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Cătălin Bogdan Galeş
Faculty of Mathematics
Alexandru Ioan Cuza University of Iasi
Iasi, Romania

Giovanni Federico Gronchi
Department of Mathematics
University of Pisa
Pisa, Italy

ISSN 2281-518X ISSN 2281-5198 (electronic)
Springer INdAM Series
ISBN 978-3-030-20632-1 ISBN 978-3-030-20633-8 (eBook)
https://doi.org/10.1007/978-3-030-20633-8

© Springer Nature Switzerland AG 2019
Chapter 2: © The Author(s).
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-20633-8


Preface

There is a long-lasting tradition of Celestial Mechanics training started with the
school in Cortina D’Ampezzo (Italy) in 1981 and continued with other training
events in more recent years. The contributions have usually been collected and
published in books, thus providing researchers in this field with very useful
reference texts.

This book is a collection of contributions given by internationally renowned
scientists at the summer school SDSM 2017 “Satellite Dynamics and Space
Missions: Theory and Applications of Celestial Mechanics”, held in San Martino
al Cimino, Viterbo (Italy) from August 28 to September 2, 2017. This school aimed
to teach the latest theories, tools and methods for satellite dynamics and space
missions. The contributions in this volume deal with a variety of important topics
related to satellite dynamics and space mission design. A detailed description of the
book contents is summarized below.

The contribution by Sylvio Ferraz-Mello concerns planetary tidal theories for a
model with a homogeneous primary body rotating around a spin axis perpendicular
to the orbital plane of the companion. It is assumed that the tidally deformed body
has an ellipsoidal shape with a rotation delayed with respect to the motion of the
companion. Different theories are presented: static tide, dynamic tide, the tidal
evolution of the primary’s rotation and of the orbital elements, Darwin’s theory,
constant time and phase lag models, and Mignard’s theory.

In the contribution by Antonio Giorgilli the modern tools of Hamiltonian
perturbation theory are reviewed. After a brief historical introduction, the problem
of studying the dynamics of a small perturbation of an integrable Hamiltonian
system (called the general problem of dynamics by Poincaré) is presented. This
problem arises in a natural way by investigating the stability of the solar system.
A short description of the properties of integrable Hamiltonian systems is given,
with the Liouville-Arnold-Jost theorem, where the action-angle coordinates are
used to describe portions of the phase space foliated in invariant tori. After that,
Kolmogorov’s contribution is explained, which gives a positive answer to the
question of whether or not some of these tori survive small perturbations of
the integrable system. This result gives rise to the so called KAM theory, after

v
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Kolmogorov, Arnold, and Moser. The normal forms by Birkhoff and Poincaré are
explained, to describe the dynamics in a neighborhood of a Kolmogorov invariant
torus or of an elliptical equilibrium. The difficulties caused by the presence of
the small divisors in the homological equation are explained in detail. Finally,
Nekhoroshev’s theorem is presented, addressing the stability problem for a very
long time, whose proof requires a subtle geometric analysis of the resonances.

The contribution by Anne Lemaître presents basic techniques to study the
dynamics of space debris and introduces a characterization of various dynamical
phenomena revealed by applying modern tools of Celestial Mechanics. It discusses
dynamical properties of these objects at several levels: gravitational resonances for
MEO (medium Earth orbits) and GEO (geosynchronous Earth orbits), lunisolar
resonances and secondary resonances involving the Sun, the stability of some
regions by computing the chaos indicators (MEGNO, the frequency map), the
effects of the solar radiation pressure with and without shadowing, the orbital
decay of satellites in LEO (low Earth orbits) due to the atmospheric drag, and the
Yarkovsky-Schachs effect. Several ideas describing the development of a synthetic
population of virtual space debris are also presented.

The contribution by Josep-Maria Mondelo is about the computation of fixed
points, periodic orbits, invariant tori of conservative dynamical systems, and their
associated invariant manifolds. To this end, both numerical and semi-analytical
methods are presented, discussing the advantages and the main differences between
them. These techniques are meant to be applied to preliminary mission design of
libration point missions. One of the goals is to select the orbit that best fulfills
the requirements of a space mission; for this reason, it is important to compute
families of trajectories and invariant manifolds, up to a certain precision. The author
considers the restricted three-body problem (with primaries the Sun and a planet, or
a planet and a natural satellite) as a model for numerical tests of the theory. Although
these techniques are applied to this specific problem, they can be generalized to
conservative dynamical systems, and many of them even to dissipative ones.

The contribution by Daniel Scheeres deals with the dynamics of a system
of N spherical bodies that are resting on and orbiting about each other. This
study is particularly relevant for understanding the motion of rubble-pile asteroids,
which are composed of small pieces of rock attracted by their mutual gravity. The
equations of motion for the N bodies are written with the Lagrangian formalism
and include the non-holonomic constraints which arise when the bodies come into
contact, always assuming a no-slip condition. Using the conservation of the angular
momentum and Routh’s reduction, the motion is referred to a suitable rotating
frame. This step allows us to introduce the amended potential, which is shown to
play an essential role in the determination of the relative equilibria of the system
and in the discussion of their stability. The theory is applied to the case of collinear
bodies resting on each other (Euler resting configuration). Moreover, the influence
of the number of bodies and their dimension on the stability of the system is
analyzed.

The two contributions by Massimiliano Vasile are about multi-objective optimal
control and uncertainty quantification. The first contribution deals with optimal
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control problems where there is more than one single scalar cost function. The
problem is transformed into a finite-dimensional non linear programming (NLP)
problem. Pareto optimality is applied so that a solution is considered optimal
if none of the cost functions can be improved without making worse the value
of some of the others. A scalarization technique is used to transform the multi-
objective problem into a single-objective one. Then, the problem is solved by a
numerical integration scheme for ordinary differential equations (finite elements
in time) and a memetic algorithm. A test case is also shown, with Goddard’s
rocket example, which has an analytical solution. The techniques presented in
the second contribution apply to a wide range of practical problems. Specific
examples of orbital mechanics, from orbit determination to collision avoidance, are
included. Classification of uncertainty and quantification methods are addressed.
Sampling-based methods, which are non-intrusive techniques (e.g., Monte Carlo
method, Chebyshev polynomial expansions) are reviewed along with intrusive ones
(e.g., description of state transition matrix, polynomial chaos expansion, interval
arithmetic). Methods for capturing model uncertainty are also presented and a short
description of evidence-based quantification is given.

The school was attended by about 90 participants from all over the world and
it was made possible, thanks to the support of the Departments of Mathematics of
the University of Pisa and the University of Rome Tor Vergata, the ERC project
COMPAT, the ERC project StableChaoticPlanetM, the European Space Agency,
Gruppo Nazionale per la Fisica Matematica-INdAM, the Italian Space Agency,
and Space Dynamics Services S.r.l. The School SDSM 2017 was held under
the patronage of the IAU Commissions A4—Celestial Mechanics and Dynamical
Astronomy and X2—Solar System Ephemerides and promoted by the Italian
Society of Celestial Mechanics and Astrodynamics—SIMCA.

Pisa, Italy Giulio Baù
Rome, Italy Alessandra Celletti
Iasi, Romania Cătălin Bogdan Galeş
Pisa, Italy Giovanni Federico Gronchi
April 2019
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Planetary Tides: Theories

Sylvio Ferraz-Mello

Abstract Synthetic presentation of planetary tide theories in the simple case of a
homogeneous primary rotating around an axis orthogonal to the orbital plane of
the companion. The considered theories are founded on the dynamical equilibrium
figure of the tidally deformed body, assumed as an ellipsoid whose rotation is
delayed with respect to the motion of the companion. The orbital and rotational
evolutions of the system are derived using standard physical laws. The main theory
considered is the creep tide theory, a first-principles hydrodynamical theory where
the dynamical tide is assimilated to a low-Reynolds-number flow and determined
using a Newtonian creep law. The Darwin theories are also considered and are
formally derived from the creep tide theory. The various rheologies used in Darwin
theories are discussed, with emphasis on the CTL (constant time lag) and CPL
(constant phase lag) theories. One introductory session is devoted to the main
classical results on the hydrostatic figures of equilibrium of the celestial bodies
(static tide).

Keywords Static tide · Dynamic tide · Creep theory · Darwin theory

1 Introduction

In these lectures, we consider the tidal evolution of a system of two homogeneous
bodies close one to the other, the primary and its companion. The primary has mass
m, mean radius R, rotational angular velocityΩ = |�| and its companion has mass
M and is the source of the gravitational force that is tidally deforming the primary.

S. Ferraz-Mello (�)
Instituto de Astronomia Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São
Paulo, Brazil
e-mail: sylvio@usp.br

© Springer Nature Switzerland AG 2019
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2 S. Ferraz-Mello

Their instantaneous relative motion is a Keplerian orbit in the equatorial plane of the
primary and the distance between the two bodies is r(t). No hypotheses are done
about the relative value of their masses. We consider the tide raised in the primary by
the gravitational attraction of the companion. To know the consequences of the tide
raised in the companion by the gravitational attraction of the primary, it is enough to
invert the role played by the two bodies. In general, it is necessary to consider both
cases and add their contributions to obtain the total variations of the orbital elements
and energy of the system.

Since the pioneer work of Darwin, tides have been treated following many
different approaches. In the hydrodynamical approaches considered here (the creep
tide and the Maxwell model), the starting point is the hydrostatic equilibrium figure
of the tidally deformed primary, the static tide. The actual deformation of the body
due to the continuously changing gravitational attraction of the companion (the
dynamic tide) is calculated using one approximate solution of the Navier-Stokes
equation simplified by the assumption that the flow is laminar (low-Reynolds-
number flow). In Darwinian models, the deformation (tide) is classically divided
into two components studied separately. The main component is the elastic (or
static) tide. The other, responsible for the dissipation of the energy of the system and
for the torques acting on the primary body is the anelastic tide [24].1 The approaches
introducing the viscoelastic effect by means of a dissipation function (e.g. [17, 46])
were not considered in these lectures.

2 The Static Tide

The static tide is the deformation of the primary in the limit case where it does not
offer any resistance to the deformation. The body behaves as a perfect fluid and takes
instantaneously the shape corresponding to the equilibrium of the forces acting on
it. The total force acting on the points on the surface of the body must be, in each
point, perpendicular to the surface. These forces are the gravitational forces of the
primary, the tidal forces due to the attraction of the primary by the companion, and,
if the body is rotating, the inertial (centrifugal) forces due to the rotation, i.e.

Ftot = −∇Uself + Ftid −�× (�× d) (1)

(per unit mass).2 d is the position vector of the considered surface point, Uself is the
potential of the gravitational forces of the primary, Ftid is the tidal force per unit
mass acting on the points of the primary.

1For the exact definition of the words elastic and anelastic, see the online supplement to [14]. One
must keep in mind, however, that the involved restoring forces are gravitational, not elastic.
2The minus sign in the first term means that we are adopting the exact Physics convention: force is
equal to minus the gradient of the potential.
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Fig. 1 Tidal deformation of
the primary body under the
attraction of a close
companion

Figure 1 stresses the asymmetry of the tidal deformation. However, with a very
few exceptions (e.g. [52]), theories of tidal evolution neglect all terms with n > 2;
this is equivalent to consider that the shape of the deformed body is an ellipsoid. This
ellipsoid is characterized by the relationships between its three axes: a > b > c (c
is directed along the rotation axis and a is directed towards the companion). They
are the equatorial prolateness

ερ = a − b

Re
, (2)

whereRe =
√
ab is the mean equatorial radius of the body, and the polar oblateness

εz = 1− c

Re
. (3)

The normal to the ellipsoidal surface in each point is given by ∇S where
S (̂x, ŷ, ẑ) = 0 is the equation of the ellipsoid:

S = x̂2

a2 +
ŷ2

b2 +
ẑ2

c2 − 1 = 0, (4)

and the condition that the force Ftot is perpendicular to the ellipsoidal surface is
expressed by the proportionality of the components of Ftot and ∇S, that is,

Ftot · i
∂S
∂x̂

= Ftot · j
∂S
∂ŷ

= Ftot · k
∂S
∂ẑ

. (5)

These proportionality relations give rise to two independent equations that may be
solved to obtain the values of ερ and εz.
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Fig. 2 The vectors r and d. The tidal force acting on dm is the difference between the gravitational
attraction of dm by the companion and the resultant of the gravitational attraction of the whole
primary by the companion. O is the center of gravity of the primary

The tidal forces are the forces acting in the interior of the body due to the
gravitational attraction of the companion, referred to the resultant of the attraction
forces acting on the whole primary, that is, the difference

Ftid = −GM∇r

(

1

| r− d | −
1

m

∫

m

dm

| r− d |
)

, (6)

where G is the gravitational constant (see Fig. 2). To be restricted to the ellipsoidal
contribution, the parenthesis in the above expression may be reduced to its so-called
quadrupole component. Hence,

Ftid = −GM∇r

(

r · d
r3

)

; (7)

In the same order of approximation, the potential of the ellipsoid at the points of the
surface (see [7, Chap. 3]; [42, Sec. 79]) is

Uself = 3Gm

4abc

∫ ∞

0

dt

Δ

(

αx̂2

1+ αt
+ βŷ2

1+ βt
+ ẑ2

(1+ t)
− c2

)

, (8)

where α = c2/a2, β = c2/b2 and

Δ = √(1+ αt)(1 + βt)(1+ t).
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Fig. 3 (Left) Maclaurin oblate spheroid. (Right) Jeans prolate spheroid (reprinted from [29] with
permission)

Two cases are of special importance in the study of the static tide, the spheroids
of Maclaurin and Jeans (Fig. 3). They correspond to a body deformed either by the
rotation or by the tide acting alone. If the body is not rotating, the ellipsoid becomes
an ellipsoid of revolution (i.e. a spheroid) with a as axis of revolution. In this case,
the name Jeans ellipsoid is often used [7, 53].

2.1 The Maclaurin Spheroid

This case corresponds to one isolated rotating body, not subjected to a tidal force.
The rotation axis is a symmetry axis (a = b) and we have just one flattening to
calculate. If we assume that the resulting polar oblateness is small, we may use
approximations allowing to compute analytically the integrals in Eq. (8) to obtain

εM = 5R3Ω2

4mG
. (9)

2.2 The Jeans Spheroid

This case corresponds to one non-rotating body submitted to the gravitational
attraction of one companion. The axis directed towards the companion (x) is a
symmetry axis (b = c). As before, we have just one flattening to calculate and
if we assume that the resulting equatorial prolateness is small, we may compute
analytically the integrals in Eq. (8) to obtain the first-order approximation

εJ = 15

4

(

M

m

)(

Re

r

)3

(10)

(see Table 1).
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Table 1 Jeans equatorial
prolateness of some celestial
bodies due to close
companions

Primary Companion εJ a − b

Earth Moon 2.1 ×10−7 1.34 m

Earth Sun 9.6 ×10−8 0.6 m

Venus Sun 2.6 ×10−7 1.5 m

Jupiter Sun 3.0 ×10−9 0.2 m

Jupiter Io 8.5 ×10−7 61 m

Moon Earth 2.8 ×10−3 50 m

Io Jupiter 4.9 ×10−3 8.2 km

Titan Saturn 1.5 ×10−4 0.38 km

Planet CoRoT 7b Star CoRoT 7 8 ×10−3 85 km

2.3 The General Ellipsoid

If we must consider both, rotation and tide, the result is a composite of the two above
ones. The equatorial prolateness is the same of the Jeans spheroid

ερ = εJ , (11)

but the polar oblateness is a composite of the two spheroidal flattenings:

εz = εM + 1

2
εJ . (12)

The main term in εz is the oblateness of a Maclaurin spheroid. However, the
polar oblateness is also affected by the tidal deformation. Indeed, if the body is
stretched along the axis a, the conservation of volume forces it to shrink in the
directions orthogonal to that axis, thus decreasing both b and c and increasing the
polar oblateness of the body.

2.4 Roche Ellipsoids

The general ellipsoids are sometimes called Roche ellipsoids, however, this desig-
nation more strictly refers to the case in which the motion of the companion around
the primary is circular and synchronous with the rotation of the primary (Ω = n).
In such case, the third Kepler law may be used to obtain Ω2 = G(M +m)/a3, and
then

εM = 5R3(M +m)

4ma3 . (13)

If the primary is much smaller than the companion (one satellite of a big planet,
or one hot planet orbiting a normal star), we may assume m << M and so, εJ �
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3εM (see [53, t.2, Chap. 8]). In this case, several interesting relations may be easily
derived, e.g.

a − c

b − c
� 4. (14)

When the primary is one Roche ellipsoid, an important relation may be found
between the quadrupole coefficients of the primary’s potential. We may remember
the general expressions3:

J2 ≡ −C20 = − 1

2mR2
e

(A+ B − 2C) = 1

10R2
e

(a2 + b2 − 2c2) � 2

5
εz

C22 = 1

4mR2
e

(B − A) = 1

20R2
e

(a2 − b2) � 1

10
ερ

(see [3, v.1, Sec. 3.4]) where A,B,C are the moments of inertia along the principal
axis of the ellipsoid. Hence, if εJ � 3εM , we have

C22

J2
� 3

10
. (15)

3 The Tide Harmonics

The equation of the surface of the equilibrium ellipsoid, in the general case, is

ρ = Re
(

1+ 1

2
ερ sin2

̂θ cos(2ϕ̂ − 2ω − 2v)− εz cos2
̂θ
)

, (16)

where ρ, ϕ̂,̂θ are the radius-vector, longitude and co-latitude of one generic surface
point, and ω+v is the true longitude of the companion in its equatorial orbit around
the primary (ω is the argument of the pericenter and v is the true anomaly). These
angles are reckoned from a fixed virtual node N and are such that the major axis is
always oriented towards the companion, i.e. to the surface equatorial point whose
longitude is ϕ̂ = ω + v. The dependent variables of this equation are the longitude
of the generic point ϕ̂ = Ω(t − t0), the radius vector r and the true anomaly v of

3Auxiliary first-order relations:

a = Re(1+ ερ/2)

b = Re(1− ερ/2)

c = Re(1− εz).
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Table 2 Some low-order
Cayley expansions

E2,−2 = 17
2 e

2 − 115
6 e4 + 601

48 e
6

E2,−1 = 7
2 e − 123

16 e
3 + 489

128e
5 − 1763

2048e
7

E2,0 = 1− 5
2 e

2 + 13
16 e

4 − 35
288e

6

E2,1 = − 1
2e + 1

16 e
3 − 5

384 e
5 − 143

18432e
7

E2,2 = 0

E0,0 = 1+ 3
2 e

2 + 15
8 e

4 + 35
16e

6

E0,1 = 3
2e + 27

16 e
3 + 261

128e
5 + 14309

6144 e
7

E0,2 = 9
4e

2 + 7
4 e

4 + 141
64 e

6

N.B. E0,−k = E0,k

the companion. The true anomaly v appears explicitly in the equation. The radius
vector r is included in the equatorial prolateness ερ , and in the polar oblateness εz =
εM + 1

2ερ , through the definition of εJ . The equatorial radius is also variable since
it is related to the constant mean radius R of the body through R � Re(1− 1

3εz).
We may expand Eq. (16) assuming that the functions r(t), v(t) are given by the

two-body (Keplerian) approximation. The resulting equation is

ρ = R

(

1+ 1

2
ερ sin2

̂θ
∑

k∈Z
E2,k cos

(

2ϕ̂ + (k − 2)�− 2ω
)

−(cos2
̂θ − 1

3
)
(

εz + 1

2
ερ
∑

k∈Z
E0,k cos k�

)

)

, (17)

where � is the mean anomaly, Eq,p are the Cayley functions4 ([6]; see [20] online
supplement; see Table 2):

Eq,p(e) = 1

2π

∫ 2π

0

(a

r

)3
cos
(

qv + (p − q)�
)

d�, (18)

ερ = 15

4

(

M

m

)(

Re

a

)3

, (19)

and

εz = εz − 1

2
ερ. (20)

4The Cayley functions introduced here correspond to the degree 3 in a/r—since ερ ∝ (a/r)3.
These functions are equivalent to the Hansen coefficients preferred by other authors and the
equivalence is given by E(n)

q,p = X
−n,q
2−p (see [8]).
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To interpret the harmonic components of the static tide, we may consider one
point fixed to the surface of the body and determine the time variation of the
component amplitude at that point. Each term of ρ depending on ϕ̂ corresponds
to a tidal harmonic traveling on the body with given direction and velocity. All
harmonics contribute to the formation and evolution of the tidal bulge on the body.
In the orthogonal model studied in these lectures, the terms of ρ appears in two
groups:

1. Sectorial components having the argument (2ϕ̂+(k−2)�−2ω
)

. The amplitudes
of these terms are maximum at the equator (̂θ = π/2) and decrease towards the
poles. On the equator, they are maximum when ϕ̂ = −(k/2 − 1)� + ω. The
main term (k = 0) is an oscillation with period π/(Ω − n) (i.e. half the synodic
rotation period), with two maxima located one on the sub-M point and the other
on its antipodal. If n	 Ω , the period is nearly half of the rotation period.

The next harmonic, (k = 1) has two opposed maxima. One of them lies on
the sub-M point when the tide generating body is at the periapsis (i.e., � = 0) and
the other when the tide generating body is at the apoapsis (i.e. � = π). The high
tide moves, in this case, more slowly than the sub-M point. The harmonic k =
−1 has a similar behavior, but the point of maximum amplitude on the equator
propagates backward. Similar analyses can be done for the other harmonics.

When Ω 
 n these terms have frequencies close to the semi-diurnal
frequency

ν = 2Ω − 2n. (21)

They are called semi-diurnal tides. On the Earth, they have periods close to
12 h. They are shown in Table 3, which also summarizes the interpretation to be
given in the other cases (Ω 	 n and Ω � n).

Table 3 The main tide harmonics

Type 1 Type 2 Type 3

k Frequency Ω 
 n Ω � n Ω 	 n

Sectorial terms

0 2Ω − 2n Semi-diurnal − Semi-annual

−1 2Ω − 3n Semi-diurnal Monthly 3rd of annual

+1 2Ω − n Semi-diurnal Monthly Annual

−2 2Ω − 4n Semi-diurnal Semi-monthly 4th of annual

+2 2Ω Semi-diurnal Semi-monthly “Semi-diurnal”

Radial terms

1 n Monthly Monthly Annual

2 2n Semi-monthly Semi-monthly Semi-annual

The frequencies and corresponding names refer to how the tidal disturbance is felt on a given
(fixed) point of the body. For the type 2 tides, the paradigm is the Moon, but when the synchronous
companion is an exoplanet, the names annual and semi-annual would be more appropriate
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2. Zonal components independent of the longitude. These harmonics do not depend
on the longitude of the considered points. ρ oscillates all over the body with
amplitudes depending on the latitude of the points and on the mean longitude of
the tide generating body. These terms are often called radial tides because there
is no propagation of a crest on the surface of the body.

In Table 3, we summarize the names of the tidal harmonics for three different
cases depending on the rotation speed of the primary. Type 1 corresponds to a body
rotating with angular velocity much larger than the orbital mean motion (Ω 
 n).
It is the case of the Earth-Moon system, with the Earth as primary and the Moon
as companion. Type 2 corresponds to synchronous or almost synchronous motions
and, again, the Earth-Moon system serves as an example, but now the Moon is
the primary and the Earth is the companion. Looking at Table 3, we see that
synchronization gives rise to harmonics whose periods are related to the rotation
period of the companion, and they are called monthly, semi-monthly, etc. The names
come from the tidal action of the Earth on the Moon (for this reason, the semi-
monthly tide is often called fortnightly). In the case of tidally locked exoplanets, the
main period is the orbital period of the planet and the names annual, semi-annual,
etc. are more appropriated. Type 3 corresponds to a slow rotating body (Ω 	 n);
it is the case of the tides on a typical main sequence star due to a close-in planet
(hot Jupiter). Using names like those used in the other cases and considering that the
main period is the planet’s orbital period (or “year”), we will call them, respectively,
annual, semi-annual, tierce-annual and so on.5

It is worth emphasizing that the given tidal frequencies and corresponding names
refer to how the tidal disturbance is felt on a given (fixed) point of the body.
The propagation of the tidal harmonic in the body must be analyzed separately.
For instance, on the Earth, the tidal bulges of both diurnal and semi-diurnal
tides circulate around the Earth with the synodic rotation speed. The names and
frequencies given in Table 3 refer rather to the shape of the tidal harmonic.

4 Tidal Evolution Due to the Static Tide

The deformation of the body will modify the gravitational potential in its neigh-
borhood. The simplest form of this potential is obtained when we use a reference
system whose axes are the principal axes of inertia of the ellipsoid. It is

U = −Gm
r
− G

2r3 (A+ B + C)+ 3G

2r5 (AX
2 + BY 2 + CZ2)+ · · · , (22)

5We have, however, to keep in mind that these “years” are very short. In type 3 tides, “diurnal” is
slower than “annual”.
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where A, B, C are the moments of inertia w.r.t. to the three axes, X,Y,Z are the
coordinates of one generic point and r = √X2 + Y 2 + Z2 (see [3, v.1 Sec. 3.3.5]):

X = r sin θ cos(ϕ − ω − v)

Y = r sin θ sin(ϕ − ω − v)

Z = r cos θ.
(23)

where θ, ϕ are the co-latitude and longitude of the point in a system of reference
whose fundamental plane lies in the equator of the body, but whose axes are fixed
(i.e., not rotating with the body), and ω + v is the true longitude of the companion.

The acceleration of the considered point is minus the gradient of U . In a right-
handed orthogonal set of unit vectors along the positive direction of the increments
of (r, θ, ϕ), the components of the acceleration are

a1 = − ∂U
∂r

= −Gm

r2 − 3G
2r4 (A+ B + C)+ 9G

2r6 (AX
2 + BY 2 + CZ2)

a2 = − 1
r
∂U
∂θ

= − 3G
r6 (AX

2 cot θ + BY 2 cot θ − CZ2 tan θ)
a3 = − 1

r sin θ
∂U
∂ϕ

= 3G
r6 sin θ

(A− B)XY.

(24)

In particular, the components of the force acting on the companion whose coordi-
nates are X = r, Y = 0, Z = 0 (θ = π

2 , ϕ = � + v), are

F1 = −GmM
r2 − 3GM

2r4 (A+ B + C)+ 9GMA
2r4

F2 = 0
F3 = 0.

(25)

The force is radial, its torque is equal to zero and, therefore, the rotation of the
body is not affected by the static tide. There is no exchange of angular momentum
between the rotation of the body and the orbital motion. The rate of work done by
the static tide force (its power) is F · v where v is the velocity of the companion.
The sequence Ẇ = F · v = F(r)r · v = 1

2F(r)d(r2)/dt = 1
2F(r)d(r2)/dt =

F(r)rdr/dt , where F = F1/r , shows that the work is an exact differential and,
therefore, the total mechanical energy of the system remains constant in one cycle.
There is no dissipation of energy due to the static tide.

Another important consequence is that the variation of the eccentricity, which
is a function of the variations of both the energy and the angular momentum, also
averages to zero in a cycle.

The only effects not averaged to zero are the precessions of the pericenter and
of the longitude at the epoch (the third Kepler law needs a correction). To obtain
these variations, we may use the classical Lagrange (or Gauss) equations for the
variation of these orbital elements. It is worth stressing that the disturbing potential
R appearing in Lagrange equations is the potential of an external perturbation acting
on the companion. However, in the present case, the disturbing forces acting on M
are internal to the system of bodies. Therefore, as is usually done in the formulation
of an N-body problem, the reactions must also be considered, that is, the disturbing
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function R in Lagrange variational equations must be substituted by −(1 + M
m
)δU

to consider the reaction on the primary of its tidal action on the companion.6 This
correction can be neglected only whenM 	 m. However, the neglect of the reaction
in the general case leads to wrong equations and cannot be done.

For the sake of completeness, we recall that the reaction to the bulk gravitational
attraction of m on M is duly considered in the current formulation of Gauss and
Lagrange equations and we need to consider here only the reaction to the disturbing
force.

5 The Dynamic Tide

Because of the forces acting on it (self-gravitation, tidal potential and centrifugal
forces), one extended inviscid body immediately changes its shape to become an
equilibrium ellipsoid (static tide). However, a real celestial body does not relax
instantaneously to the equilibrium. It will offer some resistance to the change
and will relax slowly towards the equilibrium. But since the relative position of
the primary and the companion is continuously changing, the equilibrium is also
changing, and the actual shape of the body will be continuously trying to adjust
itself to it. To describe mathematically this process, we introduce two functions:
ζ = ζ(̂θ, ϕ̂, t) and ρ = ρ(̂θ, ϕ̂, t), where the angles ̂θ, ϕ̂ are the co-latitude and
longitude of one direction in a fixed reference system and ζ and ρ are the radii
vectors of the corresponding points on the actual surface of the body and on the
surface of the instantaneous equilibrium ellipsoid.

The creep tide theory of Ferraz-Mello [19] assumes that, at each instant, the
actual surface tends to the equilibrium ellipsoid surface with a speed ζ̇ proportional
to the distance between the two surfaces (see Fig. 4). The equation of the motion is

ζ̇ = −γ (ζ − ρ). (26)

This is the equation of a Newtonian creep (see [44, chap. 5]) where the stress was
considered as proportional to the distance to the equilibrium. It does not consider
inertia or azimuthal motions and is linear.

This equation was used by Darwin in his first paper on the precession of a viscous
Earth [9] to define its rate of adjustment to a new form of equilibrium and was
described in a very pictorial way. We may paraphrase his statement by changing
some words and symbols to make them correspond to the words and symbols used
here:

But because of the [primary’s ] viscosity, [ζ ] always tends to approach [ρ ]. The stresses
introduced in the [primary ] by the want of coincidence of [ζ ] with [ρ ] vary as [ρ − ζ ].
[. . . ] Hence the linear velocity (on the map), with which [ζ ] approaches [ρ ], varies as

6Remember that in the considered case, the equations of the relative motion are M r̈ = (1+ M
m
)F.
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Fig. 4 The creep model: ζ is
the actual surface of the body
at the time t and ρ is the
surface of the static tide or
equilibrium ellipsoid at the
same time. Adapted from [27]
with permission

FI
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[ρ − ζ ]. Let this velocity be [γ (ρ − ζ ) ], where [γ ] depends on the viscosity of the
[primary ], decreasing as the viscosity increases.

The relaxation factor γ is a radial deformation rate gradient and has dimension
T−1. γ → 0 in the rigid body limit and γ →∞ in the inviscid fluid limit. Between
these two extremes, we have the real bodies, which, under stress, relax towards the
equilibrium, but not instantaneously.

5.1 The Navier-Stokes Equation

It is possible to show that Eq. (26) is an approximated solution of the Navier-Stokes
equation of a radial flow across the two surfaces, with a very low Reynolds number
(Stokes flow). In this case, the inertia terms can be neglected (see [31]) and the
Navier-Stokes equation becomes simply [51]

∇p = ηΔV, (27)

where p is the pressure, η is the uniform viscosity and V is the velocity. The
additional external force (per volume unit) is omitted since we are studying
the immediate neighborhood of the equilibrium surface and the stress in that
neighborhood is already considered in the pressure term.

We notice that the symbol Δ is operating on a vector, contrarily to its usual
definition. Actually, this pseudo-vectorial notation can be converted to a legitimate
vector formula through [51]

ΔV = 1

2
∇(V2)− V×∇ × V.

If the radial flow is assumed independent of the azimuthal variables, the vector
Laplacian becomes

ΔV = ΔVr − 2Vr
ζ 2 . (28)
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In a generic point of radius vector ζ , we then have

∂2Vr

∂ζ 2 +
2

ζ

∂Vr

∂ζ
− 2Vr

ζ 2 = −w
η
. (29)

where w is the local specific weight (N.B. w = −∇p). The pressure due to the
body gravitation was approximated by the weight of the mass lying above (or is
missing below7) the equilibrium surface, that is, −w(ζ − ρ); the modulus of the
pressure gradient is the specific weight w. Terms of second order with respect to ερ
are neglected in this and in the following calculations.

The solution of this differential equation is:

Vr(ζ ) = C1ζ + C2

ζ 2 −
w

4η
ζ 2, (30)

where C1 and C2 are integration constants. These constants are determined by the
boundary conditions

• Vr(ρ) = 0 i.e. the velocity vanishes when ζ = ρ; and
• V ′′r (ρ) ≡ 0 i.e. the approximation is linear.

Hence C1 = wρ
6η , C2 = wρ4

12η and, after linearization in the neighborhood of
ζ = ρ, we get Vr(ζ ) = γ (δρ − δζ ) = γ (ρ − ζ ), showing that the basic
creep equation adopted in Ferraz-Mello’s theory is the linearized solution of an
approximate version of the Navier-Stokes equation and that the relaxation factor
γ is related to the uniform viscosity of the body through

γ � wR

2η
� 3gm

8πR2η
, (31)

where g is the gravity at the surface of the body and R is its mean radius (Table 4).
Darwin [10] also studied this equation, but using a different construction of the
Navier-Stokes equations he obtained the numerical factor 3/38 instead of 3/8. His
factor was determined using the spheroidal form of the tidal potential, but the
spheroidal parameters do not appear in his results.

5.2 The Creep Equation

Equation (26) is a non-homogeneous ordinary differential equation of first order
with constant coefficients. The right-hand side is a known time function depending

7This does not mean that a negative mass is being assigned to void spaces; it means just that forces
included in the calculation of the equilibrium figure need to be subtracted when the masses creating
them are no longer there.



Planetary Tides: Theories 15

Table 4 Typical values of the relaxation factor adopted in applications

Body γ (s−1) 2π/γ η (Pa s)

Moon 2.0 ± 0.3 × 10−9 100 year 2.3 ± 0.3× 1018

Titan 2.9 ± 0.2 × 10−8 6.8 year 1.1 ± 0.1× 1017

Solid Earth 0.9 − 3.6 × 10−7 200–800 d 4.5 − 18× 1017

Io 4.9 ± 1.0 × 10−7 150 d 1.2 ± 0.3× 1016

Europa 1.8–8.0 × 10−7 90–400 d 4–18 × 1015

Neptune 2.7–19 <2 s 1.2–4.8 × 1010

Saturn >7.2 <0.9 s < 15× 1010

Jupiter 23± 4 ∼0.3 s 4.7 ± 0.9× 1010

Hot Jupiters 8–50 0.1–0.8 s 5× 1010–1012

Solar-type stars >30 <0.2 s < 2× 1012

See [19, 20]

on the longitude ϕ̂ and on the coordinates of the companion, r and v. The radius
vector of the companion, r , is introduced in the equation by the flattenings ερ and
εz. If the expression of the static equilibrium ellipsoid ρ is expanded in a Fourier
series (cf. Eq. (17)) and introduced into Eq. (26), we obtain

ζ̇ + γ ζ = γR + γR
∑

k∈Z

(

Ck sin2
̂θ cosΘk + C ′′k (cos2

̂θ − 1

3
) cosΘ ′′k

)

, (32)

where we have introduced the constants:

Ck = 1

2
ερE2,k (33)

C ′′k = −1

2
ερE0,k − δ0,kεz (34)

(δ0,k is the Kronecker delta), and the linear time functions

Θk = 2ϕ̂ + (k − 2)�− 2ω (35)

Θ ′′k = k�. (36)

After the integration, we obtain

ζ = Ce−γ t + R + δζ, (37)

where C = C(ϕ̂,̂θ) is an integration constant. The forced terms arising from the
non-homogeneous part of the differential equation are

δζ = R
∑

k∈Z

(

Ck sin2
̂θ cos σk cos(Θk − σk)+ C ′′k (cos2

̂θ − 1

3
) cos σ ′′k cos(Θ ′′k − σ ′′k )

)

,

(38)



16 S. Ferraz-Mello

where

tan σk = Θ̇k

γ
cos σk = γ

√

Θ̇2
k + γ 2

sin σk = Θ̇k
√

Θ̇2
k + γ 2

(39)

tan σ ′′k =
Θ̇ ′′k
γ

cos σ ′′k =
γ

√

Θ̇ ′′2k + γ 2
sin σ ′′k =

Θ̇ ′′k
√

Θ̇ ′′2k + γ 2
.

(40)

The subtracting constant phases σk and σ ′′k behave as lags, but they are not ad
hoc plugged constants as in Darwinian theories. They are finite (i.e. not small) exact
quantities resulting from the integration of the first-order linear differential equation.
We note that, in the integration, the orbital elements a, e, the rotational velocity
Ω and the pericenter precession ω̇ are taken as constants. In the actual problem,
they are variable. However, their resulting variations are of the order O(ερ, εz) and
their contributions can be neglected, at least for limited times. Another warning
to introduce concerns the Keplerian approximation adopted. In the case of some
planetary satellites, as the Moon, the perturbations of the orbital motion and the
precession of the pericenter must be necessarily included in the model.

The transient (ζ = Ce−γ t ) is generally not considered. It is assumed that the past
elapsed time is long enough allowing the transient to be fully damped.

6 Forces and Torques

The body surface is defined by ζ = R + δζ and it is simple to compute the force
and torque that the primary exerts on the companion M because δζ is composed by
the bulges of a set of quadrics (which may give positive or negative contributions)
superposed to one sphere. Since these bulges are very thin (they are proportional to
the flattenings), we may calculate the attraction of M by the resulting composite,
as the sum of the forces due to each ellipsoid bulge [19]. The errors of this
superposition are of second order w.r.t the flattenings.

Alternatively, we may use a more direct approach [20]. We may substitute the
bulges by a thin spherical shell of radius R and assume for the mass element at
the shell coordinates (̂θ, ϕ̂), the sum of the masses of the bulges at that point. The
generic mass element in the shell is

dm(̂θ, ϕ̂) = R2μm sin̂θdϕ̂d̂θδζ, (41)
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where μm is the density of the body. The contribution of the element dm to the
potential in the external point P(r, ϕ, θ) is

dU = −Gdm
Δ

, (42)

where G is the gravitational constant and Δ is the distance from the element dm to
the point P(r, ϕ, θ); the potential created by the whole shell is given by

δU = −GR2μm

∫ π

0
sin̂θd̂θ

∫ 2π

0

δζ

Δ
dϕ̂. (43)

The integration is simple and may be easily done either numerically or alge-
braically to the desired precision. The result is δU =∑k∈Z(δUk + δU ′′k ), where we
have considered separately the contributions of the sectorial and zonal components
of δζ and neglected terms of higher orders in R/r:

δUk = −3GmR2

5r3 Ck cosσk sin2 θ cos(2ϕ − βk), (44)

δU ′′k = −
GmR2

5r3 C ′′k cos σ ′′k (3 cos2 θ − 1) cosβ ′′k . (45)

The βk are the linear time functions:

βk = (2− k)�+ 2ω + σk (46)

β ′′k = k�− σ ′′k . (47)

6.1 Diana

The construction used in the calculation of the forces, since Darwin, is the
following: The companion creates a deformation in the primary body and this
deformation changes the attraction of the companion by the primary (see Fig. 5).
This construction has some consequences. First, the two processes are physically
separated. The disturbing potential δU considers the deformation of the primary,
but it ignores how the deformation is produced. It just embeds a time variation
associated with the relative motion of the companion.

Because of this construction, the coordinates of the companion enter in δU twice.
One time as the coordinates of the body producing the deformation of the primary
and, again, as the coordinates of the body whose motion is being disturbed by
the deformation. To indicate the origin of each set of parameters, it is usual to
give different symbols to them—e.g. marking one of them with asterisks. More
yet, following Darwin’s prose, the body creating the deformation of the primary is
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Fig. 5 Darwin’s construction. The attraction of Diana deforms the primary and the deformed
primary attracts the point P. Subsequently P and Diana are identified one with the other

called Diana, the Roman goddess of the Moon, while the other is the Moon (here,
the companion). The identification of Diana with the companion cannot be done
before the forces are calculated, because in the calculation of the gradient of δU ,
this operation must be done with respect to the coordinates of the generic point P,
regardless of the time variation of the potential due to the motion of Diana. We
remind that in the calculus of the force arising from the deformation of m via the
gradient of δU , only the derivatives w.r.t. the components of r are considered (see
[14, 34]).

When the integration shown in the previous sections is changed to give directly
the components of the force, this kind of precaution is superfluous, as no gradient is
calculated. The direct calculation of the force is more straightforward and prescinds
of Darwin’s discussion. The price to pay, however, is that we then must calculate
the three components of the force separately, instead of just one potential.

6.2 Forces and Torques Acting on the Companion

To obtain the force acting on one mass located at one point, we must take the
negative gradient of the potential at that point and multiply the result by the
mass placed on the point. In this section, we do not use asterisks8 to differentiate
the parameters related to Diana from the parameters of P because they are well
separated: r, θ, ϕ are the coordinates of P and �, ω are the mean anomaly and the
argument of the pericenter of Diana, respectively.

8We avoided to overcharge this text with asterisks. We will only use them in Sect. 8 to indicate
the mean anomaly and the argument of the pericenter of Diana. If the other Lagrange variational
equations are used, other elements of Diana also need to be indicated. In that case, it is convenient to
use the asterisk for all orbital parameters of Diana, from the beginning, and drop the asterisks only
after all derivatives of the disturbing potential are calculated. Note added in proof: The presentation
of the creep tide theory becomes much simpler when the new Folonier equations are used. See [28].
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In a right-handed orthogonal set of unit vectors along the positive directions of
the increments of (r, θ, ϕ), the components of the force are

F1k = −3GMmR2

5r4

(

3Ck cos σk sin2 θ cos(2ϕ − βk)+ C′′k cos σ ′′k (3 cos2 θ − 1) cos β ′′k
)

F2k = 3GMmR2

5r4

(

Ck cos σk sin 2θ cos(2ϕ − βk)− C′′k cos σ ′′k sin 2θ cosβ ′′k
)

F3k = −6GMmR2

5r4
Ck cos σk sin θ sin(2ϕ − βk);

(48)

and the corresponding components of the torque are

M1k = 0

M2k = 6GMmR2

5r3 Ck cos σk sin θ sin(2ϕ − βk)

M3k = 3GMmR2

5r3

(

Ck cosσk sin 2θ cos(2ϕ − βk)− C ′′k cos σ ′′k sin 2θ cosβ ′′k
)

.

(49)

6.2.1 Forces and Torques Acting on an Equatorial Companion

The variables θ and ϕ are the co-latitude and longitude of M. Since M is assumed to
lie in the equatorial plane of m, θ = π/2 and ϕ = v + ω. Hence

F1k = −3GMmR2

5r4

(

3Ck cos σk cos(2v − (2− k)�− σk)− C ′′k cos σ ′′k cos(k�− σ ′′k )
)

F2k = 0

F3k = −6GMmR2

5r4
Ck cos σk sin(2v − (2− k)�− σk),

(50)

and

M1k = 0

M2k = 6GMmR2

5r3 Ck cos σk sin(2v − (2− k)�− σk)

M3k = 0.

(51)



20 S. Ferraz-Mello

7 Tidal Evolution: The Primary’s Rotation

To study the rotation of the primary, we use the equation CΩ̇ = M2 where C is the
moment of inertia with respect to the rotation axis.9 This equation deserves some
comments. First, we note that it neglects the variation of the moment of inertia C.
Second, it is obtained after two sign inversions (which cancel themselves). The first
of these sign inversions is done because of the adopted frame of reference. The
componentM2 is directed downwards (the co-latitude is the polar angle) and so the
z-component of the torque acting on the companion is−M2. The second inversion is
done because the M2k given above are the components of the moment of the forces
acting on the companion and what we need in the equation for Ω̇ is the reaction of
the primary to the torque acting on the companion. Hence

Ω̇ = −3GMερ

2a3

∑

k∈Z
E2,k cosσk

∑

j+k∈Z
E2,k+j sin(j�+ σk), (52)

where we have simplified the coefficient by using the homogeneous body value
C = 2

5mR
2 and introduced the actual values of Ck . The summations are done over

all terms of order less than or equal to a chosen N . (Remember that E2,k = O(ek).)
One important characteristic of this equation, due to the invariance of the torque

to rotations of the reference system, is that the right-hand side is independent of
the attitude of the primary. The arguments of the periodic terms do not include
the azimuthal angle fixing the position of the rotating body. Therefore, this is a true
first-order differential equation and there are no free oscillations. The corresponding
physical librations are forced oscillations. This is totally different from the classical
spin-orbit dynamics of rigid bodies where a permanent azimuthal asymmetry in the
mass distribution of the body (potential terms with coefficients J22 or J31) gives
rise to terms including the azimuthal angle in the arguments and the equation to be
considered is a second-order differential equation.

The average of Eq. (52) with respect to � is

< Ω̇ >= − 3GMερ

4a3

∑

k∈Z
E2

2,k sin 2σk. (53)

We remind that (see Eq. (39))

sin 2σk = 2γ (ν + kn)

γ 2 + (ν + kn)2
, (54)

where

ν = 2Ω − 2n (55)

9Remind that we are only considering the orthogonal case in which the rotation axis of the primary
is perpendicular to the orbital plane.
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is the semi-diurnal frequency. (N.B. In the Keplerian approximation, the sidereal
and the anomalistic mean-motions are equal.)

Far from the equilibrium solutions, the more important term in the series is k = 0.
When the approximation k = 0 is adopted, the average is reduced to

〈Ω̇〉 = − 3GMερ

4a3
E2

2,0
2γ ν

γ 2 + ν2
. (56)

This equation has a classical interpretation. The sign of 〈Ω̇〉 is opposite to the
sign of ν. That is, 〈Ω̇〉 is negative (resp. positive) when Ω > n (resp. Ω < n).
Therefore, far from the equilibrium, the variation of the rotation of the primary is
always oriented towards the equilibrium.

7.1 Synchronization

The study of the full set of solutions of this system is difficult because of the small
values of the torques. In order to get a picture of the solutions space, we construct
a map that associates to each value Ω its increment in one orbital period. Formally,
these maps areΩ(�)→ Ω(�+2π)−Ω(�). The increments are calculated into a grid
of values of ν/n (horizontal axis) and the intersections with zero are the stationary
solutions of the system (see Fig. 6)

The use of a first-order integrator is enough. Ω̇ is too small and we are allowed to
assume Ω constant (that is, σk constant), in the r.h.s., and just integrate the periodic
terms over one cycle.

Because of the small values of the variation of ν/n, the results in Fig. 7 appear
multiplied by 106.

For large values of γ (that is, for γ ≥ n), the curves intersect the axis ΔΩ = 0
just once (Fig. 7 top). There exists one and only one attractor (or stable stationary
solution). We notice that for e �= 0, this attractor is super-synchronous, The
intersection is situated at ν/n � 12e2, the same value found in all Darwin-type
theories (see Sect. 11.1) and in the creep tide theory when γ 
 n (see [19, Eqn. 35]).

Fig. 6 Map showing the
variation of ΔΩ per period as
function of Ω . The stationary
solutions, stable and unstable,
appear as intersections of the
map with the axis ΔΩ = 0
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Fig. 7 Maps showing the variation of ν/n per period for n = γ and n/γ = 10. Remind that
for stars and giant gaseous planets, γ/n 
 1, while for planetary satellites and terrestrial planets,
γ/n	 1 (see Table 4). Reprinted from [20] with permission
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For smaller values of γ , the curves may intersect the axis ΔΩ = 0 many
times and there are many attractors (Fig. 7 bottom). These attractors are located
at ν = −n, 0, n, 2n, · · · . Figure 7 bottom also shows how the existence of the
attractors depends on the orbital eccentricity. If e = 0, the only attractor is
the synchronous solution. When the eccentricity increases, the other attractors at
ν/n � −1, 1, 2, 3, . . . gradually appear. It is worth noting that the attractor ν = 0
does not show, in this case, the offset seen in the cases shown in Fig. 7 top. The
averages are now very close to the actual synchronization.

The maps show the same features shown in the plots of the average torque vs.
rotation frequency of [8]. The similarity is a consequence of the virtual equivalence
of the creep tide theory and the Maxwell model (see Sect. 17).

7.2 The 3/2 Spin-Orbit Resonance: Mercury

The values of n/γ adopted to construct Fig. 7 bottom correspond to stiff bodies
in large orbits as Mercury and some distant satellites. The evolution scenario,
according to classical theories, is the following: The body had primordially a
rotation much faster than the current one which slowly evolved, due to tidal
dissipation, up to reach one attractor where it remained trapped. The trapping
depends on the orbital eccentricity. The spin-orbit synchronous attractor ν/n = 0
may only be reached if the eccentricity is small. If the eccentricity is high, attractors
corresponding to higher values of ν/n will be reached before the synchronous
attractor, and the rotation of the body will remain trapped there without reaching
the synchronous condition. For instance, in the case of Mercury, the planet is
trapped in the attractor ν/n = 1, i.e. Ω = 3

2n. The rotation period is 2/3 of
the orbital period. Since the orbital eccentricity is variable in the long term, we
cannot discard the possibility that the rotation was for a while, in the past, trapped
in the attractor ν/n = 2 (i.e. Ω = 2n), but escaped that resonance in one event
in which the eccentricity plunged to its smallest values, close to 0.1 (see [35]), and
the attractor ν/n = 2 temporarily disappeared. When the eccentricity grew again
and the attractor was restored, the rotation had already evolved to slower states and
Mercury’s rotation was driven to its present situation. Additionally, the fact that
Mercury remained trapped in the 3/2 resonance shows that never in the past, the
orbital eccentricity has been much below 0.1 since, for such small eccentricities, the
3/2 attractor disappears, and the rotation would no longer stay trapped there.

The facts that the rotation of Mercury was able to cross the 2/1 resonance without
staying trapped there forever and eventually became trapped into the 3/2 solution
and that no significant drift from the 3/2 commensurability could be measured [52],
allow one to estimate that the relaxation factor of Mercury lies in the interval 4 <

γ < 30× 10−9 s−1 [20].
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In the existing theories of rotation capture in spin-orbit resonance, probabilities
of capture are calculated. In fact, the differential equations of models exploring the
damped rotation of one rigid body are pendulum-like second-order equations with
a separatrix between the two regimes of motion: resonant and non-resonant. The
ability of the solution to go across one resonance or to be captured into the resonance
depends on the phase of the corresponding angle when the separatrix is reached.
This does not happen in the theory presented here. Here, the differential equation
for Ω is of first-order and no pendulum-like separatrices exist. Capture follows
necessarily when the solution reaches the basin of attraction of one resonance.

8 Tidal Evolution: Orbital Elements

The main tools to study the variation of the elements of the perturbed Keplerian
motion of one body are the Lagrange variational equations, or, equivalently, if the
disturbing forces are known instead of the disturbing potential, the Gauss variational
equations. As already discussed in Sect. 4, in the study of tidal evolution, the
perturbation acting on the primary is internal to the system of bodies and the
potential of the disturbing forces acting on the primary must be multiplied by
(1+ M

m
) to take into account the reaction on the companion of its tidal action on the

primary. We thus consider the force per unit mass acting on the primary minus its
reaction on the companion (see discussion in [23, Section 18.1]).

8.1 Semi-major Axis

The variation of the osculating semi-major axis due to the tides raised on the primary
may be obtained using the Lagrange variational equation [4, Chap. XI]:

ȧ = 2

na

∂R
∂�

, (57)

where the disturbing function is R = −(1 +M/m)δU and δU is the potential of
the tidal forces acting on the primary:

δU = −GmR
2

5a3

∑

k∈Z

∑

j+k∈Z

(

3Ck cos σkE2,j+k cos
(

(2−k)�∗+2ω∗+σk+(j+k−2)�−2ω
)

− C ′′k cosσ ′′k E0,j+k cos
(− k�∗ + σ ′′k + (j + k)�

)

)

. (58)

In this expression, we have indicated with an asterisk the mean anomaly and the
argument of the pericenter of Diana (�∗, ω∗) (see Sect. 6.1). This is now necessary
because the derivatives appearing in the Lagrange variational equations refer only
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to the elements of the body on which the force derived from the potential δU is
acting, which are introduced into δU when the coordinates r, ϕ are substituted by
the Keplerian variables of the motion of the companion around the primary. Once
the derivatives are calculated, we may introduce the identities �∗ = �, ω∗ = ω, and
obtain

ȧ = −2nR2

5a

∑

k∈Z

∑

j+k∈Z

(

3(j + k − 2)Ck cos σkE2,j+k sin
(

j�+ σk
)

− (j + k)C ′′k cos σ ′′k E0,j+k sin
(

j�+ σ ′′k
)

)

. (59)

We may compare the Lagrange variational equation to the rate of variation of the
work done by the force derived from the potential δU :

Ẇ = δf · V = −M.gradrδU · V = −Mn
∂δU

∂�
. (60)

If the third Kepler law (n2a3 = G(M+m)) is used, the comparison to the Lagrange
equation gives

ȧ = 2a2

GmM
Ẇ. (61)

This equation is sometimes used [19, 23] as an alternative to the Lagrange equation
for the variation of the semi-major axis.

8.2 Eccentricity

The variation of the eccentricity is given by the corresponding Lagrange variational
equation [4]:

ė = 1− e2

na2e

∂R
∂�
−
√

1− e2

na2e

∂R
∂ω

. (62)

An alternative is to use the equivalent equation

ė = 1− e2

e

(

ȧ

2a
− L̇

L

)

, (63)

where L = GMm
na

√
1− e2 is the orbital angular momentum, derived from the

equation for the variation of L.



26 S. Ferraz-Mello

After some manipulation, we obtain:

ė = −3nR2

5a2e

∑

k∈Z
Ck cosσk

∑

j+k∈Z

(

2
√

1− e2+(j+k−2)(1−e2)
)

E2,j+k sin(j�+σk)

+ nR2

5a2e

∑

k∈Z
C ′′k cosσ ′′k

∑

j+k∈Z
(j + k)(1− e2)E0,j+k sin(j�+ σ ′′k ) (64)

9 Energy Variation and Dissipation

The bulk dissipation can be predicted by a mere application of the energy conser-
vation principle. If the companion is considered as a mass point, the energy tidally
dissipated in the primary body may only take origin in its rotation and in the relative
orbital motion of the two bodies. The secular variations of the semi-major axis and
of the rotation of the body are the two gauges allowing us to evaluate the energy
lost by the system. No other mechanical process exists able to continuously supply
energy to be dissipated in the system. We thus consider the energy exchanged with
the orbit due to the direct attraction of the two bodies and the rotational energy stored
in the primary. Other energy storing mechanisms are negligible [28]. The physical
processes responsible for the dissipation inside the primary (see [16, 37, 43]) are
not considered here, as well as the case of differentiated bodies, in which some
parts may be much more efficient to dissipate energy than others [48].

The time rate of the work done by the tidal forces acting on the primary is
obtained directly from the equations of Sect. 8.1.10 It is

Ẇ = −GMmnR2

10a3

∑

k∈Z

∑

j+k∈Z

(

3(j + k − 2)ερE2,kE2,j+k cosσk sin
(

j�+ σk
)

+ (j + k)(E0,kερ + 2δ0,kεz)E0,j+k cos σ ′′k sin
(

j�+ σ ′′k
)

)

, (65)

the average of which over � is

< Ẇ >= −GMmnR2ερ

20a3

∑

k∈Z

(

3(k − 2)E2
2,k sin 2σk + kE2

0,k sin 2σ ′′k
)

. (66)

10The reader may pay attention to the opposite signs appearing in the definitions of Ck and C′′k ,
which is often a source of mistakes in the transformation of the equations.
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Additionally, the time rate of the energy variation associated with the rotation of
the primary is Ẇrot = CΩΩ̇ , that is,

Ẇrot = −3GMmΩR2ερ

5a3

∑

k∈Z

∑

j+k∈Z
E2,kE2,k+j cos σk sin(j�+ σk) (67)

(see Eq. (52)), or, in the average,

< Ẇrot >= − 3GMmΩR2ερ

10a3

∑

k∈Z
E2

2,k sin 2σk. (68)

Some approximations were done in the above calculations which deserve
mention: (1) It is assumed the homogeneous sphere valueC = 2

5mR
2 and variations

of C due to the shape of the body are neglected. (2) In the averaging process, ν
is assumed to be constant. However, Ω has small forced librations which become
important near ν = 0 Therefore, the averages given above are only valid far from
ν = 0 and the non-averaged equations giving Ẇ and Ẇrot must be used if the motion
is close to a commensurability where the variation of Ω may affect the result.

If the two averages are added, there results:

< Ẇtotal >= − GMmR2ερ

20a3

∑

k∈Z

(

3(ν + kn)E2
2,k sin 2σk + knE2

0,k sin 2σ ′′k
)

.

(69)

If we consider that

sin 2σk = 2γ (ν + kn)

γ 2 + (ν + kn)2
, sin 2σ ′′k =

2γ kn

γ 2 + k2n2
, (70)

we may see that the result is always negative (there is a loss of the total mechanical
energy); the signs of sin 2σk and sin 2σ ′′k are compensated by the signs of the factors
(ν+ kn) and kn so that the sum of the terms inside the brackets is a sum of squares.

The modulus of < Ẇtotal > is the total energy dissipated inside the primary.
Figure 8 shows the dissipation in two cases in which |ν/n| = 2.5. In the faster

case, (ν > 0) the body rotation is much faster than the orbital motion; in the other,
(ν < 0) the rotation is slightly retrograde. The values were chosen so as to avoid
being close to the stationary solutions.

Figure 8 shows that the dissipation is dominated by two power laws. When γ 

n (gaseous bodies), the dissipation is inversely proportional to γ /n (In the right-
hand side part of the log-log plot the curve is a straight line with inclination equal
to −1); This is the same regime adopted by Darwin [11] in his theory in which the
dissipation is proportional to the frequency of the main harmonic. On the contrary,
in the left-hand side part of the plot, where γ 	 n (stiff bodies), the dissipation is
proportional to γ /n. One regime of this kind but with a less steep power law has
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Fig. 8 Left: Time rate of the energy dissipated in free rotating bodies in two cases: ν = −2.5n
(dashed/black) and ν = 2.5n (solid/blue) for eccentricities between 0.0 (thick line) and 0.3. In
the two cases, the results coincide for e = 0 and the dissipation increases with the eccentricity.
Right: Same in logarithmic scale to show the power laws ruling the dissipation in the two regimes:
γ 	 n (Efroimsky-Lainey) and γ 
 n (Darwin). The pseudo-synchronous solution is included in
the figure (dots/red) for comparison. Reprinted from [20] with permission

been first adopted by Efroimsky and Lainey [15] to represent the tidal lag of stiff
bodies.

10 Darwin’s Theory

The next three sections are devoted to Darwin’s [11] theory. This theory was
proposed 130 years ago, time enough to have it revisited by many authors ([1, 13,
14, 17, 23, 30, 32–34, 41], etc.) and to the proposition of many modifications. In this
text we follow mainly [33] and [23].

The starting point in Darwin’s theory is the static tide (see Eq. (17)):

δζ = R
∑

k∈Z

(

Ck sin2
̂θ cos(2ϕ̂+ (k− 2)�− 2ω)+ C ′′k (cos2

̂θ − 1

3
) cos k�

)

. (71)

The dynamic tide is assumed to be formed by the same harmonics as the static tide,
each delayed by a given phase delay, resp. εk and ε′′k . Besides, each term is assumed
to have an amplitude attenuation equal to the cosine of the corresponding phase
delay. Then

δζ = R
∑

k∈Z

(

Ck sin2
̂θ cos εk cos(2ϕ̂ + (k − 2)�− 2ω − εk)

+ C ′′k (cos2
̂θ − 1

3
) cos ε′′k cos(k�− ε′′k )

)

. (72)
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The comparison to the creep tide theory shows that the expression of the dynamic
tide in Darwin’s theory is the same as that of the creep tide theory, with the only
difference that now we have the given quantities εk and ε′′k instead of the parameters
σk and σ ′′k introduced by the integration of the creep equation. This is not just a
coincidence. Before proposing his theory for the orbital evolution of a companion
revolving about a tidally distorted primary [11], Darwin briefly considered a model
based on the Newtonian creep and obtained equations like those of the creep tide
theory. He abandoned that model, but adopted in his new model, the same formal
characteristics of his earlier studies.

This approximation, known as weak friction approximation [1], is often used.
There, not only the ad hoc lags εk and ε′′k are assumed small, as their cosines
appearing as attenuation of the harmonics amplitudes, are considered as equal to 1.

10.1 The Anelastic Tide

In the weak friction approximation, the arguments cos(2ϕ+· · ·−εk)may be Taylor
expanded about εk = 0 giving cos(2ϕ + · · · ) + εk sin(2ϕ + · · · ) + O(ε2

k). The
first term in this expansion is the corresponding term in the static (a.k.a. elastic)
tide, thoroughly studied in Sect. 4. The second (or linear) term is sometimes called
anelastic (or visco-elastic) tide. The deformation of the primary corresponding to
it is

δζanel = R
∑

k∈Z

(

εkCk sin2
̂θ sin(2ϕ̂ + (k − 2)�− 2ω)+ ε′′kC ′′k (cos2

̂θ − 1

3
) sin k�

)

.

(73)

It is usual to restrict the study of the tidal evolution to the anelastic tide (as
in [23]). As already discussed, the static tide does not affect the rotation of the
primary and the averaged variations of the semi-major axis and eccentricity of the
system. However, it needs to be considered when one is interested in knowing the
perturbations of the main angles of the system (e.g. the argument of pericenter—see
[23, Appendix B]).

One important point to emphasize with respect to the anelastic tide is that the
maximum of its leading term (k = 0) is not at ϕ = � + ω(modπ) as the leading
term of the static tide, but at ϕ = � + ω − 45◦(modπ). In other words: The vertex
of the anelastic tide is trailing the vertex of the static tide by ∼45◦.

10.2 Forces and Torques

The development of Darwin’s theory is like that presented above for the creep tide
theory and we do not need to remake every calculation. Because of the similarity of
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the expression of δζ in both theories, we may use the results of the earlier sections
and just replace the σ ’s by the corresponding ε’s, and, when convenient use the
weak friction approximation.

For instance, the forces and torques (see (50)–(51)) are:

F1k = −3GMmR2

5r4

(

3Ck cos(2v − (2− k)�− εk)− C ′′k cos(k�− ε′′k )
)

F2k = 0

F3k = −6GMmR2

5r4 Ck sin(2v − (2− k)�− εk),

(74)

M1k = 0

M2k = 6GMmR2

5r3
Ck sin(2v − (2− k)�− εk)

M3k = 0.

(75)

Low-order Darwin’s theory is friendly and the above equations can easily be
adapted to different models (ex: core/mantle bodies [26, 27], effects due to response
attenuation [23], etc.). High-order Darwin theories are easy to construct. However,
given our ignorance of the actual rheology of celestial bodies, the accuracy of
expansions to higher-orders may be illusory.

10.3 Ad Hoc Rheologies

Existing versions of Darwin’s theory may differ by the law they adopt for the body
response to tidal stresses. Some versions (e.g. [23, 33, 34]) do not define any a
priori rheology. The only followed rule is that the responses are the same when the
frequencies are equal. However, the most common case is to have one law relating
the lags and the frequencies fixed a priori. Some usual choices are

• The lags are proportional to the frequencies (Darwin)

In these theories the lags are proportional to the frequencies of the corre-
sponding radial oscillations of one point on the surface of the body, as given
by the static tide. The more important frequencies are given in Table 3 (N.B.
ϕ = ϕ0 + Ωt). They can be fixed a priori [11, 41] or have the linearity as
result of the choice of the dissipation laws [17, 32]. They are known as linear
or CTL (constant time lag) theories. They were thoroughly discussed in [23].
We notice that this is the same law of the creep tide theory (see Eq. (39)) when
we assume that the lags are small. The proportionality coefficient is 1/γ . The
difference between the two theories comes from the weak friction approximation
that imposes that the lags are small and thus limits the validity of the theory to
large γ ’s (i.e. to gaseous bodies. See Table 4).
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Fig. 9 Time evolution of the
geodetic tide lag when the
frequency of the semi-diurnal
tide crosses 0 and the tidal
bulge changes of side with
respect to the sub-companion
point (see Sect. 16). Reprinted
from [19] with permission

• The lags do not depend on the frequencies

In these theories all harmonics have equal lags and these lags do not change
during the evolution of the system. They are known as CPL (constant phase
lag) theories. They were used in the study of the evolution of Solar System
bodies. Because of the fast rotation of the planets, the frequencies ν − kn of
the main harmonics are almost the same. All terms are “semi-diurnal” and the
results are very similar to those obtained with CTL theories. They were also
used in the study of the Moon and other planetary satellites. In these cases, the
eccentricities are small and only the harmonics with |k| ≤ 1 matter. They have
equal frequencies (they are “monthly”. See Table 3).

The extension of CPL theories to exoplanets, where generally Ω 	 n, is
however not acceptable. Because of the slow rotation of the stars, the main
harmonics have, in this case, completely different periods.

• The lags follow an inverse power law (Efroimsky-Lainey)

In the case of stiff bodies, to be in agreement with the observed lags of the
seismic waves in the inner Earth, it has been suggested [15] the use of an inverse
power law εk ∼ cte[frequency]−αk with α chosen in the range 0.2–0.4. This
law, however, cannot be uniformly used since a pure inverse power law leads
to infinite values of ε0 when ν → 0. It has then to be combined with some
modifications when the semi-diurnal frequency ν approaches zero and, in the
actual applications [37], the time behavior of the lag ε0, when ν crosses the zero,
is the same shown in Fig. 9, with a fast, but continuous, sign reversion near ν = 0.

• Constant geometric lag (MacDonald)

In this very popular model [36], the whole equilibrium ellipsoid is delayed of
a constant geometric lag. This hypothesis greatly simplifies the algebra involved
in a theory, but is generally considered as unphysical [18, 55] because it does not
define a rheology. The Fourier decomposition of the equations shows that there
is no law relating lags and the frequencies of the harmonics. In other words,
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Fig. 10 Log-log plot of εk
vs. frequency as determined
from the laser ranging
observations of the Moon.
The blue straight lines show
several different power laws
passing by the mid-point of
the value of εk corresponding
to 1 year

-0.5-0.25 -1 +1(CTL)

no simple rheology is intrinsically fixed by MacDonald’s equations. The same is
true of the modification proposed in [50]. Another difficulty intrinsic to the choice
done by MacDonald is the value of the lag when the primary is oscillating around
the spin-orbit synchronism. In that case, it is necessary to switch the lag sign by
changing it at every crossing of ν = 0. The above-mentioned problems were
fixed by Williams and Efroimsky through a proper modification of the original
equations that transformed the original model into a CTL model [55].

One difficulty in assessing the right rheology is the absence of direct observa-
tions. The only body for which direct observations exist is the Moon. The laser
ranging observations of the Moon show that the quality factorQ (� 1/εk) is 38±4 at
1 month, 41±9 at 1 year,≥74 at 3 years and≥58 at 6 years [54], The corresponding
values of εk are plotted against the value of the frequencies in a log-log plot in
Fig. 10. The straight lines show several different power laws passing by the mid-
point of the value of εk corresponding to 1 year. The disagreement between them and
the observations is noteworthy. The best representation of the two better determined
values is obtained with the CPL model.

11 Darwin’s Theory: Tidal Evolution

The equations of tidal evolution in the frame of Darwin’s theory may be obtained
from those already discussed in the creep tide theory just replacing the σ ’s by the
corresponding ε’s, and using the weak friction approximation.
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11.1 Synchronization

The differential equation for the rotation of the primary, considering the anelastic
tide, is:

Ω̇ = −3GMερ

2a3

∑

k∈Z
E2,k

∑

j+k∈Z
εkE2,k+j cos j�, (76)

the average of which with respect to � is

< Ω̇ >= − 3GMερ

2a3

∑

k∈Z
εkE

2
2,k, (77)

or, substituting the actual values of the Cayley functions (see Table 2):

< Ω̇ >= − 3GMερ

8a3

(

4ε0 + e2(−20ε0 + ε1 + 49ε−1)+ · · ·
)

. (78)

The first remark concerning this equation is that the result depends on several
distinct lags. So, the continuation depends on the adopted rheology.

Let us assume that, in the neighborhood of the synchronisation, ε0 	 |ε1| (ε0 ∼
0) and ε−1 = −ε1 (terms with equal but opposite frequencies have opposite lags).
Hence < Ω̇ > ∝ (ε0 − 12e2ε1) �= 0, That is, the rotation cannot be synchronous,
unless the motion is circular. If we solve the equation < Ω̇ >= 0, we obtain

ε0 � 12e2ε1. (79)

If Darwin’s CTL rheology is adopted, ε0 ∝ 2Ω − 2n, ε1 ∝ 2Ω − n, and the latest
equation becomes

Ωstat � n(1+ 6e2). (80)

In Darwin’s theory, the only stationary solution is super-synchronous. This is the
same result shown in the top panels of Fig. 7 where the only stationary solution
appears at the right of the origin.

In Darwin’s theory, a synchronous solution cannot exist if e �= 0. So, in this case,
any stationary solution is either a super-synchronous solution or the tidal torque is
not the only one acting on the primary. It is often assumed that the primary has
a permanent axial asymmetry, and, at the equilibrium, the torque created by this
asymmetry compensates the tidal torque (see [23, sec 5.3]). Darwin’s theory is also
not able to produce the possibility of different stationary solutions as shown in the
bottom panel of Fig. 7 without assuming the action of additional torques.
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11.2 Dissipation

To obtain the energy tidally dissipated in the primary, we consider the contributions
of the orbit of the system and the rotation of the primary. They are obtained from
the corresponding equations in the creep tide theory. After substitution, adoption
of the weak friction approximation and averaging over �, we obtain for the secular
variation of the orbital energy

〈Ẇorb〉 = −GmMnR2ερ

10a3

∑

k∈Z

(

3(k − 2)E2
2,kεk + kE2

0,kε
′′
k

)

. (81)

and for the secular variation of the rotational energy of the primary,

〈Ẇrot〉 = −3GmMΩR2ερ

5a3

∑

k∈Z
E2

2,kεk. (82)

The sum of the two components gives

〈Ẇtot〉 = −GmMR2ερ

10a3

∑

k∈Z

(

6(Ω − n)E2
2,kεk + 3knE2

2,kεk + knE2
0,kε

′′
k

)

. (83)

In the CTL theories, εk and ε′′k are proportional to the frequencies 2Ω+ (k−2)n,
and kn, respectively, and the parenthesis of the above equation may be reduced to a
sum of squares. As expected, the final result for 〈Ẇtot〉 is negative (energy is lost).
This is the energy that the system is dissipating inside the primary.

