
Argumentation-Based Explanations
for Answer Sets Using ADF

Lena Rolf1 , Gabriele Kern-Isberner1 , and Gerhard Brewka2(B)

1 TU Dortmund, Dortmund, Germany
2 Leipzig University, Leipzig, Germany
brewka@informatik.uni-leipzig.de

Abstract. This paper presents so-called asl-explanation graphs for
answer set programming based on a translation of extended logic pro-
grams to abstract dialectical frameworks (ADF). The graphs show how
a literal can be derived from the program, and they evaluate in an argu-
mentative way why necessary assumptions about literals not contained in
an answer set hold. With the set of all asl-explanation graphs for a literal
and an answer set, it is possible to explain and justify thoroughly why
the literal is or is not contained in that answer set. Additionally, we pro-
vide a criterion to improve the clarity of explanations by pruning nodes
without loss of information and selecting most significant asl-explanation
graphs.

Keywords: Answer set programming ·
Abstract dialectical frameworks · Argumentation · Explanation

1 Introduction

Explainable AI is a highly relevant topic of current research, see e.g. the DARPA
XAI initiative (www.darpa.mil/program/explainable-artificial-intelligence). In
this paper we focus on explanations in answer set programming (ASP). ASP
has been applied to various problems of academic research and industry (cf.
[4]). An example for the use in industry is the generation of teams of employees
for the seaport of Gioia Tauro [7]. The utilization of ASP for decision support
is examined for a lot of additional fields, e.g. physician-advisory systems [3] or
logistics [13], in which ASP-based systems support users that are not familiar
with logic programming. Because logic programs are nonmonotonic, it is difficult
to retrace the results of a solver, i.e. even ASP-knowledgeable persons can some-
times hardly reconstruct why a literal is contained in an answer set. To improve
a user’s acceptance of suggestions by ASP-based decision support systems, it is
helpful to explain why the suggested decision is chosen and alternative solutions,
possibly expected by the user, are not.

This research has been supported by DFG (Research Unit 1513 and BR 1817/7-2).

c© Springer Nature Switzerland AG 2019
M. Balduccini et al. (Eds.): LPNMR 2019, LNAI 11481, pp. 89–102, 2019.
https://doi.org/10.1007/978-3-030-20528-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20528-7_8&domain=pdf
http://orcid.org/0000-0002-8893-235X
http://orcid.org/0000-0001-8689-5391
http://orcid.org/0000-0001-9001-6820
www.darpa.mil/program/explainable-artificial-intelligence
https://doi.org/10.1007/978-3-030-20528-7_8

90 L. Rolf et al.

To provide helpful explanations, in this paper we focus on answering the
question why a literal is or is not in a given answer set with abstract dialectical
frameworks (ADFs), a generalization of Dung argumentation frameworks that
allows for flexible modelling (cf. [1]). We develop a translation from extended
logic programs with constraints to ADFs and show that there is a 1-to-1 rela-
tion between answer sets and stable models of the ADF. The transformation is
used to construct argumentative answer set literal-explanation (asl-explanation)
graphs based on the characterization of stable models by Sylwia Polberg in [10].
Every asl-explanation graph for a literal in an answer set contains a possible
derivation of the literal based on the program and an explanation for why this
derivation is not restrained. Moreover, for a literal not present in an answer set,
asl-explanation graphs reveal why its derivation is inhibited. The set of all asl-
explanation graphs can thus be used to explain why a literal is (not) contained
in the given answer set. Additionally, we propose a criterion based on specificity
to reduce the size and number of explanations. The main contributions of this
paper which is based on [12] are:

– Translation from extended logic programs with constraints to ADF
– Definition of asl-explanation graphs based on positive dependency evaluations

[10]
– Construction of asl-explanations from asl-explanation graphs

The rest of the paper is organized as follows: Sects. 2 and 3 contain back-
ground information on ASP and ADFs and an overview over related work. The
translation from logic programs to ADFs and the relation between answer sets
and stable models are described in Sect. 4. Based on that, the construction of
asl-explanations and the reducing criterion are described in Sect. 5. Section 6
concludes and points out future work.

2 Preliminaries on ASP and ADF

Answer Set Programming. A literal L is an atom A or a strictly-negated
atom ¬A where A is an atomic formula of propositional logic. An extended logic
program P is a set of rules of the form H ← B1, . . . , Bn,notBn+1, . . . , notBn+m.
with m,n ≥ 0 where H, . . . , B1, . . . , Bn+m are literals and Bn+1, . . . , Bn+m

Negation-as-Failure (NAF) literals. Lit(P) denotes the set of all literals in
P . For a rule r, the set {H} is denoted by head(r), the sets {B1, . . . , Bn}
resp. {Bn+1, . . . , Bn+m} are denoted with body+(r) resp. body−(r). Rules with
n+m = 0 are called facts and denoted with H for short, rules with head(r) = ∅
are called constraints. For the remainder of this paper, id is a bijective mapping
that maps a rule of P to an identifier. If not stated otherwise, the function maps
every rule r ∈ P to an identifier of {r1, . . . , r|P |} according to its appearance
in P . As defined in [6], the reduct of P w.r.t. S ⊆ Lit(P) is obtained from
P by (1) deleting every rule H ← B1, . . . , Bn,not Bn+1, . . . , not Bn+m. ∈ P
with {Bn+1, . . . , Bn+m}∩S �= ∅ and (2) deleting all NAF literals in the remain-
ing rules. A set S ⊆ Lit(P) is an answer set of P iff S is the smallest sub-
set of Lit(P) that does not contain any complementary literals A,¬A so that
{B1, . . . , Bn} ⊆ S ⇒ {H} ∩ S �= ∅ holds for every rule H ← B1, . . . , Bn. ∈ PS

