∗

d ::= def nt(x
∗) s, r

s ::= s, s | if (b) s else s | q | c � foreach (i ∈ set) s
q ::= c � x = o.nτ (u

∗) | c � return u
b ::= ¬b | b ∧ b | u = u | u = u + u | u < u
r ::= ‘{’ (c → c)∗ ‘}’
P ::= p0, (p1‖p2‖...‖pn)
p ::= p; p | if (b) p else p | c � x = nτ (u

∗)

The description of the Dekker algorithm is presented in Fig. 1(a) as an example.
We look at each section in turn.

A typing T is a mapping from object names φ to object types ot. We use x∗

to denote a finite sequence of x’s. An object type ot is either a scalar or an array
type. A scalar type is either a basic type BT such as BasicRegister, BasicSet, or
BasicMap, or a linearizable type LT such as AtomicRegister, AtomicCASRegister,
Lock, TryLock, or strong counter SCounter. As an example, in the Dekker descrip-
tion of Fig. 1(a), both flags f1 and f2 are declared to be atomic registers. Using
basic registers can lead to a race and violation of mutual exclusion. We will revisit
synchronization object types when we present their specific inference rules. An
array type of a scalar type st is of the form st[]. A thread-local type is an array
type and the well-formedness conditions enforce that a thread-local object is
only indexed by the identifier of the calling thread.

The definitions D is a sequence of method definitions d. We denote a method
name by n, a value by v, a variable by x, a value or variable by u, a thread value
by T , a thread variable by t, and a thread value or variable by τ . The method
definition def nt(x∗) s, r defines a method named n with thread parameter t
and data parameters x∗ with the body s and the declared order r. The Dekker
description of Fig. 1(a) defines three methods: init, tryLock1 and tryLock2. A
statement s is either a sequence, a conditional, a method call or a return state-
ment. A condition b is a boolean expression on variables and values. In a method
call c � x = o.nτ (u∗), c is the label, x is the return variable, o is the receiving
object, n is the method name, τ is the current thread argument, and u∗ are
the data arguments. The labels of statements are unique in π. Every variable is
uniquely bound. An object o is either a single object φ or an element of an array
φ[u]. In a return statement c � return u, c is the label and u is the returned
value or variable. In the appendix [27] §7, we define the foreach iteration state-
ment on sets and maps as a syntactic sugar. As we will see, the semantics of
the language supports out-of-order or relaxed execution. Any two labels that are
left unordered by the description may be reordered in the execution. Data and

286 M. Lesani

control dependencies in the method body s impose order between statements.
However, the programmer can explicitly require additional orders. The declared
program order r of a method definition is a binary relation on the set of labels in
the body s. For example, the Dekker description of Fig. 1(a) declares the orders
W1 → R2 and W2 → R1 that are crucial to the correctness. Programming fences
is complicated and error-prone. This platform-independent description of the
required orders can be used by compilers to optimize fence insertion [4] for differ-
ent target architectures. The declared order facilitates architecture-independent
verification. Further, if the order of two statements that is unnecessary for cor-
rectness is changed, the proof stays unchanged.

The client program section P is of the form p0, (p1‖p2‖...‖pn) where p0 is
the initialization program, and p1, p2, . . ., and pn are the parallel programs.
For example, the program section of the Dekker description in Fig. 1(a) has two
parallel programs that each call one of the two defined try-lock methods. A
sequential program p is either a sequence, a conditional or a method call. In
a method call c � x = nτ (u∗), n is name of a method that is defined in the
method definitions section D. The object this is the default receiver object and
is therefore elided in the client calls. We use θ to denote a synchronization object
o or the this object.

Let →n denote the irreflexive transitive closure of the data and control depen-
dencies and the declared order of method n. Let the program order →π be the
irreflexive partial order on Labels(π) defined as the union of the following: (1)
the initialization order (that orders the labels of p0 before the labels of parallel
programs), (2) the sequential order of the sequential programs pi, and (3) For
each method definition n, the order →n.

LSL uses the following functions that are directly derived from the program
description. The names of methods defined in a description are unique. Thus,
we define the functions par1π and par2π that map method names to their first
and second parameters. Similarly, tparπ maps method names to their thread
parameter. As the labels in a description are unique, we define the function
objπ that maps the label of a method call to its receiver object. Similarly, the
functions indexπ, nameπ, threadπ, arg1π, arg2π and retvπ map the label of a
call to the array index of the receiver object, the name of the method, the thread
identifier, first and second arguments and the return variable of the method call.
For a return statement, we let nameπ and arg1π map to the name return and
the argument of the return statement respectively.

We call the conjunction of all the enclosing if (and else) conditions of a
statement, its enclosing condition. Let the function condπ map statement labels
to their enclosing conditions. Let Labelsπ(n) denote the set of labels in the body
of the method n. Let Returnsπ(n) denote the set of labels of return statements
in the body of n. Let PreReturnsπ(c) denote the set of labels of the return
statements before the statement labeled c in π.

Transaction Protocol Verification with Labeled Synchronization Logic 287

3 Labeled Synchronization Logic

Now, we present our first-order logic to reason about synchronization algorithm
descriptions.

XASym
π, Γ � l ≺ l′

π, Γ � ¬(l′ ≺ l) ∧ ¬(l′ ∼ l) ∧ ¬(l′ = l)

XTrans
π, Γ � l ≺ l′ π, Γ � l′ ≺ l′′

π, Γ � l ≺ l′′

X2Trans
π, Γ � l1 ≺ l2 π, Γ � l2 ∼ l3 π, Γ � l3 ≺ l4

π, Γ � l1 ≺ l4

XTotal
π, Γ � exec(l) ∧ exec(l′)

π, Γ � (l ≺ l′) ∨ (l′ ≺ l) ∨ (l ∼ l′) ∨ (l = l′)
(a)

X2L
T (o) ∈ LT

π, Γ � obj(l) = obj(l′) = o π, Γ � l ≺ l′

π, Γ � l ≺o l′

LASym
π, Γ � l ≺o l′

π, Γ � ¬(l′ ≺o l) ∧ ¬(l = l′)

LTrans
π, Γ � l ≺o l′ π, Γ � l′ ≺o l′′

π, Γ � l ≺o l′′

LTotal
T (o) ∈ LT π, Γ � exec(l) ∧ exec(l′)

π, Γ � obj(l) = obj(l′) = o

π, Γ � (l ≺o l′) ∨ (l′ ≺o l) ∨ (l = l′)
(b)

X2X
π, Γ � l ≺ l′

π, Γ � exec(l) ∧ exec(l′)

L2X
π, Γ � l ≺o l′

π, Γ � exec(l) ∧ exec(l′) ∧
obj(l) = obj(l′) = o

(c)

Fig. 3. The Basic Inference Rules. (a) properties of execution orders, (b) linearization
orders, and (c) derived rules.

Assertions. We first define the set of dynamic labels that uniquely identify
method call instances. As an example, in execution histories for the Dekker
algorithm (Fig. 1(a)), we have the two labels L1 and L1’W1. The label L1 refers
to a call site in the program section P. On the other hand, the label L1’W1 is
a call string that refers to the instance of the method call labeled W1 (in the
definitions section D) that is executed in the body of the client method call
labeled L1. Thus, a dynamic label l is of the form ς’c where the pre-label ς is
either a static label c or no label ε. The symbol ε is the left identity element of
the prefixing operator.

A method can be called several times in the program. To have unique local
variable names, every variable (including the parameters) of the method is pre-
fixed by the caller label. The labeled variable c’x denotes the instance of the
local variable x in the body of the method call labeled with c. Similarly, the
prefixing operator is lifted to expressions over variables. The assertions language
of LSL is described by the following grammar.

288 M. Lesani

e ::= obj(�) | name(�) | thread(�) | Expression
arg1(�) | arg2(�) | retv(�) |
initOf(τ) | commitOf(τ) |
o | n | ς’x | v | ς’t | T

R ::= e = e | e < e | � = �′ | c = c | Proposition
exec(�) | � ≺ �′ | � ∼ �′ | � ≺o �′ | τ ≺≺ τ ′

A ::= R | ¬A | A ∧ A | ∀� : A | ∀t : A Assertion

Here, c is a program label (such as C1t in the Dekker description of Fig. 1(a)),
l is a constant label (such as the dynamic labels L1 and L1’C1t for the Dekker
description), � is a label variable, T is a thread (or transaction) identifier value, t
is a thread identifier variable, τ is a thread value or variable, x is a variable, v is a
value, o is an object name, and n is a method name. Expressions use six function
symbols. The functions obj, name, thread, arg1, arg2 and retv map a label of the
program to its object, method name, thread name, first and second argument,
and return value. The function initOf maps each transaction to the label of
its init method call. The function commitOf maps each committed transaction
to the label of its commit method call. Propositions use seven predicates. The
first two are equality (=) and integer comparison (<). The proposition exec(�)
states that the method call labeled � is executed. The proposition � ≺ �′ asserts
that � is executed before �′. The proposition � ∼ �′ asserts that � is executed
concurrent to �′. For a linearizable object o, the proposition �1 ≺o �2 states that
�1 is linearized before �2 in the linearization order of o. (As we will describe
in the semantics section, any concurrent execution on a linearizable object is
equivalent to a correct sequential execution. The total order of method calls
in that sequential execution is called the linearization order.) The proposition
τ ≺≺ τ ′ asserts that all the labels of thread τ are executed before all the labels
of thread τ ′. This assertion is used to state that a transaction is executed before
another.

An assertion is either a proposition, negation of an assertion, conjunction of
two assertions, or existential quantification over labels or transactions. As usual,
we can define, disjunction ∨, universal quantification ∀, less than or equal ≤,
executes before or equal �, linearized before or equal �o, thread executed before
or equal �� as syntactic sugar.

For an algorithm description π, a judgement is of the form π, Γ � A, where
Γ is the context, that is, a list of assertions, and A is a closed assertion. The
judgement is read as for every execution of the program π, if the assertions in
Γ hold, then the assertion A holds. For example, π, Γ � l ≺ l′ says that in every
execution of π where Γ holds, the statement labeled l is executed before the
statement labeled l′.

Algorithms can be verified modularly. The client program section P of an
algorithm description π can specify general clients. For example a lock algo-
rithm description π (such as Dekker) can be verified separately. Then, the lock
object (with its abstracted implementation) can be used to implement a TM.
Verification of the description π′ of the TM is restricted to the labels of π′ and
does not involve π.

Transaction Protocol Verification with Labeled Synchronization Logic 289

AReg
T (r) = AtomicRegister

π, Γ � isReadr(lR)
π, Γ � ∃�W : isWriterr(�W , lR) ∧

retv(lR) = arg1(�W)
BReg

T (r) = BasicRegister
π, Γ � isSingleWriter(r)

π, Γ � isReadr(lR)
π, Γ � isRaceFreer(lR)

π, Γ � ∃�W : isEWriterr(�W , lR) ∧
retv(lR) = arg1(�W)

isReadr(�R) ⇔
exec(�R) ∧ obj(�R) = r ∧ name(�R) = read

isWriter(�W) ⇔
exec(�W) ∧ obj(�W) = r ∧ name(�W) = write

isWriterr(�W , �R) ⇔
isWriter(�W) ∧ �W ≺r �R ∧
∀�′

W : isWriter(�′
W) ⇒ (�′

W �r �W ∨ �R ≺r �′
W)

isEWriterr(�W , �R) ⇔
isWriter(�W) ∧ �W ≺ �R ∧
∀�′

W : isWriter(�′
W) ⇒ (�′

W � �W ∨ �R ≺ �′
W)

isRaceFreer(�) ⇔
∀�W : isWriter(�W) ⇒ (�W ≺ � ∨ � ≺ �W)

isSingleWriter(r) ⇔
∀�w : isWriter(�w) ⇒ isRaceFreer(�w)

LockUnlockPair
T (o) = Lock

π, Γ � isOwnerRespect(o)
π, Γ � isLocko(la1)

π, Γ � isUnlocko(lr2)
π, Γ � la1 ≺o lr2
π, Γ � ∃�r1 , �a2 :

isUnlocko(�r1) ∧ thread(�r1) = thread(la1) ∧
isLocko(�a2) ∧ thread(�a2) = thread(lr2) ∧

�r1 ≺o �a2
CountSeq

T (o) = SCounter
π, Γ � exec(l1) ∧ obj(l1) = o ∧ name(l1) = iaf

π, Γ � exec(l2) ∧ obj(l2) = o
π, Γ � retv(l1) < retv(l2)

π, Γ � l1 ≺o l2

isLocko(l) ⇔
exec(l) ∧ obj(l) = o ∧
name(l) = lock

isUnlocko(l) ⇔
exec(l) ∧ obj(l) = o ∧
name(l) = unlock

isOwnerRespect(o) ⇔
∀� : isUnlocko(�) ⇒ ∃�′ :

isLocko(�′) ∧
thread(�′) = thread(�) ∧
�′ ≺ � ∧
∀�′′ :

(isUnLocko(�′′) ∧
thread(�′′) = thread(�)) ⇒
�′′ ≺ �′ ∨ � � �′′

Fig. 4. Synchronization object inference rules. Four of the rules for atomic and basic
registers, lock and strong counter.

Inference Rules. We now present the inference rules of LSL. The inference rules
can be conceptually divided into four groups. First, the first-order logic rules
(which are standard and omitted here). Second, the basic rules that axiomatize
the properties of execution and linearization orders and their interdependence
(Fig. 3). Third, the synchronization object rules that axiomatize the properties
of common synchronization object types (Fig. 4). Fourth, the inference rules
that axiomatize the relation of the algorithm description and the execution. We
showcase a few rules. The full set of rules for the common synchronization objects
is available in the appendix [27] §9.

Figure 3 represents the set of basic inference rules that intuitively capture
the properties of execution and linearization orders and their relation. The
rule XASym states the asymmetry property of the execution order. If a method
call is executed before another method call, then the latter is not executed before
the former and they are not executed concurrently. The rule XTrans states the
transitivity property of the execution order. The rule X2Trans states the tran-
sitivity of the sequence of precedence, concurrency and precedence execution
relations. If l1 is executed before l2, l2 is executed concurrent to l3 and l3 is exe-
cuted before l4, then l1 is executed before l4. The rule XTotal states the totality

290 M. Lesani

property of the precedence and concurrency execution relations. Every pair of
executed method calls either execute in order or concurrently. The rule X2L
states the real-time-preservation property of linearization orders: The execution
order of two method calls on a linearizable object (specified by T (o) ∈ LT)
is preserved in the linearization order. The rule LASym states the asymmetry
property of linearization orders. If a method call is linearized before another one,
then the latter is not linearized before the former. The rule LTrans states the
transitivity property of linearization orders. The rule LTotal states the totality
property of linearization orders. Every two executed method calls on a lineariz-
able object are ordered in its linearization order. The two derived rules X2X and
L2X can be established by an inductive reasoning on the length of the proof of
l ≺o l′. The rule X2X states that if a method call is executed before another
one, then clearly both are executed. The rule L2X states that if a method call
is linearized before another one, then clearly both are executed.

Now let us look at a few synchronization object rules in Fig. 4. First, the
rule AReg states that for every read method call lR on an atomic register, there
is a write method call �W on it that writes the same value that lR reads and �W

is the last write method call that is linearized before lR. Second, the rule BReg
states that if a basic register r is single-writer, for every race-free read method
call lR on r, there is a write method call �W on r that writes the same value
that lR reads and �W is the last write method call that is executed before lR. A
register r is single-writer if and only if every pair of write method calls on it are
ordered in the execution order or in other words, every write method call on it is
race-free. A method call r is race-free if an only if there is no write method call
on r that executes concurrent to it. The rules AReg and BReg model Lamport’s
notion of atomic and safe registers [25]. Third, the rule LockUnlockPair states
the lock-unlock-pair property: if ownership of a lock object o is respected and
a lock method call on o by a thread τ1 is linearized before an unlock method
call on o by a thread τ2, then an unlock method call on o by τ1 is linearized
before a lock method call on o by τ2. The rule is derived from the fact that
if the ownership of a lock is respected, its linearization order is a sequence of
matching pairs of lock and unlock method calls. Intuitively, ownership for a lock
o is respected, if and only if every thread unlocks o only if it has already locked
o and has not unlocked o since then. Fourth, the rule CountSeq states the
count-sequence property: for a strong counter object co, if the return value of
an iaf (inc-and-fetch) method call on co is less than the return value of another
method call on co, then the former is linearized before the latter. The rule is
derived from the fact that the return values of method calls in the linearization
order of a strong counter is non-decreasing.

P2X
c1 →π c2 π, Γ 	 exec(ς’c1) π, Γ 	 exec(ς’c2)

π, Γ 	 ς’c1 ≺ ς’c2
Callee
c′ ∈ Labelsπ(n) tparπ(n) = t par1π(n) = x π, Γ 	 exec(ς’c′)

π, Γ 	 ¬(ς = ε) ∧ exec(ς) ∧
obj(ς) = this ∧ name(ς) = n ∧ thread(ς) = ς’t ∧ arg(ς) = ς’x

Transaction Protocol Verification with Labeled Synchronization Logic 291

The rules presented above refer to the algorithm description. The rule P2X
states the program-order-preservation property: the program order is preserved
in the execution order. If the algorithm description requires a method call l1 to
be ordered before another method call l2, the order is preserved in the execution
of them from any call site ς. That is if ς’l1 and ς’l2 are executed, then ς’l1 is
executed before ς’l2. The rule Callee states that if a method call c′ in the body
of the caller method call ς is executed, then the later is also executed, is a this
method call and its parameters and arguments are equal.

We define the semantics [[π]] of a description π as a set of execution histories
X . A specification π models an assertion A, written as π |= A, iff every execution
X of π models A written as X |= A. The soundness theorem states that if
LSL deduces an assertion A for a description π using valid assumptions for π,
then the deduced assertion A is valid for π as well. Formally, ∀π,A : (π, Γ �
A ∧ π |= Γ) ⇒ (π |= A). The semantics and soundness of LSL is available in
the appendix [27] §8 & 11.

4 TM Verification

We now state the correctness of TM algorithms as an LSL assertion and apply
LSL to prove the correctness of the TL2 [9] algorithm. The challenge is to verify
that any concurrent execution of any set of well-formed transactions on TL2 is
opaque. Markability factors out a large part of the proof, allows specification
of the critical points of the algorithm and reduces verification to separate proof
obligations about the order of these points. LSL inference rules can be easily
used to prove the obligations based on the validation checks in the algorithm.

Transactional Memory. A TM object encapsulates a set of locations and pro-
vides four methods initt(), readt(i), writet(i, v), and committ(). A well-formed
transaction first calls initt() and then calls a sequence of readt(i) and writet(i, v)
methods, and finally calls committ(). The method committ() tries to commit
transaction t and returns C (if it is successful). A TM object should detect if
an inconsistency is about to happen between two concurrent transactions and
should at least abort one of them. All methods may return abort A and terminate
the transaction.

Correctness Assertion. We presented a decomposition called markability [30]
of the correctness condition opacity [14]. Markability restates opacity in terms
of three intuitive invariants. We state Markability as an assertion in LSL. The
markability assertion isMarking(�) is parametric with the marking relation �.
The marking assertion is available in the appendix [27] §13. We briefly explain
markability. A TM algorithm is markable iff there exists a marking relation for
it that is write-observant, read-preserving, and real-time-preserving.

A marking is a relation on the union of the transactions and the read method
calls. We can think of the marking relation as the union of a collection of orders:
(1) The effect order : The effect order is a total order of the transactions. The
effect order represents the order in which the transactions appear to take effect,

292 M. Lesani

that is, the order that justifies the correctness of the execution. (2) The access
orders: Let writers of location i be the committed transactions that have write
method call(s) to i. Consider a read method call lR that reads from a location
i and doesn’t abort. For each such lR, the access order is an antisymmetric
relation that orders lR and every writer of i. The access order represents where
lR’s access to location i has happened between the accesses by the writers of i.

TTL2 :
reg : BasicReg[], rver : ThreadLocal BasiccReg,
ver : AtomiccReg[], rset : ThreadLocal BasicSet,
lock : TryLock[], wset : ThreadLocal BasicMap,
clock : SCounter, lset : ThreadLocal BasicSet
DTL2 :
def initt() def committ()
I01 � snap = clock.read(), C01 � foreach (i ∈ wset[t])
I02 � rver[t].write(snap), C02i � l′ = lock[i].trylock(),
I03 � return if (¬l′)
def readt(i) C03i � lset[t].add(i)
R01 � pv = wset[t].get(i), else

if (pv �= ⊥) C04j � foreach (j ∈ lset[t])
R02 � return pv, C05i,j � lock[j].unlock(),

C06i � return A,
R03 � t1 = ver[i].read(),
R04 � v = reg[i].read(), C07 � wver = clock.iaf(),
R05 � l = lock[i].read(),
R06 � t2 = ver[i].read(), C08 � s = rver[t].read(),
R07 � s = rver[t].read(), if (wver �= s + 1)

if (¬(¬l ∧ t1 = t2 C09 � foreach (i ∈ rset[t])
∧ t2 ≤ s)) C10i � l = lock[i].read(),

R08 � return A, C11i � cver = ver[i].read(),
if (¬(¬l ∧ cver ≤ s))

R09 � rset[t].add(i), C12i � foreach (j ∈ lset[t])
R10 � return v, C13i,j � lock[j].unlock(),
{R03 → R04, R04 → R05, C14i � return A,
R05 → R06},
def writet(i, v) C15 � foreach ((i, v)∈wset[t])
W01 � wset[t].put(i, v), C16i � reg[i].write(v),
W02 � return ok, C17i � ver[i].write(wver),

C18i � lock[i].unlock(),

C19 � return C,
{C01 → C07, C10 → C11,
C09 → C15, C16 → C17,
C17 → C18},

P : tran0, (tran1 ‖ tran2 ‖ ... ‖ trann)

Fig. 5. TL2 algorithm description πTL2 = (TTL2, DTL2, P)

Write-observation requires that each read method call should read the most
current value. Read-preservation requires that the location read by a read
method call is not overwritten between the read accesses the location and the

Transaction Protocol Verification with Labeled Synchronization Logic 293

transaction takes effect. The real-time-preservation condition requires that the
marking relation preserves the real-time order of transactions.

Algorithm Description. We have represented the TL2 algorithm [9] in our
description language in Fig. 5. The description πTL2 provides implementations
of the four TM methods initt(), readt(i), writet(i, v), and committ() in the
definitions section D. The program in section P represents well-formed general
client transactions. A client program first runs tran0 to initialize the shared
variables and then concurrently runs n well-formed transactions tran1, .., trann.
A well-formed transaction t executes initt(), then a sequence of readt(i) and
writet(i, v) calls and finally a committ(); it finishes if any call returns A.

TL2 is a subtle algorithm. We briefly review how it works. TL2 uses the basic
register reg[i] to store the value of a location i. The algorithm reads reg[i] at
R04 and writes to reg[i] at C16. Additionally, TL2 uses synchronization objects
to help abort executions that would violate consistency. The idea is to give the
value written in reg[i] a version number that is stored in the ver[i] register.
TL2 uses a strong counter clock, whose value increases monotonically, to create
such version numbers. Specifically, TL2 takes snapshots of clock both at I01
when a transaction starts and at C07 (with an increment-and-fetch operation,
abbreviated iaf) during commit. TL2 validates the versions of read values before
completing both the read and commit methods.

Verification. We state the marking relation for the TL2 algorithm as an asser-
tion in LSL as follows:

The marking � is the reflexive closure of �.The relation � is defined as follows:
∀t, t′ : t � t′ ⇔ Eff(t) ≺clock Eff(t′)
∀�R, t : isTRead(�R) ∧ isTWriteri(t) ⇒

Let i = arg1(�R) :
t � �R ⇔ writeAcci(t) � readAcc(�R)
�R � t ⇔ readAcc(�R) ≺ writeAcci(t)

where

Eff(τ) =

{
initOf(τ)’I01 if isAborted(τ)

commitOf(τ)’C07 if isCommitted(τ)

readAcc(�R) = �R’R04
writeAcci(τ) = commitOf(τ)’C16i

Intuitively, the effect order of transactions is the linearization order of their
calls to clock at I01 and C07. The access order of read operations and writer
transactions to location i is the execution order of their access to the reg[i]
register at R04 and C16. The following theorem states that the relation � defined
above is a marking relation for TL2. The assertions Γ0 are the properties of well-
formed client transactions. We have mechanically checked the proof in PVS. The
PVS theories for TL2 and Dekker are available [26].

Theorem 2 (TL2 Correctness). πTL2, Γ0 � isMarking(�).

294 M. Lesani

5 Related Works and Conclusion

Manovit et al. [35] applied random testing to the TCC TM system. Lourenco
et al. [32] reported several bugs during the porting of the TL2 algorithm. Given
a TM algorithm and a bug pattern, our previous work [29] constructs a bug
trace if the algorithm is prone to the bug pattern. It showed the incorrectness
of algorithms that were deemed verified.

Although testing can find bugs, it does not prove their absence. To verify
the correctness of TM algorithms, researchers have employed model checking
and theorem proving. Model checkers from Cohen et al. [5,6], and Guerraoui
et al. [15–17] are the pioneering approach to verification of TM. Subsequently,
the same approach was taken by O’Leary et al. [39] and Baek et al. [3]. Model
checking can automate the verification process but it has been dependent on
assuming properties about the TM algorithm and only scalable to a finite number
of threads and locations or simplified algorithms. Later, Emmi et al. [12] tried to
infer algorithm invariants from small number of threads and memory locations.
However, it worked on simplified algorithms due to scalability issues.

Attiya et al. [2] proved that opacity is sufficient for observational refinement
of high-level atomic block semantics. Our previous work [30] showed the equiv-
alence of opacity and markability and an informal proof of correctness for TL2.
Koskinen and Parkinson presented a semantic model of serializability based on
pulls from and pushes to an abstract shared log. Khyzha et al. [24] extended
opacity to account for non-transactional accesses. In contrast to the current
work, these works consider the correctness criteria, include only informal or
non-mechanized proofs and do not include a logic and its soundness.

Singh [40] developed a runtime verification tool for TM algorithms. Although
the tool is optimized with sound approximation techniques, the runtime overhead
is still not negligible. Our previous work [28] presented a machine-checked the-
orem proving framework based on simulation between specifications and imple-
mentations [18,33] represented as IOA [34] and verified the NORec algorithm [7].
Doherty et al. [11] adopted the same approach and proved the correctness of a
pessimistic TM algorithm [36]. In follow-up works, Derrick et al. and Armstrong
et al. [1,8] simplified their simulation proofs by first model checking or proving
the linearizability of the TM algorithm. In contrast to LSL that can reason about
the algorithm description, these works require the algorithm to be translated to
a transition system. In addition, they do not feature a logic.

To the best of our knowledge, LSL is the first logic that is applied to verification
of transaction algorithms. In particular, it provides assertions for inter-thread exe-
cution and linearization orders that can directly capture the marking relation and
the markability condition. Leveraging the proof of sufficiency of markability for
opacity, verification of opacity is reduced to separate markability conditions that
can be proved by the logic based on the validation checks in the algorithm. Logics
based on concurrent separation logic [20,38] and rely-guarantee reasoning [21] such
as RGSep [42], LRG [13,31], FCSL [37], GPS [41] and Iris [22,23] require the spec-
ification of inter-thread relations as complicated global rely and guarantee condi-
tions. Further, they need auxiliary variables even for the simple Dekker algorithm
which may obscure the underlying design intuitions of the algorithms.

Transaction Protocol Verification with Labeled Synchronization Logic 295

Conclusion. We presented a logic that supports syntactic reasoning about syn-
chronization algorithm descriptions and features novel assertions and inference
rules for execution and linearization orders. These assertions enable captur-
ing critical orders between concurrent operations and in particular markability
orders between transactions. We proved the soundness of the logic and used it
to machine-check a significant proof of TL2.

References

1. Armstrong, A., Dongol, B., Doherty, S.: Proving opacity via linearizability: a sound
and complete method. In: Bouajjani, A., Silva, A. (eds.) FORTE 2017. LNCS,
vol. 10321, pp. 50–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
60225-7 4

2. Attiya, H., Gotsman, A., Hans, S., Rinetzky, N.: A programming language per-
spective on transactional memory consistency. In: Proceedings of the 2013 ACM
Symposium on Principles of Distributed Computing, PODC 2013, pp. 309–318.
ACM, New York (2013)

3. Baek, W., Bronson, N., Kozyrakis, C., Olukotun, K.: Implementing and evaluating
a model checker for transactional memory systems. In: 2010 15th IEEE Interna-
tional Conference on Engineering of Complex Computer Systems (ICECCS), pp.
117–126 (2010)

4. Bender, J., Lesani, M., Palsberg, J.: Declarative fence insertion. In: OOPSLA 2015,
pp. 367–385 (2015)

5. Cohen, A., O’Leary, J.W., Pnueli, A., Tuttle, M.R., Zuck, L.D.: Verifying correct-
ness of transactional memories. In: FMCAD (2007)

6. Cohen, A., Pnueli, A., Zuck, L.D.: Mechanical verification of transactional memo-
ries with non-transactional memory accesses. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123, pp. 121–134. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-70545-1 13

7. Dalessandro, L., Spear, M.F., Scott, M.L.: NOrec: streamlining STM by abolishing
ownership records. In: PPoPP (2010)

8. Derrick, J., Dongol, B., Schellhorn, G., Travkin, O., Wehrheim, H.: Verifying opac-
ity of a transactional mutex lock. In: Bjørner, N., de Boer, F. (eds.) FM 2015.
LNCS, vol. 9109, pp. 161–177. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-19249-9 11

9. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Dolev, S. (ed.) DISC
2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006). https://doi.org/
10.1007/11864219 14

10. Dijkstra, E.W.: Cooperating sequential processes, technical report EWD-123
(1965)

11. Doherty, S., Dongol, B., Derrick, J., Schellhorn, G., Wehrheim, H.: Proving opacity
of a pessimistic STM. Leibniz International Proceedings in Informatics, vol. 70, pp.
35:1–35:17. Dagstuhl Publishing (2017)

12. Emmi, M., Majumdar, R., Manevich, R.: Parameterized verification of transac-
tional memories. In: PLDI (2010)

13. Feng, X.: Local rely-guarantee reasoning. In: POPL 2009 (2009)
14. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In:

PPOPP (2008)

https://doi.org/10.1007/978-3-319-60225-7_4
https://doi.org/10.1007/978-3-319-60225-7_4
https://doi.org/10.1007/978-3-540-70545-1_13
https://doi.org/10.1007/978-3-540-70545-1_13
https://doi.org/10.1007/978-3-319-19249-9_11
https://doi.org/10.1007/978-3-319-19249-9_11
https://doi.org/10.1007/11864219_14
https://doi.org/10.1007/11864219_14

296 M. Lesani

15. Guerraoui, R., Henzinger, T.A., Jobstmann, B., Singh, V.: Model checking trans-
actional memories. In: ACM SIGPLAN Conference on Programming Languages
Design and Implementation, pp. 372–382 (2008)

16. Guerraoui, R., Henzinger, T.A., Singh, V.: Software transactional memory on
relaxed memory models. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 321–336. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02658-4 26

17. Guerraoui, R., Henzinger, T.A., Singh, V.: Model checking transactional memories.
Distrib. Comput. 22, 129–145 (2010)

18. Hawblitzel, C., Petrank, E., Qadeer, S., Tasiran, S.: Automated and modular refine-
ment reasoning for concurrent programs. In: Kroening, D., Păsăreanu, C.S. (eds.)
CAV 2015, Part II. LNCS, vol. 9207, pp. 449–465. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21668-3 26

19. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. TOPLAS 12(3), 463–492 (1990)

20. Hobor, A., Appel, A.W., Nardelli, F.Z.: Oracle semantics for concurrent separa-
tion logic. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 353–367.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78739-6 27

21. Jones, C.B.: Specification and design of (parallel) programs. In: Information Pro-
cessing 83, vol. 9, pp. 321–332 (1983)

22. Jung, R., Krebbers, R., Birkedal, L., Dreyer, D.: Higher-order ghost state. In:
Proceedings of the 21st ACM SIGPLAN International Conference on Functional
Programming, ICFP 2016, pp. 256–269. ACM, New York (2016)

23. Jung, R., et al.: Iris: monoids and invariants as an orthogonal basis for concurrent
reasoning. In: POPL 2015 (2015)

24. Khyzha, A., Attiya, H., Gotsman, A., Rinetzky, N.: Safe privatization in transac-
tional memory. In: Proceedings of the 23rd ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, pp. 233–245. ACM (2018)

25. Lamport, L.: On interprocess communication. Part I: basic formalism. Distrib.
Comput. 1(2), 77–85 (1986)

26. Lesani, M.: PVS Proof Theories (2018). http://www.cs.ucr.edu/%7Elesani/
companion/nfm19/PVSTheories.tar.gz

27. Lesani, M.: Submission appendix (2018). http://www.cs.ucr.edu/%7Elesani/
companion/nfm19/Appendix.pdf

28. Lesani, M., Luchangco, V., Moir, M.: A framework for formally verifying software
transactional memory algorithms. In: Koutny, M., Ulidowski, I. (eds.) CONCUR
2012. LNCS, vol. 7454, pp. 516–530. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32940-1 36

29. Lesani, M., Palsberg, J.: Proving non-opacity. In: Afek, Y. (ed.) DISC 2013. LNCS,
vol. 8205, pp. 106–120. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-41527-2 8

30. Lesani, M., Palsberg, J.: Decomposing opacity. In: Kuhn, F. (ed.) DISC 2014.
LNCS, vol. 8784, pp. 391–405. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-45174-8 27

31. Liang, H., Feng, X.: Modular verification of linearizability with non-fixed lineariza-
tion points. In: PLDI 2013, pp. 459–470 (2013)

32. Lourenço, J., Cunha, G.: Testing patterns for software transactional memory
engines. In: Proceedings of the 2007 ACM Workshop on Parallel and Distributed
Systems: Testing and Debugging, PADTAD 2007, pp. 36–42. ACM, New York
(2007)

https://doi.org/10.1007/978-3-642-02658-4_26
https://doi.org/10.1007/978-3-642-02658-4_26
https://doi.org/10.1007/978-3-319-21668-3_26
https://doi.org/10.1007/978-3-319-21668-3_26
https://doi.org/10.1007/978-3-540-78739-6_27
http://www.cs.ucr.edu/%7Elesani/companion/nfm19/PVSTheories.tar.gz
http://www.cs.ucr.edu/%7Elesani/companion/nfm19/PVSTheories.tar.gz
http://www.cs.ucr.edu/%7Elesani/companion/nfm19/Appendix.pdf
http://www.cs.ucr.edu/%7Elesani/companion/nfm19/Appendix.pdf
https://doi.org/10.1007/978-3-642-32940-1_36
https://doi.org/10.1007/978-3-642-32940-1_36
https://doi.org/10.1007/978-3-642-41527-2_8
https://doi.org/10.1007/978-3-642-41527-2_8
https://doi.org/10.1007/978-3-662-45174-8_27
https://doi.org/10.1007/978-3-662-45174-8_27

Transaction Protocol Verification with Labeled Synchronization Logic 297

33. Lynch, N., Vaandrager, F.: Forward and backward simulations for timing-based
systems. In: de Bakker, J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.)
REX 1991. LNCS, vol. 600, pp. 397–446. Springer, Heidelberg (1992). https://doi.
org/10.1007/BFb0032002

34. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Q.
2, 219–246 (1989)

35. Manovit, C., Hangal, S., Chafi, H., McDonald, A., Kozyrakis, C., Olukotun, K.:
Testing implementations of transactional memory. In: Proceedings of the 15th
International Conference on Parallel Architectures and Compilation Techniques,
PACT 2006, pp. 134–143. ACM, New York (2006)

36. Matveev, A., Shavit, N.: Towards a fully pessimistic STM model (2012)
37. Nanevski, A., Ley-Wild, R., Sergey, I., Delbianco, G.A.: Communicating state tran-

sition systems for fine-grained concurrent resources. In: Shao, Z. (ed.) ESOP 2014.
LNCS, vol. 8410, pp. 290–310. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-54833-8 16

38. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comput. Sci.
375(1–3), 271–307 (2007)

39. O’Leary, J., Saha, B., Tuttle, M.R.: Model checking transactional memory with
spin. In: 29th IEEE International Conference on Distributed Computing Systems,
ICDCS 2009, pp. 335–342 (2009)

40. Singh, V.: Runtime verification for software transactional memories. In: Barringer,
H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 421–435. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-16612-9 32

41. Turon, A., Vafeiadis, V., Dreyer, D.: GPS: navigating weak memory with ghosts,
protocols, and separation. In: Proceedings of the 2014 ACM International Confer-
ence on Object Oriented Programming Systems Languages & Applications, OOP-
SLA 2014, pp. 691–707. ACM, New York (2014)

42. Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation logic. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74407-8 18

https://doi.org/10.1007/BFb0032002
https://doi.org/10.1007/BFb0032002
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1007/978-3-642-16612-9_32
https://doi.org/10.1007/978-3-540-74407-8_18

Symbolic Model Checking of Weighted
PCTL Using Dependency Graphs

Mathias Claus Jensen, Anders Mariegaard(B), and Kim Guldstrand Larsen

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, 9220 Aalborg, Denmark

{mcje,am,kgl}@cs.aau.dk

Abstract. We present a global and local algorithm for model checking
a weighted variant of PCTL with upper-bound weight constraints, on
probabilistic weighted Kripke structures where the weights are vectors
with non-zero magnitude. Both algorithms under- and over approximate
a fixed-point over a symbolic dependency graph, until sufficient evidence
to prove or disprove the given formula is found. Fixed-point computa-
tions are carried out in the domain of (multidimensional) probabilis-
tic step functions, encoded as interval decision diagrams. The global
algorithm works similarly to classic value iteration for PCTL in that
it evaluates all nodes of the dependency graph iteratively, while the
local algorithm performs a search-like evaluation of the given dependency
graph in an attempt to find enough evidence locally to prove/disprove a
given formula, without having to evaluate all nodes. Both algorithms are
evaluated on several experiments and we show that the local algorithm
generally outperforms the global algorithm.

