
Marcello Balduccini
Yuliya Lierler
Stefan Woltran (Eds.)

 123

LN
AI

 1
14

81

15th International Conference, LPNMR 2019
Philadelphia, PA, USA, June 3–7, 2019
Proceedings

Logic Programming
and Nonmonotonic
Reasoning

Lecture Notes in Artificial Intelligence 11481

Subseries of Lecture Notes in Computer Science

Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

Founding Editor

Jörg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Marcello Balduccini • Yuliya Lierler •

Stefan Woltran (Eds.)

Logic Programming
and Nonmonotonic
Reasoning
15th International Conference, LPNMR 2019
Philadelphia, PA, USA, June 3–7, 2019
Proceedings

123

Editors
Marcello Balduccini
Saint Joseph’s University
Philadelphia, PA, USA

Yuliya Lierler
University of Nebraska at Omaha
Omaha, USA

Stefan Woltran
TU Wien
Vienna, Austria

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-030-20527-0 ISBN 978-3-030-20528-7 (eBook)
https://doi.org/10.1007/978-3-030-20528-7

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-5445-3054
https://orcid.org/0000-0002-6146-623X
https://orcid.org/0000-0003-1594-8972
https://doi.org/10.1007/978-3-030-20528-7

Preface

This volume contains the papers presented at the 15th International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR 2019) held June 3–7,
2019, at Saint Joseph’s University in Philadelphia, USA. The conference was
co-located with the Datalog 2.0 Workshop, the Workshop on Bidirectional Transfor-
mations, and the Workshop on Theory and Practice of Provenance at the Philadelphia
Logic Week 2019.

LPNMR 2019 was the 15th in the series of international meetings on logic
programming and non-monotonic reasoning. LPNMR is a forum for exchanging ideas
on declarative logic programming, non-monotonic reasoning, and knowledge repre-
sentation. The aim of the conference is to facilitate interactions between researchers and
practitioners interested in the design and implementation of logic-based programming
languages and database systems, and those working in knowledge representation and
nonmonotonic reasoning. LPNMR strives to encompass theoretical and experimental
studies that have led or will lead to advances in declarative programming and
knowledge representation, as well as their use in practical applications. This year’s
edition of the conference attempted to raise submissions discussing the use of LPNMR
techniques in emerging applications stemming from such areas as deep learning,
robotics, cybersecurity, modeling cyberphysical systems, and human-aware AI.
LPNMR 2019 thus brought together researchers from LPNMR core areas and appli-
cation areas of the aforementioned kind in order to share research experiences, promote
collaboration, and identify directions for joint future research.

LPNMR received 45 submissions in three categories: technical papers, system
descriptions, and application descriptions. Of these, 22 submissions were accepted as
regular papers and three as short papers, yielding an acceptance rate of 55%. Each
reviewed paper was examined by at least three experts and discussed amongst them, the
Program Committee (PC) members, and the program chairs. This volume contains
versions of these articles that have been revised by their authors according to the
comments provided in the reviews. Two of the papers were selected for Springer Best
Paper Awards: “Pruning External Minimality Checking for ASP Using Semantic
Dependencies” by Thomas Eiter and Tobias Kaminski (Best Student Paper Award),
and “Splitting Epistemic Logic Programs” by Pedro Cabalar, Jorge Fandinno and Luis
Fariñas del Cerro (Best Paper Award).

In addition to the oral presentations of the technical papers, the scientific program
featured invited talks by:

– Esra Erdem, Sabanci University, Turkey
– Michael Gelfond, Texas Tech University, USA
– V. S. Subrahmanian, Dartmouth College, USA

The program also included sessions dedicated to the Answer Set Programming
Challenge and the Doctoral Consortium of the conference. The conference proceedings

contain abstracts for the invited talks and the Answer Set Programming Challenge. The
main conference was preceded by several workshops offering an inspiring start to the
event.

