
Repair-Based Degrees of Database
Inconsistency

Leopoldo Bertossi1,2(B)

1 RelationalAI Inc., Toronto, Canada
2 Carleton University, Ottawa, Canada

bertossi@scs.carleton.ca

Abstract. We propose and investigate a concrete numerical measure
of the inconsistency of a database with respect to a set of integrity
constraints. It is based on a database repair semantics associated to
cardinality-repairs. More specifically, it is shown that the computation
of this measure can be intractable in data complexity, but answer-set
programs are exhibited that can be used to compute it. Furthermore, its
is established that there are polynomial-time deterministic and random-
ized approximations. The behavior of this measure under small updates
is analyzed, obtaining fixed-parameter tractability results. We explore
abstract extensions of this measure that appeal to generic classes of
database repairs. Inconsistency measures and repairs at the attribute
level are investigated as a particular, but relevant and natural case.

1 Introduction

Intuitively, a relational database may be more or less consistent than other
databases with the same schema, and with respect to the same integrity con-
straints (ICs). This comparison can be accomplished by assigning a measure of
inconsistency to databases, which represents a quantitative degree of satisfaction
of the intended ICs by the database. In this work we propose such an inconsis-
tency measure, we investigate its computational properties, and we propose a
generalization and abstraction that gives rise to a whole family of inconsistency
measures that depend on how consistency is restored.

The problem of measuring inconsistency has been investigated mostly by the
knowledge representation (KR) community, but scarcely by the data manage-
ment community. Furthermore, the approaches and results obtained in KR do
not immediately apply to databases, or do not address problems that are natu-
ral and relevant in databases, such as the computational complexity in terms of
the size of the database, i.e. in data complexity. Actually, several (in)consistency
measures have been considered in KR [20,21,32], mostly for propositional knowl-
edge bases, or have been applied with grounded first-order representations,
obtaining in essence a propositional representation. It becomes interesting to

Member of the “Millenium Institute for Foundational Research on Data” (IMFD,
Chile).

c© Springer Nature Switzerland AG 2019
M. Balduccini et al. (Eds.): LPNMR 2019, LNAI 11481, pp. 195–209, 2019.
https://doi.org/10.1007/978-3-030-20528-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20528-7_15&domain=pdf
http://orcid.org/0000-0002-1144-3179
https://doi.org/10.1007/978-3-030-20528-7_15

196 L. Bertossi

consider inconsistency measures that are closer to database applications, and
whose formulation and computation stay at the relational, first-order level.

In this work we make these ideas concrete by introducing and investigating
a particular and natural inconsistency measure. We provide an approach to the
computation of the inconsistency measure that is based on answer-set program-
ming (ASP) [9], also known as logic programming with stable model semantics
[19]. This is a natural choice since: (a) an inconsistency measure is non-monotonic
in general; (b) the complexity results for its computation show that ASPs provide
the exact expressive and computational power needed to compute this measure;
(c) database repairs are the basis for the measure, and there are already ASPs
that specify them [12] (more on this point below).

The investigation we carry out for the particular inconsistency measure is,
independently from possible alternative measures, interesting per se: In addition
to staying at the relational level, we stress computability and complexity issues
in terms of the size of the database. This provides a pattern for the investigation
of other possible consistency measures, along similar lines. We are not aware
of research that emphasizes computational aspects of inconsistency measures;
and here we start filling in this gap. It is likely that other possible consistency
measures in the relational setting are also polynomially-reducible to the one we
investigate here (or the other way around), and results for one of them can be
leveraged for the others. This is a matter of future research.

The particular inconsistency measure we investigate in detail is motivated by
one used before to measure the degree of satisfaction of functional dependencies
(FDs) in a relational database [25]. We extend and reformulate it in terms of
database repairs that are based on tuple deletions.1 As such, it can be applied to
the larger class of denial constraints [3], and even more, to any class of monotonic
ICs (in the sense that, as the database grows, only more violations can be added).
However, this measure can also be applied to non-monotonic classes of ICs, such
as inclusion- and tuple-generating dependencies, as long as we repair, i.e. restore
consistency, only through tuple deletions.2 Actually, the connection between the
inconsistency measure and database repairs motivates our use of ASPs for its
computation: We can rely on ASPs that specify and compute the repairs of a
database (cf. [3] for a survey and references).

The particular connection of the inconsistency measure and a particular class
of database repairs is used here as a basis for proposing more general and abstract
inconsistency measures, which have origin in different classes of repairs. From
this point of view, we can capture the intuition that the inconsistency degree
of a database D with respect to (wrt.) a set of ICs Σ depends on how complex
it is to restore consistency (as represented by the admissible class of repairs of
D wrt. Σ). More technically, our take is that a degree of inconsistency depends

1 Intuitively, a repair of an inconsistent database D is an alternative instance for the
same schema that satisfied the given ICs, and is “maximally close” to D.

2 The measure can be easily redefined using the symmetric difference between the
original database and the repairs when tuple insertions are also allowed as repair
actions.

Repair-Based Degrees of Database Inconsistency 197

upon a repair semantics, and then, on the admissible repair actions, and on how
close we want stay to the instance at hand.