Keywords: Model checking · PCTL · Fixed-point computation

1 Introduction

The ubiquity of embedded systems in modern-day society calls for robust and
efficient methodologies for the design, production and implementation of more
and more complex systems. These systems usually interact with the physical
world, as well as the Internet, as a so called cyber-physical system. In this
area, model-driven development is gaining popularity as a way to deal with
early design-space exploration and automatic verification. Especially important
in this context is the incorporation of non-functional aspects, such as resource
consumption, timing constraints and probabilistic behavior. This has lead to
a large variety of mathematical models having been created for the purpose
of modeling these quantitative systems. In conjunction with these models, an
assorted landscape of logics have also been proposed for the sake of specify-
ing desired properties regarding the aforementioned models. Within the model-
checking community this has lead to tools such as UPPAAL [16], PRISM [14],
MRMC [12] and STORM [7], for analysis of systems involving continuous time,
c© Springer Nature Switzerland AG 2019
J. M. Badger and K. Y. Rozier (Eds.): NFM 2019, LNCS 11460, pp. 298–315, 2019.
https://doi.org/10.1007/978-3-030-20652-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20652-9_20&domain=pdf
https://doi.org/10.1007/978-3-030-20652-9_20

Symbolic Model Checking of Weighted PCTL Using Dependency Graphs 299

stochastic behavior and various types of resources, in an efficient manner. At the
heart of such tools are algorithms that verify user given properties on specified
models.

Our Contribution. We present two algorithms for model-checking a weighted
subset of probabilistic CTL (PCTL) [8] with upper-bound weight constraints,
on probabilistic weighted Kripke structures.

We allow for the weights of both the model and formula to be multidimen-
sional, i.e. vectors. This allows for the modeling of consumption/production of
resources in multiple dimensions. E.g. for cyber-physical systems we might be
interested in both the time and energy it takes to perform some action.

Both algorithms approximate a fixed point on a symbolic dependency graph
by repeated computation of under- and over-approximations. Termination is
guaranteed as the transition weight vectors are required to have non-zero magni-
tude, in addition to path-formulae having upper-bound weight-constraints. Our
symbolic dependency graphs extend the dependency graphs introduced by Liu
and Smolka [17] to cope with the multidimensional probabilistic domain. The
first algorithm, the global algorithm, is, with minor modifications, an instance
of the approach presented in our previous work in [18] which in turn is an exten-
sion of the global algorithm by Liu and Smolka. The second algorithm, the local
algorithm, was not a part of [18] and is our novel extension of the local algorithm
presented by Liu and Smolka.

Both algorithms have been implemented in a prototype tool written in
Python, using Interval Decision Diagrams [19] as the back-end data-structure
for symbolic computations. For experimental evaluation, we present results on
two case-studies based on PRISM [14] models and show that the local approach
is, also in this domain, generally more efficient than the global approach, espe-
cially in cases where complete exploration of the underlying dependency graph
is not needed to prove/disprove a property of the model. An extended version
of the paper, with proofs, can be found online at http://people.cs.aau.dk/∼am/
nfm19/ext.pdf.

Related Work. The framework of fixed point computations introduced by Liu
and Smolka has recently been extended in different ways. A distributed ver-
sion of the local algorithm, that also deals with negation has been developed
in [6]. The framework has also been extended to a weighted domain in [11] for
model-checking weighted CTL on weighted Kripke structures where a symbolic
graph encoding ensures an efficient local algorithm. An extension for Timed
Games has been developed in [4]. In [5] the global algorithm was extended for
parametric model-checking, used in [2] for model-checking on models with real-
valued random variables as weights. Our global algorithm is reminiscent of the
PCTL model-checking algorithm on which PRISM is based [13], in the sense
that we consider the parse-tree of the formula and recursively compute the sat-
isfaction of sub-formulae in an iterative manner. For MRMC, the algorithms
based on path graph generation presented in [1] are used to solver similar model-
checking problems, based on a local unfolding of the model as our local approach.

http://people.cs.aau.dk/~am/nfm19/ext.pdf
http://people.cs.aau.dk/~am/nfm19/ext.pdf

300 M. Claus Jensen et al.

m0 {a}

m1 {b}

(3, 4), 1
2

(5, 6), 1
2

(1, 0), 1

(a) M1

〈m0, P≥ 5
8
(a U≤(13,16) b)〉1

〈m0, a U≤? b〉2

〈m0, a〉4

∅

〈m0, b〉3 〈Σ1〉5 〈m1, a U≤? b〉 6

〈m1, a〉
8

〈m1, b〉7

∅

〈Σ2〉
9

(13, 16), ≥, 5
8

(5, 6), 1
2

(3, 4), 1
2

(1, 0), 1

(b) SDG constructed from m0 and Φ = P≥ 5
8
(a U≤(13,16) b)

Fig. 1. A simple PWKS with 2-dimensional weights and its associated SDG

Each node in a path graph represents a certain reward, associated with a number
of finite path fragments and their probabilities, in contrast to our approach where
nodes encode probabilities associated with the satisfaction of a given formulae
in a state.

2 Models and Properties

For any set X, Xn is the set of all n-dimensional vectors with elements from
X. For x ∈ X we let xn denote the n-dimensional vector with all elements
being x. Hence Nn is the set of all n-dimensional vectors of natural numbers and
Nn

+ = Nn \ 0n restricts Nn to vectors with strictly positive magnitude. For the
remainder of the paper we assume a fixed dimensionality n, with n > 0. Any
vector is written in boldface e.g. x = (x1, . . . , xn),y = (y1, . . . , yn) are vectors.
Finally, we assume a fixed finite set of labels AP .

Definition 1 (Probabilistic Weighted Kripke Structure). A Probabilistic
Weighted Kripke Structure (PWKS) is a structure M = (M,→, �) where M is
a finite set of states, →⊆ M ×Nn

+ × (0, 1]×M is the finite weighted probabilistic
transition relation such that for all m ∈ M ,

∑
(m,wi,pi,mi)∈→ pi = 1 and � : M →

2AP is the labeling function, assigning to each state a set of atomic propositions.

Whenever (m,w, p,m′) ∈→ we write m
w ,p−−→ m′. A path from a state m0 is an

infinite sequence of transitions π = (m0,w0, p0,m1), (m1,w1, p1,m2), . . . with
mi

wi ,pi−−−→ mi+1 for any i ∈ N. We denote by π[j] the j’th state of π, mj and by
W(π)(j) the accumulated weight along path π up until mj . Hence W(π)(0) = 0
and W(π)(j) =

∑j−1
i=0 wi for j > 0. See Fig. 1a for an example PWKS with two

states and weights from N2.
As specification language we define the logic Probabilistic Weighted CTL

(PWCTL), extending a subset of Probabilistic CTL (PCTL), with weight-
vectors.

Symbolic Model Checking of Weighted PCTL Using Dependency Graphs 301

Definition 2 (PWCTL). The set of PWCTL state formulae, L, is given by
the following grammar:

L : Φ ::= a | ¬a | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | P�λ(Ψ)

where a ∈ AP, λ ∈ [0, 1] and �= {>,≥}. The path formulae are given by the
following grammar, with k ∈ Nn:

Ψ ::= X≤kΦ | Φ1U≤kΦ2 .

We also define a set of symbolic unbounded until-formulae for later use,
namely S = {Φ1U≤?Φ2 | Φ1, Φ2 ∈ L} ∪ {X≥?Φ | Φ ∈ L}.

For the probabilistic modality P�λ(Ψ), the satisfaction is dependent on
the probability of picking a path satisfying the path-formulae Ψ , from some
state m. To this end we employ the standard cylinder-set construction (see
[3, Chapter 10]) to obtain a unique probability measure P, assigning probabilities
to sets of paths sharing a common prefix (a cylinder).

Definition 3 (PWCTL Semantics). For a PWKS M = (M,→, �) with state
m ∈ M , the satisfiability relation |= is inductively defined by:

M,m |= a iff a ∈ �(m)
M,m |= ¬a iff a /∈ �(m)
M,m |= Φ1 ∧ Φ2 iff M,m |= Φ1 and M,m |= Φ2

M,m |= Φ1 ∨ Φ2 iff M,m |= Φ1 or M,m |= Φ2

M,m |= P�λ(Ψ) iff P(π | π[0] = m,M, π |= Ψ) � λ

where, for any path π:

M, π |= X≤kΦ iff π[0]
w ,p−−→ π[1],M, π[1] |= Φ, and w ≤ k

M, π |= Φ1U≤kΦ2 iff there exists a j such that M, π[j] |= Φ2,

M, π[i] |= Φ1 for all i < j and W(π)(j) ≤ k.

If M is clearly implied by the context, we simply write m |= Φ if the state m of
PWKS M satisfies the formula Φ and similarly π |= Ψ if π is a path in M.

Example 1. For the PWKS M1 in Fig. 1a, we have that m0 |= P≥λ(aU≤k b)
with k = (8, 10) and λ = 5

8 as P(π | π[0] = m0, π |= aU≤(8,10) b) = 1
2 + 1

2 · 1
2 = 6

8 .
In fact, this is the case for any k ≥ (8, 10). Finally, if λ ≤ 1

2 , considering only the

path m0
(3,4), 12−−−−→ m1 · · · instead of the entire set of paths, would be sufficient.

3 Symbolic Dependency Graphs

As the semantics of PWCTL is given by induction in the structure of the formula,
a solution to the model-checking problem m |= Φ is dependent on the solution to
related model-checking problems involving sub-formulae of Φ and the reachable
states of m. We encode these dependencies as edges between nodes in a Sym-
bolic Dependency Graph and reduce the model-checking problem to fixed-point
computations on these graphs.

302 M. Claus Jensen et al.

〈m, a〉

∅
(a)

a ∈ �(m)

〈m, a〉
(b)

a /∈ �(m)

〈m, Φ1 ∨ Φ2〉

〈m, Φ1〉 〈m, Φ2〉
(c) Disjunction

〈m, Φ1 ∧ Φ2〉

〈m, Φ1〉 〈m, Φ2〉
(d) Conjunction

〈m, P�λ(Φ1U≤kΦ2)〉

〈m, Φ1U≤?Φ2〉
k, �, λ

(e) Until cover edge

〈m, P�λ(X≤kΦ)〉 〈Σ〉

〈m1, Φ〉

〈ml, Φ〉

...
k, �, λ

w1, p1

wl, pj

(f) Next

〈m, Φ1U≤?Φ2〉

〈m, Φ2〉

〈Σ〉

〈m, Φ1〉

〈m1, Φ1U≤?Φ2〉

〈mj , Φ1U≤?Φ2〉
··

·

w1, p1

wj , pl

(g) Symbolic until

Fig. 2. SDG construction rules for state m where m
w i ,pi−−−−→ mi for all i with 1 ≤ i ≤ j.

Definition 4 (Symbolic Dependency Graph). For a PWKS M = (M,→
, �), a symbolic dependency graph (SDG) is a tuple, G = (C,EH , EC , EΣ), where

– C ⊆ M × L ∪ M × S ∪ {Σ} × M × S is a finite set of configurations (nodes),
– EH ⊆ C × 2C is a finite set of hyper-edges,
– EC ⊆ C × Nn× � ×[0, 1] × C is a finite set of cover-edges, and
– EΣ ⊆ C × 2N

n
+×[0,1]×C is a finite set of sum-edges.

We will refer to elements of: M × L as concrete-, M × S as symbolic-, and
{Σ}×M ×S as sum-configurations. For brevity, we will often write 〈Σ〉 for sum-
configurations when the state and symbolic formula is clear from context. If a
configuration s ∈ C can transition to another configuration t ∈ C using any type
of edge, we write s � t. Given a state m and formula Φ, one can construct the
SDG rooted in 〈m,Φ〉 by recursively applying the rules of Fig. 2. Singular hyper-
edges are used to encode conjunction (Fig. 2d) and multiple hyper-edges encode
disjunction (Fig. 2c). Cover-edges are used to abstract away concrete bounds on
probabilities and weights and introduces symbolic configurations (Fig. 2e and f).
Lastly, sum-edges encode the probabilistic weighted transitions of the underlying
model (Fig. 2g and f).

Example 2. Consider again the PWKS M1 of Fig. 1a and the formula Φ =
P≥ 5

8
(aU≤(13,16) b). The SDG obtained by applying the construction rules in

Fig. 2 can be seen in Fig. 1b.

Symbolic Model Checking of Weighted PCTL Using Dependency Graphs 303

For the rest of this section we assume a fixed model, M = (M,→, �), with
m ∈ M and a fixed PWCTL-formula, Φ. Let G = (C,EH , EC , EΣ) be the SDG
constructed using the rules given in Fig. 2 with root s0 = 〈m,Φ〉. The semantics
of configurations is given by assignments, encoding the probability of satisfaction,
given a cost-bound (weight).

Definition 5 (Assignments). An assignment is a function, a : Nn → [0, 1],
assigning to each vector a probability.

We use A to denote the set of assignments.
For any a1, a2 ∈ A, a1 � a2 iff ∀w ∈ Nn. a1(w) ≤ a2(w).

Assignments naturally extends to SDGs.

Definition 6 (Assignment Mapping). An assignment mapping on G is a
function, A : C → A, mapping each configuration to an assignment.

We use CG to denote the set of assignment mappings over G.
For any A1, A2 ∈ CG, A1 �G A2 iff ∀s ∈ C.A1(s) � A2(s).

We define 0,1 ∈ A to be the assignments that map any vector to the prob-
abilities 0 and 1, respectively. We will refer to these assignments as Boolean
assignments. Similarly, we define A0, A1 to be the assignment mappings that
map any configuration to the Boolean assignments 0 and 1, respectively. Gen-
erally, concrete configurations will receive Boolean assignments. For symbolic
configurations, e.g. 〈m,Φ1 U≤?Φ2〉, assignments will be used to compute proba-
bilities associated with the sets of paths satisfying any concrete instance of the
formula induced by replacing ? with a cost-bound k ∈ Nn.

Clearly, (A,�) and (CG,�G) are complete lattices with 0, 1 and A0, A1, as
their respective bottom and top elements. We will use

⊔
X and

�
X to denote

the supremum and infimum of any subset X ⊆ A. As usual we let
⊔ ∅ = 0

and
� ∅ = 1. The supremum of X can be realised as the assignment defined,

for arbitrary w ∈ Nn, as (
⊔

X)(w) = sup{p ∈ [0, 1] | a ∈ X, a(w) = p}. The
infimum can be realised in a similar fashion. For a1, a2 ∈ A, we define (a1+a2) to
be the assignment given, for arbitrary w ∈ Nn as, (a1+a2)(w) = a1(w)+a2(w).
Another useful operation on assignments as that of shifting :

Definition 7 (Shifting). For w ∈ Nn, and p, q ∈ [0, 1], shiftw ,p,q : A → A
is a function that, given an assignment a ∈ A, produces a shifted assignment
shiftw ,p,q(a) ∈ A, defined for any v ∈ Nn as,

shiftw ,p,q(a)(v) =

{
a(v − w) · p if w ≤ v

q otherwise

Shifting an assignment increases the cost of satisfaction, represented by the
assignment, by an amount w while adjusting the degree of satisfaction by p
and setting the probabilities to q if the cost is below w.

304 M. Claus Jensen et al.

0 1 2 3 4 5
0

1

2

3

4

5

0

2
3

1
3

1
3

x1

x
2

(a) Assignment a∗ as a plot

0 1 2 3 4 5
0

1

2

3

4

5

0

p 2
3

p 1
3

p 1
3

q

q

(1,
1)

x1

x
2

(b) The assignment shift(1,1),p,q(a∗)

Fig. 3. Assignment shifting

Example 3. Suppose m
(1,1), 12−−−−→ m1 and m

(2,2), 12−−−−→ m2. Let the assignment in
Fig. 3a be a∗ with the property a∗(w) = P(π | π[0] = m1,m1 |= X≤w Φ) =
P(π | π[0] = m2,m2 |= X≤wΨ) for all w ∈ Nn and some state-formula Φ. a∗

thus encodes the exact probability of paths starting in m1 (or m2) that satisfy
X≤w Φ, for all w. By applying the shift operator, and addition on assignments,
we get am = Shift(1,1), 12 ,0(a

∗) + Shift(2,2), 12 ,0(a
∗). am has the desired property

that am(w) = P(π | π[0] = m,m |= X≤w Φ) for any w. Figure 3b shows the
result of the first term (q = 0, p = 1

2).

We now introduce the fixed-point operator from our previous work in [18].

Definition 8. For a SDG G = (C,EH , EC , EΣ), F : CG → CG is a function
that, given an assignment mapping A on G, produces a new updated assignment
mapping, F (A). F is given for any node s ∈ C as follows,

F (A)(s) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{
1 if A(t)(k) � λ

0 otherwise
if (s,k,�, λ, t) ∈ EC

∑

(w ,p,t)∈T

shiftw ,p,0 (A(t)) if (s, T) ∈ EΣ

⊔

(s,T)∈EH

�

t∈T

A(t) otherwise

F is well-defined as all configuration have at most one type of outgoing edge.
For cover-edges we simply check the cover-condition. For sum-edges we compute
a sum over all assignments to targets, shifted by the corresponding weight and
probability as exemplified in Example 3. Lastly, for configurations with outgoing
hyper-edges or no outgoing edges we compute a supremum over all hyper-edges
and for each hyper-edge an infimum.

As F is monotonic (see [18]) on a complete lattice, we get, by Tarski’s fixed
point theorem [20], that F must have a unique least fixed point, Amin. The
following theorem states that our construction of a SDG from a pair 〈m,Φ〉
along with its associated least fixed point, Amin, as given by F , is indeed sound.

Symbolic Model Checking of Weighted PCTL Using Dependency Graphs 305

Theorem 1 (Soundness). m |= Φ iff Amin(〈m,Φ〉) = 1.

Corollary 1. P(π | π[0] = m,π |= Φ1U≤kΦ2) = Amin(〈m,Φ1UΦ2〉)(k).

For any concrete configuration, i.e. on the form 〈m,Φ〉, we have that any assign-
ment mapping generated by F will be assigned either 0 or 1. Thus, we have the
following corollary.

Corollary 2. m �|= Φ iff Amin(〈m,Φ〉) = 0.

As (CG,�G) can be a lattice of infinite size, it is not given that we can construct
Amin through repeated applications of F on the bottom element 0. The following
theorem however states that F can be used to sufficiently approximate Amin,
from above and below, in a finite number of iterations, so that we may answer
our model checking query.

Theorem 2 (Realisability). There exists an i ∈ N such that,

m |= Φ ⇐⇒ F i(A0)(〈m,Φ〉) = 1 and m �|= Φ ⇐⇒ F i(A1)(〈m,Φ〉) = 0.

This theorem follows in part from our SDGs being finite. If the SDG is acyclic
then it is trivial to show. If not, then the only cycles that occur, occur within
the sub-tree of a node of type 〈P�λ(Φ1U≤kΦ2)〉, which is directly dependent on
〈m,Φ1U≤?Φ2〉. Since the weights of transitions are of positive magnitude, there is
only a finite number of ways to concretely unfold the symbolic node 〈m,Φ1U≤?Φ2〉
and its dependencies for any given k ∈ Nn. As such, there exists a j ∈ N, such that
F j(A0)(〈m,Φ1U≤?Φ2〉)(k) = F j(A1)(〈m,Φ1U≤?Φ2〉)(k) = Amin(k).

3.1 Global Algorithm

We now introduce an algorithm based on the function in Definition 8. This
algorithm will be referred to as the global algorithm as it updates the entire
assignment mapping of a given SDG each iteration, therefore in a sense, globally
applying the iterator. The algorithm is as follows: repeatedly apply F on all
configurations s ∈ C until F i(0)(s0) = 1 or F j(1)(s0) = 0 for some i, j ∈ N,
where s0 is the root of the SDG. Termination and correctness is guaranteed by
Theorems 1 and 2.

Example 4. Consider the repeated application of F on the root of the SDG
from Fig. 1b, starting from 0. Table 1 shows the results, with configurations in
bold and one row per iteration. Only configurations that change value from
0 are listed. Assignments are written as pairs of weights and probabilities e.g.
{((3, 4), 1

2), ((8, 10), 3
4)} is the assignment a s.t a(w) = 0 for w < (3, 4), a(w) = 1

2
for (3, 4) ≤ w < (8, 10) and a(w) = 3

4 for w ≥ (8, 10). As seen, F 7 assigns 1 to
1 i.e m0 |= P≥ 5

8
(aU≤(8,10) b) as expected.

306 M. Claus Jensen et al.

Table 1. Lower bound assignments for Fig. 1b

1 2 4 5 6 7 9

1 - - 1 - - 1 -

2 - - - - 1 - -

3 - - - {((3, 4), 1
2
)} - - {((1, 0), 1)}

4 - {((3, 4), 1
2
)} - - - - -

5 - - - {((3, 4), 1
2
), ((8, 10), 3

4
)} - - -

6 - {((3, 4), 1
2
), ((8, 10), 3

4
)} - - - - -

7 1 - - - - - -

In practice, we need a finite representation of assignments. To this end we use
Interval Decision Diagrams (IDDs) [19], a generalization of Binary Decision Dia-
grams (BDDs). IDDs, like BDDs, test on variables but now the values of variables
are partitioned into disjoint intervals that must be independent, in the sense that
any two values within the same interval must produce the same function value.

x1

x2x2 x2

1
30 2

3

[0, 1)
[1, 2)

[2,∞)

[0,∞)
[0, 2)

[2,∞)

[0, 1)

[1, 2) [2,∞)

Fig. 4. Example IDD

Recall that all assignments are of the form α :
Nn → [0, 1] i.e. functions that, given a vector of nat-
ural numbers, yields some probability. The simplest
assignments, 0 and 1 are encoded directly as IDD
terminals. In the general case, we have n variables,
where n is the dimension of the weight-vectors. As
all assignments of interest are built from 0 and
1 by applying operations shiftw ,p,q(a),

⊔{a, b},�{a, b}, and a + b, where a, b ∈ A, we only need
that IDDs are closed under these operations. For the
binary operations, this is a straight-forward exten-
sion of the procedure for BDDs and it is easy to show that IDDs are closed under
shifting.

Example 5. As an example of an IDD encoding a non-trivial assignment, see
Fig. 4, here encoding the assignment a∗ of Fig. 3a. a∗ can be generated by the
assignment shift(1,2), 13 ,0(1) + shift(2,1), 13 ,0(1).

4 Local Algorithm

As an alternative to globally updating the assignment to all nodes in each iter-
ation, we propose a local algorithm. The pseudocode for the local algorithm can
be seen in Algorithm 1. It takes as input a SDG G = (C,EH , EC , EΣ) and a
configuration s0 = 〈m,Φ〉 and outputs Amin(s0). The fixed-point computation
is done in the while loop (lines 15–17) by calling nextlower and nextupper to
compute the next lower and upper bound of Amin, respectively. To this end,
single edges are processed locally according to the type of the edge. Assignments
to configurations are now from the domain A∪{⊥,�}, ⊥(�) being the smallest

Symbolic Model Checking of Weighted PCTL Using Dependency Graphs 307

(largest) assignment w.r.t �. The SDG G is assumed to be constructed according
to the rules in Fig. 2 for a model-checking problem m |= Φ. For termination, we
define a required precision k = supK(Φ) on assignments, as the supremum of
all the weight-bounds found in Φ. Given k, we are only interested in assignment
with this precision. We therefore introduce a k-ordering of assignments.

Definition 9 (k-ordering). For a given k ∈ Nn, we define the binary rela-
tion �k on assignments by a1 �k a2 iff ∀w ≤ k . a1(w) ≤ a2(w), where
a1, a2 ∈ A and let a1 =k a2 if a1 �k a2 and a2 �k a1. For a given
SDG G = (C,EH , EC , EΣ), we extend the relation to assignment mappings by
A1 �k A2 iff ∀s ∈ C . A1(s) �k A2(s), where A1, A2 ∈ CG.

Algorithm 1. Symbolic Local Algorithm
input : SDG G = (C, EH , EC , EΣ) and configuration s0 = 〈m, Φ〉 ∈ C
output : Amin(s0)

1 k = sup K(Φ);
2 foreach v ∈ {L, U} do
3 foreach s ∈ C do Rv(s) = ∅ ;
4 foreach (s, T) ∈ EΣ do
5 foreach (w, p, t) ∈ T do Σv

Δ(s)(t) = 0 ;

6 foreach s ∈ C do
7 AL(s) = ⊥;

8 AU (s) = 	;

9 AL(s0) = aL
def = aU

max = 0;

10 AU (s0) = aU
def = aL

max = 1;

11 W ↓
L = W ↓

U = succ(s0);

12 W ↑
L = W ↑

U = ∅;

13 while (W ↓
L ∪ W ↑

L) �= ∅ ∧ (W ↓
U ∪ W ↑

U) �= ∅ do
14 nextlower();
15 nextupper();

16 if (W ↓
L ∪ W ↑

L) = ∅ then return AL(s0) ;

17 else return AU (s0) ;

Given k, termination and correctness does not rely on computing both the upper
and lower bound and as the two functions are almost identical, we only show
pseudo-code responsible for computing lower bounds. In practice, computing
upper bounds can be beneficial in cases where the query is unsatisfied. The
pseudo-code for nextlower can be seen in Algorithm 2, with edge processing
functions in Algorithm 4.

308 M. Claus Jensen et al.

Algorithm 2. nextlower

1 function nextlower():
2 Pop e from W ↓

L or W ↑
L;

3 s = source(e);
4 if Crt(s) = a then
5 AL(s) = a;
6 W ↑

L = W ↑
L ∪ D(s);

7 else if e ∈ EH then
8 HyperEdgeLower(e);
9 else if e ∈ EΣ then

10 SumEdgeLower(e);
11 else if e ∈ EC then
12 CoverEdgeLower(e);

Functions nextlower and nextupper
utilize different data-structures to pro-
cess edges of the graph. Let α ∈ {L,U}.
Then the data-structures are: Crt : C ⇀
A, AL : C → A ∪ {⊥}, AU : C → A ∪
{�},W ↓

α,W ↑
α ⊆ 2E ,Σα

Δ : C → (C → A),
Rα : C → 2C and aα

def , aα
max ∈ A.

All data-structures with α = L (α =
U) are only used in nextlower (nextupper)
Crt is a partial function with Crt(s) = a
if s has received its fixed-point assign-
ment a. Crt is used to skip the process-
ing edges for which the source configura-
tion has already received its fixed point
assignment. AL and AU contain the cur-
rent approximations of the fixed point. If AL(s) = ⊥ (AU (s) = �) then configu-
ration s has no under-approximation (over-approximation) yet. W ↓

α and W ↑
α are

sets containing all edges to be processed for exploration and back-propagation,
respectively. For a sum-edge (s, T) with T = {(w1, p1, t1), . . . (wj , pj , tj)},
Σα

Δ(s)(ti) contains the contribution from the partial sum-edge (s,wi , pi, ti) to
the assignment of s. For two configuration s, t ∈ C, s ∈ Rα(t) indicates that the
assignment to s, Aα(s) is dependent on the assignment to t, Aα(t) and that Aα(t)
was changed since the last update to Aα(s). When processing an edge e with
s as the source (source(e) = s), we can thus safely skip any t ∈ targets(e)
for which s /∈ Rα(t), when updating Aα(s). We will refer to Rα(t) as the
read list of t. aα

def is the default assignment given to newly discovered con-
figurations and aα

max is the maximal possible assignment any configuration can
get. All data structures are initialized in Algorithm 1 and are used throughout
Algorithms 1–3. For any edge e, we let source(e) be its source configuration and
targets(e) = {t | source(e) � t} be its set of targets. For any configuration
s we let succ(s) = {(s, T) ∈ EH ∪ EΣ} ∪ {(s,w,�, p, t) ∈ EC} be the set of
edge-successors of s and D(s) = {e | e ∈ EH ∪ EΣ ∪ EC ∧ s ∈ targets(e)} the
set of edges dependent on the assignment to s. Informally, if the assignment to
s is changed, edges from D(s) should be processed.

Symbolic Model Checking of Weighted PCTL Using Dependency Graphs 309

Algorithm 3. Helper functions
1 function InitLower(s):
2 AL(s) = aL

def ;
3 W ↓

L = W ↓
L ∪ succ(s);

4 foreach e ∈ succ(s) do
5 foreach t ∈ targets(e) do
6 if AL(t) �= ⊥ then
7 RL(t) = RL(t) ∪ {s};

8 function BackPropLower(s, anew):
9 foreach e ∈ D(s) do

10 if AL(source(e)) = ⊥ then
11 InitLower(source(e));
12 RL(s) = RL(s) ∪ {source(e)};
13 W ↑

L = W ↑
L ∪ {e};

14 if anew = aL
max then

15 Crt(s) = aL
max;

For edge processing, we uti-
lize helper functions. Algorithm 3
shows the pseudo-code. We use
InitLower(t) when a new tar-
get t is discovered. The assign-
ment of t is set to the spec-
ified default value aL

def and a
forward exploration is prepared
from t by adding all succes-
sors of t to W ↓

L. Finally, t is
added to all relevant read lists.
BackPropLower(s, anew) is used
when updating assignment AL(s)
to anew. If it cannot be fur-
ther improved, Crt(s) = anew.
Back-propagation is prepared by
adding all dependent edges, D(s),
to W ↑

L. If the source of any such
edge has not been discovered and
therefore has assignment ⊥, it is
initialized. Finally, for any edge in D(s), the newly updated assignment should
be read. Hence the read list of s, RL(s) is updated to include the sources of all
such edges.

We now present our termination and correctness theorems, saying that the
while loop in Algorithm 1 terminates and that the computed assignments for
explored nodes are equal to the assignment given by the minimal fixed-point
Amin, within the given precision k.

Lemma 1 (Termination). The local algorithm (Algorithm 1) terminates with

(W ↓
L ∪ W ↑

L) = ∅ or (W ↓
U ∪ W ↑

U) = ∅.

Theorem 3 (Correctness). Upon termination, the local algorithm has com-
puted assignments AL, AU , such that for any s ∈ C,

– If (W ↓
L ∪ W ↑

L) = ∅ then AL(s) �= ⊥ =⇒ AL(s) =k Amin(s).
– If (W ↓

U ∪ W ↑
U) = ∅ then AU (s) �= � =⇒ AU (s) =k Amin(s).

5 Experiments

Both the local and global algorithm have been implemented in a prototype tool
written in Python. For both algorithms, we use two separate processes to com-
pute the under- and over-approximations in parallel. For the local algorithm,
successors of configurations are generated on-the-fly. Both algorithms terminate
when the root configuration is fixed. For the local algorithm we may also termi-
nate when the waiting lists of either the under- or over-approximator are empty.

