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Abstract. Case Management is a paradigm to support knowledge-
intensive processes. The different approaches developed for modeling
these types of processes tend to result in scattered models due to the low
abstraction level at which the inherently complex processes are therein
represented. Thus, readability and understandability is more challenging
than that of traditional process models. By reviewing existing proposals
in the field of process overviews and case models, this paper extends a
case modeling language – the fragment-based Case Management (fCM)
language – with the goal of modeling knowledge-intensive processes from
a higher abstraction level – to generate a so-called fCM landscape. This
proposal is empirically evaluated via an online experiment. Results indi-
cate that interpreting an fCM landscape might be more effective and
efficient than interpreting an informationally equivalent case model.

Keywords: Case Management · Process landscape · Process map ·
Process architecture · Process model

1 Introduction

Case Management (CM) is a paradigm to support the design, execution, moni-
toring, and evaluation of knowledge-intensive processes [20]. These types of pro-
cesses are often found in domains where highly trained workers (i.e. knowledge
workers) deal with very diverse units of work (i.e. cases). In fact, the term
CM originated in the healthcare domain, where medical personnel – knowledge
workers – deal with patients – cases – and the end-to-end process is not clear
beforehand, but is rather tailored on-the-go based on aspects, such as examina-
tion results and medical team expertise.

In CM and analogous to a traditional process model, a case model repre-
sents all possible courses of action for handling cases in a given scenario. Dif-
ferent approaches have been developed for CM, most of them with a strong
data-orientation. Business artifacts [23] and their Guard-Stage-Milestone (GSM)
lifecycles [14] put data in the center of the approach. Based on GSM, the
industry-standard CMMN (Case Management Modeling and Notation) [25]
was designed. The fragment-based Case Management (fCM) [12] understands
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knowledge-intensive processes as having structured parts – i.e. process frag-
ments – that are flexibly combined at run-time based on data handled by the
process. Regarding its notation, fCM reuses concepts from BPMN (Business
Process Model and Notation) [24]; we call this the fCM-language. As the CM
approaches capture complex behaviour of knowledge-intensive processes – includ-
ing processed data artifacts, possible operations on them, and their interrelation
– case models tend to include more concepts and are more scattered than tradi-
tional workflow-like process models. For capturing flexibility, the routing and the
control flow might be more difficult to understand compared to an imperative
sequence flow [31], such that Lantow [16] reports a lack of understandability of
CMMN models.

Several works have been developed to provide accessibility to a comprehen-
sive functional description of a business [17]. In such level of abstraction, indi-
vidual processes are depicted as black boxes and, therefore, the focus of the
model is on the structure of the collection of processes [8]. By analogy, this view
could be used to depict process fragments within a case model. In this paper,
we use the term process overviews to refer either to process maps [17,18], pro-
cess landscapes [3,10], or process architectures [6,9]. In the range of possibilities
of process overviews, process landscapes stand as the middle ground between
the less-technical process maps and the more-technical process architectures [8].
Compared to detailed process models, process overviews allow to represent in
a more straightforward way: (a) high-level concepts regarding to a single pro-
cess, such as inputs/outputs; as well as (b) concepts regarding the relationships
between processes, such as trigger and data flow. These concepts are either not
available or indirectly represented in current approaches for case modeling.

This paper extends the fCM-language for modeling overviews of knowledge-
intensive processes. The goal is making case models more accessible and under-
standable, and thus easier to analyze by their users. We classify these models
as case model landscapes (CMLs) since we expect the proposal to be, on one
side understandable by non-technical users, but also useful for technical ones.
We focus on the fCM approach [12]; still we will discuss its application to other
approaches. Existing languages for modeling cases and process overviews are
reviewed and their usefulness for CMLs is discussed. Based on the found lim-
itations, we develop a language1 for CMLs as extension of the fCM-language.
The proposal is evaluated in comparison to the non-extended fCM-language in
an online experiment where the participants are asked to answer questions on
two business scenarios represented in these two languages The correctness of the
answers as well as the time needed is measured to assess interpretation efficiency
and effectiveness as proposed by [4,18].

In the remainder, related work on case management and process overviews is
discussed in Sect. 2. Then, requirements for a CML and different alternatives are

1 A language is a structured set of symbols whose combination represents concepts
which carry a certain meaning. A language is specified using a meta-model describing
its abstract syntax (i.e. constituting concepts and their relations) and its semantics
(i.e. meaning of the concepts).
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presented in Sect. 3. The extension of the fCM-language for CML is presented in
Sect. 4 and its empirical evaluation is discussed in Sect. 5, followed by conclusions
in Sect. 6.