Our main contributions are the following: (a) We introduce an inconsistency
measure that is based on cardinality-repairs (Sect. 3). (b) We introduce answer-
set programs to compute the inconsistency-measures (Sect. 4); and we show that
they provide the required expressive power (Sect. 5). (c) We obtain data complex-
ity results for the inconsistency measure, showing that its computation (as a deci-
sion problem) is NP-complete for denial constraints (DCs) and some classes of
FDs (Sect. 5). (d) We obtain deterministic and randomized PTIME approxima-
tion results for the inconsistency measure, with approximation ratio d (Sect. 5).
(e) We establish that the inconsistency measure behaves well under updates, in
that small updates keep the inconsistency measure within narrow boundaries.
Furthermore, we establish that the computation of the inconsistency measure
is fixed-parameter tractable when one starts with a consistent instance, and
the parameter is the number of updates (Sect. 6). (f) We introduce a general
inconsistency-measure based on an abstract repair-semantics (Sect. 7), and we
instantiate it using attribute-based repairs (Sect. 8). (g) We briefly introduce a
causality-based notion of contribution of individual tuples to the inconsistency
of the database (Sect. 9). All the proofs, additional examples, and an extended
discussion can be found in the extended version of this work [1]. All the com-
plexity statements refer to data complexity, i.e. in the size of the DB instance at
hand.

2 Background on Relational Databases and Repairs

A relational schema R contains a domain of constants, C, and a set of predicates
of finite arities, P. R gives rise to a language L(R) of first-order (FO) predicate
logic with built-in equality, =. Variables are usually denoted with x, y, z, ...,
and finite sequences thereof with x̄, ...; and constants with a, b, c, ..., etc. An
atom is of the form P (t1, . . . , tn), with n-ary P ∈ P and t1, . . . , tn terms, i.e.
constants, or variables. An atom is ground (a.k.a. a tuple) if it contains no
variables. A DB instance, D, for R is a finite set of ground atoms; and it serves
as an interpretation structure for L(R).

A conjunctive query (CQ) is a FOformula, Q(x̄), of the form ∃ȳ (P1(x̄1 ∧
· · · ∧ Pm(x̄m)), with Pi ∈ P, and (distinct) free variables x̄ := (

⋃
x̄i) � ȳ. If Q

has n (free) variables, c̄ ∈ Cn is an answer to Q from D if D |= Q[c̄], i.e. Q[c̄]
is true in D when the variables in x̄ are componentwise replaced by the values
in c̄. Q(D) denotes the set of answers to Q from D. Q is a boolean conjunctive
query (BCQ) when x̄ is empty; and when true in D, Q(D) := {true}. Otherwise,
it is false, and Q(D) := ∅. Sometimes CQs are written in Datalog notation as
follows: Q(x̄) ← P1(x̄1), . . . , Pm(x̄m).

We consider as integrity constraints, i.e. sentences of L(R): (a) denial
constraints (DCs), i.e. of the form κ : ¬∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)), where
Pi ∈ P, and x̄ =

⋃
x̄i; and (b) functional dependencies (FDs), i.e. of the form

198 L. Bertossi

ϕ : ¬∃x̄(P (v̄, ȳ1, z1) ∧ P (v̄, ȳ2, z2) ∧ z1 �= z2).3 Here, x̄ = ȳ1 ∪ ȳ2 ∪ v̄ ∪ {z1, z2},
and z1 �= z2 is an abbreviation for ¬z1 = z2. A key constraint (KC) is
a conjunction of FDs:

∧k
j=1 ¬∃x̄(P (v̄, ȳ1) ∧ P (v̄, ȳ2) ∧ yj

1 �= yj
2), with k =

|ȳ1| = |ȳ2|, and generically yj stands for the jth variable in ȳ. For example,
∀x∀y∀z(Emp(x, y) ∧ Emp(x, z) → y = z), is an FD (and also a KC) that could
say that an employee (x) can have at most one salary. This FD is usually writ-
ten as EmpName → EmpSalary . In the following, we will include FDs and key
constraints among the DCs. If an instance D does not satisfy the set Σ of DCs
associated to the schema, we say that D is inconsistent, which is denoted with
D � |= Σ.

When a database instance D does not satisfy its intended ICs, it is repaired,
by deleting or inserting tuples from/into the database. An instance obtained in
this way is a repair of D if it satisfies the ICs and minimally departs from D [3]. In
this work, mainly to fix ideas and simplify the presentation, we consider mostly
sets Σ of ICs that are monotone, in the sense that D � |= Σ and D ⊆ D′ imply
D′ � |= Σ. This is the case for DCs.4 For monotone ICs, repairs are obtained by
tuple deletions (later on we will also consider value-updates as repair actions).
We introduce the most common repairs of databases wrt. DCs by means of an
example.

Example 1. The DB D = {P (a), P (e), Q(a, b), R(a, c)} is inconsistent wrt. Σ
containing the DCs κ1 : ¬∃x∃y(P (x) ∧ Q(x, y)), and κ2 : ¬∃x∃y(P (x) ∧
R(x, y)). Here, D � |= {κ1, κ2}.

A subset-repair, in short S-repair, of D wrt. Σ is a ⊆-maximal subset of
D that is consistent, i.e. no proper superset is consistent. The following are S-
repairs: D1 = {P (e), Q(a, b), R(a, c)} and D2 = {P (e), P (a)}. Under this repair
semantics, both repairs are equally acceptable. A cardinality-repair, in short a
C-repair, is a maximum-cardinality S-repair. D1 is the only C-repair. �

For an instance D and a set Σ of DCs, the sets of S-repairs and C-repairs
are denoted with Srep(D,Σ) and Crep(D,Σ), resp. It holds: Crep(D,Σ) ⊆
Srep(D,Σ). More generally, for a set Σ of ICs, not necessarily DCs, they can
be defined by (cf. [3]): (a) Srep(D,Σ) = {D′ : D′ |= Σ, and D � D′

is minimal under set inclusion}; and (b) Crep(D,Σ) = {D′ : D′ |= Σ, and
D�D′ is minimal in cardinality}. Here, D�D′ is the symmetric set-difference
(D � D′) ∪ (D′

� D).