Argumentation-Based Explanations for Answer Sets Using ADF 91

Abstract Dialectical Frameworks. According to [2], an Abstract Dialectical
Framework (ADF) is a tuple D = (S,L,C) with a set of statements S, a set of
links L ⊆ S ×S and a set of acceptance conditions C for statements of S. In this
paper, an acceptance condition for a statement s ∈ S is given as a propositional
formula φs on the parents of s, i.e. the statements with direct link to s. For
the rest of the paper, φs(S′) for a set S′ ⊆ S denotes the formula that can
be obtained from φs by replacing every occurrence of a statement s′ with

(tautology) if s′ ∈ S′ and with ⊥ (contradiction) otherwise. As L is implicitly
contained in C, it is not always specified explicitly in the following. M ⊆ S is a
model of D if φm(M) ≡
 ⇔ m ∈ M holds. M is the grounded model of D if it
is the least fixpoint of ΓD(A,R) = (acc(A,R), reb(A,R)) for A,R ⊆ S with

acc(A,R) = {r ∈ S | ∀S′, A ⊆ S′ ⊆ (S \ R) : φr(S′) ≡
}, (1)
reb(A,R) = {r ∈ S | ∀S′, A ⊆ S′ ⊆ (S \ R) : φr(S′) ≡ ⊥}. (2)

M is a stable model of D if M is a model of D and the grounded model of
the reduct DM of D w.r.t. M with DM = (M,L ∩ (M × M), CM) and CM =
{φs[p/⊥ : p /∈ M] | s ∈ M} where every occurrence of a statement p /∈ M in
each formula φs is replaced by ⊥.

3 Related Work

The approach described in this paper is related to the debugging of ASP pro-
grams (e.g. [8,9]) although these approaches reconstruct the computation of
answer sets and aim at locating the source of unexpected behavior by a developer.
Other related approaches in examining the characteristics of a logic program and
understanding its results are based on graph representation of the programs. The
approach in [11] also uses graphs to compute offline-justifications that illustrate
how a literal depends on literals of the answer set for logic programs without
strict negation. The Argument-Based Answer Set Justification in [14] and the
different justifications in [15] use argumentation to explain why a literal is (not)
in an answer set. Both papers use a translation from ASP to an ASPIC+ resp.
assumption-based argumentation framework and construct justifications based
on the arguments of a stable extension and relations between arguments. In [15],
different labels indicate whether literals are facts or NAF-literals and if they
are contained in the underlying stable extension. The approaches in [11,14,15]
have something in common with the approach presented in this paper as they
show different relations between literals, but there are important differences: The
graphs constructed in [11] mainly show recursively how a literal can be derived
from the rules of a program and which literals must not be in the answer set.
The papers [14] and [15] use argumentation frameworks different from ADF for
the translations and provide a different relation between answer sets and sta-
ble extensions. All three papers do not consider strict negation and constraints
explicitly. Similar to the asl-explanation graphs in this paper, the justifications
in [14] and [15] do not consider every literal in a derivation, but they do not

92 L. Rolf et al.

give any criteria to compare justifications, or to reduce their size reasonably to
improve clarity. The criterion presented in this paper is related to the notion
of specificity used in Defeasible Logic Programming that is based on the sets of
facts and defeasible rules in an argument (cf. [5]) while the specificity defined in
this paper takes facts and default negated literals into account.

4 Translations and Relations Between ASP and ADFs

In this section, a translation from a logic program to a corresponding ADF is
presented and it is shown that answer sets of the program correspond exactly
to the stable models of the ADF. To be able to distinguish strict negation for
literals in programs from negation in propositional formulas as used in ADFs, a
mapping + is used that maps a literal to a corresponding statement s.t. an atom
is mapped to itself and a strictly-negated atom ¬A to A resp. a set of literals L
to {L+ | L ∈ L}.

The statement set of an ADF corresponding to a logic program P contains
the identifier of all rules of P , a statement for each literal in Lit(P) and a
statement cmp(A) for every pair of complementary literals A,¬A ∈ Lit(P).
Statements of the form cmp(A) serve the purpose that no model of the ADF
contains statements for complementary literals.