Two approximations are important in the applications. One is the case of one
system in free rotation (i.e. far from the equilibrium) and small eccentricity. In this
case, the dissipation is dominated by the term corresponding to k = 0, that is,

〈Ẇtot〉k=0 = −3GmMR2ερ

5a3 (Ω − n)E2
2,0ε0. (84)

The other is the case close to the stationary rotation. In this case ε0 ∼ 0 and the
terms with |k| = 1 have also to be considered in the approximation. Since we have,
in the stationary solution, Ω − n = 6ne2, the dissipation is given by

〈Ẇtot〉stat = −21GmMR2ερne
2ε1

5a3 . (85)

(We remind that ε′′1 and ε′′−1 correspond to opposite frequencies and so ε′′−1 = −ε′′1 ;
besides, when Ω ∼ n, we similarly have ε−1 = −ε1 and also ε′′1 = ε1. See Table 3.)

These results show some classical properties: The dissipation in a free rotating
primary is controlled by ε0, while in a body whose rotation is trapped in the station-
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ary solution, it is controlled by ε1. The quality factors found in the applications are
thus not the same in both cases. We haveQ ∼ 1/ε0 in the first case, andQ ∼ 1/ε1 in
the second case. The other important property is that the dissipation is proportional
to the lags; If we assume that the lags are proportional to the frequencies and plot
the dissipation in a log-log plot, as it was done in the creep tide theory (Fig. 8 right),
we get just the right-hand side straight line going downwards; the left-hand branch
characteristic of the Maxwell bodies with an inverted behavior does not appear. We
remind that because of the weak friction approximation, Darwin’s theory is only
valid for frequencies much smaller than γ .

11.3 Orbital Evolution

We present in this section the average variation of the semi-major axis and
eccentricity as given by Darwin’s theory. The equations for the variation of
the angular elements (longitude at epoch, argument of pericenter, and, in non-
orthogonal theories, also the longitude of the node) are not given as these quantities
are never considered. Their calculation follows from the variational equations of
Lagrange in the same way as the others. The only difference to keep in mind is
that the contribution of the static tide to these variations is important and even more
important than the contribution of the anelastic tide.

After introduction of the ε’s, adoption of the weak friction approximation and
averaging over �, we obtain

〈ȧ〉 = −nR
2ερ

5a

∑

k∈Z

(

3(k − 2)E2
2,kεk + kE2

0,kε
′′
k

)

. (86)

If we keep only the leading terms (|k| ≤ 1) and make ε′′−1 = −ε′′1 :

〈ȧ〉 = nR2ερ

5a

(

6E2
2,0ε0 + 3E2

2,1ε1 + 9E2
2,−1ε−1 − 2E2

0,1ε
′′
1

)

. (87)

or, considering the actual expression of the Cayley functions (see Table 2),

〈ȧ〉 = 3nR2ερ

10a

(

4ε0 − e2(20ε0 − 1

2
ε1 − 147

2
ε−1 + 3ε′′1)

)

. (88)

The averaged variation of the eccentricity, in Darwin’s theory, is obtained in a
similar way:

〈ė〉 = −3nR2ερ

10a2e

∑

k∈Z

(

2
√

1− e2 + (k − 2)(1− e2)
)

E2
2,kεk
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− nR2ερ

10a2e

∑

k∈Z
k(1− e2)E2

0,kε
′′
k . (89)

The term depending on εz does not appear since kδ0,k = 0. If we note that
(

2
√

1− e2 + (k − 2)(1− e2)
)

= k+ (1− k)e2 +O(e4), we obtain for the leading
terms

〈ė〉 = −nR
2ερ

10a2e

∑

k∈Z

(

3
[

k + (1− k)e2]E2
2,kεk + k(1− e2)E2

0,kε
′′
k

)

(90)

or, keeping only terms with |k| ≤ 1,

〈ė〉 = −nR
2ερ

10a2e

(

3e2E2
2,0ε0 + 3E2

2,1ε1 − 3E2
2,−1ε−1 + 2E2

0,1ε
′′
1

)

. (91)

Finally, considering the actual expression of the Cayley functions (see Table 2), we
obtain [30]

〈ė〉 = −3nR2ερ

20a2
e
(

2ε0 + 1

2
ε1 − 49

2
ε−1 + 3ε′′1

)

. (92)

The continuation of these derivations depends on the chosen rheology.

12 Evolution Equations in the CTL Model

We give below the orbital evolution results when the lags are assumed to be
proportional to the frequencies of the respective tide harmonics (see Table 3) with τ
as coefficient of proportionality (or time lag).

〈ȧ〉 = 12nR2ερ

5a

(

Ω(1+ 27

2
e2)− n(1+ 23e2)

)

τ. (93)

〈ė〉 = 3nR2ερ

5a2 e(11Ω − 18n)τ. (94)

These equations are the same found in several papers on tidal friction using
Hut’s formulas (e.g. [12, 38]). It is worth mentioning that Hut’s results [32] are
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not given by expansions but by closed expressions. By construction, they must also
be equivalent to the results of the creep tide theory for γ 
 n with τ = 1/γ . The
basic formulation of the two theories is the same when γ 
 n. Indeed, in this case
we may apply the weak friction approximation for σk, σ ′′k like it was done for εk, ε′′k
and the equations of the two theories become the same differing just by the used
notation for the lag and the Taylor expansion about σk = σ ′′k = 0.

One last remark concerns theories in which the radial terms arising from the tidal
contraction of the polar axis are neglected. In these cases, the terms with lags ε′′k are
absent and the eccentricity dependent coefficients of n in the above equations are
181/8 (instead of 23) and 69/4 (instead of 18).

12.1 Fast-Rotating Planets

If the primaries are fast-rotating planets, as Jupiter, for example, and the companion
one satellite, we have n 	 Ω and we may neglect the contribution of the term
proportional to n in the above equations. There results:

〈ȧ〉 = 12nR2Ωερ

5a
(1+ 27

2
e2)τ, (95)

〈ė〉 = 33nR2Ωερ

5a2 eτ. (96)

These equations are found in a great deal of applications. We find it even in
the early applications of the tidal theory to exoplanetary systems, but this was not
correct because the hypothesis n	 Ω is not satisfied in systems where the rotation
of the star is slow (see below).

12.2 Slow-Rotating Stars

If the primaries are slow-rotating stars hosting close-in exoplanets, we haveΩ 	 n

and we may neglect the contribution of the term proportional to Ω in the above
equations.

〈ȧ〉 = −12n2R2ερ

5a
(1+ 23e2)τ, (97)

〈ė〉 = −54n2R2ερ

5a2
eτ. (98)
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The important point to stress here, as compared to the case of Sect. 12.1, is the
change of sign in both equations. When the central body is rotating fast, the tide
in the primary result in the companion moving away from the primary in an orbit
of increasing eccentricity. However, when the central body is rotating slowly, as
evolved host stars, the tide in the primary circularizes the orbit of the companion
and makes it to fall over the primary.

It is worth emphasizing that the rotation of the central star of a planetary system
may suffer a great variation, being initially very fast and being later braked due to its
activity [5, 25]. Besides, the discovered exoplanetary systems show stars with many
different rotational states. Therefore, in general studies, the approximation given in
this section may be insufficient and the general formulas of Sect. 12 must be used.

12.3 Hot Jupiters

Evolution studies show that close-in hot Jupiters tend to the stationary rotation in
relatively short times (some Myr). In Darwin’s theory, they are driven to a super-
synchronous rotation with a rotation velocity Ω = n(1 + 6e2). If this value is
introduced in the above general equations, we obtain:

〈ȧ〉 = −42n2R2ερ

5a
e2τ. (99)

〈ė〉 = −21n2R2ερ

5a2 eτ. (100)

The decay of the orbit due to the tide in the almost synchronous hot Jupiter is
proportional to the square of the eccentricity, so its contribution should stop once
the orbit is circularized. These formulas are sometimes used to study the tidal decay
of super Earths and of planetary satellites. However, these bodies are stiff and are
not expected to have a CTL rheology (see Sect. 10.3).

13 Evolution Equations in the CPL Model

A great deal of investigations of the tidal evolution of planetary satellites has been
done using a couple of equations taken from the CPL (constant phase lag) model
[45, 56]

In the CPL model, when the primary is a fast-rotating planet, all lags are
taken with the same value as ε0. In this case, all sectorial terms are semi-diurnal
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(see Table 3) and the result will not differ very much from the corresponding result
in the CTL model when Ω 
 n. However, the radial term (whose lag is ε′′1) is
monthly. Since it is also taken equal to ε0, we get a similar formula but with different
O(e2) contributions: 51/4 instead of 54/4 in the equation for 〈ȧ〉 and 19/4 instead of
22/4 in the equation for 〈ė〉 (In the comparison of the two models’ formulas, remind
that in the CTL model, in this case, ε0 ∼ 2Ωτ ).

〈ȧ〉 = 6nR2ερ

5a
(1+ 51

4
e2)ε0. (101)

〈ė〉 = 3nR2ερ

5a2
(
19

4
e)ε0. (102)

In the CPL model, in the case of an almost synchronous companion, the lag ε0 is
taken at the super-synchronous stationary value defined by Eq. (79) and the others
have same modulus (they are monthly), but the frequency of the term k = −1 is
negative and so ε−1 may be taken as −ε1 [30]. Hence,

〈ȧ〉 = −6nR2ερ

5a
(7e2)ε1. (103)

〈ė〉 = −3nR2ερ

5a2 (7e)ε1. (104)

13.1 Cumulative Orbital Variations Due to Tides in Both
Bodies

In general, we must consider, simultaneously, the variations of the semi-major axis
and eccentricity due to the tides raised in both the primary and the companion. For
the sake of writing the two contributions in only one equation, we change to more
universal notations in the following way. In the equations giving the variations due
to the tides in the more massive central body, we make the substitutions εj = εjA,
m = mA, M = mB , and R = RA In the equations giving the variations due to the
tides in the almost synchronous smaller body, we make the substitutions εj = εjB ,
m = mB , M = mA and R = RB . We then introduce the factor [45, 56]

D =
(mA

mB

)2(RB

RA

)5
(

ε1B

ε0A

)

. (105)

where we have preferred to use the ratio of lags ε1B/ε0A instead of the equivalent
ratio of quality factors QA/QB , as generally done.
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From the above equations, we obtain:

〈ȧ〉 = 9nmBR
5
Aε0A

2mAa4

(

1+ 51

4
e2 − 7De2

)

, (106)

〈ė〉 = 9nmBR
5
Aε0A

4mAa5

(19

4
e − 7De

)

. (107)

If the same kind of combination is done with the corresponding equations in the
CTL model, the results are very similar to those given above, We just have 54/4
instead of 51/4 in the equation for 〈ȧ〉 and 22/4 instead of 19/4 in the equation for
〈ė〉. This similarity validates the use of the CTL model even on problems where
the lags are better represented as frequency independent (see Fig. 10), at least for
times short enough to allow us to consider that the frequencies do not change. It
also explains the non-existence of big differences between results of the CTL and
CPL models for limited times [2].

When the full synchronization (Ω = n) is assumed, the term 7De2 in the CPL-
model equation for 〈ȧ〉 appears sometimes replaced by 19De2. However, in the
frame of Darwin’s theory synchronous solutions may only exist when e ∼ 0.

14 Mignard’s Theory

Mignard’s theory [41] is an alternative to Darwin’s theory constructed in terms of
closed expressions with no Fourier expansions at all. It considers the fictitious three-
body arrangement primary-companion-Diana, with Diana being responsible for the
deformation of the primary and the deformed primary is interacting gravitationally
with the companion (see Fig. 5). Let r, r∗ be the position vectors of the companion
and of Diana, respectively, referred to the center of the primary. The other notations
are the same as before.

The static tide of the primary is a Jeans prolate ellipsoid (the contribution
of the rotation to the polar oblateness is not considered in [41]), The disturbing
gravitational potential of the primary due to the tidal deformation, in a generic
point P(r) can be obtained from Eq. (22). Taking into account the definitions of
the moments of inertia A,B (C = B > A) and the expressions of a, b (c = b < a)
in terms of εJ , we obtain

U2(r) = −GmR
2

5r3 εJ (3 cos2 Ψ − 1), (108)

where Ψ is the angle between the directions of r and r∗ (see Fig. 5), or

U2(r) = −3GMR5

4r5r∗5 (3(r · r∗)2 − r2r∗2). (109)
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Note that the Jeans prolateness εJ introduces in this expression, because of its
definition (Eq. (10)), the position vector of Diana, r∗, and its modulus r∗.

To consider the non-instantaneous response of the primary to the tidal potential
raised by Diana, Mignard substitutes, in the above equation, Diana’s radius vector
r∗ by the delayed vector

r∗1 = r∗ − v∗Δt +�Δt × r∗

where � is the rotational velocity vector of the primary, v∗ is Diana’s velocity,
and Δt is a time delay. In the applications to the Earth tide, Mignard adopted Δt =
10 min, so that his results could reproduce the current variation of the Earth’s length-
of-the-day. However, the resulting phase lag is much larger than Earth’s tidal lag as
given by modern observations (see Sect. 16).

After the substitution r∗ → r∗1, U2 is transformed into U2 + δU , where

δU(r) = 9GMR5

2r5r∗5
Δt

(

(r · r∗)
(

r∗ · (�× r)+ r · v∗
)

− (r∗ · v∗)
2r∗2

(

5(r · r∗)2 − r2r∗2
)

)

. (110)

We may add here the same comments done when using potentials in the creep
tide theory: (a) Eq. (110) is enough to study the rotational and orbital evolution
of the system since the contribution of the static tide is ineffective in this respect
(see Sect. 4); (b) δU(r) is a time dependent potential, the dependence on t being
introduced in the potential through the radius vector and velocity of Diana; (c) The
disturbing force acting on the companion is δF = M∇rδU (r∗, v∗ are treated as
constants in the calculation of the gradient); (d) Once the gradient is calculated, we
identify Diana with the companion making r∗ = r and v∗ = v. We thus obtain

δF = −9GM2R5

2r10 Δt
(

2(r · v)r+ r2(r×�+ v)
)

(111)

and the torque

M = r× δF = −9GM2R5

2r8 Δt
(

(r ·�)r− r2�+ r× v
)

. (112)

It is worth mentioning that after [41], other theories were proposed [17, 32]
leading to the same closed expression for the disturbing force, despite their very
different formulations. We also mention that an expansion of this force to third order
in eccentricity and inclination leads to the same series expansions used in Darwin’s
CTL model (when the rotational contribution to εz is neglected).
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The closed expression for δF may be simply used as an additional disturbing
force in N-body models allowing us to study systems more complex than the two-
body model usual in tidal evolution studies (see next section). One difficulty in this
case is the smallness of the tidal forces which makes the numerical integration of
the equations for the variation of the coordinates too slow. One alternative in these
applications is to artificially increase the time delay Δt [22, 49]. This scaling is
however a non-rigorous procedure and the results must be carefully checked against
some exact simulations to guarantee that the errors thus introduced remain at an
acceptable level.

15 Three-Body Models: Transfer of Angular Momentum

Mignard’s force has been included in an N-body code used to study the secular
behavior of one system of two close-in planets in orbit around a Sun-like star. The
planets are a hot mini-Neptune and a more massive outer planet. The parameters of
the CoRoT 7 system were used. The mini-Neptune is very close to the star (as the
super-Earth CoRoT 7b). The outer Jupiter (as CoRoT 7c), is also close to the planet,
but not so close, so that its tidal interactions with the star may be neglected [49]. A
scaling factor 100 was used to allow the study of a great number of cases.

Figure 11 shows that the orbit of the inner planet is circularized due to the tides
raised by the star on the planet (the tides raised on the star are negligible) and fall
toward the star. The fall however stops when the orbit becomes circular (as expected
from Darwin’s theory. See Eq. (99)). The outer planet, while far enough and not in
tidal interaction with the star, is also affected by the tidal interaction of the inner
planet and the star, and its eccentricity decreases. The decrease almost stops when
the orbit of the inner planet becomes circular. Figure 12 helps to understand the
role of the outer planet in the evolution of the innermost one. It shows the time
evolution of the inner planet semi-major axis (solid curve in the left panel) and
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Fig. 11 Long-term evolution of semi-major axes and eccentricities in a Sun—mini Neptune—hot
Jupiter system. Time scaling = 100
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which the inner planet is the only planet is also shown. Adapted from [49] with permission

the two eccentricities (right panel) over the first 50 Myr. Due to the large mass of
the outer planet, e2 is almost constant over the time interval shown in this figure.
On the contrary, e1 initially suffers large oscillations, but they are quickly damped
to the so-called first equilibrium eccentricity [39]. The trapping in this eccentric
stationary solution delays the orbital circularization and accelerates the fall toward
the star [49]. The same graph shows the variation of e1 in the case of a single-planet
system, when the interactions with one outer planet do not exist. The presence of
the outer planet increases significantly the time needed to have the inner planet orbit
circularized by the tidal effects. Moreover, in the single-planet case, the semi-major
axis a1 just decreases slightly, but stops decreasing after circularization.

16 The Figure of the Tidally Deformed Primary

The deformed shape of the primary due to the dynamic tide is given by Eq. (37).
After the transient phase, that is, for γ t 
 1, only the forced terms matter and the
shape is dominated by the semi-diurnal component

1

2
RερE2,k sin2

̂θ cos σ0 cos(2ϕ̂ − 2�− 2ω − σ0) (113)

whose maximum is reached when the argument of the trigonometric term is 0, that
is, when the angle between the vertex of the primary’s figure to the sub-companion
point (ϕ̂− �−ω) is 1

2σ0. We remind that the angle σ0, univocally determined by the
integration of the creep equation, is not necessarily small. It is

σ0 = arctan
ν

γ
. (114)



44 S. Ferraz-Mello

In the case of a perfect fluid (static tide), the tide highest point stays aligned with the
mean direction of the tide raising body (the companion). However, in the real case
of a rocky planet, γ 	 ν and σ0 will approach 90◦. This result is in contradiction
with the very small measured geodetic lag of the Earth’s bodily semi-diurnal tide
(0.20 ± 0.05◦) [47]. In order to conciliate the theory and the Earth’s measured
tidal lag, we have to assume that the actual tide is not restricted to the dynamic
component arising from the creep equation, but has also an elastic component [19].
This additional elastic component is defined in each point by its height over the
sphere and is given by

δζel(ϕ̂,̂θ) = λδρ(ϕ̂,̂θ), (115)

where ρ is the radius vector of the static tide (equilibrium surface) and λ is a quantity
related to the maximum height of the tide (see Sect. 10.2). For the Earth, for instance,
λ ∼ 0.2, which is the ratio of the observed maximum height of the lunar tide (26 cm
cf. [40]) and the maximum height of the static tide (1.34 m cf. Table 1)

The sum of the (local) heights of the added elastic tide and of the main term of
the creep tide is (in the circular approximation):

H = 1

2
Rερ

(

λ cos(2ϕ̂ − 2�− 2ω)+ cos σ0 cos(2ϕ̂ − 2�− 2ω − σ0)
)

, (116)

where, for the sake of simplicity, we have set E2,0(e) = 1, sin̂θ = 1 (equator), and
restricted the result to the dominant semi-diurnal component.

If we introduce, in the creep differential equation (26), a new variable describing
the above composition of the dynamic creep tide and the added elastic tide,

Z = ζ + λδρ, (117)

that equation becomes

Ż + γZ = (1+ λ)γρ + λρ̇ − γ λR. (118)

which is an equation with the same characteristics of a Maxwell model and which
is reduced to the creep model when λ = 0.

We remind that the elastic tide is torque free and conservative (see Sect. 4).11

Therefore, the addition to the dynamic tide derived from the creep equation of
one component λρ proportional to the elastic tide does not affect the orbital and

11The results of Sect. 4 are consistent with those obtained with the creep tide theory (or with
Darwin’s theory) when all lags are made equal to zero. Indeed, the expressions for ȧ, ė, Ẇ of
Sects. 8 and 9 are trigonometric series in the arguments sin(j� + σk) and sin(j� + σ ′′k ), which
average to zero when the lags vanish. The vanishing of the torque when the σk vanish is less
obvious. However, the auxiliary expansions given in the Online Supplement to [20], allow one to
see that

∑

k∈Z E2,k sin
(

2v − (2− k)�
) = 0, and so that M2 = 0 when the lags vanish.
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Fig. 13 Left: Geodetic lag ε0 of the semi-diurnal tide as a function of σ0. Right: Maximum height
of the composite tide in units 1

2Rερ . The blue lines correspond to λ = 0.2 (Earth). Reprinted from
[19] with permission

rotational evolution of the system. The orbital elements (a, e) will indeed have an
additional variation, but with zero averages and not affecting the evolution.

16.1 The Geodetic Lag

The maximum tide height (the maximum of H ) is, now, no longer reached at ϕ̂ −
�− ω = 1

2σ0, as for the creep tide, but at ϕ̂ − �− ω = 1
2ε0, where

ε0 = arctan
sin 2σ0

1+ 2λ+ cos 2σ0
. (119)

This function is shown in Fig. 13 (left). We see that, as far as λ �= 0, ε0 tends to 0
when σ0 tends to π

2 , that is, when γ 	 n.

16.2 The Maximum Height of the Tide

The maximum height of the composite tide (once the transient phase is over) is a
function of the semi-diurnal frequency and the relaxation factor. It is the value of
the functionH at its maximum:

Hmax = 1

2
Rερ

√

λ2 + (1+ 2λ) cos2 σ0. (120)

The relative value of the maximum height of the actual tide is shown in Fig. 13
(right). In that figure, the unit is the maximum height of the static tide ( 1

2Rερ). One
may note that when σ0 → π/2 (i.e. γ 	 ν), the height of the creep tide tends to
zero and the maximum height of the geodetic tide is the maximum height of the
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added elastic tide: ( 1
2λRερ). We emphasize that the frequency-dependent height of

the tide was not considered in the majority of modern tide theories ([33, 34, 36, 41],
etc.). In those theories, the Love theorem was used to calculate the potential of the
tidally deformed body, and no attention was paid to the shape of the primary.

17 Dynamical Tide: The Maxwell Body Model

A theory of the dynamic tide virtually equivalent to the creep tide theory may be
built using, instead of the creep differential equation (26), the constitutive equation
of one Maxwell body [8] (Fig. 14):

Ż + γZ = γρ + λρ̇. (121)

This equation defines the relationship between the radii vectors Z = Z(̂θ, ϕ̂, t) of
the points in the actual surface of the body and the radii vectors ρ = ρ(̂θ, ϕ̂, t), of
the corresponding points in the surface of the instantaneous static tide. The angles
̂θ, ϕ̂ are the co-latitude and longitude of the surface points. If we introduce the
variable ζ using the same transformation used in the introduction of the geodetic
lag (Eq. (117)), i.e. ζ = Z − λδρ, the above equation becomes:

ζ̇ + γ ζ = (1− λ)γρ + λγR. (122)

This equation shows the virtual equivalence of the creep tide and the Maxwell
viscoelastic model [21]. The two theories are however different because of the factor
(1 − λ) that multiplies γρ, and the constant λγR. If the tidal evolution theory is
constructed using this equation, the results are the same that have been obtained in
the Sects. 5–9, with just the factor (1 − λ) multiplying all results. The additional
constant λγR does not influence the solution because of the normalization to
the mean radius of the body implicit in the construction of the potential. The
transformation of the results thus obtained to those given by Correia et al. [8] is
done making

γ = 1

τ
and λ = τe

τ
,

Fig. 14 String-dashpot
model of a Maxwell body
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where τ is the main relaxation time (inverse of the relaxation factor) and τe is
the elastic relaxation time. It is worth noting that λ < 1. If λ = 1, the radial
velocities of the two surfaces are equal when they coincide, and we have just a
continuous damping to the equilibrium. It would be necessary to adopt a nonlinear
approximation to obtain the tidal harmonics.

If we change the boundary conditions used in the study of the Navier-Stokes
equation (Sect. 5.1) using the same transformation as above, Z = ζ + λδρ, the
first boundary condition used there becomes Vr(ρ) = λρ̇ (instead of Vr(ρ) = 0).
Consequently, the constant C1 becomes C1 = wρ

6η + λ
ρ̇
ρ

, (instead of C1 = wρ
6η ) and

the linear approximation of the Navier-Stokes equation becomes Vr(Z) = γ (ρ −
Z)+λρ̇, which is nothing but Eq. (121). The Maxwell constitutive equation is thus, it
also, an approximated solution of the Navier-Stokes equation of a laminar flow (low
Reynolds number) transversal to the surface. But with a set of boundary conditions
forcing the surface of the dynamical tide to have a radial velocity dependent on that
of the static tide, when both surfaces coincide.

18 Summary

This series of lectures was devoted to a synthetic presentation of planetary tide
theories in the simple case of a homogeneous primary rotating around an axis
orthogonal to the orbital plane of the companion. These restrictions are important,
but planetary tide theories are complex, and to present them in an approximated, but
simple setting, may be more adequate for a proper discussion of the main concepts
without the complex algebraic developments of the full theory.

The theories considered here belong to a group of theories in which the starting
point of the study is the figure of the tidally deformed primary and the orbital
and rotational evolution are derived using standard physical laws. The central
theory in this presentation is the creep tide theory, a first-principles theory where
the tidal deformation of the body is calculated using the classical Navier-Stokes
equation with boundary conditions such that the radial velocity of the dynamical
tide vanishes when the deformations due to the dynamical tide and to the static
tide coincide and the equation is simplified by the assumption that this motion
is a low-Reynolds-number flow (laminar flows with no turbulence). The dynamic
figure of the tidally deformed body is an ellipsoid delayed with respect to the
motion of the companion. The delay, however, is not arbitrary, but determined
by that equation. The pure hydrodynamical nature of the creep equation allows
us to obtain a complete description of the orbital and rotational evolution and of
the energy dissipation in the primary, but the results derived using it for the shape
of free rotating stiff bodies, does not seem correct. In the only case for which a
measurement is available, it gives a very different result (see Sect. 16). In order to
obtain both the tidal evolution and the dynamic figure of the Earth, it is necessary
to add an elastic component that converts the creep tide into a Maxwell model. This
addition can be done either by adding a correction to the solution of the creep tide
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model or by using a Maxwell-like model ab initio. In both cases the tidal evolution
is the same, the only difference being a factor (1 − λ) that appears multiplying the
results in the viscoelastic Maxwell model.

The Darwin’s theory was also considered at length in these lectures. The
difference between it and the hydrodynamical theories lies on the nature of the
lags. While in the hydrodynamical theories, the lags are univocally determined
by the solution of one first-order differential equation, in Darwin theories they
are considered as arbitrary quantities introduced ad-hoc in the arguments of the
equations of the static tide. From the formal point of view, the tidal evolution
results obtained with the creep tide theory may be used to write the results of
the Darwin theories, without having to derive every step of the theory again. It
is enough to substitute the hydrodynamical lags σk by the arbitrary quantities εk
and adopt the weak friction approximation hypothesis after which the εk are small
quantities. The various rheologies used in Darwin theories are discussed, with an
emphasis on the CTL (constant time lag) theories, in which the arbitrary lags are
assumed proportional to the frequency of the considered tidal harmonic, and the
CPL (constant phase lag) theories, where the lags are assumed to be frequency-
independent. The CTL theories are equivalent to the creep tide theory when 1/γ →
0 (or γ 
 n). A special section is also devoted to Mignard’s formulation of the CTL
theories in closed form and its applications.
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Perturbation Methods
in Celestial Mechanics

Antonio Giorgilli

The real trouble with this world of ours is not that it is an
unreasonable world, nor even that it is a reasonable one. The
commonest kind of trouble is that it is nearly reasonable, but not
quite. Life is not an illogicality; yet it is a trap for logicians. It
looks just a little more mathematical and regular than it is; its
exactitude is obvious, but its inexactitude is hidden; its wildness
lies in wait. (G. K. Chesterton)

Abstract A concise, not too technical account of the main results of perturbation
theory is presented, paying particular attention to the mathematical development of
the last 60 years, with the work of Kolmogorov on one hand and of Nekhoroshev
on the other hand. The main theorems are recalled with the aim of providing some
insight on the guiding ideas, but omitting most details of the proofs that can be found
in the existing literature.

Keywords Perturbation theory · KAM theory · Nekhoroshev theory ·
Exponential stability · Superexponential stability

1 Ouverture

The present lectures are concerned with some fundamental results in the framework
of perturbation theory, with particular emphasis on the long-standing problem of
stability of the Solar System.

The ancient astronomy, starting (according to our current knowledge) with the
tables collected by Caldean and Egyptian astronomers, has been based on the
periodic character of the planetary motions. The same concept lies at the very basis
of Greek astronomy and of the clever schemes of eccentrics, epicycles and equants
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that we know mainly through the work of Ptolemy. In modern terms, the guiding
idea of Greek astronomy is: the motion of the planets is a composition of periods,
which can be empirically determined through observations.

The development of astronomy after Newton makes wide use of the concept of
quasiperiodic motions; that is, epicycles represented in the modern form of Fourier
series as introduced by Lagrange in the eighteenth century. The actual difference is
that the periods can be calculated on the basis of the theory of gravitation.

Newton himself pointed out that the theory of gravitation raises the fundamental
problem of stability of the Solar System: the mutual attraction acting on a long
time might modify the orbits of the planets until the whole system needs a restora-
tion [57]. On the other hand, after Poincaré’s work we know that the dynamics of
the planetary system is actually an elaborated and intriguing combination of order
and chaos. The problem of stability of our Solar System, as well as of the extrasolar
system that we are discovering, remains open.

1.1 Apology

My plan is to give a concise, not too technical account of the main results of
perturbation theory, paying particular attention to the mathematical development
of the last 60 years, with the work of Kolmogorov on one hand and of Nekhoroshev
on the other hand. I should stress that the literature on the arguments discussed
here is now so wide that a detailed account is actually unpractical, and a complete
list of references would exhaust the available space. Therefore I will put severe
restrictions on my approach. First, I will present a personal view of the mathematical
development of some crucial results. It is unavoidably incomplete, since it reflects
my personal limited experience. I present some theorems, but I will avoid most
technical elements of the proofs, trying rather to put the accent on the guiding
ideas—selected, as I have already said, on the basis of my experience. Detailed
proofs may be found in the references, or elsewhere. Second, I will pay particular
attention to explicit algorithms that may be actually worked out, possibly using
appropriate tools of algebraic manipulation. This is a strong limit due to my personal
belief that if one wants to exploit a mathematical model of our physical world
then he is bound to make his calculation feasible and to extend his work until an
applicable result is found. In this spirit, an existence theorem is a beautiful and
often priceless step, but one should not stop there.

1.2 The Dawn of Perturbation Theory

It is known that Kepler discovered the elliptic form of planetary orbits while working
out the calculation of the Tabulæ Rudolphinæ. But he also wanted to compare the
results of his calculations with observations performed in the past, and available to
him. He discovered deviations from the elliptic motions which were particularly
evident for Jupiter and Saturn (see [44]). In the introduction to the Tabulæ he
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Fig. 1 Comparison between the calculation via the Rudolphine tables and the observations by
Regiomontanus (Johannes Müller der Könisberg) and Bernhard Walther, between 1461 and 1514.
(figure from [22])

promised to explain in a booklet how the elliptic orbits should be corrected by
introducing secular equations, namely periodic changes in the elements of the
orbits to be determined through observations over many centuries. He also wrote
a preliminary draft of the booklet, that was never published until 1860, when it was
included in the collection of Kepler’s works [36].

A synthesis of Kepler’s calculations concerning Jupiter and Saturn is reported
in Fig. 1. The difference between the observed longitude and the calculated one is
represented. The data exhibit a wide dispersion, due to errors in visual observations,
but it is evident that Jupiter seems to accelerate, while Saturn seems to slow down.
Later this phenomenon has been named the great inequality. Kepler could not figure
out the secular equations to be introduced. He only mentioned in letters to some
friends that he had discovered the deviation: the contents of his note remained
unknown for a couple of centuries. Later, the increase both in number and in
precision of astronomical observations confirmed the phenomenon, thus opening
a challenging question.

A first attempt to identify a secular correction was made by Halley. Pragmatically,
he introduced in his new tables a correction of the semimajor axes of Jupiter and
Saturn which was linear in time, thus claiming that he had been able to make precise
predictions over an interval of 6000 years before and after 1700. After Halley, the
adjective “secular” was intended to mean “linear in time”.

A few decades later the question was raised whether the theory of gravitation
of Newton could explain the observed deviation. After some attempts due to
Euler, who had the great merit of creating the bases of perturbation theory,
Lagrange succeeded in developing his theory of secular motions for the nodes
of the planetary orbits [38, 40, 41], soon after extended also to eccentricities by
Laplace [16]. Meanwhile, Lagrange had announced his proof of stability of the
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planetary system [39]: the time evolution of the semimajor axes does not contain
secular terms in the approximation of the first order in the masses. Thus, secular
terms in Halley’s sense could be excluded for the evolution of the semimajor axes. In
1786 Laplace succeeded in answering the question concerning the great inequality
of Jupiter and Saturn, showing that it is due to the closeness of the periods to the 5:2
resonance [17]. The skeleton of perturbation theory was well established.

Most of the work of astronomers during the nineteenth century has been devoted
to proving the complete validity of the stability result of Lagrange. It is convenient
to refer to the classification of terms in perturbation expansions due to Poincaré [59].
One may find three different kinds of terms: pure trigonometric terms of the form
exp(iωt), so that the time appears as argument of a trigonometric function; pure
secular terms, with powers of time such as ts ; mixed secular terms ts exp(iωt),
namely trigonometric terms with powers of time as coefficients. The question may
be formulated as: prove that there are neither pure nor mixed secular terms in the
evolution of the semimajor axes, at every order in the masses.

The dream was soon dissolved, for in 1809 Poisson found that at second order
in the masses there are mixed secular terms, but no pure secular terms [60]. One
was left with the question whether pure secular terms could appear at higher order.
A few such terms were found at third order by Spiru Haretu [32, 33]. A few years
later methods that could produce pure trigonometric expansion were developed by
Lindstedt [45] and Gyldén [31].

1.3 The Hurricane

In 1885 the Swedish Academy announced a prize for the 60-th birthday of King
Oscar. One of the questions proposed can be stated in short as: Write the solutions
of the planetary problem as series uniformly convergent for all times (possibly
pure trigonometric series). The prize was awarded to Poincaré who actually found
(among a lot of new results) that there are plenty of solutions which are not
quasiperiodic, and so can not be written as trigonometric expansion. In particular
he pointed out the existence of asymptotic solutions, and in a corrected version
of his memoir he discovered the existence of homoclinic orbits, which generate a
chaotic behaviour.

A few years later Poincaré published his treatise Les méthodes nouvelles de le
Mécanique Céleste [58]. In sect. 13 he formulates the general problem of dynamics:

Investigate the dynamics of a canonical system with Hamiltonian

H(p, q) = H0(p)+ εH1(p, q)+ ε2H2(p, q)+ . . . , p ∈ G ⊂ R
n, q ∈ T

n

where p ∈ G ⊂ R
n, an open subset, and q ∈ T

n are action–angle variables. The
Hamiltonian is assumed to be holomorphic in p, q and expanded in convergent
power series for small ε.

This is the problem that I will discuss in the present lectures.
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2 Integrability and Non Integrability

The discussion may start with the classical concept of integrability by quadratures:
the solution of a system of differential equations should be written in terms of
algebraic operations, including inversion of functions, and of integrals of known
functions.

Nowadays it is more common to restrict attention to systems that can be written
in action-angle variables, say I, ϕ, as in the general problem of dynamics, and with
a Hamiltonian H(I) independent of the angles.

2.1 The Theorems of Liouville and of Arnold–Jost

A general framework for integrability has been provided by Liouville [46] and
elaborated in a more geometric form by Arnold [4] and Jost [35]. One needs to
introduce the concept of complete involution system. Two functions f (p, q) and
g(p, q) are said to be in involution in case their Poisson bracket satisfies {f, g} = 0.
A complete involution system on a 2n-dimensional phase space (n degrees of
freedom) is a set �1(p, q), . . . ,�n(p, q) of n functions which are independent and
in involution.

Theorem 1 Let the Hamiltonian system H(q, p) possess a complete involution
system of first integrals�1(q, p) . . . ,�n(q, p). Then the following statements hold
true.

(i) The system is integrable by quadratures (Liouville [46]).
(ii) Let the invariant manifold defined by �1(p, q) = c1, . . . ,�n(q, p) = cn

possess a compact and connected component �c. Then in a neighbourhood
of �c there are action-angle variables I, ϕ such that the Hamiltonian depends
only on the actions I , i.e., H = H(I) (Arnold [4] and Jost [35]).

The dynamics of an integrable system H = H(I) is described as follows:
the phase space is foliated into invariant tori, carrying a Kronecker flow with
frequencies ω(I) = ∂H

∂I
. If the Hamiltonian H(I) is non degenerate, i.e. if

det

(

∂2H

∂Ij∂Ik

)

�= 0 ,

then there are no independent first integrals depending on the angles ϕ.
Among the classical examples of integrable systems one finds: the Kepler

problem, for which a convenient set of action-angle variables has been introduced by
Delaunay [14]; the free rigid body and the Lagrange top, with action-angle variables
introduced by Andoyer [1].
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2.2 The Non Integrability Theorem of Poincaré

The first negative result of Poincaré states that the general problem of dynamics
is generically non integrable. Restoring the notation p ∈ G ⊂ R

n and q ∈ T
n

for action-angle variables, the perturbation H1(p, q) may be expanded in Fourier
series as

H1(p, q) =
∑

k∈Zn
hk(p)e

i〈k,q〉 .

Theorem 2 Let the Hamiltonian H(p, q) = H0(p) + εH1(p, q) satisfy the
following hypotheses:

(i) nondegeneracy, i.e.,

det

(

∂2H0

∂pj ∂pk

)

�= 0 ;

(ii) genericity: no coefficient hk(p) of the Fourier expansion of H1(p, q) is
identically zero on the manifold 〈k, ω(p)〉 = 0.

Then there is no analytic first integral independent of H .

It is worth giving a short outline of the proof, because it helps to understand how
the problem of resonances shows up, taking the form of small divisors. The reader
is referred to ch. VIII of [58] for a detailed exposition. The attempt is to construct
a first integral expanded as �(p, q) = �0(p) + ε�1(p, q) + . . . by looking for a
solution of the equation {H,�} = 0. Replacing the expansions in ε we obtain the
recurrent system

{H0,�0} = 0 , {H0,�1} = −{H1,�0} , {H0,�2} = −{H1,�1} , . . .

The first equation is solved by any �(p) independent of the angles q , in view of
non degeneration. The proof then proceeds in two steps. The first step consists in
proving that if � is independent of H then one can find �0 independent of H0.
This part requires a clever, delicate argument. The second step consists in proving
that �0(p) can not be independent of H0(p), as a consequence of the genericity
hypothesis. In rough, short terms the argument proceeds as follows. Expand the
second equation as

i
∑

k

〈k, ω(p)〉ϕk(p)ei〈k,q〉 = i
∑

k

〈

k,
∂�0

∂p

〉

hk(p)e
i〈k,q〉 , ω(p) = ∂H0

∂p
,
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with coefficients ϕk(p) to be found. Therefore we must solve the infinite set of
equations

〈k, ω(p)〉ϕk(p) =
〈

k,
∂�0

∂p

〉

hk(p) , 0 �= k ∈ Z
n .

On the resonant manifold 〈k, ω(p)〉 = 0 either case must occur:

〈

k,
∂�0

∂p

〉

= 0 or hk(p) = 0 .

Now, in view of the genericity condition we have hk(p) �= 0; therefore we must

have
〈

k,
∂�0
∂p

〉

= 0. The conclusion follows by exploiting the fact that resonances

are dense in G, which forces the gradients of �0(p) and H0(p) to be parallel in a
dense set of points. Thus, one must conclude that �0 can not be independent ofH0 .

The immediate consequence of Poincaré’s theorem is that, generically, the
geometric structure of the invariant unperturbed tori does not persist under
perturbation, for the theorem of Liouville does not apply.

2.3 A Puzzling Example

The condition of genericity appears to be a too strong one. Poincaré was well aware
of this fact, and he did discuss how to relax it, still keeping the validity of the
result. Here I want to illustrate a puzzling example with the aim of showing how
the condition of genericity, in same sense, is eventually recovered. At the same time
the example suggests a way out of the difficulties raised by Poincaré.

Consider the Hamiltonian of a system of two coupled rotators H = H0 + εH1
with

H0 = 1

2
(p2

1+p2
2) , H1 = cos q1+ cos(q1−q2)+ cos(q1+q2)+ cos q2 . (1)

It satisfies the non degeneracy condition, but it is definitely not generic, because it
contains only a finite number of Fourier modes. Let us work out the construction of
a first integral by choosing e.g., �0(p) = p1, clearly independent of H0. Using the
complex representation of trigonometric functions calculate

{H1, p1} = i

2

[(

eiq1 + ei(q1−q2) + ei(q1+q2)
)

− c.c.
]

,
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where c.c. stands for the complex conjugate. Therefore a solution for�1 is found to
be

�1 = −1

2

[(

eiq1

p1
+ ei(q1−q2)

p1 − p2
+ ei(q1+q2)

p1 + p2

)

+ c.c.

]

.

We remark immediately that the solution is well defined if we remove from the
plane p1, p2 the resonant manifolds (actually straight lines) p1 = 0, p1 − p2 =
0, p1 + p2 = 0. The remark applies, of course, for any perturbation which is a
trigonometric polynomial of finite degree, provided we remove a finite number of
resonant manifolds.

We now go to the next step. We must consider the equation at order ε2, namely
{H0,�2} = {�1,H1}. Without performing a complete calculation, let us focus our
attention on the Fourier modes that are generated. The process is illustrated in Fig. 2,
where the Fourier modes that appear in the functions �s are represented for orders
s = 1, 2, 3. The Poisson braket makes the exponentials to be multiplied; hence
{H1,�1} contains new Fourier modes, including in particular

ei(2q1−q2) , ei(2q1+q2) , ei(q1−2q2) , ei(q1+2q2) ,

which are not multiples of the previous ones. The generated modes are represented
by grey squares in the figure for order 2. Therefore �2 contains the new divisors
2p1 − p2 , 2p1 + p2 , p1 − 2p2 , p1 + 2p2 and we must remove the additional
resonant manifolds

2p1 − p2 = 0 , 2p1 + p2 = 0 , p1 − 2p2 = 0 , p1 + 2p2 = 0 .

At order ε3 we get the new modes represented in the figure as open squares. With a
moment’s thought we realize that at order εs the right member {H1,�s−1} contains
the Fourier modes ei(k1q1+k2q2) with |k1|+ |k2| ≤ 2s; a finite number, but increasing
with s. Therefore we must remove more and more resonant straight lines k1p1 +
k2p2 = 0 with |k1| + |k2| ≤ 2s. We conclude that for s → ∞ we must remove
a dense set of resonances, so that a first integral independent of H can not be
constructed on an open domain, even formally.

k2

k1

Φ1

k1

k2 Φ2

k1

k2 Φ3

order 1 order 2 order 3

Fig. 2 Illustrating the propagation of Fourier modes through the process of construction of a first
integral for the Hamiltonian (1). Only modes (k1, k2) with k2 ≥ 0 are included, because (k1, k2)

and −(k1, k2) actually represent the same mode
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2.4 How to Proceed?

It is a fact that the non integrability theorem of Poincaré did not trouble the
astronomers too much: the perturbation expansions had proven to be very useful
during a couple of centuries. But a few mathematicians continued their fight with
small divisors.

A first attempt, taken since the beginning of the twentieth century, has been to
remove the hypothesis of non degeneration of the unperturbed Hamiltonian H0 ,
considering for instance the dynamics in a neighbourhood of an elliptic equilibrium.
This problem will be discussed later, so let me put it aside for a while. I will rather
focus the attention on two different approaches that have been developed in the
second half of the twentieth century.

The first way has been opened by Kolmogorov in 1954 [37]: Look only for
a set of invariant tori which are characterized by a condition of strong non
resonance, thus putting restrictions on the initial values of the actions. The work
of Kolmogorov has marked the beginning of what we call now KAM theory, the
acronym standing for Kolmogorov–Arnold–Moser.

The second way has been proposed by Moser [53] and Littlewood [47, 48], and
has been formulated in a general form by Nekhoroshev [55, 56]: put restrictions on
time, but consider initial data in open sets. Look for results valid over a finite but
very long time. These two approaches will be the backbone of the rest of the present
lectures.

3 The Renaissance of Epicycles

This section is devoted to presenting the celebrated theorem of Kolmogorov on the
persistence of quasi-periodic motions in nearly integrable systems. The theorem has
been announced at the International Congress of Mathematicians at Amsterdam, in
1954. A sketch of the proof has been published in [37]. Kolmogorov gave a complete
proof in a series of lectures, but it seems that the text has not been published (not
in western countries, at least). The first published proofs are due to Moser [54] and
Arnold [2].

3.1 The Normal Form of Kolmogorov

Consider the Hamiltonian in action-angle variables p, q

H(p, q) = 〈ω,p〉 + F(p, q) , ω ∈ R
n .
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Let us say that the Hamiltonian is in normal form of Kolmogorov in case F(p, q)
is at least quadratic in the actions p, i.e., F(p, q) = O(p2). Write the canonical
equations

q̇ = ω +O(p) , ṗ = O(p2) .

and select initial data with p(0) = 0 and q(0) = q0 arbitrary. Then we get the
solution

q(t) = ωt + q0 , p(t) = 0 ,

i.e., the torus p = 0 is invariant and carries a Kronecker flow with frequencies ω.
The idea of Kolmogorov is to cast a Hamiltonian into the normal form above in

a neighbourhood of a non resonant unperturbed torus. Here I shall sketch the main
ideas by closely following the short note of Kolmogorov [37]. Later I will do some
recasting in order to illustrate a constructive method of proof.

Let us consider a Hamiltonian

H(p, q) = h(p)+ f (p, q)

with h(p) non degenerate and f (p, q) small. The reader may want to add a
parameter ε in front of f (p, q) if this helps in tracking the smallness of some terms.
However he or she will realize at some point that in Kolmogorov’s scheme one
must get rid of a perturbation parameter. We also assume that h(p) is quadratic and
f (p, q) may be expanded as a Fourier series in the angles with coefficients at most
quadratic in p. This simplifies the argument while keeping the crucial difficulties of
the problem.

The dynamics of the unperturbed Hamiltonian h(p) is quasi-periodic with
frequencies ω(p) = ∂h

∂p
. Let us select an initial condition p∗ such that the

corresponding frequencies ω(p∗) are non resonant, i.e., 〈k, ω〉 �= 0 for k �= 0.
With a translation p′ = p−p∗ the Hamiltonian takes the form, omitting primes and
writing ω ∈ R

n in place of ω(p∗),

H(p, q) = η + 〈ω,p〉 + 1

2

〈

C(q)p, p
〉+ A(q)+ 〈B(q), p〉 (2)

where terms of different degrees in p have been separated introducing the function
A(q), the vector function B(q) and the symmetric matrix C(q), that can be
calculated as

A(q) = f (p∗, q) , Bj (q) = ∂f

∂pj
(p∗, q) , Cjk(q) = ∂2h

∂pj ∂pk
(p∗)+ ∂2f

∂pj ∂pk
(p∗, q) .

Here A(q) and B(q) are of the same order as f , while C(q) includes a small
correction to the quadratic part of h(p). The constant η may be ignored.
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In a more general setting the Hamiltonian will contain polynomials of higher
degrees in the actions, or even will be a power series in p. However, as I have already
said, this is just a technical complication which does not add essential difficulties.

I come now to reformulating the method of Kolmogorov using the algorithm of
Lie series in order to perform near the identity canonical transformations. A short
reminder of the algorithm is given in Appendix. The suggestion of Kolmogorov is to
kill the unwanted parts A(q) and 〈B(q), p〉 by using a near the identity generating
function

χ(p, q) = 〈ξ, q〉 + X(q)+ 〈Y (q), p〉 , (ξ ∈ R
n) .

The transformation of coordinates is written as (with a minor abuse of notation)

q ′ = exp
(

Lχ
)

q = q + Y (q)+ 1

2

〈

∂Y

∂q
, Y (q)

〉

+ . . . ,

p′ = exp
(

Lχ
)

p = p + ξ + ∂X

∂q
+
〈

∂Y

∂q
, p

〉

+ . . . ,

the dots denoting higher order terms. Thus we have a small translation and
deformation of the actions combined with a deformation of the angles.

Let us transform the Hamiltonian as H ′ = exp
(

Lχ
)

H . Here the Poisson bracket
with 〈ω,p〉 plays a special role, so let us introduce the notation ∂ω = L〈ω,p〉. We get

H ′ =〈ω,p〉 + 1

2

〈

C(q)p, p
〉

+ A(q)− ∂ωX + 〈ω, ξ〉

+ 〈B(q), p〉 +
〈

C(q)p, ξ + ∂X

∂q

〉

− ∂ω〈Y (q), p〉 + . . .

Here the first line contains the part already in normal form, and the dots stand for
smaller terms that are left unhandled, and must be removed later. The second and
third lines contain the parts that should be cleared. To this end, ignoring the constant
〈ω, ξ〉 in the Hamiltonian, we write the equations

A(q)− ∂ωX = 0 ,

Cξ + B + ∂X

∂q
= 0 , (3)

B(q)+ C(q)
(

ξ + ∂X

∂q

)

− ∂ωY = 0 .

Here the overline denotes the average with respect to the angles q , i.e., the term
independent of q in the Fourier expansion of a function. The first and third equation
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(usually called homological equations) can be solved provided the average of the
known term is zero (see next section). In the first equation the average is a constant
that can be neglected. The second equation aims at determining the real vector ξ
precisely in order to clear the average of the known term in the third equation. It
may be solved provided the constant matrix C is not degenerate, which is initially
assured by non degeneracy of h(p). The translation vector ξ keeps the frequency
fixed.

Having determined the generating function we may perform the transformation
and then rearrange the Hamiltonian in the same form as (2), namely

H ′ = 〈ω,p〉 + 1

2

〈

C′(q)p, p
〉+ A′(q)+ 〈B ′(q), p〉

with A′(q) and B ′(q) hopefully smaller than A(q) and B(q) and with a new
symmetric matrix C′(q) which is a small correction of the previous one. Roughly,
if we assume that A(q) and B(q) were of order ε, then we may expectA′(q), B ′(q)
and C′(q)− C(q) to be of order ε2.

Thus, the consistency of the procedure depends on the existence of the solution
of Eq. (3). If so, then the procedure may be iterated in order to (hopefully) reduce
the size of the unwanted terms to zero, thus giving the Hamiltonian the normal form
of Kolmogorov.

3.2 Small Divisors and the Problem of Convergence

The problem of solving the homological equation can be stated in the general form:
given a known function ψ(p, q) with zero average, namely ψ = 0, find χ such that
∂ωχ = ψ . The actions p here are just parameters. The procedure is quite standard:
we have already used it while discussing the non integrability result of Poincaré.
Expand in Fourier series

ψ(p, q) =
∑

0 �=k∈Zn
ψk(p) exp

(

i〈k, q〉) , χ(p, q) =
∑

k∈Zn
ck(p) exp

(

i〈k, q〉) ,

with ψk(p) known and ck(p) to be found. Calculate

∂ωχ = i
∑

k

〈k, ω〉ck(p) exp
(

i〈k, q〉) .

Therefore, assuming that the frequencies ω are non resonant, we get the formal
solution with coefficients

ck(p) = −i ψk(p)〈k, ω〉 .
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Since the expressions 〈k, ω〉 at the denominators may become arbitrarily small,
we must introduce a suitable condition of strong non resonance. Kolmogorov
actually used the diophantine condition already introduced by Siegel, namely

|〈k, ω〉| > γ

|k|τ , γ > 0 , τ > n− 1 .

It is known that such a condition is satisfied by a large set of frequencies, the
complement having measure O(γ ). The solution can be proved to be holomorphic
on the basis of the following considerations, already made by Poincaré. If ψ(p, q)
is holomorphic, then the coefficients ψk(p) decay exponentially, i.e.,

∣

∣ψk(p)
∣

∣ ∼
e−|k|σ for some σ . Therefore one gets

∣

∣ck(p)
∣

∣ ∼ |k|τ e−|k|σ ∼ e−|k|σ ′ with some
σ ′ < σ . This shows that χ(p, q) is still holomorphic, thus making every single step
of Kolmogorov to be formally consistent.

The problem now is that iterating the procedure we produce an accumulation
of small divisors: at every step the coefficients gain a new small divisor, which
makes convergence doubtful. Here comes the second idea of Kolmogorov. Do not
use expansions in a parameter. Collect all contributions independent of and linear
in p in a single pair of functions A(q) and 〈B(q), p〉. In very rough heuristic terms
this is what happens. Starting with functions of size ε and forgetting for a moment
the contribution of small divisors the procedure reduces step by step the size of the
unwanted terms to ε2, ε4, ε8, . . .; i.e., they decrease quadratically, as in Newton’s
method (as remarked by Kolmogorov himself). Such a strong decrease compensates
the growth of the number of factors with small divisors, eventually assuring the
convergence of the procedure. The latter heuristic argument was commonly used
in the past, and often it has been synthetized in the words “quadratic method”,
“quadratic convergence”, “Newton method”, “superconvergence” and so on. A
complete proof along the lines suggested by Kolmogorov may be found, e.g., in [5].

I will avoid here using the method of fast convergence for two reasons. The first
one is that the procedure of Kolmogorov is not constructive, for dealing with infinite
Fourier series is conceptually simple, but hardly practical: some form of truncation
must be introduced. The second reason is that the fast convergence hides the actual
process of accumulation of divisors: it just dominates it. My aim is instead to show
that in some cases, including Kolmogorov’s one, the divisors accumulate in a polite
way.

3.3 The Formal Constructive Algorithm

I simplify again the discussion by considering a rather simple model: a system of
coupled rotators as described by the Hamiltonian H(p, q) = H0(p) + εH1(p, q),
where

H0(p) = 1

2

n
∑

j=1

p2
j , H1(p, q) =

∑

|k|≤K
ck(p)e

i〈k,q〉 , p ∈ R
n , q ∈ T

n , (4)
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with a fixed K > 0 and coefficients ck(p) that are polynomials of degree at most
2. The choice is made in order to reduce technicalities to a minimum (though there
remain enough), but all the crucial difficulties of the problem are accounted for.
The extension to the general case is matter of not being scared by long and boring
calculations.

The aim is to construct an infinite sequence H(0)(p, q), H (1)(p, q), H (2)

(p, q), . . . of Hamiltonians, with H(0) coinciding with H in (4), which after r steps
of normalization turn out to be written in the general form

H(r) = ω ·p+
r
∑

s=0

hs(p, q)+
∑

s>r

εs
[

A(r)s (q)+ B(r)s (p, q)+ C(r)s (p, q)
]

, (5)

where H(r)(p, q) is in Kolmogorov’s normal form up to order r . Here
h1(p, q), . . . , hr (p, q) are quadratic in p, so that they are in normal form, and
do not change after step r . Moreover: (i) A(r)s (q) is independent of p; (ii) B(r)s (p, q)

is linear in p; (iii) C(r)s (p, q) is a quadratic polynomial in p; (iv)A(r)s (q),B(r)s (p, q)

and C(r)s (p, q) are trigonometric polynomials of degree sK in q , where K is the
degree of H1 in the original Hamiltonian. The algorithm should preserve at every
step the properties (i)–(iv) above.

Some remarks are mandatory here concerning the simplifications introduced in
the model. Adding a factor εs to every function with lower label s the reader will
immediately realize that we are actually working with an ε-expansion, as it was
customary in the past in perturbation theory. However, a generic perturbation will
not fulfill the requests of being at most quadratic and a trigonometric polynomial
of finite degree K . With a sufficient amount of patience the reader may see that
adding further powers of p or even an infinite series is essentially harmless. The
expansion in infinite trigonometric series is definitely more puzzling, for we can
not deal explicitly with an infinite number of terms. This problem has been also
pointed out by Poincaré (see [58], Ch. XIII, § 147), who suggested the way out. We
may exploit the fact that the size of the coefficients of the Fourier expansion of a
holomorphic function decreases exponentially with the degree. Therefore we may
choose a truncation parameter K > 0 and expand the Hamiltonian in the requested
form (5) by splitting the series into trigonometric polynomials of the requested
order. A naive argument would lead to setting K ∼ − log ε, the perturbation
parameter. It is remarkable indeed that the best choice is to set K to a constant
independent of ε, which does not need to be a large one; e.g., setting K = 1/σ is
often enough. This makes the expansion in a parameter unpractical, but everything
works fine if one pays attention not to powers of ε, but to the size of the various
terms, in some norm.

The normalization process is worked out with a minor recasting of the method
of Kolmogorov. At every step r we apply a first canonical transformation with
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generating function χ(r)1 (q) = X(r)(q) + 〈ξ(r), q〉, followed by a second transfor-

mation with generating function χ(r)2 (p, q) = 〈Y (r)(q), p〉.
The explicit constructive algorithm for a single step is presented in Table 1.

Assuming that r − 1 steps have been performed, so that the Hamiltonian
H(r−1)(p, q) has the wanted form (5) with r − 1 in place of r , we construct in
sequence the new Hamiltonians

Ĥ (r) = exp
(

L
χ
(r)
1

)

H(r−1) , H (r) = exp
(

L
χ
(r)
2

)

Ĥ (r) ,

the first one being an intermediate Hamiltonian, and the second one being in normal
form up to order r . The generating functions are determined by solving a pair of
homological equations, which is possible in view of the non resonance condition.
All functions entering the transformed Hamiltonians are explicitly expressed in
terms of Lie derivatives, as the reader may easily check. The Hamiltonian remains
quadratic because the action of the Lie derivative L

χ
(r)
1

decreases the degree in p

by one, while L
χ
(r)
2

leaves it unchanged. As to the trigonometric degree, the rules

stated for the Hamiltonian are respected because the homological equation does not
change it, so that χ(r)1 and χ(r)2 have degree rK , and if, say, fs has degree sK then
L
χ
(r)
j

fs clearly has degree (s + r)K . With these remarks, the reader should be able

to check that the algorithm is actually applicable, so that the construction of the
normal form is formally consistent. The challenge now is: Prove that the sequence
of Hamiltonians H(r) in normal form up to order r converges to a holomorphic
Hamiltonian,H(∞) say, in Kolmogorov’s normal form.

3.4 Analytical Estimates

I come now to the crucial problem that has challenged mathematicians for a couple
of centuries: the accumulation of small divisors. The argument makes essential use
of a real, non increasing sequence {αr}r≥0 defined as

α0 = 1 , αr = min
(

1, min
0<|k|≤rK

∣

∣〈k, ω〉∣∣
)

. (6)

That is, αr is the smallest divisor that may appear in the solution of the homological
equation for the generating functions χ(r)1 and χ(r)2 at step r of the normalization
process. If the frequencies are non resonant then the sequence has zero limit for
r →∞.

Let us introduce a convenient norm adapted to our case as follows. For a
homogeneous polynomial of degree s in the actionsp write (in multi-index notation)
g = ∑

|j |=s gjpj , and define its norm as ‖g‖ = ∑

|j |=s |gj |, namely the sum of
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Table 1 The formal constructive algorithm for Kolmogorov’s normal form

• Equations for the generating functions χ(r)1 = X(r) + 〈ξ (r), q〉 and χ(r)2 = 〈Y (r)(q), p〉:
∂ωX

(r) − A(r−1)
r = 0 , 〈ξ (r), p〉 = B

(r−1)
r = 0 ,

∂ωχ
(r)
2 − B̂(r)r = 0 , B̂(r)r =

〈

∂X(r)

∂q
, p

〉

+ B(r−1)
r − B(r−1)

r .

• Intermediate Hamiltonian Ĥ (r) = exp
(

Lχ1

)

H(r−1):

Â(r)r = 0

Â(r)s =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

A
(r−1)
s , r < s < 2r ;

1
2L

2
χ
(r)
1

hs−2r + L
χ
(r)
1
B
(r−1)
s−r + A

(r−1)
s , 2r ≤ s < 3r ;

1
2L

2
χ
(r)
1

C
(r−1)
s−2r + L

χ
(r)
1
B
(r−1)
s−r + A

(r−1)
s , s ≥ 3r .

B̂(r)s =
⎧

⎨

⎩

L
χ
(r)
1
hs−r + B(r−1)

s , r ≤ s < 2r ;
L
χ
(r)
1
C
(r−1)
s−r + B

(r−1)
s , s ≥ 2r .

• Transformed Hamiltonian H(r) = exp
(

L
χ
(r)
2
Ĥ (r)

)

(set s = kr +m with 0 ≤ m < k):

hr = L
χ
(r)
2
h0 + C(r)r .

A(r)s =
k−1
∑

j=0

1

j !L
j

χ
(r)
2

Â
(r)
s−jr , s > r .

B(r)s =

⎧

⎪

⎨

⎪

⎩

k−1
k! L

k−1
χ
(r)
2

B̂
(r)
r +∑k−2

j=0
1
j !L

j

χ
(r)
2

B̂
(r)
s−jr , k ≥ 2 , m = 0 ;

∑k−1
j=0

1
j !L

j

χ
(r)
2

B̂
(r)
s−jr , k ≥ 1 , m �= 0 .

C(r)s = 1

k!L
k

χ
(r)
2
hm +

k−1
∑

j=0

1

j !L
j

χ
(r)
2

C
(r)
s−jr , s > r .

the absolute values of the coefficients. For a trigonometric polynomial f (p, q) =
∏

k fk(p)e
i〈k,q〉 with coefficients fk(p) that are homogeneous polynomials we

define a norm parameterized by σ > 0 as

‖f ‖σ =
∑

k

‖fk‖ e|k|σ .

The choice of the parameter σ is rather arbitrary for trigonometric polynomials, as
considered here. For a real analytic function σ it is related to the width of a complex
strip T

n
σ (as defined by (22), see Appendix) where the function is holomorphic and

bounded.
Recalling that the algorithm of Kolmogorov normal form uses Lie derivatives

and homological equations we need to know how these operations affect the norms.
We have the following estimates.
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Table 2 Quantitative estimates for the algorithm for Kolmogorov’s normal form

• Generating functions χ(r)1 = X(r) + 〈ξ (r), q〉 and χ(r)2 = 〈Y (r)(q), p〉:
‖Xr‖(1−dr−1)σ ≤

1

αr
‖A(r−1)

r ‖(1−dr−1)σ ,
∣

∣ξr,j
∣

∣ ≤
∥

∥

∥B
(r−1)
r

∥

∥

∥

(1−dr−1)σ

‖χ(r)2 ‖(1−dr−1−δr )σ ≤
1

αr
‖B̂(r)r ‖(1−dr−1−δr )σ

• Intermediate Hamiltonian Ĥ (r) = exp
(

Lχ1

)

H(r−1). Set

Gr,1 = 2e

σ

(

‖A(r−1)
r ‖(1−dr−1)σ + αrδrσ

∥

∥

∥B
(r−1)
r

∥

∥

∥

1−dr−1

)

.

For r < s < 2r , 2r ≤ s < 3r and s ≥ 3r , respectively, get
‖A(r)s ‖(1−dr−1−δr )σ ≤
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

‖A(r)s ‖(1−dr−1)σ ;
(

Gr,1
δrαr

)2 ‖hs−2r‖(1−ds−2r )σ + Gr,1
δrαr

‖B(r−1)
s−r ‖(1−dr−1)σ + ‖A(r)s ‖(1−dr−1)σ ;

(

Gr,1
δrαr

)2 ‖C(r−1)
s−2r ‖(1−ds−2r )σ + Gr,1

δrαr
‖B(r−1)

s−r ‖(1−dr−1)σ + ‖A(r)s ‖(1−dr−1)σ ;
For r ≤ s < 2r and s ≥ 2r , respectively, get
‖B̂(r)s ‖(1−dr−1−δr ) ≤
{

Gr,1
δrαr

‖hs−r‖(1−ds−r )σ + ‖B(r−1)
s ‖(1−dr−1)σ ;

‖B̂(r)s ‖(1−dr−1−δr ) ≤ Gr,1
δrαr

‖C(r−1)
s−r ‖(1−ds−r )σ + ‖B(r−1)

s ‖(1−dr−1)σ .

• Transformed Hamiltonian H(r) = exp
(

L
χ
(r)
2
Ĥ (r)

)

. Set Gr,2 = 3
σ
‖B̂(r)r ‖(1−dr−1−δr ).

For s ≥ r get

‖hr‖(1−dr )�,σ ≤
Gr,2

δrαr
‖h0‖σ + ‖C(r)r ‖(1−dr−1)σ .

‖A(r)s ‖(1−dr )�,σ ≤
k−1
∑

j=0

(

Gr,2

δrαr

)j

‖Â(r)s−jr‖(1−dr−1−δr )σ ;

‖B(r)s ‖(1−dr )�,σ ≤
k−1
∑

j=0

(

Gr,2

δrαr

)j

‖B̂(r)s−jr‖(1−dr−1−δr )σ ;

‖C(r)s ‖(1−dr )�,σ ≤
Gr,2

δrαr
‖hm‖(1−dr−m)σ +

k−1
∑

j=0

(

Gr,2

δrαr

)j

‖Ĉ(r)s−jr‖(1−dr−1−δr )σ ;

(i) Let

ψ(r) =
∑

0<|k|≤rK
ψk(p)e

i〈k,q〉

be a trigonometric polynomial of degree rK . Then the zero-averaged solution
of the homological equation ∂ωχ(r) = ψ(r) satisfies

∥

∥

∥χ
(r)
∥

∥

∥

σ
≤ 1

αr

∥

∥

∥ψ
(r)
∥

∥

∥

σ
.
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(ii) The action of Lie derivatives is estimated by the inequalities

∥

∥

∥

1

s!L
s

χ
(r)
1

f

∥

∥

∥

(1−d)σ ≤
(

2e‖χ(r)1 ‖σ
dσ

)s

‖f ‖σ ,

∥

∥

∥

∥

1

s!L
s

χ
(r)
2

f

∥

∥

∥

∥

(1−d)σ
≤
(

3e‖χ(r)2 ‖σ
dσ

)s

‖f ‖σ .

where 0 < d < 1.

The reader will remark that the estimate requires a reduction of the value of σ similar
to the restriction of domains illustrated in Appendix (it is the same thing, indeed).

Applying the estimates above to the algorithm for the Kolmogorov normal form
is a boring but straightforward matter: replace every operation in the recurrent
formulæ of Table 1 with the corresponding estimate for the norm. The result is
summarized in Table 2. There is a point to be carefully taken into account. At every
step we need a restriction of σ parameterized by an increasing positive sequence
dr , depending on the step r . But the sequence must have a finite limit d < 1. The
sequence is arbitrary, so let us set d0 = 0 and dr = 2(δ1 + . . .+ δr ) with

δr = 1

π2 ·
1

r2 ,
∑

r≥1

δr = 1

6
.

A remark is mandatory. Lie derivatives introduce divisors δr which are small, and
may affect convergence as well as the small divisors αr , but we shall see that they
always appear as products βr = δrαr , thus we shall control all divisors with the
same method.

Without entering a very technical discussion, let me point out the common
structure of all estimates. It is immediately seen that the norm of every function
is bounded by a sum of different terms. Moreover:

(i) Every term comes either from a function of previous order or from a (possibly
multiple) Lie derivative of a previous function.

(ii) A constant factor Gr,1 or Gr,2 coming from the r-independent constants in the
estimates is associated to every Lie derivative L

χ
(r)
2

or L
χ
(r)
2

, respectively.

(iii) Every factor Gr,1 or Gr,2 comes paired with a divisor βr : the small divisor αr
and the restriction δr , that always appear in pairs.

The suggestion is to look for an uniform estimate for every term in the sums on
the right hand sides, letting aside for the moment the problem of estimating the
sums. It is expected that every term at order r is bounded by an expression such
as bηr−1

(∏

� β�
)−1, with positive constants b, η, the product running over a set

of indices to be determined. We are thus led to focus attention to the divisors in the
product

∏

� β� . Better, the suggestion is: forget the actual values of the divisors; pay
attention only to the indices. Indeed the indices control the process of accumulation
of small divisors.
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3.5 The Game of Small Divisors

Let me first get rid of a naive argument that leads to a pessimistic conclusion. It
seems that at every step a new divisor βr is added:

χ
(1)
1 has denominator β1 : χ

(1)
2 has denominator β2

1 ;
χ
(2)
1 has denominator β2

1β2 : χ
(2)
2 has denominator β2

1β
2
2 ;

χ
(3)
1 has denominator β2

1β
2
2β3 : χ

(3)
2 has denominator β2

1β
2
2β

2
3 ;. . . . . . . . .

χ
(r)
1 has denominator β2

1 . . . β
2
r−1βr : χ(r)2 has denominator β2

1 . . . β
2
r ;

Now, if we assume the diophantine inequality αr ∼ 1/rτ and set δr ∼ 1/r2 (our
choice), then we get

‖χ(r)1 ‖ ∼ (r!)2τ+3 , ‖χ(r)2 ‖ ∼ (r!)2τ+4 .

The immediate conclusion is that the naive argument can not be used for proving
convergence; the accumulation of small divisors seems to be explosive.

We are thus confronted with the question: can we control the explosive
behaviour of the divisors? As I have already pointed out, the great revolutionary idea
introduced by Kolmogorov is that an efficient control is provided by the quadratic
convergence due to a method “similar to that of Newton” (in his own words). This
allowed him to open a breach in a two centuries old problem. Without diminishing
the enormous importance of the work of Kolmogorov, we are now able to understand
that the accumulation of divisors is not so bad as instinctively expected.