2 Related Work

In this section, related work regarding case management and attempts to ease the
case model understanding, and approaches for process overviews are presented.

Case Management. A first approach for capturing case models has been intro-
duced as Case Handling in [1,2], which led to shifting the focus from activities
to data. Business Artifacts [23] with the Guard-Stage-Milestone (GSM) app-
roach [14] focus on the high-level data artifacts handled during case process-
ing. This was used as the basis for the CMMN (Case Management Modeling
and Notation) [25] standard which allows to specify, for example, optional and
non-optional parts of a case and milestones that need to be reached. However,
some aspects of data – essential for case management (CM) – cannot be repre-
sented using CMMN. Despite an existing standard, other CM approaches were
still continued or newly developed, most prominently PHILharmonicFlows [15],
fragment-based Case Management (fCM) [12], and the declarative approach [27].
PHILharmonicFlows [15] splits a process into micro processes describing how a
data artifact can be changed and macro processes handling micro processes rela-
tions. To deal with complexity, Steinau et al. [29] propose relational process
structures representing the relationships between processes with cardinalities.
However, aspects, such as the results exchanged by the process fragments or the
trigger relations are not captured, limiting the understanding and the analysis of
such a case model. fCM by Hewelt and Weske [12] combines process fragments
at runtime according to data conditions. In [11], Hewelt et al. provide a method
for supporting the case model elicitation. Still, it is an open challenge that the
resulting case model is difficult to read for people not involved in the case model
design. The declarative approach [27] tries to avoid the disadvantages of impera-
tive process models and allows more flexibility by defining constraints and rules
between activities, whereby produced and consumed data of the activities is
not considered. However, experiments showed that declarative process models
seem to be more difficult to comprehend [28]. Therefore, De Smed et al. [5] pro-
pose dependencies diagrams to visualize implicit dependencies between actions
in declarative models. It has a quite low abstraction level which might lead to
understandability issues in case of more complex models. Furthermore, it builds
upon on the constraint concepts of declarative models with no graphical elements
targeting more declarative modeling experts.

Process Overviews. Process overviews – a term used in this paper for refer-
ring either to a process map, landscape, or architecture – support reasoning
and analysis of the structure of the process collection, leaving aside much detail
of individual processes [8]. Commonly, process overviews address the concerns
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of business-oriented users but they can also address the concerns of technical-
oriented ones. Consequently, a language to express such a model aims to be
easily understood by a non-technical audience [9]. Process maps are usually eas-
ily readable by non-technical users due to being modeled with a small set of
concepts with a lax semantics. It might consists solely of a hierarchical classi-
fications of processes, or also that inputs/outputs of the constituting processes
are specified [19]. Process architectures are more technically oriented and each
represented concept has a precise semantics. For example, the approach by Eid-
Sabbagh et al. [6] provides information, about trigger and resource flow relation-
ships between processes based on events. In the extension of this work, exclusive,
sequential, and interaction relations between processes are discovered based on
the data they handle, however data is not explicitly represented in the architec-
ture model [7]. Process landscapes could be seen as the middle ground between
process maps and architectures. Proposals in this area also struggle with the
issue of ensuring an adequate level of understandability, e.g. [3,10]. Altogether,
multiple approaches have been proposed to convey overviews for collections of
processes. We argue that the therein used concepts could be adapted for building
overviews for case models. In order to do so, it would be necessary to abstract
from the details of process fragments and rather focus on the way they relate to
each other. This is similar to the dependencies diagrams proposed by De Smed
et al. [5]. However, our proposal places the emphasis on data-based relationships
and a intuitively understandable graphical language.

3 Requirements for a Case Model Landscape

Section 3.1 introduces the fCM-language using the meta-model in Fig. 1 and
the health-care example in Fig. 2. Then, requirements for a fCM landscape are
defined in Sect. 3.2. Finally, alternative landscape approaches and their limita-
tions are discussed in Sect. 3.3. In the remainder of the paper, we use a medical
consultation business scenario to illustrate the discussed concepts. In the exam-
ple, when a patient arrives to the hospital, she will be attended by a medical team
for providing diagnosis and treatment and also by personnel for administrative
matters, all with the goal of sending her healthy back home.