3 An Inconsistency Measure

In this section we consider a concrete inconsistency measure. It is natural, and
has been consider already in knowledge representation [21], but its investigation

3 The variables in v̄ do not have to go first in the atomic formulas; what matters is
keeping the correspondences between the variables in those formulas.

4 Put in different terms, a DC is associated to (or is the negation of) a conjunctive
queries Q, which is monotone in the usual sense: D |= Q and D ⊆ D′ ⇒ D′ |= Q.

Repair-Based Degrees of Database Inconsistency 199

in a database context has not been undertaken yet. It has also appeared in
[25], as measure g3, among other possible measures and in a restricted form in
relation to the satisfaction of FDs, but it was not analyzed much. Its analysis
in terms of applicability and properties in the context of DBs, that we here
undertake, should serve as a pattern to follow for the analysis of other possible
inconsistency measures for DBs. To fix ideas, we consider only DCs. For them,
the repair semantics Srep(D,Σ) and Crep(D,Σ) provide repairs D′ that are is
maximally contained in the initial instance D. On this basis, we define:

inc-degs,g3(D,Σ) :=
|D| − max{|D′| : D′ ∈ Srep(D,Σ)}

|D| , (1)

inc-degc,g3(D,Σ) :=
|D| − max{|D′| : D′ ∈ Crep(D,Σ)}

|D| . (2)

The first is relative to S-repairs and the second, to C-repairs.

Example 2. (Example 1 cont.) Here, Srep(D,Σ) = {D1,D2}, and Crep(D,Σ) =
{D1}. They provide the inconsistency degrees:

inc-degs,g3(D, Σ) =
4 − |D1|

4
=

1

4
, and inc-degc,g3(D, Σ) =

4 − |D1|
4

=
1

4
.
�

It holds Crep(D,Σ) ⊆ Srep(D,Σ), but max{|D′| : D′ ∈ Crep(D,Σ)} =
max{|D′| : D′ ∈ Srep(D,Σ)}, so it holds inc-degs,g3(D,Σ) = inc-degc,g3(D,Σ).
This measure always takes a value between 0 and 1. The former when D is con-
sistent (so it itself is its only repair). This measure will be generalized in Sect. 7.
Before that, in the next sections we investigate this measure of inconsistency.

4 ASP-Based Computation of the Inconsistency Measure

We concentrate here on the computation of the inconsistency measure
inc-degc,g3(D,Σ) in (2), which appeals to repairs in Crep(D,Σ). This can be
done through a compact specification of repairs by means of ASPs.5 More pre-
cisely, given a database instance D and a set of ICs Σ (not necessarily DCs),
it is possible to write an ASP whose intended models, i.e. the stable models or
answer sets, are in one-to-one correspondence with the S-repairs of D wrt. Σ
(cf. [12] for a general formulation). Here we show only some cases of ICs and
examples. In them we use, only to ease the formulation and presentation, global
unique tuple identifiers (tids), i.e. every tuple R(c̄) in D is represented as R(t; c̄)
for some integer (or constant) t that is not used by any other tuple in D.

If Σ is a set of DCs containing κ : ¬∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)), we first
introduce for a predicate Pi of the database schema, a nickname predicate P ′

i

that has, in addition to a first attribute for tids, an extra, final attribute to

5 This approach was followed in [2] to compute maximum responsibility degrees of
database tuples as causes for violations of DCs, appealing to a causality-repair con-
nection [7].

200 L. Bertossi

hold an annotation from the set {d, s}, for “delete” and “stays”, resp. Nickname
predicates are used to represent and compute repairs. Next, the repair-ASP,
Π(D,Σ), for D and Σ contains all the tuples in D as facts (with tids), plus the
following rules for κ:

P ′
1(t1; x̄1, d) ∨ · · · ∨ P ′

m(tn; x̄m, d) ← P1(t1; x̄1), . . . , Pm(tm; x̄m).
P ′

i (ti; x̄i, s) ← Pi(ti; x̄i), not P ′
i (ti; x̄i, d). i = 1, · · · ,m.

A stable model M of the program determines a repair D′ of D: D′ :=
{P (c̄) |P ′(t; c̄, s) ∈ M}, and every repair can be obtained in this way [5,12].

For an FD in Σ, say ϕ : ¬∃xyz1z2vw(R(x, y, z1, v) ∧ R(x, y, z2, w) ∧ z1 �= z2),
which makes the third attribute functionally depend upon the first two, the
repair program contains the rules:

R′(t1;x, y, z1, v, d) ∨ R′(t2;x, y, z2, w, d) ← R(t1;x, y, z1, v), R(t2;x, y, z2, w),
z1 �= z2.

R′(t;x, y, z, v, s) ← R(t;x, y, z, v), not R′(t;x, y, z, v, d).

For DCs and FDs, the repair programs can be made normal, i.e. non-disjunctive,
by moving all the disjuncts but one, in turns, in negated form to the body of the
rule [12]. For example, the rule P (a) ∨ R(b) ← Body , can be written as the two
rules P (a) ← Body ,not R(b) and R(b) ← Body ,not P (a).6 Still the resulting
program can be non-stratified if there is recursion via negation [18], e.g. for FDs
and DCs with self-joins.