310 M. Claus Jensen et al.

Algorithm 4. Processing functions for nextlower

1 function HyperEdgeLower(e = (s, T)):
2 if ∃t ∈ T.AL(t) = 0 then return ;

3 else if ∃t ∈ T.A(t)L = ⊥ then InitLower(t) ;
4 else
5 a =

⊔{�{AL(t) | t ∈ T}, AL(s)};

6 if a �k AL(s) then
7 BackPropLower(s, a);

8 AL(s) = a;

9 function SumEdgeLower(e = (s, T)):
10 a = AL(s);
11 foreach (w, p, t) ∈ T do
12 if AL(t) �= ⊥ ∧ s ∈ RL(t) then
13 RL(t) = RL(t) \ {s};

14 Δnew = shiftw ,p,0(A
L(t));

15 Δold = ΣL
Δ(s)(t);

16 if Δnew �=k Δold then

17 a = a +
(
Δnew − Δold

)
;

18 ΣL
Δ(s)(t) = Δnew;

19 if a �k AL(s) then
20 BackPropLower(s, a);

21 AL(s) = a;

22 if ∃(w, p, t) ∈ T.AL(t) = ⊥ then InitLower(t) ;

23 if ∃(w, p, t) ∈ T.AL(t) = ⊥ then W ↓
L = W ↓

L ∪ {e} ;

24 function CoverEdgeLower(e = (s,k, �, λ, t)):
25 if AL(t) = ⊥ then InitLower(t) ;

26 if AL(t)(k) � λ and AL(s) �= 1 then
27 BackPropLower(s, 1);
28 AL(s) = 1;

For experimental evaluation, our prototype tool supports DTMC models
(with transition rewards/costs), written in the PRISM language [14]. PRISM
cannot directly handle our models with weights from Nn with n > 1. To this
end, we interpret multiple reward structures as defining a vector in n dimensions,
with n being the number of reward structures. Hence one can define a proper
PWKS in the PRISM language and use it as input to our tool.

We run both the global and local algorithm on two PRISM models (syn-
chronous leader election [10] and the bounded retransmission protocol [9]),
derived from DTMC models of the PRISM benchmark suite [15]. All models
can be found online at http://people.cs.aau.dk/∼am/nfm19/code/prism ex/.

http://people.cs.aau.dk/~am/nfm19/code/prism_ex/

Symbolic Model Checking of Weighted PCTL Using Dependency Graphs 311

For all models, the model-checking query is an instance of cost-bounded
probabilistic reachability: m |= P�λ(tt U≤k prop), where m is the initial state
of the underlying DTMC and prop is a label assigned to all states satisfying
the property of interest. Our tool invokes PRISM on a given model and exports
the underlying DTMC (with transition rewards), which our tool then parses to
construct a PWKS. For each instantiation of a PRISM model we run four queries
with a fixed cost-bound k ∈ Nn where n is the arity. These four queries differ in
the comparison of probabilities in the formula. For comparator and probability
we use the following four configurations: > p + 1−p

10 , > p − p
10 , > 0, and ≥ 1;

where p is the exact probability of picking a path from state m, that satisfies
the given until-formula. The expressions > 0 and ≥ 1 encode existential and
universal quantification, respectively.

5.1 Results

We evaluate different hyper-parameters on the case-studies consisting of data-
structures for the waiting lists and the weights associated with preferring forward
exploration to back-propagation. For waiting lists we experimented with queues
(Q), stacks (S), and counters (C), where a counter is a priority queue with
priority given by the number of times an element is added. We weigh the decision
of either forward exploring or back-propagating with integers weights in [1, 5].

For what follows, we present only the results of experiments involving the
global algorithm and the local algorithm with the best hyper-parameters. We
will use weighted tuples of data-structures to indicate the hyper-parameters of
the local algorithm, e.g. (Q1,S3) would indicate that we used the local algorithm
with a queue for forward exploration, a stack for backwards propagation, and
that when given the choice, we are 3 times more likely to back-propagate than
forward explore. Additionally, we will use GMC to indicate the use of the global
algorithm. All experiments were run using 2 cores of an AMD Opteron 6376
processor allowing for parallelism.

Synchronous Leader Election. Table 2 shows our results for synchronous leader
election protocol. The data is an average over the run times using 1-, 2-, and
3-dimensional weights. We find that the local algorithm outperforms the global
one, with average speedups of around 6 when answering the non-existential or -
universal queries. For the existential and universal queries we find that the local
algorithm is on average 400 times faster. In Table 3 we compare the relative
speedup across 1-, 2-, and 3-dimensional weights.

312 M. Claus Jensen et al.

Table 2. Results for synchronous leader election.

Leader election, N = number of processes, K = number of probabilistic choices

N K > p + 1−p
10

> p − p
10

> 0 ≥ 1

GMC Q5,Q1 GMC C5,Q1 GMC Q1,C3 GMC Q1,C3

4 3 10.59 1.71 12.41 2.32 6.01 0.09 1.60 0.11

4 39.98 9.49 47.96 6.33 17.51 0.13 42.22 0.23

5 45.25 11.70 101.87 13.95 46.96 0.13 104.22 0.15

6 102.77 20.40 264.65 46.69 118.33 0.29 275.88 0.28

8 259.07 121.42 657.20 200.43 354.57 0.94 752.16 0.83

5 2 7.80 0.91 9.60 0.93 3.92 0.09 10.53 0.17

3 44.56 9.13 57.28 9.59 22.89 0.13 60.59 0.16

4 227.02 25.64 265.09 34.36 117.54 0.35 264.75 0.36

5 385.77 110.85 958.42 179.50 394.71 0.67 93.05 0.67

6 921.52 395.49 2040.88 433.37 1182.46 1.71 283.81 1.91

6 2 21.45 2.29 29.47 2.68 10.31 0.08 30.68 0.17

3 199.64 73.93 247.00 71.63 100.63 0.30 23.18 0.36

4 1670.63 315.67 1742.46 346.03 724.10 0.89 2008.89 0.88

Table 3. Average relative speedup for synchronous leader election per arity.

Leader election

Arity GMC/(Q5,Q1) GMC/(Q1,C3)

> p + 1−p
10

> p − p
10

> 0 ≥ 1

1 4.65 6.34 112.71 144.92

2 5.40 7.69 230.29 343.69

3 6.09 9.21 364.82 503.89

Bounded Retransmission Protocol. Table 4 shows our results for the bounded
retransmission protocol. All data is for 1-dimensional weights. Again, we find
that the local algorithm outperforms the global. In the unsatisfied and satisfied
case we see speedups averaging around 25 and 30, respectively. For the existential
queries we find the local algorithm to be, on average, 850 times faster than the
global. In the universal case we see only a speedup of about 30.

Symbolic Model Checking of Weighted PCTL Using Dependency Graphs 313

Table 4. Results for the bounded retransmission protocol.

BRP, M = max number of retransmissions, N = number of chunks

N M > p + 1−p
10

> p − p
10

> 0 ≥ 1

GMC S1,S3 GMC S1,S3 GMC S1,Q5 GMC S1,S3

16 2 191.20 11.93 229.28 6.94 8.02 0.03 227.62 6.75

3 253.99 16.80 313.45 9.65 13.15 0.03 315.30 9.64

4 327.73 20.65 395.51 11.37 18.78 0.03 396.06 11.34

5 503.98 23.59 621.86 13.72 33.50 0.04 593.56 13.57

32 2 420.88 27.26 507.14 14.71 16.92 0.03 506.48 14.58

3 522.58 37.05 650.74 19.59 26.10 0.03 649.89 19.32

4 864.38 49.78 660.95 24.41 49.91 0.04 669.76 24.26

5 810.14 52.34 959.49 28.76 52.58 0.05 958.92 28.87

62 2 797.97 54.61 961.92 28.87 31.13 0.04 961.50 28.67

3 1051.64 75.64 1319.02 38.43 51.60 0.05 n/a 37.96

4 1339.32 92.68 1631.08 47.91 75.77 0.05 n/a 47.50

5 1610.09 108.73 1923.06 57.34 102.77 0.06 n/a 57.18

6 Conclusion

We have presented two approaches for model-checking a variant of PCTL, inter-
preted over probabilistic weighted Kripke structures. We introduce a reduction to
fixed-point computations on symbolic dependency graphs where nodes represent
model-checking problems and edges explicitly encode dependencies among said
problems. The first approach, the global algorithm, is a minor extension of the
algorithm presented in [18] which iteratively computes an update to each node
of the entire graph. The second approach, the local algorithm, is a novel adap-
tation of existing dependency graph algorithms, to our probabilistic weighted
domain. The algorithm performs a local search-like exploration of the graph
and lends itself to an on-the-fly unfolding. Both algorithms were implemented
in a prototype tool, using Interval Decision Diagrams (IDDs) as the back-end
data-structure. It is shown that the local algorithm generally outperforms the
global algorithm, especially in cases where a complete exploration of the model
is not needed to prove or disprove a property of the model. Our work could be
extended to incorporate negation in the logic as shown in [6].

Future work includes investigating clever memoization schemes to deal with
the expensive IDD operations, as has been previously done for BDDs. Prelimi-
nary experiments by the authors with a näıve caching mechanism has shown that
it provides a significant speed-up, especially for the global algorithm. A process
calculus is another direction that could be promising as our local approach lends
itself to a local-unfolding of the model, instead of an up-front construction of
the entire state-space. Lastly, more research is required to develop better search
strategies such that the local algorithm more robustly can efficiently solve most
queries.

314 M. Claus Jensen et al.

References

1. Andova, S., Hermanns, H., Katoen, J.-P.: Discrete-time rewards model-checked.
In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-40903-8 8

2. Bacci, G., Hansen, M., Larsen, K.G.: On the verification of weighted kripke struc-
tures under uncertainty. In: McIver, A., Horvath, A. (eds.) QEST 2018. LNCS,
vol. 11024, pp. 71–86. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
99154-2 5

3. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
4. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-

rithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005). https://doi.org/10.
1007/11539452 9

5. Christoffersen, P., Hansen, M., Mariegaard, A., Ringsmose, J.T., Larsen, K.G.,
Mardare, R.: Parametric verification of weighted systems. In: 2nd International
Workshop on Synthesis of Complex Parameters, SynCoP 2015, London, United
Kingdom, 11 April 2015, pp. 77–90 (2015). https://doi.org/10.4230/OASIcs.
SynCoP.2015.77

6. Dalsgaard, A.E., et al.: A distributed fixed-point algorithm for extended depen-
dency graphs. Fundam. Inform. 161(4), 351–381 (2018). https://doi.org/10.3233/
FI-2018-1707

7. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a modern
probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017, Part
II. LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63390-9 31

8. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Asp. Comput. 6(5), 512–535 (1994). https://doi.org/10.1007/BF01211866

9. Helmink, L., Sellink, M.P.A., Vaandrager, F.W.: Proof-checking a data link pro-
tocol. In: Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806, pp.
127–165. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58085-9 75

10. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Inf. Comput.
88(1), 60–87 (1990). https://doi.org/10.1016/0890-5401(90)90004-2

11. Jensen, J.F., Larsen, K.G., Srba, J., Oestergaard, L.K.: Efficient model-checking
of weighted CTL with upper-bound constraints. STTT 18(4), 409–426 (2016).
https://doi.org/10.1007/s10009-014-0359-5

12. Katoen, J., Khattri, M., Zapreev, I.S.: A Markov reward model checker. In: Second
International Conference on the Quantitative Evaluaiton of Systems (QEST 2005),
Torino, Italy, 19–22 September 2005, pp. 243–244 (2005). https://doi.org/10.1109/
QEST.2005.2

13. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0 6

14. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

15. Kwiatkowska, M.Z., Norman, G., Parker, D.: The PRISM benchmark suite. In:
Ninth International Conference on Quantitative Evaluation of Systems, QEST
2012, London, United Kingdom, 17–20 September 2012, pp. 203–204 (2012).
https://doi.org/10.1109/QEST.2012.14

https://doi.org/10.1007/978-3-540-40903-8_8
https://doi.org/10.1007/978-3-319-99154-2_5
https://doi.org/10.1007/978-3-319-99154-2_5
https://doi.org/10.1007/11539452_9
https://doi.org/10.1007/11539452_9
https://doi.org/10.4230/OASIcs.SynCoP.2015.77
https://doi.org/10.4230/OASIcs.SynCoP.2015.77
https://doi.org/10.3233/FI-2018-1707
https://doi.org/10.3233/FI-2018-1707
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/BF01211866
https://doi.org/10.1007/3-540-58085-9_75
https://doi.org/10.1016/0890-5401(90)90004-2
https://doi.org/10.1007/s10009-014-0359-5
https://doi.org/10.1109/QEST.2005.2
https://doi.org/10.1109/QEST.2005.2
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1109/QEST.2012.14

Symbolic Model Checking of Weighted PCTL Using Dependency Graphs 315

16. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1–2), 134–
152 (1997). https://doi.org/10.1007/s100090050010

17. Liu, X., Smolka, S.A.: Simple linear-time algorithms for minimal fixed points. In:
Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp.
53–66. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055040

18. Mariegaard, A., Larsen, K.G.: Symbolic dependency graphs for PCTL>
≤ model-

checking. In: Abate, A., Geeraerts, G. (eds.) FORMATS 2017. LNCS, vol. 10419,
pp. 153–169. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65765-3 9

19. Strehl, K., Thiele, L.: Symbolic model checking of process networks using interval
diagram techniques. In: Proceedings of the 1998 IEEE/ACM International Confer-
ence on Computer-Aided Design, ICCAD 1998, San Jose, CA, USA, 8–12 Novem-
ber 1998, pp. 686–692 (1998). https://doi.org/10.1145/288548.289117

20. Tarski, A., et al.: A lattice-theoretical fixpoint theorem and its applications. Pac.
J. Math. 5(2), 285–309 (1955)

https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/BFb0055040
https://doi.org/10.1007/978-3-319-65765-3_9
https://doi.org/10.1145/288548.289117

Composing Symmetry Propagation
and Effective Symmetry Breaking

for SAT Solving

Hakan Metin1(B), Souheib Baarir1,2, and Fabrice Kordon1

1 Sorbonne Université, CNRS UMR 7606 LIP6, 75005 Paris, France
{hakan.metin,souheib.baarir,fabrice.kordon}@lip6.fr

2 Université Paris Nanterre, Nanterre, France

Abstract. SAT solving is an active research area aiming at finding solu-
tions to a large variety of problems. Propositional Satisfiability problems
often exhibit symmetry properties, and exploiting them extends the class
of problems that state-of-the-art solvers can handle.

Two classes of approaches have been developed to take benefit of these
symmetries: Static and Dynamic Symmetry Breaking based approaches.
They bring benefits for complementary classes of problems. However,
and to the best of our knowledge, no tentative has been made to com-
bine them.

In this paper, we study the theoretical and practical aspects of the
composition of two of these approaches, namely Symmetry Propagation
and Effective Symmetry Breaking. Extensive experiments conducted on
symmetric problems extracted from the last seven editions of the SAT
contest show the effectiveness of such a composition on many symmetri-
cal problems.

Keywords: Dynamic symmetry breaking · Symmetry propagation ·
Effective Symmetry Breaking Predicates · Boolean satisfiability

1 Introduction

Context. Nowadays, Boolean satisfiability (SAT) is an active research area
finding its applications in many contexts such as planning decision [13], hardware
and software verification [3], cryptology [17], computational biology [15], etc.
Hence, the development of approaches that could treat increasingly challenging
SAT problems has become a focus.

State-of-the-art complete SAT solvers rely on the well-known Conflict
Driven Clause Learning (CDCL) algorithm [16], itself inspired from the Davis–
PutnamLogemann–Loveland algorithm [5]. These are backtracking based search
algorithms that can be associated to numerous heuristics/optimisations pruning
parts of the explored search tree. In this paper, we are interested in exploiting
the symmetry properties of SAT problems to perform such pruning.

c© Springer Nature Switzerland AG 2019
J. M. Badger and K. Y. Rozier (Eds.): NFM 2019, LNCS 11460, pp. 316–332, 2019.
https://doi.org/10.1007/978-3-030-20652-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20652-9_21&domain=pdf
https://doi.org/10.1007/978-3-030-20652-9_21

Composing Symmetry Propagation and Effective Symmetry Breaking 317

The Problem. SAT problems often exhibit symmetries1, and not taking them
into account forces solvers to needlessly explore isomorphic parts of the search
space.

For example, the “pigeonhole problem” (where n pigeons are put into n − 1
holes, with the constraint that each pigeon must be in a different hole) is a highly
symmetric problem. Indeed, all the pigeons (resp. holes) are swappable without
changing the initial problem. Trying to solve it with a standard SAT solver,
like MiniSAT [9], turns out to be very time consuming (and even impossible, in
reasonable time, for high values of n). Here, such a standard solver ignores the
symmetries of the problem, and then potentially tries all variable combinations.
This eventually leads to a combinatorial explosion.

Symmetries of a SAT problem are classically obtained through a reduction
to an equivalent graph automorphism problem. Technically, the SAT problem
is converted to a colored graph, then it is passed to a tool, like saucy3 [12] or
bliss [11], to compute its automorphism group.

A common approach to exploit such symmetries is to pre-compute and enrich
the original SAT problem with symmetry breaking predicates (sbp). These added
predicates will prevent the solver from visiting equivalent (isomorphic) parts that
eventually yield the same results [1,4]. This technique, called static symmetry
breaking, has been implemented first in the state-of-the-art tool SHATTER [2]
and then improved in BREAKID [7]. However, while giving excellent results on
numerous symmetric problems, these approaches still fail to solve some classes
of symmetric problems.

Another class of approaches exists, known as dynamic symmetry breaking
techniques. They operate during the exploration of the search tree. It concerns,
to mention but a few, the injection of symmetric versions of learned clauses
[6,20], particular classes of symmetries [19], or speeding up the search by inferring
symmetric facts [8]. These approaches succeeded in treating particular and hand
crafted problems but, to the best of our knowledge, none of them is competitive
face to the static symmetry breaking methods.

Goal. Recently, we developed an approach that reuses the principles of the static
approaches, but operates dynamically (namely, the effective symmetry breaking
approach [18]): the symmetries are broken during the search process without
any pre-generation of the sbp. The main advantage of this technique is to cope
with the heavy (and potentially blocking) pre-generation phase of the static-
based approaches. It also gives more flexibility for adjusting some parameters on
the fly. The evaluation of our approach on the symmetric formulas of six SAT
contests shows that it outperforms the state-of-the-art techniques in terms of
the number of solved instances.

Nevertheless, we also observed that many formulas easily solved by the
pure dynamic approaches remained unsolvable by our approach and vice-versa.
This is particularly true with the symmetry propagation technique developed by
Devriendt et al. [8].
1 Roughly speaking, a SAT problem exhibits symmetries when it is possible to swap

some variables while keeping the original problem unchanged.

318 H. Metin et al.

Hence, our goal is to explore the composition of our algorithm with the sym-
metry propagation technique in a new approach that would mix the advantages
of the two classes of techniques while alleviating their drawbacks. At first sight,
the two approaches appear to be orthogonal, and hence could be mixed easily.
However, as we show in the rest of the paper, this is not completely true: both
theoretical and practical issues have to be analysed and solved to get a run-
ning complementarity. The resulting algorithm provides better performances on
the 1400 symmetric formulas extracted from the last seven editions of the SAT
contest.

Content of the Paper. Section 2 presents the state of the art and definitions.
Section 3 introduces the key notion of local symmetries, that is a prerequisite to
the definition of a combo algorithm. Section 4 discusses the implementation and
evaluation of our proposition before a conclusion in Sect. 5.

2 State of the Art and Definitions

This section introduces some definitions. First, we define the problem of Boolean
satisfiability. Then, we recall our approach [18] and the one of Devriendt et al. [8].
Finally, we state the assumptions on which we base our composed solution.

2.1 Basics on Boolean Satisfiability

A Boolean variable, or propositional variable, is a variable that has two possible
values: true or false (noted � or ⊥, respectively). A literal l is a propositional
variable or its negation. For a given variable x, the positive literal is represented
by x and the negative one by ¬x. A clause ω is a finite disjunction of literals
represented equivalently by ω =

∨k
i=1 li or the set of its literals ω = {li}i∈�1,k�.

A clause with a single literal is called unit clause. A conjunctive normal form
(CNF) formula ϕ is a finite conjunction of clauses. A CNF can be either noted
ϕ =

∧k
i=1 ωi or ϕ = {ωi}i∈�1,k�. We denote Vϕ (Lϕ) the set of variables (literals)

used in ϕ (the index in Vϕ and Lϕ is usually omitted when clear from context).
For a given formula ϕ, an assignment of the variables of ϕ is a function

α : V �→ {�,⊥}. As usual, α is total, or complete, when all elements of V have
an image by α, otherwise it is partial. By abuse of notation, an assignment is
often represented by the set of its true literals. The set of all (possibly partial)
assignments of V is noted Ass(V).

The assignment α satisfies the clause ω, denoted α |= ω, if α ∩ ω �= ∅. The
assignment α satisfies the propositional formula ϕ, denoted α |= ϕ, if α satisfies
all the clauses of ϕ. Note that a formula may be satisfied by a partial assignment.
A formula is said to be satisfiable (sat) if there is at least one assignment that
satisfies it; otherwise the formula is unsatisfiable (unsat).

When ω is satisfied in all satisfying assignments of ϕ, we say that ω is a
logical consequence of ϕ, and we denote this by ϕ 	 ω.

Composing Symmetry Propagation and Effective Symmetry Breaking 319

Example. Let ϕ = {ω1 = {x1, x2, x3}, ω2 = {x1,¬x2}, ω3 = {¬x1,¬x2}} be
a formula. Naturally, ϕ 	 ωi,∀i ∈ �1, 3�. ϕ is satisfied under the assignment
α = {x1,¬x2} (meaning α(x1) = � and α(x2) = ⊥}) and is reported to be
sat. Note that the assignment α, making ϕ sat, does not need to be complete
because x3 is a don’t care variable with respect to α.

2.2 Symmetry Group of a Formula

The group of permutations of V (i.e., bijections from V to V) is noted S(V).
The group S(V) naturally acts on the set of literals: for g ∈ S(V) and a literal
� ∈ L, g.� = g(�) if � is a positive literal, g.� = ¬g(¬�) if � is a negative literal.

The group S(V) also acts on (partial) assignments of V as follows: for g ∈
S(V), α ∈ Ass(V), g.α = {g.� | � ∈ α}. Let ϕ be a formula, and g ∈ S(V).

We say that g ∈ S(V) is a symmetry of ϕ if for every complete assignment α,
α |= ϕ if and only if g.α |= ϕ. The set of symmetries of ϕ is noted S(ϕ) ⊆ S(V).

Let G be a subgroup of S(V). The orbit of α under G (or simply the orbit
of α when G is clear from the context) is the set [α]G = {g.α | g ∈ G}.

Given a total order, noted ≺, on the set V (naturally extended on the total
assignments of Ass(V)), the lexicographic leader (lex-leader for short) of an orbit
[α]G is the minimal/maximal element of [α]G w.r.t. ≺.

2.3 Approach Based on Effective Symmetry Breaking

When using the approach based on symmetry breaking predicates to optimise
the solving of a symmetric SAT problem, the main idea is to limit the search
tree exploration to only one assignment per orbit (e.g., each lex-leader). However,
finding the lex-leader of an orbit is computationally hard [14]. Instead, a best
effort approach is commonly used [2,7].

The one we developed in [18], which relies on esbp (Effective Symmetry Break-
ing Predicate), deals with the notions of reducer, inactive and active permutation
with respect to an assignment α. These notions keep track of the status of a per-
mutation, during the solving, to detect non lex-leader assignments as soon as
possible.

This approach is then opportunistic and thus avoids the pre-generation of sbp
that could have a dramatical effects of the overall performances of the classical
static symmetry breaking approaches.

Definition 1. A permutation g is a reducer of an assignment α if g.α ≺ α
(hence α cannot be the lex-leader of its orbit because g reduces α and all its
extensions). g is inactive on α when α ≺ g.α (so, g cannot reduce α and all its
extensions). A symmetry is said to be active with respect to α when it is neither
inactive nor a reducer of α.

320 H. Metin et al.

When g is a reducer of α we can define a predicate contradicting α yet
preserves the satisfiability of the formula. Such a predicate will be used to discard
α, and all its extensions, from a further visit, thus pruning the search tree.

Proposition 1. Let α ∈ Ass(V), and g ∈ S(V). We say that the formula ψ is
an effective symmetry breaking predicate (esbp for short) for α under g if:

α �|= ψ and for all β ∈ Ass(V), β �|= ψ ⇒ g.β ≺ β

The following theorem states the equi-satisfiability of the original formula ϕ
with the one augmented with esbps.

Theorem 1. Let ϕ be a formula and ψ an ebsp for some assignment α under
g ∈ S(ϕ). Then, ϕ and ϕ ∪ ψ are equi-satisfiable.

On the fly efficient algorithms tracking the status of a permutation (reducer,
active and inactive) and the generation of esbps along with the correctness proofs
are given in [18].

The extensive experiments we conducted state that this approach solves
many hard symmetrical problems. Moreover it outperformed the state-of-the-
art, dynamic and static, symmetry breaking techniques when considering the
total number of solved instances.

However, we observed it fails to solve some problems that have been trivially
concluded by other dynamic symmetry breaking techniques such as the one
developed in [8]. We give an overview of this one in the following section.

2.4 Approach Based on Symmetry Propagation

Unlike the approaches based on static symmetry breaking, the technique devel-
oped in [8] does not operate any explicit search tree pruning. It tries to accelerate
the tree traversal by “transforming some guessing to deductions”. Indeed, know-
ing that the processed problem presents symmetries makes it possible to deduce
some values for the variables that would be guessed if those symmetries were
ignored. These deductions will reduce the overall tree traversal depth and hence
eventually accelerate the solving process.

Let us recall here the definitions that are important for the rest of this work.

Proposition 2. Let ϕ be a formula, α an assignment and l a literal. If g is a
symmetry (permutation) of ϕ ∪ α and ϕ ∪ α 	 {l}, then ϕ ∪ α 	 g.{l} is also
true.

In other words, if we can deduce a fact (here, the unitary clause {l}) using
ϕ ∪ α then the symmetrical of this fact is also true (the unitary clause {g.l}).

The critical point here is to detect the permutations that are actually sym-
metries of ϕ ∪ α. Authors of this approach developed an efficient algorithm that
detects such symmetries. It relies on the following proposition.

Composing Symmetry Propagation and Effective Symmetry Breaking 321

Proposition 3. Let ϕ be a formula, α an assignment. If there exists a subset
δ ⊆ α and a symmetry g of ϕ such that g.δ ⊆ α and ϕ∪ δ 	 ϕ∪α, then g is also
a symmetry of ϕ ∪ α.

In other words, we can detect with a minimal effort, the symmetries of ϕ∪α by
keeping track of the set of variables δ. Technically, in a state-of-the-art complete
SAT solving algorithms, δ is the set of decision variables.

The experimental results show that this technique behaves very well on many
highly symmetrical problems.

2.5 Summary

The two presented techniques operate dynamically, by injecting some break-
ing predicates for the one and deducing symmetrical facts for the other. They
perform well on different classes of symmetrical SAT problems.

So, one can raise the following questions: (1) is it possible to combine them?
(2) If it is the case, how does the combo behave? In the rest of this paper, we
try to answer these questions.

3 A Composed Technique

Since the approach based on symmetry propagation (later called SPA) focuses
on accelerating the tree traversal and the approach based on effective symmetry
breaking (later called ESBA) targets to prune the tree traversal, the question
of combining these approaches, to solve a formula ϕ, can be reformulated as: is
it possible to accelerate the traversal while pruning the tree? More precisely, is
there room to apply Propositions 2 and 3 in the presence of espbs?

3.1 Theoretical Foundations

To answer the previous questions, we analyse the evolution of ϕ during its solv-
ing. In ESBA, ϕ evolves, incrementally, to an equi-satisfiable formula of the
form ϕ ≡ ϕ ∪ ϕe ∪ ϕd, where ϕe is a set of injected esbps and ϕd is a set of
deduced clauses (logical consequences). Both sets are modified continuously dur-
ing the solving. Hence, to be able to compose ESBA with SPA, we have to study
Propositions 2 and 3, when replacing ϕ by ϕ′ = ϕ ∪ ϕe ∪ ϕd. We thus have to
consider in these propositions, the symmetries of ϕ′ as allowed permutations in
place of those of ϕ.

A first naive solution could be to recompute, dynamically, the set S(ϕ∪ϕe ∪
ϕd) for each new ϕe ∪ ϕd, but this would be an intractable solution generating
a huge complexity.

A computationally less expensive solution would be to keep track of all glob-
ally unbroken symmetries as the clauses of ϕe are injected during the solving
process: considering formula ϕ and a set of esbps ϕe then the set of global unbro-
ken symmetries is GUS =

⋂

ωe∈ϕe

Stab(ωe) ∩ S(ϕ) where Stab(ωe) = {g ∈ S(V) |

322 H. Metin et al.

ωe = g.ωe} is the stabilizer set of ωe and S(ϕ) is the set of symmetries of ϕ.
Since ϕ ∪ ϕe 	 ϕd, then GUS is a valid set of symmetries for ϕ ∪ ϕe ∪ ϕd. Then,
(1) each time a new set of esbp clauses is added, its stabilizer will be used to
reduce GUS; (2) conversely, when a set of esbp clauses is reduced2, GUS cannot
be enlarged by the recovered broken symmetries because of the retrieved set: at
that point, we do not know which symmetries become valid !

As a consequence, the set of globally unbroken symmetries will converge
very quickly to the empty set. At this point, SPA will be blocked for the rest of
the solving process without any chance to recover. Therefore, this solution is of
limited interest in practice.

We propose here to improve aforementioned solution by alleviating the issue
cited in point (2). We first present the intuition, then we will detail and formalize
it.

Consider formula ϕ′ as before. It can be rewritten as: ϕ′ = ϕ
⋃

i

(ϕi
e ∪ϕi

d) such

that ϕe ∪ϕd =
⋃

i

(ϕi
e ∪ϕi

d) and ϕ∪ϕi
e 	 ϕi

d for all i. So, GUSi =
⋂

ωe∈ϕi
e

Stab(ωe)∩

S(ϕ) is a valid set of symmetries for the sub-formula ϕ ∪ ϕi
e ∪ ϕi

d, and GUS can
be obtained by GUS =

⋂

i

GUSi. If some esbp clauses are added to ϕ′, then the

new GUS is computed as described in (1). The novelty here comes with the
retrieval of some set of clauses: by keeping track of the symmetries associated to
each sub-formula (GUSi), it is now easy to recompute a valid set of symmetries
for ϕ′ when some set ϕk

e ∪ ϕk
d is retrieved. It suffices to operate the intersection

on the valid symmetries of the rest of the sub-formulas: GUS =
⋂

i�=k

GUSi.

Just say your approach keeps track of a set of particular symmetries for each
clause. For a deduced clause, this set of symmetries captures which esbp’s were
involved in a deduced clause’s derivation. The intersection of these sets is a
superset of the globally unbroken symmetries, and a strict superset after clause
deletion.

The general and formal framework that embodies the above idea is given by
the following. It first relies on the notion of local symmetries that we introduce
in Definition 2.

Definition 2. Let ϕ be a formula. We define Lω,ϕ, the set of local symmetries
for a clause ω, and with respect to a formula ϕ, as follows:

Lω,ϕ = {g ∈ S(V) | ϕ 	 g.ω}
Lω,ϕ is local since the set of permutations applies locally to ω. It is then

straightforward to deduce the next proposition that gives us a practical frame-
work to compute, incrementally, a set of symmetries for a formula (by using the
intersection of all local symmetries).

Proposition 4. Let ϕ be a formula. Then,
⋂

ω∈ϕ
Lω,ϕ ⊆ S(ϕ).

2 In classical CDCL algorithm, this can be due to a back-jump or a restart.

Composing Symmetry Propagation and Effective Symmetry Breaking 323

Proof. Let ϕ be a formula. Then, ∀ω ∈ ϕ,∀g ∈ Lω,ϕ, ϕ 	 g.ϕ. So, ∀g ∈⋂

ω∈ϕ
Lω,ϕ, ϕ 	 g.ϕ. This is combined with the fact that the number of satisfy-

ing assignments for a formula is not changed by permuting the variables of the
formula, we have g.ϕ 	 ϕ. Hence ϕ ≡ g.ϕ, and g ∈ S(ϕ) (by definition).

Using this proposition, it becomes easy to reconsider the symmetries on-the-
fly: each time a new clause ω is added to the formula ϕ, we can just operate an
intersection between Lω,ϕ and

⋂

ω′∈ϕ

Lω′,ϕ to get a new set of valid symmetries

for ϕ ∪ {ω}.

Proposition 5 establishes the relationship between the local symmetries of a
deduced clause and those of the set of clauses that allow its derivation.

Proposition 5. Let ϕ1 and ϕ2 be two formulas, with ϕ2 ⊆ ϕ1. Let ω be a clause
such that ϕ2 	 ω. Then, (

⋂

ω′∈ϕ2

Lω′,ϕ1) ∪ Stab(ω) ⊆ Lω,ϕ1 ;

Proof. Let us consider a clause ω and a permutation g ∈ (
⋂

ω′∈ϕ2

Lω′,ϕ1)∪Stab(ω).

Since, ϕ2 	 ω, then g.ϕ2 	 g.ω. Since ϕ1 	 ϕ2(ϕ2 ⊆ ϕ1), and g ∈ (
⋂

ω′∈ϕ2

Lω′,ϕ1)∪
Stab(ω), then we have ϕ1 	 g.ϕ2 (from Definition 2). Hence, ϕ1 	 g.ϕ2 	 g.ω,
and then, g ∈ Lω,ϕ1 (by definition).

3.2 Practical Considerations

As full Lω,ϕ sets are hard to compute in general, we give here practical frame-
works to their approximation.

Let us come back to the statement, where the formula is ϕ′ = ϕ∪ϕe∪ϕd, and
the symmetries of (the original formula) ϕ are already known (namely S(ϕ)).
Hence, the local symmetries of each clause ω can be approximated depending
on the belonging of ω to each of three sets ϕ,ϕe, and ϕd:

1. if ω ∈ ϕ, this is a clause of the original formula, then we know that S(ϕ) ⊆
Lω,ϕ′ (by definition). So, we can take S(ϕ) as a representative for Lω,ϕ′ .

2. if ω ∈ ϕe, this is an esbp clause, and the only local symmetries that we can
consider (without any correctness issue) for such a clause is the stabilizing
symmetries: Stab(ω) = {g ∈ S(V) | ω = g.ω} ⊆ Lω,ϕ′ ;

3. if ω ∈ ϕd, this is a deduced clause, and the set of local symmetries that we
propose here can be approximated by (

⋂

ω′∈ϕ1

Lω′,ϕ′) ∪ Stab(ωd) (according to

Proposition 5), where ϕ1 is the set of clauses that derives ωd.

3.3 Algorithm

This section shows how to integrate the propositions developed in Sect. 3.1 as
the basis of our combo approach in a concrete Conflict-Driven Clause Learning
(CDCL)-like solver.