3.6 The Kindness of Small Divisors

Looking at Tables 1 and 2 we should pay attention to the actual mechanism of
accumulation of divisors. As I have already pointed out, it is better to concentrate
on the indices of the divisors. A convenient method is to organize the indices in a
list (repetitions are allowed). Here I shall illustrate the argument in a synthetic but
hopefully complete way.

Let me first point out how divisors show up.

(i) The generating function χ
(r)
1 adds a new divisor αr to the existing ones in

A
(r−1)
r .

(ii) The first term affected in Ĥ (r) is B̂(r)r , by addition of L
χ
(r)
1
h0 with a divisor βr .

(iii) The latter term enters χ(r)2 , thus adding a further divisor αr , to be promoted to
βr by Lie derivatives.
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Now I come to the process of accumulation. Heuristically, let us try to reduce
the complicated scheme of estimates to the following elementary operation. The
notation here is reduced to a minimum. Let ψr be a trigonometric polynomial
of degree r which owns a list Ir of divisors. Solving the homological equation
∂ωχr = ψr makes χr to own a list of divisors {r} ∪ Ir , the union meaning
concatenation of lists. Let now fs be a trigonometric polynomial of degree s that
owns a list of indices Is . Then Lχr fs owns the list {r}∪Ir ∪Is . With some patience
the reader will realize that this is precisely the mechanism of generation of the lists
associated to every term in the expressions that appear in the algorithm.

Let me now propose a little detour, exploiting the mechanism above indepen-
dently of its application to the algorithm of Kolmogorov. Let Is = {j1, . . . , js−1}
be a list of s − 1 non negative indices, that we may collect in non decreasing order.
A partial ordering on lists of indices is introduced as follows. For two given lists
Is = {j1, . . . , js−1} and I ′s = {j ′1, . . . , j ′s−1} in non decreasing internal order we
say that I precedes I ′ in case j1 ≤ j ′1, . . . , js−1 ≤ j ′s−1 ; we write I � I ′. Let us
also introduce the special lists

I∗s =
{⌊

s

s

⌋

,

⌊

s

s − 1

⌋

, . . . ,

⌊

s

2

⌋}

. (7)

Lemma 3 For the list of indices I∗s the following statements hold true:

(i) for 0 < r ≤ s we have

({r} ∪ I∗r ∪ I∗s
) � I∗r+s .

(ii) for every k ∈ {1, . . . , jmax} the index k appears exactly
⌊

s
k

⌋− ⌊ s
k+1

⌋

times;

The first claim concerns precisely the mechanism of accumulation of small
divisors in the normalization algorithm for the Kolmogorov’s normal form. Thus
I∗s represents the worst list of indices that can be generated.

The second claim contains the control of the action of small divisors. Let any
sequence 1 = α0 ≥ α1 ≥ α2 ≥ . . . be given; we should estimate the product

∏

j∈I∗s

1

αj
=
(

α
q1
1 · . . . · αq�s/2��s/2�α

qs
s

)−1
,

where qk =
⌊

s
k

⌋− ⌊ s
k+1

⌋

is the number of indices in I∗s which are equal to k, and
qs = 1. We have

ln
∏

j∈I∗s

1

αj
≤ −

s
∑

k=1

(⌊ s

k

⌋

−
⌊ s

k + 1

⌋)

lnαk ≤ −s
∑

k≥1

lnαk
k(k + 1)

.

We are thus led to introduce
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Condition τ The sequence {αr }r≥0 satisfies

−
∑

r≥1

lnαr
r(r + 1)

=  <∞ . (8)

Letting αr be the sequence defined by (6) we have thus found a condition of
strong non resonance for the frequencies ω of the invariant torus.

A few remarks allow us to compare condition τ with other commonly used
conditions.

(i) The diophantine condition introduced by Siegel says αr = r−k with k > 1 (an
innocuous multiplicative constant is omitted). This gives

−
∑

r≥1

lnαr
r(r + 1)

= k
∑

r≥1

ln r

r(r + 1)
<∞ .

By the way, this also shows that if the sequence αr satisfies condition τ then so
does the sequence βr = δrαr with δr ∼ r−2 that appears in our estimates for
the case of Kolmogorov.

(ii) Condition τ is weaker than the diophantine one. E.g., if αr = e−r/ ln2 r then

−
∑

r≥1

lnαr
r(r + 1)

=
∑

r≥1

1

(r + 1) ln2 r
<∞ .

(iii) There are ω’s that violate condition τ. For instance, if αr = e−r then

−
∑

r≥1

lnαr
r(r + 1)

=
∑

r≥1

1

(r + 1)
= ∞.

(iv) The widely used condition of Bruno writes

−
∑

r≥1

lnα2r−1

2r
= B <∞ .

It is equivalent to condition τ, for one gets  < B < 2 . However, condition
τ may present some advantages since sometimes it helps in finding better
convergence estimates; e.g., see the application to the Poincaré–Siegel problem
in [23].

In the case of interest here, namely the algorithm for the normal form of
Kolmogorov, we must go back to Table 2, considering only the contribution of the
divisors βr . The problem is to identify the worst possible product of divisors in
every coefficient of every function. To this end, to every coefficient we may associate
two informations, namely: (i) the number of divisors βj , and (ii) a selection
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Table 3 The number of
divisors and the selection rule
for the functions hr , A(r)s ,
B
(r)
s and C(r)s for 1 ≤ r < s

Function Number of divisors Selection rule

hr 2r I∗r ∪ I∗r ∪ {r} ∪ {r}
A
(r)
s , Â

(r)
s 2s − 2 I∗s ∪ I∗s

B
(r)
s , B̂

(r)
s 2s − 1 I∗s ∪ I∗s ∪ {r}

C
(r)
s 2s I∗s ∪ I∗s ∪ {r} ∪ {r}

rule, i.e., the maximal list of coefficients according to our partial ordering. With
some patience, and using recursion, one finds the rules summarized in Table 3. In
view of condition τ we conclude that the products of divisors grow not faster than
geometrically with s.

3.7 Sketch of the Proof of the Theorem of Kolmogorov

The estimate concerning the divisors is the most challenging part of the proof. The
question now is to find upper bounds for the generating functions and prove that they
satisfy the condition of Proposition 9 in appendix for convergence of the sequence
of canonical transformations. This part requires a couple of tons of patience, but no
really new ideas. On the other hand, a detailed exposition would exceed the limits
of the present note. Therefore I give here only a hint on how to proceed.

Looking at Table 2, one sees that the norm of every function A(r)s , B(r)s , C(r)s ,
χ
(r)
1 and χ

(r)
2 will likely be estimated up to a multiplicative factor by a quantity

νr,sTr,sC
s−1 where:

• the power Cs−1 is due to products of the quantities Gr,1 and Gr,2 that estimate
the norms of the generating functions;

• Tr,s = ∏

j β
−1
j is the product of divisors with indexes j obeying the selection

rules of the previous table;
• νr,s a numerical factor that takes into account the number of terms produced by

Lie derivatives.

All these quantities are actually bounded geometrically, and the constant C is
proportional to the size ε of the perturbation. On the other hand, the norm used here
provides an upper bound for the supremum norm of a function. Hence, for ε small
enough, the norms of the generating functions satisfy the condition of Proposition 9,
thus assuring convergence of the normal form of Kolmogorov. Adding a further
couple of tons of patience, the reader may check that the argument applies to any
Hamiltonian of the general problem of dynamics. Thus I conclude with a (not too)
formal statement.

Theorem 4 Consider the Hamiltonian

H(p, q) = H0(p)+ εH1(p, q) , p ∈ G ⊂ R
n , q ∈ T

n .
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Assume:

(i) H0(p) is non degenerate, i.e.

det

(

∂2H0

∂pj ∂pk

)

�= 0 ;

(ii) H0(p) possesses an invariant torus p∗ with frequencies ω satisfying condi-
tion τ.

Then there exists a positive ε∗ such that the following holds true: for ε < ε∗ there
exists a perturbed invariant torus carrying quasiperiodic motions with frequencies
ω, which is close to the unperturbed one.

The relevance of the theorem of Kolmogorov for the planetary system has been
often emphasized as being the proof that the dynamics of the planetary system is
quasiperiodic, i.e., it may be described by the classical method of epicycles. But the
crucial question is: how small should be ε?

3.8 Application to the Sun–Jupiter–Saturn System

The question concerning the actual applicability of the theorem of Kolmogorov
to our Solar System has received some attention in the last, say, 30 years (see,
e.g., [7, 8] and [49]). It should be noted that the Hamiltonian of the Solar System
is degenerate. However, it has been shown by Arnold that degeneration can be
removed, at least for the problem of three bodies, by following the lines of
Lagrange’s theory for secular motions. Here I give a very brief report on the
paper [50] where the actual applicability to the problem of three bodies in the Sun–
Jupiter–Saturn case has been argued (if not proven in strict mathematical sense).

The paper exploits the ideas of Arnold and the constructive character of our
algorithm. The main steps are the following.

(i) Write the Hamiltonian of the problem of three bodies in Delaunay variables, in
a heliocentric coordinate system.

(ii) Choose the value of the semimajor axes corresponding to the actual frequencies
of Jupiter and Saturn, and expand around it up to the second order in the
masses.

(iii) Average over the fast angles (mean anomalies), introduce the variables of
Poincaré and expand the Hamiltonian in power series in the neighbourhood
of the orbit with zero eccentricity and inclination.

(iv) Construct a Birkhoff normal form up to degree 6, thus removing the degener-
ation of the Hamiltonian, and find the torus with the actual frequencies of the
system.

(v) Expand the Hamiltonian around that unperturbed torus in the form required by
the algorithm for the normal form of Kolmogorov.



74 A. Giorgilli

0 10 0 10

Normalization step: r

Lo
g 1

0 
( 

|| 
X

(r
)  ||

 +
 | 

ξ 
(r

)  | 
)

Lo
g 1

0 
|| 

X
2 

(r
)  ||

Normalization step: r

0

–2

–4

–6

–8

–10

0

–2

–4

–6

–8

–10

Fig. 3 The norms of the generating functions for the case Sun–Jupiter–Saturn, with actual
parameters for the orbits taken from JPL database. (figure from [50])

(vi) Calculate the normal form up to some reachable order with the algorithm of
Table 1.

(vii) From the explicit expansion calculate the norms of the generating functions up
to that order.

The values of the norms are plotted in Fig. 3. It is clearly seen that after a few steps
the norms begin to decrease geometrically. This provides a strong support to the
thesis that the normal form of Kolmogorov is convergent, so that the orbit of Jupiter
and Saturn (if we neglect the action of the other planets) is close to an invariant
torus.

4 The Normal Form of Poincaré and Birkhoff

The aim of this section is to investigate the dynamics in a neighbourhood of either
an elliptic equilibrium or an invariant torus of Kolmogorov exploiting the method
of normal form of Poincaré and Birkhoff. I shall put emphasis on the problem of
stability.

In a neighbourhood of an elliptic equilibrium the Hamitonian may generally be
written as a power series

H(x, y) = H0(x, y)+H1(x, y)+H2(x, y)+. . . , H0(x, y) = 1

2

n
∑

l=1

ωl(x
2
l +y2

l ) ,

(9)
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where ω = (ω1, . . . , ωn) ∈ R
n are the frequencies in the linear approximation, and

Hs(x, y) is a homogeneous polynomial of degree s + 2 in the canonical variables
(x, y) ∈ R

2n. The series is assumed to be convergent in some neighbourhood of the
origin.

In a neighbourhood of an invariant torus of Kolmogorov the Hamiltonian may be
expanded in power series of the actions as

H(p, q) = H0(p)+H1(p, q)+H2(p, q)+ . . . , H0(p) = 〈ω, p〉 , (p, q) ∈ G × T
n

(10)

with coefficients expanded as Fourier series in the angles q . As a consequence of
the theorem of Kolmogorov we may always assume that the series is uniformly
convergent in a neighbourhood G of the origin.

Dealing with an infinite Fourier series is clearly unsuitable for a practical
calculation. However, exploiting again a suggestion of Poincaré we may split the
Hamiltonian so that Hs(p, q) is at least quadratic in p and is a trigonometric
polynomial of degree sK with some positive integer K .

I should stress that although the two problems seem to be different they can be
treated with the same approach. Let me also stress that the frequencies ω are not
assumed to be non resonant.

4.1 Formal Normalization

I shall discuss the construction of a normal form using the method of Lie transform,
recalled in Appendix section “An Algorithm for Lie Transform”. The composition
of Lie series may be used as well: I leave this as an exercise for an interested reader.
I stress, however, that here I discuss only formal methods and results: accepting
the common attitude of astronomers, all series and trigonometric expansions are
performed without taking care of convergence problems. The problem of (non)-
convergence will be discussed later, starting with Sect. 4.6.

Let us say that the Hamiltonian (9) or (10) is in Poincaré–Birkhoff normal form
in case ∂ωH = 0 , ∂ω· = {·,H0} . I shall use the notation

Z = H0 + Z1 + Z2 + . . . , ∂ωZs = 0 , s ≥ 1

thus stressing with the symbol Z that the Hamiltonian is in normal form. The
problem is: find the generating sequence of a near the identity transformation that
gives the Hamiltonian (9) or (10) a normal form.

The question is formally answered by solving the equation TχZ = H , the
unknowns being the normal form Z itself and the generating sequence χ =
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{χ1, χ2, . . .}, with χs a generating function of order s. The formal algorithm is
found by recalling the definition (19) of the operator Tχ , namely

Tχ =
∑

s≥0

Es , E0 = 1 , Es =
s
∑

j=1

j

s
LχjEs−j .

The following algorithm is found: for s ≥ 1 find χs and Zs by recursively solving
the homological equation

Zs − ∂ωχs = !s , s = 1, . . . , r , (11)

where

!1 = H1 ,

!s = Hs −
s−1
∑

j=1

j

s

(

LχjHs−j + Es−jZj
)

for 2 ≤ s ≤ r . (12)

In order to obtain the formulæ above it is convenient to recall the triangle for Lie
transform

H0 H0

↓
H1 E1H0 Z1

↓ ↓
H2 E2H0 E1Z1 Z2

↓ ↓ ↓
...

...
...

...
. . .

Hr ErH0 Er−1Z1 Er−2Z2 · · · Zr

Using the explicit expression

EsH0 = LχsH0 +
s−1
∑

j=1

j

s
Lχj Es−jH0

one finds an expression for !s similar to that in (11). A little play with algebra
is needed in order to remove from !s all terms depending on H0, using the
homological equation for the previous orders.
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4.2 Solving the Homological Equation

We need a definition. To the frequency vector ω we associate the resonance module
(a subgroup of Zn)

Mω =
{

k ∈ Z
n : 〈k, ω〉 = 0

}

.

The dimension dimMω is often called the multiplicity of the resonance.
The interesting point is that the linear operator ∂ω· = {·,H0} may be diag-

onalized. In the case of an elliptic equilibrium we should perform a canonical
transformation to complex variables ξ, η by setting

xl = 1√
2
(ξl + iηl) , yl = i√

2
(ξl − iηl)

for l = 1, . . . , n. The unperturbed Hamiltonian H0 takes the form

H0 =
n
∑

l=1

ωlIl , Il = iξlηl ,

while the polynomialsHs(ξ, η) are still homogeneous. The operator ∂ω turns out to
be diagonal over the basis ξj ηk of monomials (in multiindex notation), for

∂ωξ
j ηk = i〈j − k, ω〉 ξj ηk .

In the case of a torus the linear operator ∂ω is already diagonal on the Fourier basis,
for

∂ωfk(p)e
i〈k,q〉 = i〈k, ω〉 fk(p)ei〈k,q〉 .

The kernelNω and the rangeRω of ∂ω are defined as usual. Denoting by P the linear
space under consideration (either homogeneous polynomials of Fourier series) we
define

Nω = ∂−1
ω

({0}) , Rω = ∂ω
(P) .

Since the linear operator ∂ω maps P into itself the kernel and the range are subspaces
of the same space P . Moreover, since ∂ω is diagonalizable we have

Nω ∩Rω = {0} , Nω ∪Rω = P .

Therefore the operator ∂ω restricted to Rω is uniquely inverted.
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4.3 The Solution of Poincaré and Birkhoff

The straightforward solution, namely the one proposed by Poincaré and Birkhoff, is
the following. Project the right hand side of (11) on Nω and Rω, i.e., (with obvious
meaning of the superscripts)

!s = !(N )
s +!(R)

s , !(N )
s ∈ Nω , !(R)

s ∈ Rω .

Then set

Zs = !(N )
s , χs = ∂−1

ω !(R)
s ,

so that χs ∈ Rω is uniquely defined. An arbitrary term χ̃s ∈ Nω to χs may be
added, but usually it is not necessary.

Concluding, we may state

Proposition 5 The Hamiltonian H = H0 +H1 + . . . with H0 =∑l ωlIl linear in
the actions may be cast formally in normal form of Poincaré and Birkhoff

Z = H0 + Z1 + Z2 + . . . , ∂ωZ = 0 .

In complex variables for the elliptic equilibrium we have

Zs(ξ, η) =
∑

j−k∈Mω

cj,kξ
j ηk .

In action-angle variables for an invariant torus we have

Zs(p, q) =
∑

k∈Mω

ck(p) exp
(

i〈k, q〉) .

4.4 Action-Angle Variables for the Elliptic Equilibrium

The dynamics is better described in action-angle variables p = (p1, . . . , pn) ∈ R
n+

and q = (q1, . . . , qn) ∈ T
n. Thus, let us rewrite the Hamiltonian for the elliptic

equilibrium in action-angle variables, by transforming

xl =
√

2pl cos ql , yl =
√

2pl sin ql , l = 1, . . . , n .

From complex variables we easily write the Hamiltonian by using the exponential
form of trigonometric functions, namely

ξl = √pl eiq , ηl = −i√pl e−iq , l = 1, . . . , n .
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The unperturbed Hamiltonian becomes linear in the actions, since

H0 = 〈ω,p〉 , ∂ω =
〈

ω,
∂

∂q

〉

.

A homogeneous polynomial f (ξ, η) = ∑

|j+k|=s fj,kξj ηk is changed into a
trigonometric polynomial of the same degree that we may write as

f (q, p) =
∑

|k|≤s
ck(p) exp(i〈k, q〉)

with coefficients ck(p) that are homogeneous polynomials in p1/2. The square root
is a little unpleasant, because it introduces a singularity. This often makes cartesian
coordinates more useful. The normal form is expanded as a series of trigonometric
polynomials that contain only Fourier harmonics 〈k, q〉 with k ∈Mω , i.e.,

Zs(q, p) =
∑

k∈Mω , |k|=≤s
ck(p) exp

(

i〈k, q〉)

where, again, ck(p) are homogeneous polynomials of degree s in p1/2.

4.5 First Integrals and Action-Angle Variables

The Lie transform formalism allows us to considerably simplify the search for first
integrals.

Proposition 6 The Hamiltonian H = H0 +H1 + . . . with H0 linear in the actions
possesses n− dim(Mω) formal first integrals of the form

�(p, q) = �0(p)+�1(p, q)+ . . . , �0(p) = 〈μ,p〉 , 0 �= μ ⊥Mω .

which are independent and in involution.

The construction goes as follows: find the first integrals of Z; then prove that
every first integral for Z generates a first integral for H that inherits the properties
of independence and involution.

Let �0 = 〈μ,p〉 with 0 �= μ ∈ R
n, that we want to satisfy {�0, Z} = 0. Writing

Z =∑k∈Mω
ck(p) exp

(

i〈k, q〉) calculate

{�0, Z} = −i
∑

k∈Mω

〈k, μ〉 ck(p) exp
(

i〈k, q〉) ,
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which is zero if μ ⊥Mω . Therefore there are n− dim(Mω) such functions which
are independent. Moreover Z itself is a first integral which is independent of the
ones so found in the resonant case, since Z will typically depend also on the angles.
In general there are no further independent first integrals unless Z has a very special
form.

We may now see that � = Tχ�0 = �0 +�1 + . . . is a first integral for H . For
by the properties of the Lie transform operator Tχ we have

{�,H } = {Tχ�0, TχZ} = Tχ {�0, Z} = 0 ,

i.e., � = Tχ�0 is a first integral of the wanted form. The n − dim(Mω) first
integrals so found are obviously independent. They are also in involution. For, let
�0 = 〈μ, I 〉 and �′0 = 〈μ′, I 〉 be independent. Then {�,�′} = {Tχ�0, Tχ�

′
0} =

Tχ {�0,�
′
0} = 0.

In the non resonant case, dim(Mω) = 0, the condition ∂ωZ = 0 of normal form
implies that ∂Z

∂q
= 0, i.e., we have Z = Z(p1, . . . , pn). Then the system is formally

integrable: p1, . . . , pn are first integrals, and are the action variables. Moreover,
the normal form is formally expanded in power series of p (powers of p1/2 entail
a dependence on the angles). Thus, Z1 = Z3 = . . . = 0. The usual description
of the dynamics applies in this case. The phase space is foliated into invariant tori
parameterized by p1, . . . , pn, carrying quasi periodic motions with frequencies

"(p) = ω + ∂Z2

∂p
(p)+ ∂Z4

∂p
(p)+ . . .

Thus, generically, the dynamics of the normal form is not isochronous.
Let us now come to the resonant case, 0 < dim(Mω) = r < n, which is more

intriguing. As we have seen, the normal form depends on the actions p and on the
combinations of the angles 〈k, q〉 with k ∈M, i.e

Z(p, q) = 〈ω,p〉 + Z1
(

p1, . . . , pn, 〈k(1), q〉, . . . , 〈k(r), q〉
)+ . . .

For r = 1 the Hamiltonian Z possesses n − 1 independent first integrals which
are linear combinations of the actions p. Moreover, the Hamiltonian itself is a first
integral, and if Z(q, p) does depend on q then it is independent of the previous first
integrals. Therefore the system is still Liouville-integrable.

A resonant system with dim(Mω) = r > 1 is not expected to be integrable,
except for very particular cases. However the first integrals may be used in order
to reduce the number of degrees of freedom by r . A general procedure is the
following. First, find a basis k(1), . . . , k(r) for Mω . That is, we should choose r
integer vectors in Mω which are independent, and satisfy the further property that
span

(

k(1), . . . , k(r)
) ∩ Z

n =Mω . Denote by

⎛

⎜

⎝

k1,1 k1,2 . . . k1,n
...

... . . .
...

kr,1 kn−r,2 . . . kr,n

⎞

⎟

⎠
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the matrix whose lines are the vectors of the basis. Then the matrix can be completed
with integer entries in the form

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

k1,1 k1,2 . . . k1,n
...

... · · · ...

kr,1 kn−r,2 . . . kr,n

m1,1 m1,2 . . . m1,n
...

... · · · ...

mn−r,1 mn−r,2 . . . mn−r,n

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, detM = ±1

Such a matrix is said to be unimodular. The interesting fact is that it provides a linear
transformation on a torus that preserves all periods.

Apply the canonical transformation with generating function S(I, q) = 〈I,Mq〉,
i.e.,

ϕ = Mq , p = M"I .

Then the Hamiltonian is transformed as

H0(I) = 〈ω′, I 〉 , Zs(I, ϕ) = Zs(I1, . . . , In, ϕ1, . . . , ϕr ) ,

ω′ = Mω = (0, . . . , 0, ω′n−r+1, . . . , ω
′
n) .

The Hamiltonian turns out to depend only on the resonant angles ϕ1, . . . , ϕr . Hence
the actions Ir+1, . . . , In are first integrals that may be considered as parameters,
and we may forget H0(In−r+1, . . . , In), which is constant. We conclude that the
dynamics is determined by the family of reduced systems of r < n degrees of
freedom with Hamiltonian

Z(I1, . . . , In, ϕ1, . . . , ϕr ) = Z1(I1, . . . , In, ϕ1, . . . , ϕr )+Z2(I1, . . . , In, ϕ1, . . . , ϕr )+ . . .

parameterized by the initial values of the constants Ir+1, . . . , In. However, the latter
Hamiltonian, in general, is not a perturbation of an integrable system: its dynamics
may well be chaotic, typically over a slow time scale.

A last caveat: we should never forget that all claims made in this section are
just formal: we still lack a discussion of the (non) convergence of the normal form.

4.6 The Dark Side of Small Divisors

Let us now come to the problem of convergence of the normal form of Poincaré–
Birkhoff. To this end, let us associate again to the frequency vector ω the non
increasing sequence {αr }r>0 defined as

αr = min
0<|k|≤rK(|〈k, ω〉|) . (13)
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The trouble here is that the naive argument concerning the accumulation of divisors
illustrated at the beginning of Sect. 3.5 fully applies to the present case. For, looking
at the recurrent formulæ (11) and (12) we see that the following happens: the
generating function χr appears to have the divisors α1 · · ·αr , which cause the norm
to grow as a factorial. One may hope that a kind mechanism similar to that of
the algorithm of Kolmogorov applies, thus leading again to a kind accumulation
of divisors, but no such mechanism has been discovered.

Thus, there is a strong suggestion that the normal form of Poincaré–Birkhoff does
not converge. Indeed, Siegel in 1941 proved that the normal form is generically
non convergent [63]: in a suitable topology on the space of Hamiltonians in the
neighbourhood of an equilibrium divergence occurs in the majority of cases, and
the divergent Hamiltonians are dense. Things are actually quite complicated, since
in a different topology the set of Hamiltonians with a convergent normal form is
also dense.

The mechanism of divergence has been investigated by Contopoulos,
Efthymiopoulos and the author [13, 19] on the basis of some considerations on
maps in [62]. The conclusion was that the estimates of accumulation via diophantine
inequality are close to optimal.

In view of divergence one may be tempted to reject all methods based on the
normal form of Poincaré–Birkhoff—a conclusion in sharp contrast with the old
standing tradition of Celestial Mechanics, quite successful in describing many
phenomena. But there is a much better attempt, already suggested by Poincaré:
exploit the asymptotic character of perturbation series.

4.7 Old Fashioned Numerical Exploration

At the dawn of numerical simulations of dynamics, between 1955 and 1960, the
method of Poincaré section has been used in order to visualize the dynamics of
systems of two harmonic oscillators with a cubic nonlinearity, a simple model that
may describe the dynamics of stars in a Galaxy. Many such studies have been
performed by Contopoulos, who also had the idea of calculating the so called third
integral (to be added to the energy and the angular momentum) by a series expansion
similar to that obtained via the Poincaré–Birkhoff normal form, and to compare the
results with the Poincaré section [11]. The series had to be truncated at low order,
of course, due to the limited power of computers available at that time. The aim of
this section is to perform a similar comparison paying attention to aspects related to
the convergence of the series.

The starting point is nothing but the traditional one: truncate the expansions at a
finite order, r ≥ 1 say (degree r + 2). That is, get a truncated normal form

H(r) = 〈ω,p〉 + Z1(p)+ . . .+ Zr(p)+ F (r)(p, q) ,
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with F (r) a non normalized remainder of order at least r . This is done by
constructing the Lie triangle up to the r-th line, and so a truncated generating
sequence {χ1, . . . , χr }. The problems connected with resonances appear here in a
weak form: only resonances 〈k, ω〉 = 0 with |k| ≤ r + 2 should be avoided, or
taken into account by constructing a resonant normal form. Having determined the
generating sequence, we are able to construct a truncated first integral, e.g.,

�(r) = Il +�1(p, q)+ . . .+�r(p, q)

taking as Il one of the actions (or a combination adapted to the resonance).
As a model problem, let us consider the Hamiltonian

H = ω1

2
(x2

1+y2
1)−

ω2

2
(x2

2+y2
2)+x2

1x2−1

3
x3

2 , ω1 = 1, ω2 =
√

5− 1

2
. (14)

Note that the frequencies here have different signs, which makes the model
reminiscent of the case of triangular equilibria of the planar restricted problem of
three bodies: the energy integral can not be used as a Lyapounov function in order
to assure stability.

The Poincaré section on the energy surface E = 0.0025 is calculated by setting
x1 = 0, and the result is reported in Fig. 4. One will remark that a stable region
exists close to the origin, that can be investigated by constructing a suitable first
integral. The region is bounded by the separatrices of an unstable periodic orbit.

Fig. 4 The Poincaré section
for the Hamiltonian (14) on
the energy surface
E = 0.0025
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There are also three separated islands outside the region represented here, which are
not described by our normal form.

The comparison with the first integral is not difficult. Choosing a point (x2, y2)

on the section plane, with x1 = 0, the value y1 is found by solving the equation
H(0, y1, x2, y2) = E, thus giving y1(x2, y2). Then one replaces these values in �,
thus getting a function �(0, y1(x2, y2), x2, y2) of two variables. If � is a true first
integral (e.g., in case of convergence) then the level lines of the functions should
describe the Poincaré section of the orbit.

The comparison between the Poincaré section and the level lines of
the first integral is represented in Figs. 5 and 6, for truncation orders
5, 9, 12, 24, 38, 45, 60, 70. It goes without saying that an expansion up to order
70 has been made possible thanks to the increased power of computers, compared
to the ones available in the sixties: the calculation has been performed on a desktop
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Fig. 5 Comparison of the Poincaré section of the Hamiltonian (14) with the level lines of the first
integral, truncated at different orders
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Fig. 6 Continuation of Fig. 5

computer around 1997. One sees that there is a good (visual) coincidence of the
curves close to the origin, with some global improvement up to a truncation order
24 where singularities non dramatically far from the unstable orbit seem to show
up. But a further increase of the truncation makes the region of correspondence to
gradually shrink, suggesting that its size will reduce to zero for r → ∞. This is
precisely the expected behaviour of an asymptotic series.

4.8 Qualitative Description of Dynamics

A description of the dynamics in terms of truncated first integrals is based on the
following considerations. Pick r ≥ 1, and consider the truncated first integral

�(r) = Il +�1 + . . .+�r . (15)
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A combination of the actions may be taken in the resonant case. It is easily checked
that by construction we have

�̇(r) = −{H1,�r } ,
which is a polynomial of degree r + 3. For a Hamiltonian with a full power series
expansion we get a series starting with terms of degree r + 3.

Consider now a domain of initial data which is a polydisk of radius � centered at
the origin, namely

#� =
{

(x, y) ∈ R
n : x2 + y2 ≤ �2} .

Suppose for a moment that (by some unexpected miracle) �(r) is an exact first
integral, so that it keeps its initial value during the evolution. Recall, however, that
we are usually able to observe only the action Il : determining hopefully better
quantities that may be calculated by perturbation methods is a more difficult task.
But from (15) we know that in the domain #� we have

∣

∣�(r)(x, y)− Il
∣

∣ < Dr�
3 ,

with some constant Dr depending on the truncation order. In other words, the torus
�(r)(x, y) = constant appears in the original variables x, y as a deformed torus
carrying a quasiperiodic motion. Therefore the value of Il(t) will actually oscillate
in a strip of width Dr�

3, and its evolution will be quasiperiodic, as illustrated in the
upper part (a) of Fig. 7.

Fig. 7 Illustrating the effect
of the deformation and of the
noise
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But �(r)(x, y) is not exactly constant. Therefore we can say only that (by the
triangle inequality)

∣

∣Il(t)− Il(0)
∣

∣ <
∣

∣Il(t)−�(r)(t)
∣

∣+ ∣∣�(r)(t)−�(r)(0)
∣

∣+ ∣∣�(r)(0)− Il(0)
∣

∣

with

∣

∣�(r)(t)−�(r)(0)
∣

∣ ≤ |t| · ∣∣�̇(r)
∣

∣ < t · Cr�r+3 ,

with some constant Cr depending on the order of truncation. We conclude that
I (t) oscillates in a strip whose width increases very slowly, with a slope O(�−r ),
being also subjected to a noise that is superimposed to the quasiperiodic motion, as
illustrated in the lower part (b) of Fig. 7. The effect of the noise can not be predicted,
and induces small, possibly chaotic deviations with respect to the quasiperiodic
evolution.

These considerations force us to accept the idea that stability may occur only for
a long time, but not forever. This will be discussed in detail in the next section.

5 Long Time Stability

When discussing stability the most common reference is the theory of Lyapounov,
paying particular attention to stability of an equilibrium. But for a physical system
that evolves equilibrium is an exceptional state. We need a more refined approach
that takes into account at the same time the existence of action variables for an
integrable system and the lack of integrability introduced by a small perturbation.

We may reformulate the problem of stability as follows:

Prove that the actions I satisfy an inequality such as

∣

∣I (t) − I (0)
∣

∣ < εb for |t| ≤ T (ε) (16)

with T (ε) large, in a sense to be made precise, and with some positive b < 1.

In the case of an elliptic equilibrium the role of the perturbation parameter ε is
played by the size � of the neighbourhood of the equilibrium.

The latter formulation is particularly suited to the case of the Solar System.
The actions are (in rough but essentially correct terms) the semimajor axes, the
eccentricities and the inclinations of the orbits. The angles are the mean anomaly
(related to an area according to the second Kepler’s law), the argument of the
perihelion and the argument of the node. For the development of life it is essential
that the semimajor axes, the eccentricities and the inclinations do not change too
much for a substantial fraction of the life of the Solar System itself. The question is:
Does our model of the Solar System account for such a long stability time?
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5.1 A Note on the Concept of Stability

Different approaches to the problem of stability of perturbed, near to integrable
systems have been developed. The basic question is expressed by (16). The
dependence of T (ε) on the size of the perturbation makes the difference.

(i) T (ε) � 1/ε: adiabatic invariants. This is essentially the theory of Lagrange
for the Solar System, related to the method of averaging. It could be noted
that this concept has played a major role in the development of Quantum
Mechanics.

(ii) T (ε) � 1/εr with r > 1: complete stability. It was introduced by Birkhoff [6]
for the dynamics around an equilibrium, as we have said in Sect. 4.8. It is based
on a bound of type Cr�r+3 on the noise, with some undetermined constant Cr
depending on r .

(iii) T (ε) � exp(1/εa) with 0 < a ≤ 1: exponential stability. It has been proposed
by Moser [53] and Littlewood [47, 48] for an elliptic equilibrium. Its general
form has been developed by Nekhoroshev [55, 56].

(iv) T (ε) � exp
(

exp(1/εa)
)

with 0 < a ≤ 1: the superexponential stability. It
has been investigated by Morbidelli and the author [24, 52].

(v) T (ε) =∞: perpetual stability. It has been the dream of many mathematicians
and astronomers of the nineteenth century: to prove that the Newtonian model
of the Solar System is integrable. It is also the guiding idea of the theory of
Lyapounov [51].

5.2 Adiabatic Theory and Complete Stability

Let us recall that having fixed r ≥ 1 we may construct the normal form of the
Hamiltonian truncated at order r , namely.

H(r) = 〈ω,p〉 + Z1(p)+ . . .+ Zr(p)+ F (r)(p, q) , F (r) = O(εr+1) .

We may also construct truncated first integrals, e.g.,

�(r) = pl +�1(p, q)+ . . .+�r , �̇(r) = O(εr+1) .

Taking into account both the deformation and the noise we conclude

∣

∣p(t) − p(0)
∣

∣ = O(ε) for |t| ∼ 1

εr
.

For r = 1 this corresponds to applying the averaging method. The result is the
typical estimate of adiabatic theory: the actions remain almost constant for a time
of order 1/ε.
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The concept of complete stability corresponds essentially to performing a
higher order averaging. The result is qualitative. For instance, in the case of a
neighbourhood of size � of an elliptic equilibrium it may be reformulated as

∣

∣p(t)− p(0)
∣

∣ = O(�3) for |t| ∼ 1

�r
,

adding the usual claim that this is true for � small enough. In slightly more precise
terms, the size of the remainder should be estimated as

∣

∣F (r)
∣

∣ < Cr�
r+3 ,

with a constant Cr strongly affected by accumulation of small divisors and growing
very fast with r . Birkhoff did not try to estimate the dependence of Cr on r . The
natural question is: Can we make more precise and possibly improve the complete
stability of Birkhoff?

5.3 Exponential Stability

In order to be definite, let us assume a condition of non resonance. The resonant
case may be treated in a similar manner.

An estimate of the constant Cr may be found by implementing a scheme of
analytic estimates, as we did for the theorem of Kolmogorov. However, let us
avoid technical and boring calculations. The interested reader may find a detailed
exposition in [20] or [27]. In the case of Kolmogorov we have seen that the crucial
problem is the accumulation of small divisors coming both from the solution of
the homological equation and from Cauchy’s estimates for Lie derivatives. As we
have already remarked in Sect. 4.6 the function χr of the generating sequence is
expected to have a product α1 · · ·αr of divisors, with the sequence of α’s defined
by (13). Let us assume a diophantine condition on the frequencies, i.e., αr ∼ r−τ
with τ > n − 1. Hence we may guess that the constant Cr may be replaced by
Cr(r!)a with a constant C not depending on r and with a > τ , in order to account
for the estimate of Lie derivatives. So it is, indeed, and one may also find a = τ +1.

Accepting the argument above, the remainder of the normal form (forgetting
unessential constants) is estimated as

F (r) ∼ (r!)aεr+1 .

The estimate depends on two quantities: (i) ε, given by Nature, and (ii) r , which is
our choice. It would be desirable to remove our arbitrary choice of r . To this end, for
a given ε let us look for the best choice of r , in the sense that the remainder F (r) is
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reduced to a minimum. Write the right hand side as (r!)aεr = raε · ((r − 1)!)aεr−1,
and remark that it clearly takes a minimum for

r = ropt = (1/ε)1/a .

Using Stirling’s formula calculate

(ropt!)aεropt ∼
( ropt

e

)aropt
εropt ∼ exp

[

−a
(

1

ε

)1/a
]

.

The latter estimate depends only on ε, as wanted. Hence for a given ε we get the
estimate

∣

∣p(t)− p(0)
∣

∣ = O(ε) for |t| ∼ exp

[

a

(

1

ε

)1/a
]

,

a time exponentially long with a power of 1/ε. This is the exponential stability.
Littlewood commented: “If not eternity, this is a considerable slice of it.”

5.4 Using Computer Algebra

The argument of the previous section may be implemented numerically using a
suitable package of algebraic manipulation. The aim is to obtain good stability
estimates by using the truncated first integrals explicitly constructed. I will illustrate
the procedure for the case of an elliptic equilibrium, also giving an explicit example.

Suppose that we have constructed the normal form according to the algorithm of
formulæ (11) and (12), up to some order r . Then we may also construct truncated
first integrals �(r) = Il + �1 + . . . + �r , with Il = (x2

l + y2
l )/2, which are

polynomials of degree r+2. All this may be done, e.g., with the same program used
for Figs. 5 and 6.

The aim is to perform a numerical optimization of the order r . Consider a domain

#� =
{

(x, y) ∈ R
2n : Il(x, y) ≤ �2

2
, l = 1, . . . , n

}

,

namely a polydisk of radius � centered at the origin (the equilibrium). A preliminary
problem is to evaluate the supremum norm of polynomials in such a domain. This
can be done in different ways: the simplest one is to add up the absolute values of
the coefficients and multiply by a power �s if the polynomial is homogeneous of
degree s. A better method will produce better estimates of the time of stability, of
course.
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Take an initial point (x0, y0) ∈ #�0 . The orbit is subject to the combined effect
of deformation and noise, and can possibly escape from a larger disk #� after some
time. We want to establish an estimate such as ϕt(x0, y0) ∈ #� for |t| ≤ τ (�0, �)

for �0 < �. To this end let us recall the inequality

∣

∣I (t) − I (0)
∣

∣ ≤ ∣∣I (t)−�(r)(t)
∣

∣

︸ ︷︷ ︸

δr (�)

+∣∣�(r)(t)−�(r)(0)
∣

∣+ ∣∣I (0)−�(r)(0)
∣

∣

︸ ︷︷ ︸

δr (�0)

,

δr (�) = sup
#�

∣

∣�(r)(x, y)− Il(x, y)
∣

∣ ,

which holds true provided I (t) < �2/2. The quantities δr(�0) and δr(�) measure
the deformation, of order �3, that can be determined using the estimate of the
supremum norm, since we know the expansion. The quantity

∣

∣�(r)(t) − �(r)(0)
∣

∣

is the contribution of the noise, that is estimated as

∣

∣�(r)(t)−�(r)(0)
∣

∣ < |t| sup
(x,y)∈#�

∣

∣�̇l(x, y)
∣

∣ .

For given �0, � let

Dr(�0, �) = �2 − �2
0

2
− δr (�)− δr(�0) .

This is the quantity left for diffusion. In view of δr (�) ∼ �3, the qualitative
behaviour of the function Dr(�0, �) is as represented in the upper left panel of
Fig. 8. The allowed interval for � is determined by the compatibility condition
Dr(�0, �) ≥ 0.

Using all the first integrals available, the escape time from #� is then estimated
to be not less than

τr (�0, �) = min
l=1,...,n

Dr(�0, �)

sup(x,y)∈#�

∣

∣�̇(r)(x, y)
∣

∣

(17)

The qualitative graph of the denominator of the latter expression is represented in
the right upper panel of Fig. 8: it grows as fast as r!�r+3, thus strongly depending
on r .

The estimate (17) depends on r, �0 and �, and we want to optimize it against r
and �. That is: to look for an optimal estimate

T ∗(�0) = max
r

sup
�
τr (�0, �) .

depending only on the initial radius �0.
The qualitative behaviour of the function τr (�0, �) for a fixed r is represented

in the left lower panel of Fig. 8. It has a maximum in the allowed interval of � at
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T ∗( 0)

Fig. 8 Illustrating the scheme of calculation of the optimal stability time
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ln ρ0
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lnT*(ρ0)

Fig. 9 The expected behaviour of the optimal stability time as a function of the initial radius �0 ,
in log-log scale

a point �opt with a corresponding value T ∗r (�0) which represents the best estimate
of the time for a given r . The last step is the optimization against r . In view of the
asymptotic character of the series the values T ∗r (�0) are expected to distribute as
in the right lower panel of Fig. 8, thus allowing us to select an optimal value ropt
for r corresponding to the maximum and depending only on �0, as requested. The
wanted value T ∗(�0) is the maximum so found, to which an optimal value �opt is
associated.

The qualitative behaviour of T ∗(�0) is represented in Fig. 9, in log-log scale.
According to the behaviour of a function such as r!�r it is expected that there is
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a decreasing sequence �1, �2, �3, . . . of values of � which mark an increase of
the optimal order ropt. Here, �1 plays the role of a threshold above which nothing
useful is provided by perturbation methods: the perturbation is too big. Conversely,
in every interval [�r , �r−1] the estimated stability time grovs as �−r , as represented
in Fig. 9. The resulting graph is a sequence of segments with increasing slope for
�→ 0. The exponential behaviour of the estimated stability time is actually a lower
bound to the sequence of segments.

The method illustrated here can be adapted to the study of stability in a
neighbourhood of an invariant torus: it is just matter of using a scheme of algebraic
manipulation adapted to that case. Once the generating sequence of the normal form
is constructed, the procedure is the same. As a last remark, the numerical estimates
of the stability time may be increased if one accepts to work in the coordinates
of the normal form. This removes the need of taking into account the deformation
of coordinates. The domain of stability turns out to be a deformed disk, but the
procedure is correct.

5.5 An Application to the Sun–Jupiter–Saturn–Uranus system

Some applications of the method above are available in the literature. E.g., applica-
tions to the case of the triangular Lagrangian equilibria in the case of the Sun–Jupiter
system have been worked out in [9, 25] and [18]; while applications to the Sun–
Jupiter–Saturn system can be found in [28, 50] and in [61], where also Uranus
is considered. Here I report the results for the case of the Sun–Jupiter–Saturn–
Uranus system [29], investigating the long time stability in a neighborhood of an
invariant KAM torus which approximates very well the secular orbits. Specifically,
we consider a planar secular model that can be regarded as a major refinement of
the Lagrange-Laplace theory.

Hereafter, I only sketch the procedure, referring to [29] for a detailed exposition.
First the Hamiltonian is expanded in Poincaré variables. In our calculations we
truncate the expansion as follows. The Keplerian part is expanded up to the quadratic
terms in the fast actions, while the perturbation, due to the mutual interactions
between the planets, include: (i) the linear terms in the so-called fast actions, (ii) all
terms up to degree 18 in the secular variables, (iii) all terms up to the trigonometric
degree 16 with respect to the fast angles. Our choice of the limits allows to include
the effects of near mean-motion resonances (5:2 Jup.–Sat., 7:1 Jup.–Uran., 7:5:3
Jup.–Sat.–Uran.).

Then, following the approach described in [50], we perform two “Kolmogorov-
like” normalization steps so as to remove the main perturbation terms depending on
the fast angles. This allows us to improve the classical circular approximation, by
replacing it with a solution that is invariant up to order two in the masses.

The secular Hamiltonian is then obtained just by averaging over the fast angles.
After the diagonalization of the quadratic part, the Hamiltonian essentially describes
a system of three perturbed harmonic oscillators. Thus, we can construct a secular
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Fig. 10 The optimal normalization order (left panel) and the estimated stability time (right panel)
for the planar Sun–Jupiter–Saturn–Uranus system (figure from [29])

invariant KAM torus near an elliptic equilibrium and compute the estimated stability
time in a neighborhood of that torus. The actual implementation consists in the
explicit computation of the Kolmogorov normal form (up to order 5), followed by a
high-order Birkhoff normalization via an iterative scheme of estimates. Finally the
stability time is numerically estimated.

The result is reported in Fig. 10. In the left panel the value of ropt is reported as a
function of �0. In the right panel we report the estimated stability time as a function
of the initial distance �0 from the invariant KAM torus.

The ideal goal is to show that there is a neighborhood of that torus for which
the estimated stability time is larger than the lifetime of the Solar System. In our
result, the actual size of such a neighborhood, compared with the uncertainties of
the astronomical observations, is about ten times smaller.

6 A Considerable Slice of Eternity

The last section is devoted to an informal exposition of the theorem of Nekhoroshev
on exponential stability and of its extension named superexponential stability.

The theorem of Nekhoroshev may be seen as the global version of the exponential
stability discussed in Sects. 4 and 6.5. The results in the previous sections are
local, being concerned with a neighbourhood of either an elliptic equilibrium or
an invariant torus. The theory of Nekhoroshev investigates the stability of dynamics
in a possibly large open set of the phase space; more precisely in an open set of the
actions domain.

The theory of superexponential stability aims at showing that the stability time
may be much longer than exponential.
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6.1 Back to the General Problem of Dynamics

Let us consider a Hamiltonian

H(p, q) = h(p)+H1(p, q)+H2(p, q)+ . . . , (p, q) ∈ G × T
n ,

where Hs = O(εs) is a trigonometric polynomial of degree sK for some K > 0.
As already observed, every holomorphic perturbation may be cast in this form.

We have learned that for such a system first integrals do not exist (the theorem
of Poincaré), because the divisors 〈k, ω(p)〉 are not constant, and resonances are
dense. However, the example of Sect. 2.3 shows that truncated first integrals may
be constructed in suitable domains. On the other hand, the local theory of normal
form applies also in case of resonance. These ideas are exploited in the theory of
Nekhoroshev.

We proceed in two steps, named analytic part and geometric part. In the analytic
part a local result in a region around given resonances is found; it sheds some
light on the local behaviour of orbits, but is unable to provide a global description.
The geometric part makes the picture global by introducing a clever geography of
resonances.

6.2 Local Analytic Results

We need a definition. A non-resonance domain is an open subset V of the action
space G characterized by:

(i) a given resonance module M ⊂ Z
n, with 0 ≤ dimM < n;

(ii) a non resonance condition on V : for some r ≥ 1 we want

|〈k, ω(p)〉| > α for all p ∈ V , k ∈ Z
n \M and |k| ≤ rK .

The non resonance condition assures that a normal form up to order r can be
constructed in the domain V . The normal form will be either the non resonant or the
resonant one, depending on the resonance module M. Therefore we may construct
a Hamiltonian in normal form

H(r)(p, q) = h(p) + Z1(p, q)+ . . .+ Zr(p, q)+ F (r)(p, q) ,

Zs(p, q) =
∑

k∈M , |k|≤sK
zk(p)e

i〈k,q〉 , F (r) = O(εr ) .

The construction is the same as for a neighbourhood of an invariant torus, the
only difference being that the frequencies ω(p) = ∂H0

∂p
do depend on the actions.

However, the presence of zero divisors is excluded in the non resonance domain V .
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p

ΠM(p)

Fig. 11 The dynamics inside a non resonance domain

The Hamiltonian H(r) − F (r) possesses n− dimM independent first integrals

�(p) = 〈λ, p〉 with λ ⊥M .

The intersection $M of the planes 〈λ, p〉 = c, that we name resonant plane,
is invariant for the flow of H(r) − F (r). However we must take into account the
deformation induced by the transformation to normal form, and also the (very slow)
noise induced by the perturbation. Thus we formulate a local stability lemma: the
orbit lies in a cylinder of radius δ(ε) around the resonant plane for a time O(1/εr )
unless it leaves the domain V through a base of the cylinder (the intersection with
the border of V).

The meaning is illustrated in Fig. 11. The initial point p determines the resonant
plane $M(p) that is invariant in the coordinates of the normal form. Due to defor-
mation, in the original coordinates the orbit is confined in a small neighbourhood of
the invariant plane; call it a cylinder. The flow due toH(r)−F (r) causes a fast drift
along the plane; the noise induces a slow drift, possibly transversal to the plane, that
makes the size of the cylinder to grow during time: see the description of dynamics
in Sect. 4.8.

An escape due to noise may occur only after a long time. However, an escape due
to fast drift may well occur in a time 1/ε. The question is: what happens if the orbit
leaves V? An escape could cause a diffusion of the orbit inside the action domain G.

Diffusion may actually be generated by two different mechanisms. The first one
is due to a channel of diffusion, which may appear if a resonant plane coincides
or is too close to the manifold 〈k, ω(p)〉 = 0. The second mechanism is the so
called overlapping of resonances, illustrated in Fig. 12. The fast drift along the
resonant plane may drive the orbit inside a different non resonance domain, where
it can follow a different resonant plane, and so on. The latter mechanism has been
identified a long time ago as the responsible of chaos [10, 12]. Nowadays it can be
observed in many nice figures representing some parameter that characterizes chaos
or diffusion. A stability result should avoid such situations, at least for resonances
of not too high order.
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V
V

p

ΠMΠM

Fig. 12 Illustrating the mechanism of overlapping of resonances that may drive an orbith through
different non resonance domains, thus causing diffusion

ZM
ZM

ZM∪M

ΣM

ΣM

Fig. 13 Resonant manifolds and resonant zones. For two resonance modules M and M′ of
dimension 1 the resonant manifolds are actually two curves. The intersection between the two
curves (a point in the figure) is the resonant manifold associated to the resonance module M∪M′.
The resonant zones of multiplicity 0 is the whole domain G. The resonant zones of multiplicity 1
associated to M and M′ are the light grey strips around the corresponding resonant manifolds.
The resonant zone of multiplicity 2 associated to M ∪M′ is the dark grey square

6.3 Geography of Resonances

My aim now is to illustrate in a not too technical form the geometric part of the
theorem of Nekhoroshev. The definitions here are of a general character. What is
omitted is the part concerning the choice of parameters that determine the size of
different parts. A reader who is looking for a detailed proof in a reference that uses
the same scheme and language of the present notes may see, e.g., [26] or [21].

The backbone of the geography of resonance is provided by the resonant
manifolds (see Fig. 13) Pick a positive integer N , and select all resonance modules
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M, of any dimension s = dimM, that contain s independent integer vectors with
|k| ≤ N . To every resonance module associate a resonant manifold

�M = {p : 〈k, ω(p)〉 = 0 for k ∈M}

.

The number of resonance modules satisfying the condition above is clearly finite;
therefore the structure of resonant manifolds is not dense. Around a resonant
manifold we select a strip of width βs increasing with s = dimM. The increase
of βs with the multiplicity allows us to avoid overlapping of resonances, as will be
explained later. We define a resonant zone associated to M as

ZM = {p : |〈k, ω(p)〉| ≤ βs for k ∈M , |k| ≤ N
}

.

Let us say that the resonant zone has multiplicity s = dimM.
A resonant block of multiplicity s is constructed by taking out from a zone

everything that belongs to a zone of multiplicity s + 1. I.e., if s = dimM then

BM = ZM \ Z∗s+1 , Z∗s+1 =
⋃

dimM′=s+1

ZM′ .

Remark that a block of multiplicity s has empty intersection with every block of
multiplicity s + 1, but its intersection with blocks of multiplicity larger than s + 1
may well be non empty (see Fig. 14).

B{0}BM

B{0}

B{0} BM

B{0}

BM

B{0} ∩ ZM∪M

ΣM

ΣM

BM

ZM∪M

Fig. 14 Resonant blocks. From every zone of multiplicity s subtract the part belonging to a zone
of multiplicity s + 1. E.g., B{0} is the whole domain minus the light grey cross of the zones of
multiplicity 1 in Fig. 13; BM is the zone ZM minus the dark grey square of multiplicity 2; BM∪M′
is the dark grey square. The dashed region belongs to both B{0} and BM∪M′ , but not to a zone of
multiplicity 1
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The structure of the resonant block is a good basis for constructing the non
resonance domains requested by the analytic part of the theory. For, we know
exactly which resonances are inside the block, by construction of the zones, and
resonances not belonging to the module M associated to the block have been
excluded. However, the clean structure of the blocks conflicts with the dynamics
(and with the restrictions of domains requested by analytic estimates, that I do not
take care of here). Hence we should continue our construction making the structure
of blocks somehow fuzzy.

Let p ∈ BM be a point of an orbit. The analytic lemma tells us that we should
take into account the fast drift along the plane, with a possible creation of diffusion
channels. This is what can not be excluded and is likely to happen if the resonant
plane and the resonant manifold are too close. In order to avoid such a situation
the unperturbed Hamiltonian H0 must satisfy a suitable condition that guarantees
a separation between the two manifolds (see Fig. 15). In the original paper of
Nekhoroshev such a condition was identified with steepness (roughly: a tangency of
finite order between �M and $M(p)). Other proofs require the more manageable
condition of convexity, that implies transversality, or at least convexity on the energy
surface.

This is not enough, however. The analytic lemma also claims that in the original
coordinates (that we are using in our construction) we must take into account the

ΣM

ΣM

ZM∪M

BM

BM

BM

BMB{0}

B{0}

B{0}

B{0}

ΠM (p )

ΠM (p )

ΠM(p)

p
p

p

Fig. 15 Resonant planes, cylinders and extended blocks. Through every point of the domain we
draw the resonant plane parallel to the resonance module M. Next we add a strip of width δs
around the resonant plane and intersect it with the corresponding zone. This makes a cylinder.
E.g., the cylinder around a point inside the non resonant block B{0} is actually disk. The union of
cylinders constructed around all points of a block makes an extended block
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deformation and the noise. Therefore we enlarge the plane with a strip of width δs ,
depending on the multiplicity of the resonance, and associate to every pointp ∈ BM
of a given block a cylinder of width δs defined as

CM,δs (p) = $M,δs (p) ∩ ZM , $M,δs (p) =
{

p′ ∈ R
n : dist

(

p′,$M(p)
) ≤ δs

}

.

Remark that the cylinder lies inside a single resonance zone, due to the intersection:
the bases coincide with the border of the zone. However, it may overlap a zone of
higher multiplicity (see Fig. 15). The latter case is harmless provided the condition
of non overlapping of resonances holds true: cylinders with different resonant
modules and same multiplicity should have empty intersection. This is assured
by the property of convexity (or steepness) together with a suitable choice of the
parameters βs and δs , that should be increasing fast enough with s. I will not enter
the details of such a choice, that may be found in published papers.

Finally, all cylinders around every point of a given block are collected together
in an extended block. Formally, we define

BM,δs =
⋃

p∈BM

CM,δs (p) .

The extended blocks are the domains of non resonance required by the analytic
part of the theory: inside an extended block there are known resonances, and
the intersection of blocks of the same multiplicity is empty. The fact that blocks
of different multiplicity may have a non empty intersection makes the painting
definitely fuzzy, but this is unavoidable due to the dynamics.

Thus, we should exploit the property of convexity (or steepness) making a
choice of the parameters βs (the width of the resonant zones) and δs (the width
of the cylinders) so as to satisfy the request of non overlapping of resonance. All
parameters must be defined in terms of the perturbation ε, and decrease to zero
with it.

6.4 Confinement of Orbits and Exponential Stability

Let us now come to the final argument of the proof, that I illustrate making reference
to Fig. 16. As stated by the analytic lemma, an orbit with initial point on a block
moves inside the corresponding cylinder, thus wandering inside the extended block.
Recall that the fast drift has velocity O(ε). Conversely, the motion due to the noise
is slow, with velocity O(εr ). Therefore the orbit may leave a cylinder in a time less
that O(1/εr ) only through a base, but in that case it must enter a zone of lower
multiplicity.

The latter remark has far reaching consequences: an orbit remains confined in a
cylinder for an exponentially long time. Let me illustrate the trace of the argument.
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Fig. 16 An orbit may visit
zones of different
multiplicity, but it remains
confined inside a cylinder of
minimal multiplicity

B{0}

BM

ΠM

An orbit may visit different zones, but there is a point p′ belonging to a
zone of minimal multiplicity. Now: the orbit with initial point p′ remains in the
corresponding cylinder up to a time ∼ 1/εr . The proof relies on a simple argument
by contradiction: assume that the orbit leaves the cylinder; then it must exit through
a base of the cylinder, thus entering a zone with lower multiplicity. This contradicts
the hypothesis that p′ was in the zone with minimal multiplicity. Thus we come to
the conclusion:

For every orbit we have

∣

∣p(t) − p(0)
∣

∣ < δ up to |t| ∼ 1

Crεr

where δ is the diameter of the largest cylinder.

The claim follows from analytical estimates according to which the size of the
remainder is ∼ Crε

r with Cr growing as a (power of a) factorial with r , as in the
case of an equilibrium.

It remains to make an optimal choice of a common normalization order r for
all extended blocks. Here we exploit the asymptotic character of the series, as in
the case of an elliptic equilibrium. Recalling that every extended block has his own
parameters βs and δs and a corresponding value of r , take the worst values among
them. Then the process of optimization is similar to that we have made for an elliptic
equilibrium.

Theorem 7 Let H = h(p) + εf (p, q, ε) be analytic in all variables in a domain
G × T

n, with G ⊂ R
n open, and let h(p) be a convex function. Then there exist

positive constants μ∗ and T ∗ such that the following statement holds true: if

μ∗ε < 1
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then for every orbit p(t), q(t) satisfying p(0) ∈ G one has the estimate

dist
(

p(t) − p(0)
) ≤ (μ∗ε)1/4

for all times t satisfying

|t| ≤ T ∗

ε
exp

[(

1

μ∗ε

)1/a ]

,

for some positive a depending on n, e.g., a ∼ 2n2.

6.5 Superexponential Stability

The stability of an invariant torus of Kolmogorov has been discussed in Sect. 4,
together with the stability of an elliptic equilibrium, using the normal for of
Poincaré-Birkhoff. The conclusion there was that one can prove exponential stability
in Nekhoroshev’s sense. My aim now is to show that the stability of an invariant
torus of Kolmogorov (or a strongly non resonant elliptic equilibrium) may be
definitely stronger than exponential. For definiteness, I will focus on the case of
a torus.

First, we should remind the theorem of Kolmogorov. Assuming that the frequen-
cies are diophantine, namely

∣

∣〈k, ω〉∣∣ > γ |k|−τ , 0 �= k ∈ Z
n , γ > 0 , τ ≥ n− 1 ,

the Hamiltonian is given a holomorphic normal form in the neighbourhood of the
torus

H(p, q) = 〈ω,p〉 +R(p, q) , R(p, q) = O(p2) .

The second step is the construction of the normal form of Poincaré-Birkhoff
in the neighbourhood of the torus. We should make a suitable expansion of the
Hamiltonian

H(p, q) = 〈ω,p〉 +H1(p, q)+H2(p, q)+ . . .

where Hs(p, q) is small of order εs in some norm. Moreover Hs(p, q) is at least
quadratic in p and a trigonometric polynomial of degree sK in the angles q . As
we have already seen, this can be done. The Poincaré-Birkhoff normal form up to a
finite order r is written as

H(r)(p, q) = 〈ω,p〉 + Z(r)(p)+ F (r)(p, q) .
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With analytic estimates and an optimal choice of r one finds that if
∣

∣R(p, q)∣∣ ∼ ε

then the perturbation becomes exponentially small, i.e.,

∣

∣F (r)(p, q)
∣

∣ ∼ exp
(− 1/ε1/n) .

The third step is the application of the theorem of Nekhoroshev in its general
form. Rewrite the Hamiltonian as

H(p, q) = h(p)+ F(p, q) , h(p) = 〈ω,p〉 + Z(r)(p) .

Here we must assume that h(p) satisfies the convexity condition. If so, then
the Hamiltonian has the form required by the theorem of Nekhoroshev, but with
an exponentially small perturbation. Thus, from the theorem of Nekhoroshev we
conclude

∣

∣p(t)− p(0)
∣

∣ ∼ exp
(− 1/ε1/n) for |t| ∼ exp

(

exp
(

1/ε1/n)) .

This is a local result of superexponential stability, first stated in [52].
A stronger version of the theorem may be found in [24]. The proof in this case

is definitely longer, and is inspired by the proof of the theorem of Kolmogorov
due to Arnold [3]. In [3] it is proved that in the phase space there exists a set of
invariant tori which are deformations of strongly non resonant unperturbed tori. The
difference with respect to the proof illustrated in the present lectures is that the result
is global, since it applies to an open set of the action space, and the existence of a
set of invariant tori with large measure is proved at once.

Superexponential stability follows by replacing the quadratic scheme used by
Arnold with the analytic part of the theorem of Nekhoroshev for a non resonant
domain. The starting point is, again, the general problem of dynamics, namely a
Hamiltonian system H(p, q) = h(p) + εF (p, q).

(i) Excluding from the action space all resonant zones of a finite order, less
than some N > 0, one is left with an open non resonant domain where the
Hamiltonian can be given a normal form similar to the one above, but with a
perturbation of size ε′ ∼ exp(−1/εa) with some positive a < 1. Thus, in the
open non resonant domain one has stability for a time ∼ exp(1/εa).

(ii) The step (i) is iterated infinitely many times by suitably increasing N , so
that at every step the perturbation is exponentially small with respect to the
previous step. Accordingly, the domain is reduced at every step by subtracting
the resonant zones created by the new resonances. Thus one finds a sequence
of boxed domains where one has stability for a time which is successively
estimated as

exp
( ∼ exp(1/εa)

)

, exp
(

exp
(

exp(1/εa)
)

)

, . . .

adding an exponential at every step.
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(iii) In the limit of infinitely many steps one finds a set of invariant tori (similar to
the one found by Arnold) wich has an open dense complement.

Thus, with respect to the result of Arnold, one adds the remarkable information that
the dynamics around the tori is frozen much more than exponentially.

7 A Final Question

In these notes I have presented a series of results from perturbation theory, organized
in a personal picture that starts from the discoveries of Kepler and ends with very
recent and current research. I included in particular the theorem of Kolmogorov on
persistence of invariant tori and the theories of exponential and superexponential
stability.

There is a big question that remains unanswered: does all this matter have some
significance for the stability of the Solar System or, more generally, of a planetary
system?

The theorem of Kolmogorov is hardly applicable to the whole Solar System, even
including only the giant planets and the internal planets: numerical simulations have
shown that a chaotic behaviour actually occurs [42, 43]. However, it constitutes the
skeleton that lies behind the flesh of theories about long time stability.

The theorem of Nekhoroshev is much more robust. First, the theorem does not
exclude a chatic behaviour: it says that chaos is confined for a long time in a small
region. Second, one can prove a version where a small time dependent perturbation
is allowed, not even periodic or quasi periodic [26]. Therefore, one may attempt to
take into account the action of small bodies as a generic and small time dependence.

Thus, a possible question is: can we prove that the theory of Nekhoroshev—
or some variant of it—is meaningful for a planetary system, possibly with suitable
limitations on its configuration?We have some suggestions in a few particular cases.
If we ask more then the answer, I think, is only: there is still a lot of work to be
done.

Oritur sol, et occidit, et ad locum suum revertitur, ibique renascens gyrat per meridiem, et
flectitur ad aquilonem . . .
. . . et proposui in animo meo quaerere et investigare sapienter de omnibus quae fiunt sub
sole. Hanc occupationem pessimam dedit Deus filiis hominum, ut occuparentur in ea.

(Qohelet)
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Appendix: A Short Overview on Lie Series Methods

Here I recall a few notions concerning Lie series and Lie transforms that are used in
the text. Throughout the appendix all functions will be assumed to be holomorphic.

Lie Series

For a given generating function χ(p, q) the Lie series operator is defined as the
exponential of the Lie derivative Lχ · = {·, χ}, namely

exp(εLχ ) =
∑

s≥0

εs

s!L
s
χ . (18)

This is actually the autonomous flow of the canonical vector field generated by
χ(p, q). The flow at time ε is used in order to produce a one-parameter family of
canonical transformations that is written as

p = exp(εLχ)p′ = p′ − ε
∂χ

∂q

∣

∣

∣

∣

p′,q ′
+ ε2

2
Lχ

∂χ

∂q

∣

∣

∣

∣

p′,q ′
− . . .

q = exp(εLχ)q ′ = q ′ + ε
∂χ

∂p

∣

∣

∣

∣

p′,q ′
+ ε2

2
Lχ

∂χ

∂p

∣

∣

∣

∣

p′,q ′
+ . . . ;

As an operator acting on holomorphic functions the exponential operator is
linear and invertible, and has the remarkable properties of distributing over
the products and the Poisson brackets of functions, i.e., exp(Lχ )(f · g) =
(

exp(Lχ )f
) · ( exp(Lχ )g

)

and exp(Lχ ){f, g} = {exp(Lχ)f, exp(Lχ )g}. The
inverse of exp

(

εLχ
)

is exp
(

εL−χ
)

, for the flow is autonomous.
The most useful property of the exponential operator has been named exchange

theorem by Gröbner [30]. It is stated (in a somehow puzzling form) as

f (p, q)

∣

∣

∣

p=exp(εLχ)p′,q=exp(εLχ)q ′
= exp(εLχ)f

∣

∣

∣

p′,q ′
.

The meaning is that an operation of substitution of a near the identity transformation
followed by an expansion on the parameter (left side) is replaced by a direct
application of the exponential operator to the function (right side): substitutions are
avoided.

The application of the operator to a function f (p, q) = f0(p, q) + εf1(p, q) +
ε2f2(p, q)+ . . . expanded in power series of the parameter ε is nicely represented
by the triangular diagram for Lie series of Table 4. Terms of the same order in ε are
aligned on the same row. Remark that the triangle is generated by columns: every
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Table 4 The triangular
diagram for Lie series

g0 f0

↓
g1 Lχ1f0 f1

↓ ↓
g2

1
2L

2
χ1
f0 Lχ1f1 f2

↓ ↓ ↓
g3

1
3!L

3
χ1
f0

1
2L

2
χ1
f1 Lχ1f2 f3

↓ ↓ ↓ ↓
g4

1
4!L

4
χ1
f0

1
3!L

3
χ1
f1

1
2L

2
χ1
f2 Lχ1f3 f4

↓ ↓ ↓ ↓ ↓
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

Table 5 The triangular
diagram for a generating
function of order ε2

g0 f0

↓
g1 · f1

↓ ↓
g2 Lχ2f0 · f2

↓ ↓ ↓
g3 · 1

2Lχ2f1 · f3

↓ ↓ ↓ ↓
g4

1
2L

2
χ2
f0 · Lχ2f2 · f4

↓ ↓ ↓ ↓ ↓
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

column may be calculated separately once the upper term is known. If the function
f is known, then the coefficients of the ε expansion of the transformed function
g = exp(Lχ )f are calculated by adding up all terms on the same line. The result
may be expressed by the formula

g0 = f0 , gs =
s
∑

j=0

1

j !L
j
χ1
fs−j , s ≥ 1 .

A generating function χ2 of order ε2 generates a similar triangle, which, however,
will contain many empty cells, as represented in Table 5.

A general formula for the transformation of a function with a generating function
of order εr is

g0 = f0 , . . . , gr−1 = fr−1 ,

gs =
k
∑

j=0

1

j !L
j
χr
fs−jr , k =

⌊ s

r

⌋

, s ≥ r
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Remark that the first change occurs at order r + 1.
Lie series operators of increasing order may be formally composed as follows.

Let χ = {χ1(p, q), χ2(p, q), . . .} be a sequence of generating functions of
increasing orders ε, ε2, . . . ; the composition is formally defined as

Sχ = . . . ◦ exp
(

Lχ3

) ◦ exp
(

Lχ2

) ◦ exp
(

Lχ1

)

We may also use the recursive definition of a sequence of operator S1, S2, S3, . . .

S1 = exp
(

Lχ1

)

, Sr = exp
(

Lχr
) ◦ Sr−1 ,

considering Sχ as the limit (in formal sense) of the latter sequence for r →∞.
Compositions of Lie series are unavoidable in view of the following property:

every near the identity canonical transformation of coordinates

p = p′ + ϕ1(p
′, q ′)+ ϕ2(p

′, q ′)+ . . . , q = q ′ + ψ1(p
′, q ′)+ ψ2(p

′, q ′)+ . . .

may be represented by a composition of Lie series. In general this is untrue for a
single Lie series. For this reason the composition of Lie series is often replaced
by the algorithm of Lie transform, introduced independently by Hori [34] and
Deprit [15]. The two methods are formally equivalent. However, the composition
of Lie series is in definitely better position as regards the convergence question (for
instance in the case of Kolmogorov’s theorem). If the reader tries to reformulate the
control of small divisors in the present notes using the Lie transform he or she will
likely fail.