3.1 Fragment-Based Case Management Language

Figure 1 shows the meta-model that specifies the fCM-language, based on the
specifications in [12]. In fCM, a case model consists of four artifacts to be detailed
in the following: (a) a domain model, (b) a set of object lifecycles, (c) a goal state,
and (d) a set of process fragments.

Domain Model. The domain model represents the static view of the data that is
relevant to the scenario. As portrayed in Fig. 1 (upper section), it is composed of
a collection of data classes defining relevant data types and their data attributes.
In the example in Fig. 2a, the relevant data types are Biopsy, Patient File,
X-ray, and Tomography.
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Fig. 1. Meta-model for fCM-language (fCML requirements highlighted)

Object Lifecycles. As showed in Fig. 1 (middle upper section), every class of the
domain model behaves according to a scenario-specific object lifecycle (OLC).
An OLC depicts possible states and transitions that an instance of a certain
data type may undergo during the handling of a case. Figure 2b shows the OLC
of the Patient file as a finite state machine with the following possible states:
created, furtherDiagnosis, diagnosed, medicationNeeded, surgeryNeeded, and fin-
ished. Additionally, a set of generic OLCs is pre-defined in fCM for the execution
semantics of cases, fragments, activities, gateways, and events.

Goal State. The goal state defines when a case model instance may terminate
in terms of a logical combination of a subset of all possible classes in their OLC-
defined states, as showed in Fig. 1 (bottom section). Figure 2c shows the goal
state for our running example: a Patient File in state finished.

Process Fragments. A case model contains multiple process fragments as showed
in Fig. 1 (middle lower section). In the example, the fragments are Admission,
Diagnosis, Surgery, Medication, Biopsy, Tomography, and Cardiorespiratory
Resuscitation (CPR), as depicted in Fig. 2d. As showed in the meta-model, each
process fragment is composed by a set of data, gateway, event, and activity
nodes linked by flow edges, as in traditional process models. Fragment model-
ing requires consistency in labeling data objects to capture the relations between
fragments. In Fig. 2d data types and their states are depicted using BPMN data-
object notation: Object type [state]. As in many CM approaches, data is the
key element around which fCM process fragments are organized. Figure 1 (right
section) shows that data conditions are defined as the combination of data class
type in some state of their OLCs. On one hand, a start event of a fragment
could be itself a data condition, which means that such fragment is only enabled
to start once a given data condition is true. For example, and as showed in
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Fig. 2d, the Diagnosis fragment becomes enabled when there is a data instance
of Patient file [created]. On the other hand, activities within the different
fragments read/write data in a given state. For example, in Fig. 2d the Admis-
sion fragment writes a Patient file [created]. It is possible to identify a
relation between the Admission and the Diagnosis fragments, since the output
of the former, enables the execution of the latter.

Fig. 2. Partial fCM case model for medical consultation: (a) domain model, (b) object
lifecycle for the Patient File, (c) goal state, and (d) process fragments.

3.2 Requirements

As showed in our running example (see Fig. 2), the information within an fCM
case model is scattered between various sub-models. In our experience (e.g. [11]),
this poses a challenge for the readers using the model to answer simple high-
level questions, such as Where does the knowledge-intensive process start? This
issue can be tackled by creating a more abstract view, where some information
from the case model is hidden and some information is made more straightfor-
ward/accessible. For fCM, we name such a view an fCM-landscape (fCML). We
define requirements for fCML based on: (i) particularities of CM and knowledge-
intensive processes as modeled using fCM, (ii) research on Process Overviews,
and (iii) available standards in the fields of CM and Process Overviews. Require-
ments are described in the following and are showed as highlighted elements in
the fCM-language meta-model in Fig. 1:

– Business scenario. Approaches for CM and Process Overviews consider
often a – sometimes implicit – container specifying the limits of what lies
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within the business scenario (e.g. [25]) or process collection (e.g. [18]), respec-
tively. This concept is also important for fCML as it defines a case model as
a container for a set of fragments and data objects to reach a certain goal.
This is showed in the name attribute of the Case model class in Fig. 1.