324 H. Metin et al.

We first recall the basics of the CDCL algorithm. Then, we make an overview
on the CDCLSym and CDCLSp algorithms that implement, respectively, ESBA and
SPA. Finally, we present our combo algorithm.

1 function CDCL(ϕ: CNF formula)
2 returns � if ϕ is sat and ⊥ otherwise
3 dl ← 0 ; // Current decision level
4 while not all variables are assigned do
5 isConflict ← unitPropagation();
6 if isConflict then
7 if dl = 0 then
8 return ⊥; // ϕ is unsat

9 ω ← anlConflict();
10 dl ← bckjmpAndRstrtPolicies();
11 ϕ ← ϕ ∪ {ω} ;

12 else
13 assignDecisionLiteral();
14 dl ← dl + 1;

15 return �; // ϕ is sat

Algorithm 1. The CDCL algorithm.

CDCL (see Algorithm 1) walks a binary search tree. It first applies unit
propagation to the formula ϕ for the current assignment α (line 5). A conflict
at level 0 indicates that the formula is not satisfiable, and the algorithm reports
it (lines 7–8). If a conflict is detected, it is analysed, which provides a conflict
clause explaining the reason for the conflict (line 9). This clause is learnt (line
11), as it does not change the satisfiability of ϕ, and avoids encountering a
conflict with the same causes in the future. The analysis is completed by the
computation of a backjump point to which the algorithm backtracks (line 10).
Finally, if no conflict appears, the algorithm chooses a new decision literal (lines
13–14). The above steps are repeated until the satisfiability status of the formula
is determined. Detailing the existing variations for the conflict analysis and for
the decision heuristic is out of the scope of this paper.

CDCLSym (see Algorithm 2) implements ESBA and borrows its main structure
from CDCL. All symmetry-based actions are operated by the symmetry controller
component (symCtrl) passed as a parameter. It controls all partial assignments
(crtAss) and detects non lex-leading ones as soon as possible (lines 6–7). If it
is the case, it generates an esbp clause (line 14) to be injected as an (ordinary)
learnt clause (line 16). When a back-jump is performed (line 15), the controller
updates its internal state accordingly (line 17).

Composing Symmetry Propagation and Effective Symmetry Breaking 325

1 function CDCLSym(ϕ: CNF formula, symCtrl: symmetry controller)
2 returns � if ϕ is sat and ⊥ otherwise
3 dl ← 0 ; // Current decision level

4 while not all variables are assigned do
5 isConflict ← unitPropagation();
6 symCtrl.updateAssign(crtAss());
7 isReduced ← symCtrl.isNotLexLeader(crtAss());
8 if isConflict ∨ isReduced then
9 if dl = 0 then

10 return ⊥; // ϕ is unsat

11 if isConflict then
12 ω ← anlConflict();

13 else
14 ω ← symCtrl.genEsbp(crtAss());

15 dl ← bckjmpAndRstrtPolicies();
16 ϕ ← ϕ ∪ {ω} ;
17 symCtrl.updateCancel(crtAss());

18 else
19 assignDecisionLiteral();
20 dl ← dl + 1;

21 return �; // ϕ is sat

Algorithm 2. The CDCLSym algorithm. Blue (or grey) parts denote addi-
tions to CDCL.

1 function CDCLSp(ϕ: CNF formula, spCtrl: symmetry propagation controller)
2 returns � if ϕ is sat and ⊥ otherwise
3 dl ← 0 ; // Current decision level

4 while not all variables are assigned do
5 isConflict ← unitPropagation() ∧ spCtrl.symPropagation();
6 if isConflict then
7 if dl = 0 then
8 return ⊥; // ϕ is unsat

9 ω ← anlConflict();
10 dl ← bckjmpAndRstrtPolicies();
11 ϕ ← ϕ ∪ {ω} ;
12 spCtrl.cancelActSymmetries();

13 else
14 assignDecisionLiteral();
15 dl ← dl + 1;
16 spCtrl.updateActSymmetries();

17 return �; // ϕ is sat

Algorithm 3. The CDCLSp algorithm. Red (or grey) parts denote additions
to CDCL.

326 H. Metin et al.

CDCLSp (see Algorithm 3) implements SPA, and also has a structure similar
to the one of CDCL. In this algorithm, the symmetry propagation actions are
executed by the controller component (spCtrl) through a call to the function
symPropagation (line 5). This propagation is allowed only if the conditions of
Proposition 3 are met. Such conditions are evaluated by tracking on-the-fly the
status of the symmetries. This is implemented by functions updateSymmetries
(line 12) and cancelSymmetries (line 16).

1 function CDCLSymSp(ϕ: CNF formula, symCtrl: symmetry controller,
spCtrl: symmetry propagation controller)

2 returns � if ϕ is sat and ⊥ otherwise
3 dl ← 0 ; // Current decision level
4 while not all variables are assigned do
5 isConflict ← unitPropagation() ∧ spCtrl.symPropagation();
6 symCtrl.updateAssign(crtAssignment());
7 isReduced ← symCtrl.isNotLexLeader(crtAssignment());
8 if isConflict ∨ isReduced then
9 if dl = 0 then

10 return ⊥; // ϕ is unsat

11 if isConflict then

12 〈ω,L =
⋂

ω′∈ϕ1

Lω′,ϕ1 ∪ Stab(ω)〉 ← anlConflictSymSp();

13 else

14 〈ω,L = Stab(ω)〉 ← symCtrl.genEsbpSp(crtAssignment());

15 dl ← backjumpAndRestartPolicies();
16 ϕ ← ϕ ∪ {ω} ;
17 symCtrl.updateCancel(crtAssignment());
18 spCtrl.cancelActSymmetriesSym() ;

19 spCtrl.updateLocSymmetries(L);

20 else
21 assignDecisionLiteral();
22 dl ← dl + 1;
23 spCtrl.updateActSymmetriesSym() ;

24 return �; // ϕ is sat

Algorithm 4. The CDCLSymSP algorithm. Additions derived from CDCLSym
and CDCLSp are reported in blue and red (or grey). Additions due to the
composition of the two algorithms are reported with a gray background.

The algorithm we propose for the composed approach is presented in
Algorithm 4. Lines 3–10, 15–17 and 20–22 correspond to the exact union of
CDCLSym and CDCLSp. Let us detail the critical points.

Composing Symmetry Propagation and Effective Symmetry Breaking 327

– Lines 11–14: when a conflict is detected, then the analysing procedure is trig-
gered. According to Proposition 5, the generated conflicting clause ω, should
be associated with the computation of its set of local symmetries. Thus, we
update the classical anlConflict procedure to anlConflictSymSp that pro-
duces such a set: ϕ1 contains all the clauses that are used to derive ω3. So,
at the end of the conflict analysis we operate the intersection of a local sym-
metries of these clauses to get the set of local symmetries of ω. We can thus
complete this set with the stabilizer set (see as Proposition 5).
In Algorithm 2, when a non lex-leader assignment is detected (line 13–14),
then the esbp generation function, genEsbp, is called. In the new algorithm
this function is replaced by a new one called genEsbpSp. In addition to com-
pute the esbp clause ω, it produces the stabilizer set of ω4.

– Line 18: cancelActSymmetriesSym extends function cancelActSymmetries
of Algorithm 3 with the additional reactivation of the symmetries that have
been broken (deactivated) by ESBPA. Technically speaking, each time a
deduced literal is unassigned, all symmetries that became inactive because
of its assignment (see updateLocSymmetries and updateActSymmetriesSym
functions below) are reactivated.

– Line 19: updateLocSymmetries is a new function of spCtrl. It is responsible
of updating the status of the manipulated symmetries so that only those
respecting Proposition 4 are active each time the symPropagation function is
called. Technically speaking, each symmetry of the complement set (to S(ϕ))
of the set L is marked inactive (it is a broken symmetry), if it is not already
marked so. Here, the asserting literal of clause ω becomes responsible of this
deactivation.

– Line 23: updateActSymmetriesSym extends function updateActSymmetries
of Algorithm 3. The reason clause, ωl, of each propagated literal, l, by the
unitPropagation function is analysed. Each symmetry of the complement
set (to S(ϕ)) of the set local symmetries of ωr is marked inactive, if it is not
already marked so. l becomes responsible of this deactivation.

4 Implementation and Evaluation

In this section, we first highlight some details on our implementation. Then, we
experimentally compare the performance of the combo against ESBA and SPA.

4.1 Implementation

We have implemented our combo on top of the minisat-SPFS5 solver, developed
by the authors of SPA.

3 These are clauses of the conflict side of the implication graph when applying the
classical conflict analysis algorithm.

4 The only allowed local symmetries in case of an esbp, according to point 2 of Sect. 3.2.
5 https://github.com/JoD/minisat-SPFS.

https://github.com/JoD/minisat-SPFS

328 H. Metin et al.

This choice has been influenced by two points: (1) take advantage of the
expertise used to implement the original SPA method; (2) the easiness of inte-
grating our implementation of ESBA to any CDCL-like solver because it is an
off-the-shelf library6.

However, this choice has the drawback of doubling the representation of sym-
metries. This can be a hard limit to treat certain big problems from the memory
point of view.

The implemented combo solver can be found at: https://github.com/lip6/
minisat-SymSp.

4.2 Evaluation

This section compares our combo approach against ESBA and SPA. All experi-
ments have been performed with a modified version of the well-known MiniSAT
solver [9]: minisat-Sp, for SPA; minisat-Sym, for ESBA; and minisat-SymSP,
for the combo. Symmetries of the SAT problems have been computed by
bliss [11].

We selected from the last seven editions of the SAT contest [10], the CNF
problems for which bliss finds some symmetries that could be computed in at
most 1000 s of CPU time. We obtained a total of 1400 SAT problems (discarding
repetitions) out of the 4000 proposed by the seven editions of the contest.

Table 1. Comparison of the number of SAT problems solved by each approach.

Benchmark minisat-Sp minisat-Sym minisat-SymSP

generators 0-20 (704) 194 197 198
generators 20-40 (136) 33 34 34
generators 40-60 (141) 28 28 29
generators 60-80 (168) 65 64 65
generators 80-100 (51) 28 34 34
generators >100 (200) 58 59 60
TOTAL no dup (1400) 406 416 420

Table 2. Comparison of the number of UNSAT problems solved by each approach.

Benchmark minisat-Sp minisat-Sym minisat-SymSP

generators 0-20 (704) 233 220 226
generators 20-40 (136) 50 54 54
generators 40-60 (141) 75 83 83
generators 60-80 (168) 11 11 10
generators 80-100 (51) 11 11 11
generators >100 (200) 90 109 107
TOTAL no dup (1400) 470 488 491

6 This library is released under GPL v3 license, see https://github.com/lip6/cosy.

https://github.com/lip6/minisat-SymSp
https://github.com/lip6/minisat-SymSp
https://github.com/lip6/cosy

Composing Symmetry Propagation and Effective Symmetry Breaking 329

All experiments have been conducted using the following settings: each solver
has been run once on each problem, with a time-out of 7200 s (including the
execution time of symmetries generation) and limited to 64 GB of memory.
Experiments were executed on a computer with an Intel(R) Xeon(R) Gold 6148
CPU @ 2.40 GHz featuring 80 cores and 1500 GB of memory, running a Linux
4.17.18, along with g++ compiler version 8.2.

Tables 1 and 2 present the obtained results for SAT and UNSAT problems
respectively. The first column of each table lists the classes of problems on which
we operated our experiments: we classify the problems according to the number
of symmetries they admit. A line noted “generators X-Y (Z)” groups the Z
problems having between X and Y generators (i.e., symmetries). Other columns
show the number of solved problems for each approach.

Globally, we observe that the combo approach can be effective in many classes
of symmetric problems. For SAT problems, the combo has better results than
the two other approaches (4 more SAT problems when compared to the best of
the two others) and this is despite the significant cost paid for the tracking of
the symmetries’ status. When looking at the UNSAT problems, things are more
mitigated. Although, the total number of solver problems is greater than the best
of the two others, we believe that the cost for tracking the symmetries’ status
has an impact on the performances. This can be observed on the first and last
lines of Table 2: when the number of generators is small (first line), the ESBA
benefits greatly from the SPA. When the number of generators is high (last line),
we see a small loose of the combo with respect to ESBA. It is also worth noting
that the combo approach solved 8 problems that could not be handled by ESBA
nor SPA.

Table 3. Comparison of PAR-2 and CTI times (in seconds) of the global solving.

Solvers PAR2 (1400) CTI (825)
minisat-SymSp 5653089 614856
minisat-Sym 5682892 584868
minisat-Sp 6026840 612638

Table 3 compares the different techniques with respect to the PAR-2 and the
CTI time measures. PAR-2 is the official ranking measure used in the yearly
SAT contests [10]. CTI measures the Cumulative solving Time of the problem
Intersection (i.e., 825 problems solved by all solvers). While PAR-2 value gives
a global indication on the effectiveness of an approach, CTI is a good mean to
evaluate its speed compared to other approaches.

Hence, we observe that the combo has a better PAR-2 score, and this shows
its effectiveness. However, it is the least fast when coming to solved intersection.
This is clearly due the double cost paid for tracking the symmetries’ status (one
for ESBA and the other for SPA). Having a unified management of symmetries
tracking would probably reduce this cost.

330 H. Metin et al.

Fig. 1. Comparison of the ratio between the number of decisions and the number of
propagations for the comb w.r.t. ESBA and SPA.

To go further in our analyse, we also compare the ratio between the number
of decisions and the number of propagations. This is a fair measure to assess the
quality of a SAT solving approach: if the ratio is small, then this means that
the developed algorithm is producing more deduced facts than making guesses,
which is the best way to conclude quickly on a problem!

The scatter plots of Fig. 1 show a comparison between the aforementioned
ratios. When comparing minisat-Sp to minisat-SymSp (right hand side scatter
plot), we observe that the ratio goes in favour of minisat-Sp for the problems
solved by both approaches. This is an expected result since the main objective
of SPA is to minimise the number of decisions while augmenting the number
of propagations. What is important to underline here is highlighted on the left
hand side scatter plot: on a large majority of UNSAT problems, the ratio goes in
favour of minisat-SymSp w.r.t. minisat-Sym. This confirms the positive impact
of SPA when applied in conjunction with ESBA.

5 Conclusion

This paper proposed a way to combine two approaches – Symmetry propagation
(SPA) and effective symmetry breaking (ESBA) – to increase efficiency of SAT
Solving by exploiting the symmetry properties of propositional problems.

Despite the fact that these approaches appear to be orthogonal, the compo-
sition is far from being trivial since the way one exploits symmetries ruins the
way the other does. To achieve this composition, we had to introduce the notion
of local symmetries in the context of SAT solving.

Both SPA and ESBA are efficient of different classes of problem. Extensive
experiments conducted on symmetric problems extracted from the last seven

Composing Symmetry Propagation and Effective Symmetry Breaking 331

editions of the SAT contest show that our combo approach roughly cumulate
the advantages of SPA and ESBA.

The current implementation remains at a prototype stage and could be
improved (especially on the way symmetries are managed). So, improvement
can be expected.

Another research direction could be to use the notion of local symmetries to
process problems that exhibit no global symmetries.

References

1. Aloul, F., Ramani, A., Markov, I., Sakallah, K.: Solving difficult instances of
boolean satisfiability in the presence of symmetry. IEEE Trans. CAD Integr. Circ.
Syst. 22(9), 1117–1137 (2003)

2. Aloul, F., Sakallah, K., Markov, I.: Efficient symmetry breaking for boolean satis-
fiability. IEEE Trans. Comput. 55(5), 549–558 (2006)

3. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

4. Crawford, J., Ginsberg, M., Luks, E., Roy, A.: Symmetry-Breaking Predicates for
Search Problems, pp. 148–159. Morgan Kaufmann, San Francisco (1996)

5. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (1962)

6. Devriendt, J., Bogaerts, B., Bruynooghe, M.: Symmetric explanation learning:
effective dynamic symmetry handling for SAT. In: Gaspers, S., Walsh, T. (eds.)
SAT 2017. LNCS, vol. 10491, pp. 83–100. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66263-3 6

7. Devriendt, J., Bogaerts, B., Bruynooghe, M., Denecker, M.: Improved static sym-
metry breaking for SAT. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS,
vol. 9710, pp. 104–122. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40970-2 8

8. Devriendt, J., Bogaerts, B., de Cat, B., Denecker, M., Mears, C.: Symmetry propa-
gation: improved dynamic symmetry breaking in SAT. In: IEEE 24th International
Conference on Tools with Artificial Intelligence, ICTAI 2012, Athens, Greece, 7–9
November 2012, pp. 49–56 (2012)

9. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

10. Järvisalo, M., Le Berre, D., Roussel, O., Simon, L.: The international SAT solver
competitions. AI Mag. 33(1), 89–92 (2012)

11. Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for large and
sparse graphs. In: Applegate, D., Brodal, G.S., Panario, D., Sedgewick, R. (eds.)
Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments
and the Fourth Workshop on Analytic Algorithms and Combinatorics, pp. 135–149.
SIAM (2007)

12. Katebi, H., Sakallah, K.A., Markov, I.L.: Symmetry and satisfiability: an update.
In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 113–127.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7 11

13. Kautz, H.A., Selman, B., et al.: Planning as satisfiability. In: ECAI, vol. 92, pp.
359–363 (1992)

https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-319-66263-3_6
https://doi.org/10.1007/978-3-319-66263-3_6
https://doi.org/10.1007/978-3-319-40970-2_8
https://doi.org/10.1007/978-3-319-40970-2_8
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-642-14186-7_11

332 H. Metin et al.

14. Luks, E.M., Roy, A.: The complexity of symmetry-breaking formulas. Ann. Math.
Artif. Intell. 41(1), 19–45 (2004). https://doi.org/10.1023/B:AMAI.0000018578.
92398.10

15. Lynce, I., Marques-Silva, J.: SAT in bioinformatics: making the case with haplotype
inference. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 136–
141. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948 16

16. Marques-Silva, J.P., Sakallah, K., et al.: Grasp: a search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

17. Massacci, F., Marraro, L.: Logical cryptanalysis as a SAT problem. J. Autom.
Reason. 24(1), 165–203 (2000)

18. Metin, H., Baarir, S., Colange, M., Kordon, F.: CDCLSym: introducing effective
symmetry breaking in SAT solving. In: Beyer, D., Huisman, M. (eds.) TACAS
2018. LNCS, vol. 10805, pp. 99–114. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89960-2 6

19. Sabharwal, A.: SymChaff: exploiting symmetry in a structure-aware satisfiability
solver. Constraints 14(4), 478–505 (2009)

20. Schaafsma, B., Heule, M.J.H., van Maaren, H.: Dynamic symmetry breaking by
simulating Zykov contraction. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol.
5584, pp. 223–236. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02777-2 22

https://doi.org/10.1023/B:AMAI.0000018578.92398.10
https://doi.org/10.1023/B:AMAI.0000018578.92398.10
https://doi.org/10.1007/11814948_16
https://doi.org/10.1007/978-3-319-89960-2_6
https://doi.org/10.1007/978-3-319-89960-2_6
https://doi.org/10.1007/978-3-642-02777-2_22
https://doi.org/10.1007/978-3-642-02777-2_22

Formal Methods Assisted Training of Safe
Reinforcement Learning Agents

Anitha Murugesan1(B), Mohammad Moghadamfalahi1,
and Arunabh Chattopadhyay2

1 Honeywell International Inc., Plymouth, USA
{anitha.murugesan,mohammad.moghadamfalahi}@honeywell.com

2 Swift Navigation, San Francisco, USA
arun@swift-nav.com

Abstract. Reinforcement learning (RL) is emerging as a powerful
machine learning paradigm to develop autonomous safety critical sys-
tems; RL enables the systems to learn optimal control strategies by
interacting with the environment. However, there is also widespread
apprehension to deploying such systems in the real world since rigor-
ously ensuring if they had learned safe strategies by interacting with
an environment that is representative of the real world remains a chal-
lenge. Hence, there is a surge of interest to establish safety-focused RL
techniques.

In this paper, we present a safety-assured training approach that aug-
ments standard RL with formal analysis and simulation technology. The
benefits of coupling these techniques is three-fold: the formal analysis
tools (SMT solvers) guide the system to learn strategies that rigorously
uphold specified safety properties; the sophisticated simulators provide
a wide-range of quantifiable, realistic learning environments; the ade-
quacy of the safety properties can be assessed as agent explores complex
environments. We illustrate this approach using a Flappy Bird game.

Keywords: Reinforcement learning · Assurance · Formal methods

1 Introduction

Recently, there is a tremendous surge of interest to use Machine Learning (ML)
techniques to the develop smart, autonomous systems. In particular, Reinforce-
ment learning (RL) (a ML technique) is emerging as a powerful paradigm since
it allows systems to self-learn their functions through exploration and feedback
from the environment, without any expert supervision [14]. However, in the
safety critical domain where safety assurance is of utmost importance, there is
apprehension to deploying RL-based systems in the real-world since they pose
unique challenges to upholding safety similar to traditional systems [16].

Fundamentally, RL is an inductive process; it makes broad generalizations
from trained observations and feedback from environment. RL-based systems
c© Springer Nature Switzerland AG 2019
J. M. Badger and K. Y. Rozier (Eds.): NFM 2019, LNCS 11460, pp. 333–340, 2019.
https://doi.org/10.1007/978-3-030-20652-9_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20652-9_22&domain=pdf
https://doi.org/10.1007/978-3-030-20652-9_22

334 A. Murugesan et al.

learn their behaviors by randomly exploring the environment and exploiting
learned knowledge within its learning environment. While this randomness helps
optimize behaviors, it is not necessarily guaranteed to be safe, especially as
behavioral, computational and structural complexity evolve over time and the
system makes generalizations based on past observations. Also, in comparison to
the complex environments these systems can be exposed in practice, it is hard to
ensure that a representative subset of environment has been chosen for learning.
All this complicates the task of making behavioral predictions and safety asser-
tions based on current RL-based training inadequate. Hence, enhancements to
RL techniques that are supportive of safety-assurance is warranted in the safety-
critical domain.

To that end, we present an approach to augment standard RL with advanced
simulators to provide a wide range of realistic learning environments and formal
method-based tools such as SMT solvers [5] to rigorously restrict the learning
to uphold the specified safety properties. This combination of approaches rigor-
ously guides the system to discover optimal actions within the pre-defined safety
zone in training environments that can be quantified with respect to the real
operational environment of the system. Further, our approach helps systemati-
cally discover, refine and assess the adequacy of the specified safety properties
as the agent trains in complex environments. In this paper, we illustrate the
implementation of our approach [1] over an existing Flappy bird game [2].

1.1 Reinforcement Learning Overview

Fig. 1. Reinforcement learning

In a nutshell, RL is a framework that allows
entities – agents – to learn control strate-
gies by interacting with the environment. In
standard RL, shown in Fig. 1, an agent iter-
atively performs actions on the environment
and, in response it receives the description of
the environment (called state) and feedback
(called reward) that indicates the impact of
the action on the environment. Based on the reward, the agent learns an optimal
strategy or policy for choosing its next action that would receive higher reward
in an iterative manner.

RL techniques can be broadly divided into two types: model-based in which
the agent relies on a complete environment model to learn the policy and choose
actions; and, model-free where the agent learns based on a limited observation
of the environment at every iteration. The latter is preferred for training critical
agents since the real world is often very complex to represent.

2 Safety-Focused Reinforcement Training

Figure 2 shows our approach to model-free safety-assured RL. We augment stan-
dard RL with a hi-fidelity simulator to provide a wide range of realistic training

Formal Methods Assisted Training of Safe Reinforcement Learning Agents 335

scenarios, and an SMT solver to restrict the agent from perform actions that
violate the specified safety properties.

Advanced simulators have the capability to provide a wide range of realistic,
continuous training data for RL-agents. For instance, commercially-rated simu-
lators such as X-Plane [3] have rich models of flight dynamics, weather patterns,
etc. that serve as a suitable training environments for agents to interact and
learn. Further, such simulators provide detailed reports that help quantify the
training environment with respect to real operational environments.

Fig. 2. Safety-focused Reinforcement learning

To interface simulators with RL-agents, a custom input/output (I/O) pro-
cessor is typically warranted. The primary function of the I/O processor is to
forward the state and reward from the simulation environment to the RL-agent,
and return the agent’s action at every step.

The state and reward information is used by the RL-agent to update its policy
in a model-free manner; i.e. the policy update depends only on the observation
of the agent at each time and not on the entire dynamics of simulation. We
use Q-learning [18], an algorithm for model-free RL, to train the agent. The
algorithm returns a list of possible actions and their expected future reward.

To check if the action with highest expected reward is indeed safe in the given
state of the environment, we employ formal verification tool, namely a Satisfi-
ability Modulo Theories (SMT) solver. Typically, environmental observations
from simulators are rich with large state spaces that affect SMT solver perfor-
mance. Hence, we first use a constrained state analyzer to restrict the state space
to a size that is relevant for safety analysis. Similar to the I/O processor, the
constrained state analyzer depends on the application domain and the safety
properties in consideration.

We formulate the problem of checking whether the action in the given envi-
ronment meets/violates the safety properties as a propositional logic formula
and use the SMT solver to verify it. If the verification passes, the agent receives
a positive reward and the action is sent back to the simulator. Otherwise, the
agent receives a high negative reward indicating that the action was unsafe and
the action with the next-highest expected reward is sent for SMT analysis. This
is performed iteratively for each step of training to rigorously guide the agent

336 A. Murugesan et al.

to learn the actions that meet the safety properties. As per our proposal, such
a trained agent would mitigate safety violations more often than a traditionally
(non-SMT solver assisted) trained agent post deployment.

3 Case Studies

To illustrate our approach, we use a Flappy Bird game, shown in Fig. 3. The
aim of this game is to train an agent (a bird) to fly between sets of pipes with
dynamically varying heights without colliding on those pipes, ceiling or floor.
This game serves as an abstract example to understand and draw conclusions
on the application of our approach to real safety-critical systems.

Fig. 3. Flappy Bird game

Firstly, the game is an exemplar for model-
free learning. The action of the bird depending
upon the current game state with random pipe
heights is analogous to a real agent’s decision
based on its current state and non-deterministic
environmental inputs. Secondly, the flap up and
flap down actions of the bird is comparable to
real control commands such as pitch up and
down. Thirdly, the safety consideration in the
game such as maximum height and collision
avoidance with pipes are similar to typical safety
properties of real systems such as range limits
and obstacle avoidance. Finally, the configurable
parameters of the game that allows training the
bird in varying environments helps abstractly
formulate training of real agents in wide-ranging
environments and dynamics.

3.1 Implementation Details

We implemented our approach over an existing Flappy Bird game developed
using Python 3, TensorFlow 0.7, Keras and pygame [2]. We used a Windows 7
OS with an Intel I-5 Core processor and 8 GB RAM for this experiment.

At each step of the game, the agent receives the game state as an array of
raw pixel values of the visible screen (512× 280 pixels). The I/O pre-processor
re-sizes the image (80× 80 pixels) and removes details from the image such as
background colors and patterns that are irrelevant for the agent’s decision. Based
on this pre-processed game state, the Q-learning agent computes the expected
reward for the next possible actions of the bird (flap up and flap down).

To check if taking the optimal action (with highest reward) in the given state
meets/violates the set of specified safety properties, we used Z3, an efficient SMT
solver [7]. Prior to SMT analysis, the constrained state analyzer further crops
the state to a size that is sufficient to analyze safety properties to scale down the
state space for SMT analysis. For instance, if a requirement necessitated looking

Formal Methods Assisted Training of Safe Reinforcement Learning Agents 337

ahead for x next states of the bird, the constrained state analyzer dynamically
crops the image based on the knowledge of the bird dynamics.

To interface with the solver and formulate the propositional logic formula
consisting of constrained state, action and safety properties for verification we
used PySMT [10] – a Python API for SMT. Depending upon the result of veri-
fication, the agent receives a positive reward and performs the action or receives
a negative reward and next optimal action is analyzed. Hence, at each step, the
agent only learns most optimal and safe actions.

Further, to train the agent in wide ranging environmental conditions, we
systematically increased the randomness at which the height of the pipes appear
in the game screen and changed the velocity of the bird.

3.2 Safety Analysis

We considered two safety properties for this training. The first property is: the
flap-up action is safe if (1) the vertical distance between the bird and ceiling is
more than a certain threshold; and, (2) there is at-least one obstacle-free path (x
steps look ahead) after taking the flap-up action. To formulate the second require-
ment that looks ahead for x steps, the flap-up acceleration and bird dynamics
were taken into account. As visually shown in Fig. 4, the look ahead is nothing
but the states that the bird could possibly go after it takes the flap-up action in
the current state and any further actions. SMT checks if the look-ahead states
for that action violates the safety properties or not. Similar to the first property,
the second one checks for safety of flap-down action.

Fig. 4. Flap-up action

Prior to safety checks, the bird trivially collided
with the pipes, ceiling and floor several times in a
row before it learns to avoid them. However, with
our safety-guided approach, right from the first step
of training, the bird was able to successfully navigate
through the pipes without colliding most of the time.
In fact, it collided only in situations that were not
constrained by the safety-properties. The rate of colli-
sion was approximately once in 200 simulation steps.
Hence, our approach guides the agent to avoid the
known failure scenarios; rather, it allows the agent to
learn optimal actions within the zone of safety.

From a performance perspective, we found that
the SMT solving time was negligible for properties
that look for collision free movement of the bird for 6 subsequent time steps.
However, when we increased the time steps to 10, SMT took about 1 to 2 s per
step. We plan to improve this performance with better computing infrastructures
and optimization techniques in the future.

338 A. Murugesan et al.

3.3 Property Discovery

To train the agent in wide-ranging environment, as we increased the randomness
of the pipe height, in some states all the possible actions are determined unsafe
by the SMT solver. This lead to discovery of new safety properties.

Fig. 5. Case 1

Fig. 6. Case 2

When we analyzed one of the violations, we found
that at the beginning of the game when there no pipes in
its vicinity, the bird tends to flap up and stay close to the
ceiling. In that scenario, when the pipes start appearing
with gaps closer to the floor, as shown in Fig. 5, the bird
collides with the pipes despite the safety checks. This is
because, the bird’s dynamics does not allow it to rapidly
fly down and pass through the pipes. On analyzing the
game, this was due the lack of properties to encourage
the bird to stay in the middle when there are no pipes
in its vicinity. Once we added that safety property, it
mitigated that failure.

In another scenario, though the bird successfully nav-
igates through the gap between pipes, it collides with the
pipe as it exits the gap. On examining the root cause,
we found that the safety property formulation did not
account for the bird’s width and height. Hence, when the
bird leaves the gap while being closer to the upper/lower
pipe, its rear end collides with the pipe corner, as shown
in Fig. 6. In addition to the inadequacy in the existing
property to account for bird size, we also added a prop-
erty that specified a safe minimum distance between the
top/bottom end of the bird and the nearest pipe. Hence,
analyzing such violations during training helped improve
the safety properties.

4 Discussion

We presented an approach that integrates RL with formal analysis and simu-
lation technology to provide design-time safety assurance of RL-based agents.
Though we illustrated our approach using a Flappy Bird example (available
at [1]), the benefits of training real safety-critical RL-agents using this approach
is manifold: it is guaranteed to learn safe actions; the attributes of the train-
ing environment and its divergence from actual operating environments can be
captured from the simulators and this coverage can be presented for safety-
assurance; by examining the violations during the training, the sufficiency of the
safety properties can be quantified. Hence, an agent trained using our approach
would need minimal run-time safety mitigation (based on the coverage).

Safe-RL has been researched in several directions [9]. Among those that
have explored the use of formal methods, most are predominately model-
based [8,12,13,15] that are not practicable for most real safety critical systems.

Formal Methods Assisted Training of Safe Reinforcement Learning Agents 339

Some promising approaches based on Bayesian optimization [6], Gaussian pro-
cess sampling [17] and optimization [11] have not been evaluated with practical
deep neural networks. A closely related work uses linear temporal logic for safety
assurance of deep Q-learning agents [4]; while it works on continuous input and
output domains (regression), it is not suitable for image-based inputs, that are
mostly used in practice. On the contrary, our approach leverages simulation
technology to provide training environments that provide image inputs in a
model-free learning that is suitable to train deep neural networks for real world
application. While the use of high-fidelity simulators have been previously tried
with RL [14], by integrating formal methods our approach assures safety.

The use of formal analysis in the loop makes design-time safety assurance
straightforward since the safety properties can be validated by domain experts
and presented for assurance; Alternatively, if one chooses to code those safety
rules as a complex reward function, it becomes a part of the nebulous machine
learning component that is hard to characterize and thoroughly verify. Further,
our approach is modular; depending upon the system in consideration, the formal
tool, simulator or learning algorithm can be easily interchanged, customized
and/or further optimized.