An Algorithm for Lie Transform

Contrary to Lie series, Lie transform can be constructed in a number of different
ways. Here I present one of the formulations. Given a sequence {χ1, χ2, . . .} of
generating functions define the Lie transform operator as

Tχ =
∑

s≥0

Es (19)

with the sequence Es of linear operators recursively defined as

E0 = 1 , Es =
s
∑

j=1

j

s
LχjEs−j . (20)

The operator may be seen as a generalization of the exponential operator of Lie
series. A straightforward remark is that if we choose the generating sequence
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χ = {χ1, 0, 0, . . .} then Tχ = exp(Lχ1). Moreover Tχ has the same properties
of the exponential operator of Lie series: it is linear and invertible, and distributes
over products and Poisson brackets, i.e., Tχ (f · g) = Tχf · Tχg and Tχ {f, g} =
{Tχ f, Tχ g} for any pair f, g of functions. The inverse requires some care: it has an
elaborate expression which requires a second sequence of operators:

T −1
χ =

∑

s≥0

Gj , G0 = 1 , Gs = −
s
∑

j=1

j

s
Gs−jLχj . (21)

However, using the latter formula for an actual calculation is not recommended: we
shall see in a short a more effective method. The formula is useful for analytical
convergence estimates. It should be remarked that the inverse is not elementary
because the Lie transform may be interpreted as generated by the flow of a non
autonomous vector field, which can not be inverted by a mere change of sign of the
vector field (as it happens for Lie series). Precisely the latter idea is developed in the
paper of Deprit [15].

Finally, Tχ possesses the property expressed by the exchange theorem, namely

f (p, q)

∣

∣

∣

p=Tχp′,q=Tχ q ′
= Tχf

∣

∣

∣

p′,q ′
.

The scheme of application of Tχ may also be represented by a triangular diagram
similar to that of Lie series, as represented in Table 6. Here too the triangle is filled
in by columns, and a function g = Tχf is found by adding up all contributions on
the same line. The diagram also provides a straightforward method for calculating
the inverse f = T −1

χ g. Just proceed as follows: from the first line get f0 = g0 , and
fill the column for f0 ; from the second line get f1 = g1−E1f0 , and fill the column
for f1 ; from the third line get f2 = g2 − E1f1 − E2f0 , and fill the column for f2 ,
and so on.

Table 6 The triangular
diagram for Lie transform

g0 f0

↓
g1 E1f0 f1

↓ ↓
g2 E2f0 E1f1 f2

↓ ↓ ↓
g3 E3f0 E2f1 E1f2 f3

↓ ↓ ↓ ↓
g4 E4f0 E3f1 E2f2 E1f3 f4

↓ ↓ ↓ ↓ ↓
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .
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Analytical Tools

Here I introduce some basic tools that allow us to discuss the convergence of Lie
series and of composition of Lie series. I shall restrict my attention to the case of
a phase space endowed with action-angle variables p ∈ G ⊂ R

n and q ∈ T
n, as

considered in the present notes. However, the whole argument is based on the theory
of holomorphic functions.

The first step requires introducing a family of complex domains

D(1−d)(�,σ ) = #(1−d)� × T
n
(1−d)σ

with fixed �, σ > 0 and 0 ≤ d < 1; here

#� =
{

p ∈ C
n : |p| ≤ �

}

, T
n
σ =

{

q ∈ C
n : | Imq| ≤ σ

}

. (22)

In the case of one degree of freedom the domain is represented in Fig. 17. The
action domain here is a polydisk #� centered at the origin of Cn, which is enough
for the proof of the theorem of Kolmogorov. However, the whole argument may
be extended to the case of a complex domain G� = ⋃

p∈G #�(p) constructed by
making the union of all complex disks of radius � centered at every point of the real
domain G of the actions.

The second step is concerned with the extension of Cauchy’s estimates for the
derivatives of holomorphic functions to the case of Lie derivatives. For a function
f (p, q) which is holomorphic in D(�,σ ) we shall use the supremum norm

∣

∣f
∣

∣

(�,σ )
= sup

(p,q)∈D(�,σ )

|f (p, q)| . (23)

We assume that
∣

∣f
∣

∣

(�,σ )
is finite. Following Cauchy, the derivatives of the function

f (p, q) are estimated as
∣

∣

∣

∣

∂f

∂p

∣

∣

∣

∣

(1−d)(�,σ )
≤ 1

d�

∣

∣f
∣

∣

(�,σ )
,

∣

∣

∣

∣

∂f

∂q

∣

∣

∣

∣

(1−d)(�,σ )
≤ 1

dσ

∣

∣f
∣

∣

(�,σ )
.

2π

Im q

σ

−σ

(1 − d)

(1 − d)σ

−(1 − d)σ)

0
0

Δ
Tσ

Re q

Fig. 17 Construction of the family of complex domains
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Higher order derivatives can be estimated, too. However, for our purposes, it is better
to obtain estimates for Lie derivatives. An appropriate approach is the following.
Assume that we know the norm |χ |�,σ of a generating function χ on the whole
domain and the norm ‖f ‖(1−d ′)(�,σ ) in a possibly smaller domain, with 0 ≤ d < 1.
Then for d ′ < d < 1 one gets generally an estimate such as

∣

∣Lχf
∣

∣

(1−d)(�,σ ) ≤
C

d(d − d ′)�σ
|χ |�,σ |f |(1−d ′)(�,σ ) . (24)

with some constant C ≥ 1 depending on the choice of the norm (and on the method
of estimate). In the present case of the supremum norm a straightforward calculation
givesC = 2n, because the Poisson bracket is expressed by the sum of 2n products of
derivatives. However, a more careful estimate, using the fact that we are performing
a derivative in a given direction, provides the better value C = 1.

The estimate of multiple Lie derivatives is more delicate. Suppose we know
|χ |�,σ and |f |�,σ on the common domain D�,σ . If we want the evaluate
∣

∣Lsχf
∣

∣

(1−d)(�,σ ) in a restricted domain we can define δ = d/s and estimate, in
sequence,

∣

∣Lχf
∣

∣

(1−δ)(�,σ ) ,
∣

∣L2
χf
∣

∣

(1−2δ)(�,σ ) , . . . , ,
∣

∣Lsχf
∣

∣

(1−sδ)(�,σ ) .

To this end we apply by recurrence the estimate (24) for a single derivative, setting
step by step d ′ = 0, δ, . . . , (s − 1)δ. With some calculations we end up with the
estimate (setting C = 1)

1

s!
∣

∣Lsχf
∣

∣

(1−d)(�,σ ) ≤
1

e

(

e

d2�σ

)s

|χ |s�,σ |f |(1−d ′)(�,σ ) .

Convergence of Lie Series and of the Composition of Lie Series

Substituting the latter estimate in the expression of Lie series we prove

Lemma 8 Let χ(p, q) be holomorphic and bounded in D(�,σ ) . If the convergence
condition

|χ |(�,σ ) <
d2�σ

2e
, d < 1/2

is satisfied, then the near the identity canonical transformation

p′ = exp
(

Lχ
)

p , q ′ = exp
(

Lχ
)

q

is holomorphic in D(1−d)(�,σ ) , and

|p − p′| < d� , |q − q ′| < dσ .
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Fig. 18 The deformation
induced by the near the
identity transformation of
Lemma 8. The flow is
denoted by φ, with inverse
φ−1

φ−1

φ

By the way, the lemma is actually a reformulation of Cauchy’s theorem on
existence and uniqueness of a local flow in the analytic case. The implications of
the lemma can be understood looking at Fig. 18 and recalling that the transformation
is defined through the flow generated by χ(p, q). The transformation is essentially
a deformation of coordinates. Therefore if we consider it as defined on a domain
D(1−d)(�,σ ), with d < 1/2 then the relation

D(1−2d)(�,σ ) ⊂ D(1−d)(�,σ ) ⊂ D�,σ (25)

holds true, so that there is a domain where the transformation is well defined.
Coming to the composition of Lie series, we may intepret it as a composition of

flows. Therefore we should check that the relations (25) are still satisfied. The final
result is expressed by

Proposition 9 Let the sequence of generating functions χ = {χ1, χ2, . . .} be
holomorphic and bounded in D(�,σ ) . If the convergence condition

∑

j≥1

∣

∣χj
∣

∣

(�,σ )
<
d2�σ

4e
, d < 1/2

is satisfied, then the near the identity canonical transformation

p′ = Sχp , q ′ = Sχq

generated by the infinite composition of Lie series

Sχ = . . . ◦ exp
(

Lχ3

) ◦ exp
(

Lχ2

) ◦ exp
(

Lχ1

)
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is holomorphic in D(1−d)(�,σ ) , and

|p − p′| < d� , |q − q ′| < dσ .

Similar results may be obtained also for the algorithm of Lie transform. However,
they are not needed for the purposes of the present notes, thus I omit them.
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Space Debris: From LEO to GEO

Anne Lemaître

Abstract The paper focuses on the dynamics of space debris in the Earth envi-
ronment, with a celestial mechanics and theoretical point of view, and not with
an operational perspective. The introduction describes the Earth space junk, with
the description and the evolution of the debris population, and lists the main
forces acting on them, their relative importance and the main regions of interest
(Low, Medium and Geostationary Orbits, later called LEO, MEO and GEO). The
resonances are present at several levels: gravitational resonances, for MEO and
GEO, but also lunar-solar resonances, and secondary resonances involving the
Sun. A classical Hamiltonian approach is proposed for GEO or MEO regions,
with different associated toys models. The numerical integrations, their limits, their
characteristics, symplectic or not, for short or long time integrations are presented,
commented and compared, with the connected chaotic indicators (MEGNO in
particular) which allow to put the stability of some regions into perspective. The
solar radiation pressure is investigated with more details, without or with shadowing
effects especially in the GEO region. For the LEO, the atmospheric drag plays
an important role on the dynamics, dependent on the ballistic coefficient. Some
comparisons are presented, concerning the solar activity and the consequences on
the reentry times. A few words about the rotation of the debris, the explosions and
collisions mechanisms, and the possibility to simulate those events in a synthetic
population conclude the paper.
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1 Introduction

The term space debris is used to designate all the objects (fragments of satellites,
rocket parts, remains of explosions or collisions), of all sizes and all chemical
compositions, which orbit around the Earth at different altitudes.

The number of space debris has dramatically increased in the last decades; since
Sputnik in October 1957, more than 6600 satellites have been launched and more
than 200 exploded in space, for accidental or political reasons. Indeed because of
the cold war or for similar political reasons, the nations did not hesitate to provoke
the explosion of a satellite to keep their innovative technologies. Moreover some
space missions did not care about the situation of a satellite after its lifetime and
some of them are orbiting the Earth for years after their official end. Only 6 % of
the objets in orbits are active satellites, etc.

It was commonly thought that the drag would rapidly bring back to the Earth most
of the objects; it is true for the low orbits (LEO) with small altitudes, between 500
and 900 km, but certainly not for the highest ones, in particular for the geostationary
orbits (GEO) situated at 36,000 km of altitude and characterized by periods of
exactly 24 h. The lifetime of a classical satellite is estimated to a month, for an
altitude of 300 km, a year for 400 km, 10 years for 500 km, decades for 700 km,
centuries for 900 km and millennia for 1200 km.

Even if the drag is able to clean progressively the LEO region, the presence of
a huge number of debris is responsible for collisions and consequently, generates a
continuous re-population of the region.

A catalogue of about 20,000 debris is maintained and completed by NASA
at each registered collision. It contains the objects larger than 10 cm for LEOs
(and larger than 1 m for GEOs) which could really damage an active satellite and
compromise its mission. They are stocked in a file called the two line elements or
TLE as reference to their format. More precisely, a two-line element set is a data
format used to convey sets of orbital elements that describe the orbits of Earth-
orbiting objects. A computer program called a model can use the TLE to compute
the position of any satellite or debris at any particular time. Usually the model is a
powerful numerical integrator, but valid only for short time evolutions.

The risk of collision is real and avoidance manoeuvers are performed regularly,
by the active satellites, the space shuttles or the ISS, increasing the cost of the
missions by consuming fuel.

However the TLEs only refer to the huge objects and represent the tip of the
iceberg. The smallest debris are much more numerous, with rough estimations
of about 200,000 objects between 1 and 10 cm and more than 35 millions of
objects between 0.1 and 1 cm. These debris are neither catalogued nor individu-
ally identified. Knowledge of space debris environment at sub-catalogue sizes is
normally acquired in a statistical manner through experimental sensors with higher
sensitivities.

While telescopes are mainly suited for GEO and high-altitude debris observa-
tions, radars are advantageous in the low-Earth orbit (LEO) regime, below 2000



Space Debris: From LEO to GEO 117

km. Ground-based telescopes can detect GEO debris down to 10 cm in size, ground-
based radars can detect LEO debris down to a few mm in size, and in situ impact
detectors can sense objects down to a few micrometers in size.

We also can gain information on the small-size, sub-millimeter environment
through the analysis of retrieved space hardware, such as the EURECA satellite,
and the three solar arrays retrieved from the Hubble Space Telescope through the
Space Shuttle.

Even if we stopped all launches, the number of debris would still increase for
several years just by collisions and fragmentations of the present objects in orbits.
Let imagine the situation with more than 100 launches per year!

Special equipments and armor plating protections are now systematically sched-
uled for the spacecrafts, increasing their cost and requiring always more powerful
rockets (because of their weight). Even if they are expensive, these protections are
efficient for the small debris below the centimeter size, but are often inefficient
for larger ones. This is why, presently, the most dangerous population is the
intermediary one, between 1 and 10 cm, where the objects are too small to be
followed individually but too big to be considered only as a dusty environment
altering the surfaces.

Our lifestyle is really dependent on the presence of spacecrafts: telecommuni-
cations, GPS or cellular phones, TV, Internet, climate watches, ecological studies,
catastrophe prevention, military surveys, etc. Despite the technological progress,
the costs and the risks due to the space debris are increasing and can really stop or
drastically reduce the systematic replacement or extension of the present satellite
constellations.

Since 1978, NASA has developed guidelines to keep down the amount of debris
generated by space launches and to minimize the possibility of later fragmentations.
Other countries soon followed suit, and in 2007, after 10 years of intense debate and
negotiation, the United Nations General Assembly approved a set of guidelines for
orbital space debris mitigation.

These can be summed up under seven points:

1. Limit debris released during normal operations
2. Minimize the potential for break-ups during operational phases
3. Limit the probability of accidental collision in orbit
4. Avoid intentional destruction and other harmful activities
5. Minimize potential for post-mission breakups resulting from stored energy
6. Limit the long-term presence of spacecraft and launch vehicle orbital stages in

the low Earth orbit region after the end of their mission
7. Limit the long-term interference of spacecraft and launch vehicle orbital stages

with the geosynchronous region after the end of their mission

However it will not be sufficient and the experts are quite pessimistic:
The buildup of space debris orbiting the Earth, which poses a threat to spacecraft

and the environment, has reached a critical point. The space junk trend no longer
can be reversed by full compliance with mitigation measures now in place; it will
get worse without more-aggressive action such as active debris removal (ADR).
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And that just might pose the biggest engineering challenge of the 21st century. As
the international community gradually reaches a consensus on the need for ADR,
the focus will shift from environment modeling to completely different challenges:
technology development, systems engineering, and operations, J.-C. Liou, Orbital
Debris Program Office at NASA’s Johnson Space Center.

The European Space Agency (ESA) has developed the Space Situational Aware-
ness (SSA) program, formally launched 1 January 2009. The objective of the SSA
program is to support Europe’s independent use of, and access to, space through the
provision of timely and accurate information, data and services regarding the space
environment, and particularly regarding hazards to infrastructure in orbit and on
the ground. In general, these hazards stem from possible collisions between objects
in orbit, harmful space weather and potential strikes by natural objects that cross
Earth’s orbit. The SSA program will, ultimately, enable Europe to autonomously
detect, predict and assess the risk to life and property due to remnant man-made
space objects, re-entries, in-orbit explosions and release events, in-orbit collisions,
disruption of missions and satellite-based service capabilities, potential impacts of
Near Earth Objects, and the effects of space weather phenomena on space- and
ground-based infrastructure.

The technological challenge for ADR has to be supported by a better understand-
ing of the evolution of the present future debris population.

At the end of the nineties, the space debris population has interested the
community of celestial mechanicians, traditionally involved in the dynamics of
natural bodies. Before that epoch, on the one hand, the space agencies used very
efficient numerical integrations, including a maximum of forces and contributions
in the dynamics, and integrating the motions on very short periods of time, as for the
probes or spacecraft, limited to their lifetime. On the other hand, the astronomers
developed more and more sophisticated tools to integrate natural bodies on longer
time periods (using symplectic integrators or very fast mappings) or to produce
global maps of chaos and stability, privileging the global behaviors to the individual
ones.

The space debris dynamics, with uncontrolled objects present for thousands of
years offers to the celestial mechanicians the opportunity of adapting, testing and
developing known techniques and methods, in a new environment.

Let us mention a few topics, linked to resonances, chaos and perturbations, in
which the celestial mechanics approach has recently given new tools to the space
debris dynamics.

2 The Classical Hamiltonian Formulation

The different forces (at least the conservative ones) are expressed through their
potential, and added to the two body basic expression in the Hamiltonian formalism.
The gravitational potential and the lunisolar perturbations are the classical perturba-
tions of a Keplerian 2-body problem.
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2.1 The Gravitational Potential

The Earth is not a perfect sphere, and the space debris, as the artificial satellites,
are close enough to the surface to suffer substantial perturbations due to the
non sphericity coefficients, the spherical harmonics. The potential U is general
expressed in the following way:

U (r) = −μ
∫

V

ρ(rp)
‖r− rp‖ dV , μ = GmE, (1)

where r is the position of the piece of debris, expressed by its three coordinates, x, y,
z in the geocentric equatorial reference frame, and r is its norm. rp is the position of
any point of the Earth. Let us consider that μ is simply GMS , G is the gravitational
constant and ME the Earth’s mass.

We can expressed r in spherical coordinates, r , λ being its longitude and Φ its
latitude:

x = r cosΦ cos λ
y = r cosΦ sin λ
z = r sinΦ

and the geopotential becomes:

U (r, λ,Φ) = −μ
r

∞
∑

n=0

n
∑

m=0

(

Re

r

)n

Pnm(sinΦ)(Cnm cos mλ+ Snm sin mλ)

(2)

with Re the equatorial Earth’s radius and Pnm is the Legendre polynomial of degree
n and order m.

The coefficients Cnm and Snm are given by:

Cnm = 2− δ0m

MS

(n−m)!
(n+m)!

∫

V

(

rp

Re

)n

Pm
n (sinΦp) cos (mλp) ρ(rp) dV

Snm = 2− δ0m

MS

(n−m)!
(n+m)!

∫

V

(

rp

Re

)n

Pm
n (sinΦp) sin (mλp) ρ(rp) dV

where δ0m is the Kronecker symbol, (xp, yp, zp) are the coordinates of rp and are
expressed in spherical coordinates by:

xp = rp cosΦp cos λp
yp = rp cosΦp sin λp
zp = rp sinΦp

with rp the norm, Φp the latitude and λp the longitude.
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The two largest coefficients are C20 and C22 and are directly linked to the
principal momenta of inertia, A, B and C, the Earth’s mass, ME and Re the
equatorial radius.

J2 = −C20 = 2C − B − A

2ME R2
e

and C22 = B − A

4ME R2
e

.

After some simplifications due to the choice of the center of mass as the origin
or the reference frame, and use of the polar formulation:

U (r, λ,Φ) = −μ
r
+ μ

r

∞
∑

n=2

n
∑

m=0

(

Re

r

)n

Pm
n (sinΦ) Jnm cosm(λ− λnm) (3)

Cnm = −Jnm cos (mλnm) Snm = Jnm sin (mλnm)

Jnm = √C2
nm + S2

nm mλnm = arctan
(−Snm−Cnm

)

.

Usually the development is replaced by Kaula’s formulation [24] introducing
explicit functions of the elliptic elements, the eccentricity e, the inclination i, the
argument of perigee, ω, the longitude of the node Ω , the mean anomaly M , of the
piece of debris, related to the orbital motion in the Earth’s equatorial frame. θ is the
sidereal time (representing the rotation of the Earth).

U = −μ
r
−

∞
∑

n=2

n
∑

m=0

n
∑

p=0

+∞
∑

q=−∞

μ

a

(

Re

a

)n

Fnmp(i)Gnpq(e) Snmpq(Ω,ω,M, θ)

(4)

Snmpq(Ω,ω,M, θ) =
[+Cnm
−Snm

]n−meven

n−modd
cos Θnmpq(Ω,ω,M, θ)

+
[ +Snm
+Cnm

]n−meven

n−modd
sin Θnmpq(Ω,ω,M, θ)

(5)

The angle Θnmpq is called the Kaula gravitational argument and is given by:

Θnmpq (Ω,ω,M, θ) = (n− 2p)ω + (n− 2p + q)M +m(Ω − θ) (6)

2.2 The Lunisolar Perturbations

The acceleration due to an external body, exerted on the space debris, writes:

r̈ = −μi
(

r− ri
‖r− ri‖3 +

ri
‖ri‖3

)

. (7)
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The convention is to refer to the Sun by i = 1, with mass M1 = MS , and to the
Moon by i = 2, with mass M2 = MM .

The associated potential can be easily calculated:

Ri = μi

(

1

‖r− ri‖ −
〈r . ri〉
‖ri‖3

)

(8)

with μi = GMi , < ., . > designates the scalar product and ‖.‖ the norm.
The classical development of the inverse of the distance can be applied:

Ri = μi

ri

∑

n≥2

(

r

ri

)n

Pn(cosφi), (9)

with ri the distance between the body i and the Earth’s center, φi the angle between
the third body i and the piece of debris, and Pn the Legendre polynomial of
degree n.

To separate the contribution of the third body from that of the debris, we express
again the three components (x, y, z) of the position vector r in Keplerian elements
(a, e, i,Ω,ω, f ) with f the true anomaly, we define the Cartesian coordinates Xi ,
Yi and Zi of the unit vector pointing towards the third body, and we use the usual
developments of f and r

a
in series of e, sin i

2 and M .
We obtain the following development, where the third body motion is only

present in the coefficients A:

Ri = μi

ri

+∞
∑

n=2

∑

k,l,j1,j2,j3

(

a

ri

)n

A
(n)
k,l,j1,j2,j3

(Xi, Yi, Zi) e
|k|+2j2

(

sin
i

2

)|l|+2j3

cos Φ

with the angles defined as:

Φ = j1 λ+ j2 � + j3 Ω, λ = M + ω +Ω, � = ω +Ω. (10)

2.3 The Poincaré’s Variables

To use Hamiltonian formalism, we define first the Delaunay’s canonical momenta
L, G, and H associated to λ, � and Ω :

L = √μa, G =
√

μa(1− e2) , H =
√

μa(1− e2) cos i (11)

Second, to avoid singularities, we switch to non singular Delaunay’s elements, P
and Q, associated to p and q , keeping L and λ unchanged:

P = L−G p = −ω −Ω

Q = G−H q = −Ω (12)
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Third, we introduce canonical Cartesian coordinates, called Poincaré’s variables:

x1 =
√

2P sinp x4 =
√

2P cosp
x2 =

√

2Q sin q x5 = √2Q cos q
x3 = λ = M +Ω + ω x6 = L

(13)

Fourth, we choose dimensionless non canonical variables ξ1, ξ2, η1 and η2
directly linked to Poincaré’s ones:

ξ1 = U sinp, η1 = U cosp, ξ2 = V sin q, η2 = V cos q.
(14)

with

U =
√

2P

L
V =

√

2Q

L
(15)

The momenta U and V are proportional to e and i, and their exact dependance is
given explicitly by:

e = U

(

1− U2

4

)
1
2

= U − 1

8
U3 − 1

128
U5 +O(U7) (16)

and

2 sin
i

2
= V

[

1− U2

2

]− 1
2

= V + 1

4
VU2 + 3

32
VU4 +O(U6) (17)

The details are given in [43].

2.4 The Hamiltonian Formulation

The Hamiltonian, based on these two main perturbations, writes, in terms of the new
variables, for any fixed values of nmax and Nn:

H = − μ2

2L2 + θ̇ Λ+
nmax
∑

n=2

1

L2n+2

Nn
∑

j=1

A (n)
j (ξ1, η1, ξ2, η2)B

(n)
j (λ, θ) (18)

+
2
∑

i=1

nmax
∑

n=2

L2n

rn+1
i

Nn
∑

j=1

C (n)
j (ξ1, η1, ξ2, η2,Xi, Yi , Zi)D

(n)
j (λ) (19)
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A fourth degree of freedom has been introduced, through the angle θ representing
the daily Earth’s rotation or the sidereal time, associated to a virtual momentum Λ.

The associated dynamical system is then:

ξ̇i = 1

L

∂H

∂ηi
η̇i = − 1

L

∂H

∂ξi
i = 1, 2

and

λ̇ = ∂H

∂L
− 1

2L

[

2
∑

i=1

∂H

∂ξi
ξi +

2
∑

i=1

∂H

∂ηi
ηi

]

L̇ = −∂H
∂λ

The last ones are trivial:

θ̇ = ∂H

∂Λ
Λ̇ = −∂H

∂θ
.

3 The Semi-Analytical Methods

As in the case of natural bodies, a first way to understand the dynamics is to expand
the different forces in Poisson’s series expansions, and to integrate the differential
system. For more details about this chapter, please refer to [44].

3.1 The Non Resonant Case

Outside of resonances, we expand the Hamiltonian as a power series in the different
variables; for example using MSNAM [31], the series manipulator of the University
of Namur, we obtain the development for any given order. An example is given
below, in Table 1 where the multiples of the angles λ and θ appear, besides the
polynomials exponents of the other Cartesian variables. These techniques have been
usually reserved to natural bodies dynamics but are easily adapted to space debris.
The unit of length is chosen as the geostationary semi-major axis (42,164 km), the
Earth mass is the unit of weight, and the unit of time corresponds to μ = 1.

Table 1 Sample of a few terms obtained by MSNAM

λ θ ξ1 η1 ξ2 η2 L XM YM ZM rM XS YS ZS rS Coefficient

cos (0 0) (0 0 0 0 −6 0 0 0 0 0 0 0 0) 0.12386619D-04

cos (0 0) (0 0 0 2 −6 0 0 0 0 0 0 0 0) −0.18579928D-04

cos (0 0) (0 0 0 4 −6 0 0 0 0 0 0 0 0) 0.46449822D-05
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Table 2 Number of terms obtained by the expansions: after averaging and before averaging (in
parentheses)

Perturbation Number of terms

n-order expansion

ξ
i1
1 η

i2
1 ξ

i3
2 η

i4
2 with i1 + i2 + i3 + i4 ≤ n n = 2 n = 4 n = 6 n = 8

Geopotential limited to J2 5 15 31 53
(33) (145) (410) (895)

External Body: Sun and Moon

Up to degree 2 27 86 197 390
(205) (836) (2374) (5480)

Up to degree 3 73 250 611 1227
(645) (2642) (7854) (18380)

We perform an averaging transformation, over the fastest variable λ, and we
integrate (numerically) the associated averaged dynamical system, with a much
larger stepsize (from 200 s to 1 day). This is what we call the semi-analytical
averaged solution for the space debris non resonant dynamics. A similar approach
for space debris has been used by F. Deleflie and collaborators, via the software
STELA, based on [29].

Table 2 gives an idea of the number of terms, following the order, for the non-
averaged (in the parentheses) and averaged potentials.

3.2 The Gravitational Resonances

Let us remind the geopotential Kaula’s formulation (4):

U = −μ
r
−

∞
∑

n=2

n
∑

m=0

n
∑

p=0

+∞
∑

q=−∞

μ

a

(

Re

a

)n

Fnmp(i)Gnpq(e) Snmpq(Ω,ω,M, θ)

with the very important gravitational argument (6):

Θnmpq(Ω,ω,M, θ) = (n− 2p)ω + (n− 2p + q)M +m(Ω − θ).

What we call a gravitational resonance is a resonance between the orbital motion
of the space debris and the rotation of the Earth, which is different from the spin-
orbit resonances, where the rotational and orbital motions are related to the same
body. This means that the two periods, PS (1 day) and Pobj are very close to a
commensurability:

PS

Pobj
� q1

q2
. (20)
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If the ratio is equal to 1, we are close to the geostationary orbit (GEO), if it
is close to 2, we are typically in the MEO (Medium Earth’s Orbit) region. These
situations correspond to:

Θ̇nmpq(Ω̇, ω̇, Ṁ, θ̇ ) = (n− 2p) ω̇ + (n− 2p + q) Ṁ +m(Ω̇ − θ̇ ) � 0 (21)

and for q = 0:

Ṁ

θ̇
� λ̇

θ̇
� q1

q2
. (22)

The most important role is played by the coefficient J22, the largest one in the
geopotential containing the Earth’s rotation angle.

3.3 The Geostationary Resonant Case

Let us now concentrate our attention on the geostationary case, i.e. q1 = q2 = 1,
also called the synchronous case. Calculating the semi-major axis corresponding to
an orbital period of 1 day, we obtain the well known value a = 42, 164 km.

We only keep the J22 terms in the geopotential, developed in the same way as in
the non resonant case:

H =HJ22(ξ1, η1, ξ2, η2,Λ, λ,L, θ) + θ̇ Λ. (23)

and we introduce the resonant angle:

σ = λ− θ. (24)

To keep σ and θ as canonical variables instead of λ and θ , we have to correct the
two momenta, that we call now L′ and Λ′:

L′ = L, θ ′ = θ, Λ′ = Λ+ L, (25)

and the resonant Hamiltonian is written as:

H =HJ22

(

ξ1, η1, ξ2, η2, σ, L
′, θ
)+ θ̇

(

Λ′ − L′
)

. (26)

θ is now the fast angle, and we obtain an averaged model, still dependent on σ ,
the slow resonant angle.
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Table 3 Number of terms obtained by the resonant expansions: after averaging and before
averaging (in parentheses)

Perturbation Number of terms

n-order expansion

ξ
i1
1 η

i2
1 ξ

i3
2 η

i4
2 with i1 + i2 + i3 + i4 ≤ n n = 2 n = 4 n = 6 n = 8

Resonant perturbation due to J22 10 40 104 206
(94) (468) (1392) (3178)

Table 4 Sample of a few resonant terms obtained by MSNAM

σ θ ξ1 η1 ξ2 η2 L XM YM ZM rM XS YS ZS rS Coefficient

cos (2 0) (0 0 0 0 −6 0 0 0 0 0 0 0 0) 0.1077767255D-06

cos (2 0) (0 0 0 0 −6 0 0 0 0 0 0 0 0) 0.1080907167D-06

sin (2 0) (0 0 0 0 −6 0 0 0 0 0 0 0 0) −0.6204881922D-07

HJ22 (ξ1, η1, ξ2, η2, L,Λ, θ, λ)
⏐

⏐

A

HJ22

(

ξ1, η1, ξ2, η2, L
′,Λ′, θ ′, σ

)

⏐

⏐

A

H J22

(

ξ̄1, η̄1, ξ̄2, η̄2, L̄
′, Λ̄′,−, σ̄ )

The resonant averaged Hamiltonian is obtained by the same process as the
non-resonant one: series expansions, averaging, averaged equations and numerical
integration. Table 3 gives an idea about the number of terms in the averaged and
non-averaged Hamiltonian (in parentheses).

The series are now of the form given in Table 4.

3.4 A Simple Analytical Geostationary Resonant Model

Thanks to the resonant averaged semi-analytical method, we identify the main terms
in the expansions, and we build a toy model, able to describe qualitatively and
locally the resonant dynamics in the geostationary region.

The simplest resonant averaged model, based on the first terms of the develop-
ment, can be written as:

H (L, σ,Λ) = − μ2

2L2 + θ̇ (Λ− L)− 1

L6 [α1 cos 2σ + α2 sin 2σ ] (27)

with α1 � 0.1077× 10−6, α2 � −0.6204× 10−7.
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The equilibria are easily determined by solving:

∂H

∂L
= 0 = ∂H

∂σ
. (28)

Two stable equilibria are given by (σ ∗11, L
∗
11), (σ

∗
12, L

∗
12) and two unstable equilibria

by (σ ∗21, L
∗
21), (σ

∗
22, L

∗
22)

σ ∗11 = λ∗ σ ∗12 = λ∗ + π

σ ∗21 = λ∗ + π

2
σ ∗22 = λ∗ + 3π

2
,

with L∗11 = L∗12 = 0.99999971, L∗21 = L∗22 = 1.00000029, where L = 1
corresponds to 42 164 km, and λ∗ � 75.07◦.

The phase diagram is given in Fig. 1 in Cartesian coordinates
√

2L cosσ and√
2L sin σ where the coefficients α1 and α2 have been amplified artificially, to

distinguish the resonant islands. The resonant motion, associated to σ , has a period
of period of 818.7 days � 2.5 years and the width of the resonant zone is � 69 km.

Fig. 1 Phase space in Cartesian coordinates for the geosynchronous averaged dynamics; to
increase the visibility, the coefficients have been artificially amplified (source [44])
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3.5 The Other Gravitational Resonances

Similar studies have been performed for the other gravitational resonances. In
particular the 2:1 resonance case, corresponding to the MEO region, of great interest
for the GPS and Galileo constellations, has been intensively studied. Let us mention
the pioneer paper of Rossi [37] and the very complete analysis of Celletti and
Galeş [7].

Other resonances, called minor, have also been investigated, with a description of
their location, equilibria, width. Let us refer to two papers of the same team, inside
the geostationary ring [8] and outside [9].

4 The Solar Radiation Pressure

The space debris present different shapes, forms and weights. It means that some
of them are very perturbed by the solar radiation pressure, proportional to the
coefficient A/m (Area over mass), and some others not at all. This perturbation
could be the most important after the two body, and has to be considered, sometimes
even before the gravitational potential and the lunisolar attractions. A complete
analysis of this contribution can be found in the chapter 14 of Milani and Gronchi
[30] or in [28].

Here we limit our study to the direct radiation pressure acceleration and we
assume that the coefficient A/m is large. We are going to build an averaged model
for the geostationary region.

Let us mention a very smart approach, using the eccentricity and the angular
momentum as variables, also based on the averaged dynamics [35] and the complete
perturbation theory with planetary motion developed by Gachet et al. [20] which
generalizes and justifies the present basic analysis.

The acceleration due to the direct radiation pressure can be written in the form:

arp = Cr Pr

[

aS

‖r− rS‖
]2

A

m

r− rS
‖r− rS‖ � −CrPr

A

m
a2
S

n=N
∑

n=1

(

r

aS

)n

Pn(cosφ)

(29)

where Cr is the non-dimensional reflectivity coefficient (0 < Cr < 2), Pr = 4.56 ·
10−6 N/m2 is the radiation pressure per unit of mass for an object located at a
distance of aS = 1 AU, r is the geocentric position of the space debris; rS is the
geocentric position of the Sun, φ is the angle between r and rS , A is the exposed
area to the Sun of the space debris, m is the mass of the space debris. Table 5 gives
some examples of A/m coefficients, for natural and artificial bodies.

Some space debris, initially on circular orbits, show very large unexpected
eccentricities [38]. It was explained by the detection of their A/m coefficients,
particularly high (even larger than 50 for some objects) and the consequent high
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Table 5 Examples of A/m
coefficients

Object A/m (m2/kg)

Lageos 1 and 2 10−3

Starlette 10−3

GPS (Block II) 10−2

Moon 10−10

Space debris ??

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

 10000  15000  20000  25000  30000  35000  40000  45000  50000
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ra

tio
n 

[k
m

/s
2 ]

Distance from the Earth’s center [km]

GM

J2

Jupiter

A/m 0.01 m2/kg

Sun

J22

J3

A/m 40 m2/kg
A/m 10 m2/kg

Moon
A/m 1 m2/kg

GEO

Fig. 2 The hierarchy of the perturbations for different values of A/m in the radial component of
the acceleration, for the whole space debris region

perturbation caused by the solar radiation pressure in the dynamics of those bodies
[13, 39, 40].

Figure 2 presents the order of magnitude of the different perturbations in the
space debris environment, for different values of the coefficient A/m.

Assuming a high value of A/m, the solar radiation pressure becomes the main
perturber of the Keplerian problem.

H (v, r) =Hkepl (v, r)+Hsrp (r) (30)

with r the geocentric position of the satellite, v its velocity, Hkepl (v, r) the
attraction of the Earth, Hsrp (r) the direct solar radiation pressure potential

Hkepl = ‖v‖2

2
− μ

‖r‖ (31)

Hsrp = −Cr 1

‖r− rS‖ Pr
A

m
a2
S. (32)
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4.1 A First Toy Model for the Solar Radiation Pressure
with Large A/m

Let us start with a very simple model, including the two-body and the direct
solar radiation pressure. We use the development of the inverse of the distance in
Legendre’s polynomials in Eq. (31) and the Hamiltonian writes, after truncation at
first order in the development:

H = − μ2

2L2 + Cr Pr
A

m
r rS cosφ (33)

with φ the angle between r and rS , rS = rS
aS

.

H = − μ2

2L2
+ Cr Pr

A

m
a (u ξ + v η) (34)

where the debris orbital motion is given by u = cosE − e and v = sinE
√

1− e2,
E being the eccentric anomaly, and the Sun’s influence is present through ξ and η,
given by:

ξ = ξ1 rS,1 + ξ2 rS,2 + ξ3 rS,3 (35)

η = η1 rS,1 + η2 rS,2 + η3 rS,3 (36)

and in terms of the elliptic elements:

ξ1 = cosΩ cosω − sinΩ cos i sinω
ξ2 = sinΩ cosω+ cosΩ cos i sinω
ξ3 = sin i sinω

η1 = − cosΩ sinω − sinΩ cos i cosω
η2 = − sinΩ sinω + cosΩ cos i cosω
η3 = sin i cosω

Two periods are present in this formulation: the orbital period (through E) of 1
day, and the Sun orbital period (through rS,i) of 1 year.

The next step consists in averaging over the fast angle, M the mean anomaly,
using dM = (1− e cosE) dE:

H = 1

2π

∫ 2π

0
H dM

= − μ2

2L
2 +

1

2π
Cr Pr

A

m
a

∫ 2π

0
(u ξ + v η) dM

� − μ2

2L
2
− 3

2
Cr Pr

A

m

L
2

μ
e ξ. (37)
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The bars designate the averaged variables, and will not be maintained in the further
equations.

Using again Poincaré’s variables:

p = −ω −Ω P = L−G

q = −Ω Q = G−H

x1 =
√

2P sinp y1 =
√

2P cosp
x2 = √2Q sin q y2 = √2Q cos q

using the approximations: e �
√

2P
L

, cos2 i
2 = 1− Q

2L , sin i
2 �

√

Q
2L and assuming

a circular orbit for the Sun (with an obliquity ε):

r̄S,1 = cosλS

r̄S,2 = sinλS cos ε

r̄S,3 = sinλS sin ε (38)

with λS = nSt + λS,0, we can write:

H = H (x1, y1, x2, y2, λS)

� −nS κ r̄S,1 (x1 R2 + y1 R1)

+ nS κ r̄S,2 (x1 R3 + y1 R2)

+ nS κ r̄S,3 (x1 R5 − y1 R4) (39)

with κ = 3
2 Cr Pr

A
m

a√
L

(directly proportional to A/m) and where Ri(x2, y2) are
second degree polynomials in x2 and y2.

The dynamical system associated is given by:

ẋ1 = ∂H
∂y1

ẏ1 = − ∂H
∂x1

ẋ2 = ∂H
∂y2

ẏ2 = − ∂H
∂x2

.
(40)

An analytical solution is calculated in three steps. First, assuming x2 = y2 = 0, we
find the short periodic motion for x1 and y1:

x1 = −κ sinλS + Cx = −κ (sin λS −Dx)

y1 = κ cosλS cos ε + Cy = κ (cos λS cos ε +Dy).
(41)

We conclude that e and � follow a periodic motion (1 year), Cx and Cy or Dx

and Dy being the initial conditions. If κ is larger, emax (the maximal value of the
eccentricity) increases. Figure 3 illustrates this annual motion.
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Fig. 3 The annual periodic motion of the eccentricity for A/m = 5 m2/kg (red), A/m =
10 m2/kg (magenta) and A/m = 20 m2/kg (green) (source [43])

Second, after averaging over the fast periods (1 year), we find an averaged motion
for x̄2 and ȳ2

{

x̄2 = A sinψ
ȳ2 = A cosψ − ρ

ν
= A cosψ − tan ε

√
L

(42)

with ψ = ν t + ψ0, A and ψ0 being the initial conditions.
We notice that the averaged values of the inclination and of the longitude of the

ascending node, ī and Ω̄ , follow a long periodic motion (with a period of several
dozens of years) with always the same maximal value of the inclination: īmax �
2ε. If A/m increases, κ increases, then ν increases and the period of this motion
decreases.

Third, we reinsert the short periodic terms (replacing x1 and y1 in terms of λS)
into the Hamiltonian, so to obtain:

x2 = x̄2 + ∂W

∂y2
(λS) y2 = ȳ2 − ∂W

∂x2
(λS) (43)

where

W = −κ2 (g1 sinλS − g2 cosλS + 1

2
g3 sin 2λS − 1

2
g4 cos 2λS). (44)
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Fig. 4 The long periodic motion of the inclination for A/m = 1 m2/kg (blue), A/m = 5 m2/kg
(red), A/m = 10 m2/kg (magenta) and A/m = 20 m2/kg (green) (source [43])

The functions gi, i = 1, 2, 3, 4 depend on x2 and y2 and on the initial conditions;
their explicit expressions are given in [22].

Figure 4 describes that dynamics, for four different values of A/m; we dis-
tinguish the annual short periodic perturbations superposed on the long periodic
motion.

5 The Earth’s Umbra

The orbits of the space debris could cross the Earth’s umbra, and, in that case,
the solar radiation pressure stops affecting the dynamics, to reappear later. The
geometrical cylindrical problem is described thanks to the shadow equation:

sc(r) = r · rS
rS

+
√

r2 − R2
e < 0 inside Earth’s shadows

> 0 outside Earth’s shadows

= 0 entry and exit (45)

The equation corresponds to a 4th degree polynomial in tan E
2 solved by Cardan’s

formula. We denote by E1 the entry eccentric anomaly = E1(a, e, i, ω,Ω, rS) and
by E2, the exit eccentric anomaly = E2(a, e, i, ω,Ω, rS). Figure 5 represents the
cylindrical approach.
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Fig. 5 The cylindrical model for the Earth’s umbra. The Sun is assumed to be far enough (source
[42])

We modify the toy model by inserting the Earth’s shadows:

H = − μ2

2L2 +
{

Cr Pr
A
m
r rS cos(φ) outside Earth’s shadows

0 inside Earth’s shadows
(46)

5.1 The Averaged Model

We again average over the fast variable (M the mean anomaly) but we take into
account the absence of the solar radiation pressure between M1 and M2:

H = 1

2π

∫ 2π

0
H dM (47)

= − μ2

2L
2 +

1

2π
Cr Pr

A

m
a

[∫ M1

0
(u ξ + v η) dM +

∫ 2π

M2

(u ξ + v η) dM

]

following the pioneer works of Ferraz-Mello [18] or Aksnes [1].
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The averaged Hamiltonian with shadowing effects writes now:

H = − μ2

2L
2 −

3

2
Cr Pr

A

m

L
2

μ
e ξ + 1

2π
Cr Pr

A

m

L
2

μ
[ξ A + η B] (48)

where

A = −2 (1+ e2) cos
S

2
sin

D

2
+ 3

2
e D + e

2
cosS sinD

B =
√

1− e2 (−2 sin
S

2
sin

D

2
+ e

2
sin S sinD) (49)

and S = E1 + E2 and D = E2 − E1. The case D = 0 corresponds to the model
without umbra.

The dynamical system is modified for L̄ and then, for the semi-major axis ā,
which is not constant anymore, but follows a long periodic motion:

˙̄a = ā 3/2 2

π
√
μ
Cr Pr

A

m

[

ξ sin
S

2
− η
√

1− ē2 cos
S

2

]

sin
D

2
. (50)

To give an idea about the orders of magnitude, for A/m = 5 m2/kg, the period
� 13,000 years and for A/m = 25 m2/kg, the period � 1200 years. Figure 6 gives
the evolution of the long periods as a function of the semi-major axis.

Fig. 6 The calculation of the very long period induced by the Earth’s shadowing effects, as a
function of the initial semi major axis, and of the coefficient A/m, in the geostationary region
(source [22])
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Fig. 7 Numerical integrations, without and with the shadowing effects, over 25,000 years, for
A/m = 5 m2/kg, for the Keplerian motion perturbed by the solar radiation pressure (source [22])
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Fig. 8 Comparison between the analytical averaged model and the numerical integration, over
25,000 years, for A/m = 5 m2/kg (source [22])

The passage in the shadow is then responsible for a very long periodic motion
for large values of A/m.

Numerical integrations (of the Keplerian problem, perturbed by the solar radi-
ation pressure) show this very long periodic motion and the accuracy of our toy
model. They have been obtained by the symplectic integrator SYMPLEC (see
Sect. 7.2) with a simplified circular solar motion.

Figure 7 compares two numerical integrations, without and with the shadowing
effects, over 25,000 years, for A/m = 5 m2/kg and Fig. 8 shows the analytical
solution versus the numerical integration, for the same case.

5.2 The Numerical Smoothing Function

The numerical integrations could be affected by the passage through the umbra,
presented as a switch on-off. To avoid this non continuous situation, we replace
locally the passage through the umbra by a smoothing function νC , depending on a
parameter γ , and based on a hyperbolic tangent (see Fig. 9). The greater γ is, the
shaper the function is

νC = 1

2
(1+ tanh(γ sC(r))) �

{

0 in cylindrical umbra
1 otherwise

(51)

Thanks to this approach, we introduce the shadowing effects in the symplectic
integrator SYMPLEC described in Sect. 7.2.
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Fig. 9 The smoothing umbra νC described for different values of γ (source [21])

For the conical geometrical situation, a more complete analysis and model can
be found in [22], describing and smoothing the passage through the umbra and the
penumbra thanks to similar functions νu and νp depending on two parameters.

6 A More Complete Toy Model

If we observe Fig. 2, for huge values of A/m, we notice the importance of the
solar radiation pressure on the dynamics. However the lunisolar perturbations and
the J2 flattening coefficient, can be considered of the same order of magnitude.
Moreover up to now we have limited the solar radiation pressure to the first order
(in Legendre’s polynomials expansion) which can be improved.

6.1 The Toy Model, with Moon and Sun, Solar Radiation
Pressure and J2

We summarize here the approach developed in [6]. Let us start with J2 perturbation:

HJ2(r) =
μ

r
J2

( rS

r

)2
P2 (sinλ)

= μ

r
J2

( rS

r

)2 1

2

(

3
(z

r

)2 − 1

)

(52)

where λ represents the latitude of the satellite, and consequently sin λ = z/r .
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For the solar radiation pressure, we add the second order terms:

HSRP (r, rS) = −Cr Pr A
m
a2
S

1

||r− rS ||

� −CrPr A
m
a2
S

(

(

r

aS

)

P1(cosφ)+
(

r

aS

)2

P2(cosφ)
)

= HSRP1(r, rS)+HSRP2(r, rS) (53)

where φ is the angle between the satellite and the Sun.
For the third body Hamiltonian, we assume that the orbits of the Sun and of the

Moon are circular. For the Sun:

H3bS(r, rS) = −μS 1

||r− rS || + μS
r · rS
||rS ||3

� −μS
aS

∑

n≥0

(

r

aS

)n

Pn(cosφ)+ μS
raS cos(φ)

a3
S

� −μS
aS
(1+

(

r

aS

)2

P2(cosφ)), (54)

where μS = GMS , MS is the mass of the Sun, and for the Moon:

H3bM(r, rM) � −μM
aM

(1+
(

r

aM

)2

P2(cosφM)) (55)

where μM = GMM with MM the mass of the Moon, and φM is the angle between
the satellite and the Moon.

Our complete toy model is now:

HSRP (r, rS)+H3bS(r, rS)+H3bM(r, rM)

� HSRP1(r, rS)+HSRP2(r, rS)+H3bS(r, rS)+H3bM(r, rM)

� CrPr
A

m
aS r cos(φ)− μM

aM

(

r

aM

)2

P2(cosφM)

+
[

CrPr
A

m
aS − μS

aS

](

r

aS

)2

P2(cosφ) (56)
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and, after average over the short periodic motion and some algebra, we obtain:

H(x1, y1, x2, y2) = Hkepler +HJ2(x1, y1, x2, y2)

+ HSRP1(x1, y1, x2, y2, rS)

+ HSRP2+3bS(x1, y1, x2, y2, rS)

+ H 3bM(x1, y1, x2, y2, rM) (57)

with

HJ2 = Cp P + Cq Q = Cp

2
(x2

1 + y2
1 )+

Cq

2
(x2

2 + y2
2 ), (58)

HSRP1 = −
3

2
CrPr

A

m
a e ξ, (59)

HSRP2+3bS = −
[

CrPr
A

m
aS − μS

aS

]

3a2

4a2
S

w2
S,

= −β 3a2

4a2
S

w2
S, (60)

H 3bM = μM

aM

3a2

4a2
M

w2
M. (61)

and β =
[

CrPr
A
m
aS − μS

aS

]

3a2

4a2
S

. The coefficients wS and wM are given by:

wS = − sin q sin i rS,1 − cos q sin i rS,2 + cos i rS,3 (62)

wM = − sin q sin i rM,1 − cos q sin i rM,2 + cos i rM,3, (63)

where q in defined in (12).
For the short (annual) periodic motion in eccentricity, we write, with nS the mean

motion of the Sun:

ẋ1(t) = −C2 y1 − nS κ rS,1, (64)

ẏ1(t) = C2 x1 − nS κ rS,2, (65)

with

C2 = 3

2

√

μ

a3
J2
r2
S

a2
and κ = 3

2
Cr Pr

A

m

a√
L
.
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The analytical solution is:

x1(t) = Cx + k sin(nSt + λS,0)

1− η2 [η cos ε + 1] , (66)

y1(t) = Cy + k cos(nSt + λS,0)

1− η2 [cos ε + η] , (67)

with Cx and Cy the initial conditions.
For the long periodic contributions (after averaging over the motion of the Sun

and of the Moon), we define:

d1 = nS
k2

4L
cos ε + Cq

2
− δ − δ cos2 ε − γ − γ cos2 εM, (68)

d2 = nS
k2

4L
cos ε + Cq

2
− 2 δ cos2 ε − 2 γ cos2 εM, (69)

d3 = −nS k2

2
√
L

sin ε + 2 δ
√
L sin2 ε + 2 γ

√
L sin2 εM, (70)

where δ = β
3a2

16 L a2
S

and γ = −μM
aM

3a2

16 L a2
M

.

Then we write the corresponding solution for x2(t) and y2(t):

x2(t) = D sin(
√

d1d2 t − ψ), (71)

y2(t) = D

√

d2

d1
cos(

√

d1d2 t − ψ) − d3

d1
, (72)

D and ψ being the initial conditions.
We plot the motion of the inclination in Fig. 10, with or without the Moon, and

for two values of A/m. The influence of the Moon decreases when A/m increases,
it means when the solar radiation pressure is the main perturbation.

6.2 Quality of the Toy Model

We compare the four steps of the analytical model with a similar numerical
integration (Fig. 11). The toy model describes quite well the qualitative behavior and
gives a good first approximation of the periods and amplitudes. On a quantitative
point of view, we can see differences in the maxima of the inclination of less
than 10%.
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Fig. 10 The analytical motion of the inclination obtained for two values of A/m and for two
models, with or without the Moon (source [6])

7 The Numerical Solutions

The toy models give analytical formulations of the dynamics, obtained by approxi-
mations and truncations. They show the main frequencies, they allow to approximate
the periods, and to measure the minimal and maximal values of the elliptic elements.
When we need more precision, we use semi-analytical solutions, we push further the
expansions, and obtain huge dynamical systems, that we integrate numerically.

And to obtain quantitative precise results, especially in the artificial satellite
world, the brute numerical integrations, including all the forces, in their full
expressions, are still very performant, especially for short intervals of time.

However for space debris, mostly non operational and not anymore controlled,
captured in stable regions, as for natural bodies, we are far away from a few years
of life; the space debris could stay for hundreds, thousands of years in some zones
of the space. A symplectic integrator, keeping a quasi constant energy, makes sense
in that case.

7.1 The Classical Integrators

For space missions of a few years, classical numerical integrations are used. They
can be refined by using several integrators at different orders (from a Runge-Kutta
order 4 to an Adams–Bashforth–Moulton order 10 for example), by reducing the
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Fig. 11 The behavior of the
inclination obtained for each
of the four analytical models
(a) and the results of the
numerical integration for the
same cases (b) (source [6])
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integration step, or by using suitable coordinates. We use NIMASTEP developed
by [17], as reference of any space debris orbit. The software has been intensively
tested and compared, and is a robust tool. It is adaptable to any other telluric planet
and has been used in particular for Mercury. Recently it has been completed by the
different models of atmospheric drag (see Sect. 10) by Petit [33] so to be able to
follow a motion from GEO to LEO and to predict reentry dates.

7.2 The Symplectic Integrator

The symplectic integrator basic idea is to divide the Hamiltonian into two separate
parts, A and B, and to perform one half step with the first dynamical part, one
step with the second one and again one half step with the first one (SABA). Other
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combinations are also possible, as SBAB for example. The principles and the details
of the method are explained and developed in [26] and commented for different
orders.

For the space debris, the implementation has been performed for 500 years by
[21], the period of the chosen ephemeris of the Sun. However by replacing the Sun’s
ephemeris by another one or by an approximate analytical expression, it can be
pushed well further (see Sect. 8.3). Let us remind that the motions of the Sun and
Moon are introduced as given functions of time, and introduce periodic variations
in the total hamiltonian energy.

The two parts A and B have been chosen as:

A(v, r,Λ) = HK(v, r)+HRot(Λ) (73)

B(r, t) = Hgeo(r, t)+H3B(r, t)+HSRP (r, t) (74)

with HRot(Λ) = θ̇ Λ, HK(v, r) = v2

2 − μ
r

, t the time, being present through θ the
rotation of the Earth, in Hgeo, and through the positions of the Sun or the Moon, in
HSRP and H3B .

The efficiency and performance of SYMPLEC for different integrators and
orders, are described in [21] and show how large could be the time step, keeping
a quasi constant integral of motion. An example is reproduced in Fig. 12.

We present here a comparison between SYMPLEC version SABA order 4, with
a stepsize of 4 h (about 14400 s) and NIMASTEP, with Adams–Bashforth–Moulton
integrator of order 10, and for several stepsizes: 1152, 1004, 864 or 432 s. The
differences are plotted in Fig. 13.

8 The Chaos

With so many perturbations, with the presence of resonances, it is obvious that the
debris zone is chaotic. To measure at which degree, with which intensity, we can
analyze the dynamics with chaos indicators. More precisely, we are going to use
here the MEGNO (Mean Exponential Growth factor of Nearby Orbits) introduced
by Cincotta and Simo [14] and developed by the same team [15]. The calculation has
been inserted into NIMASTEP and into SYMPLEC, and for some specific zones,
we refine the MEGNO analysis with the Frequency Map Analysis as introduced by
Laskar [25].

8.1 The MEGNO Maps

In chaotic (irregular) regions of phase space, two initially nearby trajectories
separate roughly exponentially with time; in quasi-periodic (regular) regions,
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neighboring trajectories separate roughly linearly with time. The chaotic indicator
computes this rate of separation, the increasing divergence between two close orbits,
and gives information about the sensitive dependence on initial conditions.

The Lyapunov coefficients γ and λ quantify this dependence, for a finite time or
at infinity.

γ (t) = 1

t − t0
ln

(

d(t)

d(t0)

)

and λ = lim
t→∞ γ (t)
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Fig. 13 Differences between SYMPLEC (stepsize of 4 h) and NIMASTEP, associated to stepsizes
of 1152 s (black), 1004 s (blue), 864 s (red) or 432 s (green) (source [21])

where d is the Euclidian distance between two initially nearby trajectories. If the
trajectories are chaotic (irregular), d grows exponentially (on the average), and γ
approaches some positive constant; on the opposite, for quasi-periodic trajectories
(regular), d grows linearly and γ approaches zero with a rate ln(t)/t .



146 A. Lemaître

The distance d is obtained via the solution of the variational dynamical system,
δ associated to the main dynamics, d = ‖δ‖.

If the flow is given by:

dx
dt
= f(x(t),α), x ∈ R

2n, (75)

where α is a vector of parameters, the linear variational equations are:

δ̇ = d

dt
δ(φ(t)) = J (φ(t)) δ(φ(t)), with J (φ(t)) = ∂f

∂x
(φ(t)), (76)

and φ(t) a solution of the flow.
Concretely, the MEGNO (Mean Exponential Growth factor of Nearby Orbits)

indicator, Y , as well as its mean value, Ȳ , are given by integrals, and their time
derivatives are added as new differential equations in the dynamical system, main
and variational.

Y (φ(t)) = 2

t

∫ t

0

ḋ(φ(s))

d(φ(s))
s ds, Ȳ (φ(t)) = 1

t

∫ t

0
Y (φ(s)) ds (77)

If the orbit is chaotic (irregular) Ȳ (t) � λ/2 t , if it is quasi-periodic (regular),
Ȳ (t)→ 2 and for stable, isochronous periodic orbits, Ȳ (t)→ 0.

Breiter et al. [4] published the first paper applying the MEGNO to the space
debris dynamics. We have also used MEGNO intensively in the geostationary region
[45], to measure the stability of the different regions, for debris with different values
of A/m. For example, for an integration of 30 years, Fig. 14 shows the spread up of
the chaos zone, when A/m = 1, 5, 10, 20 m2/kg. The pendulum-like space phase
is more and more perturbed and the MEGNO values increase, far away from 2. In
the first graph, after 30 years, except for initial conditions close to the separatrix,
almost all trajectories are regular; for the last graph, only the central region of the
pendulum is still stable.

The FLI (Fast Lyapounov Indicator) introduced by Froeschlé et al. [19] is the
most popular chaos indicator and has been applied to the space debris population
by several teams, in particular [12, 16]. Using the FLI or the MEGNO, the different
position of the stability zones and resonant curves coincide quite well. However
their position are very dependent on the force model used for their determination.
To focus only on one angle of the geopotential makes the phase space very stable,
which is not at all the case when we add successive harmonics.
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Fig. 14 The MEGNO maps for four cases of solar radiation pressure coefficients: A/m =
1, 5, 10, 20 m2/kg (source [45])

8.2 The Frequency Map

Several improvements are performed to these figures; first of all, by an averaging
process, the distorsion of the pendulum can be reduced as shown in [45]. Moreover,
some specific regions are analyzed more precisely using the frequency map analysis
introduced by Laskar [25] measuring the variations of the frequencies of a quasi-
periodic approximation of the motion. Their variations are, in particular, measured
by following their second derivatives. Figure 15 shows an example obtained for
A/m = 10 m2/kg and Fig. 16 gives the second derivatives calculated along a slice
of the previous figure. The method allows to identify small islands of stability and
curves of chaotic motions inside the stable zones.

More precisely, if we zoom on the resonant zone of the pendulum, we clearly see
three stable islands near the separatrix (see Fig. 17). They correspond to secondary
resonances and can be analyzed analytically and locally.



148 A. Lemaître

Fig. 15 The frequency map of the space phase (source [27])

Fig. 16 The frequency map: details of a slice with the second derivative of the frequency as
indicator (source [45])
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Fig. 17 The frequency map: a zoom on the resonant zone A/m = 10 m2/kg. The x-axis is the
resonant angle, σ , given in degrees, and the y-axis is the semi-major axis, a, given in km

8.3 The Secondary Resonances

To explain the presence of the secondary resonances, in the geostationary region, for
A/m = 10 m2/kg, let us start again with the Hamiltonian linked to the coefficient
J22 (see [27] for the details of the calculations).

K = − μ2

2L2 − θ̇L+ 3μ4

L6 R2
e J22 cos 2(σ − σ0)− 15μ4

2L6 R2
e e

2 J22 cos 2(σ − σ0)

(78)

where we keep the term in e2 because we know that, in presence of high values of
A/m, the variations of the eccentricity can be very large, with an annual motion.

We inject the solution obtained for the eccentricity (41), we make simplifications
(null obliquity for example):

e2 = Z 2

L2n2
S

+ γ 2 + 2Z

LnS
γ cos (λS + δ) (79)

with Z = κ
√
L, and the final (with all these successive approximations) Hamilto-

nian K is:

K(L, σ) = − μ2

2L2 − θ̇L+ cos (2σ − 2σ0)

[

F

L6 −
2G

L6 cos (λS + δ)

]

, (80)
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with

F = 3μ4 R2
e J22 − 15μ4

2
R2
e J22

(

Z 2

L2n2
S

+ γ 2

)

G = 15μ4

2
R2
e J22

Z

LnS
γ, (81)

in which we can rewrite :

2 cos (2σ − 2σ0) cos (λS + δ) = cos (2σ + λS − 2σ0 + δ)+ cos (2σ − λS − 2σ0 − δ).

The period of λS is clearly 1 year, the period of σ is about 2.5 years at
the center of the libration zone and goes to infinity near the separatrix. Using a
pendulum model, we can detect the regions where the two frequencies, 2 σ̇ and λ̇S ,
are commensurable. All the calculations can be performed through the pendulum
formulation, using elliptic integrals, and the positions of the main secondary
resonances are then identified. We use, for each resonant case, a classical pendulum
formulation with R the momentum, and r is the resonant angle, as:

h = R2

2
− b cos r.

The initial conditions close to the separatrix can be chosen as R = 0 and r = π − ε,
and the energy level is given by

hε = −b cos(π − ε) = b cos ε.

ε is then a parameter measured in radians from the separatrix, with ε = 0 on the
separatrix. In particular a (secondary) resonance 3:1 can be isolated, in the vicinity
of the separatrix, at a distance ε = 0.9 in the reduced variables. The calculated
angular positions of the three islands are 60.26◦, 180.26◦, and 300.26◦ measured
from the vertical positive axis, which is exactly what Fig. 17 shows.

Section 8.3 gives the positions of the different commensurabilities through the
parameter ε and compares the values obtained by an analytical formula of the
pendulum with a comparable numerical integration (Fig. 18).

A similar study has been performed in the circulation zone, with the detection of
the main secondary resonances: 1:2, 1:3, etc.
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Fig. 18 Resonant case: the period of 2σ−2σ0 calculated in years, through a numerical integration
of the pendulum differential equations (dots) and through the analytical expressions (lines), as
functions of ε measuring the distance from the separatrix ([27])

9 The Lunisolar Resonances

We have analyzed the gravitational resonances, characterized by a commensurabil-
ity between the rotation of the Earth and the orbital period of space debris (GEO and
MEO). We have mentioned the secondary resonances, which act inside a resonance,
between the libration angle and another slow angle (between σ and λS in our case).

We introduce now the lunisolar resonances, which are secular resonances
between ω and Ω of the space debris and the nodes and perigees of the Moon and
the Sun, analyzed first by Breiter [3].

More recently several authors have systematically revisited the lunisolar reso-
nances, in particular we can mention [16] or [36] but also [10–12]. Mixing the
perturbation theories, the FLI to detect chaotic zones, the space phase is really sliced
in different zones of stability and chaos, determined by the lunisolar resonances.
Inside those resonances, structures are visible, probably secondary resonances
inside the secular ones.

For the Moon, let us mention that the following combinations of angles are
identified as potential secular resonances:

Ψ̇2−2p,m,±s = (2− 2p) ω̇ +mΩ̇ ± Ω̇M � 0, (82)
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and for the Sun, the expressions are even simpler:

Ψ̇2−2p,m = (2− 2p) ω̇ +mΩ̇ � 0. (83)

The challenge is now to identify the different layers obtained by these authors
inside the secular ones. Analytical and numerical perspectives have to be mixed up,
to understand the complexity of the dynamics in these regions.

10 The Atmospheric Drag

When space debris reach the LEO region, the conservative forces do not describe
the complete dynamics and are not able to predict the reentry date. The atmospheric
drag plays an important and efficient role, speeding up the loss of energy, and
pushing down the debris to the Earth.

However this drag is not easy to model; different models and approaches exist
and give different results (see [33]).

Let us mention the most popular density models:

• JB2006/JB2008: developed by [2], it is a semi-analytical model, based on the
preliminary model Jacchia-71 (see [23]). It is still now the reference of the
committee on Space Research (COSPAR).

• DTM2013: it is a drag temperature model (see [5]), also semi-analytical, which
includes the data of the satellites Stella, Starlette, OGO-6, DE-2, AE-C, AE-E,
CHAMP, GRACE and GOCE for altitudes between 200 and 900 km.

• TD88: it is an empirical model (see [41]), filled on the observation data, extended
up to 1200 km.

• Many others could also be mentioned: other versions of Jacchia, MSIS, NRLM-
SISE00, GRAM, MET, GOST, TIEGCM, etc.

The density functions depend on many parameters, let us mention the most
important ones: the solar flux, the geomagnetic activity, the local time, the length
of the day, the latitude.

To compare the models and their prediction, two real orbits, corresponding to the
satellites Stella and Starlette are given by their TLE. The three atmospheric models,
JB2008, DTM2013 and TD88, are inserted into the software NIMASTEP associated
to the Adam-Bashforth-Moulton integrator of order 10, and followed for more than
20 years (Fig. 19).

The qualitative behaviors of the three models is very similar, the differences
appear each time an event occurs, decreasing sharply the altitude. The models are
slightly different and could describe these events (due mainly to solar activity) in a
slightly different way.
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Fig. 19 Evolution of Starlette semi-major axis using JB2008, DTM2013, TD88, in comparison
with the TLE (source [33])

Other comparisons obtained by different software are presented in [33], espe-
cially the follow up of the fragments of the explosion of the Chinese satellite
Fengyun-1C (Fig. 20).

11 Yarkovsky-Schachs Effect

In the asteroidal context, the importance of Yarkovsky’s thermal force is now
obvious, on long periods of time, linked to the A/m coefficient and to the spin
rate of the body. In the case of short space missions, the effect on the artificial
satellites, over a few years, is certainly negligible; however on space debris, present
for hundreds of years, and spinning in all the manners, the question is open. We
have decided to test one of its aspects, the so-called Yarkovsky-Schachs effect, an
orbital thermal contribution to the dynamics, proportional to the A/m coefficient.

We use the classical formulations reserved to asteroidal motions, and we adjust
their expressions to the debris case. The main orbital effect is due to the differences
of temperature of the piece of debris, due to the Sun’s warmth. More precisely,
the Yarkovsky-Schachs effect induces long-term semi-major axis variations, which
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Fig. 20 Evolution of Stella semi-major axis using JB2008, DTM2013, TD88, in comparison with
the TLE (source [33])

appear when the orbit crosses the Earth’s shadow. The solar flux arriving at the
satellite surface is then interrupted, the satellite surface cools down after entering the
shadow, and heats up again after exiting from it. The recoil force does not average
on one orbit, and the problem becomes therefore position-dependent.

The order of magnitude of this effect is very small, and in comparison with the
other perturbations, it does not seem important to insert this force systematically in
the dynamical models. For details see [32].

12 The Synthetic Populations of Space Debris

The building of virtual or synthetic populations is based on the work performed in
naXys Institute (Namur Complex systems) by the research group in mobility and
traffic: they are implicated in projects for more 40 years, to describe the traffic
dynamics, from the classical Dijkstra algorithm of shortest paths in a graph, to
psychological models about human behavior to choose a way. Facing the necessity
of collecting data about families, ages, schools, supermarkets, rates of employment,
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they have realized the difficulties of getting a suitable set of data, usually very local
and limited by the protection of private life.

During the last 10 years, they have succeeded in building a full synthetic
population of Belgium, with more than ten millions of people, organized in families,
with work, schools, habits, completely virtual but as close as possible to the reality
(it means to the available local data). They have obtained an expertise in specific
statistical methods adapted to this virtual population concept.

We develop a synthetic population of virtual space debris with similar character-
istics to the real ones. Our known data are the 20,000 TLE corresponding to 10 cm
or more objects. Our objective is to simulate a much larger population of objects,
in particular objects of 1 cm, which are able, due to their high relative velocity, to
create damages on the active satellites or probes, or even to the ISS.

The first tests are convincing, we simulate an event, like an explosion and a
collision, creating new debris than the big ones observed and inserted in the TLE
catalogue [34]. The method used is the Iterative Proportional Fitting (IPF), an
iterative process for weighting data describing a population up to the convergence
to a stable state. It is based on a matrix formulation, after discretization of the data
(a, e, i, ω,Ω,M,A/M). We follow the fragmentation of the satellite Ekran 2, and
we compare the initial and the synthetic populations, and we obtain the convergence
of the method. We have created artificially a new initial population, by modifying
the ejection velocity by a factor 2, and we can measure the differences betweens the
two observed clouds.

We hope to develop this tool as a real simulator of catastrophic events or predictor
of developments of debris clouds.
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8. Celletti, A., Galeş, C.: Dynamical investigation of minor resonances for space debris. Celest.
Mech. Dyn. Astron. 123, 203–222 (2015)
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Computing Invariant Manifolds
for Libration Point Missions

Josep-Maria Mondelo

Abstract The goal of this lecture is to review several methodologies for the
computation of invariant manifolds, having in mind the needs of preliminary
mission design of libration point missions. Because of this, the methods reviewed
are developed for and applied to the circular, spatial restricted three-body problem
(RTBP), although most of them can be applied with few changes, or almost none,
to general dynamical systems. The methodology reviewed covers the computation
of (families of) fixed points, periodic orbits, and invariant tori, together with the
stable and unstable manifolds of all these kinds of invariant objects, and also
homoclinic and heteroclinic connections between them. The methods reviewed
include purely numerical and semi-analytical ones. No background is assumed
except for a graduate level knowledge of calculus, differential equations and basic
numerical methods. In particular, the notions from the theory of dynamical systems
required for the development of the methods are introduced as needed.