– Case start. In fCM, the start of a knowledge-intensive process is represented
as a BPMN blank start event in the first fragment that can be executed. Nei-
ther in CMMN nor in Process Overviews is this distinction required, though
it might be represented explicitly as an event listener [25], or implicitly by
the sequence of processes [6] or the input for a process map [18]. However,
we define it as a requirement for fCML due to being relevant for fCM. This
is expressed by the derived attribute isCaseStart of the Event class in Fig. 1.

– Goal state. Another key feature of fCM to be included in the fCML, is the
definition of a data condition for ending the case, represented by the Goal
state class in Fig. 1. This concept relates to process map outputs [18].

– Fragment. The central concept of a Process Overview is the process depicted
as a labeled black box [6,19]. By analogy, the process fragment should be
defined as the central concept of a fCML. This requirement is showed in the
name attribute of the Fragment class in Fig. 1.

– External trigger. Process Overviews consider that processes might be trig-
gered by events [6]. Analogously, we then define that a fCML should provide
information regarding triggering of fragments via external events. This is
showed in the isExtTrigger attribute of the Event class in Fig. 1.

– Pre-requisite. The fact that some fCM fragments need to be data-enabled
to be executed is similar to the concept of processes needing an input in a
Process Overview (e.g. [18]). This fCML requirement is considered in the Has
as Prerequisite derived association in Fig. 1.

– Fragment relations. Data-flow relations between processes are data-related
aspects usually visualized in Process Overviews [19]. A key aspect of fCM is
that the relations between fragments are based on data. Therefore, this con-
cept is considered as an fCML requirement as showed on the Relation derived
association in Fig. 1. Concepts like exclusiveness, sequential dependency, and
interaction proposed by Eid-Sabbagh et al. [7] are of high relevance.

– Fragment optionality. A central aspect of CM are process fragments com-
bination depending on the case at hand. Accordingly, CMMN defines that
some parts of the case model can be discretionary. We rank this concept as
important for end users to highlight the optional fragments which do not need
to be executed for all possible cases. This fCML requirement is showed as the
isOptional derived attribute of class Fragment in Fig. 1.

3.3 Alternatives

Together with fCM [12], a set of languages for Process Overviews and CM
approaches was assessed to find out whether they provided the means to fulfill
the requirements for an fCML previously discussed in Sect. 3. The justification
for selecting these works, is that they are either the industry standards in their
fields – ArchiMate [30] and CMMN [25] –, or they are representative and well
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documented proposals from the research community – Process Architecture by
Eid-Sabbagh [6,7] and Process Maps by Malinova [18]. A summary of the results
is presented in Table 1 and discussed in detail in the following.

Table 1. Alternatives, where �: full support, -: partial support, and X: no support.

ArchiMate
[30]

CMMN
[25]

fCM
[12]

Process
architecture
[6,7]

Process
map
[18]

Business scenario - � - - -

Case start - � � - -

Goal state - X � X -

Fragment - � � - -

External trigger - � � - -

Pre-requisite X - � - -

Fragment relations - - - � -

Fragment optionality - � - - X

ArchiMate. ArchiMate is an architecture description language for enabling
unambiguous description, analysis, and visualization of the relationships among
business domains [30]. This language has become an industry standard for mod-
eling enterprise architectures, and therefore, can be used to model Process Archi-
tectures. As showed in Table 1, ArchiMate supports most of the requirements for
fCML, but only in a partial way due to being a general purpose language.

CMMN. As a modeling standard for CM, CMMN [25] fulfills many of the fCML
requirements, as showed in Table 1. The weak points of CMMN are, however,
those related to data, namely goal state, data pre-requisites, and data-aspects of
fragments relations. An interesting aspect of CMMN is the concept of sentries
(cf. [14]), which stand for entry and exit conditions of fragments.

fCM. The fCM approach [12] has been already described in detail in previous
sections. As showed in Table 1, fCM supports the fCML requirements either
fully or partially. In line with what we have previously discussed, the limitation
of fCM is the scattered information among its various models.

Process Architecture. The approach to Process Architecture by Eid-Sabbagh
[6,7] provides a language for describing process architectures. This language,
however, does not consider goal states, as showed in Table 1. Data consider-
ations are rather implicit in the architecture model: they provide a conceptual
ground for defining some inter-process relations in [7]. Two particularities of this
approach are the strong focus on events and the fact that it defines exclusiveness,
sequential dependency, and interaction between processes.
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Process Map. The Process Map approach by Malinova [18] provides partial sup-
port of most of the fCML requirements, as showed in Table 1. The main limitation
of this language for modeling fCML is, again, related to data. Being a business-
oriented model, data-flow between processes is considered at a very high level
of abstraction, leaving outside details regarding data handling. The language
provides the concept of condition, which semantic is not described in detail, but
that somehow relates to the CMMN notion of sentries.