Definition 1 (Translation for extended logic programs). Let P be an
extended logic program and LitC(P) resp. LitR(P) sets of all identifiers of con-
straints resp. rules with non-empty rule-head. Then ADF (P) = (S,C) is the
ADF corresponding to P with:

S ={L+ | L ∈ Lit(P)} ∪ {cmp(A) | A, ¬A ∈ Lit(P)} ∪ LitC(P) ∪ LitR(P)

C ={φid(r) = B+
1 ∧ · · · ∧ B+

n ∧ ¬B+
n+1 ∧ · · · ∧ ¬B+

n+m |
r = H ← B1, . . . , Bn,not Bn+1, . . . , not Bn+m. ∈ P}

∪ {φid(c) = ¬id(c) ∧ B+
1 ∧. . .∧B+

n ∧¬B+
n+1 ∧. . .∧¬B+

n+m |
c =← B1, . . . , Bn,not Bn+1, . . . , not Bn+m. ∈ P}

∪ {φH+ =
∨

{H}=head(r),r∈P
id(r) | H ∈ Lit(P)}

∪ {φcmp(A) = ¬cmp(A) ∧ A ∧ A | A, ¬A ∈ Lit(P)}

We illustrate the construction of ADF (P) in the following example.

Example 1. Let P be the logic program containing exactly the following rules
associated with their rule identifiers:

r1 : bike ← not hurt,not ¬bike. r2 : ¬bike ← far, exhausting.
r3 : ¬bike ← far,not ¬steep,not ebike. r4 : ¬bike ← heat, badWeather.
r5 : car ← not bike,not ¬car. r6 : ¬car ← broke,not children.
r7 : exhausting ← not ¬steep. r8 : badWeather ← winter.
r9 : badWeather ← rainy,not warm. r10 : hurried ← not holidays.
r11 : winter ← not ¬winter. r12 : ¬winter ← not winter.
r13 : ← heat, winter.
r14 : warm. r15 : far. r16 : ebike. r17 : ¬steep. r18 : heat. r19 : broke. r20 : rainy.

Argumentation-Based Explanations for Answer Sets Using ADF 93

The ADF corresponding to P is given below by the set of acceptance conditions
of all statements.
φr1 = ¬hurt ∧ ¬bike φr2 = far ∧ exhausting φr3 = far ∧ ¬steep ∧ ¬ebike
φr4 = heat ∧ badWeather φr5 = ¬bike ∧ ¬car φr6 = broke ∧ ¬children
φr7 = ¬steep φr8 = winter φr9 = rainy ∧ ¬warm
φr10 = ¬holidays φr11 = ¬winter φr12 = ¬winter
φr13 = ¬r13 ∧ heat ∧ winter φr14 = · · · = φr20 = �

φbadWeather = r8 ∨ r9 φbike = r1 φbike = r2 ∨ r3 ∨ r4 φbroke = r19
φcar = r5 φcar = r6 φchildren = ⊥ φebike = r16
φexhausting = r7 φfar = r15 φheat = r18 φholidays = ⊥
φhurried = r10 φhurt = ⊥ φsteep = r17 φrainy = r20
φwarm = r14 φwinter = r11 φwinter = r12

φcmp(bike) = ¬cmp(bike) ∧ bike ∧ bike φcmp(car) = ¬cmp(car) ∧ car ∧ car

φcmp(winter) = ¬cmp(winter) ∧ winter ∧ winter

Obviously, for an acceptance condition φid(r) for a statement id(r) ∈ LitR(P)
and every set M ⊆ Lit(P) it must hold that: φid(r)(M+) ≡
 ⇔ body+(r) ⊆ M
and body−(r) ∩ M = ∅. The acceptance condition for r3 in Example 1, e.g., is
satisfied by every set S′ ⊆ S with far ∈ S′ and {steep, ebike} ∩ S′ = ∅. For
a constraint c, the cyclic dependency caused by the membership of ¬id(c) in
the acceptance condition effects that id(c) ∈ S′ ⇒ φid(c)(S′) ≡ ⊥ for every
statement set S′ ⊆ S thus no model M of the ADF can satisfy body+(c) ⊆ M
and body−(c) ∩ M = ∅. Because of the constraint c =← heat, winter. of P
in Example 1, the corresponding ADF contains a statement r13 with φr13 =
¬r13 ∧ heat ∧ winter. For a set S′ ⊆ S with {heat, winter} ⊆ S′, φr13(S

′) ≡

holds iff r13 /∈ S′ and φr13(S

′) ≡ ⊥ holds iff r13 ∈ S′. Similarly, no model can
contain two statements A,A for complementary literals A,¬A.

ADF (P) has been constructed in such a way that membership of a literal in
an answer set corresponds to membership of the corresponding statement in a
stable model and that answer sets have a 1-to-1 relation to stable models.

Theorem 1. Let P be an extended logic program, ADF (P) = (S,C) the ADF
corresponding to P and S ⊆ S the set of statements corresponding to strictly
negated literals of Lit(P).

1. M is an answer set of P iff M ′ = M+ ∪ {id(r) ∈ LitR(P) | body+(r) ⊆
M, body−(r) ∩ M = ∅} is a stable model of ADF (P).

2. M ′ is a stable model of ADF (P) iff M = {A ∈ Lit(P) | A ∈ M ′ \S}∪{¬A ∈
Lit(P) | A ∈ M ′ ∩ S} is an answer set of P .