Example 3. (Example 1 cont.) The initial instance with tids is D =
{P (1, e), P (2, a), Q(3, a, b), R(4, a, c), }. The repair program contains the fol-
lowing rules, with the first and second for κ1 and κ2, resp.:

P ′(t1;x, d) ∨ Q′(t2;x, y, d) ← P (t1;x), Q(t2;x, y).
P ′(t1;x, d) ∨ R′(t2;x, y, d) ← P (t1;x), R(t2;x, y).

P ′(t;x, s) ← P (t;x), not P ′(t;x, d). etc.

The repair program Π(D, {κ1, κ2}) has the stable models: M1 = {P ′(1, e, s),
Q′(3, a, b, s), R′(4, a, c, s), P ′(2, a, d)} ∪ D and M2 = {P ′(1, e, s), P ′(2, a, s),
Q′(3, a, b, d), R′(4, a, c, d)} ∪ D, which correspond to the S-repairs D1,D2, resp. �

In order to compute inc-degc,g3(D,Σ) via C-repairs, we need to specify the latter,
which can be achieved by adding to Π: (a) rules to collect the tids of deleted
tuples; (b) a rule with aggregation to compute the number of deleted tuples; and
(c) a weak program-constraint (WC) [26] that eliminates all the stable models
(equivalently, S-repairs) that violate the body of the WC a non-minimum number
of times:

(a) Del(t) ← P ′
i (t, x̄i, d). i = 1, . . . , m

(b) NumDel(n) ← #count{t : Del(t)} = n. (c) :∼ Del(t).

6 This transformation preserves the semantics, because these repair-ASPs turn out to
be head-cycle-free [12].

Repair-Based Degrees of Database Inconsistency 201

With them, in each model of the program the tids of deleted tuples are col-
lected and counted; only the models where the number of deletions is a minimum
are kept.7 With the WC we keep only cardinality repairs, but not the S-repairs
that are maximal, but not maximum subinstances of D.

Example 4. (Example 3 cont.) If we add to Π the rule Del(t) ← R′(t, x, y, d),
similarly for Q′ and P ′; and the rule counting the deleted tuples, NumDel(n) ←
#count{t : Del(t)} = n, the stable model M1 of the original program would be
extended with the atoms Del(2),NumDel(1). Similarly for M2. If we also add
the WC :∼ Del(t), only (the extended) model M1 remains. It corresponds to
the only C-repair. �

The value for NumDel in any of the remaining models can be used to compute
inc-degc,g3(D,Σ). So, there is no need to explicitly compute all stable models,
their sizes, and compare them. This value can be obtained by means of the
query “: − NumDel(x)?”, answered by the extended program under the brave
semantics (returning answers that hold in some stable model). An extended
example with DLV-Complex [11,26] is shown in the extended version [1].

Brave reasoning under ASPs with weak constraints is ΔP
2 (log(n))-complete in

data complexity, i.e. in the size of the database [10]. As we will see in Sect. 5 (cf.
Theorem 1), this complexity matches the intrinsic complexity of the computation
of the inconsistency measure.

5 Complexity of the Inconsistency Measure Computation

We recall that the functional complexity class FPNP(log(n)) contains computation
problems whose counterparts as decision problems are in the class PNP(log(n)),
i.e. they are solvable in polynomial time with a logarithmic number of calls to
an NP -oracle [30].

Theorem 1. For DCs, computing inc-degc,g3(D,Σ) belongs to the functional
class FPNP(log(n)); and there is a relational schema and a set of DCs Σ for which
computing inc-degc,g3(D,Σ) is FPNP(log(n))-complete (in data complexity). �

This result still holds for a set F of two FDs of the form: A → B, B → C
[1], which deserves a comment: In [27] it is established that if a set of FDs is
“simplifiable”, then a C-repair can be computed in polynomial time. Clearly
if we can build such a repair, we can immediately compute the inconsistency
measure in polynomial time (one C-repair suffices). As expected, the set F is
not simplifiable.

7 If we had a (hard) program-constraint instead, written ← Del(t), we would be pro-
hibiting the satisfaction of the rule body (in this case, deletions would be prohibited),
and we would be keeping only the models where there are no deletions. This would
return no model or the original D depending on whether D is inconsistent or not.

202 L. Bertossi

Remark 1. In the following we make use several times of the fact that, for a set Σ
of DCs and an instance D, one can build a conflict-hypergraph, CG(D,Σ), whose
vertices are the tuples in D and hyperedges are subset-minimal sets of tuples
that simultaneously participate in the violation of one of the DCs in Σ [13,28].
More precisely, for a DC κ : ¬∃x̄(P1(x̄1) ∧ . . . ∧ Pl(x̄l)) in Σ, S ⊆ D forms a
hyperedge, if S satisfies the BCQ associated to κ, Qκ ← P1(x̄1), . . . , Pl(x̄l), and S
is subset-minimal for this property.8 A C-repair turns out to be the complement
of a minimum-size vertex cover for the conflict-hypergraph; equivalently, of a
minimum-size hitting-set for the set of hyperedges; or, equivalently, a maximum-
size independent set of CG(D,Σ). �

The complexity results above show that the normal ASPs introduced in
Sect. 4 have the right expressive power to deal with the computational problem
at hand. Despite the high-complexity results above, there is a good polynomial-
time algorithm, appID , that approximates inc-degc,g3(D,Σ).