Results of the analysis proved none of the approaches was entirely suitable for
the task of modeling a fCML. However, they ground our proposal (see Sect. 4).

4 Extension of fCM-Language for Modeling Landscapes

After identifying its requirements, this section introduces the extension of the
fCM-language for modeling a fCML. We decided to re-use notational elements
from BPMN and CMMN – both standards of the Object Management Group –
due to having a high recognition factor by business people working with process
models. We mostly reuse the notational elements of BPMN and CMMN in such a
way that they still have the original meaning. The elements of the proposal, their
semantic meaning, and the notation is given in Table 2. We will introduce the
language extension based on the running example of the medical consultation:
Fig. 3 shows the equivalent fCML for the case model in Fig. 2.

Fig. 3. Case Model Landscape for the medical consultation scenario.

The case model always starts with the Admission fragment, which follows the
blank start event. Each fragment can have a pre-requisit and an output which are
shown as unfilled and filled diamonds at the boarders of the fragments similar to
the entry and exit criteria in CMMN. The pre-requisit describes the condition
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Table 2. Modeling elements of the fCM-language extension for fCML.

Element Description Notation

Business scenario Container of a landscape for a specific case model.

Blank start event Start of a case model. If a new case of the model is instantiated
then it is started with the succeeding process fragment.

Message start event External occurrence of an event, which is relevant for the case.
It enables the start of the succeeding process fragment.

Process fragment,
non-optional

Non-optional process fragment that needs to be executed in
every possible execution of a case model.

Process fragment, op-
tional

Optional process fragment that is not necessarily executed in
every possible execution of a case model.

Pre-requisite Data pre-condition or an event that enables the start of a
process fragment.

Output Output produced by a process fragment, in terms of data. It
is optional to include it if it is not required by another process
fragment.

Connector Causal relation between the elements of the case model.

Logic operator, AND Forking or merging of paths following the logic of a logical
AND-operator.

Logic operator, OR Forking or merging of paths following the logic of a logical
OR-operator.

Data object Data type holding a particular state in which it is available
as an input or an output of a process fragment.

Data object, goal
state

Data condition that must be fulfilled for the case to terminate.
This can also be the combination of data conditions via logic
operators.

End event End of a case model, it is enabled due to achieving the termi-
nation condition of the case model.

that must be satisfied to start a fragment and the output describes the data
outcomes produced by a fragment. The Admission fragment has no data input
condition – it simply starts by initiating a new case – but it produces as output
the PatientFile[created], needed as pre-requisite by the Diagnose fragment.

During the execution of the Diagnose fragment, a PatientFile[further
Diagnosis] can be produced which is visualized by an outgoing arc from the
fragment connected to the data object. If the data object is available, the optional
Biopsy fragment or the optional Tomography fragment, or both can be executed.
This construct is represented by a logical OR-operator connected to the prerequi-
site of both fragments. These two fragments do not need to be executed in every
case, they are optional which is shown by a dotted boarder line similar to the
discretionary tasks/states in CMMN. The output of both fragments can be the
PatientFile in furtherDiagnosis or diagnosed also represented with the help of
a logical OR operator. In case of furtherDiagnosis, the two just discussed frag-
ments can be restarted. In the other case, the Diagnose fragment is continued,
which is shown by the incoming connector into the fragment box.
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This fragment produces as output either the PatientFile in surgeryNeeded
or medicationNeeded triggering the optional fragments Surgery or Medication,
respectively. Both the fragments can produce PatientFile[finished] repre-
senting the goal state of the case model and leading to the end event, the end
of the case model. The Medication fragment can also result in PatientFile
[medicationNeeded] as alternative, re-triggering this fragment.

During the case execution, also a relevant event for this business scenario
can occur – Patient suffers from cardiac arrest. Represented by a message start
event, this event triggers the CPR fragment. It also results in the PatientFile
[medicationNeeded] object. The logical OR connector above this data object
implies that PatientFile[medicationNeeded] can be result of three fragments:
the Diagnose, the Medication, or the CPR fragment. Here, the AND connector
was not applied. This can be used to represent the need of several data objects
to trigger a fragment, or different data objects are produced as output.