Keywords Libration points · Restricted Three-Body Problem · Lissajous orbits ·
Halo orbits · Periodic orbits · Invariant tori · Invariant manifolds · Homoclinic
and heteroclinic connections · Center manifold · Parameterization method ·
Automatic differentiation

1 Introduction

In libration point missions, spacecraft are sent to orbits that stay close to the fixed
points of the circular, spatial, restricted three-body problem (RTBP) with primaries
the Sun and a planet, or a planet and a moon. The RTBP model describes the motion
of an infinitesimal particle under the attraction of two massive bodies known as
primaries, that are assumed to revolve uniformly in circles around their center of
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mass. In rotating coordinates, this model has five equilibrium points: three of them,
L1, L2, L3, also known as collinear, were discovered by Euler, and two more, L4,
L5, also known as triangular, were discovered by Lagrange. Compared to orbits
around the Earth or other planets, orbits around the collinear libration points provide
ideal locations for space observation. Among their advantages are the absence of
shadow of a celestial body, thus providing a more stable thermal environment, and
continuous access to the whole celestial sphere, except for a direction, that is not
fixed but rotates with the primaries. Also, the instability of the collinear libration
points gives rise to a very rich dynamical structure, that can be exploited not only
to search for operational nominal orbits but also to find low-energy passageways
between them. These operational orbits could be either of the libration point type or
around celestial bodies.

Four examples of libration point missions of different kinds are:

• SOHO, launched in Dec. 1995, to an Halo orbit around the collinear point L1 of
the Earth-Sun system. Its goal is to provide continuous observations of the Sun,
and is still operational.

• WMAP, launched in June 2001, to a Lissajous orbit around the collinear point
L2 of the Earth-Sun system. Its goal was to map the temperature fluctuations of
the cosmic microwave radiation.

• Genesis, launched in Aug. 2001, to an Halo orbit around the collinear point L1
of the Earth-Sun system. Its goal was to collect solar wind samples and deliver
them to Earth in daylight. For this, an additional excursion close to the collinear
point L2 of the Earth-Sun system was necessary.

• Artemis, started in Jan. 2009 as an extension of the mission of two of the
spacecrafts of the Themis mission, that, using the remaining fuel, were sent
from high, eccentric Earth orbits to lunar orbits using L1 and L2 Earth-Moon
dynamics.

Illustrations of the trajectories of these four missions are shown in Fig. 1.
The nominal trajectories of these four missions can be identified among the

families of periodic orbits and invariant tori related to the collinear libration points
of the RTBP. In the case of SOHO and Genesis, the nominal trajectory is part of
the Halo family of periodic orbits. In the case of WMAP, it is part of the Lissajous
family of invariant tori. In the case of Artemis, the nominal trajectories would be
the final lunar ones, but invariant tori of the L1 and L2 Lissajous family play a
fundamental role in the transfer from Earth to lunar orbits. The invariant stable
(resp. unstable) manifolds of all these periodic orbits and tori can be used to arrive to
(resp. depart from) them. In the case of the P1 spacecraft of Artemis, an heteroclinic
connection is closely followed in order to go from the Lissajous torus around L2
to the Lissajous torus around L1. Such connections are obtained as intersections of
the stable manifold of the arriving object and the unstable manifold of the departing
object. An heteroclinic connection is also outlined by the Genesis mission.

The preliminary mission design of these kind of missions is based in being able
to compute families of trajectories, in order to be able to select the one that best
satisfies the requirements of the mission. The goal of this lecture is to review some
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Fig. 1 Trajectories of the missions: (a) SOHO, (b) Genesis, (c) WMAP, (d) Artemis

of the numerical and semi-analytical techniques available in the literature that can
be used in order to compute families of periodic orbits and invariant 2D tori of
the RTBP as a dynamical system, as well as their invariant stable and unstable
manifolds. Some discussion will be done also on the computation of homoclinic
and heteroclinic connections. Although preliminary mission design is the main
motivation for this lecture, all the techniques that will be described can be used
for the numerical computation of invariant objects in other conservative dynamical
systems. Many of them can be directly used in or easily adapted to the dissipative
case as well.

The methods that will be described can be divided in two classes: numerical
and semi-analytical. Semi-analytical methods provide expansions around a base
object that must be previously known. They are more convenient than numerical
methods for parametric studies of trajectory features, since a single expansion
covers a family or many families of trajectories. They have as a drawback that
the expansions provide a good approximation of the dynamics in a neighborhood
of the base object, but not outside this neighborhood. Numerical methods are able
to compute individual objects anywhere in phase space, but parametric studies with
them are more tedious, since they require the previous generation of a large database
of trajectories obtained by numerical continuation of one or many families of
trajectories. This does not mean that parametric studies are not feasible: an example
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of systematic continuation families of periodic orbits and invariant tori in order to
cover large regions of phase space is given in Sect. 3.9.

The numerical method chosen for the computation of the 2D tori of the RTBP
is based on looking for the Fourier series of a curve in the torus invariant by the
time-T flow, being T one of the periods of the quasi-periodic trajectories inside
the torus [6, 14]. It is a well-established method that has proven to be among the
most adequate in this context (see [3] for a review of several methods). Since its use
requires starting from the normal part of periodic orbits that need to be previously
obtained by continuation, this lecture also includes a discussion on the numerical
computation of fixed points and periodic orbits, and develops explicit formulation
of the linear approximation of their normal dynamics. On the semi-analytical side,
this lecture will cover a technique based on the parameterization method [20, 21],
that produces Taylor expansions of the center manifold of a collinear point and
the corresponding reduction of the vector field. In the reduced field, the collinear
libration point is no longer unstable, so the trajectories in a neighborhood of it
can be obtained by direct numerical integration. An earlier technique known as
reduction to the center manifold [15, 25] produces the same results. There is another
technique (not covered here), known as the Lindstedt-Poincaré method [25, 29],
which is still more convenient for parametric studies because it produces expansions
of the trajectories instead of the center manifold, at the expense of a slightly smaller
neighborhood of validity of the expansions.

The lecture is structured as follows. Section 2 reviews some of the common
nomenclature in dynamical systems and, in doing so, introduces the relevant
features of the RTBP. After that, Sect. 3 describes numerical techniques for the
computation of periodic orbits and invariant tori, whereas Sect. 4 explains how to
compute the same objects semi-analytically using the parameterization method.
Attention is then focused on the computation of the stable and unstable manifolds
of periodic orbits and tori. Section 5 reviews numerical techniques to compute
their linear approximation, whereas Sect. 6 explains how to obtain trajectories
in these manifolds semi-analytically via the parameterization method. Finally,
Sect. 7 addresses the computation and continuation of homoclinic and heteroclinic
connections.

2 Dynamical Systems and the RTBP

This section recalls some notions from the theory of dynamical systems and also
introduces the circular, spatial Restricted Three-Body Problem (RTBP). Although
most readers will probably be familiar with these notions, recalling them will allow
us to introduce notations that will be used in the rest of the lecture.
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2.1 Continuous Dynamical Systems

The theory of dynamical systems provides an abstract framework for the mathemat-
ical study of systems that evolve with time in a deterministic manner. Continuous
dynamical systems are those in which time is considered a continuous variable, this
is, t ∈ R. They are usually defined in terms of a system of autonomous (time-
independent) Ordinary Differential Equations (ODE)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ẋ1 = X1(x1, x2, . . . , xn),

ẋ2 = X2(x1, x2, . . . , xn),
...

ẋn = Xn(x1, x2, . . . , xn),

or, in short,

ẋ = X(x), for x ∈ R
n, X : Rn → R

n.

Assuming that this system of ODE can be integrated for all time, for t ∈ R the
time-t flow, φt : Rn −→ R

n, is defined by the initial value problem

d
dt

φt (x) = X
(

φt (x)
)

φ0(x) = x

}

.

It can be thought as a map that “flows” initial conditions along the corresponding
trajectories for t time units. The subscript notation for t is in order to stress this fact.
It is also common to refer to a continuous dynamical system as “a flow”.

Given an initial condition x0, the corresponding orbit is {φt (x0)}t∈R. A fixed
point of a continuous dynamical system is a point whose orbit is itself, that is,
φt (x) = x, ∀t ∈ R. This can only happen if f (x) = 0. An orbit {φt (x)}t∈R is
said to be periodic if there is T > 0 such that

φT (x) = x,

φt (x) �= x, for 0 < t < T .

Then T is said to be its period. A set of initial conditions A ⊂ R
n is said to be an

invariant set if

φt (x) ∈ A ∀t ∈ R, ∀x ∈ A.

A straightforward example is an orbit (in particular, a fixed point or a periodic orbit).
A manifold is a set of points defined (maybe piece-wise) by equations, either

implicit or parametric. An invariant manifold is an invariant set that is a manifold
(e.g. a torus). We will usually speak of general invariant manifolds as invariant
objects and reserve “invariant manifold” to denote stable, unstable or center
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manifolds associated to an invariant object. Given an invariant set A, its stable set
(resp. unstable set) is the set Ws(A) (resp. Wu(A)) of initial conditions that tend
to the object asymptotically through the flow forward (resp. backward) in time. In
other words, the set of initial conditions that approach (resp. depart from)A. This is,

Ws(A) = {x : dist
(

φt (x), A
) t→+∞−→ 0},

Wu(A) = {x : dist
(

φt (x), A
) t→−∞−→ 0}.

For several cases in which A is a manifold (e.g. a fixed point, a periodic orbit, an
invariant torus), Ws(A) (resp. Wu(A)) is also a manifold, and is called the stable
manifold (resp. unstable manifold) of A.

2.2 The Circular, Spatial Restricted Three-Body Problem

The circular, spatial restricted three-body problem (RTBP) is an example of
continuous dynamical system. It can be written as a Hamiltonian system with three
degrees of freedom (details on the theory of Hamiltonian systems can be found in
e.g. [31]) with Hamiltonian

H(x, y, z, px, py, pz) = 1

2
(p2

x + p2
y + p2

z )− xpy + ypx − 1− μ

r1
− μ

r2
,

with r2
1 = (x − μ)2 + y2 + z2, r2

2 = (x − μ+ 1)2 + y2 + z2. The system of ODE
that defines it is, therefore,

ẋ = ∂H/∂px = px + y, ṗx = −∂H/∂x = py − 1− μ

r3
1

(x − μ)− μ

r3
2

(x − μ+ 1),

ẏ = ∂H/∂py = py − x, ṗy = −∂H/∂y = −px −
(1− μ

r3
1

+ μ

r3
2

)

y,

ż = ∂H/∂pz = pz, ṗz = −∂H/∂z = −
(1− μ

r3
1

+ μ

r3
2

)

z.

The RTBP describes the motion of a massless particle (“massless” in the sense that it
is considered not to influence gravitationally any other body) under the gravitational
attraction of two bodies, called primaries, with masses m1 > m2. The primaries are
assumed to revolve uniformly in circles around their common center of mass. The
coordinate system used is a synodic one, that rotates with the primaries so that the
primary of mass m1 is fixed at (μ, 0, 0, 0, μ, 0), and the primary of mass m2 is
fixed at (μ − 1, 0, 0, 0, μ− 1, 0). The RTBP depends on the mass parameter μ =
m2/(m1+m2). As it is common with Hamiltonian systems, the (x, y, z) coordinates
are called positions, and the (px, py, pz) coordinates are called momenta. The space
of positions (this is, 3D physical space) is called configuration space. See Fig. 2.
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Fig. 2 Schematic description
of the RTBP in configuration
space
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In short, the RTBP can be denoted as ẋ = X(x), with

x = (x, y, z, px, py, pz), X(x) = (X1(x),X2(x), . . . , X6(x)), (1)

being

X1(x) = px + y, X4(x) = py − 1− μ

r3
1

(x − μ)− μ

r3
2

(x − μ+ 1),

X2(x) = py − x, X5(x) = −px −
(1− μ

r3
1

+ μ

r3
2

)

y,

X3(x) = pz, X6(x) = −
(1− μ

r3
1

+ μ

r3
2

)

z.

(2)

2.3 Discrete Dynamical Systems

Discrete dynamical systems are those in which time is considered as a discrete
variable, this is, t ∈ Z. They are defined by diffeomorphisms (smooth 1-1 maps)

F : Rn −→ R
n

x $−→ F (x).

We denote by F−1 the inverse map of F , and use superscript notation for the
composition of maps:

F 0(x) = x,

F 1(x) = F (x),

F 2(x) = F (F (x)), F−2(x) = F−1(F−1(x)),

F 3(x) = F (F (F (x))), F−3(x) = F−1(F−1(F−1(x))).
...

...

In this way, F n is “the discrete time-n flow”. Via this notion, all the previous notions
from continuous dynamical systems translate to the discrete case. Given an initial
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condition, its related orbit is the set { F i (x) }i∈Z, that is,

{. . . ,F−3(x),F−2(x),F−1(x),F 0(x),F 1(x),F 2(x),F 3(x), . . . }.

A fixed point is an initial condition such that its orbit is itself, F (x0) = x0. An n-
periodic point is an initial condition x0 such that F n(x0) = x0, F i (x0) �= x0, ∀i =
1, . . . , n − 1. A set of initial conditions A ⊂ R

n is said to be an invariant set if
F n(x) ∈ A ∀n ∈ Z ∀x ∈ A. If A is a manifold, the stable and unstable sets of A,
defined by

Ws(A) = {x : dist(F n(x), A)
n→+∞−→ 0},

Wu(A) = {x : dist(F n(x), A)
n→−∞−→ 0},

are usually manifolds.
An paradigmatic example of a discrete dynamical system is Chirikov’s standard

map, that, in one of its formulations is written as

F :
(

x

y

)

$−→
(

x + a sin(x + y)

x + y

)

. (3)

Here a is a parameter and x, y ∈ T = R/[0, 2π], that is, we assume that (x, y)
and (x̄, ȳ) are the same point if x − x̄ = j2π , y − ȳ = k2π , for j, k ∈ Z.
The standard map is area-preserving. In two dimensions, being area preserving
is equivalent to being symplectic, which is the discrete analog of the Hamiltonian
formalism (for more details see any textbook in the subject, e.g. [31]). The global
dynamics (a phase portrait) of two-dimensional area-preserving maps on compact
regions can be swiftly obtained by iteration of the map F . Figure 3 is obtained by
considering the initial conditions {pj := (−π + j2π/100, 0)}100

j=0 and plotting the

points {F k(pj ))}1000
k=0 , for j = 0, . . . , 100. Several kinds of invariant sets (that are

Fig. 3 Phase portrait of the
standard map (3) for
a = −0.7
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manifolds) can be found, like fixed points, periodic points of different periods and
invariant curves. Invariant sets with chaotic dynamics can also be observed.

2.4 Orbit Generation in a Dynamical System

Orbits in discrete dynamical systems can be generated just by iteration of the map,
as it has been done in Fig. 3. In continuous dynamical systems, numerical methods
for integration of ODE have to be used. In order to have error control, variable-step
methods are preferred over constant-step ones. A popular family of variable-step
methods are the Runge-Kutta-Fehlberg (RKF) ones, of which there are some high-
order versions like RKF78 [10]. There are many alternatives (see e.g. [19, 41]). In
the case of a system of ODE given by closed formulae, like the RTBP, a particularly
good choice is Taylor’s method, of which there are freely available implementations
[1, 27]. Here we will discuss briefly the black-box usage of a one-step method with
step size control.

For a system of n possibly non-autonomous ODE,

ẋ = X(t, x),

with x,X(t, x) ∈ R
n, denote by φ(t, t0, x) its flow from time t0 to time t , defined

by the conditions

d

dt
φ(t, t0, x) = X

(

t,φ(t, t0, x)
)

,

φ(t0, t0, x) = x, ∀x ∈ R
n.

(4)

Given t0 ∈ R, x0 ∈ R
n, h0 ∈ R (small), and a tolerance δ, a routine implementing

a one-step method with step size control will return t1, x1, h1 verifying

(a) |x1 − φ(t1, t0, x0)| < δ,
(b) t1 is as close to t0 + h0 as possible,
(c) h1 is a recommended step length for the next call.

In the algorithmic descriptions that will follow, we will denote a call to such a
routine as

(t1, x1, h1) = ODEstep(t0, x0, h0,X, δ).

In order to implement φ(t1, t0, x0) for arbitrary t1, t0, x0, it is necessary to write
a routine that calls ODEstep many times using as input step h0 the recommended
step h1 of the previous call, plus a final call with h0 the step needed to in order to
reach the final time t1 (or more than one such calls, if the step given is reduced by
the step size control). In some of the algorithmic descriptions that will follow, a call
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to such a routine will be denoted as

(t1, x1, h1) = ODEflow(t0, t1, x0, h0,X, δ).

In the systems of non-linear equations that we will solve in order to compute
invariant objects, we will need to be able to numerically evaluate both the flow and
its differential with respect to initial conditions, that we will denote asDxφ(t, t0, x),
or simply Dφt (x) in the autonomous case. It can be found by numerically
integrating the system of ODE together with its first variational equations:

ẋ = X(t, x),

Ȧ = ∂X

∂x
(t, x)A,

(5)

where x is an n-dimensional vector and A is a n × n matrix. If x(t) and A(t) are
solutions of (5) with x(t0) = x0 and A(t0) = In the n × n identity matrix, then
Dxφ(t, t0, x0) = A(t). System (5) can be written as a system of n+ n2 ODE as

ẋi = Xi(t, x1, . . . , xn), i = 1, . . . , n,

ȧi,j =
n
∑

k=1

(∂Xi

∂xk
(t, x1, . . . , xn)

)

ak,j , i, j = 1, . . . , n.

2.5 Poincaré Maps

A way to simplify the study of a continuous dynamical systems is to consider a
discrete dynamical system that has essentially the same dynamics. One way to do it
is, for a fixed T > 0, to consider the time-T flow (or stroboscopic map), φT , which
is a discrete dynamical system. In this way, for instance, T -periodic orbits are turned
into fixed points. Another way to turn a continuous dynamical system into a discrete
one is through a Poincaré map.

For a continuous dynamical system given by ẋ = X(x), let Σ be a hypersurface
of Rn, and assume it is transversal to the vector field, that is, X(x) is not tangent
to Σ for all x ∈ Σ . Let x0 be such that φT0

(x0) ∈ Σ for some T0 > 0. The
implicit function theorem ensures the existence of a neighborhood U % x0 and a
map τ : U → R, known as time-return map, such that τ (x0) = T0 and

φτ (x)(x) ∈ Σ ∀x ∈ U.

The map P (x) := φτ (x)(x) is called Poincaré map corresponding to Σ . If x0 ∈ Σ
and P (Σ ∩U) = Σ ∩U , the restriction of P toΣ ∩U defines a discrete dynamical
system. In going to the starting continuous dynamical system to the discrete one
defined by P , periodic orbits are turned into fixed points, and invariant tori are
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turned into invariant curves. In general, invariant objects lose one dimension, which
is an advantage both from the theoretical and the computational point of view.

Orbit generation in this discrete dynamical system requires the numerical
evaluation of a Poincaré map, which has as a difficulty that the time-return map
τ (x) is unknown. It can be adjusted by Newton iterations once we get close to the
section Σ . This is done in Algorithm 1.

Algorithm 1 Evaluation of the Poincaré map P associated to a section Σ =
{g(x) = 0} for g : Rn → R, which is assumed to be traversed from g(x) < 0
to g(x) > 0. At the end of the algorithm, y = P (x) and t = τ (x).

input: x, g, X, tol, tol2, h0
do: t := 0, y := x, h := h0

while (g(y) ≥ −tol)
(t, y, h) := ODEstep(t, y, h,X, tol2)

while (g(y) < 0)
(t, y, h) := ODEstep(t, y, h,X, tol2)

while (|g(y)| > tol)

δ := − g(y)

Dg(y)X(y)
(t, y, h) := ODEflow(t, t + δ, y, h,X, tol2)

output: t , y.

If the differential of the Poincaré map, DP (x), is also needed, it can be
computed as

DP (x) = X
(

P (x)
)

Dτ(x)+Dφτ (x)(x),

whereDφτ (x)(x) is to be understood as Dyφτ (x)(y)|y=x . An expression forDτ(x)
can be obtained by implicit differentiation on g(P (x)) ≡ 0. After substitution in
the previous equation,

DP (x) = −X
(

P (x)
)Dg

(

P (x)
)

Dφτ (x)(x)

Dg
(

P (x)
)

X
(

P (x)
) +Dφτ (x)(x). (6)

In a routine implementing Algorithm 1 for the evaluation of a Poincaré map,
it is useful to keep as an option the integration of the system of ODE defining
our continuous dynamical system together with its first variational equations (5),
in order to have available Dφτ (x)(x) to be used in (6).

3 Numerical Computation of Periodic Orbits and 2D Tori

The goal of this section is to review some numerical methods for the numerical
computation of the periodic orbits and invariant 2D tori related to collinear libration
points. Since the RTBP is Hamiltonian, both periodic orbits and tori are not isolated
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but embedded in families. Once an invariant object (periodic orbit or torus) has been
computed, the remaining objects of its family can be obtained by continuation. The
first object of a family is usually computed from the linear approximation of the
dynamics around a simpler object (e.g. a torus from the linear dynamics around a
periodic orbit, or a periodic orbit from the linear dynamics around a fixed point).
This approach can be followed hierarchically in order to do a systematic study of
the dynamics around a collinear point.

This section starts recalling the predictor-corrector or pseudo-arclength contin-
uation method as described by standard references (e.g. [2]). After that, Sect. 3.2
provides an strategy for the numerical solution of not necessarily square non-linear
systems of equations, that simplifies considerably the practical implementation of
the methods described later. The subsections that follow (from Sects. 3.3 to 3.8)
provide methods for the computation of invariant objects and formulation for
the linear dynamics around them, necessary to implement a systematic numerical
exploration of the dynamics around a collinear libration point. This is actually done
in Sect. 3.9 for the L1 collinear point of the Earth-Moon RTBP.

3.1 Numerical Continuation

A classical way to introduce numerical continuation is as a technique to find a
(unknown) solution of a system of non-linear equations G(x) = 0 from a known
solution of another system F (x) = 0, that is close to G(x) = 0 in some sense.
In order to look for a zero of G, a one-parametric family of intermediate systems
H (λ, x) is considered with H (0, x) = F (x) and H (1, x) = G(x). For instance,
the convex homotopy between F and G,

H (λ, x) = (1− λ)F (x)+ λG(x),

Then we can try to continue the known solution x0 of H (0, x) = 0 up to a solution
of H (1, x) = 0 with respect to the parameter λ. The algorithm below provides a
straightforward approach.

Algorithm 2 Continuation of H (λ, x) = 0 with respect to the parameter λ.

input: x0 ∈ R
n such that H (0, x0) = 0, m ∈ N

do: x := x0
Δλ := 1/m
∀i = 1, . . . ,m

λ := iΔλ

solve H (λ, y) = 0 iteratively for y taking x as
starting value

x := y

output: x
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Algorithm 2 breaks down if there is a turning point with respect to λ along the
continuation curve. An alternative that can cope with this case is the predictor-
corrector or pseudo-arclength continuation method (see e.g. [2]). Its basic idea is
to consider arclength instead of λ as the continuation parameter. “Pseudo” stands
for the fact that the actual parameter is not truly arclength but distance along a
line tangent to the continued curve. Define y = (λ, x) ∈ R

n+1. Then H (y) :=
H (λ, x) = 0 defines implicitly a curve in R

n+1 as long as rankDH (y) = n,
which is a condition we will assume. The continuation can be done according to the
algorithm stated next.

Algorithm 3 Predictor-corrector or pseudo-arclength continuation of H (y) = 0,
for y = (λ, x), from λ = 0 to λ = 1.

input: y = (λ, x) ∈ R
n+1 such thatΠ1y := λ = 0, H (y) = 0.

do: while (Π1y < 1)
let v ∈ kerDH (y), ‖v‖2 = 1, pointing ahead
take z := y + γ v, for suitable γ (see the comments below)
if (Π1z < 1)

solve H (z) = 0 iteratively for z by a modified Newton’s
method taking minimum-norm corrections

else
γ := (1−Π1y)/Π1v

z := y + γ v

solve H (z) = 0 by Newton iterations keepingΠ1z constant
y := z

output: y

A convenient way to control the step length γ is in order to keep constant the number
of Newton iterations when solving H (z) = 0 at each continuation step. A simple
rule is to assume that this number of iterations is a linear function of the step length
chosen: if nold is the number of iterations performed in the last continuation step,
γold is the last step length used and ndes is the desired number of Newton iterations,
we can take

γ = ndes

nold
γold. (7)

Note that, except for the start and stop criteria, in the pseudo-arclength method there
is no distinguished coordinate to be considered a parameter. It can therefore be
applied to any system of non-linear equations H (y) = 0, as long as its solution
is a curve.



172 J.-M. Mondelo

3.2 Numerical Solution of Non-square, Non-linear Systems of
Equations

In Sects. 3.6 and 3.8, the computation of periodic orbits and invariant 2D tori will
be done in terms of solving non-linear systems of equations. In the case of the
computation of a single object, the system to be solved will have (locally) unique
solution. It is standard practice in this case to require such a system to be square,
this is, of the form G(y) = 0 with G : RN −→ R

N for some N , and to use
Newton’s method (see any textbook on numerical analysis, e.g. [41]). In the case of
the continuation of a family, the system to be solved will not have unique solution
but a curve of solutions. It is standard practice in this case to require such a system
to have one more unknown than equations, this is, to be of the form G(y) = 0 with
G : RN+1 → R

N for someN , and to use Newton’s method with some modification
to account for non-uniqueness (see e.g. [2, 39]).

In order to keep the systems of equations of Sects. 3.6 and 3.8 simple, it will be
convenient not to require them to be eitherN ×N or (N +1)×N . A way to be able
to solve these systems is to consider a modified Newton method yn+1 = yn−(Δy)n
in which the linear system to be solved for the correction,DG(yn)(Δy)n = G(yn),
is solved for its minimum-norm, least-squares solution. The minimum-norm, least-
squares solution always exists and is unique for any linear system of equations,
square or not. Assuming that the starting non-linear system G(y) = 0 has a solution
(perhaps non-unique) and that the initial guess y0 is close to a solution, this strategy
will converge to a nearby solution using minimum-norm corrections.

We discuss briefly how to compute the minimum-norm, least-squares solution of
a linear system Ay = b using QR decomposition with column pivoting.1 Assume
that A is an arbitrary m× n matrix with r := rankA ≤ min(m, n). A least squares
solution of Ay = b,

y∗ ∈ R
n : ‖b − Ay∗‖2 = min

y∈Rn ‖b − Ay‖2,

always exists. If r = n, there is an unique least-squares solution. If r < n, there is
a linear subspace of least-squares solutions of dimension d := n− r . Nevertheless,
as mentioned previously,

yLS : ‖yLS‖2 = min
{‖y∗‖2 : ‖b − Ay∗‖2 = min

y∈Rn ‖b − Ay‖2
}

,

1Singular value decomposition (see e.g. [12]) is an alternative that provides more information but
is also computationally more costly.
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is always unique. By applying to A Householder transformations with column
pivoting [12], we obtain a decomposition

Q"AP =
(

R11 R12

0 0

)

,

with Q an m × m orthogonal matrix, R11 an r × r upper-triangular matrix with
non-zero diagonal elements, and P a n× n permutation matrix. In order to perform
this decomposition, r (or, equivalently, d = n− r) must be known. If we denote

P"y =
(

z

s

)

, Q"b =
(

c

d

)

,

with z, c ∈ R
r , s ∈ R

d, d ∈ Rm−r , then the least-squares solutions of Ay = b are

P"y =
{(

R−1
11 c

0

)

+
(−R−1

11 R12

Id

)

s

}

s∈Rd
,

where Id is the d × d identity matrix. Finding the minimum-norm element of the
previous set is an standard full-rank least-squares problem, that can be solved via a
standard (without column pivoting) QR decomposition.

In order to solve the systems of equations of Sects. 3.6 and 3.8, it is convenient
to write a routine that, for a general m × n linear system of equations, finds the
minimum-norm least-squares solution and, optionally, a basis of the kernel of A,
which can be obtained from

kerA =
{

P

(−R−1
11 R12

Id

)

s

}

s∈Rd
.

3.3 Computation of Fixed Points of Flows and Maps

For the computation of a fixed point of a flow ẋ = X(x), we look for p such that
G(p) := X(p) = 0. For the computation of a fixed point of a map x $→ F (x), we
look for p such that G(p) := F (p) − p = 0. In any case, we can use Newton’s
method in several variables in order to look for a zero of G.

Algorithm 4 Newton’s method in order to find a zero of a function G : Rn → R
n

with tolerance tol, starting from a first guess p0, allowing for a maximum of maxit
iterations.

input: p0, G, tol,maxit
do: p:=p0

for it from 1 to maxit do
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if (|G(p)| < tol) return p

solve DG(p)Δp = G(p) for Δp

p := p −Δp

error (maxit exceeded)
output: p (if OK)

In the RTBP, it can be analytically seen (see e.g. [42]) that the distance from
Lj , j = 1, 2, 3 to the closest primary, that will be denoted γj , is given by the only
positive root of the corresponding Euler’s quintic equation:

γ 5
j ∓ (3− μ)γ 4

j + (3− 2μ)γ 3
j − μγ 2

j ± 2μγj − μ = 0, j = 1, 2,

γ 5
j + (2+ μ)γ 4

j + (1+ 2μ)γ 3
j − (1− μ)γ 2

j − 2(1− μ)γj − (1− μ) = 0, j = 3.

Therefore, in this case it is enough to use Newton’s method in one dimension. Good
guesses are (μ/3)1/3 for L1,2 and 1− (7/12)μ for L3.

3.4 Linear Behavior Around Fixed Points of Flows

For a flow ẋ = X(x) with a fixed point p, since X(x) = X(p)+DX(p)(x−p)+
O(‖x − p‖2) and X(p) = 0, its linearization around p is

ẋ = A(x − p), (8)

with A := DX(p). The eigenvalues of A are known as the exponents of the fixed
point p.

Assume that λ ∈ R, λ �= 0 is an eigenvalue of A, and v is a corresponding
eigenvector. Then

ϕ(t) := p + eλtv

is a solution of the linearized flow (8). If λ < 0, ϕ(t) → p as t → +∞, so
{ϕ(t)}t∈R is a trajectory in the stable manifold of p in the linearized flow. If λ > 0,
ϕ(t) → p as t → −∞, so {ϕ(t)}t∈R is a trajectory in the unstable manifold of
p in the linearized flow. The stable manifold theorem for flows (see e.g. [18, 35])
ensures the existence of a stable (resp. unstable) manifold of the full non-linear
flow ẋ = X(x) that contains p and is tangent to the linear subspace spanned by the
eigenvectors ofA corresponding to eigenvalues with strictly negative (resp. positive)
real part.

Assume now λ = iω for ω ∈ R, ω �= 0, where i denotes the imaginary unit. In
this case, −iω is also an eigenvalue, so we can assume that ω > 0. Let v1 + iv2 be
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a corresponding eigenvector, with v1, v2 ∈ R
n. Define

ϕγ (t) := p + γ
(

(cosωt)v1 − (sinωt)v2
)

. (9)

By using Av1 = −ωv2 and Av2 = ωv1 (that follows from A(v1 + iv2) = iω(v1 +
iv2)), it is seen that ϕγ (t) is a solution of the linearized flow. Therefore, by varying
γ , ϕγ (t) provides a one-parametric family of periodic orbits of period 2π/ω of the
linearized flow. If the remaining eigenvalues λj of A satisfy that λj /(iω) is not an
integer, then Lyapunov’s center theorem (see e.g. [31, 38]) ensures the existence of
a one-parametric family of periodic orbits of the non-linear flow with periods that
tend to 2π/ω as the periodic orbits collapse to p. These periodic orbits are part
of the center manifold of p, which is an invariant manifold tangent to the linear
subspace spanned by eigenvectors corresponding to eigenvalues of A with zero real
part. The existence of the this manifold is ensured by the center manifold theorem
for flows (see e.g. [18, 35]).

Expressions for trajectories of the linear flow in the case λ = a + iω a,ω ∈ R,
a, ω �= 0, can be obtained similarly. They will not be necessary in what follows.
These trajectories would be close to trajectories of the non-linear flow in the stable
or unstable manifold, according to whether a < 0 or a > 0, respectively.

3.5 Linear Behaviour Around Fixed Points of Maps

For a discrete dynamical system given by x $→ F (x) with a fixed point p, since
F (x) = p+DF (p)(x−p)+O(‖x−p‖2) and F (p) = p, its linearization around
p is

x $→ LF (x) := p + A(x − p), (10)

with A = DF (p). The eigenvalues of A are also called the multipliers of p.
Assume that λ ∈ R, λ �= 0 is an eigenvalue of A, and v is a corresponding

eigenvector. Define

ϕ(ξ) := p + ξv.

Since LF

(

ϕ(ξ)
) = ϕ(λξ), {ϕ(ξ)}ξ∈R is an invariant set of the linearized map (10).

If |λ| < 1, LnF
(

ϕ(ξ)
) → ϕ(0) = p as n → +∞, so {ϕ(ξ)}ξ∈R is a trajectory in

the stable manifold of p in the linearized map. If |λ| > 1, LnF
(

ϕ(ξ)
)→ ϕ(0) = p

as n → −∞, so {ϕ(ξ)}ξ∈R is a trajectory in the unstable manifold of p in the
linearized map. The stable manifold theorem for maps (see e.g. [18, 35]) ensures
the existence of a stable (resp. unstable) manifold of the full non-linear map F that
contains p and is tangent to the linear subspace spanned by the eigenvectors of A
corresponding to eigenvalues with modulus strictly smaller (resp. larger) than one.
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Assume now λ ∈ C, |λ| = 1, λ = cosρ+i sinρ and let v1+iv2 be an associated
eigenvector, with v1, v2 ∈ R

n. Then

ϕγ (ξ) := p + γ
(

(cos ξ)v1 − (sin ξ)v2
)

(11)

satisfies LF

(

ϕ(ξ)
) = ϕ(ξ + ρ), so {ϕγ (θ)}θ∈[0,2π] is an invariant closed curve

of the linearized map. Therefore, by varying γ , ϕγ (θ) provides a one-parametric
family of invariant curves of the linearized map with rotation number ρ. Under
number-theoretical hypotheses of ρ and non-degeneracy ones of F , KAM theory
(see e.g. [26]) ensures the existence of a Cantorian2 one-parametric family of
invariant curves of the full non-linear map F , with rotation numbers that tend to
ρ as the invariant curves collapse to p.

3.6 Computation of Periodic Orbits of Flows

The computation of periodic orbits is a classical and well-known subject. There
are publicly available software packages, like AUTO-07p [9], that are capable
of both computing individual periodic orbits and performing continuation of
families. Nevertheless, the simplicity of the methodology that will follow makes
its implementation worthwhile, both for computational efficiency and for easier
interaction with the methods of computation of invariant tori of Sect. 3.8. We discuss
in this section how to compute initial conditions for periodic orbits by solving non-
linear systems of equations stated in terms of the flow. The discussion will partially
follow [39].

An initial condition for a periodic orbit of a flow can be thought as a fixed point
of a discrete dynamical system. In order to turn this idea into a numerical method,
consider first a non-autonomous T -periodic system of n ODE,

ẋ = X(ωt, x), (12)

with ω = 2π/T and X(θ, x) 2π-periodic in θ .3 Denote its flow by φ(t, t0, x0),
defined as in (4). Consider the map F (x) := φ(t0+T , t0, x), with t0 fixed. An initial
condition for a T -periodic orbit of (12) is a fixed point of the discrete dynamical
system defined by F , which is found as a zero of G(x) := F (x)− x, as discussed
in Sect. 3.3. The differential of φ(t0 + T , t0, x) with respect to x is computed by
integrating the first variational equations, as discussed in Sect. 2.4.

2This means that the parameter does not move on a real interval but in a Cantor set. KAM theory
also ensures that the parameter spans a sufficiently small interval up to nearly full measure.
3Such a system of ODE can be considered a continuous dynamical system given by the autonomous
system of ODE ẋ = X(θ, x), θ̇ = ω, where θ is an additional dependent variable defined modulo
2π .
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Assume now that we have an autonomous system of ODE

ẋ = X(x), (13)

with flow φt , defined as in Sect. 2.1. If we wanted to apply the previous approach,
we would look for a fixed point of the discrete dynamical system defined by
F (x) := φT (x). A direct application of Newton’s method to look for a zero of
G(x) := F (x) − x would fail: since {G(x) = 0} defines the whole periodic orbit
as a manifold,DG(x) is singular at every point of the periodic orbit. We could still
use the modified Newton strategy of Sect. 3.2, but that would introduce difficulties
for continuation.4 A better strategy is to get rid of the singularity by considering a
different discrete dynamical system: a Poincaré map. If Σ is a surface of section
transversal to the flow and intersected by the periodic orbit we are looking for,
denote as P (x) = φτ (x)(x) the corresponding Poincaré map, where τ (x) is the
time-return map (see Sect. 2.5). Then, by looking for a fixed point of P as a zero
of G(x) := P (x) − x, we would be looking for an initial condition of the periodic
orbit in the Poincaré section Σ , which is locally unique.

The previous approach works as long as the periodic orbit we are looking
for is isolated, which is usual in generic dynamical systems. But in Hamiltonian
systems like the RTBP, periodic orbits are embedded in families. Assume that we
are given a Hamiltonian continuous dynamical system with HamiltonianH(x). The
intersections of the periodic orbits of a family with a Poincaré section Σ define
locally a curve. On all the points of this curve, DG(x) is singular. A way to get
rid of this singularity would be to first reduce our starting dynamical system (13) to
an energy manifold {H(x) = h}. Then, an initial condition of a periodic orbit (of
energy h) as a fixed point of P would be locally unique. Nevertheless, instead of
modifying (13), it is simpler to add an energy equation to the fixed point condition
on the Poincaré map. In this way, we would solve for x the non-linear system

H(x) = h

P (x) = x

}

.

This system is not square, so a standard approach using Newton’s method would
not work, but it can be solved by the modified Newton approach of Sect. 3.2 with
d = 0. In doing this, P and DP can be evaluated as discussed in Sect. 2.5.

3.6.1 Practical Implementation

An strategy for the computation of periodic orbits still simpler to implement than
the one just discussed is to add the Poincaré section as an additional equation. In

4We would need to choose a direction tangent to the family of periodic orbits within the two-
dimensional kernel of DG(x).
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this way, at the cost of one extra equation, the evaluation of P and DP is avoided.
Assuming that the Poincaré section is Σ = {g(x) = 0}, we would solve the (n +
2)× (n+ 1) system

H(x) = h

g(x) = 0

φT (x) = x

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(14)

for (T , x). This can be done using the modified Newton strategy of Sect. 3.2 with
d = 0, y = (T , x) and

G(y) =
⎛

⎝

H(x)− h

g(x)

φT (x)− x

⎞

⎠ . (15)

An additional advantage of this approach is that the period of the periodic orbit
appears explicitly.

The system of equations (14) can also be used for the continuation of a family
of periodic orbits. This would be done using Algorithm 3 with H := G defined
as in (15) but for y = (h, T , x). In an implementation of Algorithm 3, the routine
proposed at the end of Sect. 3.2 would be able to compute kerDH (y) and to solve
H (y) = 0 with minimum-norm corrections.

From the system of equations (14), other systems of interest for the computation
and continuation of periodic orbits can be obtained by eliminating equations and
unknowns. For instance, if we eliminate the unknown h, keep T constant and
eliminate the energy equation H(x) = 0, the resulting system of equations,

g(x) = 0

φT (x) = x

}

, (16)

that is to be solved only for x, would allow us to compute a periodic orbit of a
given period. A routine implementing the evaluation of G(y) (as defined in (15))
and DG(y) can also be used in order to solve a system like (16) by giving it the
option of eliminating components of G(y) and files and/or columns of DG(y).

3.6.2 Multiple Shooting

As we will see in Sect. 3.9.1 (e.g. in Fig. 4), for many periodic orbits of the
neighborhood of the collinear points of the Earth-Moon RTBP, the maximum
absolute value of the eigenvalues of DφT (x) can be larger than 2000. This means
that, after numerical integration for T time units, any error in the initial condition
can be amplified by this factor. Even with exact data, the local truncation error of



Invariant Manifolds for Libration Point Missions 179

the first step of numerical integration could be amplified by this factor.5 Then, for
example, if the tolerance of numerical integration is set to 10−14, we cannot expect
an error smaller than 10−11. Because of this, initial conditions for Newton’s method
need to be very accurate in order to obtain convergence, and continuation steps
become very small.

We can reduce these amplification factors by making use of multiple shooting.
Multiple shooting is classically introduced as a way to overcome dynamical
instability in the solution of boundary value problems (see e.g. [41]). As a general
idea, the multiple shooting strategy can be thought as introducing intermediate
objects as unknowns in order to reduce integration time. In our case, we would
need to consider points x0 := x, x1, . . . , xm−1 along the periodic orbit and add the
corresponding matching equations to the system to be solved. In this way, system
(14) would become

H(x0) = h

g(x0) = 0

φT/m(xj ) = xj+1, j = 0, . . . ,m− 2

φT/m(xm−1) = x0

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

. (17)

In order to compute a single periodic orbit, the unknowns to consider would be
(T , x0, . . . , xm−1). In order to continue a family of periodic orbits, the unknowns
would be (h, T , x0, . . . , xm−1). As commented before, other systems of interest can
be obtained from this one by eliminating equations and unknowns.

By using multiple shooting with m points, the amplification factors are typically
reduced to the m-th root of the starting ones, at the cost of multiplying by m the
dimension of the system of non-linear equations to be solved.

3.7 Linear Behaviour Around a Periodic Orbit of a
Hamiltonian Autonomous System

An initial condition x0 of a T -periodic orbit is also fixed point of φT . In the case of
a Hamiltonian autonomous system ẋ = X(x), this fact by itself was not enough in
order to find x0 numerically, but it is useful to study the linear behavior of the flow
around x0. Let M := DφT (x0) be the monodromy matrix of our periodic orbit.
Because of the autonomous character of our system and the fact that it has a first
integral (the Hamiltonian), M has 1 as a double eigenvalue (for a proof see, e.g.,
[31]). Moreover,M is a symplectic matrix (see e.g. also [31]), which implies that, if

5Actually, even the error of the first floating point operation, which can be as large as the machine
epsilon, can be amplified by this factor.
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λ is an eigenvalue of M , then 1/λ is also eigenvalue. Now assume that our system
is, as the RTBP, of three degrees of freedom, this is, x ∈ R

6. Then the eigenvalues
of M are

{1, 1, λ1, λ
−1
1 , λ2, λ

−1
2 }.

In the remaining discussion, we will assume that |λi | ≤ |λ−1
i |.

The linear behaviour around a periodic orbit in our 3-degrees-of-freedom
Hamiltonian system is better studied in terms of Hénon’s stability parameters [22],
that are defined as

s1 = λ1 + 1/λ1, s2 = λ2 + 1/λ2. (18)

A calculation shows that

si ∈ R, |si | > 2 ⇐⇒ λi ∈ R\{−1, 1},
si ∈ R, |si | ≤ 2 ⇐⇒ λi ∈ C, |λi | = 1,

si ∈ C\R⇐⇒ λi ∈ C\R, |λi | �= 1.

From the discussion of Sect. 3.5, if si ∈ R, |si | > 2 (hyperbolic case), the
stable (resp. unstable) manifold of x0 as fixed point of φT is tangent to the
λi (resp. λ−1

i ) eigendirection. This means that the periodic orbit has a stable
(resp. unstable) manifold, and its section through the λi, λ

−1
i eigenplane is tangent

to the λi (resp. λ−1
i ) eigendirection. If si ∈ R, |si | ≤ 2 (elliptic case), assume

λi = cos ρ + i sinρ and that v is an eigenvector of eigenvalue λi . As we have
seen, there is a continuous, one-parametric family of closed curves invariant by
the linearization of φT around x0 in the {x0 + α1 Re v + α2 Im v}α1,α2∈R plane,
with rotation number ρ. According to the discussion in Sect. 3.5, the full non-linear
flow φT possesses a Cantorian family of invariant curves around x0, with limiting
rotation number ρ. When transported by the flow, these invariant curves generate
two-dimensional invariant tori. Rotation numbers of the form ρ = 2πn/m give rise
to bifurcated families by multiplication of the period by m (further details on this
kind of bifurcations can be found in [37]). The particular values ρ = 0 and ρ = π ,
which correspond to si = 2 and si = −2, respectively, are known as the parabolic
case.

Note that, if a stability parameter si satisfies |si | < 2 on a range of energies, since
for each energy in this range a one-parametric family of tori is born, across energies
this family of tori becomes two-parametric.
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3.8 Computation of 2D Invariant Tori

This subsection is devoted to the computation of 2D invariant tori. The method
discussed, first introduced in [6], consists in looking for a curve inside the torus
invariant by the time-T flow, where T is one of the periods of the torus. The
formulation will be made explicit for an autonomous Hamiltonian system with three
degrees of freedom (as the RTBP), but it can be modified to account for systems with
a different number of degrees of freedom, non-autonomous6 or not Hamiltonian
ones.

3.8.1 Looking for a Parameterization of an Invariant Curve

According to KAM theory (see, e.g., [26]), a 2D torus born around the collinear
points of the RTBP can be parameterized by a function ψ(θ1, θ2), 2π-periodic in
θ1, θ2, satisfying an invariance equation of the form

ψ(θ1 + tω1, θ2 + tω2) = φt
(

ψ(θ1, θ2)
)

, ∀t ∈ R, ∀θ1, θ2 ∈ [0, 2π], (19)

where (ω1, ω2) is the vector of frequencies of the torus. Looking for a torus can be
reduced to looking for an invariant curve inside it by observing that ϕ(ξ) := ψ(ξ, 0)
parameterizes a curve invariant by φ2π/ω2

, and satisfies

ϕ(ξ + ρ) = φΔ
(

ϕ(ξ)
)

, (20)

for ρ = 2πω1/ω2 and Δ = 2π/ω2. Once we have ϕ, we can recover ψ by

ψ(θ1, θ2) = φ θ2
2π Δ

(

ϕ(θ1 − θ2

2π
ρ)
)

. (21)

A calculation shows that, if ϕ is a 2π-periodic function satisfying (20), thenψ

as defined by (21) is 2π-periodic in each variable and satisfies the invariance
equation (19) for ω1 := ρ/Δ, ω2 := 2π/Δ. In order to turn (20) into a finite system
of non-linear equations, we can take ϕ as a truncated Fourier series,

ϕ(ξ) = A0 +
Nf
∑

k=1

(

Ak cos(kξ)+ Bk sin(kξ)
)

, (22)

with {Ak}Nfk=0, {Bk}Nfk=1 ⊂ R
6, and impose (20) at as many values of ξ as the

number of Fourier coefficients needed. This is, we will look for ϕ defined as in

6The non-autonomous case is actually simpler, because the indeterminacies discussed in Sect. 3.8.1
are not present.
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(22) satisfying

ϕ(ξj + ρ) = φΔ
(

ϕ(ξj )
)

, j = 0, . . . , 2Nf , (23)

with ξj = j2π/(1+ 2Nf ).
The fact that our dynamical system is autonomous gives rise to two indetermina-

cies:

• An invariant curve inside a torus is not unique: if ϕ(ξ) satisfies (20) or (23), then
φt
(

ϕ(ξ)
)

also does, for any t ∈ R.
• The origin of ξ is free: if ϕ(ξ) satisfies (20) or (23), then ϕ(ξ − ξ0) also does, for

any ξ0 ∈ R.

The first indeterminacy can be eliminated by prescribing the value of a coordinate
of A0 (the value chosen must be valid for the torus we are looking for). The second
indeterminacy can be eliminated by prescribing a coordinate of A1 to be zero: if
we denote A1 = (A1,1, . . . , A1,6), B1 = (B1,1, . . . , B1,6), and assume that j ∈
{1, . . . , 6} is such that (A1,j , B1,j ) �= (0, 0), since

A1,j cos(ξ − ξ0)+ B1,j sin(ξ − ξ0)

= (A1,j cos ξ0 − B1,j sin ξ0) cos ξ + (A1,j sin ξ0 + B1,j cos ξ0) sin ξ,

we can always choose ξ0 such that A1,j cos ξ0 − B1,j sin ξ0 = 0. With the
two indeterminacies removed in this way, there is a one-to-one correspondence
between (approximate) Fourier coefficients of parameterizations of invariant curves
ϕ solution of (23) and invariant 2D tori of our dynamical system.

3.8.2 The System of Equations

By solving system (23) with its two indeterminacies removed, we could compute
an invariant curve ϕ of a torus with “longitudinal period”Δ and rotation number ρ,
that via (21) would correspond to a torus with frequencies ω1 = ρ/Δ, ω2 = 2π/Δ.
We could also use this system in order to do continuation with respect to Δ and/or
ρ and, in this way, obtain the corresponding 2-parametric family. Nevertheless, we
make two more considerations before stating the final system of equations that we
will solve:

• We want to be able to prescribe values for the energy, so we will add an extra
equation for this.

• We want to overcome the effects of instability, so we will use multiple shooting,
as we did in Sect. 3.6.2.
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We will, therefore, look for ϕ0, . . . ,ϕm−1 satisfying

⎧

⎨

⎩

H
(

ϕ0(0)
)− h = 0

ϕj+1(ξi)− φΔ/m
(

ϕj (ξi)
) = 0, j = 0, . . . ,m− 2, i = 0, . . . , 2Nf ,

ϕ0(ξi + ρ)− φΔ/m
(

ϕm−1(ξi)
) = 0, i = 0, . . . , 2Nf ,

(24)

where

ξi = i
2π

1+ 2Nf
, i = 0, . . . , Nf ,

with unknowns

h,Δ, ρ,A0
0,A

0
1,B

0
1, . . . ,A

0
Nf
,B0

Nf
, . . . ,Am−1

0 ,Am−1
1 ,Bm−1

1 , . . . ,Am−1
Nf

,Bm−1
Nf

,

(except for a coordinate of A0
0 and another one of A0

1, according to the previous
subsection) with h,Δ, ρ ∈ R, Al

j ,B
l
j ∈ R

6 and

ϕl (ξ) = Al
0 +

Nf
∑

j=0

(

Al
j cos(jξ)+ B l

j sin(jξ)
)

. (25)

In order to compute a single torus, we can solve system (24) keeping constant, in
addition to the coordinates given by the considerations of the previous subsection,
two parameters among h, ρ, T . This will fix a torus within its two-parametric family.
In order to continue this torus via the pseudo-arclength method, only one of the
parameters h, ρ, T must be keep fixed. Two interesting cases are:

• To fix ρ to a number with good Diophantine properties. For instance, a noble
number (a number with continued fraction expansion equal to one from a point
on).

• To fix h, in order to follow an iso-energetic family of tori. In this case, care must
be taken because the family is not continuous but Cantorian: the pseudo-arclength
method will work as long as the gaps due to resonances are small.

Note that, both in the computation of a single torus and in the continuation of
a one-parametric subfamily, we end up with a system of non-linear equations with
more equations than unknowns. Namely, in the first case the system is

(

1+ 6m(1+
2Nf )

)× (−1+6m(1+2Nf )
)

, whereas in the second case is
(

1+6m(1+2Nf )
)×

6m(1+ 2Nf ). This is not a problem as long as we use the modified Newton method
of Sect. 3.2. Note that, when solving the linear system for the Newton correction, d
must be set to zero in the case of the computation of a single torus, whereas it must
be set to one in the case of continuation of a one-parametric subfamily.
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Once a torus has been computed (either individually of by continuation), an
estimate of its error can be obtained by evaluating the invariance equation in a
refinement of the discretization in ξ used for its computation. In this way, we can
use the estimate

max
j=0,...,M

∥

∥

∥

∥

∥

∥

∥

⎛

⎜

⎝

(

ϕl+1(ξ̃j )− φΔ/m
(

ϕl(ξ̃j )
)

)m−2

l=0

ϕ0(ξ̃j + ρ)− φΔ/m
(

ϕm−1(ξ̃j )
)

⎞

⎟

⎠

∥

∥

∥

∥

∥

∥

∥

(26)

for ξ̃j = j2π/M and M 
 1 + 2Nf . The value of this estimate can be
used to choose the number of Fourier coefficients Nf . When doing continuation,
Nf can be increased or decreased in order to keep this error estimate within a
prescribed interval. Observe that large values ofNf will give rise to large systems of
equations. The time needed for their solution, which requires O((6m(1 + 2Nf ))3)
operations, will overcome the time needed for numerical integration and become the
computational bottleneck of the procedure.

3.8.3 Starting from the Central Part of a Periodic Orbit

According to the discussion of Sect. 3.7, a family of periodic orbits with an elliptic
stability parameter in a range of energies gives rise to a 2-parametric family of
invariant tori. Here we will develop formulae from the linear flow around the
backbone periodic orbit in order to obtain initial conditions to start the continuation
of such a family of tori using system (24).

For an arbitrary function G, let us denote the linearization of G around y0 as

L
y0
G (y) = G(y0)+DG(y0)(y − y0).

Let x0 be an initial condition of a T -periodic orbit, with a stability parameter si =
λi +λ−1

i satisfying |si | ≤ 2 and λi = cos ν+ i sin ν. If we define F := φT , then x0
is a fixed point of F , and Eq. (11) provides an expression for an invariant curve of
the linearized flow. In this expression, ξ can be substituted by ξ − ξ0, and then we
have that

ϕ̄(ξ) := x0 + γ
(

(v1 cos ξ0 + v2 sin ξ0) cos ξ + (v1 sin ξ0 − v2 cos ξ0) sin ξ
)

also satisfies

L
x0
φT

(

ϕ̄(ξ)
) = ϕ̄(ξ + ν), (27)
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which is the linearized-flow version of Eq. (20). Therefore, as initial seed to get a
torus around the o.p., we can take

h = H(x0), Al
0 = φlT /m(x0),

Δ = T , Al
1 = DφlT /m(x0)

(

v1 cos ξ0 + v2 sin ξ0
)

,

ρ = ν, Bl
1 = DφlT /m(x0)

(

v1 sin ξ0 − v2 cos ξ0
)

,

Al
j = B l

j = 0, j ≥ 2, l = 0, . . . ,m− 1.

The parameter γ should be chosen small enough for Eq. (27) to be a good
approximation of Eq. (20). All the computations of Sect. 3.9 have been done with
either γ = 10−3 or γ = 10−4. The free parameter ξ0 can be chosen in order
to make zero a coordinate of A0

1, and in this way avoid the second indeterminacy
discussed in Sect. 3.8.1. An additional problem when computing a first torus around
a periodic orbit is that the periodic orbit has a large basin of attraction and is also
a (singular) solution of system (24). A way to prevent falling back to it during the
Newton iterations is to keep constant a coordinate of A0

1 or B0
1. A good choice is

B0
1,j , for j such that A0

1,j is being kept equal to zero in order to prevent the second
indeterminacy of Sect. 3.8.1.

When we obtain a first invariant curve around a periodic orbit in this way we will
say that we are “starting longitudinally to the periodic orbit”, because we obtain
a tiny invariant curve around x0 for which, in the evaluation of the flow in (24),
numerical integration in order to come back to it is “along the periodic orbit”. It
will be convenient later to be able to obtain a first invariant curve not tiny but
approximately of the same size of the periodic orbit and close to it. We will call
this second strategy “starting transversally to the periodic orbit”.

In order to develop formulae for this second case, we first globalize the invariant
curve ϕ̄ of the linearized flow to a whole 2D torus by

ψ̄(θ1, θ2) := L
x0
φT θ2/(2π)

(

ϕ̄(θ1 − θ2

2π
ρ)
)

.

A calculation shows that ψ̄ satisfies the linearized-flow equivalent of the invariant
equation (19), namely

L
φT θ2/(2π)

(x0)

φt

(

ψ̄(θ1, θ2)
) = ψ̄

(

θ1 + t
ν

T
, θ2 + t

2π

T

)

.

The invariant curve we are looking for will be close to ψ̄(0, θ2). In order to find it,
and since ν can be substituted by ±ν + j2π in all the previous expressions, we can
take as initial seed

h = H(x0), Δ = 2π

±ν + j2π
T, ρ = (2π)2

±ν + j2π
+ k2π, (28)
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and Al
k , B l

k coming from a Discrete Fourier transform (DFT) of {ψ̄(0, j 2π
N
)}N−1
j=0 .

Some notation for the DFT and its relation with Fourier coefficients is developed in
Sect. 5.2.

3.9 Numerical Exploration of the Dynamics Around the L1
Point of the Earth-Moon RTBP

The goal of this subsection is to implement the hierarchical approach mentioned at
the beginning of this section in order to systematically compute families of periodic
orbits and tori around a collinear libration point of the RTBP. This can be also seen
as numerically growing the center manifold of the collinear libration point. The
numerical results shown, which are a subset of the ones in [14], will be for the L1
point and the Earth-Moon mass ratio. In all the computations of this subsection, the
flow of the RTBP and its differential with respect to initial conditions have been
evaluated according to the discussion of Sect. 2.4, using as one-step method with
step size control for numerical integration a Runge-Kutta-Fehlberg one of orders 7
and 8 [10] with tolerance 10−14. The value used for the Earth-Moon mass ratio is

μ = 1.215 0585 6096 2404 · 10−2, (29)

as obtained from the DE406 JPL ephemeris file [40].

3.9.1 Periodic Orbits

The linear behavior around the L1 point for the Earth-Moon mass ratio is of the type
center×center×saddle [42]. This is, if we denote by ẋ = X(x) the vector field of
the RTBP, as in Eqs. (1), (2), we have

SpecDX(L1) = {iωp,−iωp, iωv,−iωv, λ,−λ}, (30)

for ωp,ωv, λ > 0. As discussed in Sect. 3.4, Lyapunov’s center theorem ensures
that each center gives rise to a family of periodic orbits. In the expression for
SpecDX(L1) above, ωp (resp. ωv) can be chosen in such a way that the eigenplane
corresponding to the eigenvalues ±iωp (resp. ±iωv) is contained in {z = pz = 0}
(resp. {x = px = y = py = 0}). Because of this, the family of periodic orbits
related to the±iωp (resp.±iωv) eigenvalues is known as the planar (resp. vertical)
Lyapunov family. Initial guesses to start the numerical continuation (see Sect. 3.1)
of these families can be obtained from (9). When doing Newton iterations on
system (17) to find the first periodic orbit, a convenient way to avoid falling back
to the L1 point (which is a singular solution of system (17) with a large basin of
attraction) is to keep constant a coordinate of x0.
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Fig. 4 Characteristic curve (in violet) and stability parameters (in green) of the vertical Lyapunov
family around L1 of the Earth-Moon RTBP
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Fig. 5 Characteristic curve (in violet) and stability parameters (in green) of the planar Lyapunov
family around L1 of the Earth-Moon RTBP

A convenient way to represent a family of periodic orbits that has been obtained
by numerical continuation is by plotting the period and the stability parameters (18)
of its orbits with respect to energy. The period vs. energy curve is known as
characteristic curve. Figure 4 represents the characteristic curve and stability
parameters of the vertical Lyapunov family. This family starts at energy −1.59417
(the one of L1), has a bifurcation at energy−1.49590, that will be commented later,
and ends at a large planar orbit with energy 0.41391, that surrounds the Earth and
the collinear points L1, L3. Plots of sample orbits of this family and all the other
families of periodic orbits that we will consider can be found in [32].

In Fig. 5 we have represented the characteristic curve and stability parameters of
the planar Lyapunov family. This family starts at energy−1.59417 (the one of L1),
has several bifurcations and ends at a collision with the Earth.7 According to [23],
the only possible kinds of bifurcation from the planar Lyapunov family to a family of
three-dimensional orbits are the ones sketched in Fig. 6. Types A and B correspond
to a stability parameter crossing 2, whereas types C and D correspond to a stability
parameter crossing −2 (and thus are period-doubling bifurcations). In cases A, B

7By using regularization (see e.g. [42]), the planar Lyapunov family could be continued for
energies past this collision. We do not continue the family further because this collision is already
outside of the range of energies of the invariant tori that we will compute.
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Fig. 6 Possible bifurcation types of a bifurcating planar Lyapunov orbit to a non-planar family

Table 1 Bifurcations of the
planar Lyapunov family
around L1 of the Earth-Moon
RTBP

#Bif. Energy Type

1 −1.58718 A

2 −1.51070 B

3 −1.47464 C

not one but two families of periodic orbits bifurcate from the planar family. The
two bifurcated families are symmetric with respect to {z = 0}. Assuming that the
Poincaré section used in the continuation of the planar Lyapunov family is {y = 0},8
an initial condition for one of such bifurcated orbits can be obtained by doing a
small displacement in the z coordinate for types A, C, D, and in the pz coordinate
for type B. The displaced coordinate can be kept constant during Newton iterations
on system (17) in order to avoid falling back to an orbit in the planar Lyapunov
family. The bifurcations found for the planar Lyapunov family, together with its
classification according to [23], are given in Table 1.

The first bifurcation of the planar Lyapunov family gives rise to the two
symmetric families of periodic orbits known as halo orbits. The corresponding
characteristic curve and stability parameters9 are shown in Fig. 7. Both families
end at a large planar orbit that surrounds the Earth, the Moon and the collinear
points L1, L2. For a large range of energies halo orbits have complex (non-real)
stability parameters; Fig. 8 zooms Fig. 7 in order to show the transition from real to
complex stability parameters and vice-versa. In Fig. 8 left, it is also shown how the

8This is, g(x, y, z, px , py , pz) = y in systems (14) or (17).
9Given one periodic orbit of a halo family, the symmetric periodic orbit of the symmetric family
has the same period and stability parameters.
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Fig. 8 Magnifications of Fig. 7 showing the transitions to and from complex saddle

small stability parameter goes across 2 cos(2π/3) once, at energy −1.52944, and
across −2 = 2 cos(2π/2) twice, at energies −1.51081, −1.51033. The first case
gives rise to two period-triplicated bifurcated families of periodic orbits, one with
elliptic-hyperbolic normal behaviour and the other one with elliptic-elliptic normal
behaviour. The second case gives rise to a period-duplicated family of periodic orbits
with elliptic-elliptic normal behaviour. The third case gives rise to another period-
duplicated family of periodic orbits but with elliptic-hyperbolic normal behaviour.
These three bifurcations take place for each of two symmetric halo families. As
discussed in Sect. 3.7, there are many more bifurcations, but these three will play a
role in the computations of invariant tori of the next subsection. The actual initial
conditions used to find orbits of these families have been found by shooting from
invariant tori nearby.

The second bifurcation of the planar Lyapunov family gives rise to two families,
symmetric with respect to z = 0, that can be thought as a two-lane bridge that
connects the planar Lyapunov family with the vertical one at its bifurcation at energy
−1.49590. Some orbits of this family are shown in Fig. 9. Table 1 still reflects a third
bifurcation of the planar family that we do not follow, because it takes place at an
energy outside the range of energies that will be reached by the continuation of
invariant tori of the next subsection.
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3.9.2 Invariant Tori

The first families of tori around the libration point L1 that we will compute will
be the ones of constant rotation number ρ starting longitudinally from the vertical
Lyapunov family of periodic orbits. The range of values of ρ to be considered is thus
provided by the values of ν > 0 such that, according to Sect. 3.8.3, 2 cos ν is one
of the stability parameters of the base vertical Lyapunov orbit. Therefore, initiating
the continuation of each constant ρ family requires to find a initial condition of a
vertical periodic orbit corresponding to a specific value of ν. This initial condition
is obtained by continuation of system (17). Since ν is not a continuation variable, it
must be considered a function of a continuation variable, for instance ν = ν(h). The
value of h providing a prescribed value of ν(h) can be found by a numerical one-
dimensional zero-finding method. A good choice is Brent’s (see e.g. [36]), since it
has fast, global convergence and does not require computing derivatives.

If we represent the value of ν with respect to energy along the vertical Lyapunov
family of periodic orbits for the range of energies in which they have central part
(see Fig. 4), we obtain the curve labeled β in Fig. 10. This curve goes from the point
P2, that corresponds to the collinear point L1, to the point P3, that corresponds the
bifurcation of the vertical Lyapunov family at energy−1.4959 (see Fig. 4). Our first
continuation of families of tori, with constant rotation number, has been done by
choosing an approximately equally spaced grid of noble values of ρ (in order to
stay away from resonances, as discussed in Sect. 3.8.2), ranging from the ordinate
value of the point P2 of Fig. 10 to the maximum value of ν along the β curve, and
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Fig. 10 Energy-rotation number representation of the tori computed around the Lyapunov families
of periodic orbits around L1 of the Earth-Moon RTBP. The region delimited by the curves α, β, γ ,
which contains the tori, is divided in subregions according to the values of Nf used in the
computation of each torus
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starting longitudinally from the leftmost planar Lyapunov periodic orbit of the β
curve with stability parameter 2 cosρ. Each of the obtained families of tori, with
constant ρ, that would be seen in Fig. 10 as a horizontal line, collapses at a vertical
Lyapunov orbit of higher energy, as the shape of the β curve suggests. With this first
continuation we cover the region in Fig. 10 delimited by the curves α, β, γ with
ρ ≥ ρ(P2). This continuation of families of invariant tori, and all the remaining
continuations that we will describe, have been done by solving system (24) with
m = 2, a tolerance of 10−11 for Newton iterations, and with continuation step size
control with ndes = 4 in (7). In the continuation of each family, the number of
harmonics Nf of the Fourier expansions (25) has been determined in order to keep
the estimate (26) under 10−10. In addition to this, an upper limit of Nf = 100 has
been set. When this limit is reached, the error estimate (26) is allowed to grow up to
10−8 and, when this happens, the continuation is stopped. This has never happened
in this first exploration.

In order to cover the region within the curves α, β, γ with ρ < ρ(P2), a
possibility would be to start from the β curve and go downwards. This means to
perform continuation of families of tori with h constant. If h is close to the energy
of L1, the iso-energetic family of tori obtained should end by collapsing to a planar
Lyapunov orbit, because this is what happens linearly. The actual tori of such a
continuation are shown in Fig. 11, for h = −1.59. Although the tori do collapse to a
planar orbit, the corresponding invariant curves ϕ0 obtained by solving system (24)
do not collapse to a point but tend to the whole ending planar Lyapunov orbit. The
limiting value of ρ is numerically checked to be

(2π)2

2π − ν
− 2π, (31)

where ν is such that 2 cos ν is a stability parameter of the ending planar Lyapunov
periodic orbit. Therefore, according to (28), the same invariant curves within the
tori of Fig. 11 could be obtained by starting transversally from this ending planar
Lyapunov orbit. The α curve of Fig. 10 is obtained by plotting expression (31) as a
function of h, with ν such that 2 cos ν is a stability parameter of the planar Lyapunov
orbit of energy h. The point with label P1 in this curve corresponds to the bifurcation
of the planar Lyapunov family of periodic orbits to the halo families (see Fig. 5 and
Table 1). The family of tori of Fig. 11 would be seen in Fig. 10 as a vertical line with
h = −1.59 that goes from the curve β to the curve α.

In order to complete the computation of invariant tori within the curves α, β,
γ , and in order to avoid “jumping over resonances”, we go back to the constant ρ
continuation strategy. From the discussion in the last paragraph, the remaining tori
within the α, β, γ curves can be computed by starting transversally from the family
of planar Lyapunov periodic orbits, for an approximately equally spaced grid of
noble values of ρ of the form (31), for the range of values of ν that produced the α
curve. When doing so, some of the corresponding constant-ρ families of invariant
tori with largest ρ value have reached a vertical Lyapunov periodic orbit of higher
energy. The remaining ones have stopped due to the Nf = 100 computational
limit. For each value of ρ in which this has happened, we have also continued
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Fig. 11 Sample tori of the iso-energetic family starting from the vertical Lyapunov periodic orbit
around L1 of the Earth-Moon RTBP of energy −1.59

for decreasing energies the family with constant ρ starting longitudinally from the
rightmost vertical Lyapunov periodic orbit of the β curve with this ρ value. In this
way, we have covered with invariant tori all the region within the α, β, γ curves of
Fig. 10 except for the one labeled as> 100. By allowing forNf > 100, some of the
tori of this last region could be computed. Many of them, however, simply do not
exist, because, as we will see later, as ρ goes to zero for fixed energies larger than
the one of the point P1 in Fig. 10, we approach homoclinic connections of periodic
orbits.

The α, β, γ curves of Fig. 10 delimit a set of tori that can be considered a single
family, since all of these tori can be reached by numerical continuation starting
from L1. Close to L1, the tori of this family are the ones given by KAM theory.
Trajectories in them are known as Lissajous trajectories by the astrodynamics
community. We will thus denote this family as the Lissajous family of invariant
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tori. Tori in this family can be considered to have “natural” frequencies ωv(T , ρ),
ωp(T , ρ), obtained by continuation from the frequencies ωv , ωp of the collinear
point L1 in Eq. (30). An application of Lyapunov’s center theorem shows that

T = 2π

ωv(T , ρ)
, ρ = 2π

(ωp(T , ρ)

ωv(T , ρ)
− 1
)

.

Following the strategy of choosing an approximately equally spaced grid of noble
values of ν along a family of periodic orbits with 2 cos ν a central stability parameter
and starting longitudinally the family of invariant tori with constant rotation number
ρ = ν, we have also performed numerical continuation of several additional families
of invariant tori. These additional families are:

• Invariant tori around halo orbits, from the beginning of the family up to its first
turning point in the energy (see Figs. 7 and 8 left).

• Invariant tori around the elliptic-hyperbolic period-triplicated halo-type family
of periodic orbits, from the beginning of the family up to the energy in which the
central stability parameter crosses −2.

• Invariant tori around the elliptic-hyperbolic period-duplicated halo-type family
of periodic orbits, in an energy range analogous to the previous one.

• Invariant tori around planar Lyapunov orbits, in a short energy range starting at
the bifurcation of the two-lane bridge joining it with the vertical one, in order to
complete the Poincaré sections of Fig. 14.

Except for the last one, these families are represented in Fig. 12 in h-ρ plots
analogous to Fig. 10. Contrary to the Lissajous family of invariant tori, none of these
new families has been described completely. The numerical continuations have been
stopped when the Nf = 100 computational limit has been reached. How these
families further evolve is an open question.