Theorem 2. There is a polynomial-time, deterministic algorithm that returns
an approximation appID(D, Σ) to inc-degc,g3(D,Σ), with the maximum number
d of atoms in a DC in Σ as constant factor: appID(D,Σ) ≤ d×inc-degc,g3(D,Σ).

�

Another approach to the approximate computation of the inconsistency mea-
sure is based on randomization applied to a relaxed, linear-programming version
of the hitting-set (HS) problem for the set of d-bounded hyperedges (or, equiva-
lently, as vertex-covers in hypergraphs with d-bounded hyperedges). In our case,
this occurs when each of the DCs in Σ has a number of atoms bounded by d. In
this case, we say Σ is d-bounded, and the hyperedges in the conflict-hypergraph
have all size at most d. The algorithm in [15] returns a “small”, possibly non-
minimum HS, which in our case is a set of database tuples whose removal from
D restores consistency. The size of this HS approximates the numerator of the
inconsistency measure.

Proposition 1. There is a polynomial-time, randomized algorithm that
approximates inc-degc,g3(D,Σ) within a ratio d, and with probability 3

5 . �

In this result, d is determined by the fixed set of DCs, and does not depend
on D. Actually, as shown in [15], the ratio of the algorithm can be improved
to (d − 8

Δ), where Δ ≤ 1
4 |D| 1

4 , and d is the maximum degree of a vertex, i.e.
in our case the maximum number of tuples that co-violate a DC.9 For FDs we
have conflict-graphs, and d = 2.

8 More technically, each DC κ : ¬∃x̄(P1(x̄1) ∧ . . . ∧ Pl(x̄l) ∧ . . .) gives rise to con-
junctive queries Qκ

Pl
(x̄l) ← P1(x̄1), . . . , Pl(x̄l), A tuple P (ā) participates in the

violation of κ if ā is an answer to Qκ
P (x̄).

9 It is known that there is no polynomial-time approximation with ratio of the form
(d − ε) for any constant ε [24].

Repair-Based Degrees of Database Inconsistency 203

6 Inconsistency Degree Under Updates

Let us assume we have a inc-degs,g3(D,Σ) for an instance D and a set of DCs Σ.
If, possibly virtually or hypothetically for exploration purposes, we insert m new
tuples into D, the resulting instance, D′, may suffer from more IC violations than
D. The question is how much can the inconsistency measure change. The next
results tell us that the inconsistency degree does not experiments unexpected
jumps under small updates. They can be seen as a sensitivity analysis, and the
result as a continuity property of the inconsistency measure.

Proposition 2. Given an instance D and a set Σ of DCs, if ε × |D| new tuples
are added to D, with 0 < ε < 1, obtaining instance D′, then inc-degc,g3(D′, Σ) ≤
inc-degc,g3(D,Σ) + 1

1+ 1
ε

; and inc-degc,g3(D,Σ) ≤ 1
1−ε × inc-degc,g3(D′, Σ). �

When tuples are deleted, the number of DC violations can only decrease,
but also the reference size of the database decreases. However, the inconsistency
degree stays within a tight upper bound.

Proposition 3. Given an instance D and a set Σ of DCs, if ε × |D| tuples are
deleted from D, with 0 < ε < 1, obtaining instance D′, then inc-degc,g3(D′, Σ) ≤
1

1−ε × inc-degc,g3(D,Σ); and inc-degc,g3(D,Σ) ≤ 1
1−ε × inc-degc,g3(D′, Σ) + ε.

The last term can be dropped if the tuples deleted form D did not participate
in DC violations. �

A natural situation occurs when D is consistent wrt. a set Σ of DCs, and one
adds a set U of m tuples (deletions will not affect consistency). It turns out that
if Σ is d-bounded, then computing the inconsistency measure is fixed-parameter
tractable [16], where the fixed parameter is m.

Theorem 3. For a fixed set of d-bounded DCs Σ, a database D that is consis-
tent wrt. Σ, and U a set of extra tuples, computing inc-degc,g3(D ∪ U,Σ) is fixed-
parameter tractable with parameter m = |U |. More precisely, there is an algo-
rithm that computes the inconsistency measure in time O(log(m)×(Cm+mN)),
where N = |D|, m = |U |, and C is a constant that depends on d.
�

The complexity is exponential in the number of updates, but linear in the
size of the initial database. In many situations, m would be relatively small in
comparison to |D|.

7 Repair Semantics and Inconsistency Degrees

In general terms, a repair semantics S for a schema R that includes a set Σ of ICs
assigns to each instance D for R (which may not satisfy Σ), a class RepS(D,Σ)
of S-repairs of D wrt. Σ. These are the instances for R that satisfy Σ and
minimally depart from D according to some minimization criterion. Beside the
repairs introduced in Example 1, several repair semantics have been investigated,
e.g. prioritized repairs [31], attribute-based repairs that change attribute values

204 L. Bertossi

by other data values [33], or by a null value, NULL, as in SQL databases [2]. The
latter will be retaken in Sect. 8.