The LPNMR 2019 conference received generous support from several
organizations. We gratefully acknowledge our sponsors, Artificial Intelligence journal,
Association for Logic Programming (ALP), Haub School of Business at Saint Joseph’s
University, European Association for Artificial Intelligence (EurAI), National Science
Foundation (NSF), and Potassco Solutions. We also would like to thank Springer for
the longstanding, successful cooperation with the LPNMR series. The possibilities for
fast-track journal publications in Artificial Intelligence and Theory and Practice of
Logic Programming, as well as the best paper prize offered by Springer, brought
additional value and motivation. The conference was managed with the help of
EasyChair.

Many people played an important role in the success of LPNMR 2019 and deserve
our acknowledgment: the PC members and additional reviewers for their timely
expertise in carefully reviewing the submissions. The organizers of the Answer Set
Programming Challenge, Carmine Dodaro, Christoph Redl, and Peter Schüller
dedicated themselves to designing a sequel to the ASP Competition series in order to
let LPNMR systems face novel and challenging real-world benchmarks. Fangkai Yang
and Jörg Pührer organized an excellent Doctoral Consortium program, guiding young
researchers to plan their research and careers. Mario Alviano’s contribution was
invaluable in coordinating the workshop program and Gregory Gelfond advertised the
conference through a number of channels. We also wish to thank all authors who
submitted papers and all the conference participants for fruitful discussions. Last but
not least, special thanks go to the local organization team and, in particular, to Virginia
Miori, Joseph DiAngelo, Lara Guerrini, Jeannine Shantz, Ruixin “Reese” Guo, Andrew
Westveer, Elizabeth Angelucci, and Kelsey Neri, for their support and for being our
hosts during the wonderful days at Saint Joseph’s University.

June 2019 Marcello Balduccini
Yuliya Lierler
Stefan Woltran

vi Preface

Organization

Program Committee Chairs

Yuliya Lierler University of Nebraska at Omaha, USA
Stefan Woltran TU Wien, Austria

General Chair

Marcello Balduccini Saint Joseph’s University, USA

Workshops Chair

Mario Alviano University of Calabria, Italy

Publicity Chair

Gregory Gelfond University of Nebraska at Omaha, USA

Doctoral Consortium Chairs

Fangkai Yang NVIDIA Corporation, USA
Jörg Pührer TU Wien, Austria

Marketing Chairs

Elizabeth Angelucci Saint Joseph’s University, USA
Kelsey Neri Saint Joseph’s University, USA

Answer Set Programming Challenge 2019

Carmine Dodaro University of Genoa, Italy
Christoph Redl TU Wien, Austria
Peter Schüller TU Wien, Austria

Program Committee

Chitta Baral Arizona State University, USA
Bart Bogaerts Vrije Universiteit Brussel (VUB), Belgium
Martin Brain University of Oxford, UK
Gerhard Brewka Leipzig University, Germany
Pedro Cabalar Corunna University, Spain
Francesco Calimeri University of Calabria, Italy

Stefania Costantini University of L’Aquila, Italy
Marina De Vos University of Bath, UK
James Delgrande Simon Fraser University, Canada
Agostino Dovier Università degli Studi di Udine, Italy
Thomas Eiter Vienna University of Technology, Austria
Esra Erdem Sabanci University, Turkey
Wolfgang Faber Alpen-Adria-Universität Klagenfurt, Austria
Johannes K. Fichte TU Dresden, Germany
Paul Fodor Stony Brook University, USA
Andrea Formisano Università di Perugia, Italy
Gerhard Friedrich Alpen-Adria-Universität Klagenfurt, Austria
Sarah Alice Gaggl TU Dresden, Germany
Martin Gebser Alpen-Adria-Universität Klagenfurt, Austria
Michael Gelfond Texas Tech University, USA
Giovanni Grasso Oxford University, UK
Amelia Harrison The University of Texas at Austin, USA
Anthony Hunter University College London, UK
Giovambattista Ianni University of Calabria, Italy
Daniela Inclezan Miami University, USA
Tomi Janhunen Aalto University, Finland
Gabriele Kern-Isberner Technische Universität Dortmund, Germany
Matthias Knorr Universidade Nova de Lisboa, Portugal
Joohyung Lee Arizona State University, USA
Joao Leite Universidade Nova de Lisboa, Portugal
Nicola Leone University of Calabria, Italy
Vladimir Lifschitz The University of Texas at Austin, USA
Fangzhen Lin Hong Kong University of Science and Technology,