Proof sketch. (1) If M is an answer set of P , M ′ is a model of ADF (P) by
construction of the acceptance conditions. It can be shown by induction over
the steps of the Γ-operator that M ′ is the grounded model of ADF (P)M

′
. If M ′

is a stable model of ADF (P), M ′ does not contain statements corresponding
to complementary literals A,¬A ∈ Lit(P) because of the cyclic dependency
in φcmp(A). It can be shown that M satisfies every rule of PM and that, if

94 L. Rolf et al.

M were not minimal, the Γ-operator for ADF (P)M
′

would have accepted a
statement s ∈ S \ M ′. (2) Every stable model of ADF (P) is a subset of {l+ |
l ∈ Lit(P)} ∪ {id(r) ∈ LitR}, because statements of the form cmp(A) or id(c)
for a constraint c cannot be contained in a model of ADF (P) by construction.
The relation thus follows from (1).

Example 2. Program P of Example 1 has one answer set M = {warm, far, heat,
ebike, broke, rainy,¬steep,¬winter, bike,¬car, hurried} thus the corresponding
ADF has the corresponding stable model M ′ = {warm, far, heat, ebike, broke,
rainy, steep, winter, bike, car, hurried, r1, r6, r10, r12, r14, . . . , r20}. M ′ contains
statements for literals in M and the identifiers of those rules whose bodies are
satisfied by M .

5 Construction of Explanations

The construction of asl-explanations is based on the translation presented in
Sect. 4 and the characterization of stable models of ADFs in [10]. Useful defini-
tions from [10] are recalled in the following.

Definition 2 (pdf, cf. [10]). Let D = (S,C) be an ADF, E ⊆ S and N a fixed
symbol. A positive dependency function (pdf) on E is a function pd that maps
every s ∈ E to a tuple (As, Rs) so that (1) As ⊆ E,Rs ⊆ S, (2) φs(S′) ≡
 for
all S′ with As ⊆ S′ ⊆ S \Rs, and (3) pd(s) is minimal1 among all tuples (A,R)
satisfying (1) and (2); or to the symbol N if no tuple (As, Rs) exists.

Definition 3 (pde, [10]). Let D = (S,C) be an ADF, E ⊆ S and pd a pdf on S.
An (acyclic) positive dependency evaluation (pde) on E for a statement e ∈ E is
a tuple

(
(a0, . . . , an), B

)
with an = e and (1) (a0, . . . , an) is a sequence of distinct

elements of E with ∀ai ∈ {a0, . . . , an} : pd(ai) �= N , (2) Ai ⊆ {a0, . . . , ai−1} for
every i ∈ {1, . . . , n} with pd(ai) = (Ai, Ri), A0 = ∅ for pd(a0) = (A0, R0), (3)
B =

⋃n
i=0 Ri with (Ai, Ri) as defined in (2). (a0, . . . , an) is called sequence and

B blocking set of
(
(a0, . . . , an), B

)
.

In this paper, only acyclic pdes are used so a pde is assumed to be acyclic
if not stated otherwise. A pde for a statement s can be interpreted as a part of
an evaluation of the ADF in which s is accepted whenever every statement of
B is rebutted, or in which operator ΓD inserts the statements of the sequence,
including s, in set (1) and the statements of B in set (2) during the recursion.

Definition 4 (Blocking, [10]). Let D = (S,C) be an ADF, E ⊆ S and(
(a0, . . . , an), B

)
a pde on E for a statement e ∈ E. A set X ⊆ S blocks(

(a0, . . . , an), B
)

iff ∃b ∈ B : b ∈ X or ∃s ∈ {a0, . . . , an} : s /∈ X.

Theorem 2 (cf. [10, Theorem 6.12]). Let D = (S,C) be an ADF and E ⊆ S
a model of D. Then E is a stable model of D iff there exists a pde on E for every
e ∈ E that is not blocked by E.
1 I.e., there is no other such tuple (A′

s, R
′
s) with A′

s ⊆ As and R′
s ⊆ Rs.

Argumentation-Based Explanations for Answer Sets Using ADF 95

Proposition 1. Let D = (S,C) be an ADF,
(
(a0, . . . , an), B

)
a pde on S and

M ⊆ S a model of D. Then {a0, . . . , an} ⊆ M if M ∩ B = ∅.
Proof. Let M ∩B = ∅, and assume {a0, . . . , an} �⊆ M . Then there is a statement
ai ∈ {a0, . . . , an} with ai /∈ M and {a0, . . . , ai−1} ⊆ M . Then φai

(S′) ≡

holds for every {a0, . . . , ai−1} ⊆ S′ ⊆ S \ B by Definition 3. Since B ∩ M = ∅,
φai

(M) ≡
 and that causes a contradiction because M is a model of D.

The characterization of stable models by Theorem 2 can be used to evaluate
recursively why a pde is (not) blocked by a set of statements. Because of the
relation between a logic program and the corresponding ADF in Theorem1, the
set of evaluations for all pdes for a given statement w.r.t. a stable model provides
an explanation for why a literal is (not) in the corresponding answer set. Thus
Proposition 1 yields the following helpful corollary.

Corollary 1. Let P be a logic program, ADF (P) its corresponding ADF, M
an answer set of P and M ′ its corresponding stable model of ADF (P). A literal
l ∈ Lit(P) is in M iff there is a pde for the corresponding statement l+ on S
with blocking set B and M ′ ∩ B = ∅.