According to our take on how an inconsistency degree depends on database
repairs, we define the inconsistency degree of an instance D wrt. a set of ICs Σ
in relation to a given repair semantics S. Namely, as the distance from D to the
class RepS(D,Σ):

inc-degS(D,Σ) := dist(D,RepS(D,Σ)). (3)

This is an abstract measure that depends on S and a numerical function that
gives the distance, dist(W,W), from a world W to a set W of possible worlds,
which in this case are database instances. Under the assumption that any repair
semantics should return D when D is consistent wrt. Σ and dist(D, {D}) = 0,
a consistent instance D should have 0 as inconsistency degree.10

The class RepS(D,Σ) might contain instances that are not sub-instances of
D, for example, for different forms of inclusion dependencies (INDs) we may want
to insert tuples;11 or even under DCs, we may want to appeal to attribute-based
repairs. In the rest of this section, we consider only repairs that are sub-instances
of the given instance. Still this leaves much room open for different kinds of
repairs. For example, we may prefer to delete some tuples over others [31]. Or,
as in database causality [7,29], the database can be partitioned into endogenous
and exogenous tuples, assuming we have more control on the former, or we trust
more the latter; and we prefer endogenous repairs that delete only, or preferably,
endogenous tuples [2]. The consistency measure we have investigated so far can
be defined with an abstract class RepS(D,Σ):

inc-degS,g3(D, Σ) := distg3(D,RepS(D, Σ)) :=
|D|−max{|D′| : D′ ∈ RepS(D, Σ)}

|D|

=
min{|D � D′| : D′ ∈ RepS(D, Σ)}

|D| . (4)

This measure can be applied more generally as a “quality measure”, not only
in relation to inconsistency, but also whenever possibly several intended “quality
versions” of a dirty database exist, e.g. as determined by additional contextual
information [8]. Particularly prominent is the instantiation of (4) on S-repairs
(cf. Sect. 3).

The measure in (4) takes the value 1 only when RepS(D,Σ) = ∅ (assuming
that max{ |D′| : D′ ∈ ∅} = 0), i.e. the database is irreparable, which is never
the case for DCs and S-repairs: there is always an S-repair. However, it could
be irreparable with different, but related repair semantics. As mentioned before,
in database causality [29] tuples can be endogenous or exogenous, being the
former those we can play with, e.g. applying virtual updates on them, producing
10 Abstract distances between two point-sets are investigated in [14], with their com-

putational properties. Our setting is a particular case.
11 For INDs repairs based only on tuple deletions can be considered [13].

Repair-Based Degrees of Database Inconsistency 205

counterfactual scenarios. One can define endogenous repairs as those obtained
updating only endogenous tuples [7].

Example 5. (Example 2 cont.) Assume D is partitioned into endogenous and
exogenous tuples, say resp. D = Dn

.∪ Dx, with Dn = {Q(a, b), R(a, c)}
and Dx = {P (a), P (e)}. In this case, the endogenous-repair semantics that
allows only a minimum number of deletions of endogenous tuples, defines
the class of repairs: Crepn(D,Σ) = {D2}, with D2 as above. In this case,12

inc-degc,n,g3(D,Σ) = 4−2
4 = 1

2 . Similarly, if now Dn = {P (a), Q(a, b)} and Dx =
{P (e), R(a, c)}, there are no endogenous repairs, and inc-degc,n,g3(D,Σ) = 1.

�

8 Adapting inc-degs,g3 to Attribute-Based Repairs

Database repairs that are based on changes of attribute values in tuples have
been considered in [6,33], and implicitly in [4]. In this section we adapt the incon-
sistency measure we have considered so far, to make it depend upon attribute-
repairs. We emphasize that these repairs may not be subinstances of the initial
instance even in the presence of DCs. We rely here on repairs introduced in [2],
which we show with an example.13

Example 6. For the database instance D = {S(a2), S(a3), R(a3, a1), R(a3, a4),
R(a3, a5)}, and the DC κ : ¬∃x∃y(S(x) ∧ R(x, y)), it holds D � |= κ. Notice
that value a3 matters here in that it enables the join, e.g. D |= S(a3) ∧ R(a3, a1),
which could be avoided by replacing it by a null value as used in SQL databases.

More precisely, for the instance D1 = {S(a2), S(a3), R(null , a1), R(null , a4),
R(null , a5)}, where null stands for the null value, which cannot be used to sat-
isfy a join, it holds D1 |= κ. Similarly with D2 = {S(a2), S(null),R(a3, a1),
R(a3, a4), R(a3, a5)}, and D3 = {S(a2), S(null), R(null , a1), R(null , a4),
R(null , a5)}, among others obtained from D through replacement of attribute
values by null.
�

In relation to the special constant null we assume that all atoms with built-in
comparisons, say null θ null , and null θ c, with c a non-null constant, are all false
for θ ∈ {=, �=, <,>, . . .}. In particular, since a join, say R(. . . , x) ∧ S(x, . . .), can
be written as R(. . . , x) ∧ S(x′, . . .) ∧ x = x′, it can never be satisfied through
null. This assumption is compatible with the use of NULL in SQL databases (cf.
[5, sect. 4] for a detailed discussion, also [4, sect. 2]). Changes of attribute values
by null as repair actions offer a natural and deterministic solution. It appeals to
the generic data value used in SQL databases to represent the uncertainty and
12 For certain forms of prioritized repairs, such as endogenous repairs, the normalization

coefficient |D| might be unnecessarily large. In this particular case, it might be better
to use |Dn|.

13 We believe the developments in this section could be applied to inconsistency mea-
sures based on repairs that update attribute values using other constants from the
domain [6,33].

206 L. Bertossi

incompleteness of the database that inconsistency produces. In order to keep
track of changes, we introduce numbers as first arguments in tuples, as global,
unique tuple identifiers (tids).