SAR China
Marco Maratea University of Genoa, Italy
Thomas Meyer University of Cape Town, South Africa
Alessandra Mileo Dublin City University, Ireland
Emilia Oikarinen University of Helsinki, Finland
David Pearce Universidad Politécnica de Madrid, Spain
Axel Polleres Vienna University of Economics and Business, Austria
Enrico Pontelli New Mexico State University, USA
Christoph Redl Vienna University of Technology, Austria
Francesco Ricca University of Calabria, Italy
Orkunt Sabuncu TED University Ankara, Turkey
Chiaki Sakama Wakayama University, Japan
Torsten Schaub University of Potsdam, Germany
Peter Schüller Vienna University of Technology, Austria
Guillermo R. Simari Universidad del Sur in Bahia Blanca, Argentina
Mantas Simkus Vienna University of Technology, Austria
Tran Cao Son New Mexico State University, USA
Theresa Swift Universidade Nova de Lisboa, Portugal
Eugenia Ternovska Simon Fraser University, Canada

viii Organization

Daniele Theseider Dupré Università del Piemonte Orientale, Italy
Matthias Thimm Universität Koblenz-Landau, Germany
Hans Tompits Vienna University of Technology, Austria
Mirek Truszczynski University of Kentucky, USA
Agustin Valverde Universidad de Malaga, Spain
Johannes P. Wallner Vienna University of Technology, Austria
Kewen Wang Griffith University, Australia
Yisong Wang Guizhou University, China
Renata Wassermann University of São Paulo, Brazil
Antonius Weinzierl Vienna University of Technology, Austria
Jia-Huai You University of Alberta, Canada
Yuanlin Zhang Texas Tech University, USA
Yi Zhou University of Technology Sydney, Australia

Additional Reviewers

Weronika T. Adrian
Carmine Dodaro
Francesco Fabiano
Jorge Fandinno
Markus Hecher
Man Luo
Philipp Obermeier

Johannes Oetsch
Francesco Pacenza
Javier Romero
Lukas Schweizer
Fabio Tardivo
Zhun Yang
Jessica Zangari

Sponsors and Collaborators

Artificial Intelligence Journal, Elsevier
Association for Logic Programming (ALP)
Haub School of Business, Saint Joseph’s University
European Association for Artificial Intelligence (EurAI)
NSF - National Science Foundation
Potassco Solutions
Theory and Practice of Logic Programming, Cambridge University Press

Organization ix

Abstracts of Invited
Contributions

Logic Programming and Non-monotonic
Reasoning from 1991 to 2019: A Personal

Perspective

Michael Gelfond

Texas Tech University, Lubbock, Texas, USA
Michael.Gelfond@ttu.edu

Abstract. The field of logic programming and nonmonotic reasoning was born
in 1991, when a number of researchers working in “the theoretical ends” of logic
programming and artificial intelligence gathered in Washington D.C. for the first
LPNMR workshop, which was organized by Anil Nerode, Wiktor Marek, and
V. S. Subrahmanian. I was privileged to attend this meeting; to closely observe
the development of the field over the past 28 years; and to witness many
remarkable achievements, which in 1991 I would not have believed to be
possible. In this talk I plan to discuss some of these achievements and share a
number of personal observations on the field’s history, current state, and pos-
sible future directions. Among other things, I will comment on the development
of powerful knowledge representation languages, the design and implementation
of non-monotonic reasoning systems, and use of these languages and systems in
formalizing various types of knowledge and reasoning tasks. The talk is not
meant to be a survey of the field, rather it is my personal perspective limited to a
small, but important, collection of topics I am most familiar with.