A justification tree represents an evaluation for a statement w.r.t. a stable
model by recursively checking the pdes of the statements in the blocking set.

Definition 5 (justification tree). Let D = (S,C) be an ADF, M ′ ⊆ S a
stable model of D, s ∈ S a statement and P the set of pdes on S. A justification
tree for s based on P w.r.t. M ′ is a marked tree T = (V,E) such that the
following conditions hold:

– The root node v ∈ V is marked with
• label(v) =

(
(a0, . . . , s), B,+

)
with

(
(a0, . . . , s), B

) ∈ P if M ′ ∩ B = ∅ or
• label(v) =

(
(a0, . . . , s), B,−)

with
(
(a0, . . . , s), B

) ∈ P if M ′ ∩ B �= ∅.
– Every node v ∈ V with label(v) =

(
(a0, . . . , an), B,+

)
has a child node v′ ∈ V

with label(v′) =
(
(a′

0, . . . , a
′
n), B′,−)

for every pde
(
(a′

0, . . . , a
′
n), B′) ∈ P with

a′
n ∈ B. v is a leaf iff no such child exists.

– Every node v ∈ V with label(v) =
(
(a0, . . . , an), B,−)

has exactly one child
node v′ ∈ V for an a′

n ∈ M ′ ∩ B with label(v′) =
(
(a′

0, . . . , a
′
n), B′,+

)
for(

(a′
0, . . . , a

′
n), B′) ∈ P with B′ ∩ M ′ = ∅.

T is positive resp. negative if the root node is marked with + resp. −. A node
v ∈ V with label(v) =

(
(a0, . . . , s), B, l

)
is positive if l = + and negative if l = −.

For a positive node, i.e., a pde that is not blocked by the stable model,
all pdes for possibly blocking statements are evaluated to show that and why
every of them is blocked by the stable model. For a negative node, i.e. a pde
that is blocked by the stable model, one unblocked pde for one statement of the
blocking set is evaluated. Thus there can be different justification trees for the
same pde in the root node that represent different “strategies” how to block the
not contained statements. Note that, by definition, every subtree of a justification
tree is a justification tree.

96 L. Rolf et al.

Lemma 1. Let D = (S,C) be an ADF, s ∈ S, P the set of all pdes on S and
M ′ a stable model of D.

1. There is a positive justification tree for s based on P w.r.t. M ′ iff s ∈ M ′.
2. There is a negative justification tree for s based on P w.r.t. M ′ with root

node v and label(v) =
(
(a0, . . . , s), B,−)

for every pde
(
(a0, . . . , s), B

) ∈ P if
s /∈ M ′.

Lemma 1 states that there is a positive justification tree for a statement s
iff it is contained in the stable model M ′ and that there are otherwise negative
justification trees that show why every pde for s is blocked by M ′. Although
justification trees can be used to explain why a literal is (not) in an answer set
in principle, they are unsuitable for practical use. The main reason for this is
the large number of different pdes for one and the same statement: Definition 3
does not claim minimality of the sequence so that, for an ADF corresponding to
a logic program, the set of rule identifiers in a pde need not be minimal w.r.t.
set inclusion. Thus, a corresponding derivation may contain superfluous rules.

Definition 6. Let P be a logic program, ADF (P) = (S,C) its corresponding
ADF and pde =

(
(a0, . . . , an), B

)
a pde on a set S′ ⊆ S for s ∈ S. pde is

– sequence-minimal iff there is no pde for an = s with a sequence (a′
0, . . . , a

′
m =

an) and {a′
0, . . . , a

′
m} ⊂ {a0, . . . , an}.

– consistent iff (1) there is no A ∈ Lit(P) with A,A ∈ {a0, . . . , an}, and (2)
there is no constraint r with body−(r) = ∅ s.t. body+(r) ⊆ {a0, . . . , an}.
If pdes are interpreted as possible derivations of literals, inconsistent pdes are

derivations that contain complementary literals or a set of literals that ensures
that a constraint body is satisfied, i.e. they require sets of literals that cannot
belong to the same answer set. Because of the construction of the acceptance
conditions, an inconsistent pde can be blocked by every model of the ADF thus
the evaluation of inconsistent pdes does not provide relevant information. For
sake of clarity, a pde for a statement s is transformed into its set representation
that is a tuple consisting of s, the sets of facts resp. rule identifiers in the sequence
and the literals in its blocking set. Other literals which are derived by non-factual
rules are omitted.

Definition 7 (set representation of a pde). Let P be a logic program and
ADF (P) = (S,C) the corresponding ADF. The set representation of a pde(
(a0, . . . , an), B

)
on S with {a0, . . . , an} = Seq is

〈an, Seq ∩ {x+ | x. ∈ P}, B, Seq ∩ {id(r) | r ∈ P}〉
Example 3. p1 =

(
(r18, heat, r11, winter, r8, badWeather, r4, bike), {winter}) is

a pde for the statement bike corresponding to literal ¬bike of program P in
Example 1. Because P contains constraint r =← heat, winter. with body−(r) = ∅
and {winter, heat} = body+(r), p1 is inconsistent. The set representation of p1 is
〈bike, {heat}, {winter}, {r18, r11, r8, r4}〉. (

(r18, heat, r11, winter, r8, r20, rainy,

r9, badWeather, r4, bike), {winter, warm}) is not sequence-minimal. The deriva-
tion uses r8 and r9 with the rule head badWeather so one rule is superfluous.