References

1. Flappy bird safe RL git. https://github.com/sinamf/SafeRL. Accessed 3 Aug 2019
2. Using keras and deep q-network to play flappy bird. https://yanpanlau.github.io/

2016/07/10/FlappyBird-Keras.html. Accessed 3 Aug 2019
3. X-plane. https://www.x-plane.com. Accessed 3 Aug 2019
4. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe

reinforcement learning via shielding. In: Thirty-Second AAAI Conference on Arti-
ficial Intelligence (2018)

5. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Clarke, E., Henzinger, T.,
Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 305–343. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-10575-8 11

6. Berkenkamp, F., Krause, A., Schoellig, A.P.: Bayesian optimization with safety
constraints: safe and automatic parameter tuning in robotics (2016). arXiv
preprint: arXiv:1602.04450

7. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

8. Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods: toward
safe control through proof and learning. In: Thirty-Second AAAI Conference on
Artificial Intelligence (2018)

9. Garcıa, J., Fernández, F.: A comprehensive survey on safe reinforcement learning.
J. Mach. Learn. Res. 16(1), 1437–1480 (2015)

10. Gario, M., Micheli, A.: PySMT: a solver-agnostic library for fast prototyping of
SMT-based algorithms. In: Proceedings of the 13th International Workshop on
Satisfiability Modulo Theories (SMT), pp. 373–384 (2015)

11. Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Omega-
regular objectives in model-free reinforcement learning (2018). arXiv preprint:
arXiv:1810.00950

https://github.com/sinamf/SafeRL
https://yanpanlau.github.io/2016/07/10/FlappyBird-Keras.html
https://yanpanlau.github.io/2016/07/10/FlappyBird-Keras.html
https://www.x-plane.com
https://doi.org/10.1007/978-3-319-10575-8_11
http://arxiv.org/abs/1602.04450
https://doi.org/10.1007/978-3-540-78800-3_24
http://arxiv.org/abs/1810.00950

340 A. Murugesan et al.

12. Jansen, N., Könighofer, B., Junges, S., Bloem, R.: Shielded decision-making in
MDPS (2018). arXiv preprint: arXiv:1807.06096

13. Junges, S., Jansen, N., Dehnert, C., Topcu, U., Katoen, J.-P.: Safety-constrained
reinforcement learning for MDPs. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 130–146. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49674-9 8

14. Jin Kim, H., Jordan, M.I., Sastry, S., Ng, A.Y.: Autonomous helicopter flight via
reinforcement learning. In: Advances in Neural Information Processing Systems,
pp. 799–806 (2004)

15. Mason, G.R., Calinescu, R.C., Kudenko, D., Banks, A.: Assured reinforcement
learning for safety-critical applications. In: Doctoral Consortium at the 10th Inter-
national Conference on Agents and Artificial Intelligence. SciTePress (2017)

16. Moldovan, T.M., Abbeel, P., Jordan, M., Borrelli, F.: Safety, Risk Awareness and
Exploration in Reinforcement Learning. Ph.D. thesis, University of California,
Berkeley, USA (2014)

17. Schreiter, J., Nguyen-Tuong, D., Eberts, M., Bischoff, B., Markert, H., Toussaint,
M.: Safe exploration for active learning with gaussian processes. In: Bifet, A., May,
M., Zadrozny, B., Gavalda, R., Pedreschi, D., Bonchi, F., Cardoso, J., Spiliopoulou,
M. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9286, pp. 133–149. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-23461-8 9

18. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8(3), 279–292 (1992)

http://arxiv.org/abs/1807.06096
https://doi.org/10.1007/978-3-662-49674-9_8
https://doi.org/10.1007/978-3-662-49674-9_8
https://doi.org/10.1007/978-3-319-23461-8_9

Formalizing CNF SAT Symmetry
Breaking in PVS

David E. Narváez(B)

Golisano College of Computing and Information Sciences,
Rochester Institute of Technology, Rochester, NY 14623, USA

den9562@rit.edu

Abstract. The Boolean satisfiability problem (SAT) remains a central
problem to theoretical as well as practical computer science. Recently, the
need to trust the results obtained by SAT solvers has led to research in
formalizing these. Nevertheless, tools in the ecosystem of SAT problems
(such as preprocessors, model counters, etc.) would need to be verified
as well in order for the results to be trusted. In this paper we explore a
step towards a formalized symmetry breaking tool for SAT: formalizing
SAT symmetry breaking for formulas in conjunctive normal form (CNF)
using the Prototype Verification System (PVS).

Keywords: SAT · PVS · Symmetry breaking

1 Motivation

The Boolean satisfiability problem (SAT) and its variants have played an impor-
tant role in the development of all parts of computer science. From the theoretical
perspective, it plays a fundamental role in the theory of NP-completeness [4].
From the practical point of view, it has found several applications in fields like
model checking [16] and combinatorial search [10]. The applications SAT has
found in industry have brought along interesting consequences. On the one hand,
it has spurred the development of an entire ecosystem of related software, from
preprocessors to software to verify proofs of unsatisfiability. On the other hand,
it has increased the complexity of SAT solvers themselves as they are used
to tackle larger instances with intricate structures. The fact that SAT solvers
are becoming more complex while at the same time being used in more mission-
critical scenarios has sparked interest in the verification of SAT solvers [3,11,15].
Nevertheless, industrial applications usually depend not only on the SAT solver
employed to find satisfying assignments (models) of the generated instances but
also on preprocessing and postprocessing tools. For instance, most SAT solvers
available accept the input formula in DIMACS format1, which assumes the input
is in conjunctive normal form (CNF), so depending on the application, a CNF
transformation may be needed as a preprocessing step, introducing a new trust
issue.
1 https://www.satcompetition.org/2009/format-benchmarks2009.html.

c© Springer Nature Switzerland AG 2019
J. M. Badger and K. Y. Rozier (Eds.): NFM 2019, LNCS 11460, pp. 341–354, 2019.
https://doi.org/10.1007/978-3-030-20652-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20652-9_23&domain=pdf
http://orcid.org/0000-0003-3704-1060
https://www.satcompetition.org/2009/format-benchmarks2009.html
https://doi.org/10.1007/978-3-030-20652-9_23

342 D. E. Narváez

The particular type of preprocessing tool we focus on in this paper is sym-
metry breaking tools. Symmetry breaking has been identified as a crucial step
towards using SAT solvers successfully in combinatorial search [9]. Symmetries
in a given instance of the SAT problem may arise from several sources, some of
them domain-specific and some of them at the syntactic level. The seminal work
by Crawford [5,6] addressed syntactic symmetry in CNF formulas by interpreting
these as graphs and using the automorphism group of such graphs to identify syn-
tactic symmetry. These symmetries are broken by appending symmetry breaking
clauses to the input formula. Aloul et al. [1] later improved the original construc-
tion to be able to detect phase-shifts symmetries (symmetries that map a literal
to its negation). Aloul et al. [2] exploited the recursive nature of the symmetry
breaking predicates formulated in this technique to reduce the size of the symme-
try breaking clauses added to the input formula and made their work available
as the widely successful tool Shatter. More recently, Devriendt et al. [7] improved
the symmetry breaking clauses added by Shatter and added another technique for
symmetry breaking detection, namely row interchangeability, making these avail-
able in the BreakID tool. The idea of detecting syntactic symmetries through a
graph representation of the input formula has also found its way into the related
paradigms of Answer Set Programming (ASP) and model expansion [8]. This brief
overview, although by no means thorough, is enough to make the argument that
by using today’s tools in syntactic symmetry breaking we are leveraging decades
of work. At the heart of this work is the concept introduced by Crawford [5,6], still
present in modern tools: the representation of a Boolean formula as a graph whose
automorphisms correspond to syntactic symmetries in the input formula. Thus
formalizing this idea would be a step towards formalizing state-of-the-art tools.

In this paper we explore the formalization in the Prototype Verification Sys-
tem (PVS) [13] of the graph construction by Crawford [5,6] and the verification
of the fundamental property linking the automorphisms of this graph with sym-
metric assignments of the variables. Our formalization is based on the graph
theory from NASA’s PVS library2. We believe this formalization is an interest-
ing undertaking because it requires us to go beyond the mere formalization of
CNF formulas and transformations at the formula level. We need to jump out of
the realm of CNF formulas into the language of graphs and then back to CNF
formulas.

The rest of this paper is organized as follows. Crawford’s symmetry breaking
method is defined in detail in Sect. 2. Section 3 then delves into the details of
our formalization and some of the proof techniques used to verify the main
theorems of Crawford’s approach to syntactic symmetry breaking. We discuss
some directions for future research and conclude in Sect. 4.

2 Main Theorem

In this section we lay out the fundamentals of Crawford’s approach to syntactic
symmetry breaking, which we then formalize in Sect. 3. The first concept we
define is that of a CNF formula:
2 https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html.

https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html

Formalizing CNF SAT Symmetry Breaking in PVS 343

Definition 1 (CNF Formula). A CNF Clause is a set of literals (variables
and their negations). A CNF Formula is a set of CNF clauses.

For simplicity, we identify variables with natural numbers. Thus an assign-
ment of variables can be defined as a function from the natural numbers to the
Boolean domain. Alternatively, one could define an assignment as a function
from the set of variables in a formula to the Boolean domain, but this has inter-
esting implications which we discuss briefly in Sect. 4. Regardless of the choice of
representation of assignments, these can naturally be extended to an assignment
of literals in the obvious way.

Definition 2. An assignment σ models a formula F if for every clause C ∈ F
there exists a literal l ∈ C such that σ assigns True to l.

Definition 3 (Graph Representation). The graph representation of a CNF
formula F is a vertex-colored undirected graph GF whose set of vertices is the
union of the clauses of F in one color and the literals of F in another color. The
set of edges is defined as: (a) the set of edges between a literal l and its negation
l and (b) the set of edges between a clause C and the literals l ∈ C.

x1 x1 x2 x2 x3 x3

C1 C2

Fig. 1. The graph corresponding to the CNF formula (x1∨x2)∧(x1∨x3). Vertex colors
are represented by different node shapes.

Figure 1 shows what the graph GF would be for a formula F = (x1 ∨ x2) ∧
(x1 ∨ x3). Recall that the automorphisms of a graph are the vertex permuta-
tions that preserve the set of edges. In our particular case, since we deal with
vertex-colored graphs, we only consider color-preserving automorphisms (i.e.,
automorphisms that map vertices to vertices of the same color). Since literal
vertices will be mapped to literal vertices, the automorphisms of GF naturally
induce a permutation of the literals of F . The main theorem behind Crawford’s
method for syntactic symmetry breaking is the following.

Theorem 1. Given a formula F and a color-preserving automorphism φ of GF ,
an assignment σ models a formula F if and only if the assignment σ ◦ φ models
F .

Notice that Theorem 1 can be easily stated if we allow for an abuse of notation
and consider φ both a permutation of the vertices of GF and a permutation
of literals. In fact, a closer look at the composition σ ◦ φ reveals that we are
both recasting σ as an assignment of literals (as explained above) and φ as a

344 D. E. Narváez

permutation of literals. This will prove somewhat problematic in Sect. 3, since
PVS will require us to make these casts explicit, thus increasing the complexity
of the proofs.

Theorem 1 in itself does not break symmetries in CNF formulas. In order to
use Theorem 1 for symmetry breaking, one can look at lexicographical orderings
of assignments. Fix an ordering of the literals of F (say, l1, l2, . . . , ln) and let π
be a permutation of these. We define the symmetry breaking predicate P (π) as

follows: P1(π) = l1 ≤ π(l1), Pi(π) =

(
i−1∧
j=1

lj ≡ π(lj)

)
→ (li ≤ π(li)) for i > 1,

and P (π) =
n∧

i=1

Pi(π). Predicate P (π) imposes a lexicographical order between

two assignments since only one of them will satisfy P (π). Since, by Theorem 1,
it is true that for any satisfying assignment σ and any automorphism φ both σ
and σ ◦ φ satisfy F , P (φ) allows us to prefer σ over σ ◦ φ if σ is less or equal
to σ ◦ φ in lexicographical order. If F is satisfiable, such an assignment exists
because P (π) is a total order over the satisfying assignments of F . By adding
symmetry breaking predicates we are able to reduce the number of satisfying
assignments to search for while preserving satisfiability.

Theorem 2. Given a formula F and a color-preserving automorphism φ of GF ,
F is satisfiable if and only if (F) ∧ P (φ) is satisfiable.

One can in fact add symmetry breaking predicates for any number of auto-
morphisms while preserving satisfiability: observe that the lexicographical min-
imum of the set of models of F is by definition less or equal to all of its permu-
tations, thus it satisfies all possible symmetry breaking predicates. This version
of Theorem 2 is the one we formalize in the next section.

3 Formalizing Crawford’s Symmetry Breaking

We begin our formalization by defining a new datatype for literals with con-
structors for positive and negative literals. The type CNFClause is then defined
as an alias for a finite set of literals, and the type CNFFormula is in turn defined
as a finite set of clauses.

lit: DATATYPE

BEGIN

poslit(n: nat): poslit?

neglit(n: nat): neglit?

END lit

CNFClause: TYPE = finite_set[lit]

CNFFormula: TYPE = finite_set[CNFClause]

Formalizing CNF SAT Symmetry Breaking in PVS 345

We define some natural operations over literals and assignments, namely
the neg function which returns the negation of a literal, and the litval func-
tion which takes a literal l and an assignment a and returns the Boolean value
assigned to l under a. We omit the definition of these for the sake of space. We
define the models predicate indicating an assignment models a formula and the
SAT predicate indicating a satisfying assignment exists for the input formula.

models(F: CNFFormula, assignment: [nat -> bool]): bool =

FORALL (c: (F)): EXISTS (l: (c)): litval(assignment, l) = True

SAT(F: CNFFormula): bool =

EXISTS (assignment: [nat -> bool]): models(F, assignment)

Next, we define the vertex datatype, the type of the vertices of our graph. A
vertex can be a literal vertex or a clause vertex so our datatype has a constructor
for each.

vertex: DATATYPE

BEGIN

litvertex (l: lit): litvertex?

clausevertex (C: CNFClause): clausevertex?

END vertex

We are now prepared to define the functions that will extract the vertices that
are used to build the graph of a formula. These are essentially formula lits
which collects all the literals that appear in a formula, lit vertices which
maps a set of literals to a set of literal vertices, and clause vertices which
maps CNF formulas to sets of clause vertices.

formula_lits(F: CNFFormula): finite_set[lit] =

lits_for_vars(formula_vars(F))

lit_vertices(L: finite_set[lit]): finite_set[vertex] =

image(litvertex, L)

clause_vertices(F: CNFFormula): finite_set[vertex] =

image(clausevertex, F)

We also define functions to generate the edges of the graph GF . We take
a similar approach as with the vertices of GF , defining functions that output
different sets of edges. The function connect lits takes a set of natural numbers
(variables, in our domain) and generates a set of edges connecting the positive
and negative literals of those variables. The connect clauses function connects
the clauses of a CNF formula to the literals they contain. From Definition 3 it
follows that the set of edges of GF is the union of the output of these functions.

346 D. E. Narváez

connect_lits(V: finite_set[nat]): finite_set[doubleton[vertex]] =

image(

(LAMBDA (v: nat): dbl(litvertex(poslit(v)), litvertex(neglit(v)))), V)

connect_clause_internal(C: CNFClause, D: CNFClause):

finite_set[doubleton[vertex]] =

image((LAMBDA (l: lit): dbl(clausevertex(C), litvertex(l))), D)

connect_clause(C: CNFClause): finite_set[doubleton[vertex]] =

connect_clause_internal(C, C)

connect_clauses(F: CNFFormula): finite_set[doubleton[vertex]] =

IUnion[(F),doubleton[vertex]](connect_clause)

With the definitions above we are finally ready to define what the graph of a
formula F is and prove a type-correctness condition (TCC) generated by PVS.
The TCC generated asks us to prove that if an edge is in the union of the sets
connect lits(formula vars(F)) and connect clauses(F), then both of the
members of the edge are in the union of lit vertices(formula lits(F)) and
clause vertices(F).

formula_graph(F: CNFFormula): graph[vertex] =

(# vert := union(lit_vertices(formula_lits(F)), clause_vertices(F)),

edges:= union(connect_lits(formula_vars(F)), connect_clauses(F)) #)

A fundamental property of this graph is that a literal l is a member of a
clause C of a formula F if and only if the edge {C, l} is in the set of edges of the
graph. We prove this property as a separate lemma.

graph_clause_lit: LEMMA

FORALL (F: CNFFormula, C: CNFClause, l: lit):

(member(C, F) AND member(l, C)) IFF

member(dbl(clausevertex(C), litvertex(l)), edges(formula_graph(F)))

The next concept we need to formalize is that of automorphisms. In par-
ticular, for our application we need to define color-preserving automorphisms.
Notice that our definition of a vertex does not explicitly allow for us to specify
a color, but the separate constructors naturally induce a coloring on the vertex
datatype. We leverage the induced coloring of vertices by using the ord func-
tion in PVS [14]. An overload of this function which assigns a natural number
to each constructor of an abstract datatype is automatically generated by PVS
when a new abstract datatype is defined. We start by defining the concept of a
(color-preserving) vertex permutation, which is a nonempty type dependent on
a graph. We define them as bijective functions from the set of vertices to itself
such that vertices of the graph are mapped to vertices of the graph and the color
of the vertex is preserved.

Formalizing CNF SAT Symmetry Breaking in PVS 347

vertex_permutation(G: graph[vertex]): TYPE+ =

{pi: [vertex -> vertex] | bijective?(pi) AND

(FORALL (v: vertex): member(v, vert(G))

IMPLIES member(pi(v), vert(G))) AND

FORALL (v: vertex): ord(v) = ord(pi(v))}

CONTAINING id

We now define an operation permute edges on graphs which generates a new
set of edges using a vertex permutation of the graph. It will then allow us to
define automorphisms as the nonempty type of vertex permutations for which
this operation preserves the set of edges.

permute_edges(G: graph[vertex], pi: vertex_permutation(G)):

finite_set[doubleton[vertex]] =

{ e: doubleton[vertex] |

EXISTS (x: vertex, y: vertex):

member(x, vert(G)) AND member(y, vert(G)) AND x /= y AND

member(dbl(x, y), edges(G)) AND e = dbl(pi(x), pi(y)) }

automorphism(G: graph[vertex]): TYPE+ =

{ pi: vertex_permutation(G) | permute_edges(G, pi) = edges(G) }

CONTAINING id

A fundamental property that follows from the structure of GF and the fact
that automorphisms preserve the set of edges is the following:

Lemma 1. If φ is an automorphism of GF , then for any literal l in F , φ maps
l to φ(l).

Proof. φ(l) is a literal from the formula, so {φ(l), φ(l)} is an edge of GF and
there must exist vertices x, y in GF such that {φ(l), φ(l)} = {φ(x), φ(y)}. One
of x or y, say x, must be l because φ is injective, and that forces y to be l since
φ is color preserving and the only edges connecting literals to literals connect
every literal to its negation. �

We show the formalization of Lemma 1 below, where we can see how the
abuse of notation throughout our informal proof of the lemma (using φ as
both a permutation of the vertices of GF as well as a permutation of liter-
als) is made explicit and causes some clutter. Nevertheless, it is worth not-
ing it could be worse: since phi is of type [vertex->vertex], the expression
phi(litvertex(l)) could in principle be a clausevertex, in which case we
would not be able to use the l accessor. Instead of flagging this as an issue,
PVS will formulate a type-correctness condition (TCC) asking to prove that
phi(litvertex(l)) is a litvertex, which is easy to show from the fact that
phi is color-preserving. We include the generated TCC below. An important
issue to point out is that, despite the fact that Lemma 1 is fairly straightfor-
ward, proving the mapped lit neg lemma required laborious case analysis.

348 D. E. Narváez

mapped_lit(F: CNFFormula, l: (formula_lits(F)),

phi: automorphism(formula_graph(F))) : lit =

l(phi(litvertex(l)))

mapped_lit_TCC1: OBLIGATION

FORALL (F: CNFFormula, l: (formula_lits(F)),

phi: automorphism(formula_graph(F))):

litvertex?(phi(litvertex(l)));

mapped_lit_neg: LEMMA

FORALL (F: CNFFormula, l: lit):

member(l, formula_lits(F)) IMPLIES

(FORALL (phi: automorphism(formula_graph(F))):

mapped_lit(F, l, phi) = neg(mapped_lit(F, neg(l), phi)))

The last piece we need to formalize before stating and proving Theorem 1 is
the notion of permuting an assignment. The crucial property of this operation
is that, if l is a literal of a formula F , the value of φ(l) under an assignment
σ is the value of l under the assignment σ ◦ φ. We have intentionally given
a provocatively simple description of this property which seems to go without
saying. In reality, the description is making use of some notation overloading
that we cannot obviate when formalizing this property in PVS: φ is a vertex
permutation, so a composition of φ with σ is impossible—not even if we consider
σ as an assignment of literals, which is another overloading we employ in our
description. Because of all the overloading that is needed to express this property,
we state it as a lemma whose proof actually requires rather heavy case analysis.

permute_assignment(F: CNFFormula, a: [nat->bool],

phi: automorphism(formula_graph(F))): [nat->bool] =

LAMBDA (n: nat): litval(a, mapped_lit(F, poslit(n), phi))

permute_assignment_preserves: LEMMA

FORALL (F: CNFFormula, a: [nat->bool], l: lit,

phi: automorphism(formula_graph(F))):

member(l, formula_lits(F)) IMPLIES

litval(a, mapped_lit(F, l, phi)) =

litval(permute_assignment(F, phi, a), l)

We are finally ready to state and prove Theorem 1. We can in fact state
a weaker version of this theorem: that if σ models F and φ is an automor-
phism of GF , then a ◦ φ models F . We can then use that theorem and the fact
that φ−1 is an automorphism of GF as well to prove Theorem 1. As mentioned
before, the proof relies heavily on the graph clause lit lemma. It also uses the
permute assignment preserves lemma and the fact that, since an automor-
phism is injective and maps the set of vertices of GF to itself, its inverse also
maps the set of vertices of GF to itself.

Formalizing CNF SAT Symmetry Breaking in PVS 349

Crawford_imp: THEOREM

FORALL (F: CNFFormula, a: [nat->bool],

phi: automorphism(formula_graph(F))):

models(F, a) IMPLIES models(F, permute_assignment(F, phi, a))

Crawford: THEOREM

FORALL (F: CNFFormula, a: [nat->bool],

phi: automorphism(formula_graph(F))):

models(F, a) IFF models(F, permute_assignment(F, phi, a))

We now focus on defining a total order over the assignments of a formula. This
proved to be tricky given our choice of defining assignments as functions from the
natural numbers to the Boolean domain. We define a relation assignment leq
between two assignments σ1 and σ2 which depends on a list of variables. This
relation essentially says that σ1 is lexicographical less or equal to σ2 over the
given list of variables. Notice that the list of variables induces an order over the
variables. There are a number of ways to define this relation, we chose to define
it in a recursive fashion which will facilitate proofs by induction.

assignment_leq (vars: list[nat])(a1: [nat->bool], a2: [nat->bool]):

RECURSIVE [bool] =

CASES vars OF

null: TRUE,

cons(v, rest_vars):

IF a1(v) THEN

IF a2(v) THEN assignment_leq(rest_vars)(a1, a2) ELSE FALSE ENDIF

ELSE

IF a2(v) THEN TRUE ELSE assignment_leq(rest_vars)(a1, a2) ENDIF

ENDIF

ENDCASES

MEASURE vars by <<

On the other hand, it will sometimes be helpful to work with an explicit defini-
tion of what this recursive function means. This will be particularly helpful later
on to prove that there is a lexicographical minimum model for any satisfiable
formula. In order to work with this alternative formulation, we define a predicate
over natural numbers assignments differ which depends on two assignments
σ1 and σ2 stating that these two assignments differ on a given number. We then
prove an equivalence between the recursive definition of assignment leq and
the property that if the two assignments σ1 and σ2 differ over a list of variables
and σ1 is less or equal to σ2, then σ1 assigns False to the first variable where
they both differ.

350 D. E. Narváez

assignments_differ(a1, a2: [nat->bool])(n: nat): bool =

a1(n) /= a2(n)

assignment_leq_alt: LEMMA

FORALL (vars: list[nat], a1: [nat->bool], a2: [nat->bool]):

assignment_leq(vars)(a1, a2) IFF

(some(assignments_differ(a1, a2))(vars) IMPLIES

NOT a1(nth(vars, find_first(vars, assignments_differ(a1, a2)))))

Notice that assignment leq as defined is not a total order over assignments.
In order to use this definition as a total order, we need to consider a restricted
version assignment leq restricted which also depends on a list of variables
but is defined over functions that assign specifically those variables in the list.
This definition uses the extend function in PVS to extend the assignments over
a list of variables to assignments of natural numbers in order to define this
restricted predicate in terms of assignment leq.

assignment_leq_restricted(D: list[nat])

(a1, a2: [(set_as_list.list2set(D))->bool]): bool =

assignment_leq(D)(

extend[nat,(set_as_list.list2set(D)),bool,TRUE](a1),

extend[nat,(set_as_list.list2set(D)),bool,TRUE](a2))

assignment_leq_iff_restricted: LEMMA

FORALL (D: list[nat], S: finite_set[nat], a1, a2: [nat->bool]):

set_as_list.list2set(D) = S IMPLIES

(assignment_leq(D)(a1, a2) IFF

assignment_leq_restricted(D)(

restrict[nat,(S),bool](a1),

restrict[nat,(S),bool](a2)))

assignment_leq_restricted_total_order: LEMMA

FORALL (D: list[nat], S: set[nat]):

set_as_list.list2set(D) = S IMPLIES

total_order?[[(S)->bool]](assignment_leq_restricted(reverse(D)))

We mention in passing that the assignment leq restricted total order
lemma was the most challenging lemma to prove in the entire specification.

We now need a way to encode the symmetry breaking predicate P (π) described
in Sect. 2 as a CNF formula. The standard way to do this is to use auxiliary vari-
ables ei ≡ (li = π(li)) which would lead to an encoding of the predicates that
is quadratic in the number of variables in the formula. While implementing this
in a procedural fashion is straightforward, implementing it in a functional fash-
ion in a way that lends itself to proving properties about the encoding is more
involved. We opted for an alternative approach: expressing the P (π) predicate
entirely in terms of the variables of F without employing auxiliary variables.

Formalizing CNF SAT Symmetry Breaking in PVS 351

A way to do this is to notice that predicates of the type

(
i−1∧
j=1

(li−1 ≡ φ(li−1))

)
→

(li → π(li)) are equivalent to

(
i−1∨
j=1

((li ∧ π(li)) ∨ (li ∧ π(li)))

)
∨ (li → π(li)) and

i−1∨
j=1

((li ∧ π(li)) ∨ (li ∧ π(li))) is in disjunctive normal form (DNF). Then we can

employ a brute-force transformation from DNF to CNF which, although adding a
number of clauses that is exponential in the number of variables in the formula, is
theoretically simple enough to fit our purposes. We implement this transformation
in a recursive function add symbreaking predicates dnf helper but we omit
its definition here for the sake of clarity. We do, however, present the lemma for-
malizing the main property of this function, namely, that an assignment models
the formula output by the add symbreaking predicates dnf helper if and only
if there is a literal i in the list of variables for which a assigns different values to li
and φ(li).

add_symbreaking_predicates_dnf_helper_neq: LEMMA

FORALL (F: CNFFormula, vars: finite_set[nat],

phi: automorphism(formula_graph(F)), a: [nat->bool]):

models(add_symbreaking_predicates_dnf_helper(F, vars, phi), a) IFF

(EXISTS (v: (vars)):

litval(a, poslit(v)) /= litval(a, mapped_lit(F, poslit(v), phi)))

In order to build the predicate P (π) we process the list of variables as follows:
Let the head of the list be the variable v, and let lv be the positive literal of
v. We take the output of add symbreaking predicates dnf helper applied to
the rest of the list and add lv and φ(lv) to each clause, then repeat the same
procedure for the rest of the list.

add_symbreaking_predicates_helper(F: CNFFormula, vars: list[nat],

phi: automorphism(formula_graph(F))): RECURSIVE CNFFormula =

CASES vars OF

null: emptyset[CNFClause],

cons(v, rest_vars):

union(

add_lit_to_clauses(

add_lit_to_clauses(

add_symbreaking_predicates_dnf_helper(F, list2set(rest_vars), phi),

mapped_lit(F, poslit(v), phi)),

neglit(v)),

add_symbreaking_predicates_helper(F, rest_vars, phi))

ENDCASES

MEASURE vars BY <<

Notice the procedure above imposes a lexicographical order of the variables
in the list using the reverse of the order induced by the list, as stated in the
following lemma.

352 D. E. Narváez

models_add_symbreaking_predicates_helper_leq: THEOREM

FORALL (F: CNFFormula, phi: automorphism(formula_graph(F)),

a: [nat->bool], vars: list[nat]):

models(add_symbreaking_predicates_helper(F, vars, phi), a) IFF

assignment_leq(reverse(vars))(a, permute_assignment(F, phi, a))

We define another function that takes a list of automorphisms of the formula
graph of F and adds symmetry breaking predicates for all of them. We also
prove a simple lemma stating a model σ of the formula output by such function
will be less or equal to σ ◦ φ for every automorphism φ in the list.

add_symbreaking_predicates(F: CNFFormula,

phis: list[automorphism(formula_graph(F))]): CNFFormula =

reduce(F,

LAMBDA (phi: automorphism(formula_graph(F)), G: CNFFormula):

union(

add_symbreaking_predicates_helper(F, set2list(formula_vars(F)), phi),

G))(phis)

add_symbreaking_predicates_models: LEMMA

FORALL (F: CNFFormula, phis: list[automorphism(formula_graph(F))],

a: [nat->bool]):

models(add_symbreaking_predicates(F, phis), a) IFF

(models(F, a) AND

FORALL (phi: automorphism(formula_graph(F))):

member(phi, phis) IMPLIES

assignment_leq(reverse(set2list(formula_vars(F))))(

a, permute_assignment(F, phi, a)))

Finally, we prove (a list version of) Theorem 2. The fact that F is satisfiable if
the formula together with the symmetry breaking predicates is satisfiable follows
easily from the fact that F is a subset of that formula (see the base case of the
reduce function call above). The interesting part of this proof is providing a
model that will satisfy all the symmetry breaking predicates given that F is
satisfiable. We provide the extension of the lexicographical minimum of the set
of satisfying assignments of the variables of the formula as a witness. In order to
do this, PVS will ask us to prove (a) that the set of satisfying assignments of the
variables of F is non-empty, (b) that assignment leq restricted is in fact a
total order over assignments of the variables of F , and (c) that the lexicographical
minimum satisfies all the symmetry breaking predicates appended to F . Part (a)
is true because the restriction of the witness to the satisfiability of F belongs to
the set, part (b) is true by lemma assignment leq restricted total order,
and part (c) follows from Theorem 1.

symbreaking: THEOREM

FORALL (F: CNFFormula, phis: list[automorphism(formula_graph(F))]):

SAT(F) IFF SAT(add_symbreaking_predicates(F, phis))

Formalizing CNF SAT Symmetry Breaking in PVS 353

This concludes our formalization of symmetry breaking for Boolean formulas
in CNF. The complete development of our formalization, which consists of 61
formulas at the time of this writing, is available online3.

4 Conclusion and Future Work

We presented the formalization in PVS of the syntactic symmetry breaking tech-
nique for Boolean formulas in conjunctive normal form (CNF) introduced by
Crawford [5,6]. We discussed the main components of our formalization and the
challenges we faced formulating and proving them.

There are several directions for future work that could stem from this work.
One relatively simple improvement would be to specify and prove properties
for an encoding of the symmetry breaking predicate P (π) that uses auxiliary
variables and adds a number of clauses that is polynomial in the number of
variables of the formula. Our choice of representing assignments as functions from
natural numbers to the Boolean domain would allow for using auxiliary variables
without affecting the proof of symbreaking. This would bring our formalization
closer to the actual implementations available in tools like shatter [2].

Related to the extension discussed above, an interesting direction for future
work would be to obtain executable code out of this formalization and compare
it to the performance of tools like shatter [2] and BreakID [7]. PVSio4 [12] could
in principle help in this task, yet one big roadblock in using it for our purpose
is that basic functions related to finite sets (like adding elements to the set
and calculating set unions) are, to the best of our knowledge, not supported by
default. Adding support for these would be a major improvement towards being
able to run our specification and compare it to the CNF symmetry breaking
tools available in the industry.

Acknowledgments. The author would like to thank Dr. Edith Hemaspaandra,
Dr. Matthew Fluet, and the anonymous reviewers of NFM 2019 for their valuable
comments and suggestions.

References

1. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving difficult instances
of Boolean satisfiability in the presence of symmetry. IEEE Trans. CAD Integr.
Circ. Syst. 22(9), 1117–1137 (2003). https://doi.org/10.1109/TCAD.2003.816218

2. Aloul, F.A., Sakallah, K.A., Markov, I.L.: Efficient symmetry breaking for Boolean
satisfiability. IEEE Trans. Comput. 55(5), 549–558 (2006). https://doi.org/10.
1109/TC.2006.75

3. Blanchette, J.C., Fleury, M., Lammich, P., Weidenbach, C.: A verified SAT solver
framework with learn, forget, restart, and incrementality. J. Autom. Reason. 61(1–
4), 333–365 (2018). https://doi.org/10.1007/s10817-018-9455-7

3 https://doi.org/10.5281/zenodo.2597138.
4 https://shemesh.larc.nasa.gov/people/cam/PVSio/.

https://doi.org/10.1109/TCAD.2003.816218
https://doi.org/10.1109/TC.2006.75
https://doi.org/10.1109/TC.2006.75
https://doi.org/10.1007/s10817-018-9455-7
https://doi.org/10.5281/zenodo.2597138
https://shemesh.larc.nasa.gov/people/cam/PVSio/

354 D. E. Narváez

4. Cook, S.A.: The complexity of theorem-proving procedures. In: 3rd Annual ACM
Symposium on Theory of Computing, pp. 151–158. ACM (1971). https://doi.org/
10.1145/800157.805047

5. Crawford, J.: A theoretical analysis of reasoning by symmetry in first-order logic.
In: AAAI Workshop on Tractable Reasoning, pp. 17–22 (1992)

6. Crawford, J.M., Ginsberg, M.L., Luks, E.M., Roy, A.: Symmetry-breaking predi-
cates for search problems. In: Aiello, L.C., Doyle, J., Shapiro, S.C. (eds.) Knowl-
edge Representation and Reasoning, pp. 148–159. Morgan Kaufmann, Burlington
(1996)

7. Devriendt, J., Bogaerts, B., Bruynooghe, M., Denecker, M.: Improved static sym-
metry breaking for SAT. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS,
vol. 9710, pp. 104–122. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40970-2 8

8. Devriendt, J., Bogaerts, B., Bruynooghe, M., Denecker, M.: On local domain sym-
metry for model expansion. Theory Pract. Logic Program. 16(5–6), 636–652 (2016)

9. Heule, M.: The quest for perfect and compact symmetry breaking for graph prob-
lems. In: Davenport, J.H., et al. (eds.) 18th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing, pp. 149–156. IEEE Computer
Society (2016). https://doi.org/10.1109/SYNASC.2016.034

10. Heule, M., Kullmann, O.: The science of brute force. Commun. ACM 60(8), 70–79
(2017). https://doi.org/10.1145/3107239

11. Marić, F.: Formal verification of a modern SAT solver by shallow embedding into
Isabelle/HOL. Theor. Comput. Sci. 411(50), 4333–4356 (2010). https://doi.org/
10.1016/j.tcs.2010.09.014

12. Muñoz, C.: Rapid prototyping in PVS. Contractor Report NASA/CR-2003-212418,
NASA, Langley Research Center, Hampton VA 23681–2199, USA, May 2003

13. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55602-8 217

14. Owre, S., Shankar, N.: Abstract datatypes in PVS. Technical report SRI-CSL-93-
9R, Computer Science Laboratory, SRI International, Menlo Park, CA, December
1993. Extensively revised June 1997; Also available as NASA Contractor Report
CR-97-206264

15. Shankar, N., Vaucher, M.: The mechanical verification of a DPLL-based satisfia-
bility solver. Electron. Notes Theor. Comput. Sci. 269, 3–17 (2011). https://doi.
org/10.1016/j.entcs.2011.03.002

16. Yu, Y., Subramanyan, P., Tsiskaridze, N., Malik, S.: All-SAT using minimal block-
ing clauses. In: 27th International Conference on VLSI Design and 13th Interna-
tional Conference on Embedded Systems, pp. 86–91 (2014). https://doi.org/10.
1109/VLSID.2014.22

https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1007/978-3-319-40970-2_8
https://doi.org/10.1007/978-3-319-40970-2_8
https://doi.org/10.1109/SYNASC.2016.034
https://doi.org/10.1145/3107239
https://doi.org/10.1016/j.tcs.2010.09.014
https://doi.org/10.1016/j.tcs.2010.09.014
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1016/j.entcs.2011.03.002
https://doi.org/10.1016/j.entcs.2011.03.002
https://doi.org/10.1109/VLSID.2014.22
https://doi.org/10.1109/VLSID.2014.22

Fly-by-Logic: A Tool for Unmanned
Aircraft System Fleet Planning Using

Temporal Logic

Yash Vardhan Pant1(B), Rhudii A. Quaye1, Houssam Abbas2, Akarsh Varre1,
and Rahul Mangharam1

1 Department of Electrical and Systems Engineering,
University of Pennsylvania, Philadelphia, PA 19104, USA
{yashpant,quayerhu,akarshv,rahulm}@seas.upenn.edu

2 Department of Electrical Engineering and Computer Science,
Oregon State University, Corvallis, OR 97330, USA

houssam.abbas@oregonstate.edu

Abstract. Safe planning for fleets of Unmaned Aircraft Systems (UAS)
performing complex missions in urban environments has typically been
a challenging problem. In the United States of America, the National
Aeronautics and Space Administration (NASA) and the Federal Aviation
Administration (FAA) have been studying the regulation of the airspace
when multiple such fleets of autonomous UAS share the same airspace,
outlined in the Concept of Operations document (ConOps). While the
focus is on the infrastructure and management of the airspace, the
Unmanned Aircraft System (UAS) Traffic Management (UTM) ConOps
also outline a potential airspace reservation based system for operation
where operators reserve a volume of the airspace for a given time inter-
val to operate in, but it makes clear that the safety (separation from
other aircraft, terrain, and other hazards) is a responsibility of the drone
fleet operators. In this work, we present a tool that allows an operator to
plan out missions for fleets of multi-rotor UAS, performing complex time-
bound missions. The tool builds upon a correct-by-construction planning
method by translating missions to Signal Temporal Logic (STL). Along
with a simple user interface, it also has fast and scalable mission planning
abilities. We demonstrate our tool for one such mission.