Example 7. (Example 6 cont.) With tids D becomes D = {S(1; a2), S(2; a3),
R(3; a3, a1), R(4; a3, a4), R(5; a3, a5)}; and D1 becomes D1 = {S(1; a2),
S(2; a3), R(3;null , a1), R(4;null , a4), R(5;null , a5)}. The changes are collected
in Δnull(D,D1) := {R[3; 1], R[4; 1], R[5; 1]}, showing that (the original)
tuple (with tid) 3 has its first-argument changed into null , etc. Similarly,
Δnull(D,D2) := {S[2; 1]}, and Δnull(D,D3) := {S[2; 1], R[3; 1], R[4; 1], R[5; 1]}.

D1 and D2 are the only repairs based on attribute-value changes (into null)
that are minimal under set inclusion of changes. More precisely, they are consis-
tent, and there is not other consistent repaired version of this kind D′ for which
Δnull(D,D′) � Δnull(D,D1). Similarly for D2. We denote this class of repairs
(and the associated repair semantics) by Srepnull(D,Σ). Since Δnull(D,D1) �

Δnull(D,D3), D3 /∈ Srepnull(D, {κ}). So, Srepnull(D, {κ}) = {D1,D2}.
As with S-repairs, we can consider the subclass of repairs that minimize

the number of changes, denoted Crepnull(D,Σ). In this example, Crepnull

(D, {κ}) = {D2} �

Inspired by (4), we define:

inc-degc,null,g3(D,Σ) :=
min{|Δnull(D,D′)| : D′ ∈ Crepnull(D,Σ)}

|atv(D)| ,

where atv(D) is the number of values in attributes of tuples in D.

Example 8. (Example 7 cont.) inc-degc,null,g3(D, {κ}) = 1
8 , but inc-degc,g3(D,

{κ}) = 1
5 . Here, it is easy to restore consistency: only one attribute value has to

be changed.
�
The computation of this measure can be done on the basis of ASPs that specify
null-based attribute repairs that were introduced in [2], to specify and compute
causes for query answers at the attribute level.

9 Tuple-Level Inconsistency Degrees

The inconsistency measure is global in that it applies to the whole database.
However, one could also investigate and measure the contribution by individual
tuples to the degree of inconsistency of the database. Such local measures have
been investigated before in a logical setting [22]. In our case, the global inconsis-
tency measure can be expressed in terms of the responsibility of tuples as causes
for the violation of the DCs.

Connections between database causality [29] and repairs were investigated in
[7], where it was established that the responsibility of a tuple τ as a cause for
D � |= Σ is:

ρ
D,Σ

(τ) =
1

|D| − max(|S|) ,

Repair-Based Degrees of Database Inconsistency 207

where S ⊆ D is an S-repair of D wrt. Σ and τ /∈ S (but ρ
D,Σ

(τ) := 0 if there is
not such an S). Combining this with (1) and (2), we can see that

inc-degc,g3(D,Σ) =
1

ρ
D,Σ

(τ) × |D| , (5)

where τ is one and any of the maximum-responsibility tuples τ as causes for
D � |= Σ. We can also consider the responsibility of tuple, ρ

D,Σ
(τ), as its degree

of contribution to the inconsistency of the database, and those with the highest
responsibility as those with a largest degree of contribution. According to (5),
the global inconsistency measure turns out to be an aggregation over local, tuple-
level, degrees of inconsistency.

10 Conclusions

We have scratched the surface of some of the problems and research directions
we considered in this work. Certainly all of them deserve further investigation,
most prominently, the analysis of other possible distance-based inconsistency
measures along the lines of our work; and also the relationships between those
measures. Also a deeper analysis of the incremental case (cf. Sect. 6) would be
interesting. It is also left for ongoing and future research establishing a con-
nection to the problem of computing specific repairs, and using them [27]. The
same applies to the use of the inconsistency measure to explore the causes for
inconsistency, in particular, to analyze how the measure changes when tuples or
combinations thereof are removed from the database. Such an application sounds
natural given the established connection between database repairs, causality and
causal responsibility [2,7].

It is natural to think of a principled, postulate-based approach to inconsis-
tency measures, similar in spirit to postulates for belief-updates [23]. This has
been done in logic-based knowledge representation [20], but as we argued before,
a dedicated, specific approach for databases becomes desirable.

In relation to the abstract setting of Sect. 7, we could consider a class
RepS�

(D,Σ) of prioritized repairs [31], and through them introduce prioritized
measures of inconsistency. Repair programs for the kinds of priority relations �
investigated in [31] could be constructed from the ASPs introduced and inves-
tigated in [17] for capturing different optimality criteria. The repair programs
could be used to specify and compute the corresponding prioritized inconsistency
measures.

Acknowledgments. Research supported by NSERC Discovery Grant #06148. The
author is grateful to Jordan Li for his help with DLV; and to Benny Kimelfeld, Sudeepa
Roy and Ester Livshits for stimulating general conversations. The author appreciates
the support from RelationalAI, and its excellent human and research environment.