5 Evaluation

An experiment was design to assess our proposal. The experimental design is
described in Sect. 5.1, and results are presented and discussed in Sect. 5.2.

5.1 Experimental Design

The independent variable of the experiment is the case modeling language: the
proposed extension vs. the fCM-language (as discusses in Sect. 3.2, no other ana-
lyzed approach supports all requirements). Following [4], the experiment depen-
dent variables are interpretation effectiveness – i.e. how faithfully does the inter-
pretation of the model represents the semantics of the model –, interpretation
effort – i.e. amount of resources needed to interpret the model –, and interpreta-
tion efficiency – quotient of them both. In this regard, the hypotheses we aimed
to test were whether interpretation of case models is less effective (H10), requires
more effort (H20), and is less efficient (H30) when using the fCM-language than
when using the proposed extension. For testing these three hypotheses, we used
paired Wilcoxon signed rank test, the non-parametric version of the paired t-test
(see [13]). The grounds for using non-parametric statistics for data analysis is
that, as showed in Fig. 4, no assumption of normality could be made about the
collected data. Statistical analysis in this study considered a 95% confidence.

The subjects were students from the Hasso Plattner Institute, University of
Potsdam, who were invited to voluntarily join the experiment. These students
are easy accessible representatives of the target audience of case models. To
maximize data collection, the experiment followed a crossover design in which
each subject read a case model of one business scenario in fCM-language (control
treatment or C) followed/preceded by reading a case model of another business
scenario in the proposed extension (experimental treatment or E). The busi-
ness scenarios used were traumatology emergency [22] (H) and organization of
a business trip [11] (B), and their control and treatment model variants were
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designed to be informationally equivalent and were available during the whole
experiment as recommended by Parson and Cole [26]. Altogether, this resulted
in the following four treatments: EH/CB (treatment A), CB/EH (treatment B),
EB/CH (treatment C), and CH/EB (treatment D). For example, treatment A
corresponds to exposure to, firstly, the experimental treatment using the trau-
matology emergency scenario and, secondly, to the control treatment using the
business trip organization scenario. We used block random assignment of the
subjects according to the initial letter of their last name.

The experiment was conducted online using Google Forms2. We first defined
a set of design-time and run-time aspects of case models (e.g. case start, frag-
ment repetition), and then a set of 20 true or false statements addressing those
aspects. For example, to address the case start aspect we formulated the fol-
lowing question: In all cases, fragment X is the first to be executed, where X is
the name of a fragment in a given case model. For each respondent, she was
firstly asked demographic questions. Before reading each model, the respective
language was explained to her, and afterwards she was asked to answer the set
of questions regarding a model of one of the business scenarios. Then this was
repeated for the other business scenario using the other language. Interpretation
effectiveness was measured as the total score of the set of questions (1 point per
correct answer), interpretation effort was measures as the total time (in minutes)
she used to complete the task, and interpretation efficiency was measured as the
quotient of the previous variables.

5.2 Results and Discussion

The 24 subjects of the study were classified as novice or experienced, according
to the modeling courses they had undertaken: one or more. Compared to the
experienced subjects (8 in total), the novice subjects (16 in total) self-reported
lower BPMN and CM experience but higher domain knowledge on the traumatol-
ogy emergency and business trip scenarios. The overall low self-reported domain
knowledge is desirable since it prevents subjects from answering questions based
on prior domain knowledge rather than on model interpretation [4].

Figure 4 summarizes data gathered in the experiment after discarding two
problematic observations. Overall and leaving outside out-layer observations,
data in Fig. 4 for interpretation effectiveness and effort is shifted towards better
performance for our proposal. Regarding average interpretation effectiveness, its
value was slightly higher for the extension (15.8/20 points) than for the fCM-
language (15.5/20 points). Again in average, interpretation effort led to slightly
better results when using the proposal (12 min) in comparison to the fCM-
language (13.3 min). Average interpretation efficiency, consequently, follows the
same pattern of the proposal (1.6 points/min) slightly outperforming the fCM-
language (1.3 points/min). As showed in Fig. 4, it is also possible to observe
a higher dispersion of both scores and time is found for the fCM-language.