Integrating AI and Robotics
Using Answer Set Programming

Esra Erdem

Faculty of Engineering and Natural Sciences, Sabanci University,
Istanbul, Turkey

esraerdem@sabanciuniv.edu

Abstract. Successful deployment of robotic assistants in social environments
necessitates these systems to be furnished with high-level cognitive abilities,
such as planning and diagnostic reasoning, to be able to deal with high com-
plexity and wide variability of their surroundings, and perform typical everyday
tasks robustly and without sacrificing safety. In the presence of humans, robotic
agents need further abilities, such as commonsense reasoning, explanation
generation, and epistemic reasoning, to be able to collaborate, communicate and
live with humans. We have been investigating the use of Answer Set Pro-
gramming to endow robotic agents with such cognitive capabilities, considering
various robotic domains, such as service robotics, medical robotics, and cog-
nitive factories. In this talk, we will share our experiences of using Answer Set
Programming in robotics applications, and discuss its strengths and weaknesses
as a knowledge representation and reasoning paradigm to integrate Artificial
Intelligence and Robotics.

Logic for Machine Learning Based Security

V. S. Subrahmanian

Dartmouth College, Hanover, New Hamsphire, USA
vs@dartmouth.edu

Abstract. The talk will cover 2 broad areas: (i) the role of logic in providing
human-understandable explanations of forecasts produced by complex machine
learning models, (ii) the use of logic based methods for reasoning about
deception in cybersecurity. In the first part, I will describe BEEF, a framework
that generates logic-based “balanced” explanations (which explain both why a
forecast might be correct and why it might be incorrect). BEEF is capable of
operating “on top” of any binary classifier. In the second part, I will describe
logic-based methods to lead an attacker astray when he successfully penetrates a
system by providing him fake results in response to scan requests. I will con-
clude with suggestions on how the LPNMR community may build upon these
ideas.

The ASP Challenge 2019

Carmine Dodaro1, Christoph Redl2, and Peter Schüller2

1 Department of Informatics, Robotics and Systems Engineering (DIBRIS),
University of Genova

dodaro@dibris.unige.it
2 Institut für Logic and Computation, Technische Universität Wien

{redl,ps}@kr.tuwien.ac.at

The Answer Set Programming Challenge 2019 is run jointly among the Technische
Universität Wien (Austria) and the University of Genoa (Italy), in Spring 2019. The
event is the sequel to the ASP Competition series, which was held biannually since
2007. Unlike the previous ASP Competitions, the ASP Challenge 2019 focuses on
challenging persons and teams rather than systems. To this end, five real problems from
research and industry have been collected and are to be solved by researchers and
students using arbitrary available systems, which do not necessarily have to be
developed by the participants. Indeed, participants are encouraged to use any available
system(s) and to combine ASP with other formalisms, as long as ASP or an extension
thereof plays a crucial role. Submissions are expected to comprise the used systems and
an encoding.

The challenge benefits the ASP community as challenging real-world research and
industrial benchmarks become available, and it also benefits the problem providers as
they get solutions to their problems.

Differently from previous editions, we host the challenge on the StarExec platform
at https://www.starexec.org/ with two aims: (i) attracting expert and non-expert par-
ticipants, and (ii) providing timely feedback to solutions and permitting participants to
adjust solutions instead of collecting encodings and solvers, running the competition
offline, and publishing the results afterwards.

We use the following problem domains:

– The House Reconfiguration Problem is an abstract version of (re-)configuration
problems occurring in practice. The task is, given a legacy configuration, to find an
(optimal) reconfiguration satisfying various constraints.