3.9.3 Iso-Energetic Poincaré Sections

Since the center manifold of L1, Wc(L1), is four-dimensional, its restriction to an
energy value, Wc(L1) ∩ {H = h}, would be three-dimensional, and a Poincaré
section in this restriction, Wc(L1) ∩ {H = h} ∩ Σ , would be two-dimensional.
Following [15, 25], it is convenient to visualize Wc(L1) by a sequence of iso-
energetic Poincaré sections. This is done in Figs. 13 and 14, using the Poincaré
section Σ := {z = 0, pz > 0}. In order to be able to produce these figures, in the
continuation of each constant ρ family of tori of the previous subsection, the tori of
the energies of the plots of Fig. 13 have been obtained by doing Newton iterations
keeping h constant, starting from pseudo-arclength predictions from nearby tori (see
Algorithm 3).

All the plots of Fig. 13 have a similar structure. The exterior curve in each plot
is a Lyapunov planar orbit of the energy level corresponding to the plot. Strictly
speaking, the Poincaré section is not valid for this orbit, so it should not have been
plotted. Nevertheless, it is useful to use it as boundary of Wc(L1)∩Σ at the energy
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Fig. 12 Representation of the invariant tori computed around (a) halo orbits, (b) period-triplicated
halo-type orbits and (c) period-duplicated ones. The outermost dotted curve represents reaching the
computational limit Nf = 100

of the plot. The closed curves inside the region bounded by the Lyapunov planar
orbit are the intersections with Σ of the invariant tori computed in the previous
subsection. These intersections are computed through Algorithm 1, starting from
the invariant curve ϕ0 (see system (24)) of each torus.

In all the plots there is a fixed point on the x axis associated to the vertical
Lyapunov orbit. This point is not represented, but outlined by the smallest blue
curves. For small energy values, the whole picture is formed by invariant curves
surrounding this fixed point. They are associated to the intersections with Σ of
Lissajous-type trajectories around the vertical periodic orbit, whose evolution from
the vertical Lyapunov periodic orbits to the planar one is similar to the one displayed
in Fig. 11. At the energy levels in which halo orbits have bifurcated from the planar
Lyapunov family, there appear two additional fixed points, again not represented but
outlined by the smallest violet invariant curves. Increasing the values of the energy,
the halo family undergoes the two bifurcations mentioned in Sect. 3.9.1, by period
triplication and duplication. Within the bifurcated families there are some with
central part, which are surrounded by invariant tori, also computed in the previous
subsection, whose Poincaré sections provide here the red invariant curves. These
invariant curves give rise to the “island chain” structure typical of two-dimensional
area-preserving maps (compare with Fig. 3). To display more clearly this behaviour,
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Fig. 13 Iso-energetic Poincaré sections with Σ = {z = 0, pz > 0} of the families of periodic
orbits and invariant tori computed. The last plot is a magnification around the period-triplicated
halo-type family of periodic orbits

the last plot of Fig. 13 displays a magnification of the bifurcated periodic orbits and
its surrounding invariant tori.

The region between the tori around the vertical Lyapunov orbit and the tori
around the halo orbits is not empty, as it appears in the above figures. It should
contain, at least, the traces on the surface of section of the invariant manifolds of the
Lyapunov planar orbit. These manifolds act as separatrices between both kinds of
tori. The same thing happens between the islands of the bifurcated halo-type orbits
and the tori around halo orbits. In this case, the region between both kinds of tori
is filled with the traces of the invariant manifolds of the bifurcated hyperbolic halo-
type orbits. In all these boundary regions, the motion should have chaotic behaviour.
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Fig. 14 Poincaré section corresponding to energy −1.507

The numerical methods of this section are not able to capture this chaotic motion,
but the semi-analytical methods of the next section can capture it.

The plot corresponding to energy −1.507, shown in Fig. 14, has more structure.
For this energy level, the two-lane bridge between the planar and vertical Lyapunov
families of periodic orbits has already bifurcated, so the planar family has gained
central part, and its periodic orbits are again surrounded by invariant tori. The
{z = 0} sections of these tori are the outermost curves that appear in Fig. 14
(in this case, the planar Lyapunov periodic orbit, that surrounds all these curves,
is not represented). In the figure, the two diamond points are the fixed points
corresponding to the intersections of the two orbits of the bridge with the surface of
section. The invariant manifolds of these bifurcated periodic orbits are the ones that
must act as separatrices between the tori around the halo orbits and the tori around
the vertical Lyapunov orbit of this energy.

4 Semi-Analytical Computation of Invariant Objects Using
the Parameterization Method

The parameterization method is an approach to the study of invariant manifolds,
whose general idea is to seek for parameterizations of invariant manifolds as
solution of invariance equations, that are simplified through changes of variables
that exploit geometrical properties. It is a strong point of this approach that
“theoretical” and “numerical” are two aspects of the same philosophy. On the one
hand, the proofs are constructive and can be turned into algorithms. On the other
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hand, these algorithms, when implemented with rigorous numerics based on interval
arithmetic, can be turned into computer assisted proofs. Since its introduction in
[5], it has been used by many authors. A recent review, that also has some original
developments, can be found in [21].

Here we will be concerned with the use of the parameterization method for
the (non-rigorous) computation of Taylor expansions of invariant manifolds around
fixed points of flows. It will be applied to the computation of the center manifold
of the collinear points L1, L2, of the Earth-Moon RTBP. In this way, this variant
of the parameterization method can be seen as a semi-analytical technique for the
computation of the invariant objects inside the center manifold of the collinear
points of the RTBP. An earlier technique, known as reduction to the center manifold
[15, 25], produces essentially the same results. The parameterization method
has some advantages in computational speed, generality (the implementation is
independent of the dynamical system under study, the RTBP in our case) and
flexibility, since the coordinates of the manifold can be adapted to the dynamics,
as we will see in Sect. 4.4.2.

The discussion will follow chapter 2 of [21] except for some notational changes,
additional computations and plots. The software package in http://www.maia.
ub.edu/dsg/param/ includes a C routine that computes expansions of invariant
manifolds of fixed points of flows as described below.

4.1 The Method

Assume we are given a continuous, n-dimensional dynamical system ẋ = X(x)

with a fixed point p at which the differential of the vector field is diagonalizable.
We would like to compute a d-dimensional manifold that contains the fixed point
and is tangent to a d-dimensional eigenspace of the differential of the vector field.
By a change of variables of the form

x = p + Py,

our original system can be turned into ẏ = Y (y), y = (y1, . . . , yn), with DY (0) =
diag(λ1, . . . , λn), λi ∈ C, in such a way that the eigenspace of interest is {y ∈
R
n : yd+1 = · · · = yn = 0}. Then our goal is to compute an expansion of a d-

dimensional manifold that contains the origin, is invariant by the flow, and is tangent
to the y1, . . . , yd coordinates.

To do this, we look for W : Cd −→ C
n, parameterization of the manifold, and

for f : Cd −→ C
d , the vector field reduced to the manifold. In this way, if we

denote by s ∈ C
d the parameters describing the manifold, then the differential

equations in parameter space are ṡ = f (s). From the parameterization of the
manifold W (s) in the y variables, a parameterization of the manifold in the original

http://www.maia.ub.edu/dsg/param/
http://www.maia.ub.edu/dsg/param/
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x variables can be recovered as

W̄ (s) = p + PW (s). (32)

In order to find W ,f we need to solve the invariance equation:

Y
(

W (s)
) = DW (s)f (s). (33)

Assume that W ,f are expanded as power series in s,

W =
∑

k≥1

W k, f =
∑

k≥1

f k,

with W k n-vector and f k d-vector of homogeneous polynomials of degree k in
s = (s1, . . . , sd ),

W k = (W 1
k , . . . ,W

n
k ), Wi

k =
∑

m1+···+md=k
Wi
k,ms

m1
1 . . . s

md
d ,

for m = (m1, . . . ,md) ∈ N
d . With these notations, we can solve the invariance

equation order by order. Orders 0, 1 are satisfied by taking:

W 0= 0, W 1= (s1, . . . , sd , 0, . . . , 0),
f 0= 0, f 1= (λ1s1, . . . , λdsd).

Now assume that

W<k :=W 1 + · · · +W k−1,

f <k := f 1 + · · · + f k−1

are known. If we restrict Eq. (33) to its terms of order k, we obtain the order-k
cohomological equation. By putting all the unknown terms in the left-hand side and
all the known terms in the right-hand one, we obtain as right-hand side

Rk := [Y (W<k(s))]k −
k−1
∑

l=2

DW k−l+1(s)f l (s), (34)

where [ ]k stands for “terms of order k”. The evaluation of the second term in the
previous expression involves products of homogeneous polynomials. The first term,
which consists in plugging the known part of W into the vector field and obtaining
the terms of degree k, is computationally more costly. High efficiency is achieved
through the use of automatic differentiation, as will be discussed below.
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The expression for the left-hand side of the order-k cohomological equation
depends on the component. The whole order-k cohomological equation reads

(〈λ̄, m〉 − λi)W
i
k,m + f ik,m = Rik,m, for i ∈ {1, . . . , d}, (35)

(〈λ̄, m〉 − λi)W
i
k,m = Rik,m, for i ∈ {d + 1, . . . , n}, (36)

where λ̄ := (λ1, . . . , λd), 〈λ̄, m〉 := λ1m1 + . . . λdmd . The manifold can be
computed as long as (36) can be solved, this is, there are no m ∈ N

d, i ∈
{d + 1, . . . , n} such that λi = 〈λ̄, m〉, which would be a cross-resonance. The
solution of (35) can be done in several ways, that give rise to different styles of
parameterization:

• The graph style, that consists in taking Wi
k,m = 0, f ik,m = Rik,m, as to obtain

W 1(s) = s1,. . . , Wd(s) = sd , so that, in y coordinates, the manifold is the graph
of the function (Wd+1, . . . ,Wd).

• The normal form style, in which the expansion of f is taken as simple as possible:

Wi
k,m = 0, f ik,m = Rik,m, if 〈λ̄, m〉 − λi = 0,

Wi
k,m = Rik,m/(〈λ̄, m〉 − λi), f ik,m = 0, otherwise.

When λi = 〈λ̄, m〉 for i ∈ {1, . . . , d}, one speaks of an internal resonance.
• The following mixed style, that, given sets of indexes I1, . . . , IN ⊂ {1, . . . , n},

turns the sets {si = 0, i ∈ Il}, l = 1, . . . , N , into invariant submanifolds:

Wi
k,m = Rik,m, f ik,m = 0, if ∃l : i ∈ Il and mj = 0 ∀j ∈ Il,

Wi
k,m = 0, f ik,m = Rik,m, otherwise.

This mixed style allows adapting the parameterization to the dynamics, as will
be shown in the examples that follow.

Note that, as a whole, the order-k cohomological equation is linear and diagonal:
each unknown monomial of the left-hand side is computed as a constant times the
corresponding monomial of the right-hand side. All the computational effort goes
in the evaluation of Rk .

4.2 Efficiency Considerations

Once the Rk term is computed, the solution of the order-k cohomological equation
with any of the styles previously mentioned is very fast. Assuming that we have
explicit formulae for the vector field, as is the case in the RTBP, the evaluation of Rk
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as given in (34) depends on both being able to perform sums and products of dense10

multivariate polynomials and being able to compose truncated (multivariate) power
series into elementary functions such as sine or square root.

An strategy for an efficient implementation of the product of homogeneous
polynomials is to represent them recursively with respect to the number of variables.
A d-variate homogeneous polynomial of degree k can be represented as a linear
combination of (d − 1)-variate polynomials of degrees k, k − 1, . . . , 0: for s =
(s1, . . . , sd ), ŝ = (s1, . . . , sd−1),

fk(s) = f dk (ŝ)+ f dk−1(ŝ)sd + · · · + f d0 (ŝ)s
k
d .

The memory representation can be made to mimic this recursive definition. The
use of this strategy avoids the need for hash tables and reduces the product of
homogeneous polynomials to dot products of vectors of coefficients.

With respect to the composition of truncated Taylor expansions into elementary
functions, an efficient strategy is the use of a form of automatic differentiation11

based on the notion of radial derivative. The radial derivative of a function f :
R
n → R is defined as

Rf (x) := ∇f (x) · x =
d
∑

i=1

∂f (x)

∂xi
xi

On an homogeneous polynomial of degree k, it satisfies

Rfk(x) = kfk(x).

It also satisfies a form of chain rule: for a function ϕ : R→ R

R(ϕ ◦ f )(x) = ϕ′(f (x)) Rf (x).

Now, if ϕ satisfies a differential equation, the previous two properties can be used to
deduce a recurrence that relates the series expansions of f and ϕ ◦ f . For instance,
for

ϕ(x) = xα, f =
kmax
∑

k=0

fk, f0 �= 0, [ϕ ◦ f ]≤kmax =: p =
kmax
∑

k=0

pk,

10As opposed to sparse.
11Here “automatic” is used in the sense of computing Taylor expansions in which the different
terms are obtained through recurrences, instead of doing symbolic differentiation.
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from R(ϕ ◦ f )(x) = ϕ′(f (x)) Rf (x) and xϕ′(x) = αϕ(x), it follows that p0 = f α0
and

pk(x) = 1

kf0

k−1
∑

j=0

(α(k − j)− j) fk−j (x)pj (x).

Using this recurrence, pk can be computed from f1, . . . , fk−1 and p0, . . . , pk−1.
This is, the terms of order < k of ϕ ◦ f are also needed. Because of this, in order to
proceed order by order in the computation W ,f , we need to store the power series
expansions of all the intermediate operations in the evaluation of [F (W<k(s))]k
that involve the composition of a power series with an elementary function. The
software package in http://www.maia.ub.edu/dsg/param/ includes a C library for the
manipulation of multivariate, truncated power series that implements all these ideas.

4.3 Error Estimation

Once we have computed

W k≤kmax :=W 1 +W 2 + · · · +W kmax, f k≤kmax
:= f 1 + f 2 + · · · + f kmax

up to a maximum order kmax, we need to check the quality of these truncated
expansions. For notational simplicity, we denote W k≤kmax,f k≤kmax

as W ,f . For
a specific initial condition s0 in parameter space, the following three error estimates
are straightforward to check. Denote as s(t) the solution of ṡ = f (x), s(0) = s0,
denote as x(t) the solution of ẋ = X(x), x(0) = W̄ (s0), where W̄ is the
parameterization of the manifold in original coordinates, as in (32), and choose an
integration time T adequate for the problem under study. We can consider:

• The error in the invariance equation,

eI (T , s0) = sup
t∈[0,T ]

‖X(W̄ (s(t))
)−DW̄

(

s(t)
)

f
(

s(t)
)‖.

• The error in the orbit,

eO(T , s0) = sup
t∈[0,T ]

‖W̄ (s(t)) − x(t)‖.

• If ẋ = X(x) has a first integral H , the error in the reduced first integral H ◦ W̄ ,

eH (T , s0) = sup
t∈[0,T ]

‖H (W̄ (s(t))
)−H

(

W̄ (s0)
)‖

http://www.maia.ub.edu/dsg/param/
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In the following we will use eO(T , s0) for varying s0 in order to determine
neighborhoods of validity of the expansions obtained.

4.4 Expansions of the Center Manifold of the L1,2 Collinear
Points of the Earth-Moon RTBP

This subsection shows sample results on the RTBP for the Earth-Moon mass ratio
given Eq. (29).

4.4.1 Using the Graph Style

The first example will be the computation of Wc(L1) using the graph style. Denote
the vector field of the RTBP in Hamiltonian form as ẋ = X(x), and denote the
eigenvalues of DX(L1) as in Eq. (30). Denote as P a matrix having as columns
eigenvectors of eigenvalues iωp, −iωp, iωv , −iωv , λ, −λ, in this order. For this
example, we apply the procedure of Sect. 4.1 with n = 6, d = 4 to

Y (y) := P−1(X(L1 + Py)
)

,

using the graph style. In this way, we obtain a parameterization of the 4D center
manifold of L1 as

s $−→ W̄ (s) := L1 + PW (s), (37)

with Wi(s) = si , i = 1, 2, 3, 4. Expansions of W have been computed for several
orders. Table 2 shows some computing times. Note that a 4-variate series truncated
to order 70 has

(4+70
4

) = 1, 150, 626 coefficients.
Figure 15 shows the {s4 = 0} Poincaré sections of several trajectories at fixed

energies. Note that each point in these plots uniquely determines a trajectory: s3 is
computed from s1, s2 and the (fixed) value of the energy. The Poincaré sections
in Fig. 15 are analogous to the ones computed in [15, 25]. Since through the

Table 2 For several orders, computing times (in seconds) of the expansions of Wc(L1) for the
Earth-Moon RTBP using the graph style, on a Mac with Intel Core Duo @ 2.16 GHz

10 20 30 40

7.790e-03 4.048e-01 5.497e+00 3.921e+01

50 60 70

1.900e+02 7.104e+02 2.207e+03
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parameterization (37) points with s4 = 0 go to points with z = 0, the Poincaré
sections in Fig. 15 are also analogous to the ones in Fig. 13. Note that they are
obtained in completely different ways: here by direct numerical integration of
ṡ = f (s); there by computing individually every torus represented. Figure 13
can reach higher energies because of the numerical approach. Here, the use of the
expansions is limited to their domain of validity. An estimation of this domain is
shown next. Here, on the other hand, the numerical integration of ṡ = f (s) allows
us to capture all the dynamics in the center manifold at each energy level. In the
numerical approach of Fig. 13, we can only display the objects that we individually
compute.

4.4.2 Using Mixed Styles

In the next example, we have recomputedWc(L1) with a mixed style parameteriza-
tion with N = 2, I1 = {1, 2}, I2 = {3, 4} The choice of P, n, d is the same as in the
previous example. With this mixed style, due to the ordering of eigenvalues in (30),
{W̄ (s1, s2, 0, 0)}s1,s2 describes the 2D manifold spanned by the family of planar
Lyapunov orbits, whereas {W̄ (0, 0, s3, s4)}s3,s4 describes 2D manifold spanned by
the family of vertical Lyapunov orbits. In particular, at each {s4 = 0} Poincaré
section at a fixed energy level, the vertical Lyapunov orbit corresponds to the point
with s1 = s2 = 0. One of such Poincaré sections is shown in Fig. 16.
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Fig. 16 Left: Poincaré {s4 = 0} section (in parameter space) of Wc(L1) for the fixed energy
−1.565 of the Earth-Moon RTBP, computed with a mixed style parameterization with I1 = {1, 2},
I2 = {3, 4}. Observe that the vertical Lyapunov periodic orbit of this energy corresponds to s1 =
s2 = 0. Right: conversion to the points in the left plot to the original (synodic) coordinates through
(37)
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This adaptation of the s1, s2, s3, s4 parameters to the dynamics allows us to
choose easily initial conditions for a numerical exploration in order to determine
the domain of validity of the expansions using the eO estimate. For s2 > 0,
denote as h(s2) the energy of the planar Lyapunov orbit with this “s2 amplitude”,
this is, h(s2) := H

(

W̄ (0, s2, 0, 0)
)

. Then, for s2 > 0 and α ∈ [−1, 1], define
s(s2, α) := (0, αs2, s3, 0), with s3 chosen as to have H

(

s(s2, α)
) = h(s2). Denote

also as Ts2 the maximum of the periods of the planar and vertical Lyapunov periodic
orbits of energy h(s2). Then, for a trajectory with initial condition s(s2, α), we
consider the error estimate

ε(s2, α) := eO
(

Ts2, s(s2, α)
)

. (38)

Figure 17 shows the results on the evaluation of ε(s2, α) at 100 values of s2 and
100 values of α, for different orders of the expansions. In this figure it can be seen
that there is not much improvement from order 30 on. Order 20 provides a precision
of about 10−6 up to energy −1.57, whereas order 30 provides a precision of about
10−10 up to the same energy, and of about 10−6 up to energy−1.565.

As a final example, we have also computed the expansions of Wc(L2) with the
same mixed style strategy. Figure 18 displays the Poincaré {s4 = 0} section of
Wc(L2) at the fixed energy −1.570. Figure 19 displays the ε(s2, α) error estimate
for the expansions of orders 10, 20, 30. Compared to the expansions around L1,
the domain of validity is smaller, but the precision is about the same for the same
energies. This is coherent with the fact that the energy of L2 is larger than the one
of L1.
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Fig. 17 For the expansions of Wc(L1) for the Earth-Moon RTBP, computed up to orders
indicated, evaluation of the error estimate ε(s2, α) of (38). Each plot has been generated for 100
values of s2 (represented in the vertical axis as h(s2)) and 100 values of α
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Fig. 18 Left: Poincaré section {s4 = 0} of Wc(L2) for the fixed energy −1.570 of the Earth-
Moon RTBP, computed with a mixed style parameterization with I1 = {1, 2}, I2 = {3, 4}. Right:
conversion to the points in the left plot to the original (synodic) coordinates through (37)

en
er

gy

α

Order 10

-1.585

-1.58

-1.575

-1.57

-1.565

-1 -0.5 0 0.5 1
1e-10
1e-09
1e-08
1e-07
1e-06
1e-05
1e-04
1e-03
1e-02

en
er

gy

α

Order 20

-1.585

-1.58

-1.575

-1.57

-1.565

-1 -0.5 0 0.5 1
1e-10
1e-09
1e-08
1e-07
1e-06
1e-05
1e-04
1e-03
1e-02

en
er

gy

α

Order 30

-1.585

-1.58

-1.575

-1.57

-1.565

-1 -0.5 0 0.5 1
1e-10
1e-09
1e-08
1e-07
1e-06
1e-05
1e-04
1e-03
1e-02

Fig. 19 For the expansions of Wc(L2) for the Earth-Moon RTBP, computed up to orders
indicated, evaluation of the error estimate ε(s2, α) of (38). The number of points in each plot
and the interpretation of the axes is the same as in Fig. 17

5 Numerical Computation of Stable and Unstable Manifolds
of Periodic Orbits and 2D Tori

In this section we will see how to compute numerically the linear approximation of
stable and unstable manifolds of periodic orbits and tori. The linear approximation
provides a local approximation with an error that is quadratic in the distance to the
base object, which is adequate for many applications, including preliminary mission
design. Approximations of higher order can be obtained through semi-analytical
techniques, including the parameterization method, as will be discussed in Sect. 6.
The Lindstedt-Poincaré method [29] is another semi-analytical alternative.

5.1 Invariant Manifolds of Periodic Orbits

Let x0 be an initial condition of a periodic orbit of period T , this is, φT (x0) = x0.
A parameterization of the periodic orbit as an invariant manifold is given by the
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2π-periodic function ϕ : [0, 2π] −→ R
6 defined as

ϕ(θ) := φ θ
2π T

(x0).

LetΛ ∈ R, |Λ| �= 1 be an eigenvalue of the monodromy matrix of the periodic orbit
with eigenvector v, this is

DφT (x0)v = Λv.

An eigenvalue Λ with |Λ| > 1 (resp. |Λ| < 1) would correspond to an unstable
(resp. stable) manifold. For brevity, let us assume for the rest of the discussion
that Λ > 0; a comment will be made on the case Λ < 0 at the end. Therefore,
Λ > 1 (resp. Λ < 1) would correspond to an unstable (resp. stable) manifold. A
parameterization of a set of vectors tangent to the unstable (resp. stable) manifold,
also know as unstable bundle (resp. stable bundle), is given by the 2π-periodic
function

v(θ) := Λ−
θ

2π Dφ θ
2π T

(x0)v.

By combining the two previous expressions, we can obtain a parameterization of
the linear approximation of the unstable (resp. stable) manifold:

ψ̄(θ, ξ) := ϕ(θ)+ ξv(θ). (39)

It satisfies the approximate invariance equation

φt
(

ψ̄(θ, ξ)
) = ψ̄(θ + tω, etλξ)+O(ξ2),

for ω = 2π
T

, λ = ω lnΛ
2π . It can thus be evaluated for small ξ only. Nevertheless, ψ̄

can be used to globalize the manifold by numerical integration while still providing
a cylinder-like parameterization: for ξ not necessarily small, we can take an integer
m > 0 (resp. m < 0) such that Λ−mξ is small and compute

Ψ̄ (θ, ξ) = φmT
(

ψ̄(θ,Λ−mξ)
)

.

Figure 20 displays the Moon branch of the 2D unstable manifold of a Halo orbit
globalized in this way until past its first periselene. Note that it is not represented as
a set of trajectories but as a surface parameterized by the (θ, ξ) variables.

In the case Λ < 0, all the previous discussion is valid if we substitute T by 2T
andΛ byΛ2. In this way, v is 2π-periodic and the expressions for ψ̄ , Ψ̄ still provide
cylinder-like parameterizations.
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Fig. 20 Moon branch of the 2D unstable manifold of a halo orbit around L1 of the Earth-Moon
RTBP, represented as a surface. The halo orbit is shown in black

5.2 Invariant Manifolds of 2D Tori

We follow the discussion of [24] with a slightly modified computational strategy.
Assume that ϕ parameterizes an invariant curve inside a 2D torus, as in Sect. 3.8.1,

φΔ
(

ϕ(θ)
) = ϕ(θ + ρ). (40)

We want to find Λ ∈ R, |Λ| �= 1 and u : R→ R
6, 2π-periodic, s.t.

DφΔ

(

ϕ(θ − ρ)
)

u(θ − ρ) = Λu(θ), (41)

this is, an invariant bundle associated to the eigenvalue Λ. It will be an unstable
(resp. stable) invariant bundle if |Λ| > 1 (resp. |Λ| < 1), that will be tangent to the
unstable (resp. stable) manifold of the torus on the invariant curve parameterized by
ϕ.

Equation (41) can be compactly written as

Cu = Λu, (42)

with

(Cu)(θ) = DφΔ
(

ϕ(θ − ρ)
)

u(θ − ρ).

Assuming that u is expanded as a truncated Fourier series, the eigenvalue problem
(42) can be discretized and thus converted in a finite-dimensional matrix-vector
eigenvalue problem by approximating the Fourier coefficients of Cu by their
Discrete Fourier Transform (DFT).
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We use the following notation for the DFT: for N even, given real data {fj }N−1
j=0 ,

we denote

F{fj }N−1
j=0

(k) := 1

N

N−1
∑

j=0

fj e
−i2π k

N
j , k = 0, . . . , N − 1,

A{fj }N−1
j=0

(k) := δk

N

N−1
∑

j=0

fj cos(2π
k

N
j), k = 0, . . . , N/2,

B{fj }N−1
j=0

(k) := 2

N

N−1
∑

j=0

fj sin(2π
k

N
j), k = 1, . . . , N/2− 1,

with δ0 = δN
2
= 1, δk = 2 for k = 1, . . . , N2 − 1. If the data comes from the regular

sampling of a 2π-periodic function, this is, fj = f (θj ) for θj = j2π/N and f is
2π-periodic,

f (θ) ≈ A{fj }N−1
j=0

(0)+
N/2
∑

k=0

(

A{fj }N−1
j=0

(k) cos(kθ)+ B{fj }N−1
j=0

(k) sin(kθ)
)

+ A{fj }N−1
j=0

(N/2) cos((N/2)θ),

where the approximation is an equality if θ = θj , 0 ≤ j ≤ N − 1. In this way, the
DFT coefficients provide an approximation of the Fourier coefficients (for a bound
on the difference, see e.g. [11, 17]).

Now, for

u(θ) = A0 +
N/2−1
∑

k=1

(

Ak cos(kθ)+ Bk sin(kθ)
)

+AN/2 cos((N/2)θ),

let us denote the DFT coefficients of (Cu)(θ) by {Āk}N/2
k=0, {B̄k}N/2−1

k=1 , this is,

(Cu)(θ) ≈ Ā0 +
N/2−1
∑

k=1

(

Āk cos(kθ)+ B̄k sin(kθ)
)

+ ĀN/2 cos((N/2)θ).

If we denote

x = (A0,A1,B1, . . . ,AN/2−1,BN/2−1,AN/2
)

,

x̄ = (Ā0, Ā1,B1, . . . , ĀN/2−1, B̄N/2−1, ĀN/2
)

,
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then, for a suitable (finite-dimensional) matrix C,

x̄ = Cx. (43)

The columns of C can be found as the DFT coefficients of the operator C applied
to the canonical basis elements in x space, this is, to the functions wk , wk cos(θ),
wk sin(θ), wk cos(2θ), wk sin(2θ), etc., being wk ∈ R

6 the k-th element of the
canonical basis, k = 1, . . . , 6. Since all these functions can be written in terms
of complex exponentials of the form eikθ , the coefficients of the C matrix can be
computed from

F{DφΔ(ϕ(θl−ρ))wj e
ik(θl−ρ)}N−1

l=0
(m),

which, after a few calculations, is found to be

e−ikρF{DφΔ(ϕ(θl−ρ))wj }N−1
l=0

(m− k),

for j = 1, . . . , 6 and k,m = 0, . . . , N/2. Since DφΔ(ϕ(θl − ρ))wj is a 6-vector
for each j , the computation of all the needed values of the previous expression is
reduced to 36 DFT, which, by using FFT, are computed in O(N logN) operations
each.

Some knowledge on the structure of the spectrum of the invariant bundle we are
looking for is necessary in order to choose the right eigenvalues of the C matrix of
(43). The eigenvalues of C appear grouped in circles. Since the tori we are looking
for are reducible, there are as many circles as eigenvalues of the reduced matrix
(which can be considered analogous to the monodromy matrix of a periodic orbit).
Assuming that (41) has a solution, from the fact that the RTBP is a Hamiltonian
system, apart from unit circles there will be a circle containing Λ and another
circle containing Λ−1. These are the ones we are interested in. The corresponding
eigenvectors provide the Fourier coefficients of the invariant bundles we are looking
for. More details on this discussion and some additional considerations on the
accuracy of the computed eigenvalues can be found in [24].

Now, from an invariant stable or unstable bundle u(θ), tangent to the stable
or unstable manifold of the torus on the invariant curve ϕ(θ), we can obtain the
invariant bundle tangent to the stable or unstable manifold of the torus on the whole
torus through

v(θ1, θ2) = Λ−
θ2
2π Dφ θ2

2π Δ

(

ϕ
(

θ1 − θ2

2π
ρ
)

)

u
(

θ1 − θ2

2π
ρ
)

.

This expression assumesΛ > 0. If this is not the case,Δ needs to be changed to 2Δ,
so Eqs. (40) and (41) are satisfied with ρ substituted by 2ρ andΛ byΛ2. Defined as
above, the v function is 2π-periodic in θ1, θ2 and satisfies

Dφt
(

ψ(θ1, θ2)
)

v(θ1, θ2) = Λ
tω2
2π v(θ1 + tω1, θ2 + tω2),
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where ψ is the parameterization of the 2D torus defined in Eq. (21), ω1 = ρ/Δ and
ω2 = 2π/Δ. From the parameterization of the stable or unstable bundle defined on
the whole torus, we can write a parameterization of the linear approximation of the
stable or unstable manifold of the torus as

ψ̄(θ1, θ2, ξ) = ψ(θ1, θ2)+ ξv(θ1, θ2), (44)

which is 2π-periodic in θ1, θ2 and satisfies the approximate invariance equation

φt
(

ψ̄(θ1, θ2, ξ)
) = ψ̄(θ1 + tω1, θ2 + tω2, e

tλξ)+O(ξ2),

for ω1 = ρ/Δ, ω2 = 2π/Δ, λ = ω2 lnΛ/(2π), and thus Eq. (44) can be evaluated
for small ξ only. For ξ not necessarily small, we can consider an integerm such that
Λ−mξ is small (m > 0 for the unstable manifold, m < 0 for the stable manifold)
and compute

Ψ̄ (θ1, θ2, ξ) = φmΔ

(

ψ̄(θ1 −mρ, θ2,Λ
−mξ)

)

.

6 Semi-Analytical Computation of Stable and Unstable
Manifolds Using the Parameterization Method

We have seen how the parameterization method can be used as a semi-analytical
technique in order to find the periodic orbits and tori in the center manifold of
a collinear libration point. Without any modification, it can also be used to find
the invariant stable and unstable manifolds of these trajectories. All the unstable
manifolds of the invariant objects of Wc(L1) are contained in the center-unstable
manifold of L1, Wcu(L1), which is an invariant manifold tangent to the directions
given by the eigenvectors with eigenvalues

iωp,−iωp, iωv,−iωv, λ,

where we have recovered the notation of Eq. (30). All the stable manifolds of the
invariant objects of Wc(L1) are contained in the center-stable manifold of L1,
Wcs(L1), which is the invariant manifold tangent to the directions given by the
eigenvectors with eigenvalues

iωp,−iωp, iωv,−iωv,−λ.

The parameterization method does not need any modification to compute Wcu(L1)

or Wcs(L1) instead of Wc(L1).
As an example, we can apply the procedure described in Sect. 4.1 with the same

choice of P as in Sect. 4.4, n = d = 6 and choosing a mixed style parameterization
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Table 3 Sets of indexes used for the mixed style reparameterization of the neighborhood of L1
of the Earth-Moon RTBP

l Il Submanifold described by si = 0, i ∈ Il
1 {1, 2, 3, 4, 6} The unstable manifold of L1

2 {1, 2, 3, 4, 5} The stable manifold of L1

3 {1, 2, 3, 4} The hyperbolic normal part of L1

4 {3, 4, 5, 6} The planar Lyapunov family of periodic orbits

5 {3, 4, 6} The unstable manifold of the planar Lyapunov family

6 {3, 4, 5} The stable manifold of the planar Lyapunov family

7 {3, 4} The normal hyperbolic part of the planar Lyapunov family

8 {1, 2, 5, 6} The vertical Lyapunov family of periodic orbits

9 {1, 2, 6} The unstable manifold of the vertical Lyapunov family

10 {1, 2, 5} The stable manifold of the vertical Lyapunov family

11 {1, 2} The normal hyperbolic part of the vertical Lyapunov family

12 {5, 6} The center manifold of L1

13 {6} The center-unstable manifold of L1

14 {5} The center-stable manifold of L1

Table 4 For several orders, computing times of the expansions of the mixed style reparameteri-
zation of the neighborhood of L1 of the Earth-Moon RTBP

kmax 10 15 20 25 30

Time (s) 0.48 6.66 64.83 470.37 1311.42

with the sets of indexes I1, . . . , I14 defined by Table 3. In this way, we obtain a
reparameterization of a whole neighborhood of L1 that is completely adapted to
the dynamics. Table 3 is the recipe to choose initial conditions on the different
kind of objects. For example, points of the form W̄ (0, 0, 0, 0, s5, 0) are in the
unstable manifold of L1 because of the use of I1, whereas points of the form
W̄ (0, 0, s3, s4, 0, s6) are in the stable manifold of the vertical Lyapunov family of
periodic orbits because of the use of I10. Table 4 shows the computing times of the
expansions for several orders. These times are now larger than the ones of Sect. 4.4
because the truncated power series have 6 variables instead of 4.

As before, it is necessary to determine a neighborhood of validity of the
expansions. This has been done in Fig. 21, by an exploration similar to the one done
in Sect. 4.4.2, but now taking initial conditions with s5, s6 �= 0 in evaluation of the
eO estimate, and also integrating both forward and backward in time, in order to test
both the stable and the unstable manifold. The maximum eO of the trajectories of
each energy tested are represented by a point in Fig. 21. The pairs of green-violet
curves correspond, from left to right, to orders 10, 15, 20, 25, 30. The full details of
the exploration can be found in [21].

A sample application of the use of these expansions is the generation of what
are known as transit and non-transit trajectories [7, 8]. With the choice of the
eigenvectors corresponding to ±λ shown schematically in Fig. 22, orbits with
s5s6 > 0 are transit in the sense that go from the Earth to the Moon or vice-versa.
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Fig. 21 Error estimates for
the mixed-style
reparameterization of the
neighborhood of L1 of the
Earth-Moon RTBP
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Orbits with s5s6 < 0, however, are non-transit in the sense that after departing
from a primary they “bounce back” to it. Figure 23 shows some trajectories used
in the evaluation of the error estimate of Fig. 21, which are all transit because they
were chosen with s5 = s6 > 0. For clarity, the trajectories are not integrated as
in the evaluation of the error estimate, but forward in time up to the first cut with
x = μ − 1 + RM , where RM is radius of the Moon in dimensionless units (red
trajectories), and backward in time up to the second cut with y = 0 after the first
passage behind the Earth (blue trajectories). Looking at each blue curve followed
by the red one as a single trajectory, the plots show that all of them are Earth-Moon
transit.

7 Computation of Homoclinic and Heteroclinic Connections

An homoclinic connection of a object (with itself) is a trajectory that tends to the
object both forward and backward in time. An heteroclinic connection of a departing
object and an arrival object is a trajectory that tends to the departing object backward
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Fig. 23 Some transit trajectories associated to the L1 collinear point of the Earth-Moon RTBP.
The plot of the second line are the 3D views of the ones of the first line

in time and to the arrival object forward in time. From the dynamical systems point
of view, these connections play a fundamental role in the global organization of
the dynamics. In the RTBP, they also provide low-energy transfers between objects
[13] and resonance transitions [16, 28]. Using Conley-McGehee tubes [7, 30] inside
Hill’s regions, they allow to prescribe itineraries between the interior and exterior
regions of a moon-planet system, as in [16, 28, 34].

7.1 Computing Individual Connections

Consider ψu(θ, ξ) a parameterization of an approximation of the unstable manifold
of a departure object, and ψ s(θ, ξ) a parameterization of an approximation the
stable manifold of an arrival object. These approximations can be the linear ones,
or of higher order. Let Σ = {g(x) = 0} be a Poincaré section intersected by the
manifolds, and consider two associated Poincaré maps: P+Σ , computed integrating
forward in time, and P−Σ , integrating backward in time. This is,

P+Σ(x) = φτ+(x)(x), P−Σ(x) = φτ−(x)(x), (45)
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where the functions τ+(x), τ−(x) are time-return maps with τ+(x) > 0, τ−(x) < 0
defined implicitly by the conditions

g
(

φτ+(x)(x)
) = g

(

φτ−(x)(x)
) = 0.

The intersections of homoclinic (if the departure and arrival objects are the same) or
heteroclinic (in the case of different departure and arrival objects) connections with
the section Σ are given by the zeros of the function

F (θu, θ s) = P+Σ(ψ
u(θu, ξ)) − P−Σ(ψ

s (θ s, ξ)). (46)

In this function, ξ is a fixed parameter, that needs to be taken small if ψu, ψs are
linear approximations, or not necessarily, if ψu, ψs are approximations of higher
order. The θu, θ s parameters are vectors of phases of the same dimension of the
connecting objects (scalars for periodic orbits, 2-vectors for 2D tori).

In the case of periodic orbits, their stable and unstable manifolds are locally
diffeomorphic to 2D cylinders. As long as this remains true when globalizing their
manifolds, the computation of connections is reduced to intersect 2D tubes, which
can be visualized without much difficulty. Their visualization is particularly simple
if the orbit is planar: the planar RTBP has 2 degrees of freedom, and therefore
a Poincaré section of fixed energy is 2D. Figure 24 shows the manifold tubes
of a planar Lyapunov orbit around L1 of the Earth-Moon RTBP, and also their
intersection with Σ := {x = μ − 1}. The two points of intersection of the two
curves coming from the sections of the manifold tubes with Σ (Fig. 24 right) give
rise to two homoclinic connections. Initial conditions in order to find zeros of the
function F of Eq. (46) via Newton iterations can be obtained from this plot. Care
must be taken with the number of cuts of the manifold that define the Poincaré maps:
according to Fig. 24 left, P+Σ is defined as the second cut with Σ , whereas P−Σ is
defined as the first cut.
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Moon RTBP around L1 with h = −1.58, ρ̄ := 0.2800082 and the one around L2 with the same
energy and ρ̃ := 0.1700025. The right plot is a zoom of the left one

In the cases in which the sections of the manifold tubes with Σ are not easy to
visualize, other approaches need to be followed. As an example, consider searching
for heteroclinic connections between:

• a Lissajous torus around L1 of the Earth-Moon RTBP with energy h̄ := −1.58
and rotation number ρ̄ := 0.2800082, and

• a Lissajous torus around L2 with the same energy and rotation number ρ̃ :=
0.1700025.

Denote as Ψ u(θ1, θ2, ξ) (resp. Ψ s (θ1, θ2, ξ)) a parameterization of the linear
approximation of the unstable (resp. stable) manifold of the departing (resp. arrival)
torus. Denote also as P+Σ ,P

−
Σ the Poincaré sections defined in Eq. (45) after the

needed number of cuts with the section. Then, in order to look for connections, we
can plot in terms of θ1, θ2 the function

min
θ̄1,θ̄2∈[0,2π]

dist
(

P+Σ (Ψ
u(θ1, θ2)), P

−
Σ (Ψ

s(θ̄1, θ̄2))
)

.

This is done in Fig. 25. The heteroclinic connection corresponding to the zoom in
the right plot of this figure is shown in Fig. 26.

7.2 Continuation of Connections

Since the RTBP is a Hamiltonian system, periodic orbits and tori are not isolated
but part of families. As a consequence, the connections between them are part of
families too. If we want to compute several connections along a family, it is a tedious
procedure to compute them individually as described before.

The process of computing homoclinic or heteroclinic connections along families
can be automated by the use of continuation on Eq. (46), by letting ψu(θu, ξ) and
ψs (θs, ξ) evolve freely along the families of departing and arrival objects. The
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Fig. 26 Heteroclinic connection corresponding to the zoom in the right plot of Fig. 25

actual way to do it depends on the way that ψu, ψ s have been obtained, that can
be semi-analytical or numerical. In the following we will focus in the numerical
approach.

Assume we wanted to numerically compute a family of homoclinic connections
of periodic orbits of the RTBP by continuation. LetΣ1 = {g1(x) = 0} be a Poincaré
section for the initial conditions of the periodic orbit, and Σ2 = {g2(x) = 0}
a Poincaré section used to match the invariant manifolds of the periodic orbit.
Assume these Poincaré sections are valid along the portion of the family we want
to compute. We need to consider as unknown everything necessary to determine
a periodic orbit of the family and its homoclinic connection: the value of the
energy, h, the initial condition of the periodic orbit, x0, the eigenvalue of the
monodromy matrix related to the unstable (resp. stable) manifold, vu (resp. vs),
the departing (resp. arriving) phase on the linear approximation of the unstable
(resp. stable) manifold, θu (resp. θs), and, finally, the time of flight from the linear
approximation of the unstable (resp. stable) manifold to the surface of section in
which the manifolds are intersected, T u (resp. T s ). The system of equations needs
to impose all the conditions for h, x, T , Λu, vu, Λs , vs , θu, T u, θs , T s to determine
a periodic orbit and an homoclinic connection of it. It would thus be

H(x)− h = 0,
g1(x) = 0,

φT (x)− x = 0,
‖vu‖2 − 1 = 0, ‖vs‖2 − 1 = 0,

DφT (x)v
u −Λuvu = 0, DφT (x)v

s −Λsvs = 0,

g2

(

φT u
(

ψu(θu, ξ)
)

)

= 0,

g2

(

φT s
(

ψ s(θs, ξ)
)

)

= 0,

φT u
(

ψu(θu, ξ)
) − φT s

(

ψ s(θs , ξ)
) = 0,

(47)



Invariant Manifolds for Libration Point Missions 219

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

y

x

Moon     Earth 
 1,19

 2

 3

 4

 5
 6

 7

 8

 9

 10

 11

 12

 13

 14
 15

 16

 17

 18

Fig. 27 An homoclinic connection (in violet) of a large planar Lyapunov orbit (in blue) of the
Earth-Moon RTBP, obtained by numerical continuation

with, according to (39),

ψj (θ, ξ) = φ θ
2π T

(x)+ ξ(Λj )
θ

2π Dφ θ
2π T

(x)vj ,

for j = u, s. Note that the system (47) includes a normalization condition on vu,
vs , in order to make them to be locally unique. Also observe that, since we use
the linear approximation of the manifolds, ξ is a parameter that must be kept fixed
at a small value, e.g. 10−6. An actual implementation requires multiple shooting,
both in the periodic orbit and in the connection. Additional details can be found
in [4]. Figure 27 displays a homoclinic connection (in violet) of a large planar
Lyapunov orbit (in blue) around L1 of the Earth-Moon RTBP that has been reached
by such a continuation procedure. In order to aid visualization, all the perigees,
apogees, periselenes, and aposelenes have been numbered as their appear along the
connection.

The same ideas can be used in order to perform continuation of connections
of tori. Assume we wanted to perform continuation of heteroclinic connections of
tori of the RTBP. Consider a Poincaré section Σ in order to match the stable and
unstable manifolds, and assume that it is valid along all the portion of the family
of connections we want to continue. As unknowns, we would need to consider all
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the data determining the departing and arrival tori and the connection. This would
be:

• The energy, h.
• The data of the departing torus: its “longitudinal period”,Δu; its rotation number,
ρu; the Fourier coefficients of the parameterization of its invariant curve, ϕu;
the eigenvalue of its unstable bundle, Λu; its unstable bundle, uu; the departing
phases of the connection, θu1 , θu2 ; and the time of flight from the manifold to the
Poincaré section Δu∗.

• The analogous data for the arrival torus: Δs , ρs , ϕs , Λs , us , θs1 , θs2 , Δs∗.

As before, the system of equations needs to impose all the conditions for h, Δu, ρu,
ϕu, Λu, uu, θu1 , θu2 , Δu∗, Δs , ρs , ϕs , Λs , us , θs1 , θs2 , Δs∗ to determine two invariant
tori and an heteroclinic connection between them. It would thus be

H(ϕu(0)) − h = 0, H(ϕs(0)) − h = 0,

φΔu(ϕ
u(θ)) − ϕu(θ + ρu) = 0, φΔs (ϕ

s(θ))− ϕs(θ + ρs) = 0,

vu(0) · vu(0) − 1 = 0, vs(0) · vs(0) − 1 = 0,

DφΔu(ϕ
u(θ))vu(θ)−Λuvu(θ + ρu) = 0, DφΔs (ϕ

s(θ))vs(θ)−Λsvs(θ + ρs) = 0,

g
(

φΔu∗ (Ψ
u(θu1 , θ

u
2 ))
) = 0, g

(

φΔs∗ (Ψ
s(θ s1 , θ

s
2 ))
) = 0,

φΔu∗ (Ψ
u(θu1 , θ

u
2 ))− φΔs∗(Ψ

s(θ s1 , θ
s
2)) = 0

(48)

for as many discrete values of θ as Fourier coefficients needed to be determined in
the corresponding equation, and with

Ψ i (θ i1, θ
i
2) = φ θi2

2π Δ
i

(

ϕi (θ i1 −
θ i2

2π
ρi)+ (Λi)−

θi2
2π ξ ivi (θ i1 −

θ i2

2π
ρi)
)

, (49)

for i = u, s. Note that a Taylor expansion of the previous expression around ϕi
(

θ i1−
(θ i2/(2π))ρ

i
)

up to first order in ξ i turns it into an expression analogous to (44)
except for an error O((ξ i)2), which is already the error of the linear approximation
of the manifold. Compared to (44), expression (49) has as an advantage the fact
that it does not contain the differential of the flow. The comments made for system
(47) also apply here: system (48) also includes a normalization condition for the
invariant bundles vu, vs to be locally unique, ξ i is a parameter that must be kept
fixed at a small value (e.g. 10−6), and an actual implementation requires multiple
shooting, both in the tori and the connection. Additional details can be found in [33].
Figure 28 shows some connections obtained by continuation forward and backward
in energy with fixed rotation numbers ρu, ρs .
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Celestial Mechanics of Rubble Pile Bodies

Daniel J. Scheeres

Abstract This chapter derives the general equations for interacting rigid bodies
accounting for their rolling motion on each other. The derivation of the non-rolling
motions has been given previously, but to accommodating rolling and slipping
motion it is necessary to develop a non-holonomic form of the equations of motion.
The resulting derivation shows that the key analysis parameters for a collection of
grains that gravitationally attract and rest on each other are preserved in this more
advanced formulation. The chapter ends with a simple application of these results to
a series of bodies that can roll on each other, satisfying a non-holonomic constraint.

Keywords Rubble pile asteroid · N rigid body problem · Granular celestial
mechanics

1 Introduction

The motion of rigid bodies that are resting on and orbiting about each other, attracted
by mutual gravity, is a topic of study that has become more relevant in recent
decades with the discovery of “rubble pile” asteroids [2, 7]. These are small bodies
that are comprised of a size distribution of hard grains, mutually resting on each
other. Their mechanics can be studied using principles of continuum mechanics, as
has been done by Holsapple [4], or through discrete element particle mechanics
simulations [8, 16]. They can also be analyzed from a discrete body Celestial
Mechanics perspective which is more focused on finding analytical constraints on
the orbital and rotational dynamics of these bodies [11]. This chapter presents an
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introduction to this problem from a Celestial Mechanics point of view with an
emphasis on how contact constraints are dealt with dynamically, and provides a
detailed example calculation of the stability of a certain resting configuration of
bodies.

The outline of the paper is as follows. First, the basic mass distribution properties
of rigid bodies and their mutual attraction are outlined. Next, the states of the system
are defined, along with their constraints, with a special focus on the dynamical
constraints when the bodies are in contact. Following this the kinematical equations
and related quantities are given, leading up to the definition of the full set of
Lagrange’s equations for the system. A special version of the Lagrange equations
are derived using Routh reduction, culminating with the definition of the amended
potential and the full set of equilibrium conditions. Following this a special case of
stability for a rubble pile body is studied, focusing on the stability conditions for an
arbitrary number of bodies resting on each other placed in a straight line.

2 Problem Specification

Consider the mass distributions of a set of N rigid bodies that interact with each
other through gravitation and surface contact forces. We specify these bodies in
general as mass distributions, denoted as Bi , i = 1, 2, . . . , N . Each body has its
own center of mass location, velocity and body orientation and rotation. Thus in
total there are 6N degrees of freedom for the system. We note that the rigid body
assumption places specific constraints on these degrees of freedom which have been
noted in previous discussions of the problem, however these have not been fully
detailed as of yet in terms of the appropriate equations of motion [12]. Thus this
contribution will provide a more rigorous definition of these constraints and note
some specific results once the equations of motion are properly formulated.

2.1 Density Distributions and Body States

Consider an arbitrary collection of N mass distributions, denoted as Bi , i =
1, 2, . . . , N , following the derivation in [9]. Each body Bi is defined by a
differential mass distribution dmi that is assumed to be a finite density distribution,
denoted as

dmi = ρi(r)dV (1)

mi =
∫

Bi

dmi (2)
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where mi is the total mass of body Bi , ρi is the density of body Bi (possibly
constant), r is a spatial position vector variable relative to a given frame and dV
is the differential volume element. If Bi is described by a point mass density
distribution, the body itself is just defined as a single point ri . Instead, if the body
is defined as a finite density distribution, Bi is defined as a compact set in R

3 over
which ρi(r) > 0. In either case the Bi are defined as compact sets. This notation
can be further generalized by defining the general mass differential

dm(r) =
N
∑

i=1

dmi(r) (3)

and the total mass distribution B = {Bi , i = 1, 2, . . . , N}. Then the above
definitions can be reduced to integrals over B:

M =
∫

B
dm (4)

where M =∑N
i=1 mi is the total mass of the system.

Each differential mass element dmi(r) has a specified position and an associated
velocity. For components within a given body Bi a rigid body assumption is made
so that the state of the entire body can be defined by the position and velocity of its
center of mass,

ri = 1

mi

∫

Bi

rdm (5)

vi = 1

mi

∫

Bi

vdm , (6)

where velocities are assumed measured relative to an inertial frame, and its attitude
and angular velocity (see below). Finally, we assume that these positions and
velocities are defined relative to the system barycenter, which is chosen as the
origin, so

∫

B
rdm(r) = 0 (7)

∫

B
vdm(r) = 0 . (8)

Thus, the individual bodies are located by their position vector ri relative to the
origin, with the additional constraint that

∑N
i=1 miri = 0. Their relative position to

each other is also defined as rij = rj−ri , and their relative velocity as ṙij = ṙj− ṙi .
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2.2 Body Orientations and Inertias

Each rigid body has a unique orientation relative to an inertial frame. The relevant
mass distribution parameter of a rigid body then expands to also include its moments
of inertia (or inertia tensor/dyad), and the relevant orientation degrees of freedom
must also be defined.

Within each body a unique set of orthogonal axes can be defined which enable the
orientation of the rigid body. Then we can use a transformation matrix, or direction
cosine matrix, to define the orientation of these axes relative to an inertial frame
and thus define the orientation of the rigid body. Denote the dyad Ai as mapping a
vector in an inertial frame into the body frame of body i. We note that such a dyad

must be orthonormal, meaning that det(Ai ) = 1 and that A
T

i · Ai = Ai · ATi = U,
where U is the identity dyad and the (·) operator stands for the dot product between
dyads.

We note that the dyad Ai suffices to define the attitude of the body, however it
is over-constrained due to its above properties, with 9 numbers needed to specify
but 6 constraints that must be satisfied. Thus one can always choose a unique set of
three Euler angles to represent the dyad and orientation of the body, although any
such representation will always have singularities associated with it. Alternatively,
one can also define the rotation axis and rotation angle of the dyad Ai , which are
the eigenvector of the unity eigenvalue and the angle associated with its complex
conjugate eigenvalues. This representation does not have any singularities, although
it still has at least one constraint equation. Closely related to the axis-angle variables
are the quaternion representation, which still has 4 numbers with 1 constraint.

Due to the simplicity of notation, we will rely on the dyad Ai to define the inertial
orientation of our bodies. Similarly, it is important to define the orientation of two

bodies relative to each other. To do this we define Aij = Aj · ATi as the dyad that
maps from the body i frame to the body j frame.

To specify the kinematics of a rotating body define the angular velocity ωi as the
angular velocity of body i relative to an inertial frame. Then the orientation dyad Ai
has the following kinematics

Ȧi = −ω̃i ·Ai (9)

where ã is the cross-product dyad associated with a vector a, such that ã · b =
a ·˜b = −b · ã = a× b. Similarly, if the angular velocity of body j relative to body
i is ωij = ωj − ωi , then the time rate of change of Aij is

Ȧij = −ω̃ij ·Aij . (10)
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The counterpart to a body’s mass for its translational motion is a body’s inertia
tensor/dyad for its rotational motion. The inertia dyad for a body is defined as the
mass integral

Ii = −
∫

Bi

(̃ρ · ρ̃) dmi(ρ) , (11)

where we assume that the position of the mass element ρ is defined with respect to
the body’s center of mass, and that the dyad is nominally defined in the body-fixed
frame. Thus, to transform the inertia dyad to an inertial frame requires the use of the

orientation dyad as A
T

i · Ii ·Ai . A separate distinction is the body moment of inertia
relative to the origin of the system, which we define as

Ji (ri ) = Ii −mi r̃i · r̃i , (12)

explicitly calling out that this is a function of the position of body i in the coordinate
frame. The use of J denotes that the inertia matrix is not specified relative to a center
of mass and ri is the position vector of body i relative to the system coordinate
origin, meaning that Ji is the total moment of inertia of body i relative to the
coordinate origin.

In addition to the inertia dyad of a single body, we also need to express the system
moment of inertia. Fundamentally, this equals

J =
N
∑

i=1

Ji . (13)

Using the general mass differential we can express the entire system inertia dyad
relative to the system coordinate origin as a single integral

J = −
∫

B
(̃r · r̃) dm(r) . (14)

Assuming that the coordinate origin is the system center of mass, we can rewrite the
inertia dyad to be in terms of the relative orientation of mass elements through an
application of Lagrange’s Identity to find

I = − 1

2M

∫

B

∫

B

(

r̃− r̃′
) · (r̃− r̃′

)

dm(r)dm(r′) , (15)

where we note then that J = I. From this version it is easy to note that the system
inertia is then defined only in terms of the relative positions and orientations of the
system’s rigid bodies, with these vectors being specified in the given inertial frame.
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2.3 Degrees of Freedom and Constraints

We recall that for N bodies there are 3N translational degrees of freedom and
3N rotational degrees of freedom for a total of 6N DOF. In our formulation we
have already removed 3 DOF by setting the center of the system at the barycenter,
reducing the total to 3(2N − 1). The degrees of freedom are split between three
general classes, the relative positions of the bodies, the relative orientations of
the bodies to each other, and the overall orientation of the system with respect
to the inertial frame. We note that the relative positions and orientations will be
independent of the overall orientation of the system relative to inertial space. This
is practically realized by choosing the reference frame for relative orientation and
position to be fixed in one of the bodies.

It is instructive to review these degrees of freedom. For N = 1 there are
no relative position or attitude degrees of freedom, and thus there is only the
inertial orientation degrees of freedom for the system, yielding a total of 3 DOF
in agreement with the general rule. For N = 2 we start with one central body with
no degrees of freedom. The position of a second body relative to this has 3 DOF and
its relative attitude has 3 DOF. Finally, we add the inertial orientation to get a total
of 9 DOF. Each additional body then adds 6 DOF again, reproducing our general
rule.

We distinguish between the internal, relative degrees of freedom and the inertial
orientation degrees of freedom. For the current system we represent the internal
degrees of freedom as qi : i = 1, 2, . . . , 6(N−1). These are specifically the relative
positions of the centers of mass and the orientations of the rigid bodies relative to
each other. For convenience we can imagine these to be Cartesian position vectors
and Euler angles in a common frame fixed in one of the bodies. We note that their
time derivatives are expressed with respect to an inertial frame. The additional 3
DOF that orient the system relative to inertial space is represented as the rotation
dyad A which takes the relative frame into inertial space.

Note again that in our general statements, the final 3 DOF that orient the system
relative to inertial space do not change any of our fundamental integral quantities
except that of the total angular momentum H and total system moment of inertia I.
This is because each of these orientations acts on the entire system but do not change
the relative orientations or speeds. This invariance is tied to the existence of the
angular momentum integral. Despite this, since the kinetic energy is defined relative
to an inertial frame there remains a fundamental connection between the inertial and
relative frames.

2.3.1 Unilateral Constraints

Unilateral constraints exist between any two bodies, when their surfaces touch each
other. This is driven by their relative position and attitude and arise from the rigid
body and finite density constraints. Ultimately this means that the body centers of
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mass cannot get arbitrarily close to each other due to their shapes. The constraint
exists between every pair of bodies, i and j , and has the general form

rij ≥ dij (r̂ij ,Aij ) , (16)

where rij is the relative position of the two bodies, rij is its magnitude, r̂ij is the unit
vector and Aij is their relative attitude. The function dij is defined for a particular
pair of bodies. If we assume both bodies are convex, then only the relative distance
is affected. If either of the bodies are not convex, once they are in contact there can
be additional unilateral attitude constraints that can arise.

For a 2-body system which has 6 relative degrees of freedom (3 position and
3 angular), once the bodies are in contact this is reduced to 2 position degrees of
freedom, but still 3 angular degrees of freedom. When the bodies are in contact,
this constraint is reduced to a holonomic constraint, as it only applies to the
geometry between the bodies as a function of their relative attitude and position,
specifically rij = dij (r̂ij ,Aij ). There are additional physics that arises when in
contact, depending on the relative friction between the two bodies. The easiest to
model is to assume that the two bodies roll without slipping on each other. This
creates additional constraints, however, reviewed below.

2.3.2 Non-holonomic Constraints

When the unilateral constraints are active, if we assume that the bodies roll without
slipping on each other, then non-holonomic constraints arise. In general a non-
holonomic constraint is one that exists on the relative velocities of a system, and
restricts the direction of motion as a function of the other states of the system. The
distinguishing feature of non-holonomic constraints is that they are not integrable,
meaning that they cannot be reduced to a purely geometric constraint. Another way
to view this is that there are no inherent restrictions of the relative geometry of two
bodies subject to non-holonomic constraints, although at every relative geometry
there are constraints on how the two bodies can move relative to each other.

A general statement of a set of m non-holonomic constraints on a system with n
degrees of freedom qi can be reduced to [3]

n
∑

i=1

aji(q, t)q̇i + ajt (q, t) = 0 , (17)

where j = 1, 2, . . . ,m. We note that the constraints depend on the degrees of
freedom of the system and potentially on time (although for our systems time will
not be present). The non-integrability of the constraints can be checked explicitly by
showing that ∂aji/∂qk �= ∂ajk/∂qi for some indices k and i. If these cross-partials
are equal for all degrees of freedom, then the constraint is integrable and can in
principle be reduced to a holonomic constraint.
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A simple example is when two spheres rest on each other. Then, assuming that
they only roll without slipping, the travel of the spheres relative to each other is
constrained by the direction in which they rotate relative to each other. A simple
rotation of the sphere about a given axis then results in a specific path of their contact
point. Given that the sphere can rotate in three directions, one perpendicular to the
tangent plane through the point of contact (which does not result in motion), and
two about orthogonal axes whose combination can cause the sphere to roll in a
specified direction on the surface once the rotation angles are chosen. Due to this,
the system has two additional constraints, meaning that only the relative attitude
between the spheres is free to change—the relative position on the sphere being
constrained by the non-holonomic constraint. However, despite these constraints
the relative location and orientation of the spheres can take on all possible values of
the original 5-DOF system under the active unilateral constraint.

Specifically, when the spheres are in contact, we can state the motion constraints
as

u̇− cos(θ3)Rθ̇1 − sin(θ3)Rθ̇2 = 0 , (18)

v̇ + sin(θ3)Rθ̇1 − cos(θ3)Rθ̇2 = 0 . (19)

Here u̇ and v̇ are the velocity of the center of the rolling sphere relative to the
stationary sphere, defined in orthogonal directions, θ3 is the rotation of the spheres
relative to each other about their point of contact, and θ1 and θ2 are rotations of
the sphere in two mutually perpendicular directions which are in turn perpendicular
to the axis associated with θ3. Non-integrability can be shown by noting that the
coefficient of θ̇3 is zero for both constraints, meaning that its partial with respect to
any of the other angles is zero. However, the coefficients of θ̇1 and θ̇2 are functions
of θ3 and thus their partials are non-zero in general, showing that the integrability
conditions are not satisfied.

2.3.3 General Constraints

When the unilateral constraints are active the non-holonomic constraints are also
active and lead to restrictions on the relative motion of the two bodies in contact.
The non-holonomic constraints will also affect the statement of the equations of
motion, to be reviewed later. See Fig. 1 for an illustration of the general case.

If the two bodies are both locally smooth and convex about their point of contact,
the above “spherical” model is qualitatively similar to the actual situation, with the
generalization being that the surface can have different local curvatures in different
directions. If the surfaces are not convex, or not smooth, then it is possible to for
additional unilateral constraints to become active in additional angular directions.
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Fig. 1 Geometry of bodies resting and orbiting each other

When two bodies i and j are in contact we will generally represent the constraints
as follows, using the indices i = 1 and j = 2. When in contact the relative position
vector is r12 = d12(r̂12,A12)r̂12, with the magnitude of the relative position being a
holonomic constraint. For our convex body assumption, there will be a unique point
of contact between the bodies as a function of their relative state, which we denote
as ρ1 and ρ2, and which are shown in Fig. 1. We note that the surfaces will have their
normals anti-parallel at this contact point. These contact position vectors are defined
in their relative body-fixed frames, and are smooth functions of the relative state
allowing us to write them functionally as ρi (r̂12,A12). We then have the identity
r12 = ρ1 − ρ2.

If we take body 1 as the reference frame for the relative orientation of the system
and assume that body 2 rolls without slipping on its surface, then the velocity of
body 2 relative to body 1 can be found as a non-holonomic constraint

ṙ12 + ω12 × ρ2 = 0 , (20)

where the velocity and angular velocity are relative to body 1, and do not directly
consider the spin or motion of body 1. It can be noted that the projection of the
velocity along the direction r̂12 corresponds to the integrable direction, meaning
that the distance along this direction is a constraint defined by Eq. (16). The
non-holonomic constraints are then the directions perpendicular to this line, and
correspond to the two possible directions of rolling motion that body 2 can take
relative to body 1. It is also possible to formulate the non-holonomic constraints
locally about the contact point between the two bodies, however we do not pursue
that approach here.

It is instructive to carry out the computation for two spheres of radius R1 and R2
rolling on each other (see Fig. 2). Let us take sphere 1 as fixed and sphere 2 as rolling
on it, constraining motion to lie in a plane. From our computation the velocity of
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Fig. 2 Geometry of two
spheres rolling on each other

sphere 2 relative to sphere 1 will be

ṙ12 = R2θ̇12r̂⊥ , (21)

where θ̇12 is the relative angular velocity of the spheres (measured in a plane) and
r̂⊥ is the unit vector in the direction of motion and orthogonal to both the relative
position of the sphere centers and the angular velocity vector. This provides us
with an expression for the velocity. However, we can equivalently reduce this to
the angular rate at which the sphere 2 center moves relative to the sphere 1 center,
denoted in the figure as φ̇12. Note that the distance from sphere 1 to sphere 2 equals
R1 + R2, and the angular rate of sphere 2 relative to sphere 1, φ̇12, must yield the
same velocity, thus

ṙ12 = (R1 + R2)φ̇12r̂⊥ . (22)

Equating these two we find the constraint

φ̇12 = R2

R1 + R2
θ̇12 . (23)

In this way the relative translational motion of the spheres are coupled with their
relative rotational motion.

If we wish, a further step can be taken, allowing for unilateral constraints on the
relative attitude. For the above angle θ12 this would express itself in general as

θ12 − dθ(r,A) ≥ 0 (24)

and indicates that the angle would be stopped at a specific relative orientation. These
would arise if the surfaces of either body have concavities or discontinuous slopes.
One such unilateral constraint being active should reduce the dimensionality of the
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non-holonomic constraint by one, while two such active constraints would remove
the non-holonomic constraints altogether, and just provide a geometrical constraint
between the bodies.

2.4 Mutual Gravitational Potential

The mutual gravitational potential of the system is comprised of the pairwise mutual
potentials between the different rigid bodies.

U = −G
N−1
∑

i=1

N
∑

j=i+1

∫

Bi

∫

Bj

dmi dmj

|rij + ρj − ρi |
, (25)

where rij = rj − ri and the ρi denote the integration variable over the mass
distribution. Note that the definition of U in Eq. (25) eliminates the self-potentials
of these bodies from consideration. As the finite density mass distributions are
assumed to be rigid bodies this elimination is reasonable. However, the more general
expression of the gravitational potential

U ′ = −G

2

∫

B

∫

B

dm(r) dm(r′)
|r− r′| , (26)

naturally includes the self-potentials. For the rigid body assumption, the gradient of
either of these forms with respect to the degrees of freedom in the system will be
equal, however.

The mutual potential of two bodies can be reduced to a convenient expression that
only involves integration over the different surface areas. Following the summary in
[17] of the classical results by Liebenthal [5] for constant density bodies (which we
can nominally assume at this point) we find

Uij = −G
∫

Bi

∫

Bj

dmi dmj

|rij + ρj − ρi |
(27)

= σiσj

2
G

∫

∂Bi

∫

∂Bj

|rij + A
T

ij · ρj − ρi | dSi · dSj , (28)

where the σi are the densities of the respective bodies and we explicitly call out the
necessary orientation of the body j frame to the body i frame, tacitly assuming that
all of the other vectors in the magnitude operator are in the body i frame. Note that
the mutual potential has been reduced to the mutual integration of the differential,
oriented surface areas dSi dotted with each other over the surface of the distinct
mutual bodies, denoted by ∂Bi .
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When in this form, the general expressions for the force and moment acting
between two bodies is especially simple to describe, even though these integrals
cannot be evaluated in closed form except for the simplest systems. Then the force
between these two bodies is evaluated as the negative gradient of this expression
with respect to the mutual distance between their centers of mass

Fij = −∂Uij

∂rij
(29)

= −σiσj
2

G

∫

∂Bi

∫

∂Bj

r̂ dSi · dSj , (30)

where r = rij + A
T

ij · ρj − ρi and r̂ = r/r . We note that Fij is implicitly written
with respect to body frame 1.

For the torque between the bodies, we must take the gradient of the potential
with respect to the orientation of body j relative to the body i frame. An easy way
to specify this is to start with the current orientation between these bodies, denoted
as Aij and consider a small additional variation consisting of Euler angle rotations
about each axis of body j , denoted as δθ ij . When the variations are small we can
assume that δθ ij = ωij δt and thus the orientation of body j relative to body i with
a small additional variation can be expressed as δAij = ˜δθ ij · Aij . Given this, the

general variation of the relative vector r = rij + A
T

ij · ρj − ρi due to a variation in

the relative attitude can be expressed as δθr =
(

δAij
)T · ρj = −ATij · ˜δθ ij · ρj =

A
T

ij · ρ̃j · δθ ij . Then, as δθUij = ∂Uij

∂θ
· δθ we then find the general equation for the

torque of body i on body j as

Mij = −∂Uij

∂θ ij
(31)

= −σiσj
2

G

∫

∂Bi

∫

∂Bj

r̂ · ATij · ρ̃j dSi · dSj . (32)

We note that Mij is implicitly written with respect to body frame 1.
From these definitions of the force and moment between two bodies it is

relatively easy to prove the identities

Fij + A
T

ij ·Fji = 0 , (33)

Mij + A
T

ij ·Mji = rij ×Fij . (34)
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2.5 Kinetic Energy and Angular Momentum

Finally, the integral form of the kinetic energy and angular momentum vector can
be stated as [9]

T = 1

2

N
∑

i=1

∫

Bi

(v · v) dmi(r) , (35)

H =
N
∑

i=1

∫

Bi

(r× v) dmi(r) , (36)

where we assume that v is the velocity measured relative to an inertial frame. This
notation can be further generalized by again defining the single and joint general
mass differentials

T = 1

2

∫

B
(v · v) dm(r) , (37)

H =
∫

B
(r× v) dm(r) , (38)

where we assume that these vectors are specified relative to the inertial frame. These
quantities can also be expressed in terms of relative coordinates only—similar to the
gravitational potential

T = 1

4M

∫

B

∫

B

(

v− v′
) · (v− v′

)

dm(r)dm(r′) , (39)

H = A · 1

2M

∫

B

∫

B

(

r− r′
)× (v− v′

)

dm(r)dm(r′) . (40)

For the angular momentum, we note that it must be mapped from the relative frame
into the inertial frame where it is naturally conserved for a closed system.