2 Forms and raw data available at: https://drive.google.com/drive/folders/1c-
ZZ6HA6H7d7yOgthcoVANLt-wnRfOhS?usp=sharing.

https://drive.google.com/drive/folders/1c-ZZ6HA6H7d7yOgthcoVANLt-wnRfOhS?usp=sharing
https://drive.google.com/drive/folders/1c-ZZ6HA6H7d7yOgthcoVANLt-wnRfOhS?usp=sharing
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This might indicate a desirable feature of the proposal: leading to more con-
sistent interpretation of case models in terms of effectiveness and effort.

Fig. 4. Descriptive statistics of the experimental dependent variables.

Hypothesis testing provided no significant evidence to reject H10
(p = 0.2605), H20 (p = 0.9327), nor H30 (p = 0.7537). This means that the data
in our experiment weakly supports the thesis that the proposed extension out-
performs the fCM-language in effectiveness, effort, or efficiency. We conducted
additional tests to verify aspects that might have influenced the results using
the Spearman rank-order correlation test [13]. By this, we were able to ruled out
the influence of treatment order (first C or E), lecture-based and self-reported
BPMN/CM modeling experience, and self-reported prior domain knowledge. A
limitation of our work is that we ensured similar complexity between the models
used for the experiment – measured as the number of nodes [21] – based only
on control models. However, the experimental versions of the models did not
have a similar number of nodes due to fragment inter-relations leading to hav-
ing treatments with different difficulty levels. A Spearman correlation test then
indicated a significant direct relation between treatment difficulty – valuated as
0 for treatments A and B, and as 1 to treatments C and D – and interpretation
effort (p = 0.0041). We believe that this is an issue that might have negatively
impacted our results and that, avoiding it, might lead to improving significance
of the evidence supporting the benefits of our proposal. An additional aspect
that might contribute to improving our results in future versions of the experi-
ment would be to conduct it in a laboratory setting such that, for example, time
measures are more accurate.

6 Conclusions

This paper provided a new concept for case management by presenting a means
for modeling case model landscapes. This contribution is built upon the creation
of a meta-model for extending the fragment-based Case Management (fCM)
language. A case model landscape (CML) gives end users an integrated, com-
prehensive overview of the high-level activities and the processed data during the
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execution of a knowledge-intensive process instead of the detailed case models
with often scattered information about actions and data in different models. It
can be used to get an understanding, but also to analyze case models, redesign,
or check compliance requirements. As the landscapes builds up on the fCM app-
roach, we tested its interpretation performance in an online experiment with
students. The experiment results implicate that the proposal might improve
interpretation of high-level aspects of case models, and that it may lead to more
consistent interpretation of the models in terms of effectiveness and effort. These
results should be, nonetheless, validated with further experimentation and con-
sider a laboratory environment for having more reliable time data.

The proposed fCM-language extension for CML re-uses notational elements
of the two modeling standards, BPMN (Business Process Modeling and Nota-
tion) and CMMN (Case Management Modeling and Notation), having the advan-
tage that it might be easier understandable by business people working with pro-
cess models. Still, it has the risk of some minor miss-interpretation which need to
be further tested. The proposal could be also used for CMMN models, whereby
stages and their relation could be shown on an abstract level. CMMN repre-
sents data mainly implicitly, our language represents data and data relations
explicitly. Furthermore, the approach might be also interesting for PHILharmon-
icFlows, another relevant case management approach, to represent the relation
between the micro processes. An important concept for PHILharmonicFlows are
the cardinalities between the generated objects. These are only implicitly given
in the proposed landscape by distinguishing between optional and mandatory
fragments, and the possibility to trigger certain fragments more than once. An
explicit representation might be a useful extension. In this work, so far the lan-
guage for CML was presented, but not how to design or automatically derive it.
On this, we want to focus in our future research.
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31. Zensen, A., Küster, J.: A comparison of flexible BPMN and CMMN in practice.

In: EDOC 2018, pp. 105–114. IEEE (2018)

https://doi.org/10.1007/11837862_18
https://doi.org/10.1007/978-3-642-28108-2_37
https://doi.org/10.1007/978-3-319-91563-0_4

	A Landscape for Case Models
	1 Introduction
	2 Related Work
	3 Requirements for a Case Model Landscape
	3.1 Fragment-Based Case Management Language
	3.2 Requirements
	3.3 Alternatives

	4 Extension of fCM-Language for Modeling Landscapes
	5 Evaluation
	5.1 Experimental Design
	5.2 Results and Discussion

	6 Conclusions
	References