Keywords: UAS mission planning · Signal Temporal Logic ·
Correct-by-construction planning · Multi-rotor UAS

1 Introduction

It is inevitable that autonomous UAS will be operating in urban airspaces [1].
In the near future, operators will increasingly rely on fleets of multiple UAS to

Y. V. Pant and R. A. Quaye—Are contributed equally.

c© Springer Nature Switzerland AG 2019
J. M. Badger and K. Y. Rozier (Eds.): NFM 2019, LNCS 11460, pp. 355–362, 2019.
https://doi.org/10.1007/978-3-030-20652-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20652-9_24&domain=pdf
https://doi.org/10.1007/978-3-030-20652-9_24

356 Y. V. Pant et al.

perform a wide variety of complicated missions which could consist of a combi-
nation of: (1) spatial objectives, e.g. geofenced no fly zones, or delivery zones,
(2) temporal objectives, e.g. a time window to deliver a package, (3) reactive
objectives, e.g. action when battery is low.

In this paper, we present a tool1 that allows an operator to specify such
requirements over a fleet of UAS operating in a bounded workspace and generates
trajectories for all UAS such that they all satisfy their given mission in a safe
manner. In order to generate these flights paths, or trajectories, our tool relies on
interpreting the mission objectives as Signal Temporal Logic (STL) specifications
[2]. We then formulate the problem of mission satisfaction as that of maximizing
a notion of robustness of STL specifications [3]. Using the approach of [4], we
generate trajectories for all the UAS involved such that they satisfy the given
mission objectives.

1.1 Related Work

Existing mission planner software for autonomous drone operations like ArduPi-
lot mission planner [5] and QGroundControl [6] offer UAS enthusiasts the abil-
ity to quickly plan out autonomous UAS flights by sequencing multiple sim-
ple operations (like take-off, hover, go to a way-point, land) together. However
these planners either cannot handle missions involving multiple UAS and compli-
cated requirements like co-ordination between UAS or completing tasks within
given time intervals, or require hand-crafted sequences of maneuvers to meet
the requirements in a safe manner. We propose a tool that can inherently deal
with multi-agent missions as well as timing constraints on completion of tasks
while guaranteeing that planned flight paths are safe. As opposed to existing
mission planning software, our tool does not require the user to explicitly plan
out maneuvers for the drones to execute to follow out a mission, e.g. in the case
where two UAS have to enter the same region during the same time interval, our
method generates trajectories that ensure the two UAS do so without crashing
into each other without any user based scheduling of which drones enters first.

The tool presented here relies on interpreting a mission as a STL specification
and generating trajectories that satisfy it. While there are multiple methods
and tools that aim to solve such a problem, e.g. Mixed Integer Programming-
based [7] and based on stochastic heuristics [8], we use an underlying method [4]
that is tailored for generating trajectories for multi-rotor UAS, including those
that allow hovering, to satisfy STL specifications in continuous-time. A detailed
comparison can be found in [4,9].

1.2 Contributions

With this proposed tool we aim to bridge the gap between the ease-of-use of
the UAS mission planning software popular among amateur drone enthusiasts,

1 https://github.com/yashpant/FlyByLogic.

https://github.com/yashpant/FlyByLogic

Fly-by-Logic 357

and the capabilities of academic tools [7,8] for control/planning with STL spec-
ifications. By doing this, we generate trajectories for multi UAS fleets that can
satisfy complicated mission requirements while providing strong guarantees on
mission satisfaction as well as the ability of the multi-rotor UAS to follow out
their planned trajectories [4]. The main contributions of our tool are:

Graphical User Interface
(MATLAB)

Fly-by-Logic: Library for
maximization of smooth
robustness of STL (C++)

Mission
Parameters

(YAML)

UAS
Trajectories

(YAML)

User Inputs

CasADi

Optimization
formulation

IPOPT

Optimization
solver

ROS planning and
control stack

To UAS

The Fly-by-Logic tool

Fig. 1. The Fly-by-Logic tool-chain. Through a MATLAB-based graphical interface
(Fig. 2), the user defines the workspace and the multi UAS mission. This mission is
interpreted as an STL specification (of the form in Eq. 1), the parameters of which
are passed from the interface to the Fly-by-Logic C++ library. Through interfacing
with off-the-shelf optimization tools, trajectories that satisfy the mission are generated
for each UAS and visualized through the user interface. The way-points that gener-
ate these trajectories can also be sent to a Robot Operating Systems (ROS) imple-
mentation of trajectory following control to be deployed on board actual robots (e.g.
bit.ly/varvel8).

1. An easy to use graphical interface to specify mission requirements for multi-
rotor UAS fleets,

2. The ability to interpreting these as missions as STL specifications and auto-
matically generate an optimization to maximize a notion of robustness of this
STL specification,

358 Y. V. Pant et al.

3. By interfacing to an off-the-shelf optimization solver, generation of trajecto-
ries that satisfy the mission requirements, are optimal with respect to mini-
mizing jerk [10], and respect (potentially different) kinematic constraints for
all UAS.

4. Does not require the UAS fleet operator to know how to write specifications
in STL, but through an object-oriented C++ library allows the advanced user
to generate custom missions specifications with even more flexibility than the
graphical interface.

2 Fly-by-Logic: The Tool

2.1 Architecture and Outline

Figure 1 shows the architecture of the Fly-by-Logic tool. Through the user inter-
face in MATLAB, the user defines the missions (more details in Sect. 2.2). The
mission specific spatial and temporal parameters are then read in by the Fly-by-
Logic C++ back-end. Here, these parameters are used to generate a function for
the continuously differentially approximation of the robustness of the STL spec-
ification associated with the mission. An optimization to maximize this function
[4] value is then formulated in Casadi [11]. Solving this optimization via IPOPT
[12] results in a sequence of way-points for every UAS (uniformly apart in time).
Also taken into account in the formulation is the motion to connect these way-
points, which is via jerk-minimizing splines [10] and results in trajectories for
each UAS. Through the Fly-by-Logic library, the (original non-smooth) robust-
ness of these trajectories is evaluated for the mission STL specification and
displayed back to the user via the MATLAB interface. A positive value of this
robustness implies that the generated trajectories satisfy the mission and can be
flown out, while a negative value (or 0) implies that the trajectories do not satisfy
the mission [13] and either some additional parameters need to be tweaked (e.g.
allowable velocity and acceleration bounds for the UAS, time intervals to visit
regions, or a constant for the smooth robustness computation) or that the solver
is incapable of solving this particular mission from the given initial positions of
the UAS.

2.2 The Mission Template

Through the interface, the user starts by defining the number of way-points N
(same number for each drone), as well as the (fixed) time, T that the UAS take
to travel from one way-point to the next. These way-points are the variables
that the tool optimizes over, and the overall duration of the mission is then
H = NT seconds. Next, the user defines regions in a bounded 3-dimensional
workspace (see Fig. 2). These regions are axis-aligned hyper-rectangles and can
be either Unsafe no-fly zones (in red), or Goal regions that the UAS can fly to.
For each UAS, the user specifies their starting position in the workspace, as well
as the velocity and acceleration bounds that their respective trajectories should
respect. Finally, the user also specifies the time intervals within which the UAS
need to visit some goal sets.

Fly-by-Logic 359

Fig. 2. The user interface and the planned trajectories for a two UAS patrolling mission
(see Example 1). Real-time playback can be seen at http://bit.ly/fblguiexmpl (Color
figure online)

Through the user interface, the user-defined missions result in specifications
corresponding to the following fragment of STL:

ϕ = ∧U
u=1 ∧D

d=1(�I¬(pd ∈ Unsafeu)) ∧ ∧d�=d′(�I(||pd − pd′ ||2 ≥ dmin))∧
∧G
g=1 ∧D

d=1(♦I1
g,d

(pd ∈ Goalg) ∧ . . . ∧ ♦Ic
g,d

(pd ∈ Goalg))
(1)

Here, D, U , G are the number of UAS, Unsafe sets and Goal sets in the
mission respectively. I = [0, NT] is an interval that covers the entire mission
duration, while Iig,d ⊆ I, ∀i = 1, . . . , c is the ith interval in which UAS d must
visit Goal g. ¬ is the boolean negation operator. pd is the position of UAS d.

The symbol �Iφ corresponds to the Always operator of STL and encodes the
requirement that a boolean formula φ should be true through the time interval
I. We use this operator to enforce that the UAS never enter the Unsafe zones
or get closer than dmin meters of each other. Similarly, ♦Iφ corresponds to the
Eventually operator which encodes the requirement that φ should be true at
some point in time in the interval I. We use this to capture the requirement that
the a UAS visits a Goal region within the user defined interval I. More details
on STL and its grammar can be found in [14].

http://bit.ly/fblguiexmpl

360 Y. V. Pant et al.

Example 1. Two UAS patrolling mission. Two UAS, starting off at posi-
tions [2, 2, 0] and [−2,−2, 0], are tasked with patrolling two sets (in green), while
making sure not to enter the set in red, and also maintaining a minimum dis-
tance of 0.5 m from each other. For a mission of time 20 s, we set the number
of way-points to 20, and the time between them to be 1 s. The timing constraints
on the patrolling are as follows: UAS 1 has to visit the first set in green in an
interval of time [0, 5] seconds from the missions starting time, has to visit the
other green set in the interval [5, 10] seconds, re-visit the first set in the interval
[10, 15], and the second set again in the interval [15, 20]. UAS 2 has a similar
mission, visiting the first set in the intervals the UAS 1 has to visit the sec-
ond set and so on. Figure 2 shows the trajectories generated by our method, and
http:// bit.ly/ fblguiexmpl shows a real-time playback of the planned trajectories
visualized through the user interface.

For the mission of Example 1, the temporal logic specification is:

ϕ = ∧2
u=1 ∧2

d=1(�[0,20]¬(pd ∈ Unsafeu)) ∧ �[0,20](||p1 − p2||2 ≥ 0.5)∧
♦[0,5](p1 ∈ Goal1) ∧ ♦[5,10](p1 ∈ Goal2) ∧ ♦[10,15](p1 ∈ Goal1)∧
♦[15,20](p1 ∈ Goal2) ∧ ♦[0,5](p2 ∈ Goal2) ∧ ♦[5,10](p2 ∈ Goal1)∧
♦[10,15](p2 ∈ Goal2) ∧ ♦[15,20](p2 ∈ Goal1)

(2)

The tool comes pre-loaded with some example missions, and offers the user
the ability to save new missions, as well save and load workspaces as text files.
More details on the usage of the tool are in [15].

Note: Through the C++ library that forms the back-end for the tool, specifi-
cations involving the nested operators �I1♦I2 and ♦I1�I2 can be used in con-
junction with the template of Eq. 1. This functionality will be added to the user
interface at a later time.

2.3 Behind-the-Scenes: Generating the Trajectories

In order to generate the trajectories that satisfy the mission specification, an
optimization is solved (in the C++ back-end) to maximize, over N way-points
for each drone, the smooth robustness of the mission STL specification evaluated
for the UAS trajectories of NT seconds in duration. The constraints in the
optimization ensure that the resulting trajectories are such that the resulting
trajectories have velocity and accelerations within the user-defined bounds for
each UAS, i.e. are kinematically feasible for the UAS to fly. See [4] for details.

3 Conclusions and Ongoing Work

In this paper we presented Fly-by-Logic, a tool for planning for multi-rotor
UAS missions. By interpreting the missions as STL specifications, the underly-
ing method generates kinematically feasible trajectories to satisfy missions with

http://bit.ly/fblguiexmpl

Fly-by-Logic 361

complicated spatial and temporal requirements while ensuring safety. Through
an example, we introduce the kind of missions that can be specified in the tool.
At the time of writing this paper, the tool is suitable only for offline trajectory
generation for UAS missions. In [4] the underlying method has been shown to
work in an online manner as well (see bit.ly/varvel2), and current work on
the tool is focused on wrapping the Fly-by-Logic C++ library as a ROS package
to seamlessly integrate with off-the-shelf planning and control implementations.
Also planned is a method to import 3-d maps for actual geographical locations
with Unsafe zones covering landmarks.

References

1. Federal Aviation Administration. Concept of operations v1.0 (2018). https://utm.
arc.nasa.gov/docs/2018-UTM-ConOps-v1.0.pdf. Accessed 19 Nov 2018

2. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

3. Fainekos, G.: Robustness of temporal logic specifications. Ph.D. dissertation,
University of Pennsylvania (2008). http://www.public.asu.edu/∼gfaineko/pub/
fainekos thesis.pdf

4. Pant, Y.V., Abbas, H., Quaye, R.A., Mangharam, R.: Fly-by-logic: control of multi-
drone fleets with temporal logic objectives. In: Proceedings of the 9th ACM/IEEE
International Conference on Cyber-Physical Systems, pp. 186–197. IEEE Press
(2018)

5. Ardupilot Mission Planner. ardupilot.org/planner/. Accessed 15 Dec 2018
6. QGROUNDCONTROL. Intuitive and powerful ground control station for PX4

and ArduPilot UAVs. qgroundcontrol.com. Accessed 15 Dec 2018
7. Raman, V., Donze, A., Maasoumy, M., Murray, R.M., Sangiovanni-Vincentelli, A.,

Seshia, S.A.: Model predictive control with signal temporal logic specifications. In:
53rd IEEE Conference on Decision and Control, pp. 81–87, December 2014

8. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo:
a tool for temporal logic falsification for hybrid systems. In: Abdulla,
P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–
257. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9 21.
http://dl.acm.org/citation.cfm?id=1987389.1987416

9. Pant, Y.V., Abbas, H., Mangharam, R.: Smooth operator: control using the smooth
robustness of temporal logic. In: 2017 IEEE Conference on Control Technology and
Applications (CCTA), pp. 1235–1240. IEEE (2017)

10. Mueller, M.W., Hehn, M., DÁndrea, R.: A computationally efficient motion prim-
itive for Quadrocopter trajectory generation. IEEE Trans. Robot. 31, 1294–1310
(2015)

11. Andersson, J.: A general-purpose software framework for dynamic optimization.
Ph.D. thesis, Arenberg Doctoral School, KU Leuven (2013)

12. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–
57 (2006)

13. Fainekos, G., Pappas, G.: Robustness of temporal logic specifications for
continuous-time signals. Theor. Comput. Sci. 410, 4262–4291 (2009)

https://utm.arc.nasa.gov/docs/2018-UTM-ConOps-v1.0.pdf
https://utm.arc.nasa.gov/docs/2018-UTM-ConOps-v1.0.pdf
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
http://www.public.asu.edu/~gfaineko/pub/fainekos_thesis.pdf
http://www.public.asu.edu/~gfaineko/pub/fainekos_thesis.pdf
http://ardupilot.org/planner/
http://qgroundcontrol.com/
https://doi.org/10.1007/978-3-642-19835-9_21
http://dl.acm.org/citation.cfm?id=1987389.1987416

362 Y. V. Pant et al.

14. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

15. Fly-by-Logic: User documentation. https://github.com/yashpant/FlyByLogic.
Accessed 15 Dec 2018

https://doi.org/10.1007/978-3-642-15297-9_9
https://github.com/yashpant/FlyByLogic

A Mixed Real and Floating-Point Solver

Rocco Salvia1, Laura Titolo2(B), Marco A. Feliú2, Mariano M. Moscato2,
César A. Muñoz3, and Zvonimir Rakamarić1

1 University of Utah, Salt Lake City, USA
{rocco,zvonimir}@cs.utah.edu

2 National Institute of Aerospace, Hampton, USA
{laura.titolo,marco.feliu,mariano.moscato}@nianet.org

3 NASA Langley Research Center, Hampton, USA
cesar.a.munoz@nasa.gov

Abstract. Reasoning about mixed real and floating-point constraints
is essential for developing accurate analysis tools for floating-point pro-
grams. This paper presents FPRoCK, a prototype tool for solving mixed
real and floating-point formulas. FPRoCK transforms a mixed formula
into an equisatisfiable one over the reals. This formula is then solved
using an off-the-shelf SMT solver. FPRoCK is also integrated with the
PRECiSA static analyzer, which computes a sound estimation of the
round-off error of a floating-point program. It is used to detect infeasible
computational paths, thereby improving the accuracy of PRECiSA.

1 Introduction

Floating-point numbers are frequently used as an approximation of real numbers
in computer programs. A round-off error originates from the difference between
a real number and its floating-point representation, and accumulates throughout
a computation. The resulting error may affect both the computed value of arith-
metic expressions as well as the control flow of the program. To reason about
floating-point computations with possibly diverging control flows, it is essential
to solve mixed real and floating-point arithmetic constraints. This is known to be
a difficult problem. In fact, constraints that are unsatisfiable over the reals may
hold over the floats and vice-versa. In addition, combining the theories is not
trivial since floating-point and real arithmetic do not enjoy the same properties.

Modern Satisfiability Modulo Theories (SMT) solvers, such as Mathsat [3]
and Z3 [11], encode floating-point numbers with bit-vectors. This technique is
usually inefficient due to the size of the binary representation of floating-point
numbers. For this reason, several abstraction techniques have been proposed
to approximate floating-point formulas and to solve them in the theory of real
numbers. Approaches based on the counterexample-guided abstraction refinement

Partially supported by NSF awards CCF 1346756 and CCF 1704715.
Research by the first four authors was supported by the National Aeronautics and
Space Administration under NASA/NIA Cooperative Agreement NNL09AA00A.

c© Springer Nature Switzerland AG 2019
J. M. Badger and K. Y. Rozier (Eds.): NFM 2019, LNCS 11460, pp. 363–370, 2019.
https://doi.org/10.1007/978-3-030-20652-9_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20652-9_25&domain=pdf
https://doi.org/10.1007/978-3-030-20652-9_25

364 R. Salvia et al.

(CEGAR) framework [2,14,18] simplify a floating-point formula and solve it in
a proxy theory that is more efficient than the original one. If a model is found for
the simplified formula, a check on whether this is also a model for the original
formula is performed. If it is, the model is returned, otherwise, the proxy theory
is refined. Realizer [9] is a framework built on the top of Z3 to solve floating-point
formulas by translating them into equivalent ones in real arithmetic. Molly [14]
implements a CEGAR loop where floating-point constraints are lifted in the
proxy theory of mixed real and floating-point arithmetics. To achieve this, it
uses an extension of Realizer that supports mixed real and floating-point con-
straints. However, this extension is embedded in Molly and cannot be used as
a standalone tool. The Colibri [10] solver handles the combination of real and
floating-point constraints by using disjoint floating-point intervals and differ-
ence constraints. Unfortunately, the publicly available version of Colibri does
not support all the rounding modalities and the negation of Boolean formu-
las. JConstraints [7] is a library for constraint solving that includes support for
floating-points by encoding them into reals.

This paper presents a prototype solver for mixed real and floating-point
constraints called FPRoCK.1 It extends the transformation defined in Real-
izer [9] to mixed real/floating-point constraints. Given a mixed real-float for-
mula, FPRoCK generates an equisatisfiable real arithmetic formula that can be
solved by an external SMT solver. In contrast to Realizer, FPRoCK supports
mixed-precision floating-point expressions and different ranges for the input vari-
ables. FPRoCK is also employed to improve the accuracy of the static analyzer
PRECiSA [16]. In particular, it identifies spurious execution traces whose path
conditions are unsatisfiable, which allows PRECiSA to discard them.

2 Solving Mixed Real/Floating-Point Formulas

A floating-point number [8], or simply a float, can be represented by a tuple
(s,m, exp) where s is a sign bit, m is an integer called the significand (or man-
tissa), and exp is an integer exponent. A float (s,m, exp) encodes the real number
(−1)s · m · 2exp . Henceforth, F represents the set of floating-point numbers. Let
ṽ be a floating-point number that represents a real number r . The difference
|ṽ − r | is called the round-off error (or rounding error) of ṽ with respect to r .
Each floating-point number has a format f that specifies its dimensions and pre-
cision, such as single or double. The expression Ff (r) denotes the floating-point
number in format f closest to r assuming a given rounding mode.

Let V and ˜V be two disjoint sets of variables representing real and floating-
point values respectively. The set A of mixed arithmetic expressions is defined
by the grammar

A ::= d | x | d̃ | x̃ | A � A | A˜�A | Ff (A),

where d ∈ R, x ∈ V, � ∈ {+,−, ∗, /, | · |} (the set of basic real number arithmetic
operators), d̃ ∈ F, x̃ ∈ ˜V, ˜� ∈ {+̃f , −̃f , ∗̃f , /̃f} (the set of basic floating-point
1 The FPRoCK distribution is available at https://github.com/nasa/FPRoCK.

https://github.com/nasa/FPRoCK

A Mixed Real and Floating-Point Solver 365

arithmetic operators) and f ∈ {single, double} denotes the desired precision for
the result. The rounding operator Ff is naturally extended to arithmetic expres-
sions. According to the IEEE-754 standard [8], each floating-point operation is
computed in exact real arithmetic and then rounded to the nearest float, i.e.,
A˜�fA = Ff (A � A). Since floats can be exactly represented as real numbers,
an explicit transformation is not necessary. The set of mixed real-float Boolean
expressions B is defined by the grammar

B ::= true | false | B ∧ B | B ∨ B | ¬B | A < A | A = A,

where A ∈ A.
The input to FPRoCK is a formula φ̃ ∈ B that may contain both real and

floating-point variables and arithmetic operators. Each variable is associated
with a type (real, single or double precision floating-point) and range that can
be either bounded, e.g., [1, 10], or unbounded, e.g., [−∞,+∞]. The precision of
a mixed-precision floating-point arithmetic operation is automatically detected
and set to the maximum precision of its arguments. Given a mixed formula
φ̃ ∈ B, FPRoCK generates a formula φ over the reals such that φ̃ and φ are
equisatisfiable. Floating-point expressions are transformed into equivalent real-
valued expressions using the approach presented in [9], while the real variables
and operators are left unchanged. It is possible to define x ˜� y as

x ˜� y =

(

ρ(x�y
2exp · 2p)

2p

)

· 2exp , (2.1)

where p is the precision of the format, exp = max{i ∈ Z | 2i ≤ |x � y|}, and
ρ : R → Int is a function implementing the rounding modality [9]. Therefore,
given a floating-point formula φ̃, an equisatisfiable formula without floating-
point operators is obtained by replacing every occurrence of x ˜� y using Equa-
tion (2.1). This is equivalent to replacing the occurrences of x ˜� y with a new
fresh real-valued variable v and imposing v = x ˜� y. From Equation (2.1) it
follows that v · 2p−exp = ρ((x � y) · 2p−exp). Thus, the final formula φ is

φ :− φ̃[v/x ˜� y] ∧ v · 2p−exp = ρ((x � y) · 2p−exp), (2.2)

where φ̃[v/x ˜� y] denotes the Boolean formula φ̃ where all the occurrences of
x ˜� y are replaced by v. The precision p is a constant that depends on the chosen
floating-point format, while exp is an integer representing the exponent of the
binary representation of x ˜� y.

To find an assignment for the exponent exp, FPRoCK performs in parallel
a sequential and binary search over the dimension of x ˜� y, as opposed to the
simple sequential search implemented in Realizer. The implementation of the
function ρ depends on the selected rounding mode and can be defined using floor
and ceiling operators (see [9] for details). Therefore, the transformed formula φ
does not contain any floating-point operators, and hence it can be solved by
any SMT solver that supports the fragment of real/integer arithmetics including
floor and ceiling operators. FPRoCK uses three off-the-shelf SMT solvers as

366 R. Salvia et al.

back-end procedures to solve the transformed formula: Mathsat [3], Z3 [11], and
CVC4 [1]. Optionally, the constraint solver Colibri [10] is also available for use
within FPRoCK. FPRoCK provides the option to relax the restriction on the
minimum exponent to handle subnormal floats. This solution is sound in the
sense that it preserves the unsatisfiability of the original formula. However, if
this option is used, it is possible that FPRoCK finds an assignment to a float that
is not representable in the chosen precision, and therefore is not a solution for
the original formula. Furthermore, FPRoCK currently does not support special
floating-point values such as NaN and Infinity.

3 Integrating FPRoCK in PRECiSA

PRECiSA2 (Program Round-off Error Certifier via Static Analysis) [16] is a
static analyzer based on abstract interpretation [4]. PRECiSA accepts as input a
floating-point program and automatically generates a sound over-approximation
of the floating-point round-off error and a proof certificate in the Prototype Ver-
ification System (PVS) [13] ensuring its correctness. For every possible combina-
tion of real and floating-point execution paths, PRECiSA computes a conditional
error bound of the form 〈η, η̃〉 � (r, e), where η is a symbolic path condition
over the reals, η̃ is a symbolic path condition over the floats, and r, e are sym-
bolic arithmetic expressions over the reals. Intuitively, 〈η, η̃〉 � (r, e) indicates
that if the conditions η and η̃ are satisfied, the output of the program using
exact real number arithmetic is r and the round-off error of the floating-point
implementation is bounded by e.

PRECiSA initially computes round-off error estimations in symbolic form so
that the analysis is modular. Given the initial ranges for the input variables,
PRECiSA uses the Kodiak global optimizer [12] to maximize the symbolic error
expression e. Since the analysis collects information about real and floating-
point execution paths, it is possible to consider the error of taking the incorrect
branch compared to the ideal execution using real arithmetic. This happens
when the guard of a conditional statement contains a floating-point expression
whose round-off error makes the actual Boolean value of the guard differ from the
value that would be obtained assuming real arithmetic. When the floating-point
computation diverges from the real one, it is said to be unstable.

For example, consider the function sign(x̃) = if x̃ ≥ 0 then 1 else −1. PRE-
CiSA computes a set of four different conditional error bounds: {〈χr (x̃) ≥ 0, x̃ ≥
0〉 � (r = 1, e = 0), 〈χr (x̃) < 0, x̃ < 0〉 � (r = −1, e = 0), 〈χr (x̃) ≥ 0, x̃ <
0〉 � (r = −1, e = 2), 〈χr (x̃) < 0, x̃ ≥ 0〉 � (r = 1, e = 2)}. The function
χr : ˜V → V associates with the floating-point variable x̃ a variable x ∈ V repre-
senting the real value of x̃. The first two elements correspond to the cases where
real and floating-point computational flows coincide. In these cases, the error is 0
since the output is an integer number with no rounding error. The other two ele-
ments model the unstable paths. In these cases, the error is 2, which corresponds

2 The PRECiSA distribution is available at https://github.com/nasa/PRECiSA.

https://github.com/nasa/PRECiSA

A Mixed Real and Floating-Point Solver 367

to the difference between the output of the two branches. PRECiSA may produce
conditional error bounds with unsatisfiable symbolic conditions (usually unsta-
ble), which correspond to execution paths that cannot take place. The presence
of these spurious elements affects the accuracy of the computed error bound. For
instance, in the previous example, if |χr (x̃) − x̃| ≤ 0 both unstable cases can be
removed, and the overall error would be 0 instead of 2.

Real and floating-point conditions can be checked separately using SMT
solvers that support real and/or floating-point arithmetic. However, the incon-
sistency often follows from the combination of the real and floating-point con-
ditions. In fact, the floating-point expressions occurring in the conditions are
implicitly related to their real arithmetic counterparts by their rounding error.
Therefore, besides checking the two conditions separately, it is necessary to check
them in conjunction with a set of constraints relating each arithmetic expression
ẽxpr occurring in the conditions with its real number counterpart RA(ẽxpr).
RA(ẽxpr) is defined by simply replacing in ẽxpr each floating-point operation
with the corresponding real one and by applying χr to floating-point variables.

FPRoCK is suitable for solving such constraints thanks to its ability to reason
about mixed real and floating-point formulas. Given a set ι of ranges for the
input variables, for each conditional error bound c = 〈η, η̃〉 � (r, e) computed
by PRECiSA, the following formula ψ modeling the information contained in
the path conditions is checked using FPRoCK:

ψ :− η ∧ η̃ ∧
∧

{|ẽxpr − RA(ẽxpr)| ≤ ε | ẽxpr occurs in η̃,

ẽxpr ∈ ˜V, ẽxpr ∈ F, ε = max (e)|ι}
(3.1)

The value max (e)|ι is the round-off error of ẽxpr assuming the input ranges
in ι, and it is obtained by maximizing the symbolic error expression e with
the Kodiak global optimizer. If ψ is unsatisfiable, then c is dropped from the
solutions computed by PRECiSA. Otherwise, a counterexample is generated that
may help to discover cases for which the computation is diverging or unsound.

Since FPRoCK currently supports only the basic arithmetic operators, while
PRECiSA supports a broader variety of operators including transcendental func-
tions, a sound approximation is needed for converting PRECiSA conditions into
a valid input for FPRoCK. The proposed approach replaces in ψ each floating-
point (respectively real) arithmetic expression with a fresh floating-point (respec-
tively real) variable. This is sound but not complete, meaning it preserves just
the unsatisfiability of the original formula. In other words, if ψ[vi/ẽxpr i]ni=1 is
unsatisfiable it follows that ψ is unsatisfiable, but if a solution is found for
ψ[vi/ẽxpr i]ni=1 there is no guarantee that an assignment satisfying ψ exists. This
is enough for the purpose of eliminating spurious conditional bounds since it
assures that no feasible condition gets eliminated. In practice, it is accurate
enough to detect spurious unstable paths. When a path condition is deemed
unsatisfiable by FPRoCK, PRECiSA states such unsatisfiability in the PVS for-
mal certificate. For simple path conditions, this property can be automatically

368 R. Salvia et al.

checked by PVS. Unfortunately, there are cases where human intervention is
required to verify this part of the certificates.

Table 1 compares the original version of PRECiSA with the enhanced version
that uses FPRoCK to detect the unsatisfiable conditions, along with the anal-
ysis tool Rosa [6] which also computes an over-approximation of the round-off
error of a program. All the benchmarks are obtained by applying the transforma-
tion defined in [17] to code fragments from avionics software and the FPBench
library [5]. A transformed program is guaranteed to return either the result of
the original floating-point program, when it can be assured that both its real
and floating-point flows agree, or a warning when these flows may diverge. The
results show that FPRoCK helps PRECiSA improving the computed round-off
error in 8 out of 11 benchmarks total. FPRoCK runs all search encoding (linear,
binary) plus solver (MathSAT5, CVC4, Z3) combinations in parallel. It waits
for all solvers to finish and performs a check on the consistency of the solutions.

Table 1. Experimental results showing absolute round-off error bounds and execution
time in seconds (best results in bold).

Benchmark PRECiSA PRECiSA+FPRoCK Rosa

Error Time(s) Error Time(s) Error Time(s)

cubicSpline 2.70E+01 0.07 2.70E+01 97.8 2.50E − 01 24.1

eps line 2.00E+00 0.02 1.00E+00 48.8 2.00E+00 15.5

jetApprox 1.51E+01 12.79 8.11E+00 263.3 4.97E+00 924.8

linearFit 1.08E+00 0.06 5.42E − 01 259.7 3.19E − 01 12.4

los 2.00E+00 0.02 1.00E+00 46.2 Not supported n/a

quadraticFit 3.68E+00 0.90 3.68E+00 259.8 1.27E − 01 82.4

sign 2.00E+00 0.02 1.00E+00 32.1 2.00E+00 4.7

simpleInterpolator 2.25E+02 0.03 1.16E+02 93.8 3.33E+01 6.3

smartRoot 1.75E+00 0.32 1.75E+00 0.6 Not supported n/a

styblinski 9.35E+01 1.06 6.66E+01 260.1 6.55E+00 77.0

tau 8.40E+06 0.03 8.00E+06 101.8 8.40E+06 20.7

4 Conclusions

This paper presents FPRoCK, a prototype tool for solving mixed real and
floating-point formulas. FPRoCK extends the technique used in Realizer by
adding support for such mixed formulas. FPRoCK is integrated into PRECiSA
to improve its precision. Similarly, it could be integrated into other static ana-
lyzers, such as FPTaylor [15]. The current version of FPRoCK has some limita-
tions in terms of expressivity and efficiency. Support for a vast range of opera-
tors, including transcendental functions, is contingent on the expressive power
of the underlying SMT solvers. The performance of FPRoCK can be improved
by returning a solution as soon as the first solver finalizes its search. However,
finding an assignment for the exponent of each floating-point variable is still
the major bottleneck of the analysis. The use of a branch-and-bound search to
divide the state-space may help to mitigate this problem.