208 L. Bertossi

References

1. Bertossi, L.: Repair-based degrees of database inconsistency: computation and
complexity. Corr arxiv Paper cs.DB/1809.10286 (2018). (extended version of this
work)

2. Bertossi, L.: Characterizing and computing causes for query answers in databases
from database repairs and repair programs. In: Ferrarotti, F., Woltran, S. (eds.)
FoIKS 2018. LNCS, vol. 10833, pp. 55–76. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-90050-6 4

3. Bertossi, L.: Database Repairing and Consistent Query Answering. Synthesis Lec-
tures on Data Management. Morgan & Claypool, San Rafael (2011)

4. Bertossi, L., Li, L.: Achieving data privacy through secrecy views and null-based
virtual updates. IEEE Trans. Knowl. Data Eng. 25(5), 987–1000 (2013)

5. Bertossi, L., Bravo, L.: Consistency and trust in peer data exchange systems. The-
ory Pract. Log. Program. 17(2), 148–204 (2017)

6. Bertossi, L., Bravo, L., Franconi, E., Lopatenko, A.: The complexity and approxi-
mation of fixing numerical attributes in databases under integrity constraints. Inf.
Syst. 33(4), 407–434 (2008)

7. Bertossi, L., Salimi, B.: From causes for database queries to repairs and model-
based diagnosis and back. Theory Comput. Syst. 61(1), 191–232 (2017)

8. Bertossi, L., Rizzolo, F., Jiang, L.: Data quality is context dependent. In: Castel-
lanos, M., Dayal, U., Markl, V. (eds.) BIRTE 2010. LNBIP, vol. 84, pp. 52–67.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22970-1 5

9. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 93–103 (2011)

10. Buccafurri, F., Leone, N., Rullo, P.: Enhancing disjunctive datalog by constraints.
IEEE Trans. Knowl. Data Eng. 12(5), 845–860 (2000)

11. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: An ASP system with functions, lists,
and sets. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS (LNAI),
vol. 5753, pp. 483–489. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04238-6 46

12. Caniupan-Marileo, M., Bertossi, L.: The consistency extractor system: answer set
programs for consistent query answering in databases. Data Knowl. Eng. 69(6),
545–572 (2010)

13. Chomicki, J., Marcinkowski, J.: Minimal-change integrity maintenance using tuple
deletions. Inf. Comput. 197(1–2), 90–121 (2005)

14. Eiter, T., Mannila, H.: Distance measures for point sets and their computation.
Acta Informatica 34, 109–133 (1997)

15. El Oualia, M., Fohlin, H., Srivastav, A.: A randomised approximation algorithm
for the hitting set problem. Theor. Comput. Sci. 555, 23–34 (2014)

16. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006). https://doi.org/10.1007/3-540-29953-X

17. Gebser, M., Kaminski, R., Schaub, T.: Complex optimization in answer set pro-
gramming. Theory Pract. Log. Program. 11(4–5), 821–839 (2011)

18. Gelfond, M., Kahl, Y.: Knowledge Representation and Reasoning, and the Design
of Intelligent Agents. Cambridge University Press, Cambridge (2014)

19. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3/4), 365–386 (1991)

20. Grant, J., Martinez, M.V. (eds.): Measuring Inconsistency in Information. College
Publications (2018)

https://doi.org/10.1007/978-3-319-90050-6_4
https://doi.org/10.1007/978-3-319-90050-6_4
https://doi.org/10.1007/978-3-642-22970-1_5
https://doi.org/10.1007/978-3-642-04238-6_46
https://doi.org/10.1007/978-3-642-04238-6_46
https://doi.org/10.1007/3-540-29953-X

Repair-Based Degrees of Database Inconsistency 209

21. Grant, J., Hunter, A.: Analysing inconsistent information using distance-based
measures. Int. J. Approx. Reason. 89, 3–26 (2017)

22. Hunter, A., Konieczny, S.: On the measure of conflicts: shapley inconsistency val-
ues. Artif. Intell. 174(14), 1007–1026 (2010)

23. Katsuno, H., Mendelzon, A.O.: Propositional knowledge base revision and minimal
change. Artif. Intell. 52(3), 263–294 (1992)

24. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-epsilon.
J. Comput. Syst. Sci. 74(3), 335–349 (2008)

25. Kivinen, J., Mannila, H.: Approximate inference of functional dependencies from
relations. Theor. Comput. Sci. 149, 129–l49 (1995)

26. Leone, N., et al.: The DLV system for knowledge representation and reasoning.
ACM Trans. Comput. Logic. 7(3), 499–562 (2006)

27. Livshits, E., Kimelfeld, B., Roy, S.: Computing optimal repairs for functional
dependencies. In: Proceedings of PODS 2018, pp. 225–237 (2018)

28. Lopatenko, A., Bertossi, L.: Complexity of consistent query answering in databases
under cardinality-based and incremental repair semantics. In: Schwentick, T.,
Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 179–193. Springer, Heidelberg
(2006). https://doi.org/10.1007/11965893 13

29. Meliou, A., Gatterbauer, W., Moore, K.F., Suciu, D.: The complexity of causality
and responsibility for query answers and non-answers. In: Proceedings of VLDB
2010, pp. 34–41 (2010)

30. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Boston (1994)
31. Staworko, S., Chomicki, J., Marcinkowski, J.: Prioritized repairing and consistent

query answering in relational databases. Ann. Math. Artif. Intell. 64(2–3), 209–246
(2012)

32. Thimm, M.: On the compliance of rationality postulates for inconsistency mea-
sures: a more or less complete picture. Künstliche Intelligenz 31(1), 31–39 (2017)

33. Wijsen, J.: Database repairing using updates. ACM Trans. Database Syst. 30(3),
722–768 (2005)

https://doi.org/10.1007/11965893_13

	Repair-Based Degrees of Database Inconsistency
	1 Introduction
	2 Background on Relational Databases and Repairs
	3 An Inconsistency Measure
	4 ASP-Based Computation of the Inconsistency Measure
	5 Complexity of the Inconsistency Measure Computation
	6 Inconsistency Degree Under Updates
	7 Repair Semantics and Inconsistency Degrees
	8 Adapting inc-degs,g3 to Attribute-Based Repairs
	9 Tuple-Level Inconsistency Degrees
	10 Conclusions
	References