Argumentation-Based Explanations for Answer Sets Using ADF 97

Definition 8 (asl-explanation graph). Let P be a logic program, ADF (P) =
(S,C) the corresponding ADF, M ′ a stable model of ADF (P), l ∈ Lit(P), P
the set of all consistent, sequence-minimal pdes on S and T = (V,E) a positive
resp. negative justification tree for l+ based on P w.r.t. M ′ and root node w.
Let f be a function that maps a node v with label(v) =

(
(a0, . . . , an), B,m

)

to a tuple
(〈an, F,B,R〉,m)

where 〈an, F,B,R〉 is the set representation of(
(a0, . . . , an), B

)
. A graph G = (V ′, E′) with V ′ = {f(v) | v ∈ V } and

E′ = {(f(v), f(v′)) | (v, v′) ∈ E} is a positive resp. negative asl-explanation
graph for l w.r.t. M ′.

Analogously to justification trees, a node with m = − is called negative, and
positive for m = +. For a positive resp. negative node, the outgoing edges are
called attack edges resp. defense edges. f(w) ∈ V ′ is called goal node of G where
w is the root of T . Every positive node of V ′ \ {f(w)} is called defender in G.

In asl-explanation graphs, only consistent, sequence-minimal pdes are con-
sidered by construction. The use of the set representation reduces the number
of nodes, because two pdes with equal blocking sets and sequences that contain
exactly the same statements, in a possibly different order, are combined to one
node, and provide the most important information in the context of ASP. If the
sets contain many statements, the visualization of the pde becomes confusing.
In that case, for an implementation and use in practice, the number of showed
statements can be limited and the full visualization can be restricted. Despite
of these modifications, the existence of asl-explanation graphs is guaranteed in
a way that is analogous to the existence of justification trees in Lemma1.

〈car, ∅, {bike, car}, {r5}〉,−)

〈car, {broke}, {children}, {r6, r19}〉,+)

Fig. 1. asl-explanation graph G1 for car (see Example 4), the goal node is surrounded
by a dashed line, solid arrows represent defense edges

Example 4. Consider program P and ADF (P) in Example 1 and the stable
model M ′ of ADF (P) (Example 2). Figures 1, 2 and 3 show all asl-explanation
graphs G1, G2, G3 for car w.r.t. M ′. G2 and G3 differ only in the additional
defending node for the pde for ebike that is only contained in G2.

98 L. Rolf et al.

Definition 9 (asl-explanation). Let P be a logic program, ADF (P) the cor-
responding ADF, M an answer set of P , M ′ its corresponding stable model of
ADF (P) and l ∈ Lit(P).

– If l ∈ M , every positive asl-explanation graph for l w.r.t. M ′ is a positive
asl-explanation for l w.r.t. M .

– If l /∈ M , the set of all asl-explanation graphs for l w.r.t. M ′ is the negative
asl-explanation for l w.r.t. M .

〈car, ∅, {bike, car},
{r5}〉,−)

〈bike, ∅, {bike, hurt}, {r1}〉,+)

〈bike, {far}, {ebike, steep},
{r3, r15}〉,−) 〈bike, {far}, {steep},

{r2, r7, r15}〉,−) 〈bike, {rainy, heat},
{warm}, {r4, r9, r18, r20}〉,−)

〈ebike, {ebike}, ∅, {r16}〉,+) 〈steep, {steep}, ∅, {r17}〉,+) 〈warm, {warm}, ∅, {r14}〉,+)

Fig. 2. asl-explanation graph G2 for car (see Example 4), dash-dotted arrows represent
attack edges

Example 5. The set of the asl-explanation graphs depicted in Figs. 1, 2 and 3
is a negative asl-explanation for car w.r.t. the answer set M in Example 2. For
bike, there are two positive asl-explanations w.r.t. M that can be obtained from
G2 resp. G3 in Figs. 2 and 3 by deleting the node

(〈car, ∅, {bike, car}, {r5}〉,−)

and the corresponding edge and setting
(〈bike, ∅, {bike, hurt}, {r1}〉,+)

as goal
node.

An asl-explanation for a literal with respect to an answer set provides an
explanation for why a literal is (not) in the given answer set. A positive asl-
explanation for a literal l w.r.t. an answer set M is a positive asl-explanation
graph and shows how l can be derived from facts and rules in the goal node
and why required NAF-literals can be satisfied with respect to the answer set.
A negative asl-explanation for a literal l w.r.t. an answer set M contains an asl-
explanation graph with a corresponding goal node for every pde for l. A negative
asl-explanation thus provides an explanation for why every possible derivation
of l based on P is blocked by M resp. why there is at least one NAF-Literal
that is necessary for the derivation but is not satisfied with respect to M . The
negative asl-explanation is empty iff there is no pde for l on a set of statements.