A Mixed Real and Floating-Point Solver 369

References

1. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

2. Brillout, A., Kroening, D., Wahl, T.: Mixed abstractions for floating-point arith-
metic. In: Proceedings of the 9th International Conference on Formal Methods in
Computer-Aided Design (FMCAD), pp. 69–76. IEEE (2009)

3. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
93–107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 7

4. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pp. 238–252. ACM (1977)

5. Damouche, N., Martel, M., Panchekha, P., Qiu, C., Sanchez-Stern, A., Tatlock,
Z.: Toward a standard benchmark format and suite for floating-point analysis. In:
Bogomolov, S., Martel, M., Prabhakar, P. (eds.) NSV 2016. LNCS, vol. 10152, pp.
63–77. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54292-8 6

6. Darulova, E., Kuncak, V.: Sound compilation of reals. In: Proceedings of the 41st
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL), pp. 235–248. ACM (2014)

7. Howar, F., Jabbour, F., Mues, M.: JConstraints: a library for working with logic
expressions in Java. In: Essays Dedicated to Bernhard Steffen on the Occasion of
His 60th Birthday (2019, to appear)

8. IEEE: IEEE standard for binary floating-point arithmetic. Technical report, Insti-
tute of Electrical and Electronics Engineers (2008)

9. Leeser, M., Mukherjee, S., Ramachandran, J., Wahl, T.: Make it real: effective
floating-point reasoning via exact arithmetic. In: Proceedings of the 17th Design,
Automation and Test in Europe Conference and Exhibition (DATE), pp. 1–4. IEEE
(2014)

10. Marre, B., Bobot, F., Chihani, Z.: Real behavior of floating point numbers. In:
Proceedings of the 15th International Workshop on Satisfiability Modulo Theories
(SMT) (2017)

11. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

12. Narkawicz, A., Muñoz, C.: A formally verified generic branching algorithm for
global optimization. In: Cohen, E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS,
vol. 8164, pp. 326–343. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54108-7 17

13. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55602-8 217

14. Ramachandran, J., Wahl, T.: Integrating proxy theories and numeric model lifting
for floating-point arithmetic. In: Proceedings of the 16th International Conference
on Formal Methods in Computer-Aided Design, (FMCAD), pp. 153–160. FMCAD
Inc (2016)

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-319-54292-8_6
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-54108-7_17
https://doi.org/10.1007/978-3-642-54108-7_17
https://doi.org/10.1007/3-540-55602-8_217

370 R. Salvia et al.

15. Solovyev, A., Jacobsen, C., Rakamarić, Z., Gopalakrishnan, G.: Rigorous estima-
tion of floating-point round-off errors with symbolic taylor expansions. In: Bjørner,
N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 532–550. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-19249-9 33

16. Titolo, L., Feliú, M.A., Moscato, M., Muñoz, C.A.: An abstract interpretation
framework for the round-off error analysis of floating-point programs. In: Dillig,
I., Palsberg, J. (eds.) Verification, Model Checking, and Abstract Interpretation.
LNCS, vol. 10747, pp. 516–537. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-73721-8 24

17. Titolo, L., Muñoz, C.A., Feliú, M.A., Moscato, M.M.: Eliminating unstable tests
in floating-point programs. In: Mesnard, F., Stuckey, P.J. (eds.) LOPSTR 2018.
LNCS, vol. 11408, pp. 169–183. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-13838-7 10

18. Zeljić, A., Backeman, P., Wintersteiger, C.M., Rümmer, P.: Exploring approxi-
mations for floating-point arithmetic using UppSAT. In: Galmiche, D., Schulz, S.,
Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 246–262. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-94205-6 17

https://doi.org/10.1007/978-3-319-19249-9_33
https://doi.org/10.1007/978-3-319-73721-8_24
https://doi.org/10.1007/978-3-319-73721-8_24
https://doi.org/10.1007/978-3-030-13838-7_10
https://doi.org/10.1007/978-3-030-13838-7_10
https://doi.org/10.1007/978-3-319-94205-6_17

Online Parametric Timed Pattern
Matching with Automata-Based Skipping

Masaki Waga1,2,3(B) and Étienne André1,4,5

1 National Institute of Informatics, Tokyo, Japan
mwaga@nii.ac.jp

2 Sokendai (The Graduate University for Advanced Studies),
Kanagawa, Japan

3 JSPS Research Fellow, Tokyo, Japan
4 Université Paris 13, LIPN, CNRS, UMR 7030, 93430 Villetaneuse, France

5 JFLI, CNRS, Tokyo, Japan

Abstract. Timed pattern matching has strong connections with mon-
itoring real-time systems. Given a log and a specification containing
timing parameters (that can capture uncertain or unknown constants),
parametric timed pattern matching aims at exhibiting for which start
and end dates, as well as which parameter valuations, a specification
holds on that log. This problem is notably close to robustness. We pro-
pose here a new framework for parametric timed pattern matching. Not
only we dramatically improve the efficiency when compared to a previ-
ous method based on parametric timed model checking, but we further
propose optimizations based on skipping. Our algorithm is suitable for
online monitoring, and experiments show that it is fast enough to be
applied at runtime.

Keywords: Monitoring · Real-time systems ·
Parametric timed automata

1 Introduction

Monitoring real-time systems consists in deciding whether a log satisfies a spec-
ification. A problem of interest is to determine for which segment of the log the
specification is satisfied or violated. This problem can be related to string match-
ing and pattern matching. The timed pattern matching problem was formulated
in [33], with subsequent works varying the setting and improving the technique
(e.g., [8,34,35,37]). The problem takes as input a log and a specification, and
decides where in the log the specification is satisfied or violated. In [35,37], we
introduced a solution to the timed pattern matching problem where the log is
given in the form of a timed word (a sequence of events with their associated

This work is partially supported by JST ERATO HASUO Metamathematics for Sys-
tems Design Project (No. JPMJER1603), by JSPS Grants-in-Aid No. 15KT0012 &
18J22498 and by the ANR national research program PACS (ANR-14-CE28-0002).

c© Springer Nature Switzerland AG 2019
J. M. Badger and K. Y. Rozier (Eds.): NFM 2019, LNCS 11460, pp. 371–389, 2019.
https://doi.org/10.1007/978-3-030-20652-9_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20652-9_26&domain=pdf
http://orcid.org/0000-0001-9360-7490
http://orcid.org/0000-0001-8473-9555
https://doi.org/10.1007/978-3-030-20652-9_26

372 M. Waga and É. André

timestamps), and the specification in the form of a timed automaton (TA), an
extension of finite-state automata with clocks [1].

l0 l1 l2 l3 l4

x > p1
a

x := 0

x < p2
a

x := 0

x < p2
a

true
$

(a) A parametric timed automaton

t0

a

0.5

a

0.9

b

1.3

b

1.7

a

2.8

a

3.7

a

5.3

a

4.9

a

6.0

(b) A timed word

Fig. 1. An example of parametric timed pattern matching [37]

Example 1. Consider the automaton in Fig. 1a, and fix p1 = 1 and p2 = 1—
which gives a timed automaton [1]. Here $ is a special terminal character. For
this timed automaton (say A) and the target timed word w in Fig. 1b, the
output of the timed pattern matching problem is the set of matching intervals
{(t, t′) | w|(t,t′) ∈ L(A)} = {(t, t′) | t ∈ [3.7, 3.9), t′ ∈ (6.0,∞)}.

While the log is by definition concrete, it may happen that the specification is
subject to uncertainty. For example, we may want to detect cyclic patterns with
a period d, without knowing the value of d with full certainty. Therefore, the
more abstract problem of parametric timed pattern matching becomes of interest:
given a (concrete) timed log and an incomplete specification where
some of the timing constants may be known with limited precision or
completely unknown, what are the intervals and the valuations of the
parameters for which the specification holds?

Coming back to Fig. 1, the question becomes to exhibit values for t, t′, p1, p2
for which the specification holds on the log, i.e., {(t, t′, v) | w|(t,t′) ∈ L(v(A))},
where v denotes a valuation of p1, p2 and v(A) denotes the replacement of p1, p2
in A with their respective valuation in v. In [5], we showed that this problem is
decidable (mainly due to the finiteness of the logs), and we proposed an approach
based on parametric timed model checking using timed words and parametric
timed automata [2], implemented in the IMITATOR model checker [4].

Contribution. Our contribution is threefold. First, we propose a new ad-hoc
technique for performing efficient parametric timed pattern matching. Second,
we propose optimizations based on skipping, in the line of [37]. Third, we imple-
ment our framework in a prototypical tool ParamMONAA, we perform a set of
experiments on a set of automotive benchmarks, and show that we increase the
efficiency compared to the state-of-the-art [5] by an order of magnitude. Our
algorithm is suitable for online monitoring, as it does not need the whole run
to be executed, and experiments show that it is fast enough to be applied at
runtime.

Online Parametric Timed Pattern Matching with Automata-Based Skipping 373

Related Work. Several algorithms have been proposed for online monitoring of
real-time temporal logic specifications. Online monitoring consists in monitoring
on-the-fly at runtime, while offline monitoring is performed after the execution is
completed, with less hard constraints on the monitoring algorithm performance.
An online monitoring algorithm for ptMTL (a past time fragment of MTL [29])
was proposed in [30] and an algorithm for MTL[U, S] (a variant of MTL with
both forward and backward temporal modalities) was proposed in [22]. In addi-
tion, a case study on an autonomous research vehicle monitoring [27] shows such
procedures can be performed in an actual vehicle.

The approaches most related to ours are [32–34]. In that series of works, logs
are encoded by signals, i.e., values that vary over time. This can be seen as a
state-based view, while our timed words are event-based. The formalism used for
specification in [33,34] is timed regular expressions (TREs). An offline monitor-
ing algorithm is presented in [33] and an online one is in [34]. These algorithms
are implemented in the tool Montre [32]. In [12], the setting is signals matched
against a temporal pattern; the construction is automata-based as in [35,37].

We described our previous work [5] as an offline algorithm. In fact, it is
essentially online in the sense that it can potentially run with only a portion of
the log: it relies on parallel composition of a specification automaton and a log
automaton, and this parallel composition can be achieved on-the-fly. However,
as mentioned in [13], “a good online monitoring algorithm must: (1) be able to
generate intermediate estimates of property satisfaction based on partial signals,
(2) use minimal amount of data storage, and (3) be able to run fast enough in
a real-time setting.” So, at least for point (3), the algorithm in [5] cannot really
run in a real-time setting. In contrast, we claim our contribution here to be fast
enough to run in a real-time setting, with runs of dozens of thousands of events
being analyzable in less than a second.

Some algorithms have also been proposed for parameter identification of a
temporal logic specification with uncertainty over a log. In the discrete time
setting, an algorithm for an extension of LTL is proposed in [20]; and in the
real-time setting, algorithms for parametric signal temporal logic (PSTL) are
proposed in [7,10]. Although these works are related to our approach, previous
approaches do not focus on segments of a log but on a whole log. In contrast, we
exhibit intervals together with their associated parameter valuations, in a fully
symbolic fashion. We believe our matching-based setting is advantageous in many
usage scenarios e.g., from hours of a log of a car, extracting timing constraints
of a certain actions to cause slipping. Also, our setting allows the patterns with
complex timing constraints (see the pattern in Fig. 3c for example).

In [11], the robust pattern matching problem is considered over signal reg-
ular expressions, consisting in computing the quantitative (robust) semantics of
a signal relative to an expression. For piecewise-constant and piecewise-linear
signals, the problem can be effectively solved using a finite union of zones.

Further works attempted to quantify the distance between a specification and
a signal temporal logic (STL) specification (e.g., [15,18,25]). The main difference
with our work is that these works compute a distance w.r.t. to a whole log, while
we aim at exhibiting where in the log is the property satisfied; our notion of

374 M. Waga and É. André

parameters can also be seen as a relative time distance. However, our work is
closer to the robust satisfaction of guards rather than signal values; in that sense,
our contribution is more related to the time robustness in [19] or the distance
in [6].

Finally, while our work is related to parameter synthesis, in the sense that
we identify parameter valuations in the property such that it holds (or not), the
term “parameter synthesis” is also used in monitoring with a slightly different
meaning: given a model with parameters, the goal is to find parameters that
maximize the robustness of the specification, i.e., satisfying behaviors for a range
of parameters for which the model robustly satisfies the property. A notable tool
achieving this is Breach [17].

A summary of various matching problems is recalled in Table 1.

Table 1. Matching problems

Log, target Specification, pattern Output

String matching A word w ∈ Σ∗ A word pat ∈ Σ∗ {(i, j) ∈ (N>0)
2 | w(i, j) = pat}

Pattern

matching (PM)

A word w ∈ Σ∗ An NFA A {(i, j) ∈ (N>0)
2 | w(i, j) ∈ L(A)}

Timed PM A timed word w ∈ (Σ × R>0)
∗ A TA A {(t, t′) ∈ (R>0)

2 | w|(t,t′) ∈ L(A)}
Parametric

timed PM

A timed word w ∈ (Σ × R>0)
∗ A PTA A {(t, t′, v) | w|(t,t′) ∈ L(v(A))}

Outline. We introduce the necessary definitions and state our main objective in
Sect. 2. We introduce an online algorithm for parametric timed pattern matching
in Sect. 3, and enhance it with skipping in Sect. 4. We evaluate our algorithms
in Sect. 5 and conclude in Sect. 6.

2 Preliminaries and Objective

Our target strings are timed words [1], that are time-stamped words over an
alphabet Σ. Our patterns are given by parametric timed automata [2].

For an alphabet Σ, a timed word is a sequence w of pairs (ai, τi) ∈ (Σ×R>0)
satisfying τi < τi+1 for any i ∈ [1, |w| − 1]. We require τ0 = 0. For an alphabet
Σ, we denote the set of the timed words on Σ by T (Σ). For an alphabet Σ and
n ∈ N>0, we denote the set of the timed words of length n on Σ by T n(Σ).
Given a timed word w, we often denote it by (a, τ), where a is the sequence
(a1, a2, · · ·) and τ is the sequence (τ1, τ2, · · ·). Let w = (a, τ) be a timed word.
We denote the subsequence (ai, τi), (ai+1, τi+1), · · · , (aj , τj) by w(i, j). For t ∈ R

such that −τ1 < t, the t-shift of w is (a, τ) + t = (a, τ + t) where τ + t =
τ1 + t, τ2 + t, · · · , τ|τ | + t. For timed words w = (a, τ) and w′ = (a′, τ ′), their
absorbing concatenation is w ◦w′ = (a◦a′, τ ◦τ ′) where a◦a′ and τ ◦τ ′ are usual
concatenations, and their non-absorbing concatenation is w ·w′ = w◦ (w′ +τ|w|).
The concatenations on T (Σ) are also defined similarly. For a set W ∈ T (Σ) of
timed words, its untimed projection Untimed(W) ∈ Σ∗ is {a | (a, τ) ∈ W}.

Online Parametric Timed Pattern Matching with Automata-Based Skipping 375

For a timed word w = (a, τ) on Σ and t, t′ ∈ R≥0 satisfying t < t′, a timed
word segment w|(t,t′) is defined by the timed word (w(i, j)− t) ◦ ($, t′ − t) on the
augmented alphabet Σ � {$}, where i, j are chosen so that τi−1 ≤ t < τi and
τj < t′ ≤ τj+1. Here the fresh symbol $ is called the terminal character.

We assume a set X = {x1, . . . , xH} of clocks, i.e., real-valued variables that
evolve at the same rate. A clock valuation is ν : X → R≥0. We write 0 for the
clock valuation assigning 0 to all clocks. Given d ∈ R≥0, ν +d is s.t. (ν +d)(x) =
ν(x) + d, for all x ∈ X. Given R ⊆ X, we define the reset of a valuation ν,
denoted by [ν]R, as follows: [ν]R(x) = 0 if x ∈ R, and [ν]R(x) = ν(x) otherwise.

We assume a set P = {p1, . . . , pM} of parameters. A parameter valuation v
is v : P → Q+. We assume �� ∈ {<,≤,=,≥, >}. A guard g is a constraint over
X ∪ P defined by a conjunction of inequalities of the form x �� d, or x �� p with
d ∈ N and p ∈ P. Given g, we write ν |= v(g) if the expression obtained by
replacing each x with ν(x) and each p with v(p) in g evaluates to true.

A linear term over X∪P is of the form
∑

1≤i≤H αixi+
∑

1≤j≤M βjpj +d, with
xi ∈ X, pj ∈ P, and αi, βj , d ∈ Z. A constraint C (i.e., a convex polyhedron) over
X∪P is a conjunction of inequalities of the form lt �� 0, where lt is a linear term.
Given a set P of parameters, we denote by C↓P the projection of C onto P, i.e.,
obtained by eliminating the variables not in P (e.g., using Fourier-Motzkin). ⊥
denotes the constraint over P representing the empty set of parameter valuations.

2.1 Parametric Timed Automata

Parametric timed automata (PTA) extend timed automata with parameters
within guards in place of integer constants [2].

Definition 1 (PTA). A PTA A is a tuple A = (Σ,L, l0, F,X,P, E), where:

1. Σ is a finite set of actions,
2. L is a finite set of locations,
3. l0 ∈ L is the initial location,
4. F ⊆ L is the set of accepting locations,
5. X is a finite set of clocks,
6. P is a finite set of parameters,
7. E is a finite set of edges e = (l, g, a,R, l′) where l, l′ ∈ L are the source and

target locations, a ∈ Σ, R ⊆ X is a set of clocks to be reset, and g is a guard.

Given v, we denote by v(A) the non-parametric structure where all occur-
rences of a parameter pi have been replaced by v(pi). We refer as a timed automa-
ton to any structure v(A), by assuming a rescaling of the constants: by multiply-
ing all constants in v(A) by the least common multiple of their denominators,
we obtain an equivalent (integer-valued) TA.

Let us now recall the concrete semantics of TA.

Definition 2 (Semantics of a TA). Given a PTA A = (Σ,L, l0, F,X,P, E),
and a parameter valuation v, the semantics of v(A) is given by the timed tran-
sition system (TTS) (S, s0,→), with

376 M. Waga and É. André

– S = L × R
H
≥0

– s0 = (l0,0),
– → consists of the discrete and (continuous) delay transition relations: (i)

discrete transitions: (l, ν) e→ (l′, ν′), if there exists e = (l, g, a,R, l′) ∈ E,
such that ν′ = [ν]R, and ν |= v(g). (ii) delay transitions: (l, ν) d→ (l, ν + d),
with d ∈ R≥0.

Moreover we write (l, ν)
(e,d)−→ (l′, ν′) for a combination of a delay and discrete

transition if ∃ν′′ : (l, ν) d→ (l, ν′′) e→ (l′, ν′).
Given a TA v(A) with concrete semantics (S, s0,→), we refer to the states

of S as the concrete states of v(A). A run of v(A) is an alternating sequence
of concrete states of v(A) and pairs of edges and delays starting from the
initial state s0 of the form s0, (e0, d0), s1, · · · with i = 0, 1, . . . , ei ∈ E,
di ∈ R≥0 and (si, ei, si+1) ∈ →. Given such a run, the associated timed word is
(a1, τ1), (a2, τ2), · · · , where ai is the action of edge ei−1, and τi =

∑
0≤j≤i−1 dj ,

for i = 1, 2 · · · .1 Given s = (l, ν), we say that s is reachable in v(A) if s appears
in a run of v(A). By extension, we say that l is reachable; and by extension
again, given a set T of locations, we say that T is reachable if there exists l ∈ T
such that l is reachable in v(A).

A finite run is accepting if its last state (l, ν) is such that l ∈ F . The (timed)
language L(v(A)) is defined to be the set of timed words associated with all
accepting runs of v(A).

2.2 Reachability Synthesis

We use here reachability synthesis to improve our new parametric timed pat-
tern matching algorithm with a skipping optimization. This procedure, called
EFsynth, takes as input a PTA A and a set of target locations T , and attempts
to synthesize all parameter valuations v for which T is reachable in v(A). EFsynth
was formalized in e.g., [26] and is a procedure that may not terminate, but that
computes an exact result (sound and complete) if it terminates. EFsynth tra-
verses the parametric zone graph of A, which is a potentially infinite extension
of the well-known zone graph of TAs (see, e.g., [3,26]).

2.3 Parametric Timed Pattern Matching

Let us recall parametric timed pattern matching [5].

Parametric timed pattern matching problem:
Input: a PTA A, a timed word w over a common alphabet Σ
Problem: compute all the triples (t, t′, v) for which the segment w|(t,t′) is
accepted by v(A). That is, it requires the match set M(w,A) = {(t, t′, v) |
w|(t,t′) ∈ L(v(A))}.

1 The “−1” in indices comes from the fact that, following usual conventions in the
literature, states are numbered starting from 0 while words are numbered from 1.

Online Parametric Timed Pattern Matching with Automata-Based Skipping 377

The match set M(w,A) is in general uncountable; however it allows finite
representation, as a finite union of special polyhedra in |P| + 2 dimensions, i.e.,
the number of parameters + 2 further dimensions for t and t′ [5].

Fig. 2. Example of parametric timed pattern matching: input PTA and timed word
(left); and output polyhedron (right)

3 An Online Algorithm for Parametric Timed Pattern
Matching

In this section, we present an online algorithm for parametric timed pattern
matching, which is our first contribution. Similarly to the online algorithm for
timed pattern matching in [35], our algorithm finds all the matching triples
(t, t′, v) ∈ M(w,A) by a breadth-first search. Our algorithm is online in the
following sense: after reading the i-th element (ai, τi) of the timed word w =
(a, τ), it immediately outputs all the matching triples (t, t′, v) over the available
prefix (a1, τ1), (a2, τ2), . . . , (ai, τi) of w.

Firstly, we define the auxiliary for our online algorithm for parametric timed
pattern matching. We introduce an additional variable t representing the abso-
lute time of the beginning of the matching. We use a function ρ : X → (R>0�{t})
to represent the latest reset time of each clock variable x ∈ X. Intuitively,
ρ(x) = τ ∈ R>0 means the latest reset of x is at τ , and ρ(x) = t means x
is not reset after the beginning of the matching.

Definition 3 (eval(ρ, τ), reset(ρ,R, τ), ρ∅). Let X be the set of clock variables
and t be the variable for the beginning of a matching. For a function ρ : X →
(R>0�{t}) and the current time τ ∈ R>0, eval(ρ, τ) is the constraint eval(ρ, τ) =∧

x∈X

(
x = τ − ρ(x)

)
on X � {t}. For a function ρ : X → (R>0 � {t}), the set

R ⊆ X of clocks to be reset, and the current time τ ∈ R>0, reset(ρ,R, τ) : X →
(R>0 � {t}) is the following function.

reset(ρ,R, τ)(x) =

{
τ if x ∈ R

ρ(x) if x �∈ R

By ρ∅ : X → (R>0 � {t}), we denote the function mapping each x ∈ X to t.

Intuitively, eval(ρ, τ) is the constraint corresponding to the clock valuation,
and reset(ρ,R, τ) is the operation to reset the clock variables x ∈ R at τ .

378 M. Waga and É. André

Algorithm 1 shows our online algorithm for parametric timed pattern match-
ing. In the pseudocode, we used CurrConf , PrevConf , and Z: CurrConf and
PrevConf are finite sets of triples (l, ρ, C) made of a location l ∈ L, a mapping
ρ : X → (R>0 � {t}) denoting the latest reset of each clock, and a constraint C
over P � {t}; and Z is a finite set of constraints over P � {t, t′}. As a running
example, we use the PTA and the timed word in Fig. 2.

Algorithm 1. Online parametric timed pattern matching without skipping
Require: A timed word w = (a, τ), and a PTA A = (Σ, L, l0, F,X,P, E).
Ensure:

∨
Z is the match set M(w, A)

1: CurrConf ← ∅; Z ← ∅
2: for i ← 1 to |w| do
3: push (l0, ρ∅, (τi−1 ≤ t < τi)) to CurrConf
4: for (l, ρ, C) ∈ CurrConf do � Lines 4 to 7 try to insert $ in (τi−1, τi].
5: for lf ∈ F do
6: for (l, g, $, R, lf) ∈ E do
7: push

(C ∧ (τi−1 < t′ ≤ τi) ∧ g ∧ eval(ρ, t′)
)↓P�{t,t′} to Z

8: (PrevConf ,CurrConf) ← (CurrConf , ∅)
9: for (l, ρ, C) ∈ PrevConf do � Lines 9 to 13 try to go forward using (ai, τi).

10: for (l, g, ai, R, l′) ∈ E do
11: C′ ← (C ∧ g ∧ eval(ρ, τi)

)↓P�{t}
12: if C′ �= ⊥ then
13: push (l′, reset(ρ, R, τ), C′) to CurrConf
14: push (l0, ρ∅, {τ|w| ≤ t < ∞}) to CurrConf
15: for (l, ρ, C) ∈ CurrConf do � Lines 15 to 18 try to insert $ in (τ|w|, ∞).

16: for lf ∈ F do
17: for (l, g, $, R, lf) ∈ E do
18: push

(C ∧ (τ|w| < t′ < ∞) ∧ g ∧ eval(ρ, t′)
)↓P�{t,t′} to Z

At first, the counter i is 1 (line 2), and we start the matching trial from
t ∈ [τ0, τ1). At line 3, we add the new configuration (l0, ρ∅, (τ0 ≤ t < τ1)) to
CurrConf , which means we are at the initial location l0, we have no reset of
the clock variables yet, and we can potentially start the matching from any
t ∈ [τ0, τ1). In lines 4 to 7, we try to insert $ (i.e., the end of the matching)
in (τ0, τ1]; in our running example in Fig. 2, since there is no edge from l0 to
the accepting state, we immediately jump to line 8. Then, in lines 9 to 13, we
consume (a1, τ1) = (a, 0.7) and try to transit from l0 to l1. The guard x > 1 at
the edge from l0 to l1 is examined at line 11. We take the conjunction of the
current constraint C, the guard g, and the constraints eval(ρ, τi) on the clock
valuations. We take the projection to P�{t} because the constraint on the clock
variables changes after time passing. Since no clock variable is reset so far, the
constraint on the clock valuation is x = τ1−t. The constraint C∧g∧eval(ρ, τ1) =
(0 ≤ t < 0.7) ∧ (x > 1) ∧ (x = 0.7 − t) is unsatisfiable and we go back to line 3.

At line 3, we add the new configuration (l0, ρ∅, (τ1 ≤ t < τ2)) to CurrConf .
Similarly, we immediately jump to line 8, and we try the edge from l0 to l1 in
lines 9 to 13. This time, the constraint C ∧g∧eval(ρ, τ2) = (0.7 ≤ t < 2.0)∧ (x >
1) ∧ (x = 2.0 − t) is satisfiable at line 12, and we push the next configuration
(l1, ρ∅, C′) to CurrConf at line 13.

Online Parametric Timed Pattern Matching with Automata-Based Skipping 379

Similarly, we keep adding and updating configurations until the end of the
input timed word w. Finally, in lines 15 to 18, we try to insert $ in (τ3,∞) =
(4.1,∞). We can use the edge from l2 to the accepting state, and we add the
constraint at the right of Fig. 2 to Z.

Algorithm 1 terminates because the size of CurrConf is always finite. Algo-
rithm1 is correct because it symbolically keeps track of all the runs of v(A) over
w|(t,t′) for any v ∈ (Q+)P and (t, t′) ⊆ R≥0.

4 Skipping Enhanced Parametric Timed Pattern
Matching

In this section, we present automata-based skipping for Algorithm 1, which is our
second contribution. In an algorithm with skipping, the counter i in Algorithm 1
is increased at line 2 by the skip value. The skip value can be more than 1 and,
as a consequence, some unnecessary matching trials may be prevented. A large
part of the skip value computation can be reused and the whole algorithm can be
faster. Following [37], we employ FJS-style skipping [21]. An FJS-style skipping
consists of two skip value functions: the KMP-style skip value function ΔKMP [28]
and the Quick Search-style skip value function ΔQS [31]. See [36] for the proofs.

The following are auxiliary for the skip values. For a PTA A and a parameter
valuation v, the language without the last element is denoted by L−$(v(A)) =
{w(1, |w| − 1) | w ∈ L(v(A))}. For a PTA A = (Σ,L, l0, F,X,P, E) and l ∈ L,
Al denotes the PTA Al = (Σ,L, l0, {l},X,P, E).

KMP-Style Skip Values. Given a location l ∈ L and a set V ⊆ (Q+)P of param-
eter valuations, the KMP-style skip value function ΔKMP returns the skip value
ΔKMP(l, V) ∈ N>0. The location l and the parameter valuations V present one
of the configurations in the previous matching trial. We utilize the pair (l, V) to
overapproximate the subsequence w(i, j) of the timed word w examined in the
latest matching trial.

Definition 4 (ΔKMP). Let A be a PTA A = (Σ,L, l0, F,X,P, E). For l ∈ L
and n ∈ N>0, let Vl,n be the set of parameter valuations v such that there is
a parameter valuation v′ ∈ (Q+)P satisfying L(v(Al)) · T (Σ) ∩ T n(Σ) · {w′′ +
t | w′′ ∈ L−$(v′(A)), t > 0} · T (Σ) �= ∅. The KMP-style skip value function
ΔKMP : L × P((Q+)P) → N>0 is ΔKMP(l, V) = min{n ∈ N>0 | V ⊆ Vl,n}.

Let l be a location we reached in the end of the matching trial from
i ∈ {1, 2, . . . , |w|} for the parameter valuation v. Intuitively, w(i, |w|) is over-
approximated by L(v(Al)) · T (Σ). For n ∈ N>0, the matching from i+n is over-
approximated by

⋃
v′∈(Q+)P T n(Σ) · {w′′ + t | w′′ ∈ L−$(v′(A)), t > 0} · T (Σ).

Therefore, v �∈ Vl,n implies that we have no matching from i+n, and we can skip
the matching trials from i + 1, i + 2, . . . , i + ΔKMP(l, {v}) − 1. We note that if
we reached both l and l′, the intersection (L(v(Al)) · T (Σ))∩ (L(v(Al′)) · T (Σ))
is an overapproximation of w(i, |w|), and therefore, we take the maximum of
ΔKMP(l, V) over the reached configurations.

380 M. Waga and É. André

Since Vl,n is independent of the timed word w, we can compute it before the
matching trials by reachability synthesis of PTAs. See [36] for the construction
of the PTAs. During the matching trials, only the inclusion checking V ⊆ Vl,n

is necessary. This test can be achieved thanks to convex polyhedra inclusion.

Theorem 1. Let A be a PTA A = (Σ,L, l0, F,X,P, E) and let w ∈ T (Σ). For
any subsequence w(i, j) of w and for any (l, v) ∈ L×(Q+)P, if there exists t ∈ R≥0

satisfying w(i, j) − t ∈ L(v(Al)), for any n ∈
{
1, 2, . . . ,ΔKMP(l, {v}) − 1

}
, we

have
(
[τi+n−1, τi+n) × R>0 × (Q+)P

)
∩ M(w,A) = ∅. ��

Although Vl,n can be computed before the matching trials, ΔKMP requires
checking V ⊆ Vl,n after each matching trial, which means a polyhedral inclusion
test in |P| + 2 dimensions. To reduce this runtime overhead, we define the non-
parametric KMP-style skip value function Δ′

KMP(l) = minv∈(Q+)P ΔKMP

(
l, {v}

)
.

For comparison, we refer ΔKMP as the parametric KMP-style skip value function.

Quick Search-Style Skip Values. Given an action a ∈ Σ, the Quick Search-
style skip value function ΔQS returns the skip value ΔQS(a) ∈ N>0. Before the
matching trial from the i-th element (ai, τi), we look ahead the action ai+N−1,
where N is the length of the shortest matching. If we observe that there is no
matching, we also look ahead the action ai+N and skip by ΔQS(ai+N). The
construction of ΔQS is by reachability emptiness of PTAs, i.e., the emptiness of
the valuation set reaching a given location.

Definition 5 (ΔQS). For a PTA A = (Σ,L, l0, F,X,P, E), the Quick-Search-
style skip value function ΔQS : Σ → N>0 is as follows, where N ∈ N>0 is
N = min{|w| | w ∈

⋃
v∈(Q+)P L−$(v(A))}.

ΔQS(a) = min
{
n ∈ N>0

∣
∣ ∃v ∈ (Q+)P. ΣNaΣ∗ ∩ ΣnUntimed(L−$(v(A))) �= ∅

}

For i ∈ {1, 2, . . . , |w|}, w(i, |w|) is overapproximated by ΣNai+NΣ∗. For
n ∈ N>0, the matching from i + n is overapproximated by

⋃
v∈(Q+)P Σn

Untimed(L−$(v(A))). Therefore, for any n ∈ {1, 2, . . . ,ΔQS(ai+N)−1}, we have
no matching from i + n and we can skip these matching trials.

Theorem 2. Let A be a PTA A = (Σ,L, l0, F,X,P, E), let w = (a, τ) ∈
T (Σ), and let N = min{|w| | w ∈

⋃
v∈(Q+)P L−$(v(A))}. For any index

i ∈ {1, 2, . . . , |w|} of w and for any m ∈ {1, 2, . . . ,ΔQS(ai+N) − 1}, we have
([τi+m−1, τi+m) × R>0 × (Q+)P) ∩ M(w,A) = ∅. ��

Algorithm 2 shows an improvement of Algorithm1 enhanced by skipping.
The loop in lines 2 to 13 of Algorithm 1 is used in the matching trial i.e., lines
7 to 9 of Algorithm 2. After reading the i-th element (ai, τi) of the timed word
w = (a, τ), Algorithm 2 does not immediately output the matching over the
available prefix (a1, τ1), (a2, τ2), . . . , (ai, τi) of w, but it still outputs the matching
before obtaining the entire timed word with some delay. At line 10, it skips
using the parametric KMP-style skip value ΔKMP(l, V). We can employ the
non-parametric KMP-style skip value by replacing ΔKMP(l, V) with Δ′

KMP(l).

Online Parametric Timed Pattern Matching with Automata-Based Skipping 381

5 Experiments

We implemented our online algorithms for parametric timed pattern match-
ing in a tool ParamMONAA. We implemented the following three algorithms: the
online algorithm without skipping (Algorithm1, referred as “no skip”); the online
algorithm with parametric skipping (Algorithm2, referred as“parametric skip”);
and the online algorithm with non-parametric skipping (Algorithm2 where
ΔKMP(l, V) at line 10 is replaced with Δ′

KMP(l), referred as “non-parametric
skip”). In the skip value computation, we use reachability synthesis for PTAs.
Since reachability synthesis is intractable in general (the emptiness problem, i.e.,
the (non-)existence of a valuation reaching a given location, is undecidable [2]),
we use the following overapproximation: after investigating 100 configurations,
we speculate that all the inconclusive parameter valuations are reachable param-
eter valuations. We remark that this overapproximation does not affect the cor-
rectness of parametric timed pattern matching, as it potentially decreases the
skip value. We conducted experiments to answer the following research questions.