3 Equations of Motion

3.1 The Lagrange Equations for a Set of Rigid Bodies

We first consider the Lagrange equations for the system in their simplest form.
Define the coordinates of the system to be the N position vectors ri of the body
centers of mass relative to the barycenter of the system, and the corresponding
attitudes of these bodies, nominally signified by Euler angles θ i , where we note that
the specific angles used can be changed at will. The specific form of the equations
will vary depending on whether any of the unilateral constraints are active.
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For definiteness we will take the independent 6(N − 1)+ 3 degrees of freedom
as follows. Assume that we take body 1 as the reference body and its orientation
with respect to inertial space is denoted as θ1. Then we take the other bodies, j =
2, 3, . . . , N , with their position r1j , time rate of position with respect to an inertial
frame ṙ1j and their Euler angles θ1j relative to body 1.

The Lagrangian is L = T − U and when there are no active constraints the
equations take the general form

d

dt

∂L

∂ ṙ1i
= ∂L

∂r1i
, (41)

d

dt

∂L

∂ θ̇1i
= ∂L

∂θ1i
, (42)

plus the equation for the attitude of body 1

d

dt

∂L

∂ θ̇1
= ∂L

∂θ1
. (43)

We could also choose different independent degrees of freedom of the system, so
long that they consist of a minimal set of body positions and orientations.

Let us consider the situation when there is an active constraint between two of the
bodies. We can renumber the system and take one of the bodies as being “central”
with index i = 1 and the other as resting on the central body with index i = 2. Then
their relative position vector r12 is constrained in magnitude as r12 = d12(r̂12,A12).
Associated with this holonomic constraint will be two additional non-holonomic
constraints of the form a1r · ṙ12 + a1θ · θ̇12 = 0 where a1x ∈ R

2×3. We note that
we can also write the holonomic constraint in differential form, resulting in a form
a2r · ṙ12 + a2θ · θ̇12 = 0 where a2x ∈ R

1×3. The driving reason to do this is that it
allows the constraint force to be solved for explicitly, as described below. We can
then combine these three constraints together into one general form

[ar ] · ṙ12 + [aθ ] · θ̇12 = 0 , (44)

where [ax] ∈ R
3×3, which represents three constraint equations.

Given that this constraint is active, the equations of relative motion between
bodies 1 and 2 becomes

d

dt

∂L

∂ ṙ12
= ∂L

∂r12
+ λ12 · [ar ] , (45)

d

dt

∂L

∂ θ̇12
= ∂L

∂θ12
+ λ12 · [aθ ] , (46)

where the Lagrange multipliers λ12 ∈ R
3 are the same between the two equations,

and they are solved for in concert with Eq. (44). Once the Lagrange multipliers are
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found, the constraint force and moment are found as

F12 = λ12 · [ar ] , (47)

M12 = λ12 · [aθ ] . (48)

See [3] for a more general introduction to non-holonomic dynamics.

3.2 Transformation into a Rotating System

Of specific interest to us is the overall rotation of the system due to a non-zero but
constant angular momentum. A specific goal is to remove this integral of motion,
sometimes termed the elimination of the nodes. In our analysis we can remove one
degree of freedom quite simply, and by doing so define the amended potential that
we use to discuss relative equilibrium and their stability.

We define a very specific rotating frame from which we will measure motion.
This is done by defining a system angular velocity which is a function of the angular
momentum integral. Before we do this, however we initially define an angular
velocity vector that will be shown to be derived from the angular momentum later,

ω = H
IH

(49)

= θ̇Ĥ , (50)

where IH = Ĥ · I · Ĥ is the moment of inertia of the system about a fixed direction
in inertial space and H is an arbitrarily chosen constant vector in inertial space.
We note that IH is a function of both the internal system described in terms of the
relative positions and orientations of the bodies and its orientation relative to Ĥ, but
not to rotations around this unit vector which we denote by the angle θ . Since the
axis of rotation is fixed in space the angular velocity ω = θ̇Ĥ is a true velocity and
can be expressed as the time derivative of an angle.

This defines an overall rotation rate for the system that is directly tied to its
total angular momentum and the distribution of its mass. The system can then
be rewritten relative to this rotating frame, noting that the rotation rate θ̇ is not
necessarily constant as the moment IH is not a constant in general. We note that our
initial definition of this rotation is independent of angular momentum, however we
can show that the proper choice of θ and its spin direction will relate back to this
conserved quantity.

First the system kinetic energy is expressed in a rotating frame, with rotation
vector defined by ω, meaning that the time derivatives will be expressed relative
to a rotating frame. In the following we use the shorthand notation #r = r − r′,
and similar for other quantities, where both of these vectors will be integrated over
the total mass distribution. Then given an inertial velocity #v, it can be expressed
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relative to the rotating frame as

#v = #ṙ+ ω ×#r , (51)

where #v represents the velocity relative to the inertial frame, #ṙ the velocity
relative to the rotating frame and#r is the location of the mass elements in question.
The dot product of this with itself, which is the kinetic energy integrand, then
becomes

#v ·#v = (#ṙ+ ω̃ ·#r) · (#ṙ+ ω̃ ·#r) (52)

= #ṙ ·#ṙ+ 2ω ·˜#r ·#ṙ− ω ·˜#r ·˜#r · ω , (53)

where we have used the properties of the cross product dyad and rearranged the
terms.

Now consider the double integration over each of these terms. The first term is
the kinetic energy relative to the rotating frame

Tr = 1

4M

∫

B

∫

B
#ṙ ·#ṙdm(r)dm(r′) . (54)

The final term takes on a simple form as well, once one recalls the definition of
the inertia dyad I (see Eq. (15))

1

2
ω · I · ω = − 1

4M
ω ·
∫

B

∫

B

˜#r ·˜#rdm(r)dm(r′) · ω . (55)

From the definition of ω = H/IH = θ̇Ĥ, we find that

1

2
ω · I · ω = 1

2
IH θ̇

2 . (56)

Finally consider the middle term, which we represent as:

ω · 1

2M

∫

B

∫

B

˜#r ·#ṙdm(r)dm(r′) = ω ·Hr , (57)

whereHr is the angular momentum relative to the rotating frame. We will eventually
show that this is zero, however we technically cannot make this substitution until
the equations of motion are fully defined, meaning that this term participates in the
equations of motion, as will be seen.

The result is that the kinetic energy becomes

T = Tr + 1

2
IH θ̇

2 + θ̇Ĥ ·Hr . (58)
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3.2.1 Reduced Lagrangian Function

The Lagrangian of the original system is justL = T −U . In this rotating coordinate
system it is

L = Tr + θ̇Ĥ ·Hr + 1

2
IH θ̇

2 −U . (59)

We note that all of the terms are independent of the angle θ , and thus ∂L/∂θ = 0
leading to the momentum integral

d

dt

∂L

∂θ̇
= 0 , (60)

IH θ̇ + Ĥ ·Hr = H . (61)

If Ĥ is chosen along the total angular momentum vector of the system this quantity
equals the total angular momentum of the system.

We can apply Routhian reduction to this system (see [1, 3, 15] for a rigorous
application of this approach). The Routhian function is then defined as

LR = L− θ̇
∂L

∂θ̇
(62)

and we can solve for the angular rate θ̇ as

θ̇ = 1

IH

[

H − Ĥ ·Hr

]

. (63)

Substituting this back into the newly defined Routhian function and simplifying
yields

LR = Tr −
(

H 2

2IH
+U

)

+ 1

IH
H ·Hr −

(

Ĥ ·Hr

)2

2IH
. (64)

We define the amended potential E as

E = H 2

2IH
+U . (65)

3.2.2 Equations of Motion

First consider the general equations of motion when no constraints are active. The
following results are noted, where we only focus on the translational motion for
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detailed description

∂Tr

∂ ṙ1i
= m1mi

m1 +mi

ṙ1i , (66)

∂Hr

∂ ṙ1i
= m1mi

m1 +mi

r̃1i , (67)

∂Hr

∂r1i
= − m1mi

m1 +mi

˜ṙ1i , (68)

i = 2, 3, . . . , N .

In addition, for the current equations of motion we note that H is constant and that
Hr = 0, although the partials of this quantity are not necessarily equal to zero and
must be incorporated into the equations of motion. This results in

m1mi

m1 +mi
[r̈1i + 2ω̃ · ṙ1i + ω̇ · r̃1i] = − ∂E

∂r1i
, (69)

d

dt

∂ (Tr + ω ·Hr )

∂ θ̇1i
− ∂ (Tr + ω ·Hr )

∂θ1i
= − ∂E

∂θ1i
, (70)

where we note that ω̇ = − (H/I 2
H

)

dIH
dt

.
Now consider the case when the unilateral constraints, and hence the non-

holonomic constraints, between bodies 1 and 2 are active. The equations will take
the same form, except for the additional constraint force terms

m1m2

m1 +m2
[r̈12 + 2ω̃ · ṙ12 + ω̇ · r̃12] = − ∂E

∂r12
+ λ12 · [ar ] , (71)

d

dt

∂ (Tr + ω ·Hr )

∂ θ̇12
− ∂ (Tr + ω ·Hr )

∂θ12
= − ∂E

∂θ12
+ λ12 · [aθ ] , (72)

along with the constraints

[ar ] · ṙ12 + [aθ ] · θ̇12 = 0 . (73)

3.2.3 Jacobi Integral of Motion

As the Lagrangian as defined is time invariant, there should exist a Jacobi integral
of motion (i.e., conservation of Energy) in the case where none of the unilateral
constraints are active. Under our rolling without slipping assumption for the contact
non-holonomic constraints when active, we can show that this integral will also
exist. It will not exist should we include slipping motion, which would lead to non-
conservative work occurring.
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To derive explicitly, take the dot product of Eqs. (69)–(72) with ṙ1i and θ̇1i ,
respectively, and sum to find

N
∑

i=2

{

m1mi

m1 +mi
[r̈1i + 2ω̃ · ṙ1i + ω̇ · r̃1i]

}

· ṙ1i +

N
∑

i=2

{

d

dt

∂ (Tr + ω ·Hr )

∂ θ̇1i
− ∂ (Tr + ω ·Hr )

∂θ1i

}

· θ̇1i

= −
N
∑

i=2

{

∂E

∂r1i
· ṙ1i + ∂E

∂θ1i
· θ̇1i

}

+ λ1i ·
{

[ar ] · ṙ1i + [aθ ] · θ̇1i
}

. (74)

Going in reverse order, we note that under the no-slip condition the constraint terms
should be identically zero. Next, the term involving the amended potential is easily
recognized as the total time derivative of −E . Finally, the leading terms can be
shown to equal d/dt (Tr + ω ·Hr ), however under the equations of motion we note
the identity Hr = 0, meaning that its time derivative is also zero.

Thus we explicitly find the energy integral of this system from

d

dt
[Tr + E ] = 0 , (75)

E = Tr + E . (76)

There are several conclusions we can draw from this analysis. First, from the energy
equation we see that

E − E = Tr (77)

≥ 0 (78)

and thus we have

E ≥ E , (79)

with equality occurring when the relative kinetic energy is Tr = 0. It can be shown
that this minimum kinetic energy can be achieved with a system with a given total
angular momentumH [12].

We note that the condition E = E at some instant in time is not sufficient for the
system to be in a relative equilibrium (defined below), as the forces acting within
the system may not be balanced and thus may cause the system to evolve in time.
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If the rolling without slipping assumption is violated, for example if the lateral
force is greater than the friction limit, the energy is no longer conserved and is
reduced by

d

dt
[Tr + E ] = F12 · ṙ12 +M12 · θ̇12 . (80)

For a rigid body system in contact this is likely the main way in which it can reduce
its overall energy while maintaining its total angular momentum.

3.3 Equilibrium and Stability Conditions

With the equations of motion specified we can determine conditions for relative
equilibrium and conditions for stability. In fact, given the classical form of the
energy, split into a quadratic and a potential part, the derivation of stability con-
ditions is simple. The only catch involves the presence of the uni-lateral constraints
which exist when the rigid bodies are in contact. We consider the cases separately.
First we present some definitions.

Definition 1 (Relative Equilibrium) A given configuration is said to be in “Rela-
tive Equilibrium” if its internal kinetic energy is null (Tr = 0), meaning that E = E

at an instant, and that it remains in this state over at least a finite interval of time.

Definition 2 (Energetic Stability) A given relative equilibrium is said to be
“Energetically Stable” if any equi-energy deviation from that relative equilibrium
requires a negative internal kinetic energy, Tr < 0, meaning that this motion is not
allowed.

Note that energetic stability is different than Lyapunov or spectral stability, which
are the usual notions of stability in astrodynamics (these distinctions are discussed in
detail for the Full Body Problem in [10]). Energetic stability is stronger in general,
as it is robust to any energy dissipation and in fact—if it applies—means that a
given relative equilibrium configuration cannot shed any additional energy and thus
is static without the injection of exogenous energy, a condition we refer to as being
in a (local) minimum energy state.

3.3.1 No Contact Case

When there are no contacts between the bodies, there are necessarily no active
unilateral constraints and all of the degrees of freedom are unconstrained. We also
note that the kinetic energy is quadratic in the generalized coordinate rates and
has the form of a natural system ([3], pg 72). Then the condition for a relative
equilibrium is that all of the q̇ = 0 (yielding Tr = 0) and ∂E /∂q = 0.
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Energetic stability of the configuration occurs when the Hessian of the amended
potential is positive definite, or ∂2E /∂q2 > 0, meaning that it has only positive
eigenvalues. Neutral stability can occur when ∂2E /∂q2 ≥ 0, meaning that at least
one eigenvalue is equal to zero. In this case it is possible for the system to drift at
a constant rate relative to the equilibrium, ultimately destroying the configuration.
If the configuration is not positive definite or semi-definite, then it is unstable and
there exists at least one negative eigenvalue and the system can escape from the
equilibrium configuration while conserving energy. Another way to consider the
unstable case is that the system can still dissipate energy, and thus can evolve to a
lower energy state. We note that this is a stronger form of stability than is sometimes
used in celestial mechanics and astrodynamics, where spectral stability of linearized
motion can sometimes be stable (as in the Lagrange configurations of the 3-body
problem that satisfy the Routh criterion).

It is a remarkable fact of celestial mechanics that in the point mass n-body case
for n ≥ 3, the Hessian of any relative equilibrium configuration has at least one
negative eigenvalue and is unstable [6]. Thus for the point mass n-body problem
all central configurations are always energetically unstable except for the 2-body
problem. For the n = 2 body problem there is only a single relative equilibrium and
it is positive definite and thus stable. If we consider the 3-body problem, we note
that while the Lagrange configurations may be spectrally stable when they satisfy
the Routh criterion, they are not at a minimum of the amended potential and thus if
energy dissipation occurs they can progressively escape from these configurations.
We note that for the finite density cases there are always stable configurations at any
angular momentum [11].

In keeping with a variational notation, in the no-contact case (i.e., when there are
no constraints on the coordinates), the equilibrium condition is

δE = 0 , (81)

where δE = ∑n
i=1 (∂E /∂qi) δqi which corresponds to ∂E /∂qi = 0 for all i. The

stability condition is

δ2E > 0 , (82)

which corresponds to the Hessian
[

∂2E /∂qi∂qj
]

being positive definite.

3.3.2 Contact Case

The equilibrium and stability conditions must be modified if there are constraints
which are activated. We assume, without loss of generality, that generalized
coordinates are chosen to correspond to each contact constraint, such that in the
vicinity of their being active the unilateral constraint can be restated as

δqj ≥ 0 , (83)
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for j = 1, 2, . . . ,m constraints. We note that these constrained generalized
coordinates may either be relative positions or Euler angles between bodies. Assume
we have the system at a configuration q with m active constraints as just enumerated
and Tr = 0. Further, assume that the n − m unconstrained states satisfy Eqi = 0
for i = m+ 1, . . . , n. For this system to be at rest the principle of virtual work and
energy states that the variation of them constrained states are such that the amended
potential only increases, or

δE ≥ 0 , (84)

δE =
m
∑

j=1

Eqj δqj , (85)

which, for our assumed constraints on the states, is the same as Eqj ≥ 0 for
j = 1, 2, . . . ,m. The derivation of this just notes that, as defined, if the amended
potential can only increase in value then motion is not allowed, as this corresponds
to a decrease in kinetic energy from its zero value, which of course is non-physical.

For stability, we require the n − m unconstrained variables to satisfy the same
positive definite condition as derived earlier. For the constrained states we only need
to tighten the condition to δE > 0 or Eqj > 0 for j = 1, 2, . . . ,m. This last
assertion demands some more specific proof and motivates the following general
theorem on necessary and sufficient conditions for a relative equilibrium.

4 Application to Euler Resting Configurations

Now let us apply these results to better understand the stability of the N-body Euler
Resting configuration, recently studied in [13, 14]. We take a more general version
of that problem, allowing each of the bodies to have a different diameter. We do
study that same general configuration, however, which has the grains resting on
each other in a straight line (see Fig. 3). We note that there are then N − 1 active
unilateral constraints, and hence twice as many non-holonomic constraints existing
between the bodies in contact. The important point to make, however, is that the
equilibrium and stability of this configuration can be studied by a pure focus on the
amended potential.

In [14] a detailed discussion is given of this system and its constraints, which
we summarize here. Mainly, we can describe the system in terms of the relative
distance between any two grains, and define an independent set of variations
in these distances by considering the displacement between any two grains in
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Fig. 3 Definition of the Euler Resting configuration and the distance and angular variations

contact. Similarly, we can restrict ourselves to planar motion and define the relative
orientation of the grains by specifying the angle between neighboring grain centers
and the initial straight line configuration.

4.1 Specifying the Euler Resting Configuration

We assume that we have N spherical bodies in mutual contact with a neighbor on
each side, except at the ends. Each body has massmi and diameterDi , in general we
assume they share an equal density (although this can be trivially generalized too).
Then the moment of inertia of each body is Ii = 1

10miD
2
i . The relative position

vector between any two bodies i and j is then

dij =
⎡

⎣

j−1
∑

k=i

1

2
(Dk +Dk+1) cos θk

⎤

⎦ x̂+
⎡

⎣

j−1
∑

k=i

1

2
(Dk +Dk+1) sin θk

⎤

⎦ ŷ , (86)

where x̂ is taken along the initial aligned configuration and ŷ is in the plane of
rotation and perpendicular to it.

d2
ij =

1

4

⎡

⎢

⎣

⎛

⎝

j−1
∑

k=i
(Dk +Dk+1) cos θk

⎞

⎠

2

+
⎛

⎝

j−1
∑

k=i
(Dk +Dk+1) sin θk

⎞

⎠

2
⎤

⎥

⎦ . (87)
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The system moment of inertia about the axis perpendicular to the x̂ and ŷ plane
and about the system center of mass, and the gravitational potential are then

IH =
N
∑

i

1

10
miD

2
i +

1
∑N

k mk

∑

i<j

mimjd
2
ij , (88)

U = −G
∑

i<j

mimj

dij
, (89)

which combine together in the amended potential

E = H 2

2IH
+U , (90)

where the angular momentumH is a free parameter of the system.

4.2 Equilibrium Conditions

The equilibrium conditions are found by checking that the first variation of the
amended potential is zero for the unconstrained variables (which are the angles),
and that it is positive for the constrained variables (the distances between any two
grains). See Fig. 3 for the geometrical definition of these variations. We consider
the angular variables first, meaning that we need to solve for ∂E /∂θm = 0,
yielding

− H 2

2I 2
H

∂IH

∂θm
+ ∂U

∂θm
= 0 , (91)

where we note that

∂IH

∂θm
= 1
∑N

k mk

∑

i<j

mimj

∂d2
ij

∂θm
, (92)

∂U

∂θm
= G

2

∑

i<j

mimj

d3
ij

∂d2
ij

∂θm
, (93)
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meaning that we just need to solve for
∂d2

ij

∂θm
. Carrying out this partial we find

∂d2
ij

∂θm
= Dm +Dm+1

2

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 m ≤ i − 1

[

− sin θm
∑j−1

k=i (Dk +Dk+1) cos θk+
cos θm

∑j−1
k=i (Dk +Dk+1) sin θk

]

i ≤ m ≤ j − 1

0 m ≥ j

. (94)

It is clear that this equals 0 when all of the angles θk = 0, or if they are all equal to
each other. This establishes the Euler resting configuration as a possible equilibrium,
so long as the unilateral constraints are all active.

To test whether all of the unilateral constraints are active, or more precisely that
the constraint forces are all opposing the compression, we must determine whether
∂E /∂dm ≥ 0, where dm is defined as the distance between particles m and m + 1.
This is evaluated at the equilibrium condition, meaning that we can set θk = 0 and
then evaluate the partial.

− H 2

2I 2
H

∂IH

∂dm
+ ∂U

∂dm
≥ 0 , (95)

where

∂IH

∂dm
= 2
∑N

k mk

∑

i<j

mimjdij
∂dij

∂dm
, (96)

∂U

∂dm
= G

∑

i<j

mimj

d2
ij

∂dij

∂dm
. (97)

Now we just need to solve for
∂dij
∂dm

. Carrying out this partial we find

∂dij

∂dm
=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

0 m ≤ i − 1

1 i ≤ m ≤ j − 1

0 m ≥ j

. (98)
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Substituting this into the partials for IH and U gives a simplified set of expressions

∂IH

∂dm
= 2
∑N

k mk

m
∑

i=1

N
∑

j=m+1

mimjdij , (99)

∂U

∂dm
= G

m
∑

i=1

N
∑

j=m+1

mimj

d2
ij

, (100)

dij =
j
∑

k=i
Dk − 1

2

(

Di +Dj

)

. (101)

The existence of the equilibrium then depends on the level of angular momentum
of the system. Specifically, we find a limit on H for each variation in dm

(

H

IH

)2

≤ 2∂U /∂dm

∂IH/∂dm
(102)

= GM

∑m
i=1
∑N

j=m+1
mimj

d2
ij

∑m
i=1
∑N

j=m+1 mimjdij
(103)

= "2
F,m . (104)

where we note that the ratio H/IH is just the total spin rate of the system, and the
spin rate "F,m is the spin rate at which the Euler resting configuration will separate
between bodies m and m + 1. Thus the limiting spin rate for the system to exist as
a relative equilibrium is then

"F = min
m
"F,m , (105)

where we call this limiting spin rate the “fission” spin rate.

4.3 Stability Conditions

If H 2 ≤ I 2
H"

2
F then the Euler resting configuration is a relative equilibria. To test

stability then requires us to compute the Hessian Emn =
[

∂2E /∂θm∂θn
]

evaluated
at the equilibrium condition and test whether it is positive definite.
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The second partial of the amended potential with respect to an angle θn is

∂2E

∂θn∂θm
= H 2

I 3
H

∂IH

∂θm

∂IH

∂θn
− H 2

2I 2
H

∂2IH

∂θn∂θm
+ ∂2U

∂θn∂θm
. (106)

However when evaluated at the equilibrium the partial ∂IH
∂θm

= 0. In addition, the
second partials of IH and U are

∂2IH

∂θn∂θm
= 1

M

∑

i<j

mimj

∂2d2
ij

∂θn∂θm
, (107)

∂2U

∂θn∂θm
= G

2

∑

i<j

mimj

d3
ij

∂2d2
ij

∂θn∂θm
, (108)

with an additional term in the partial of the gravitational potential being equal to
zero at the equilibrium condition. Finally, we note that the second partial of the term
d2
ij evaluated at the equilibrium is

∂2d2
ij

∂θn∂θm
= 1

2

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

0 m ≤ i − 1
(

Dm +Dm+1
) (

Dn +Dn+1
)

i ≤ m < n ≤ j − 1
(

Dm +Dm+1
)

[

Dm +Dm+1 −
∑j−1
k=i

(

Dk +Dk+1
)

]

i ≤ m = n ≤ j − 1

0 n ≥ j

,(109)

where we assume m ≤ n. These can all be combined into a general form of the
second partial of the amended potential

∂2E

∂θn∂θm
= G

2

m
∑

i=1

N
∑

j=n+1

mimj

d3
ij

[

1−
(

H

IH

)2 d3
ij

GM

]

∂2d2
ij

∂θn∂θm
. (110)

This provides a detailed algorithm for the computation of the matrix entries. It is
also useful to develop a matrix-level notation for this system, where we can note
that when evaluated at the relative equilibrium the spin rate is equal to the ratio

H/IH = " again. Denote Eθθ =
[

∂2E
∂θn∂θm

]

, and similarly denote Uθθ =
[

∂2U
∂θn∂θm

]

and Iθθ =
[

∂2IH
∂θn∂θm

]

. Then the Hessian of the amended potential has the general

form

Eθθ = Uθθ − 1

2
"2Iθθ (111)
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and stability occurs when Eθθ is positive definite, meaning that all of its eigenvalues
are positive. We note that in general the matrix Iθθ is non-singular, thus allowing us
to rewrite the equation as

Eθθ = 1

2
Iθθ

[

2I−1
θθ Uθθ −"2I

]

, (112)

where I is the identity matrix. Thus we can reduce this to a classic eigenvalue
problem by finding the eigenvalues of 2I−1

θθ Uθθ , denoted as λ2
k . Then the condition

for stability is that "2 > maxk λ2
k = "2

S , defining the minimum spin rate for
complete stabilization of the system.

We do note one detail from the discussion in [14] about the size of this matrix.
Although there areN −1 degrees of freedom in the angular variables, we only need
to test the system for N − 2 variations, as there is always one null eigenvalue of the
system corresponding to the uniform rotation of the system. In other words, for a
2-body system there is no need to test for stability, while for a 3 body system there
is only one unique angle of variation between the bodies, etc.

4.4 Results

Given these detailed results we can explicitly test the stability and fission spin rates
for a range of N and relative sizes and masses of the system. The key parameter to
test for a given configuration is whether the interval #" = "F − "S is positive,
meaning that there will be a range of spin rates for which the system is in a relative
equilibrium and is stable.

Stability of Equal Size Configurations as a Function of N We first recreate the
topic studied in [14] and corrected in [13]. Here we assume that all the bodies are
of equal size and density, and determine whether #" > 0 as a function of N . The
difference is plotted in Fig. 4 as a function ofN , also shown are the stabilization and
fission spin rates. The spin rates are normalized by the critical spin rate of a single
sphere, defined as the mean motion at the surface. Here we can clearly see that the
transition occurs at N = 21, meaning that for N ≥ 22 an equal mass and size Euler
resting configuration can never be stable.

Robustness to Relative Variations in Particle Size Next we consider the robust-
ness of the configurations as the relative size of a single grain is varied. First, we
just consider the effect of varying the size of the center grain for an odd number of
particles, and investigate the stability gap #" as the center grain varies from 0.1
to 10 times the other grains. Figure 5 shows the evolution of the stability gap as a
function of the center grain size for a number of different odd N . We note that the



Celestial Mechanics of Rubble Pile Bodies 253

Fig. 4 Normalized spin rates as a function of N for equal-sized Euler Resting configuration. The
stabilization rate exceeds the fission rate for N ≥ 22

Euler resting configuration can be stable aboveN = 22 if the central grain is slightly
larger than the other grains. However, by N = 29 this is no longer the case and the
Euler resting configuration is not stable for any size of the central body. Most likely,
growing additional central grains could stabilize this, however the number of free
parameters is too large to systematically study here.

As a case study Fig. 6 shows the different stabilization and fission spin rates for
different modes as a function of the central body size for the case of N = 21. On
the bottom shows the difference between the relevant limiting spin rates, defining a
region of positive stability.

We note that the case N = 5 has a non-zero stability gap across the entire
spectrum of size variations, indicating a level of robustness that is not present at
the N = 7 level, which cannot be stabilized once the center grain is 3.3 times
larger than the others. Thus we explore the robustness of N = 5 to variations in
its other grains as well. We find that any of the grains in the 5 body system can be
shrunk to arbitrarily small size. The end grain can be increased up to 2.8 times the
others before stability ceases. The next grain can be increased to 3.2 times the other
grains before the stability gap closes. And as seen in Fig. 4 the central grain can be
increased to an arbitrary size without the stability gap disappearing.
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Fig. 5 Top: Spin rate stability gap as a function of the relative size of the central body for a number
of odd Euler Resting configurations. Bottom: Detail showing the loss of stability as a function of
central body size for higher numbers of bodies
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Fig. 6 Stabilization and fission spin rates as a function of central body size for N = 21. The
stabilization rates plotted are the different eigenvalues of the matrix. The fission rates are for
separation of different members of the Euler Resting configuration. The bottom plot shows the
maximum stability envelope and minimum fission envelope

5 Conclusions

The Celestial Mechanics of a finite density N-body system is studied, with a focus
on accounting for the contact constraints when the components are resting on each
other. It is shown that, under no-slip assumptions, the equilibria and stability of a
resting configuration can be studied using only the amended potential. A detailed
example is given for the case of N bodies resting on each other in a line, serving as
an application of the theory to a contact case.
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Multi-Objective Optimal Control:
A Direct Approach

Massimiliano Vasile

Abstract The chapter introduces an approach to solve optimal control problems
with multiple conflicting objectives. The approach proposed in this chapter gener-
ates sets of Pareto optimal control laws that satisfy a set of boundary conditions and
path constraints. The chapter starts by introducing basic concepts of multi-objective
optimisation and optimal control theory and then presents a general formulation
of multi-objective optimal control problems in scalar form using the Pascoletti-
Serafini scalarisation method. From this scalar form the chapter derives the first
order necessary conditions for local optimality and develops a direct transcription
method by Finite Elements in Time (DFET) that turns the infinite dimensional
multi-objective optimal control problem into a finite dimensional multi-objective
nonlinear programming problem (MONLP). The transcription method is proven to
be locally convergent under some assumptions on the nature of the optimal control
problem. A memetic agent-based optimisation approach is then proposed to solve
the MONLP problem and return a partial reconstruction of the globally optimal
Pareto set. An illustrative example concludes the chapter.

Keywords Multi-objective optimisation · Optimal control · Finite elements ·
Trajectory optimisation

1 Introduction

Optimal control theory is a branch of mathematical optimisation that searches for
control laws, or policies, that optimise (minimise or maximise) a given cost function
and drive a dynamical system from an initial to a final state. Methods for the solution
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of optimal control problems are generally divided in two categories: direct and
indirect. Indirect methods derive and solve a set of differential-algebraic equations
that satisfy Pontryagin’s maximum principle, while direct methods transcribe the
infinite dimensional optimal control problem into a finite dimensional nonlinear
programming (NLP) problem and solve it with a numerical optimisation method.
Optimal control theory and most existing numerical methods for the solution of
optimal control problems generally consider a single scalar cost function. However,
in many real scenarios one is interested in optimising several, often conflicting,
performance indexes.

In this case, the problem is to find the set of solutions such that none of the
objective functions can be improved in value without degrading some of the other
objective values. These solutions are called Pareto optimal or Pareto efficient after
the economist Vilfrido Pareto who first introduced the concept of Pareto efficiency
or Pareto optimality.

Methods for the solution of multi-objective nonlinear programming problems
exist and are well supported by theory. However, only a few methods have
been proposed in the literature for the solution of multi-objective optimal control
problems [1–4].

This chapter presents a methodology to numerically solve general multi-
objective optimal control problems. The main difference with respect to traditional
single objective optimal control problems is that the solution corresponds to
a set of optimal control laws, rather than a single optimal one. The solution
approach proposed in this chapter transcribes the original control problem into
a Multi-Objective Non-Linear Programming (MONLP) problem using a particular
technique based on Finite Elements in Time. The resulting NONLP is then solved
with a memetic algorithm that combines a population-based exploration of the
search space with a gradient-based strategy for local convergence.

The chapter is structured as follows: after stating the problem under investigation
and introducing some basic concepts of optimal control and multi-objective optimi-
sation, the chapter will present the transcription method based on Finite Elements
in Time and the solution of the resulting NLP problem. Along with the solution
methodology, the chapter proposes two theoretical developments that provide a set
of necessary conditions for the local optimality of the solutions. A simple example
will demonstrate the applicability of the proposed approach.

2 Definitions and Preliminary Ideas

The first section of this chapter will introduce some basic concepts and ideas and
the notation that will be used in the remainder of the chapter.
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2.1 Multi-Objective Optimal Control Problem

Consider the following multi-objective optimal control problem (MOCP):

min
u

F

s.t. (MOCP)

ẋ = h(x,u, t)

g(x,u, t) ≤ 0

ψ(x0, xf , t0, tf ) ≤ 0

t ∈ [t0, tf ]

where F = [f1, . . . , fi , . . . , fm]T is, in general, a vector function of the state
variables x : [t0, tf ] → Rn, control variables u ∈ L∞(U ⊂ Rnu) and time
t . Functions x belong to the Sobolev space W 1,∞, objective functions are fi :
R2n+n × Rnu × [t0, tf ] −→ R, h : Rn × Rnu × [t0, tf ] −→ Rn, algebraic
constraint function g : Rn×Rnu×[t0, tf ] −→ Rq , and boundary condition functions
ψ : R2n+2 −→ Rnψ . Note that problem (MOCP) is generally non-smooth and can
have many local minima.

2.2 Pareto Dominance and Efficiency

At the beginning of the twentieth century, Vilfredo Pareto, an Italian engineer,
sociologist, economist, political scientist, and philosopher, introduced a revolution-
ary concept in economics: the notion of what is now known as Pareto-optimality,
or the idea that maximum economic satisfaction can be achieved when no one
can be made better off without making someone else worse off. In mathematical
terms this can be written in the following way. Consider the vector functions
F : Rn → Rm, with F(x) = [f1(x), f2(x), . . . , fi(x), . . . , fm(x)]T , g : Rn → Rq ,
with g(x) = [g1(x), g2(x), . . . , gj (x), . . . , gq(x)]T and problem

min
x

F

s.t. (MOP)

g(x) ≤ 0

Given the feasible set X = {x ∈ Rn|g(x) ≤ 0} and two feasible vectors x, x̂ ∈ X,
we say that x is dominated by x̂ if fi(x̂) ≤ fi(x) for all i = 1, ...,m and there exists
a k so that fk(x̂) �= fk(x). We use the relation x̂ ≺ x that states that x̂ dominates
x. A vector x∗ ∈ X will be said to be Pareto efficient, or optimal, with respect to
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Problem (MOP) if there is no other vector x ∈ X dominating x∗ or:

x ⊀ x∗, ∀x ∈ X − {x∗} (1)

All non-dominated decision vectors in X form the Pareto set XP and the corre-
sponding image in criteria space is the Pareto front.

2.3 Karush-Khun-Tucker Optimality Conditions
for Multi-Objective Problems

The notion of Pareto-optimality and dominance do not immediately translate into a
criterion for a solution to be optimal. In this section we introduce a set of necessary
conditions for local optimality for generic constrained optimisation problems with
multiple objectives. A set of necessary conditions for local optimality of scalar
problems were first stated by William Karush in his master’s thesis in 1939 and
then, independently, published by Harold W. Kuhn, and Albert W. Tucker in 1951.
A treatment of vector objective functions can be found in [5] and is reported here in
the form of a theorem on the local optimality of a solution x∗ of problem MOP.

Theorem 1 (KKT) If x∗ ∈ X is an efficient solution to problemMOP and a regular
point of the constraints g, then there exist vectors η ∈ Rm and λ ∈ Rq such that:

m
∑

i

ηi∇fi(x∗)+
q
∑

j

λj∇gj (x∗) = 0 (2)

q
∑

j

λj gj (x∗) = 0 (3)

gj (x∗) ≤ 0, j = 1, . . . , q (4)

λj ≥ 0, j = 1, . . . , q (5)

ηi ≥ 0, i = 1, . . . ,m (6)

∃ηi > 0 (7)

In the unconstrained case KKT optimality conditions reduce to:

m
∑

i

ηi∇fi(x∗) = 0 (8)

ηi ≥ 0, i = 1, . . . ,m (9)

∃ηi > 0 (10)
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Condition (8) leads to an interesting result (see [6]) that the Pareto set is an m − 1
dimensional manifold. This implies that the Pareto set has zero measure in Rn with
m ≤ n, which means that simply sampling the n dimensional domain of a vector
function is not sufficient to reconstruct the Pareto set. The development of a solution
algorithm, therefore, requires more sophisticated heuristics.

2.4 Pascoletti-Serafini Scalarisation

One way to address the solution of multi-objective optimisation problems is to
translate the original vector objective function into a scalar and then use any method
for single objective optimisation. The KKT conditions (1) already suggest that a
weighted sum of the objective functions could work. However, this approach does
not work in practice if the Pareto front is not convex. A better way to solve the
problem is to define a descent cone, in criteria space, that eventually converges to
the Pareto front.

In 1984 Adriano Pascoletti and Paolo Serafini introduced a scalarisation method
[7] based on this idea of descent cones. According to the Pascoletti-Serafini method,
an optimal (or K-minimal) solution to problem (MOP) is also solving the following
constrained single objective optimisation problem:

mint∈R t
s.t.

at − F(x)+ r ∈ K
g(x) ≤ 0
a ∈ Rm

r ∈ Rm

(11)

where K identifies a descent cone whose vertex slides along the rectilinear line
parameterised in t and defined by the vectors a and r. In a more computationally
friendly form, problem (11) can be written as:

mins≥0 s

s.t.

ωi (fi(x)− zi) ≤ α ∀i = 1, . . . ,m
g(x) ≤ 0
z ∈ Rm

ω ∈ Rm+

(PS)

where the points z = [z1, . . . , zi , . . . , zm]T and the vectors of positive weights
ω = [ω1, . . . ,ωi , . . . ,ωm]T define rectilinear lines (or descent directions) in the m
dimensional criteria space. The K-cone in problem (PS) and the associated descent
directions can be represented as in Fig. 1a. When the cone reaches the Pareto front
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K

K

f1

f2 F=[ f1,f2]

F(X)

r+at

(a)

F(X)

K

f1

f2

(b)

F=[ f1,f2]

Fig. 1 Convergence of the Pascoletti-Serafini scalarisation: (a) Descent K-cone, (b) K-efficient
point

the vertex of the cone identifies a Pareto efficient point (see Fig. 1b). More formally
a point is K-minimal when:

(F̄−K) ∩ F(X) = {F̄}

From this definition and from Fig. 1, one can understand that a K-minimal point is
Pareto efficient.

2.5 Chebyshev Scalarisation

A different approach to treat vector objective functions is known as Chebyshev
scalarisation. This method is here presented as in [8] and similar to Pascoletti-
Serafini sclarisation it is based on the idea of descent directions ζ identified by
the vector of weights ω:

minx∈X maxi∈{1,...,m} ωi(fi(x)− zi)

s.t.

g(x) ≤ 0
(CS)

This form of scalarisation is not introducing any constraints on the objective
functions and can be directly used with a sampling or population-based method (like
any Evolutionary Computation technique [9, 10]) as it represents a simple method
to accept or reject a sample. The major difficulty, as for (PS), is to properly define
the descent directions. Figure 2 illustrates the logic of Chebyshev scalarisation and
the region that satisfies condition (CS) where χ = maxi∈{1,...,m} ωi(fi(x)− zi). In
[8], the author analyses the relationship among different scalarisation methods and
presents the following important theoretical results on the equivalence between the
solution of problem (CS) and (PS).
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Fig. 2 Logic of Chebyshev’s
scalarisation: at each step, the
green region is where a new
solution is accepted. The
direction defined by ζ is the
descent direction defined by
the weights ωj

f
1

f
2

f(x)

Increasing (f)

Decreasing (f)

Theorem 2 (CS) A point (s, x) ∈ R×X is a minimal solution of problem (PS) with
z ∈ Rm, zi < minx∈X fi(x), i = 1, . . . ,m, and ω ∈ int (Rm+), if and only if x is a
solution of problem (CS).

From theorem (CS) one can expect that the solution of problem (PS) and (CS) are
equivalent. This is an important property when designing algorithms because, in
some cases (as it will be shown later in this chapter), the solution of (PS) practically
translates into the solution of (CS) or a partial solution to (CS) might need to be
improved by solving (PS).

2.6 (Scalar) Pontryagin Maximum Principle

In this chapter we focus on optimal control problems that are formulated in the so
called Mayer’s form. Other forms, Lagrange and Bolza, express the cost function
respectively either as the time integral of a function that depends on states, controls
and time or a mix of time integral and scalar function of the terminal conditions
[11]. It is easy to verify that the three forms are equivalent and lead to the same
solution. However, for the discussion that follows, Mayer’s form is more easily
applicable to a scalarised MOCP. In Mayer’s form the cost function depends on
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the terminal conditions on states and time. The resulting optimal control problem
reads:

minu f (xf , tf )
s.t

ẋ = h(x,u, t)
g(x,u, t) ≤ 0
ψ(x0, xf , t0, tf ) ≤ 0
t ∈ [t0, tf ]

(12)

where x is the state vector, u the control vector, h is the dynamic function, g a
set of path constraints, ψ the boundary constraints and t is the time. If u∗ is a
locally optimal solution for problem (12), then Potryagin’s minimum (maximum)
principle says that there exist a vector λ ∈ Rn, ν ∈ Rnψ and a vector μ ∈ Rq such
that:

u∗ = argminu∈U(λT h(x∗,u, t) + μT g(x∗,u, t))
U = {u|g(x,u, t) ≤ 0}
λT∇xh(x∗,u∗, t)+ μT∇xg(x∗,u∗, t)+ λ̇ = 0
μ ≥ 0

(13)

with transversality conditions:

∇xf + νT∇xψ = λ(tf )

λT h(x∗,u, tf )+ μT g(x∗,u, tf )+ (∇t f + νT∇tψ)tf = 0 [if tf is free]
ν ≥ 0

(14)

Equations (13) represent a system of Differential Algebraic Equations (DAE) that
needs to be solved with boundary conditions (14). Equations (13) and (14) are
necessary condition for optimality and in case a locally optimal control is sought
(and both h and g are locally differentiable with respect to the controls u ∈ U ) one
can express the first of (13) as:

∇u(λ
T h(x∗,u, t)+ μT g(x∗,u, t)) = 0 (15)

2.7 Pascoletti-Serafini Scalarised MOCP

Problem (12) has a single scalar objective function. If function f in (12)
was replaced by the vector function F = [f1, . . . , fi , . . . fm]T one could use
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scalarisation approach (PS) to obtain:

minαf≥0 αf

s.t.

ωi(fi(xf , tf )− zi)− αf ≤ 0 ∀i = 1, . . . ,m
ẋ = h(x,u, t)
g(x,u, t) ≤ 0
ψ(x0, xf , t0, tf ) ≤ 0
t ∈ [t0, tf ]

(PSOCP)

If s is a slack variable with final condition αf and zero time variation α̇ = 0,
then problem (PSOCP) presents itself in a form similar to Mayer’s problem. The
major difference is the mixed boundary constraint on xf , tf and αf for every i =
1, . . . ,m.

3 Solution Approach

We are now ready to approach problem (MOCP). We are interested in finding
the set of control laws that are globally Pareto optimal. Recalling the definition
in Sect. 2.2, this means that we want the family of control laws such that the
vectors F corresponding to each control law belong to the global Pareto front of
problem (MOCP). In the case of a multi-modal function it is possible that there exist
multiple sets that satisfy the Pareto efficiency criterion only locally, i.e. in a subset
of U . Here the interest is to devise a method that allows convergence to solutions
that satisfy the Pareto efficiency criterion globally in U .

The solution approach proposed in this chapter, first translates the optimal control
problem into a non-linear programming problem. The NLP is then scalarised and
a so called memetic approach, that combines a population-based search and a
gradient method, is used to find an approximation to the Pareto set. The following
sections first briefly describe the transcription method from optimal control problem
to NLP problem, followed by the solution approach of the multi-objective NLP
problem.

3.1 Direct Transcription of Multi-Objective Optimal Control
Problems

The approach proposed in this chapter, for the transcription of problem (MOCP),
falls under the class of direct approaches and is based on a numerical method
called Finite Elements in Time (FET) [12]. Direct FET transcription for scalar
optimal control problems was first introduced by Vasile [13] in 2000 and uses
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finite elements in time on spectral bases to transcribe the differential equations
into a set of algebraic equations. Finite Elements in Time (FET) for the indirect
solution of optimal control problems were initially proposed in 1991 by Hodges
and collaborators [14], and during the late 1990s evolved to the bi-discontinuous
version that will be presented in this section. As a numerical integration scheme
for ordinary differential equations, FET are equivalent to some classes of implicit
Runge-Kutta integration schemes [15], can be extended to arbitrary high-orders, are
very robust and allow full h-p adaptivity, where h-adaptivity means adapting the
size of each element and p-adaptivity means adapting the order of the polynomials
for each element. In the past decade, direct transcription with FET on spectral
bases has been successfully used to solve a range of difficult problems: from the
design of low-thrust multi-gravity assist trajectories to Mercury [16] and to the Sun
[17], to the design of weak stability boundary transfers to the Moon, low-thrust
transfers in the restricted three body problem and optimal landing trajectories to the
Moon [13].

The first transcription step is to recast the differential constraints in weak form
as follows:

∫ tf

t0

ẇT x+ wT h(x,u, t)dt − wTf x
b
f + wT0 x

b
0 = 0 (16)

where w are generalised weight functions and xb are the boundary values of the
states, that may be either imposed or free. Now one can decompose the time domain
D into N finite elements such that

D =
N
⋃

j=1

Dj(tj−1, tj ) (17)

and parametrise, over each Dj , the states, controls and weight functions as

xj (t) =
l
∑

s=0

ϕs,j (t) xs,j (18a)

uj (t) =
l
∑

s=0

γs,j (t) us,j (18b)

wj (t) =
l+1
∑

s=0

θs,j (t)ws,j (18c)

where the functions ϕs,j , γs,j and θs,j are chosen among the space of polynomials
of degree l, and (l + 1) respectively. Note that, in general, the controls u can be
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collocated on a number of nodes different from the states x. It is practical to define
each Dj over the normalised interval [−1, 1] through the transformation,

τ = 2
t − tj−tj−1

2

tj − tj−1
(19)

This way the domain of the basis function is constant and irrespective of the size
of the element and also overlaps with the interval of the Gauss nodes that will be
employed for the integration of the dynamics. The objective function is simply:

Ji = φi(xb0, x
b
f , t0, tf ) (20)

while, after substituting the definitions of the polynomials into the variational
constraints and integrating with Gauss quadrature formulas, one gets the following
system for each finite element:

l+1
∑

k=1

σk

[

ẇj (τk)T xj (τk)+ wj (τk)T hj (τk)
Δtj

2

]

− wj (1)T xbj + wj (−1)T xbj−1 = 0

(21)

where τk and σk are the Gauss nodes and weights, and hj (τk) is the shorthand
notation for h

(

xj (τk),uj (τk), t (τk)
)

, τk and σk are Gauss nodes and weights,
Δtj = (tj − tj−1). Since Eq. (21) must be valid for every arbitrary ws,j , Eq. (21)
gives rise to a system of (lx + 1) vector equations for each element:

∑lu
k=0 σk

[

θ̇1,j (τk) xj (τk)+ θ1,j (τk)hj (τk)
Δtj

2

]

+ xbj−1 = 0
...
∑lu

k=0 σk

[

θ̇s,j (τk)xj (τk)+ θs,j (τk)hj (τk)
Δtj

2

]

= 0
...
∑lu

k=0 σk

[

θ̇lx+1,j (τk)xj (τk)+ θlx+1,j (τk)hj (τk)
Δtj

2

]

− xbj = 0

(22)

Path constraints are evaluated at Gauss nodes for each element:

g
(

xj (τk),uj (τk), t (τk)
) ≤ 0 (23)

All the elements are then assembled together, by imposing the continuity relation:

xbj = xbj−1 (24)

The assembly process, therefore, removes all the boundary values except for the
initial and final ones, at time t0 and tf . The result is that, optimal control problem
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in Eq. (MOCP) is transcribed into the following non-linear programming (NLP)
problem:

min
p∈Π,y∈Y J(y,p)

s.t.

c(y,p) ≤ 0

(25)

where c contains all constraints (22) and (23) and all boundary constraints and the
vector y contains all the nodal values for the states, p= [u1,0, . . . ,us,j , . . . ,ul,N , x0,

xf , t0, tf ]T collects all control variables and Π ⊆ R2n+2 × Rns , Y ⊆ Rny , with
ns = nu ·l ·N and ny = n·l ·N . It is worth noting that the DFET transcription is very
flexible and allows one to choose any basis for states, controls and test functions,
and the basis could also be different for every variable. Similarly it is possible to
employ several choices for the type of quadrature nodes [18].

3.2 Solution of the Transcribed MOCP

It is proposed to solve problem (25) with a memetic multi-objective optimisation
algorithm that combines a stochastic agent-based search with a local (gradient in
this case) refinement of the solutions [19–23]. The version of the algorithm that
will be presented in this section is here called MACSoc (Multi-Agent Collaborative
Search for optimal control).

Multi-Agent Collaborative Search is a meta-heuristics to combine local and
global search strategies. A set of agents is endowed with a list of possible actions
that can involve other agents or simply collect information on a neighbourhood
of each agent. MACSoc incorporates the idea of search directions and descent
cones within the decision logic of the agents: each agent can select new candidate
solutions according to either dominance or Chebyshev scalarisation. Furthermore,
each agent can start a local search directly solving problem (PSOCP). The ability
of the agents to incorporate local gradient-based actions are here exploited to
solve problem (25). The general MACSoc scheme is summarised in Algorithm 1.
The individualistic and social actions are described in the following section and
are related to the solution of two different problems. The population P0 (Line
1 in Algorithm 1) is initialised randomly with Latin Hypercube sampling [24],
while the weights ω (Line 2 in Algorithm 1) are generated as in Sect. 3.2.2. After
performing individualistic and social actions (lines 4 and 7 in Algorithm 1) both
the population and the archive are updated. The filtering process (Lines 6 and
9 in Algorithm 1) that updates the global archive Ag, where all Pareto optimal
solutions are stored, is redistributing solutions so that a pseudo-electric potential
function (function of the reciprocal distance of the elements in the archive) is
minimised (see [20] for further details). Finally, at each iteration, the descent
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Algorithm 1 MACSoc framework
1: Initialise population P0 and global archive Ag
2: Initialise search directions d and weights ω

3: while nf eval < max_f un_eval do
4: Run individualistic heuristics on Pk
5: Pk → P+k
6: Update archive Ag with potential field filter
7: Run social heuristics combining P+k and Ag
8: P+k → Pk+1
9: Update archive Ag with potential field filter (see [20])

10: Update subproblem allocation
11: end while

direction (or scalar subproblem) allocated to each agent is updated (line 10 in
Algorithm 1).

3.2.1 Problem Formulation in the MACS Framework

In order to solve (25), MACSoc makes use of both Pascoletti-Serafini and Cheby-
shev scalarisations with either the individualistic or social actions. When agents
search for a local Pareto efficient solution, each agent j uses its own Pascoletti-
Serafini scalarisation of the problem in the form:

minαf≥0 αf

s.t.

ωij ϑij (x,p) ≤ αf i = 1, ..,m
c(x,p) ≤ 0

(26)

where ωj is the vector of weights associated to agent j , ϑij is the i-th component
of the rescaled objective vector of the j -th agent and αf is a slack variable. This
reformulation of the problem is constraining the j -th agent move, in criteria space,
within the descent cone defined by the point αf dj + ζ j along the direction dj =
[1/ω1j , . . . , 1/ωij , . . . , 1/ωmj ]T . The rescaled objective vector is

ϑij (x,p) = Jij (x,p)− z̃i

z∗ij − z̃i
i = 1, ..,m (27)

where z∗j is equal to Jj (x,pc) and (x,pc) is the initial guess for the solution of (26).
This way the components of ϑj (x,p) have value 1 at the beginning of the local
search and if the agent converges to the utopia point z̃, the components of ϑj (x,p)
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Algorithm 2 Individualistic action
1: Set z̃ = 2z− z∗A
2: if current agent is solving problem i only then
3: ωj = (0, 0, i, .., 0, 0)
4: else
5: ωj = [1,1,1,··· ,1]T

‖[1,1,1,··· ,1]T ‖
6: end if
7: Pick a point (x,pc) in Bj
8: Run local search from (x,pc) to solve Problem (26) and find solution (x∗,p∗)j
9: if (x∗,p∗)j feasible then

10: Return (x∗,p∗)j , Jj (x∗,p∗) and increase ρj < 1
11: else
12: if number of times ρj is reduced > max_contr_ratio then
13: ρj = 1
14: else
15: Reduce ρj and return (x∗,p∗)j = (x,p)j , Jj = M + ‖c‖
16: end if
17: end if

become all equal to 0. The choice of ωj and z̃ will be discussed in the following
subsection. From the normalisation one can derive the components of the vector ζ j :

ζij = zi

z∗ij − z̃i
i = 1, ..,m (28)

The presence of the rescaling of the objectives, together with the choice of
ωj and z̃j , are the elements that distinguish the proposed approach from others
in the literature [2]. Note that solving problem (26) already provides a non-
dominated solution that can be potentially inserted in Ag and used to update Pk .
The pseudocode can be found in Algorithm 2. The local search starts from a point
(x,pc) taken at random in a neighbourhood Bj of the current agent, if the location
of the curretn agent (x,p)j did not change from the previous iteration, otherwise
(x,pc) = (x,p)j . The neighbourhood Bj is a hypercube with edge of size 2ρj . If
the local search returns an infeasible solution a penalty value M (which is higher
than the highest objective function in the population) plus the norm of the constraint
violation is assigned to all cost functions.

When agents explore the search space, either implementing individualistic
actions or as a population, they use a bi-level formulation of problem (25) in which
the upper level is handling only the objective functions and the lower level the
constraint functions:

min
p∗ Jj (x

∗,p∗)

s.t.

(x∗,p∗)j = argmin{δ(x,pc)|c(x,pc) ≤ 0}
(29)
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Algorithm 3 Social action
1: Select weight ω

2: Select agents associated with ω and elements of the archive Ag
3: Apply DE operator to selected agents and elements of the archive and generate candidate

solution u = (x,pc)
4: Run inner level on u

Algorithm 4 Inner level
1: Run local search from (x,pc) to find solution (x∗,p∗)j
2: if (x∗,p∗)j feasible then
3: Return (x∗,p∗)j , Jj (p∗, x∗)
4: else
5: Return (x∗,p∗)j = (x,p)j , Jj = M + ‖c‖
6: end if

where δ is the distance between any new vector p generated at the lower level and
the initial p that the upper level is passing to the lower level, (x,pc) is a candidate
solution generated either with a Differential Evolution (DE) operator or with a
pattern search technique (refer to [20] for more details). The DE operator is applied
to a mix of agents associated to a particular weight ω and elements of the archive
Ag. If the inner level returns a feasible solution, that solution is selected for possible
inclusion in the population Pk+1 using Chebyshev criterion (line 8 of Algorithm 1).
In other words, Problem (29) is scalarised in the following form:

minp∗ maxi∈{1,...,m} ωi(Ji(x∗,p∗)− zi)

s.t.

(x∗,p∗)j = argmin{δ(x,pc)|c(x,pc) ≤ 0}
(30)

The pseudocode for both levels can be found in Algorithms 3 and 4. Note that
if the inner level returns an infeasible solution, as before, the associated objective
function is a penalty valueM (which is higher than the highest objective function in
the population) plus the norm of the violation of the constraints.

At this point it is worth explaining how the equivalence of (CS) and (PS), demon-
strated in Theorem 2, is exploited in this framework. Suppose that Problem (26)
had to be solved with an evolutionary approach. In that case the constraints on the
objective functions would translate into:

min
p∗

max
i∈{1,...,m}ωi(ϑi(x

∗,p∗)− αf ) (31)

which, for αf = 0, is equivalent to the outer Problem in (30). Since from Theorem 2
one can say that problem (31), with αf = 0 and (26) are equivalent and lead to
the same optimal solution, by combining (31) in the search phase with (26) in the
refinement phase, the algorithm has a smooth transition from global search to local
convergence.
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3.2.2 Selection of ω and z̃

In [2], the MOCP was tackled by first solving each of the two individual objectives,
and then choosing a set of evenly spaced weights, obtaining a set of directions
d. This approach has a two main limitations: first, since only a local strategy
was employed, there is the possibility that the extreme values of the Pareto front
generated are on a local Pareto front. Second, that approach is not easy to generalise
for more than two objectives. The proposed approach instead consists in assigning
vector ωj = [0, 0, i, .., 0, 0]T to agents solving subproblem i and vector ωj =
[1,1,1,··· ,1]T
‖[1,1,1,··· ,1]T ‖ to all the other agents. The modified utopia point z̃ is given by

z̃ = 2z− z∗A (32)

where z and z∗A are respectively the utopia and nadir points of the current
approximation to the Pareto front that is contained in the archiveAg. When an agent
j solving subproblem i has locally converged and is not displaced by any action, its

subproblem is updated with ωj = [1,1,1,··· ,1]T
‖[1,1,1,··· ,1]T ‖ , conversely an agent associated to

ωj = [1,1,1,··· ,1]T
‖[1,1,1,··· ,1]T ‖ that has locally converged and is not displaced by any action will

have its subproblem replaced with ωj = [0, 0, i, .., 0, 0]T (line 10 in Algorithm 1).

3.3 First Order Necessary Optimality Conditions

The scalarised version of the transcribed problem allows one to recover some
theoretical results developed for single objective optimal control problems. In fact
if one applies the Pascoletti-Serafini scalarisation to the original optimal control
problem the following system of differential algebraic equations is obtained:

min
αf≥0

αf

s.t.

ωi(Ji(x)− zi) ≤ αf i = 1, ..,m
ẋ = h(x,u, t)
α̇ = 0
g(x,u, t) ≤ 0
ψ(x0, xf , t0, tf ) ≤ 0
t ∈ [t0, tf ]

(33)

We can now introduce the following necessary optimality conditions for the
scalarised problem (33) with constraints on terminal states and final time and given
initial conditions x0 and time t0.
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Theorem 3 Consider the function H = λT h(x,u, t) + μT g(x,u, t). If u∗ is a
locally optimal solution for problem (33), with associated state vector x∗, and H
is Frechet differentiable at u∗ and a regular point of the algebraic constraints, then
there exist vectors η ∈ Rm, λ ∈ Rn, λα ∈ R, ν ∈ Rnψ and μ ∈ Rq such that:

u∗ = argminu∈U λT h(x∗,u, t)+ μT g(x∗,u, t)
λT∇xh(x∗,u∗, t)+ μT∇xg(x∗,u∗, t)+ λ̇T = 0
λ̇α = 0
μ ≥ 0

(34)

with transversality conditions:

1−∑m
i ηi + λαf (tf ) = 0

ηTω∇xf J+ νT∇xf ψ + λ(tf )
T = 0

η > 0; ν ≥ 0
(35)

and

Htf − ηTω∂tf J− νT ∂tf ψ = 0 (36)

where ω is a diagonal matrix with the components ωi , i = 1, . . . ,m along the
diagonal and U is the space of admissible controls that satisfy respectively the
algebraic and differential constraints g(x,u, t) ≤ 0 and ẋ− h(x,u, t) = 0.

Proof A possible proof comes from the direct application of Pontryagin’s maximum
principle to problem (33). Alternatively, at the solution, one can take the first
variation of the functional:

L = αf + ηT (ω(J− z)− αf1)+ νTψ +
∫ tf

t0

[λT (h− ẋ)+ λαα̇+μT g]dt (37)

with 1 a vector of ones, which gives:

δL = δαf + δηT (ω(J− z)− αf 1)+ ηTωδJ+ ηT δ(αf 1)+ δνTψ + νT δψ+
∫ tf
t0
[δλT (h− ẋ)+ λT (δh− δẋ)+ δλαα̇ + λαδα̇ + δμT g+ μT δg]dt = 0.

(38)

We can now collect terms with equal variation δ and d:

δL = δαf (1− ηT 1)+ δηT (ω(J− z)− αf 1)+ δνTψ + (ηTω∇xf J+ νT∇xf ψ)dxtf+
∫ tf
t0
[δλT (h− ẋ)− λT δẋ+ (λT∇xh+ μT∇xg)δx+ (λT∇uh+ μT∇ug)δu+

δλαα̇ + λαδα̇ + δμT g]dt + [λT h+ μT g]tf δtf + ν∂tf ψδtf + ηT ω∂tf J δtf = 0

(39)
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and after integrating by parts the terms λT δẋ and λαδα̇ we get:

δL = δαf (1− ηT 1)+ δηT (ω(J− z)− αf 1)+
δνTψ + (ηTω∇xf J+ νT∇xf ψ)dxtf − λ(tf )

T δxtf + λα(tf )δαf
∫ tf
t0
[δλT (h− ẋ)+ λ̇T δx+ (λT∇xh+ μT∇xg)δx+ (λT∇uh+ μT∇ug)δu+

δλαα̇ − λ̇αδα + δμT g]dt + [λT h+ μT g]tf δtf + ν∂tf ψδtf + ηTω∂tf J δtf = 0
(40)

Now in order for the variation to be zero for every value of the δ and d quantities
the following equations must be satisfied:

ẋ− h = 0
λT∇uh(x∗,u∗, t) + μT∇ug(x∗,u∗, t) = 0
λT∇xh(x∗,u∗, t)+ μT∇xg(x∗,u∗, t)+ λ̇T = 0
g(x∗,u∗, t) ≤ 0
λ̇α = 0
μ ≥ 0
1−∑m

i ηi + λα(tf ) = 0
ηTω∇xf J+ νT∇xf ψ − λ(tf )

T = 0
ω(J− z)− αf 1 ≤ 0
ψ ≤ 0
η > 0; ν ≥ 0

(41)

and

[λT h+ μT g]tf + ηTω∂tf J+ νT ∂tf ψ = 0 (42)

If now one introduces the function H = λT h(x,u, t) + μT g(x,u, t), Eq. (41)
reduce to:

ω(J− z)− αf 1 ≤ 0
ẋ = ∂H

∂λ

λ̇T = − ∂H
∂x

∂H
∂u = 0
∂H
∂μ
≤ 0

λ̇α = − ∂H
∂α

ψ ≤ 0
μ ≥ 0
αf ≥ 0

(43)
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with transversality conditions:

Htf + ηTω∂tf J+ νT ∂tf ψ = 0
1−∑m

i ηi + λα(tf ) = 0
ηTω∇xf J+ νT∇xf ψ − λ(tf )

T = 0
η > 0; ν ≥ 0

(44)

Remark 1 At the solution (x∗,u∗) all constraints are assumed to be active, which
means that ψ = 0 and g(x∗,u∗) = 0. Furthermore, it is assumed that also the
constraints on the objective functions are active, which means that at the solution
ω(J− z)− αf 1 = 0.

Remark 2 If initial conditions and time were not given but had to satisfy some
constraint functions, one would need to add other three transversality conditions
similar to (44) but at the initial time t0.

Remark 3 The condition η > 0 implies that we cannot have a trivial solution with
both η = 0 and ν = 0. The same condition can be relaxed as in the KKT conditions
so that η ≥ 0 and exist at least a component ηi > 0.

3.3.1 Example

Consider the very simple one-dimensional controlled dynamical system with con-
stant control acceleration and two objectives on the terminal states:

minαf
ω1(−xf + 1) < αf

ω2vf < αf

ẋ = v; v̇ = −u; α̇ = 0;
x(t0) = 0; v(t0) = 1;

0 ≤ u ≤ 1
αf ≥ 0
tf = 1

(45)

with xf = x(tf ), vf = v(tf ), αf = α(tf ). The necessary conditions for optimality
are:

H = λxv − λvu+ μ1(u− 1)− μ2u
∂H
∂u
= −λv + μ1 − μ2 = 0

λ̇α = 0;
λ̇x = 0; λ̇v = −λx;

(46)
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Fig. 3 Pareto front for problem (45)

with terminal conditions:

λα(tf ) = 1− η1 − η2;
λx(tf ) = −η1ω1; λv(tf ) = η2ω2; (47)

The weights ω1 and ω2 take only positive values. Note that the vector z is z =
[−1, 0]T , where the two values −1 and 0 are the extreme values that one would
obtain if the two objective functions were optimised individually. However, any
other pair of values sufficiently low would equally work. The solution of the
controlled dynamics is given by:

x = − t2

2 + t t ∈ [t0, t1]
v = −t + 1 t ∈ [t0, t1]
x = vf t + x1 t ∈ [t1, tf ]
v = v1 = vf t ∈ [t1, tf ]
x1 = x(t1); v1 = v(t1)

(48)

In this case it is easy to demonstrate that the Pareto front is given by the following
second order algebraic equation (see Fig. 3):

xf = −
1+ 2vf − v2

f

2
(49)
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We want to show that all the points along the front satisfy the optimality conditions
and represent a minimum for αf . Consider first one of the extreme values:

minαf≥0 αf

−xf + 1 ≤ αf

x = − t2

2 + t t ∈ [t0, t1]
v = −t + 1 t ∈ [t0, t1]
x = vf t + x1 t ∈ [t1, tf ]
v = v1 = vf t ∈ [t1, tf ]
x1 = x(t1); v1 = v(t1)

(50)

By imposing the continuity conditions at t1 we get a simple algebraic problem:

minαf≥0 αf

x1 = − t21
2 + t1

vf = −t1 + 1
−αf + 1 = vf tf + x1

(51)

where we introduced the assumption that the maximum value that xf can take is
−αf + 1. For tf = 1 the system reduces to:

minαf≥0 αf

−αf + 1 = 1− t21
2

0 ≤ t1 ≤ 1

(52)

Problem (52) has the simple solution:

αf = 0; t1 = 0 (53)

If one follows the same process with the other extreme solution the result is:

αf = 0; t1 = 1 (54)

We now need to verify that we can find a suitable set of Lagrange multipliers that
satisfy the necessary conditions. The solution for λx is the constant −η1ω1 and for
λv is:

λv = −λx(t − tf )+ λv(tf ) (55)

These equations confirm that there is a single switching point for the control u∗. For
the extreme case in which ω1 = 1 and ω2 = 0 the final values are:

λv(tf ) = 0
λx(tf ) = −η1

(56)
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which leads to the conclusion that:

λv < 0 ∀t ∈ [t0, tf ] (57)

that moves the switching point t1 to t0. The conditions on the multipliers associated
to the slack variable αf are always satisfied.

3.4 Convergence of the Transcribed Problem

We can now prove that the transcribed problem converges asymptotically to the
necessary conditions for local optimality (34) and (35).

Theorem 4 If c is Frechet differentiable at u∗ and both x, h and are g integrable
functions, then the necessary conditions for local optimality of problem (26)
converge asymptotically to (34) and (35) for k→∞ and s →∞.

Proof We start from the augmented Lagrangian of the related NLP problem:

L = αf + ηT (ω(J− z)− αf 1)+ λ̂T cd + μ̂T g+ λαf αf (58)

where cd is the part of the constraint vector c = [cd, g] that does not contain
path constraints. If one differentiates the Lagrangian, the result is the necessary
conditions for local optimality:

∂L

∂u
= λ̂T∇ucd + μ̂T∇ug = 0 (59)

∂L

∂x
= λ̂T∇xcd + μ̂T∇xg = 0 (60)

∂L

∂xf
= ηTω∇xf J+ λ̂Tf∇xf cd = 0 (61)

∂L

∂αf
= 1−

m
∑

i=1

ηi + λαf = 0 (62)

∂L

∂tf
= ηTω∂tf J+ λ̂Tf ∂tf cd + μ̂Tf ∂tf g = 0 (63)

where the first equation corresponds to the transversality condition on λα(tf ), the
fourth equation corresponds to the transversality conditions on λ(tf ) that were
derived in (35) and the fifth equation is the transversality condition (36). We used
the symbol λ̂Tf to indicate the Lagrange multipliers that correspond to the boundary
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constraints and to the dynamic constraints at the boundaries. In fact, one of the
constraint equations cd is ψ ≤ 0, which defines the boundary conditions on x0 and
xf , and other two correspond to the first and last finite element (see Eq. (21)), which
contain again the vectors x0 and xf . If we call ν the λ̂f that corresponds to ψ and
expand Eqs. (59), (60), and (61), we get:

∂L

∂us,j
=

l+1
∑

k=1

σk

[

λ̂T θs,j∇us,j h+ μ̂T∇us,j g
]

= 0 (64)

∂L

∂xs,j
=

l+1
∑

k=1

σk

[

λ̂T θ̇s,jϕs,j + θ̂s,j∇xs,j h+ μ̂T∇xs,j g
]

= 0 (65)

∂L

∂xf
= ηTω∇xf J+ νT∇xf ψ − λ̂Tf = 0 (66)

The third equation is the transversality condition on the terminal states in (35). The
second equation becomes:

∑l+1
k=1 σk

[

λ̂T θ̇s,jϕs,j + θs,j∇xh dx
dxs,j

+ μ̂T∇xg dx
dxs,j

]

=
∑l+1

k=1 σk

[

λ̂T θ̇s,jϕs,j + θs,j∇xhϕs,j + μ̂T∇xgϕs,j
]

= 0
(67)

Here we made use of the fact that g(xs,j ,us,j , ts ) ≤ 0 ⇒∑l+1
k=1 σkg(xs,j ,us,j , ts ) ≤

0. If one now takes the limit for an infinite number of integration points the sums
become continuous integrals:

∫

[
∑

s

λ̂s,j θs,j∇uh+ μ̂T∇ug
]

dt = 0 (68)

∫

[
∑

s

λ̂s,j θ̇s,j +
∑

s

λ̂s,j θs,j∇xh+ μ̂T∇xg
]

dt = 0 (69)

Now if we make use of the fact that λ is approximated by the polynomial λ �
∑

λ̂s,j θs,j , for an infinite number of collocation points, which would correspond to
an infinite number of integration points, we have:

∫

[

λT∇uh+ μT∇ug
]

dt = 0 (70)

∫

[

λ̇T + λT∇xh+ μT∇xg
]

dt = 0 (71)
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which are satisfied if the quantities in brackets are identically zero. These equations
correspond to the optimality condition and to the differential equations on λ in (34).

4 Test Case

In this final section we present the application of the MOCP solution method to a
simple optimal control problem. The test case, also known as the Goddard Rocket
problem, has an analytical solution that is available in the literature [25]. The
algorithm MACSoc was run 30 times on this problem to gather statistics on the
quality of the Pareto front, given the stochastic nature of the population component
of the algorithm. The local NLP solver is the Matlab function fmincon.