Argumentation-Based Explanations for Answer Sets Using ADF 99

〈car, ∅, {bike, car}, {r5}〉,−)

〈bike, ∅, {bike, hurt}, {r1}〉,+)

〈bike, {far}, {ebike, steep},
{r3, r15}〉,−) 〈bike, {far}, {steep},

{r2, r7, r15}〉,−) 〈bike, {rainy, heat},
{warm}, {r4, r9, r18, r20}〉,−)

〈steep, {steep}, ∅, {r17}〉,+) 〈warm, {warm}, ∅, {r14}〉,+)

Fig. 3. asl-explanation graph G3 for car (see Example 4)

Example 5 shows that different positive asl-explanations and the set of
asl-explanation graphs in negative asl-explanations can contain similar rela-
tions between pdes that don’t provide additional information. G1 of Fig. 1
shows how the derivation in the goal node can be inhibited by car resp.
¬car. G2 and G3 in Figs. 2 and 3 show an alternative “defense-strategy”
via bike. The comparison of G2 and G3 shows: The set of defending nodes
in G3 is a proper subset of the set of defending nodes in G2, G3 is thus
a more compact way to defend the positive node with bike. Both graphs
contain nodes n1 =

(〈bike, {far}, {ebike, steep}, {r3, r15}〉,−)
and n2 =(〈bike, {far}, {steep}, {r2, r7, r15}〉,−)

to evaluate why the corresponding pdes
are blocked by the stable model. Intuitively, the evaluation of n1 seems to be
unnecessary because every explanation for why the pde corresponding to n2 can
be blocked is also an explanation for the pde corresponding to n1. To improve
the benefit of asl-explanations in practice w.r.t. these observations, a criterion
to compare pdes is defined.

Definition 10 (specificity). Let ADF (P) = (S,C) be the ADF corresponding
to a logic program P , p =

(
(a0, . . . , an, s), B

)
with set representation 〈s, F,B,R〉

and p′ =
(
(a′

0, . . . , a
′
m, s), B′) with set representation 〈s, F ′, B′, R′〉 two pdes for

s on S. p is more specific than p′ (p � p′) if (1) F ′ ⊆ F and B′ ⊂ B or (2)
F ′ ⊂ F and B′ ⊆ B hold.

Because specificity depends on statements for facts and the blocking set only,
pdes with the same set-representation behave identically w.r.t. specificity. Speci-
ficity is used in Definition 11 to reduce the size of asl-explanation graphs by the
restriction to least resp. most specific pdes for negative resp. positive nodes.

Definition 11 (reduced asl-explanation graph). Let P be a logic program,
ADF (P) its corresponding ADF, M ′ a stable model of ADF (P), G = (V,E)
an asl-explanation graph for l ∈ Lit(P) w.r.t. M ′ and the goal node t. Let G′ =
(V ′, E′) be a subgraph of G with t ∈ V ′ such that the following conditions hold:

1. For every positive node (〈s, F,B,R〉,+) ∈ V ′ and pde p corresponding to
〈s, F,B,R〉 there is no pde p′ that is not blocked by M ′ s.t. p′ � p.

100 L. Rolf et al.

2. For every negative node (〈s, F,B,R〉,−) ∈ V ′ and pde p corresponding to
〈s, F,B,R〉 there is no pde p′ s.t. p � p′.

The subgraph of G′ that contains goal node t, all nodes reachable from t and
associated edges is a reduced asl-explanation graph for l w.r.t. M ′.

Based on reduced asl-explanation graphs, it is possible to build reduced asl-
explanations that can be defined analogously to Definition 9 but based on the
set of reduced asl-explanation graphs only.

〈car, ∅, {bike, car}, {r5}〉,−)

〈bike, ∅, {bike, hurt}, {r1}〉,+)

〈bike, {far}, {steep}, {r2, r7, r15}〉,−) 〈bike, {rainy, heat}, {warm}, {r4, r9, r18, r20}〉,−)

〈steep, {steep}, ∅, {r17}〉,+) 〈warm, {warm}, ∅, {r14}〉,+)

Fig. 4. reduced asl-explanation graph G′
2 for car (see Example 6)

Example 6. For program P in Example 1, there are two reduced asl-explanation
graphs for car w.r.t. the stable model M ′ (see Example 2). The asl-explanation
graph in Fig. 1 is reduced because it does not contain two nodes for the same
literal, the second graph is depicted in Fig. 4. The reduced asl-explanation for
car w.r.t. M thus consists of G1 and G′

2.

A reduced asl-explanation graph contains no nodes with pdes that are com-
parable with respect to specificity (disregarding the goal node). Negative nodes
in reduced asl-explanation graphs correspond to least specific pdes whose block-
ing set is minimal w.r.t. set inclusion. According to the definition of specificity
and asl-explanation graphs, every node that can be linked to a node correspond-
ing to a least specific pde via a defense edge can also be linked to a node for
a more specific pde. The defenders in a reduced asl-explanation graph are thus
particularly meaningful as the evaluation of the blocking set of the least specific
pde explains why more specific pdes are blocked. Positive nodes in reduced asl-
explanation graphs correspond to most specific pdes that are not blocked by the
stable model. The set of evaluated outgoing attack edges for a most specific pde
is a superset of the evaluated attack edges for nodes with a less specific pde. The
evaluation of less specific pdes thus provides no additional information and the
size of an asl-explanation graph can be reduced.