Algorithm 2. Parametric timed pattern matching with parametric skipping

Require: A timed word w and a PTA A = (Σ, L, l0, F,X,P, E)
Ensure: Z is the match set M(w, A)
1: i ← 1 � i is the position in w of the beginning of the current matching trial
2: N = min{|w| | w ∈ ⋃

v∈(Q+)P L−$(v(A))}
3: while i ≤ |w| − N + 1 do
4: while ∀ v ∈ (Q+)P, (a′, τ ′) ∈ L(v(A)). ai+N−1 �= a′

N do
� Try matching the tail of L(v(A))

5: i ← i + ΔQS(ai+N) � Quick Search-style skipping
6: if i > |w| − N + 1 then return
7: Z ← Z ∪{(t, t′, v) ∈ [τi−1, τi)× (τi−1, ∞)× (Q+)P | w|(t,t′) ∈ L(v(A))} � Try matching

8: j ← max{j ∈ {i, i + 1, . . . , |w|} | ∃l ∈ L, v ∈ (Q+)P, t ∈ R>0. w(i, j) − t ∈ L(v(Al))}
9: C ← {(l, V) ∈ L × P((Q+)P) | ∀v ∈ V, ∃t ∈ R>0. w(i, j) − t ∈ L(v(Al))}

10: i ← i + max(l,V)∈C ΔKMP(l, V) � Parametric KMP-style skipping
11: Z ← Z ∪ {(t, t′, v) ∈ [τ|w|, ∞) × (τ|w|, ∞) × (Q+)P | w|(t,t′) ∈ L(v(A))}

RQ1 Which is the fastest algorithm for parametric timed pattern matching?
RQ2 Why is parametric timed pattern matching slower than non-parametric

timed pattern matching? Namely, is it purely because of the difficulty of the
problem itself or is it mainly because of the general implementation and data
structure required by the general problem setting?

RQ3 How large is the overhead of the skip value computation? Namely, is it
small and acceptable?

We implemented ParamMONAA in C++ and we compiled them using GCC
7.3.0. We conducted the experiments on an Amazon EC2 c4.large instance
(2.9 GHz Intel Xeon E5-2666 v3, 2 vCPUs, and 3.75 GiB RAM) that runs
Ubuntu 18.04 LTS (64 bit). Experiment data can be found on https://github.
com/MasWag/monaa/blob/PTPM/doc/NFM2019.md.

https://github.com/MasWag/monaa/blob/PTPM/doc/NFM2019.md
https://github.com/MasWag/monaa/blob/PTPM/doc/NFM2019.md

382 M. Waga and É. André

Fig. 3. Pattern PTAs and their non-parametric variants in the experiments

Figure 3 shows the pattern PTAs we used in the experiments. We took the
benchmarks Gear, Accel, and Blowup from [5] as well as the new original
benchmark OnlyTiming. The timed words for Gear and Accel are generated
by the automatic transmission system model in [23]. Blowup and OnlyTiming
are toy examples. Blowup shows the worst case situation for parametric timed
pattern matching. In OnlyTiming, the parametric skip values are greater than
the non-parametric skip values. In Sects. 5.2 and 5.3, we also used the non-
parametric variants Gear-np, Accel-np, Blowup-np, and OnlyTiming-np
where the parameters are substituted to specific concrete values.

5.1 RQ1: Overall Execution Time

To answer RQ1, we compared the total execution time of ParamMONAA using
Gear, Accel, Blowup, and OnlyTiming. As a baseline, we used our previous
implementation of parametric timed pattern matching based on IMITATOR [5]
(version 2.10.4). Tables 2, 3, 4 and 5 and Fig. 4 show the execution time of our
online algorithms compared with the IMITATOR-based implementation.

In Tables 2, 3, 4 and 5, we observe that our algorithms are faster than the IMI-
TATOR-based implementation by orders of magnitude. Moreover, for Blowup,

Online Parametric Timed Pattern Matching with Automata-Based Skipping 383

the IMITATOR-based implementation aborted due to out of memory. This is
mainly because ParamMONAA is specific to parametric timed pattern matching
while IMITATOR is a general tool for parametric verification. This shows the
much better efficiency of our new approach compared to [5].

In Fig. 4, we observe that the curve of “no skip” has the steepest slope and the
curves of either “parametric skip” or “non-parametric skip” have the gentlest
slope except for Blowup. Blowup is a benchmark designed on purpose to
observe exponential blowup of the execution time, and it requires much time for
all of the implementations.

For Gear and Accel, the execution time of “non-parametric skip”
increases the most gently. This is because the parametric KMP-style skip value
ΔKMP(l, V) and the non-parametric KMP-style skip value Δ′

KMP(l) are equal for
these benchmarks, and “parametric skip” is slower due to the inclusion checking
V ⊆ Vl,n.

Table 2. Execution time for Gear [s]

|w| No skip Non-

param.

skip

Param.

skip

IMITATOR

1467 0.04 0.05 0.05 1.781

2837 0.0725 0.0805 0.09 3.319

4595 0.124 0.13 0.1405 5.512

5839 0.1585 0.156 0.17 7.132

7301 0.201 0.193 0.2115 8.909

8995 0.241 0.2315 0.2505 10.768

10315 0.2815 0.269 0.2875 12.778

11831 0.322 0.301 0.325 14.724

13183 0.3505 0.3245 0.353 16.453

14657 0.392 0.361 0.395 18.319

Table 3. Execution time for Accel [s]

|w| No skip Non-

param.

skip

Param.

skip

IMITATOR

2559 0.03 0.0515 0.06 2.332

4894 0.0605 0.0605 0.0705 4.663

7799 0.1005 0.071 0.08 7.532

10045 0.13 0.08 0.09 9.731

12531 0.161 0.09 0.1 12.503

15375 0.1985 0.1005 0.113 15.583

17688 0.2265 0.1095 0.1215 17.754

20299 0.261 0.115 0.1325 21.040

22691 0.288 0.121 0.143 23.044

25137 0.3205 0.1315 0.159 25.815

Table 4. Execution time for Blowup [s]

|w| No

skip

Non-

param.

skip

Param.

skip

IMITATOR

2000 66.75 68.0125 67.9735 OutOfMemory

4000 267.795 271.642 269.084 OutOfMemory

6000 601.335 611.782 607.58 OutOfMemory

8000 1081.42 1081.25 1079 OutOfMemory

10000 1678.15 1688.22 1694.53 OutOfMemory

Table 5. Execution time for
OnlyTiming [s]

|w| No

skip

Non-

param.

skip

Param.

skip

IMITATOR

1000 0.0995 0.1305 0.11 1.690

2000 0.191 0.23 0.191 3.518

3000 0.2905 0.3265 0.273 5.499

4000 0.3905 0.426 0.3525 7.396

5000 0.488 0.5225 0.4325 9.123

6000 0.588 0.6235 0.517 11.005

384 M. Waga and É. André

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4

0 20 40 60 80 100 120 140 160

E
xe
cu
tio

n
T
im

e
[s
]

Number of Events [×100]

No Skip
Parametric Skip

Non-Parametric Skip

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35

0 50 100 150 200 250 300

E
xe
cu
tio

n
T
im

e
[s
]

Number of Events [×100]

No Skip
Parametric Skip

Non-Parametric Skip

0
200
400
600
800
1000
1200
1400
1600
1800

20 30 40 50 60 70 80 90 100

E
xe
cu
tio

n
T
im

e
[s
]

Number of Events [×100]

No Skip
Parametric Skip

Non-Parametric Skip

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

10 20 30 40 50 60

E
xe
cu
tio

n
T
im

e
[s
]

Number of Events [×100]

No Skip
Parametric Skip

Non-Parametric Skip

Fig. 4. Execution time for the benchmarks with parameters which MONAA cannot han-
dle: Gear (above left), Accel (above right), Blowup (below left), and OnlyTiming
(below right)

For OnlyTiming, we observe that the execution time of “parametric
skip” increases the most gently because the parametric KMP-style skip value
ΔKMP(l, V) is larger than the non-parametric KMP-style skip value Δ′

KMP(l).
We conclude that skipping usually makes parametric timed pattern matching

efficient. The preference between two skipping methods depends on the pattern
PTA and it is a future work to investigate the tendency. Since the computation
of the skip values does not take much time, the following work flow is reasonable:
(i) compute the skip values for both of them; and (ii) use “parametric skip” only
if its skip values are strictly larger than that of “non-parametric skip”.

5.2 RQ2: Parametric vs. Non-parametric Timed Pattern Matching

To answer RQ2, we ran ParamMONAA using the non-parametric benchmarks
(Accel-np, Gear-np, Blowup-np, and OnlyTiming-np) and compared
the execution time with a tool MONAA [38] for non-parametric timed pattern
matching.

In Fig. 5, we observe that our algorithms are slower than MONAA by orders of
magnitude even though we solve the same problem (non-parametric timed pat-
tern matching). This is presumably because our implementations rely on Parma
Polyhedra Library (PPL) [9] to compute symbolic states, while MONAA utilizes

Online Parametric Timed Pattern Matching with Automata-Based Skipping 385

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4

0 20 40 60 80 100 120 140 160

E
xe
cu
tio

n
ho
ge

T
im

e
[s
]

Number of Events [×100]

No Skip
Parametric Skip

Non-Parametric Skip
MONAA

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35

0 50 100 150 200 250 300

E
xe
cu
tio

n
ho
ge

T
im

e
[s
]

Number of Events [×100]

No Skip
Parametric Skip

Non-Parametric Skip
MONAA

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5

20 30 40 50 60 70 80 90 100

E
xe
cu
tio

n
ho
ge

T
im

e
[s
]

Number of Events [×100]

No Skip
Parametric Skip

Non-Parametric Skip
MONAA

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60

E
xe
cu
tio

n
ho
ge

T
im

e
[s
]

Number of Events [×100]

No Skip
Parametric Skip

Non-Parametric Skip
MONAA

Fig. 5. Execution time for the benchmarks without parameters: Gear-np (above left),
Accel-np (above right), Blowup-np (below left), and OnlyTiming-np (below right)

DBMs (difference bound matrices) [16]. It was shown in [11] that polyhedra may
be dozens of times slower than DBMs; however, for parametric analyses, DBMs
are not suitable, and parameterized extensions (e.g., in [24]) still need polyhedra
in their representation.

Moreover, in Figs. 4 and 5, we observe that the execution time of our algo-
rithms are not much different between each parametric benchmark and its non-
parametric variant except Blowup. This observation shows that at least one
additional parameter does not make the problem too difficult.

Therefore, we conclude that the lower efficiency of parametric timed pattern
matching is mainly because of its general data structure required by the general
problem setting.

5.3 RQ3: Overhead of Skip Value Computation

To answer RQ3, we compared the execution time of our algorithms for an empty
timed word using all the benchmarks. As a baseline, we also measured the exe-
cution time of MONAA.

In Table 6, we observe that the execution time for the skip values is less
than 0.05 s except for Blowup and Blowup-np. Even for the slowest pattern

386 M. Waga and É. André

Table 6. Execution time [s] for the skip value computation

Non-parametric skip Parametric skip MONAA

Gear 0.0115 0.0175 n/a

Gear-np 0.01 0.01 <0.01

Accel 0.042 0.0435 n/a

Accel-np 0.04 0.04 0.0305

OnlyTiming 0.03 0.03 n/a

OnlyTiming-np 0.02 0.02 <0.01

Blowup 0.3665 0.381 n/a

Blowup-np 1.268 1.2905 1.5455

PTA Blowup-np, the execution time for the skip values is less than 1.5 s and
it is faster than that of MONAA. We conclude that the overhead of the skip value
computation is small and acceptable in many usage scenarios.

6 Conclusion and Perspectives

In this work, we proposed a new approach for monitoring logs given in the
form of timed words using a specification given in the form of parametric timed
automata. Our new approach dramatically outperforms the previous approach
of [5]. In addition, we discussed an optimization using skipping.

Natural future works include more expressive specifications than (paramet-
ric) timed automata-based specifications, e.g., using more expressive logics such
as [14].

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

2. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In:
Kosaraju, S.R., Johnson, D.S., Aggarwal, A. (eds.) Proceedings of the Twenty-
Fifth Annual ACM Symposium on Theory of Computing (STOC 1993), pp. 592–
601. ACM, New York (1993)

3. André, É., Chatain, Th., Encrenaz, E., Fribourg, L.: An inverse method for
parametric timed automata. Int. J. Found. Comput. Sci. 20(5), 819–836 (2009).
https://doi.org/10.1142/S0129054109006905

4. André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: a tool for analyzing
robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.) FM
2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32759-9 6

5. André, É., Hasuo, I., Waga, M.: Offline timed pattern matching under uncertainty.
In: Lin, A.W., Sun, J. (eds.) Proceedings of the 23rd International Conference on
Engineering of Complex Computer Systems (ICECCS 2018), pp. 10–20. IEEE CPS
(2018). https://doi.org/10.1109/ICECCS2018.2018.00010

https://doi.org/10.1142/S0129054109006905
https://doi.org/10.1007/978-3-642-32759-9_6
https://doi.org/10.1007/978-3-642-32759-9_6
https://doi.org/10.1109/ICECCS2018.2018.00010

Online Parametric Timed Pattern Matching with Automata-Based Skipping 387

6. Asarin, E., Basset, N., Degorre, A.: Distance on timed words and applications.
In: Jansen, D.N., Prabhakar, P. (eds.) FORMATS 2018. LNCS, vol. 11022, pp.
199–214. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00151-3 12

7. Asarin, E., Donzé, A., Maler, O., Nickovic, D.: Parametric identification of tem-
poral properties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp.
147–160. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-
8 12

8. Asarin, E., Maler, O., Nickovic, D., Ulus, D.: Combining the temporal and epis-
temic dimensions for MTL monitoring. In: Abate, A., Geeraerts, G. (eds.) FOR-
MATS 2017. LNCS, vol. 10419, pp. 207–223. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-65765-3 12

9. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008). https://doi.
org/10.1016/j.scico.2007.08.001

10. Bakhirkin, A., Ferrère, T., Maler, O.: Efficient parametric identification for STL.
In: Proceedings of the 21st International Conference on Hybrid Systems: Compu-
tation and Control (Part of CPS Week) (HSCC 2018), pp. 177–186. ACM (2018).
https://doi.org/10.1145/3178126.3178132

11. Bakhirkin, A., Ferrère, T., Maler, O., Ulus, D.: On the quantitative semantics of
regular expressions over real-valued signals. In: Abate, A., Geeraerts, G. (eds.)
FORMATS 2017. LNCS, vol. 10419, pp. 189–206. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-65765-3 11

12. Bakhirkin, A., Ferrère, T., Nickovic, D., Maler, O., Asarin, E.: Online timed pattern
matching using automata. In: Jansen, D.N., Prabhakar, P. (eds.) FORMATS 2018.
LNCS, vol. 11022, pp. 215–232. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-00151-3 13

13. Bartocci, E., et al.: Specification-based monitoring of cyber-physical systems: a
survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lec-
tures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75632-5 5

14. Basin, D.A., Klaedtke, F., Müller, S., Zalinescu, E.: Monitoring metric first-order
temporal properties. J. ACM 62(2), 15:1–15:45 (2015). https://doi.org/10.1145/
2699444

15. Deshmukh, J.V., Majumdar, R., Prabhu, V.S.: Quantifying conformance using the
Skorokhod metric. Formal Methods Syst. Des. 50(2–3), 168–206 (2017). https://
doi.org/10.1007/s10703-016-0261-8

16. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-52148-8 17

17. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 17

18. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 19

19. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

https://doi.org/10.1007/978-3-030-00151-3_12
https://doi.org/10.1007/978-3-642-29860-8_12
https://doi.org/10.1007/978-3-642-29860-8_12
https://doi.org/10.1007/978-3-319-65765-3_12
https://doi.org/10.1007/978-3-319-65765-3_12
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1145/3178126.3178132
https://doi.org/10.1007/978-3-319-65765-3_11
https://doi.org/10.1007/978-3-319-65765-3_11
https://doi.org/10.1007/978-3-030-00151-3_13
https://doi.org/10.1007/978-3-030-00151-3_13
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1145/2699444
https://doi.org/10.1145/2699444
https://doi.org/10.1007/s10703-016-0261-8
https://doi.org/10.1007/s10703-016-0261-8
https://doi.org/10.1007/3-540-52148-8_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1007/978-3-642-15297-9_9

388 M. Waga and É. André

20. Fages, F., Rizk, A.: On temporal logic constraint solving for analyzing numerical
data time series. Theor. Comput. Sci. 408(1), 55–65 (2008). https://doi.org/10.
1016/j.tcs.2008.07.004

21. Franek, F., Jennings, C.G., Smyth, W.F.: A simple fast hybrid pattern-matching
algorithm. J. Discret. Algorithms 5(4), 682–695 (2007). https://doi.org/10.1016/
j.jda.2006.11.004

22. Ho, H.-M., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic.
In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 178–192.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3 15

23. Hoxha, B., Abbas, H., Fainekos, G.E.: Benchmarks for temporal logic require-
ments for automotive systems. In: Frehse, G., Althoff, M. (eds.) Proceedings of the
1st and 2nd International Workshops on Applied Verification for Continuous and
Hybrid Systems (ARCH@CPSWeek 2014/ARCH@CPSWeek 2015). EPiC Series
in Computing, vol. 34, pp. 25–30. EasyChair (2014)

24. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model
checking of timed automata. J. Logic Algebraic Program. 52–53, 183–220 (2002).
https://doi.org/10.1016/S1567-8326(02)00037-1

25. Jakšić, S., Bartocci, E., Grosu, R., Nguyen, T., Ničković, D.: Quantitative moni-
toring of STL with edit distance. Formal Methods Syst. Des. 53(1), 83–112 (2018).
https://doi.org/10.1007/s10703-018-0319-x

26. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed
automata. IEEE Trans. Softw. Eng. 41(5), 445–461 (2015)

27. Kane, A., Chowdhury, O., Datta, A., Koopman, P.: A case study on runtime mon-
itoring of an autonomous research vehicle (ARV) system. In: Bartocci, E., Majum-
dar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 102–117. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-23820-3 7

28. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977). https://doi.org/10.1137/0206024

29. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990). https://doi.org/10.1007/BF01995674

30. Reinbacher, T., Függer, M., Brauer, J.: Runtime verification of embedded real-
time systems. Formal Methods Syst. Des. 44(3), 203–239 (2014). https://doi.org/
10.1007/s10703-013-0199-z

31. Sunday, D.: A very fast substring search algorithm. Communun. ACM 33(8), 132–
142 (1990). https://doi.org/10.1145/79173.79184

32. Ulus, D.: Montre: a tool for monitoring timed regular expressions. In: Majumdar,
R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 329–335. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63387-9 16

33. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Timed pattern matching. In: Legay,
A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 222–236. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10512-3 16

34. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Online timed pattern matching using
derivatives. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp.
736–751. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-
9 47

35. Waga, M., Akazaki, T., Hasuo, I.: A Boyer-Moore type algorithm for timed pattern
matching. In: Fränzle, M., Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp.
121–139. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44878-7 8

36. Waga, M., André, É.: Online parametric timed pattern matching with automata-
based skipping. abs/1903.07328 (2019). http://arxiv.org/abs/1903.07328

https://doi.org/10.1016/j.tcs.2008.07.004
https://doi.org/10.1016/j.tcs.2008.07.004
https://doi.org/10.1016/j.jda.2006.11.004
https://doi.org/10.1016/j.jda.2006.11.004
https://doi.org/10.1007/978-3-319-11164-3_15
https://doi.org/10.1016/S1567-8326(02)00037-1
https://doi.org/10.1007/s10703-018-0319-x
https://doi.org/10.1007/978-3-319-23820-3_7
https://doi.org/10.1137/0206024
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/s10703-013-0199-z
https://doi.org/10.1007/s10703-013-0199-z
https://doi.org/10.1145/79173.79184
https://doi.org/10.1007/978-3-319-63387-9_16
https://doi.org/10.1007/978-3-319-10512-3_16
https://doi.org/10.1007/978-3-662-49674-9_47
https://doi.org/10.1007/978-3-662-49674-9_47
https://doi.org/10.1007/978-3-319-44878-7_8
http://arxiv.org/abs/1903.07328

Online Parametric Timed Pattern Matching with Automata-Based Skipping 389

37. Waga, M., Hasuo, I., Suenaga, K.: Efficient online timed pattern matching by
automata-based skipping. In: Abate, A., Geeraerts, G. (eds.) FORMATS 2017.
LNCS, vol. 10419, pp. 224–243. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-65765-3 13

38. Waga, M., Hasuo, I., Suenaga, K.: MONAA: a tool for timed pattern matching with
automata-based acceleration. In: Proceedings of the 3rd Workshop on Monitoring
and Testing of Cyber-Physical Systems (MT@CPSWeek 2018), pp. 14–15. IEEE
(2018). https://doi.org/10.1109/MT-CPS.2018.00014

https://doi.org/10.1007/978-3-319-65765-3_13
https://doi.org/10.1007/978-3-319-65765-3_13
https://doi.org/10.1109/MT-CPS.2018.00014

Author Index

Abbas, Houssam 355
Aichernig, Bernhard K. 1
Altidor, John 123
Amrani, Moussa 19
André, Étienne 371
Ashmore, Rylo 36

Baarir, Souheib 316
Barbot, Benoît 54
Basset, Nicolas 54
Bharadwaj, Suda 71
Biere, Armin 204
Blanchard, Allan 88
Burghard, Christian 1
Busi, Matteo 106

Carr, Steven 71
Casinghino, Chris 123
Chattopadhyay, Arunabh 333
Chueca, Alejandro Barberia 71
Claus Jensen, Mathias 298

Dang, Thao 54
Degano, Pierpaolo 106
Dixon, Michael 123
Dunkelau, Jannik 130

Feliú, Marco A. 363
Fleury, Mathias 148

Galletta, Letterio 106
Goel, Aman 166
Gu, Rong 186
Guldstrand Larsen, Kim 298
Gurfinkel, Arie 36

Hartsell, Charles 211
Heule, Marijn J. H. 204
Hilden, Christian 255
Humphrey, Laura 237

Ibrahim, Amjad 211
Ioannidis, Eleftherios 228

Jamner, Dustin 123
Jansen, Nils 237

Kaashoek, Frans 228
Kacianka, Severin 211
Kanav, Sudeep 255
Karsai, Gabor 211
Kiesl, Benjamin 204
König, Jürgen 263
Kordon, Fabrice 316
Korošec, Robert 1
Kosmatov, Nikolai 88
Krings, Sebastian 130

Lesani, Mohsen 280
Loulergue, Frédéric 88
Lúcio, Levi 255
Lundqvist, Kristina 186

Mangharam, Rahul 355
Mariegaard, Anders 298
Marinescu, Raluca 186
Metin, Hakan 316
Moghadamfalahi, Mohammad 333
Moscato, Mariano M. 363
Muñoz, César A. 363
Murugesan, Anitha 333

Narváez, David E. 341
Neogi, Natasha 71

Ortiz, James 19

Paasch, J. T. 123
Pant, Yash Vardhan 355
Poonawala, Hasan 71
Pretschner, Alexander 211

Quaye, Rhudii A. 355

Rakamarić, Zvonimir 363
Roux, Cody 123

Sakallah, Karem 166
Salvia, Rocco 363
Schmidt, Joshua 130
Schobbens, Pierre-Yves 19
Schuetz, Thomas 255
Seceleanu, Cristina 186

Titolo, Laura 363
Topcu, Ufuk 71, 237
Trefler, Richard 36
Tumova, Jana 237

Varre, Akarsh 355

Waga, Masaki 371
Wehrheim, Heike 263

Zeldovich, Nickolai 228

392 Author Index

	Preface
	Organization
	Challenges for Future Exploration (Panel Description)
	Abstracts of Invited Talks
	Safety-Critical Systems: Rapprochement Between Formal Methods and Control Theory
	Integrating Formal Methods into Industrial Processes
	Contents
	Learning-Based Testing of an Industrial Measurement Device
	1 Introduction
	2 Preliminaries
	2.1 Notational Conventions and Mealy Machines
	2.2 Active Automata Learning
	2.3 Mapper

	3 Learning Setup
	3.1 System Under Learning: The AVL489 Particle Counter
	3.2 Masking Non-determinism with Sink States
	3.3 Mapper Implementation
	3.4 Output Oracle Implementation
	3.5 Equivalence Oracle Implementation
	3.6 Testbed Simulation Model

	4 Results
	4.1 Learned SUL Mutant Models
	4.2 Discussion and Comparison to MBMT Approaches

	5 Related Work
	6 Conclusion and Outlook
	References

	ML: A Distributed Real-Time Modal Logic
	1 Introduction
	2 Preliminaries
	2.1 Models of Time
	2.2 Clocks
	2.3 Rates
	2.4 Timed Automata
	2.5 Multi-timed Word
	2.6 Multi-timed Automata
	2.7 Multi-timed Bisimulation
	2.8 Timed Modal Logic

	3 ML: A Distributed Real-Time Modal Logic
	3.1 Syntax of ML
	3.2 Semantics of ML
	3.3 Examples of Properties
	3.4 Reachability Problem
	3.5 Model Checking

	4 Related Work
	5 Conclusions
	References

	Local Reasoning for Parameterized First Order Protocols
	1 Introduction
	2 Preliminaries
	3 First-Order Protocols
	4 Verifying FO-Protocols Using First Order Logic
	5 Soundness and Completeness
	6 Example: Leader Election Protocol
	7 Related Work
	8 Conclusion
	References

	Generation of Signals Under Temporal Constraints for CPS Testing
	1 Introduction
	2 Preliminaries
	3 Transformation from the Unit Box to a Timed Polytope
	4 Low-Discrepancy Generation and Quasi-Monte Carlo Methods for Timed Polytopes
	5 Evaluating the Uniformity Degree
	5.1 Visualising n-dimensional Uniformity Degree via Histograms
	5.2 Measuring the Uniformity Degree

	6 Application to CPS Testing
	6.1 CPS Testing
	6.2 Experimentation

	7 Conclusion
	References

	Traffic Management for Urban Air Mobility
	1 Introduction
	1.1 Related Work
	1.2 Contributions of the Paper

	2 Preliminaries
	3 Problem Setting
	3.1 MDP Formulation of the Environment
	3.2 Shields
	3.3 Requirements on the Shield

	4 Decentralized Vehicle Policy Synthesis
	5 Localized Shield Synthesis Framework
	5.1 Assume-Guarantee Contracts
	5.2 Synthesis Overview
	5.3 Game Construction with Contract Guarantees
	5.4 Synthesis of Locally-Optimal Shields
	5.5 Proof of Correctness

	6 Validation via Simulation
	6.1 Shield Synthesis Comparison
	6.2 Traffic Management Case Study

	7 Conclusion
	References

	Towards Full Proof Automation in Frama-C Using Auto-active Verification
	1 Introduction
	2 Classic Lemma-Based Verification in Frama-C
	3 Auto-active Verification Illustrated for the Running Example
	4 Experiments Using Auto-active Verification
	5 Related Work
	6 Discussion
	7 Conclusion and Future Work
	References

	Using Standard Typing Algorithms Incrementally
	1 Introduction
	2 An Overview of the Incremental Schema
	3 Formalizing the Incremental Schema
	4 Incremental Type Checking for Non-interference
	5 Incremental Type Inference for a Functional Language
	6 Implementation and Some Experiments
	7 Conclusions
	References

	Using Binary Analysis Frameworks: The Case for BAP and angr
	1 Introduction
	2 BAP and angr Overview
	3 Extracting and Using Control Flow Data
	3.1 Control Flow Graphs
	3.2 Call Graphs

	4 Value-Set Analysis
	5 Conclusion
	References

	Automated Backend Selection for ProB Using Deep Learning
	1 Introduction and Motivation
	2 Related Work
	3 Primer on B and ProB
	4 Machine Learning on B Constraints
	4.1 Brief Introduction to Deep Learning
	4.2 The Initial Set of 17 Features
	4.3 The Set of 185 Features
	4.4 A Convolution Approach

	5 Methodology
	6 Training Data
	7 Results
	7.1 Results for Singular ProB Classification
	7.2 Results for ProB+Kodkod Classification
	7.3 Results for ProB+Z3 Classification

	8 Conclusion and Future Work
	References

	Optimizing a Verified SAT Solver
	1 Introduction
	2 The Isabelle Refinement Framework
	3 IsaSAT
	4 Refactoring IsaSAT
	5 Adding Blocking Literals
	6 Improving Memory Management
	7 Implementing Restarts and Forgets
	8 Using Machine Integers
	9 Evaluation
	10 Discussion and Related Work
	11 Conclusion
	References

	Model Checking of Verilog RTL Using IC3 with Syntax-Guided Abstraction
	1 Introduction
	2 Background
	2.1 Notation
	2.2 Model Checking

	3 Syntax-Guided Abstraction
	4 IC3 with Syntax-Guided Abstraction (IC3+SA)
	4.1 Generalization of a Satisfiable Query
	4.2 Refinement

	5 Proof of Correctness
	6 Implementation and Evaluation
	6.1 Results

	7 Related Work
	8 Conclusions and Future Work
	References

	Towards a Two-Layer Framework for Verifying Autonomous Vehicles
	1 Introduction
	2 Preliminaries
	2.1 Hybrid Automata and UPPAAL SMC
	2.2 Theta* Algorithm
	2.3 Dipole Flow Field for Collision Avoidance

	3 Use Case: Autonomous Wheel Loader
	4 A Two-Level Framework for Planning and Verifying Autonomous Vehicles
	5 Pattern-Based Modeling of the Dynamic Layer
	5.1 Patterns for the Execution Unit
	5.2 Patterns for the Control Unit
	5.3 Encoding the Control Unit Patterns as Hybrid Automata

	6 Use Case Revisited: Applying Our Method on AWL
	6.1 Formal Model of the Control Unit
	6.2 Statistical Model Checking of the AWL Formal Model

	7 Related Work
	8 Conclusions and Future Work
	References

	Clausal Proofs of Mutilated Chessboards
	1 Introduction
	2 Representation
	3 Clausal Proofs
	4 Without Loss of Satisfaction
	5 Proof Production and Validation
	6 Conclusion and Challenges
	References

	Practical Causal Models for Cyber-Physical Systems
	1 Introduction
	2 Background and Related Work
	3 Methodology
	3.1 Transforming Trees into Causal Models
	3.2 TFPG
	3.3 Combining Causal Models

	4 Example
	5 Conclusion
	References

	Extracting and Optimizing Formally Verified Code for Systems Programming
	1 Introduction
	1.1 The Problem of Code Generation
	1.2 Previous Work
	1.3 Contributions

	2 Design
	2.1 Type Inference
	2.2 Base Semantics
	2.3 Algebraic Data Types (ADTs)
	2.4 Monadic Effects (Proc)
	2.5 Pretty-Print C++17

	3 Implementation and Evaluation
	3.1 Linking Verified Applications
	3.2 Benchmarks

	4 Conclusion
	References

	Structured Synthesis for Probabilistic Systems
	1 Introduction
	2 Case Study
	3 Preliminaries
	4 Structured Synthesis
	5 An Integer Programming Approach
	6 Transformation of PRISM Programs
	7 Experiments
	8 Conclusion and Future Work
	References

	Design and Runtime Verification Side-by-Side in eTrice
	1 Introduction
	2 Background
	3 Solution
	4 Real-World Case Study
	5 Related Work
	6 Discussion and Conclusion
	References

	Data Independence for Software Transactional Memory
	1 Introduction
	2 Foundations
	3 Opacity
	4 Modelling STMs
	5 Data Independence of STMs
	6 Related Work
	7 Conclusion
	References

	Transaction Protocol Verification with Labeled Synchronization Logic
	1 Introduction
	2 Description Language
	3 Labeled Synchronization Logic
	4 TM Verification
	5 Related Works and Conclusion
	References

	Symbolic Model Checking of Weighted PCTL Using Dependency Graphs
	1 Introduction
	2 Models and Properties
	3 Symbolic Dependency Graphs
	3.1 Global Algorithm

	4 Local Algorithm
	5 Experiments
	5.1 Results

	6 Conclusion
	References

	Composing Symmetry Propagation and Effective Symmetry Breaking for SAT Solving
	1 Introduction
	2 State of the Art and Definitions
	2.1 Basics on Boolean Satisfiability
	2.2 Symmetry Group of a Formula
	2.3 Approach Based on Effective Symmetry Breaking
	2.4 Approach Based on Symmetry Propagation
	2.5 Summary

	3 A Composed Technique
	3.1 Theoretical Foundations
	3.2 Practical Considerations
	3.3 Algorithm

	4 Implementation and Evaluation
	4.1 Implementation
	4.2 Evaluation

	5 Conclusion
	References

	Formal Methods Assisted Training of Safe Reinforcement Learning Agents
	1 Introduction
	1.1 Reinforcement Learning Overview

	2 Safety-Focused Reinforcement Training
	3 Case Studies
	3.1 Implementation Details
	3.2 Safety Analysis
	3.3 Property Discovery

	4 Discussion
	References

	Formalizing CNF SAT Symmetry Breaking in PVS
	1 Motivation
	2 Main Theorem
	3 Formalizing Crawford's Symmetry Breaking
	4 Conclusion and Future Work
	References

	Fly-by-Logic: A Tool for Unmanned Aircraft System Fleet Planning Using Temporal Logic
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Fly-by-Logic: The Tool
	2.1 Architecture and Outline
	2.2 The Mission Template
	2.3 Behind-the-Scenes: Generating the Trajectories

	3 Conclusions and Ongoing Work
	References

	A Mixed Real and Floating-Point Solver
	1 Introduction
	2 Solving Mixed Real/Floating-Point Formulas
	3 Integrating FPRoCK in PRECiSA
	4 Conclusions
	References

	Online Parametric Timed Pattern Matching with Automata-Based Skipping
	1 Introduction
	2 Preliminaries and Objective
	2.1 Parametric Timed Automata
	2.2 Reachability Synthesis
	2.3 Parametric Timed Pattern Matching

	3 An Online Algorithm for Parametric Timed Pattern Matching
	4 Skipping Enhanced Parametric Timed Pattern Matching
	5 Experiments
	5.1 RQ1: Overall Execution Time
	5.2 RQ2: Parametric vs. Non-parametric Timed Pattern Matching
	5.3 RQ3: Overhead of Skip Value Computation

	6 Conclusion and Perspectives
	References

	Author Index