4.1 Ascent Trajectory with Constant Acceleration

The problem is to find an optimal ascent trajectory from a flat celestial body with no
atmosphere to a prescribed altitude. The control variable is the thrust angle and both
gravity and thrust accelerations are constant. The final altitude is assigned and the
final vertical component of the velocity has to be zero. The single objective optimal
control formulation of the problem and its analytical solutions for either minimum
time or maximum horizontal velocity can be found in [25], while a numerical
solution with DFET can be found in [12].

In this paper, the problem is reformulated as follows, to consider the two
objectives simultaneously:

min
tf ,u

(J1 = tf , J2 = −vx(tf )) (72)

subject to the dynamic constraints:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ẋ =vx
v̇x =a cosu

ẏ =vy
v̇y =− g + a sin u

(73)

where g is the gravity acceleration, a the thrust acceleration, x and y are the
components of the position vector, vx and vy the components of the velocity vector
and u the control. The dynamics is integrated from time t = 0 to time t = tf . The
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Table 1 MACSoc settings max_f un_eval 10,000

pop_size 10

ρ_ini 1

F 0.9

CR 0.9

p_social 1

max_arch 10

max_contr_ratio 5

Table 2 fmincon settings max_eval 100

tol_con 1e−6

boundary conditions are:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x(0) = 0; vx(0) = 0

y(0) = 0; vy(0) = 0

y(tf ) = h; vy(tf ) = 0

(74)

The parameters g, a and h were respectively set to 1.6 × 10−3, 4 × 10−3 and 10.
Following [12], the DFET method was applied splitting the time domain into 4
elements, with polynomials of order 6 for each control and state variable. The con-
trol angle was bounded between −π

2 and π
2 , while total mission time was bounded

between 100 and 250. This gives a total of 29 optimisation variables. Table 1
summarises the settings of the optimiser: max_f un_eval the maximum number
of objective functions evaluation, pop_size the number of agents performing the
search, ρ_ini the initial radius of the local neighbourhood, F and CR the standard
parameters for the Differential Evolution social actions, p_social the ratio between
agents performing only social actions and the total number of agents, max_arch
the number of solutions to be stored in Ag, contr_ratio contraction rate of the
neighbourhood radius, and max_contr_ratio the maximum number of times ρj
can contract before it is reset (for more details on the settings of MACS, the multi-
objective solver in MACSoc, please refer to [20]). Settings reported in Table 2
instead refer to the parameters of fmincon:max_con_eval is the maximum number
of constraints evaluation (for each call to the objective functions) and tol_con is the
threshold under which the solution is considered to be feasible. All other fmincon
settings are left as default.

Algorithm 1 was run 30 times to collect some statistics on its convergence
behaviour (see Table 3). The Generational Distance (GD) [26] and Inverse Gen-
erational Distance (IGD) were used as accuracy metrics and were computed on a
rescaled front in the interval [0, 1]. GD and IGD were computed using the analytical
solution of the minimum time problem for different maximum vx . Figure 4 shows
the cumulative front from all 30 runs, along with four representative solutions
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Table 3 Convergence and
spreading statistics for the
two problems

Mean GD Mean IGD

Problem (Variance) (Variance)

Goddard 2.833e-2 2.9449e-2

(1.4232e-5) (1.5498e-5)
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Fig. 4 Non dominated solutions of 30 different runs for the Goddard problem. Crosses indicate
solutions for which trajectories, velocities and control law over time are also plotted. Circles
indicate the objective values corresponding to the analytic solutions with the same time as the
solutions marked with crosses

(marked with crosses) and the analytic solutions with the same ascent time of the
representative solutions (marked with circles). The crosses and circles are perfectly
overlapping. The trajectories and time histories of the controls and velocities for
the four representative solutions are plotted in Figs. 5, 6, 7, 8 and 9 along with the
single objective numerical solution and the analytic solution for the same ascent
times. The solution obtained with the proposed approach is very close to both the
numerical single objective and the analytic solutions (1e − 6). The discontinuities
in the control laws are due to the discretisation scheme and to tolerance on the
optimality of the solutions.
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Fig. 5 Trajectories corresponding to the four selected points on the Pareto front

5 Conclusion

In this chapter we introduced some basic notions of multi-objective optimisation and
optimal control and we derived an optimal control theory for multi-objective optimal
control problems scalarsised with Pascoletti-Serafini scalarisation method. We then
presented a possible solution approach that makes use of a direct transcription of the
optimal control problem with Finite Elements in Time and solves the resulting NLP
problem with a memetic algorithm.

This combination provides an effective solution of multi-objective optimal
control problems, as demonstrated by the simple example of the Goddard’s rocket.
Future direction include a more flexible treatment of the infeasible solutions in the
bi-level scheme to limit the effort of the gradient-based solver and allow a faster
and broader exploration of the parameter space. Also, the choice of the weights
is subject to a proper normalisation of the objective functions and needs some
cleaver adaptation heuristics in case of many objectives with very irregular Pareto
fronts.
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Fig. 6 Time history for velocities and controls, point 1 on the Pareto front. (a) Time history for
the velocities. (b) Time history for the controls



Multi-Objective Optimal Control: A Direct Approach 285

t[TU]
150100500

ve
lo

ci
ty

[L
U

/T
U

]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

v
x

v
y

v
x
(analytic)

v
y
(analytic)

(a)

t[TU]
0 50 100 150 200 250

u[
ra

d]

-3

-2

-1

0

1

2

3 u
u(analytic)

(b)

Fig. 7 Time history of velocities and controls, point 2 on the Pareto front. (a) Time history of the
velocities. (b) Time history of the controls
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Fig. 8 Time history of velocities and controls, point 3 on the Pareto front. (a) Time history of the
velocities. (b) Time history of the controls
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Practical Uncertainty Quantification
in Orbital Mechanics

Massimiliano Vasile

Abstract The chapter provides an overview of methods to quantify uncertainty
in orbital mechanics. It also provides an initial classification of these methods with
particular attention to whether the quantification method requires a knowledge of the
system model or not. For some methods the chapter provides applications examples
and numerical comparisons on selected test cases.

Keywords Uncertainty quantification · Orbital mechanics · Uncertainty
propagation

1 Introduction

Although orbital mechanics is fundamentally based on deterministic models, the
position, velocity and attitude of a space object can only be known with some degree
of uncertainty. Model uncertainty and uncertainty in measurements and observations
concur to transform a seemingly deterministic problem into a stochastic one.

This chapter provides an overview of methods for the quantification of uncer-
tainty in orbital mechanics with some considerations on their practical applicability
to different scenarios.

The best known form of uncertainty quantification in orbital mechanics falls
probably under what is commonly known as orbit determination [1, 2]. In fact,
the problem dates back to Gauss [3] and is fundamental in astronomy. Classical
techniques include batch and sequential filters [2] where the latter can be used to
estimate model parameters and implement navigation and control loops in complex
nonlinear dynamic environments [4, 5].

One key issue is the linearity of dynamics. In fact, the general objective is to
achieve a good estimation of the expected state of a space object at a given time.
The quantification of uncertainty associated to the expected state is the probability
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associated to a variation of the expected state. Given a generic system of differential
equations:

ẋ = f(x,p)
x(t0) = x0

(1)

with x the state vector and p a vector of model parameters, the question is whether
the Encke’s model:

δẋ = J(x0,p)+ ε

δx(t0) = δx0
(2)

is representative of the evolution of the variated state x0 + δx, where ε is some
uncertainty on the dynamics f (x,p), J is the Jacobian matrix of the vector function
f , x0 is the expected state and δx is an uncertainty on the initial state.

In recent times a number of authors focused on developing methods to better
capture nonlinearities in the case in which model (2) is not giving satisfactory
results [6–10]. This area of research is generally concerned with the propagation
of uncertainty and relies on standard probability theory and strong assumptions on
the underlying probability distributions.

An important area of application, that has attracted more and more attention in
recent times, is collision avoidance. The problem, in this case, is to have an accurate
long term prediction of a possible collision in order to plan and implement one or
more collision avoidance manoeuvres. Given the cost of the implementation of a
collision avoidance manoeuvre, an accurate and reliable prediction is paramount. In
view of an increase of the traffic in orbit, this problem becomes of fundamental
importance and traditional approaches derived from orbit determination might
not be sufficient. The key difficulty comes from two main issues: the effect of
nonlinearities over long term predictions, or large uncertainty, and the intrinsic
epistemic nature of the underlying uncertainty. The former issue has been widely
investigated while the latter is still a somewhat open problem. In fact, the general
approach is to treat the uncertainty as aleatory with a consequence dilution of the
probability of a collision as the knowledge reduces. The same applies to rare but
high risk events, such as the impact of an asteroid with Earth, for which epistemic
uncertainty affects both the knowledge of the state of the system and the dynamical
model that governs its motion.

To be noted that the quantification of uncertainty includes the uncertainty on the
implementation of collision avoidance manoeuvre or any manoeuvre in general. The
level of complexity, in this case, is increased by the uncertainty coming from system
design aspects that are not directly dependent on the dynamics of space objects but
have an impact on the prediction of their future state.

This chapter is structured as follows. In the first section we introduce a general
formulation for the orbital dynamics of individual space objects. This formulation
incorporates the system aspects via a model parameter vector p. The section includes
a brief discussion on formulations that look at the overall density distribution over
the whole space occupied by space objects orbiting the Earth.
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The second section will classify uncertainty and quantification methods. The
main focus is not the technique to model uncertainty but the technique to handle and
propagate uncertainty in orbital dynamics. The following sections will expand on
each of the classes of techniques presenting the major approaches that can be found
in the literature. Some illustrative examples will accompany each of the sections.
The last two sections will explore some techniques to capture model uncertainty
and to define an appropriate uncertainty model.

2 Problem Formulation

The general problem is to quantify the probability that a space object is at a
given position with a given velocity at a given time, conditional to the uncertainty
associated to its initial state, model parameters and the dynamics itself. The state
of a space object at a given time is, therefore, called the quantity of interest in the
remainder of this chapter.

If the interest is in the dynamics of a single object with state x(t) at time t , one
can start from the following Cauchy problem:

{

ẋ = f (x,p, γ (x,p))η(x,p)+ ν(x,p)
x(t0) = x0

, (3)

where p ∈ Υ ⊆ Rq is a vector of model parameters and the initial conditions
have value x0 ∈ Σ0 ⊆ Rc. The uncertainty space of model parameters and initial
conditions is defined as Ω = Υ ∪Σ0 ⊂ Rd . The three functions η, γ and ν indicate
a multiplicative, a composition and an additive uncertainty function respectively.
In this chapter the three functions η, γ and ν are not random processes unlike
what appears in stochastic differential equations where ν is generally modelled as a
Weiner process. We will consider, instead, that η, γ and ν belong to some normed
functional space and are Lipschitz continuous.

In this framework, the quantification of uncertainty requires two different
operations: one is the reconstruction of the uncertainty functions η, γ and ν, that
we will call model uncertainty, and the propagation of the uncertainty set Ω .

When the interest is to calculate the density of objects ρ in a control volume, the
problem can be formulated as:

∂ρ

∂t
+∇(ρv) =

∑

k

Φk + n+ + n−, (4)

where v is the velocity field,Φk the external force field and n+ and n− two processes
that add and remove objects from the control volume. The continuity equation (4)
was introduced for the treatment of debris fields in 1993 by Smirnov et al. [11]
and extended by Nazarenko to include the dependency on orbital elements and
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probability distribution in 1997 [12]. A parallel development was proposed by [13]
and later on [14]. It is interesting to mention that a similar approach using Jeans
equation is used to study galactic dynamics [15].

Formulation (4) requires a careful interpretation. In fact, orbiting objects, even
excluding collisions and active manoeuvres, behave more like a rarefied gas than a
continuous fluid. Thus, conceptually, if Eq. (4) is understood as actual mass density,
it predicts a non-zero density even when no objects are present.

2.1 Quantity of Interest, Uncertainty and Expectation

In the two formulations presented in the previous section the quantity of interest is
different in nature. For problem (3) the quantity of interest is the state of the object
at a given time, x(t), while in (4), the quantity of interest is the density of objects at
a given time, ρ(t).

If one takes formulation (3) the quantification of uncertainty can be expressed in
general terms as:

P(x(t)|Ω) =
∫

Ω

(x(t) ∈ Ψ )φ(ξ)dξ, (5)

where ξ is the uncertain vector, with distribution φ, and Ψ is a target set. This
quantification does not introduce any assumption on the probability distribution or
on the spatial distribution of all possible states at a given time. This approach is
directly applicable to the calculation of collisions and conjunctions or to problems
of rendezvous, docking, landing and flyby. On the other hand the calculation of
integral (5) is not a trivial matter, especially in high dimensions.

In a classical framework, where one is interested only in the expected state x̂
and associated covariance Cov(x), under suitable hypothesis, one can calculate the
expected state as a weighted average of a set of samples x̃i :

x̂ =
∑

i

wi x̃i (6)

with covariance:

Cov(x) =
∑

i

wi[x̃i − x̂][x̃i − x̂]T . (7)

This approach is computationally far less complex than the calculation of (5)
because it does not require the propagation of Ω and to calculate the inclusion
(x(t) ∈ Ψ ). On the other hand, it captures only the first two statistical moments
of the distribution of the possible states of the system at a given time. It is important
to keep in mind that in this framework the uncertainty is represented by Cov(x).
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2.1.1 Upper and Lower Expectations

When the uncertainty on the input quantities is epistemic the probability φ can
belong to a family of parametric distributions or to a set of unknown distributions.

Consider the case in which one can reasonably assume that the uncertainty
can be quantified with a family of beta distributions with unknown parameters α
and β (any other parametric or non-parametric distribution would equally work).
Equation (5) then translates into two equations defining the upper and lower
probability associated to Ω̂ :

Pl = min
α,β

∫

Ω̂

φ(ξ) dξ , Pu = max
α,β

∫

Ω̂

φ(ξ) dξ , (8)

where φ is the product of probability φ = ∏d
j=1 φj , where each marginal density

mass φj is a beta distribution function with parameters αj , βj . Here Ω̂ is the subset
of Ω defined as:

Ω̂ = {ξ |(x(ξ, t) ∈ Ψ )} (9)

As it will be shown later in this chapter the same idea can be extended to a generic
set of distributions if one is representing φ in a suitable form so that:

P(c) =
∫

Ω̂

φ(ξ, c) dξ , (10)

is a probability function of a vector c of free parameters.

3 Classification and Definitions

Each method for uncertainty quantification is composed of three elements, broadly
speaking: an uncertainty model, a propagation technique, and an inference process.
This chapter will only consider the first two elements as the inference process, which
defines how to make decisions on the results of the quantification, is a much broader
topic that requires a dedicated discussion.

The uncertainty model defines the uncertainty that needs to be quantified,
for example whether an uncertain quantity is normally distributed or not. In
classical Probability Theory one starts from the definition of a probability space, a
mathematical triplet (Ω,Φ,P ) whereΩ is a sample space, or set of outcomes,Φ is
the collection of all the possible events Φ ⊆ 2Ω and P is the probability associated
to each event such that P : F → [0, 1]. When assigning a probability distribution
is not possible, alternative models are considered. They fall under the broader group
of imprecise probability theories. In this case P is a multivalued mapping and the
single probability splits into an upper P̄ and a lowerP probability. Different theories



296 M. Vasile

exist and each one provides a different model to define the uncertain quantities and
the probability associated to the quantity of interest [16, 17].

Once an uncertainty model is defined the second element is the propagation of
the uncertainty to compute the quantity of interest. Given the specific problem (3)
the propagation method maps the uncertainty in x0, p, γ , η and ν at time t0 into the
uncertainty in x at time t .

The main difficulty in the propagation of uncertainty is to achieve a balance
between accuracy and computational cost. The accuracy is in the representation of
the quantity of interest and its probability at any time in the interval [t0, t]. Before
classifying the methods for uncertainty propagation, it is useful to classify the types
of uncertainty that are normally considered in uncertainty quantification.

• Aleatory uncertainties are non-reducible uncertainties that depend on the very
nature of the phenomenon under investigation. They can generally be captured
by well defined probability distributions as one can apply a frequentist approach.
E.g. measurement errors.

• Epistemic uncertainties are reducible uncertainties and are due to a lack of
knowledge. Generally they cannot be quantified with a well defined probability
distribution and a more subjectivist approach is required. Two classes: a lack of
knowledge on the distribution of the stochastic variables or a lack of knowledge
of the model used to represent the phenomenon under investigation.

• Structural (or model) uncertainty is a form of epistemic uncertainty on our
ability to correctly model natural phenomena, systems or processes. If we accept
that the only exact model of Nature is Nature itself, we also need to accept that
every mathematical model is incomplete. One can then use an incomplete (and
often much simpler and tractable) model and account for the missing components
through some model uncertainty.

• Experimental uncertainty is aleatory. It is probably the easiest to understand and
model, if enough data are available on the exact repeatability of measurements.

• Geometric uncertainty is a form of aleatory uncertainty on the exact repeatability
of the manufacturing of parts and systems.

• Parameter uncertainty can be either aleatory or epistemic and refers to the
variability of model parameters and boundary conditions.

• Numerical (or algorithmic) uncertainty, also known as numerical errors, refers
to different types of uncertainty related to each particular numerical scheme, and
to the machine precision (including clock drifts).

• Human uncertainty is difficult to capture as it has both aleatory and epistemic
elements and is dependent on our conscious and unconscious decisions and
reactions. It includes the possible variability of goals and requirements due to
human decisions.

All the source of uncertainty listed above are applicable to orbital mechanics,
including geometric uncertainty if one considers that the uncertainty in the execution
of a manoeuvre depends on the manufacturing of the actuators. We can now consider
the following classes of uncertainty propagation methods:
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• Intrusive methods. These are methods that require accessing problem (3) to
propagate the uncertainty and obtain a representation of states and probability at
time t .

• Non-intrusive methods. These are methods that do not need any access to (3)
but build a surrogate model based on a set of samples. In both cases, uncertainty
can be directly propagated through (3) without any transformation. To be noted
that if η and ν are not explicitly available, intrusive methods cannot be applied.

• Direct vs Indirect methods. Problem (3) describes a stochastic process when
x, p are stochastic quantities. Under appropriate assumptions on the nature
of the uncertainty, generally described as a Weiner process, one can translate
problem (3) into a stochastic differential equation, in the Itô form [18], and
integrate forward in time. If the evolution of the distribution is of interest one
would need to solve the Fokker–Plank equation. The integration of the Fokker–
Plank equation poses remarkable challenges and some of the approaches in this
paper were developed to overcome this challenges without resorting to a Monte
Carlo simulation.
When nonlinearities are small the propagation of the covariance with the state
transition matrix is sufficient to give a correct value of the first two statistical
moments and under the assumption of Gaussian a priori, they provide also a
good representation of the a posteriori distribution. If nonlinearities are relevant
first order approaches fail to correctly capture the distribution of the quantity
of interest but also the first two moments result affected by a significant
error. In the context of orbital mechanics some authors proposed to transform
problem (3) with a different parameterisation [19] (Keplerian elements, averaged
Keplerian elements, equinoctial elements) propagate uncertainty with a linear
method in this new parameterisation and then transform back to the original
set of parameters, position and velocity, where the measurements are typically
acquired. In this chapter we will call this class of approaches indirect.

The accuracy in the representation of the quantity of interest and its probability
depends on the ability of the propagation method to propagate nonlinearities but also
to consider generic distributions, sets of distributions, fuzzy sets, belief functions,
rough sets, etc. For this reason we can distinguish between methods that provide
first a representation of the uncertain set and then of the probability distribution and
methods that directly provide a representation of the probability distribution.

Table 1 provides a taxonomical classification of a number of methods that
will be presented later on in this chapter: MC = Monte Carlo, STM = State
Transition Matrix, STT = State Transition Tensor, GM = Gauss Mixture Mod-
els, UT = Unscented Transformation, PCE = Polynomials Chaos Expansions,
PA = Polynomial Algebra, IA = Interval Arithmetic, TPE = Chebyshev Polyno-
mial Expansions, HDMR= High Dimensional Model Representation, PPE = Posi-
tive Polynomial Expansions. A Yes in the table means that particular method has
that particular property or can be used in that context. For example, MC is not
intrusive, can be used to directly propagate uncertainty within any transformation
of the problem or coordinates, provides the distribution of the states but cannot be
used to directly calculate upper and lower expectations or belief functions.
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Table 1 Taxonomy of uncertainty propagation techniques in orbital mechanics

Method MC STM STT GM UT PCE PA IA TPE HDMR PPE

Intrusive No Yes Yes No No Yes Yes Yes No No No

Non-intrusive Yes No No Yes Yes Yes No No Yes Yes Yes

Direct Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes

Indirect No Yes No Yes Yes No Yes No Yes Yes Yes

State representation Yes Yes Yes No Yes Yes Yes Yes Yes Yes No

Probability representation No No No Yes No Yes No No No No Yes

Imprecise Probability
representation

No No No Yes No No No No No No Yes

4 Non-Intrusive Techniques

Non intrusive techniques are sampling based methods that work with generic
models in the form of black-box codes. They have little requirements on the
coding of the models or on their regularity. This advantage is interesting when a
set is propagated through a complex system that cannot be expressed in a simple
analytical form. Non-intrusive methods offer the additional advantage that can
correct for epistemic model uncertainty identifying missing components from the
assimilation of experimental data and measurements. The following partial list of
methods will be considered in this chapter:

• Monte Carlo (MC) [20]: the most straight forward approach is to randomly
sample the uncertainty region according to the probability distribution of its
parameters, integrate the dynamical system for each of the sample point, to obtain
the corresponding final state, and estimate the expectation of the final region of
uncertainty. Despite the easiness of the methodology, it is the one with the highest
computational cost. At comparable accuracy, the number of samples required by
this technique is generally far greater than other sample-based method.
Monte Carlo Simulations date back as far as Enrico Fermi’s study on neutron
diffusion, and can be used to derive statistical information via simulation
of random samples or to compute multi-dimensional integrals. In uncertainty
quantification MCS are used in both ways. The method starts from a probability
distribution over the uncertainty space from which samples are drawn. Determin-
istic simulations are then run for all the samples to derive a quantification of the
uncertainty in the output of the simulations.
Under the hypotheses of the Central Limit Theorem, the expected value of a
random variable X belongs with probability ε to the interval

E(X) ∈
[

X̄n − cσ̄n√
n
, X̄n + cσ̄n√

n

]

(11)
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where X̄n = 1
n

∑n
i Xi and σ̄ 2

n = 1
n−1

∑n
i=1

(

Xi − X̄n
)2

and the probability ε is
computed over the interval [−c, c]:

ε = 1

2π

∫ c

−c
e−

x2
2 dx. (12)

From these simple expressions one can deduce that for the mean to converge with
confidence 0.95, the number of samples needs to be:

∣

∣E(X)− X̄n
∣

∣ ≤ 1.96
σ√
n
. (13)

The convergence rate of MCS to the correct mean value is therefore proportional
to 1/

√
n. To be noted that the convergence of the mean does not provide any

information on the convergence of the distribution or an exact bound on the error.
• Non-intrusive Polynomial Chaos Expansion (PCE) [10]:

PCEs are popular in Computational Fluid Dynamics and have found recent
applications also in astrodynamics [21, 22]. PCEs employ a set of orthogonal
polynomial functions to approximate the functional form between the system
response and each of the inputs [23–26]. The main advantage of this method is the
ability to deal with nonlinear and non-Gaussian propagation of the uncertainty
without any assumption on an a posteriori Gaussian distribution. PCEs allow one
to use different polynomial kernels depending on the input distribution.
The chaos expansion for a component l of a the state vector x takes the form:

xl = a0B0 +
∞
∑

i1=1

ai1B1(χi1)+
∞
∑

i1=1

i1
∑

i2=1

ai1i2B2(χi1, χi2)

+
∞
∑

i1=1

i1
∑

i2=1

i2
∑

i3=1

ai1i2i3B3(χi1 , χi2 , χi3)+ . . . (14)

where χ are random inputs and Bi is a generic multivariate polynomial. This
expression can be simplified by replacing the order-based indexing with a term-
based indexing:

xl =
∞
∑

j=0

αljΨj (χ) (15)

where there is a one-to-one correspondence between ai1i2i3 and αlj , and between
Bn(χi1 , χi2 , . . . , χiv ) andΨj(χ). Each of theΨj(χ) is a multivariate polynomials
which involve products of the one-dimensional polynomials. In practice, one
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truncates the infinite expansion at a finite number of random variables and a
finite expansion order, p:

xl ∼=
p
∑

j=0

αljΨj (χ) (16)

Using Hermite polynomials, a multivariate polynomialB(χ) of order n is defined
from:

Bn(χi1, χi2 , . . . , χiv ) = e
1
2χ

T χ (−1)n
∂n

χi1, . . . , χiv
e−

1
2χ

T χ (17)

which can be shown to be a product of one-dimensional Hermite polynomials
involving a multi-indexmj

i :

Bn(χi1, χi2 , . . . , χiv ) = Ψj(χ) =
n
∏

i=1

ψ
m
j
i

(χi) (18)

For a multivariate polynomial the number of coefficients of the expansions for
each uncertain variable is given by (iv+n)!

iv !n! which shows that the expansions tend
to increase quite rapidly with the number of variables and order. The coefficients
of the expansion (15) are here calculated via spectral projection [27]. This
approach projects the response x against each basis function using inner products
and employs the polynomial orthogonality properties to extract each coefficient.
Each coefficient in Eq. (16) is calculated as:

αlj =
〈

xl, Ψj
〉

〈

Ψ 2
j

〉 = 1
〈

Ψ 2
j

〉

∫

Ω

xΨjρ(χ)dχ (19)

where the inner product involves a multi-dimensional integral over the support of
the weighting function ρ(χ). Analytical expressions of the mean and covariance
matrix are then available as:

μx = E[x] ∼=∑p

j=0 αjE[Ψj ] = α0

Px = E[(x− μx)(x− μx)
T ] ∼=∑p

j=1 αj (αj )
T E[Ψ 2

j ]
, (20)

μG and PG are the exact moments of the expansion, which converge to moments
of the true response function; the vector αj represents the j-th column of the
matrix α of components αlj . The computation of the multi-dimensional integral
can be done using a MCS with low-discrepancy sequences or a quadrature for-
mula using Gauss points and weights. The latter, however, requires a full tensor
product and a number of points that increases exponentially with the number
of dimensions. A more attractive choice, is based on sparse grids generated
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using Smolyak’s algorithm [28]. Smolyak’s approach provides a general tool for
constructing efficient algorithms able to solve multivariate problems with orders
of magnitude reduction in the number of support nodes while giving the same
level of approximation as the usual tensor product. In this framework, the work
of Genz and Keister [29] introduced fully symmetric interpolatory integration
rules for Smolyak sparse grid of Gauss–Hermite nodes.

The multi-dimensional integral in Eq. (19) can be approximated as the sum of
discrete number of terms:

∫

Ω

xlΨjρ(χ)dχ ∼=
ngrid
∑

i=1

xl(χi)Ψj (χi)w(χi) (21)

The set of points χi and weights w(χi) are defined by the Gauss–Hermite
cubature rule in Genz and Keister [29]. These rules are optimal for the solution of
multidimensional integrals over infinite regions with a Gaussian weight function.
In the work of Genz and Keister [29], it is shown that a Gaussian integral for a
polynomial of order n can be calculated perfectly using a grid of level l = 2n+1.
Figure 1 shows a normalised sparse grids, with different levels of accuracy, for 3
uncertain parameters χ1, χ2 and χ3 using Hermite polynomials as bases.

Fig. 1 Smoliak grid for Hermite polynomials with different levels of accuracy
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Fig. 2 Velocity distribution for a Libration Point to Moon trajectory: (a) Monte Carlo Simulation
with 1e6 samples, (b) PCE of degree 6 with 28,000 sample

As one can see when the level of required accuracy is increased the grid is
populated by a higher number of samples, which cover also a broader portion
of the uncertainty space. For example, the max and min values of the uncertain
parameters are respectively 1.7σ and −1.7σ for a level 2 grid, while they are
4σ and −4σ for a level 6 grid. This gives the possibility to better cover the
uncertainty space, generating samples with low associated probability. Figure 2
shows the distribution of the velocity vector of a spacecraft along a trajectory
from a Libration Point Orbit (in the Earth-Moon system) to the Moon. Figure 2a
presents the result of an MC simulation with one million samples while Fig. 2b is
the result of a PCE of degree 6 that uses only 28,000 samples (see [22] for more
details).

• Chebyshev Polynomial Expansions (TPE) [30]. Univariate Chebyshev poly-
nomials are an orthogonal basis over the space C∞[−1, 1] and the truncate
Chebyshev series are close to the best uniform polynomial approximation for
a given continuous function [31, 32]. When TPE are used as interpolating
polynomials, samples are taken at points defined by a structured grid. The most
popular sampling methods use Smolyak sparse grids [28], where the number of
samples grows polynomially with the degree d , instead of exponentially. The
number of elements to be included is controlled by a parameter l, called level of
approximation, which has the same role as the order of expansion in the Taylor
series. In this work, sparse grids are generated using extrema of unidimensional
Chebyshev polynomials as described in Judd et al. [33].

The reduced number of points allows one to reduce the number of terms in
the Chebyshev polynomial basis, and so the number of unknown coefficients.
The basis functions are chosen from all the polynomials up to degree d in n

variables according to the level of approximation. Some products of higher order
terms are not included under the assumption that their contribution is negligible.
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Using the same notation as in the PCE section, we want to find the linear
combination of multivariate Chebyshev polynomials of level of approximation l
(and maximum degree 2l) in n variables:

X̂(x) =
∑

α∈H n,l

cαTα(x) , (22)

where

H n,l = {α ∈ Nn : α satisfies the Smolyak rule at level l} .

The unknown coefficients are computed via a Lagrange interpolation at the
Chebyshev nodes given by the sparse grid of level l. Sparse grids have been
introduced by Sergey Smolyak [28] and allow to represent, integrate and
interpolate functions on multidimensional hypercubes. A complete polynomial
basis of maximum degree 4 in 10 unknown variables consists of 1001 elements,
while the corresponding sparse basis contains only 221 elements. We follow the
construction of disjoint sparse grid presented in Judd et al. [33], that use the
extrema of Chebyshev polynomials (also known as Chebyshev–Gauss Lobatto
points or Clenshaw–Curtis points).

Let n be the number of uncertain variables and l ∈ N+ be the level of
approximation of the sparse grid. The complete polynomial basis is given by

B = {Tα1,Tα2 . . . ,Tαs } , s ∈ N+ ,

where αi = (αi1 , . . . , αin ) denotes the multi-index array corresponding to the
i-th multidimensional Chebyshev polynomial

Tαi =
n
∏

j=1

Tαij ,

chosen in the space of all polynomial of degree at most 2l in n variables such that

αi ∈H n,l = {α ∈ Nn : α satisfies the Smolyak rule at level l} ,

and Tαij is the univariate Chebysehv polynomial corresponding to the variable of
index j . For example, for n = 2 and l = 1 the Smolyak rule gives

H 2,1 = {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2)} ,

and the corresponding Chebyshev polynomial basis is

T(0,0) = 1 , T(1,0) = x , T(1,0) = y , T(2,0) = 2x2 − 1 , T(0,2) = 2y2 − 1 .
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Note the absence of the cross term T(1,1) = xy from the basis. The response
function can be approximated with the finite series

Ŷ (X0) =
∑

α∈H n,l

cα Tα(X0) , (23)

where each cα is the unknown coefficient with respect to the element Tα, andX0
are the initial uncertainty variables and belong to an hypercube.
The unknown coefficients can be computed by inverting the linear system

HC = Y , (24)

with

H =
⎡

⎢

⎣

Tα1(x1) . . . Tαs (x1)
...

. . .
...

Tα1(xs) . . . Tαs (xs)

⎤

⎥

⎦ , C =
⎡

⎢

⎣

cα1
...

cαs

⎤

⎥

⎦ , Y =
⎡

⎢

⎣

Y1
...

Ys

⎤

⎥

⎦ , (25)

where x1, . . . , xs are the Chebyshev nodes in the sparse grid and the components
of Y are the true values of the dynamical systems in these points. The system (24)
cannot be inverted if the matrix H has not full rank. In most of the cases, this is
guaranteed by choosing the Chebyshev nodes.

• High Dimensional Model Representation (HDMR) [34]. HDMR decomposes
a generic quantity of interest, function of a generic parameter vector b, in a sum
of functions of the components of b. If the quantity of interest is the solution of
problem (3) at a given instant of time t , the corresponding HDMR decomposition
can be written as:

xt (b) = x0 +
d
∑

i=1

ciαi(bi)+
∑

1≤i1,i2≤n
ci1,i2αi1,i2(bi1, bi2)+

+
∑

1≤i1,i2,...,id≤n
ci1,i2,...,id αi1,i2,...,id (bi1, bi2, . . . , bid ),

where the x0 represents the mean value of the propagated states and the terms
αij ,ik (bij , bik ) represent the cooperative effects of the ij and ik input variables on
the output. If the components of b are weakly coupled, this decomposition allows
one to build an approximated representation by sampling only some slices of the
space to which b belongs. Furthermore, it provides information on the influence
of each component of b and their interactions in a similar fashion to an analysis
of variance [35].

• Unscented Transformation (UT) [36]: The Unscented Transformation works
on the underlying hypothesis that one can well approximate the posteriori
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covariance by propagating a limited set of optimally chosen samples, called
sigma points. The set of sigma points are defined as then given as:

χl =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

xk

xk +
(

√

(n+ kf )Pk

)

l

xk −
(

√

(n+ kf )Pk

)

l

, (26)

where Pk is the covariance matrix, χl is a matrix consisting of (2n + 1)
vectors, with kf = α2

f (n + λf ) − n , kf is a scaling parameter, constant
αf determines the extension of these vectors around xk . The sigma points
are transformed or propagated through the nonlinear function, the so-called
Unscented Transformation, to give:

χl,k+1 = f (t, χl,k), (27)

From the collection of the propagated sigma points one then derives mean and
covariance at stage k + 1 and the process is iterated till time t .
Although the UT allows one to fully integrate the nonlinear system, it still capture
only the first two moments and introduces a strong assumption on the symmetry
of the prior distribution.

• GaussianMixture (GM) [37]. It is assumed that the probability density function
of the uncertain parameters b is given by the weighted sum of M component
Gaussian densities

p(b) =
M
∑

i=1

ωig(b|μi,Σi).

Then also the probability density function of the uncertain parameters at a given
time can be approximated as a Gaussian mixture. The weights associated with
each Gaussian elements are computed so that the Fokker–Planck–Kolmogorov
equation (FPKE) residual error is minimized (this equation, for continuous-time
dynamic systems, gives the exact evolution of the states pdf). This minimisation
problem is convex and hence has a unique solution. The main limitation of the
method are the assumptions on the initial distribution.

Guassian Mixtures can be revisited as Kriging models [38] if one attempts an
interpolation of the samples. In this case the weighted sum of Gaussian kernels
is used to represent the shape of the propagated states. In the next section the use
of Kriging will be compared to other non-intrusive representations, namely PCE,
Chebyshev interpolation and HDMR.
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4.1 Comparative Example

In this section some of the non-intrusive methods are compared on four different
scenarios, please refer to Tardioli et al. [30] for further details:

1. Low-Earth orbit with 6 uncertain parameters (LEO6): the components of position
and velocity at the initial states.

2. Low-Earth orbit with 10 uncertain parameters (LEO10): the components of
position and velocity at the initial states, plus two uncertain model parameters.

3. Highly elliptical orbit with 6 uncertain parameters (HEO6): the components of
position and velocity at the initial states.

4. Highly elliptical orbit with 10 uncertain parameters (HEO10): the components of
position and velocity at the initial states, plus two uncertain model parameters.

The goal is to compare accuracy and computational cost, where the computa-
tional cost is measured using the number of sample points.

4.1.1 Dynamical Model

To compare the approximation provided by the four methods we use a dynamical
model containing the main perturbations acting on a satellite of negligible mass
orbiting in low-Earth orbit. The main gravitational perturbation is due to the non-
spherical shape of the Earth: the most relevant effect is due to the J2 coefficient
in the development of the Earth’s potential in spherical harmonics. Among the
non-gravitational perturbations there are the solar radiation pressure (SRP) and the
atmospheric drag.

In an equatorial reference frame, the dynamical equations can be written as

ṙ = v (28)

v̇ = FJ2 + FSRP + Fdrag ,

where r, v are the position and velocity vectors, r0 = r(t0), v0 = v(t0) are the
initial conditions at the initial time t0, and (see, e.g., Milani et al. [39], Sharaf and
Selim [40])

FJ2 = −
μ

r3 r + 3
μJ2R

2
e

2

r
r5

(

r+ 2 z− 5z2

r2

)

, (29)

FSRP = φ.
c
CR

A

m
Ŝ , (30)

Fdrag = −1

2
CD

A

m
ρ v2v̂ , (31)
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where μ is the gravitational parameter, Re is the mean Earth’s equatorial radius,
(x, y, z) and r are, respectively, the components and the modulus of r, φ. is the
solar radiation flux, c is the velocity of light, CR is the reflectivity coefficient, A/m
is the area-to-mass ratio, Ŝ is the direction of the Sun, CD is the drag coefficient,
and ρ is the density of the air atmosphere given by the NRLSISE-00 athmospheric
model [41].

4.1.2 Uncertainty Space

The uncertainty space is assumed to be a hypercube. The uncertainty variables are
the components of the position and velocity vectors r, v and/or four dynamical
parameters A/m,CR,CD and F10.7. The last one represents the daily solar flux for
previous days, and it is varied here to model the uncertainty on the air density. The
bounds for the dynamical parameters are reported in Table 2. As initial conditions
for the state vector, a LEO and HEO orbit have been chosen from the TLE orbit
catalog available from the space-track website [42]. The values are reported in
Table 3. The uncertainty bounds are set in the Cartesian coordinate space and are
assumed to be 10−5 · r0 and 10−5 · v0, where r0 and v0 are the magnitude of the
initial position and velocity vector expressed in km and km/s, respectively.

The propagation time span is set to 40P , where P is the period of the
unperturbed orbit. It is to about 4 days for the LEO orbit and 60 days for the HEO
orbit. All simulations have been implemented in MATLAB and run on an Intel i7
3.40 GHz.

4.1.3 Experimental Set Up

In this comparative test, PCE were built using Legendre bases and both PCEs
and Kriging use a random Latin Hypercube sampling scheme to collect samples.
Chebyshev interpolation (spelled the French way, Tchebycheff, in the figures) and
the HDMR, called UQ-HDMR, use sparse grids with Clenshaw–Curtis points,
instead. By its nature, UQ-HDMR uses a different numbers of samples for each
term in the expansion to economise on the total number of samples.

Table 2 Uncertainty bounds
for the dynamical parameters

A/m CR CD F10.7

Lower bound 0.001 1.0 1.5 100

Upper bound 0.1 2.0 3.0 200

Table 3 Keplerian orbital elements of the LEO and HEO orbit as of May 26, 2015

ID a [km] e i [deg] Ω [deg] ω [deg] � [deg]

40,650 7006.96 0.0008315 98.1533 165.9974 100.2845 259.5405

40,618 24204.56 0.7278988 25.4766 31.5897 179.4183 182.5857
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The accuracy of the polynomial computed with each one of the four non-
intrusive methods is evaluated at M = 1000 × n points, where n is the number
of uncertainty variables. The M samples are once again generated with a Latin
Hypercube sampling scheme. The result is then compared with the true state given
by the forward propagation of the dynamics. The estimation of the error between
the approximation X̂ and the true value X is given by the root mean square error

RMSE =
√

√

√

√

1

M

M
∑

i=1

(X̂j (xi )−Xj (xi))2 , j = 1, . . . , 6 , (32)

where xi represents a single sample vector. Figure 3 shows the uncertainty regions
in the 3D space for each scenarios. The effect of the dynamical parameters is to
enlarge the uncertainty region for the LEO orbit and stretch it along the trajectory
for the HEO. As a result, the dependence of the final state with respect to the initial
conditions is highly non-linear (Fig. 3).
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Fig. 3 Uncertainty region of the final state. (a) Scenario 1: LEO6. (b) Scenario 2: LEO10. (c)
Scenario 3: HEO6. (d) Scenario 4: HEO10
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Tchebycheff

PCE-Legendre [degree=1]

PCE-Legendre [degree=2]

PCE-Legendre [degree=3]

PCE-Legendre [degree=4]

Kriging

UQ-HDMR [order=1]

UQ-HDMR [order=2]

UQ-HDMR [order=3]

UQ-HDMR [anisotropic]

Fig. 4 Legend of the Figs. 5, 6, 7 and 8
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Fig. 5 The RMSE as a function of the number of the sample points for scenario 1 using 6000 test
points

The legend in Fig. 4 applies to all the figures. The convergence of the polynomial
approximation is presented in Figs. 5, 6, 7 and 8. The estimation of the accuracy
is given by the RMSE of each component of the final state vector, computed with
the Monte Carlo outcomes, as a function of the number of samples used to build
the polynomial approximation. In all the examples, Kriging exhibits the slowest
convergence, i.e. for a fixed number of samples it has the highest value for the
RMSE. The uncertainty region of scenario 1 (LEO6) can be approximated with



310 M. Vasile

no. of points
500 1000 1500 2000 2500

R
M

S
E

 1
 [k

m
]

10-2

10-4

10-4

10-2

10-2

10-4

10-4

10-6

10-6

10-4

10-4

10-6

100

no. of points

R
M

S
E

 2
 [k

m
]

no. of points

R
M

S
E

 3
 [k

m
]

no. of points

R
M

S
E

 4
 [k

m
]

no. of points

R
M

S
E

 5
 [k

m
]

no. of points

500 1000 1500 2000 2500 500 1000 1500 2000 2500

500 1000 1500 2000 2500 500 1000 1500 2000 2500 500 1000 1500 2000 2500

R
M

S
E

 6
 [k

m
]

Fig. 6 The same as Fig. 5 applied to scenario 2 with 10,000 test points
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Fig. 7 The same as Fig. 5 applied to the HEO orbit in scenario 3 with 6,000 test points

less than 100 sample points and a maximum RMSE of 10−5 km by all methods with
the exception of Kriging. The best accuracy is achieved with a PCE-Legendre of
degree 3. Chebyshev and UQ-HDMR show equal performance (see Fig. 5). When
additional four dynamical parameters become uncertain (scenario 2), the resulting
functional dependency between quantity of interest and input parameters becomes
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Fig. 8 The same as Fig. 6 applied to the HEO orbit in scenario 4 with 10,000 test points

highly non-linear. In order to obtain an accuracy of 10−3 km, a PCE-Legendre of
degree equal to 4 or a Chebyshev sparse basis of level 3 need to be used (see Fig. 6).

The results for scenario 3 (HEO6) are shown in Fig. 7. A PCE-Legendre of degree
1 dominates higher order PCE-Legendre and all the Chebyshev approximations and
Kriging. However, the best approximation is given by the UQ-HDMR. Figure 8
presents the analysis for scenario 4 (HEO10). As for scenario 2, non-linearities are
rather important and Chebyshev and UQ-HDMR show comparable results.

Finally, Tables 4, 5, 6 and 7 report the number of samples to achieve and accuracy
max(RMSE) < 4D · 10−4, where max(RMSE) is the maximum error across all
components of the final state vector and D is the diameter of the projection of the
uncertainty region of the final state on the (x, z)-plane.

Table 4 Summary of the
comparison for scenario 1
with a reference accuracy of
0.229 km

Method No. of sample points max (RMSE)

Chebyshev 13 0.00833

PCE-Legendre 28 0.01262

UQ-HDMR 19 0.00833

Kriging 144 0.16753

Table 5 Summary of the
comparison for scenario 2
with a reference accuracy of
0.235 km

Method No. of sample points max (RMSE)

Chebyshev 21 0.21433

PCE-Legendre 66 0.22553

UQ-HDMR 23 0.21437

Kriging 652 0.18307
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Table 6 Summary of the
comparison for scenario 3
with a reference accuracy of
0.209 km

Method No. of sample points max (RMSE)

Chebyshev 13 0.16224

PCE-Legendre 28 0.16147

UQ-HDMR 15 0.15068

Kriging 286 0.19265

Table 7 Summary of the
comparison for scenario 4
with a reference accuracy of
51.317 km

Method No. of sample points max (RMSE)

Chebyshev 221 41.970

PCE-Legendre 359 26.658

UQ-HDMR 233 41.976

Kriging 2703 41.044

4.2 Representation with Positive Polynomials

Positive polynomials, like Bernstein polynomials for example, have been used to
represent generic distributions. Bernstein polynomials in particular can approximate
any generic distribution on a finite supports and represent exactly Beta distributions.
Their use in orbital mechanics was recently introduced by the author [43] to
calculate upper and lower expectations of the quantity of interest by solving a simple
linear optimisation programme with a single linear constraint. In the general case
the integrals in Eq. (8) can calculated numerically via multidimensional quadrature
formula. As an example we can replace the calculation of the exact integrals with an
approximation using Halton low discrepancy sequence to generateM sample points
(called quasi-Monte Carlo points) in the domain U0 and then re-write the integrals
in the form:

∫

Ω

φ(ξ ) dξ ≈ 1

M

M
∑

k=1

IΩ(ξk) φ(ξk) (33)

where the samples ξk are taken from the low discrepancy sequence. Similarly, we
can approximate the integrals in Eq. (8):

min
α,β

M
∑

k=1

IΩ(ξk)
∏

j

φj (ξk) , max
α,β

M
∑

k=1

IΩ(ξk)
∏

j

φj (ξk) . (34)

subject to the constraint:

1

M

M
∑

k=1

φ(ξk) = 1. (35)



Practical Uncertainty Quantification in Orbital Mechanics 313

If the family of distributions is unknown or does not contain only one particular
type, one can use an a representation with an expansion in positive polynomials to
approximate the extrema of [φ] and obtain the upper and lower expectation on Ω
as solutions of a linear problem. In this chapter, in particular, we propose the use of
Bernstein polynomials [44, 45]. The family of probability distributions to which the
uncertain variable ξj belongs can be expressed as

[φcj ] =
{

n
∑

i=1

c
(j)

i Bi(τj (ξj ))
}

, (36)

where Bi : [0, 1] $→ [0, 1] is the ith-univariate Bernstein polynomials of dimension
n and τj is the change of coordinate from the uncertain interval [ξj ] to [0, 1].

Under the independence and non-correlation assumption among the variables,
the joint probability distribution is the product of the marginal masses and it is
contained in the p-box [φc̃] =

∏d
j=1[φcj ] which can be re-written as

[φc] =
{
∑

κ∈K
cκ Bκ(τ (ξ))

}

, (37)

with K = {κ = (k1, . . . , kd ) ∈ Nd : 0 ≤ kj ≤ n,∀j }, Bκ is a multivariate
Bernstein polynomial, τ =∏d

j=1 τj , and c is the unknown coefficient vector. Then,
the upper and lower expectation are the solutions of the two linear optimization
problems:

El(Ω) = min
c∈C

∫

Ω

φc(ξ) dξ , Eu(Ω) = max
c∈C

∫

Ω

φc(ξ) dξ , (38)

The set C ∈ RM can be assumed to be an hyper-cube, for example, C = [0,M]M .
In discrete form programmes (38) translate into:

El(Ω) = min
c∈C

M
∑

s=1

IΩ(ξs)
∑

κ∈K
cκ Bκ(τ (ξs)), (39)

and

Eu(Ω) = max
c∈C

M
∑

s=1

IΩ(ξs)
∑

κ∈K
cκ Bκ(τ (ξs)) . (40)

subject to the linear constraint:

1

M

M
∑

s=1

∑

κ∈K
cκ Bκ (τ (ξs)) = 1. (41)
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This technique is very efficient in low dimension but with Bernstein polynomials
the number of coefficients increases exponentially with the number of uncertain
parameters and can quickly lead to a very large constrained linear programming
problem. An alternative is to solve the nonlinear problem:

Eu(Ω) = max
c∈C

M
∑

s=1

IΩ(ξs)
∏

j

∑

i

ciBi(τ (ξs)), (42)

subject to the linear constraint:

1

M

M
∑

s=1

∏

j

∑

i

ci Bi(τ (ξs)) = 1. (43)

In this case the number of coefficients grows linearly with the number of dimensions
and the optimisation problem remains tractable even for a large number of uncertain
parameters.

5 Intrusive Techniques

Intrusive techniques cannot treat computer codes as a black box. They require full
access to the mathematical model and computer code computing the quantity of
interest and introduce a modification of the code and model. The goal of intrusive
techniques is still to provide a surrogate representation of the variation of the
quantity of interest as a function of the uncertainty in model, parameters and
boundary conditions. Most existing methods are used to propagate the uncertainty
space Ω .

The main advantage of intrusive methods lays in the better control of the
truncation error versus the complexity of the polynomial expansion. They also
automatically provide a polynomial representation of the propagated set at every
propagation step.

• State Transition Matrix and Tensors (STM/STT) The State Transition Matrix
is the most traditional approach and requires the expansion of the dynamics only
to the first order (see system (2)). For this reason the STM cannot properly
capture nonlinearities of higher order. In order to overcome this limitation the
use of high order State Transition Tensors were proposed in 2006 by Park and
Scheeres [6] and Tapley et al. [46] .

This section briefly reviews the approach proposed by Park and Scheeres [6] to
propagate uncertainty in dynamical systems and highlights some key properties
through a simple example. The method expands the variation δx(t) of the states
at time t with respect to a reference point φ(t, x0; t0) in Taylor series of some
initial deviation δx0. The s-th order expansion can be expressed using the Einstein
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summation convention:

δxi(t) =
s
∑

p

1

p!φ
i,γ1...γp
(t,t0)

δx
γ1
0 · · · δxγp0 (44)

where γ1..γp ∈ {1, . . . ., n}denotes the γi component of the state vector
corresponding to the s-th derivative, n is the number of components of the state
vector and:

φ
i,γ1...γp
(t,t0)

(t; x0; t0) =
∂pφi(t,t0)

(t; ξ0; t0)
∂ξ

γ1
0 · · · ∂ξγp0

∣

∣

∣

∣

∣

ξ
γj

0 =x
γj

0

. (45)

In this way, a generic trajectory x, whose initial conditions are defined with
respect to the reference trajectory as x0 + δx0, will evolve as follows:

xi(t) = xi0(t)+
s
∑

p

1

p!φ
i,γ1...γp
(t,t0)

δx
γ1
0 · · · δxγp0 . (46)

The partials of the flow in Eq. (44) form the so called global State Transition
Tensors, which map the initial deviations δx0 at time t0 to the deviation δx(t) at
time t. For s = 1, the STTs reduces to the simple state transition matrix. The
partials in Eq. (45) can be computed by numerical integration of a set of ordinary
differential equations (see [6]). An example of these differential equations up to
the third order follows:

φ̇i,a = f i,αφα,a (47)

φ̇i,ab = f i,αφα,ab + f i,αβφα,aφβ,b (48)

φ̇i,abc = f i,αφα,abc + f i,αβ
(

φα,aφβ,bc + φα,abφβ,c + φα,acφβ,b
)

+ f i,αβδφα,aφβ,bφδ,c

(49)

where α, β,∈ δ {1, . . . ., n}and a, b, c = {1, . . . , n}are the indexes for the first,
second and third order derivative. f i,γ1...γp are the partials of the dynamics and
are computed as follows:

f i,γ1...γp = ∂pf i(t; ξ0; t0)
∂ξ

γ1
0 · · · ∂ξγp0

∣

∣

∣

∣

ξ
γj

0 =x
γj

0

(50)

Note that the partial derivatives in Eqs. (45) and (50) are calculated with respect
to the nominal trajectory φ(t, x0; t0) (also equivalent to x0(t) of Eq. (46)).
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If the partials in Eq. (45) are obtained by numerical integration, the calculation
of the STTs requires the forward propagation of

∑s+1
q=1 6q differential equations

starting with initial values φi,a(t0,t0) = 1, if i = a, and zero otherwise. When
the order is s = 3, the 1554 equations need to be integrated simultaneously.
Moreover, the computational time and complexity are increased by the numerical
evaluations of the analytical partials of the dynamics. In Vetrisano and Vasile
[22], the partials in Eq. (45) were computed analytically using the symbolic
manipulator in the MATLABRM Symbolic Toolbox. As an example, the third
order STTs integration, along a 5 day period, considering only Earth, Moon,
Sun and light pressure, required approximately 8 h using a Windows 7 OS
3.16 GHz Intel(R)Core(TM)2 Duo CPU. To be noted that the coupled integration
of thousands of equations could introduce numerical errors when integrated over
a long period of time. For this reason, it is good practice to consider the nominal
trajectory and to integrate the STTs over short periods of time, say 1 day to reduce
possible numerical errors [22]. The intermediate STTs are called local STTs.
While the global STTs map the deviation at the initial time t0 to the deviation
at time tk+1, the local STTs map the deviation at time tkto the deviation at time
tk+1.

Once the state transition tensors are available for some time interval [tk, tk+1],
the mean and covariance matrix of the relative dynamics at tk can be mapped
analytically to tk+1 as a function of the probability distribution at tk . In the
remainder of this paper we will make use of the mean and covariance to compare
different methods, therefore, here we briefly summarise the procedure proposed
in [6]. From tk to tk+1 the propagated mean and covariance can be computed as:

mi
k+1 = φi(tk+1;mk)+δmi

k+1 = φi(tk+1;mk)+
s
∑

p=1

1

p!φ
i.γ1···γp
(tk+1,tk)

E[δxγ1
k · · ·δx

γp
k ]

(51)

P
ij

k+1 = E[(δxik+1 − δmi
k+1)(δx

j

k+1 − δmj

k+1)] =
∑s

p=1
∑s

q=1
1
p!q!φ

i.γ1···γp
(tk+1,tk )

φ
i.ς1···ςq
(tk+1,tk )

E[δxγ1
k · · · δx

γp
k δx

ς1
k · · · δx

ςq
k ] − δmi

k+1δm
j
k+1

(52)

where {γi, ςj } ∈ {1, . . . , n} are the indexes for the different order derivative.
If one sticks to the hypothesis of an initial Gaussian distribution, the joint
characteristic function for a Gaussian random vector can be defined as [6]

ϑ(u) = E[ejuT x] = exp(juT m− 1

2
uT Pu) (53)

wherej = √−1 and the expected higher moments can be computed using:

E[xγ1xγ2 · · · xγp ] = j−p ∂pϑ(u)

∂uγ1∂uγ2 · · · ∂uγp
∣

∣

∣

∣

u=0
(54)



Practical Uncertainty Quantification in Orbital Mechanics 317

• Intrusive Polynomial Chaos Expansion (PCE) [25] Intrusive PCEs are proba-
bly the first version of chaos expansions and date back to the work of Ganhem in
1988, Ganhem and Spanos 1991 end Xiu and Karniadakis in 2002 that extended
the expansion from Hermit polynomials to the general Askey scheme. The idea
behind intrusive PCEs is the same as the one of non-intrusive but the chaos
expansion of the input parameters is introduced in the governing equation (3)
and the quantity of interest is obtained by integration one differential equation
per coefficient of the expansion.

• Interval Arithmetic (IA) If the interest is to propagate sets of values an option
is to propagate intervals. In this case, it is possible to define an Algebra on the
space of intervals [47] I := {[a, b], a ≤ b, a, b ∈ R}, such that

C := A⊗ B = {a ⊕ b | a ∈ A, b ∈ B} ∈ I

where A,B ∈ I , ⊕ ∈ {+,−, ·, /} and ⊗ is then the corresponding operation
in the algebra of intervals. If the propagation is performed in the algebra of
intervals it is possible to compute validated solutions of ODE systems. The tight
enclosure of the solution of the dynamics at a certain instant of time, is computed
taking into account truncation errors due to floating point implementation, errors
due to approximation integration scheme, and parameters uncertainties. However
this approach could lead to overestimation, depending on the problem and the
method used. An hybridization of Polynomial Algebra (see next section) and IA
techniques has given promising results in mitigating the overestimation problem.
These are known as Taylor Models [48].

5.1 Polynomial Algebra (PA)

The idea is to redefine states and parameters as polynomials of the uncertain
quantities and all algebraic operations between real numbers as algebraic operations
among polynomial functions.

The function space Pn,d(α) =< αI(b) > where b ∈ Ω ⊂ Rd , I =
(i1, . . . , id ) ∈ Nd+ and |I| = ∑d

j=1 ij ≤ n, is the space of polynomials in the α
basis up to degree n in d variables [49]. This space can be equipped with a set of
elementary arithmetic operations, generating an algebra on the space of polynomials
such that, given two elements A(b), B(b) ∈ Pn,d(α) approximating any two real
multivariate functions fA(b) and fB(b), it stands that

fA(b)⊕ fB(b) ∼ A(b)⊗ B(b) , (55)

where ⊕ ∈ {+,−, ·, /} and ⊗ is the corresponding operation in Pn,d (αi). This
allows one to define the algebra (Pn,d (αi),⊗), of dimension dim(Pn,d (αi),⊗) =
Nd,n = (

n+d
d

)

, the elements of which belong to the polynomial ring in d
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indeterminates R[b] and have degree up to n. Each element P(b) of the algebra,
is uniquely identified by the set of its coefficients p ∈ RNd,n such that

P(b) =
∑

I,|I|≤n
pIαI(b) . (56)

In the same way as for arithmetic operations, it is possible to define a composition
rule in the polynomial algebra and hence the counterpart, in the algebra, of
the elementary functions {sin(y), cos(y), exp(y), log(y), . . .}. Differentiation and
integration operators can also be defined. By defining the initial conditions and
model parameters of the dynamics as element of the algebra and by applying any
integration scheme with operations defined in the algebra, at each integration step
is available the polynomial representation of the state flow. The main advantage
of the method is in the control of the trade-off between computational complexity
and representation accuracy at each step of integration. Furthermore, sampling and
propagation are decoupled, therefore, irregular regions can be propagated with a
single integration, provided that a polynomial expression is available. It has been
shown that the polynomial algebra approach presents overall good performance and
scalability (with respect to the size of the algebra) compared to its non-intrusive
counterpart. On the other hand, being an intrusive method, it cannot treat the
dynamics as black box. Its implementation requires operator overloading for all
the algebraic operations and elementary functions defining the dynamics, making it
more difficult to implement than a non-intrusive method. There are currently two
different polynomial representations that have been successfully used in Orbital
Mechanics: Taylor polynomials (known in the literature as Differential Algebra [50]
or Jet Transports [51]) and Chebyshev polynomials.

• Taylor Algebra. In Taylor Algebra (TA) all quantities are expanded in Taylor
series and all algebraic operations are defined among Taylor polynomials. One
advantage of this approach is that the truncated product of two Taylor polyno-
mials is again a Taylor polynomial. This means that one can control the number
of terms in the expansion retaining all properties of Taylor polynomials. The
product and other algebraic operations requires only to apply the operator among
Taylor bases, leading to fast execution of most computation when propagating
the uncertainty set.

Taylor Algebra, as for STM and STT, however, provide only a local model that
is centred into a reference point. This means that the approximation error is not
globally minimised over a region but tends to increase as one departs from the
central point. Taylor series have also other undesirable properties, for example
they can converge to a function that is not the one they are trying to represent.

• Chebyshev Polynomials and Generalised Algebra. The use of Chebyshev
polynomials instead of Taylor expansions provides a better global accuracy
because of the min-max properties of Chebyshev polynomial approximation. It
also allows one to develop an approximation of the uncertainty region without
any particular central point of expansion. This is particularly useful when the
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interest is the quantification of the probability of inclusion in a particular set but
with no assumption on the nature of the distribution.

On the other hand an algebra on the space of Chebyshev polynomials is not as
straightforward because, for example, the product of two Chebyshev bases is not
a Chebyshev basis. The current implementation of an algebra using Chebyshev
polynomials transforms all polynomial expansions into monomials and then
defines an algebra on the space of the monomials [52]. This approach has proven
to be very effective and allows one to generalise polynomial algebra to any type
of polynomials. The computational overhead of this transformation is limited and
one can partially preserve the property of the original polynomial expansion even
after the transformation to monomials.

5.1.1 Example: Orbit Re-Entry Under Uncertainty

Figure 9 shows an example of propagation of the uncertainty in the initial conditions
of a satellite orbiting the Earth. The figure compares a full Monte Carlo simulation
against a single integration of the equations of motion with a Taylor-based algebra
(i.e algebra based on an expansion in Taylor polynomials) or with a Chebyshev-
based algebra (i.e algebra based on an expansion in Chebyshev polynomials). The
figure shows that Taylor diverges as one departs from the estimated state of the

Fig. 9 Propagated uncertainty with Taylor and Chebyshev polynomial algebra
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satellite. On the contrary, in this case, Chebyshev offers a more stable global
representation of the uncertainty space (see [52] for more details).

6 Handling of Model Uncertainty

Model uncertainty is difficult to quantify because it requires capturing missing parts
of the model itself. The nature of this uncertainty is epistemic. In this section two
ideas are presented that can be used to capture model uncertainty.

With reference to what is commonly done in precise orbit determination one
way to capture the missing components of the dynamics is to introduce so called
empirical accelerations in the form of a time dependent polynomial or other time
dependent functional forms. This form of data assimilation is generally effective
but does not provide the actual dependency of the missing parts of the dynamics on
the state of the system.

6.1 Reconstruction via Polynomial Expansions

Consider problem (3) with only the additive term:

{

ẋ = f (x,p)+ ν(x,b)
x(t0) = x0

, (57)

and assume that the function ν can be expanded in some form of polynomial series
of the state vector x:

{

ẋ = f (x,p)+∑i ci(b)Qi(x)
x(t0) = x0

, (58)

with unknown coefficients ci . The idea is now to determine the value of the
coefficients by matching the observations of the state vector x̄(tj ) at given times
tj with the result of the propagation of model (58) at the same time instants. We can
then solve the following optimisation problem:

min
c∈C

J (x, c)

s.t.

x(tj ) ∈ Σ j = 0, . . . , No

, (59)

whereΣ is an arbitrary set,No is the total number of observations and C is the space
of the coefficients ci . The main advantage of this formulation is that no statistical
moments are required and no exact distribution needs to be known a priori. Note
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that the initial conditions x(t0) are treated as an observed state. The second example
is an orbital motion with unknown drag component. The gravity component of the
model is fully known but the observations show an additional component that is not
modelled. The real dynamics is assumed to be governed by the following system of
differential equations in polar coordinates:

v̇r = − μ

r2 + v2
t

r
− 1

2ρCdvvr

v̇t = − vt vr
r
− 1

2ρCdvvt

ṙ = vr

θ̇ = vt
r

. (60)

We assume a unitary area to mass ratio, and a constant density ρ such that the
product of the density times the drag coefficient Cd is ρCd = 10−6kg/m3.
Furthermore, we assume that the expected trajectory, given the known dynamic
components, is a circular orbit with vr (t = 0) = vr0 = 0 and vt (t = 0) = vt0 .
The orbital period, without drag, is T = 2π

√

r3/μ. If one expands the modulus of
the velocity v in Taylor series up to the first order, the differential equations with the
drag term can be approximated as:

v̇r = − μ

r2 + v2
t

r
− 1

2ρCdvt vr

v̇t = − vt vr
r
− 1

2ρCdv
2
t

ṙ = vr

θ̇ = vt
r

(61)

In order to capture the unmodelled component of the dynamics, we assume the
following expansion with terms up to order 2 in velocity and position:

v̇r = − μ

r2 + v2
t

r
+ c1 + c3r + c5r

2+
c7rθ + c9vr + c11v

2
r + c13vrvt

v̇t = − vt vr
r
+ c2 + c4θ + c6θ

2+
c8rθ + c10vt + c12v

2
t + c14vrvt

ṙ = vr

θ̇ = vt
r

(62)

If the linear effects in Eq. (61) are dominant over a given time span Δt , then the
prediction given by Eq. (62) should be of the form:

v̇r = − μ

r2 + v2
t

r
+ c13vrvt

v̇t = − vt vr
r
+ c12v

2
t

ṙ = vr

θ̇ = vt
r

(63)
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We can now introduce observations at time t = T and t = T/2, for a total
of 8 constraint equations and 14 parameters, and solve problem (59) with cost
function J = cT c. This cost function implies that we look for the minimum energy
solution under the assumption that this solution corresponds to a minimum noise
state. An alternative, not presented here, is to use a maximum Entropy principle and
maximise, for example, the Shannon entropy function of the coefficients c.

If measurements are affected by an error, problem (59) needs to be solved under
some assumptions on the initial conditions. The assumption in this chapter is that
the initial conditions are distributed uniformity over a given confidence interval. The
size of the confidence interval for the measurements is 10−4 of the measured value;
accordingly the confidence interval on the initial conditions is set to the same value.

The parameters c estimated by solving problem (59) are represented in Fig. 10
together with their associated confidence intervals. As one can see, the expected
value is close to the true solution. One thing that has to be taken into consideration
is that the dynamics that are simulated and measured are the true dynamics, not the
linearised equations. Therefore, some components that are not in the linear model
might be different from zero.

The other interesting result is that some components are nearly zero for every
initial condition while other components, c4 for example, have a wide variability.
This result suggests that some components are irrelevant as they do not contradict
the observations no matter which initial conditions are taken, while others substan-
tially affect the evolution of the trajectory. Starting from this first iteration, one can
then update the confidence intervals on the parameters c and eventually converge
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Fig. 10 Example of reconstructed gravity-drag dynamics with confidence intervals
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Fig. 11 Example of decision
tree for the simple re-entry
case with unknown drag

k
v

v

vt

v

v

to the correct missing components. Indeed since the uncertain function is based on
a truncated series some components of the expansion might absorb the truncation
error.

6.2 Reconstruction via Symbolic Regression

The idea of symbolic regression is to use a decision tree, or tree in which each node
is a decision, to construct an analytical formula, of the some unknown variables,
that once evaluated produces outputs that match the values in a dataset.

The regression process starts from a database of symbols that includes some
basic algebraic operations (+,−, *) and a number of elementary functions of the
variables of interest. The tree is then progressively grown by adding new symbols to
different branches. Each branch represents a partial formula. The regression process
then evaluates a branch (for example adds the sequence of symbols to a differential
equation and then integrates the equation) and compares the result to a dataset using
a suitable metric, typically an Euclidean distance. Figure 11 is an example of a
simple decision tree for the reconstruction of the drag component in (60). In this
case the only algebraic operator is the product and the symbols to be identified
are only functions of the state variables. The path with thick black lines is the right
solution. What the algorithm does is to evaluate a branch, every time a node is added
to it, by propagating the dynamics and comparing the result of the propagation at
a given time with some reference measurements. Typically Genetic Programming
[53] is used to generate and evaluate the tree, although in recent times the author
experimented with Ant Colony Optimisation [54] as well, with good results.

Recent work on the use of symbolic regression to capture the relationship
between re-entry time and system uncertainty can be found in Minisci et al. [55].

7 Evidence-Based Quantification

An interesting aspect of modelling uncertainty in orbital mechanics is that the
nature of this uncertainty is epistemic more often than not. This realisation has
important consequences on the significance of the quantification of the uncertainty,
for example, in the prediction of a collision or impact.
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One can re-state the hypothesis that a conjunction or a collision occurs in the
form of an inclusion statement [56]:

A = {ξ (t)|x(t) ∈ Φ}, (64)

where Φ defines either a region around a target within which a collision avoidance
is triggered or its complement.

The interest is now to calculate the degree of belief associated to statement (64).
If one uses belief functions [57] this can be computed as follows:

Bel(A) =
∑

θi∈A
m(θi), (65)

where θi is a piece of evidence supporting A and m(θi) is a belief mass associated
to θi . Or alternatively one can calculate the degree of belief associated to the
complement of A:

P l(¬A) =
∑

θi∩A�=∅
m(θi). (66)

The use of belief functions is not the only choice of course. One can use rough sets,
fuzzy sets or other methods that allow the treatment of partial knowledge.

The inclusion statement implies also that the common likelihood function that
is normally used to relate the measurements to the propagated state in a classical
Bayesian framework might need to be reconsidered because the hypothesis on
normally distributed measurements might not apply in general.

8 Final Remarks

The chapter provided a broad overview of a number of methods for uncertainty
quantification in orbital mechanics. An attempt was made to classify them according
to the context in which they can be applied. Most of the chapter was dedicated to
the propagation of uncertainty because that is the area where a lot of work has
been developed in recent times. An attempt was made to include only methods that
were not specialised or specific to a particular class of problems or were dependent
on the characteristics of the problem. Thus, specific sampling and UQ techniques
developed in orbit determination or impact monitoring, like the use of the line of
variations, were not included. The interested reader is advised to read the relevant
literature on the subject.

The choice of the propagation method is closely dependent on the uncertainty
model and on the nature of the uncertainty to be propagated. In this respect, an
open problem is the representation of epistemic uncertainty in measurements and
physical model. The two sources of uncertainty result to be interdependent when
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one attempts to derive an improved model representation as the uncertainty in
the measurements makes a number of physical models all equally possible. It is
the opinion of the author that the problem with epistemic uncertainty is often
overlooked and deserves more attention if one to handle complex systems, like large
constellations, swarms of debris. high risk rare events and anomalies.

Most recent developments for uncertainty propagation in orbital mechanics have
advantages and disadvantages. Non-intrusive methods are ideal when the dynamic
model is not well known or is a black box. They are also the ideal solution when a
mix a of experimental and simulated data are available. On the other hand intrusive
methods provide a very interesting alternative if one can have access to the dynamic
equations. Although Taylor algebra has been extensively used in practice, it is
the opinion of the author, that a lot still needs to be done, both theoretically and
algorithmically, on the use of intrusive methods for orbital mechanics.

Last but not least the chapter has shown that the use of some machine learning
techniques, like symbolic or polynomial regressions, can be powerful tools to
capture unknown dynamic components and reconstruct physical models from
experimental data.
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