Specificity of pdes may also be used as a criterion to filter the set of positive
resp. negative asl-explanation graphs w.r.t. their information content by compar-
ing the pdes corresponding to the goal nodes and selecting only the graphs with

Argumentation-Based Explanations for Answer Sets Using ADF 101

the most resp. least specific ones. Another criterion to compare asl-explanation
graphs for the same literal and answer set could be the sets of defending nodes.
An asl-explanation graph with a set of defending nodes that is minimal w.r.t.
set inclusion represents a very compact defending strategy. Further details on
these two filtering strategies can be found in [12].

Due to the specificity criterion, the number of considered pdes and asl-
explanation graphs can be reduced. Thus, for larger programs, the size and
number of asl-explanation graphs for a literal do not necessarily increase.

6 Conclusion and Future Work

In this paper we presented asl-explanation graphs as a possibility to compose
argumentative explanations for why a literal is or is not contained in a given
answer set. A prototypical implementation allows one to compute (reduced) asl-
explanations and the visualization of asl-explanation graphs, depending on user
input, and is to provide explanations for logistics applications of ASP [13]. In
[12], an extension of the translation shown in Sect. 4 is presented that is able to
deal with disjunctive rules and cardinality rules, and provides the base for an
adapted definition of asl-explanations. Furthermore, it is shown how the trans-
lation, particularly the statements for complementary literals and constraints,
and (stable) model semantics of ADFs can be used to explain why a given literal
set is not an answer set of the program. Directions for future work can be the
development of further mechanisms to improve clarity, e.g. for non-ground input
programs, or the consideration of other parts of the input language for solvers
as conditional literals or optimization statements.

References

1. Brewka, G., Ellmauthaler, S., Strass, H., Wallner, J.P., Woltran, S.: Abstract
dialectical frameworks. An overview. IFCoLog J. Log. Their Appl. 4(8), 2263–2317
(2017)

2. Brewka, G., Strass, H., Ellmauthaler, S., Wallner, J.P., Woltran, S.: Abstract
dialectical frameworks revisited. Proc. IJCAI 2013, 803–809 (2013)

3. Chen, Z.: Automating disease management using answer set programming pro-
gramming. In: Technical Communications of the 32nd International Conference on
Logic Programming, ICLP 2016 TCs, pp. 22:1–22:10. OASICS (2016)

4. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI
Mag. 37(3), 53 (2016)

5. Garćıa, A.J., Simari, G.R.: Defeasible logic programming: an argumentative app-
roach. Theory Pract. Log. Program. 4(2), 95–138 (2004)

6. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3), 365–385 (1991)

7. Grasso, G., Iiritano, S., Leone, N., Lio, V., Ricca, F., Scalise, F.: An ASP-based
system for team-building in the Gioia-Tauro seaport. In: Carro, M., Peña, R. (eds.)
PADL 2010. LNCS, vol. 5937, pp. 40–42. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-11503-5 5

https://doi.org/10.1007/978-3-642-11503-5_5
https://doi.org/10.1007/978-3-642-11503-5_5

102 L. Rolf et al.

8. Oetsch, J., Pührer, J., Tompits, H.: Catching the ouroboros: on debugging non-
ground answer-set programs. Theory Pract. Log. Program. 10(4–6), 513–529
(2010)

9. Oetsch, J., Pührer, J., Tompits, H.: Stepping through an answer-set program. In:
Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp.
134–147. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20895-
9 13

10. Polberg, S.: Extension-based semantics of abstract dialectical frameworks. CoRR
abs/1405.0406 (2014)

11. Pontelli, E., Son, T.C., El-Khatib, O.: Justifications for logic programs under
answer set semantics. Theory Pract. Log. Program. 9(1), 1–56 (2009)

12. Rolf, L.: Argumentation für Erklärung und Debugging von clingo-ASP-Lösungen
(Argumentation for explaining and debugging of Clingo-ASP-solutions), TU Dort-
mund (2018)

13. Schieweck, S., Kern-Isberner, G., ten Hompel, M.: Various approaches to the appli-
cation of answer set programming in order-picking systems with intelligent vehi-
cles. In: Proceedings of the 9th International Joint Conference on Computational
Intelligence, vol. 1, pp. 25–34 (2017)

14. Schulz, C., Sergot, M., Toni, F.: Argumentation-based answer set justification. In:
Working Notes of the 11th International Symposium on Logical Formalizations of
Commonsense Reasoning (2013)

15. Schulz, C., Toni, F.: Justifying answer sets using argumentation. Theory Pract.
Log. Program. 16(01), 59–110 (2016)

https://doi.org/10.1007/978-3-642-20895-9_13
https://doi.org/10.1007/978-3-642-20895-9_13

	Argumentation-Based Explanations for Answer Sets Using ADF
	1 Introduction
	2 Preliminaries on ASP and ADF
	3 Related Work
	4 Translations and Relations Between ASP and ADFs
	5 Construction of Explanations
	6 Conclusion and Future Work
	References