– The industrial Insurance Referees Assignment Problem is a scheduling problem
from the insurance domain, where referees are to be assigned to insurance cases
according to various hard and soft constraints.

– The Automated Warehouse Scenario is a planning problem where robots have to
deliver products to picking stations to fulfill orders.

– In the Fastfood Problem, given a set of restaurants, the task is to select a number
of them as depots such that the sum of distances from each restaurant to the closest
depot is minimized.

https://www.starexec.org/

– The problem of Checking Policies for Reactive Agents comes from the planning
domain. An agent in a grid environment has to find a goal, where the environment
and obstacles are only partially observable.

For details we refer to https://sites.google.com/view/aspcomp2019/.

The ASP Challenge 2019 xvii

https://sites.google.com/view/aspcomp2019/

Contents

Applications

Train Scheduling with Hybrid ASP . 3
Dirk Abels, Julian Jordi, Max Ostrowski, Torsten Schaub, Ambra Toletti,
and Philipp Wanko

Telco Network Inventory Validation with NoHR. 18
Vedran Kasalica, Ioannis Gerochristos, José Júlio Alferes,
Ana Sofia Gomes, Matthias Knorr, and João Leite

An ASP-Based Framework for the Manipulation of Articulated Objects
Using Dual-Arm Robots . 32

Riccardo Bertolucci, Alessio Capitanelli, Carmine Dodaro,
Nicola Leone, Marco Maratea, Fulvio Mastrogiovanni,
and Mauro Vallati

C-ASP: Continuous ASP-Based Reasoning over RDF Streams 45
Thu-Le Pham, Muhammad Intizar Ali, and Alessandra Mileo

Internet Routing and Non-monotonic Reasoning . 51
Anduo Wang and Zhijia Chen

Argumentation

Assessing Arguments with Schemes and Fallacies . 61
Pierre Bisquert, Florence Dupin de Saint-Cyr, and Philippe Besnard

Simple Contrapositive Assumption-Based Frameworks. 75
Jesse Heyninck and Ofer Arieli

Argumentation-Based Explanations for Answer Sets Using ADF. 89
Lena Rolf, Gabriele Kern-Isberner, and Gerhard Brewka

Foundations and Complexity

Treewidth and Counting Projected Answer Sets . 105
Johannes K. Fichte and Markus Hecher

Splitting Epistemic Logic Programs . 120
Pedro Cabalar, Jorge Fandinno, and Luis Fariñas del Cerro

Founded World Views with Autoepistemic Equilibrium Logic 134
Pedro Cabalar, Jorge Fandinno, and Fariñas del Cerro Luis

Towards Dynamic Answer Set Programming over Finite Traces 148
Pedro Cabalar, Martín Diéguez, and Torsten Schaub

A Sequent-Type Calculus for Three-Valued Default Logic, Or:
Tweety Meets Quartum Non Datur . 163

Sopo Pkhakadze and Hans Tompits

Knowledge Representation and Reasoning

Diagnosing Data Pipeline Failures Using Action Languages 181
Jori Bomanson and Alex Brik

Repair-Based Degrees of Database Inconsistency . 195
Leopoldo Bertossi

Elect: An Inconsistency Handling Approach for Partially Preordered
Lightweight Ontologies . 210

Sihem Belabbes, Salem Benferhat, and Jan Chomicki

Elaboration Tolerant Representation of Markov Decision Process via
Decision-Theoretic Extension of Probabilistic Action Language pBCþ 224

Yi Wang and Joohyung Lee

Systems

Evaluation of Disjunctive Programs in WASP . 241
Mario Alviano, Giovanni Amendola, Carmine Dodaro, Nicola Leone,
Marco Maratea, and Francesco Ricca

telingo = ASP + Time . 256
Pedro Cabalar, Roland Kaminski, Philip Morkisch, and Torsten Schaub

Verifying Strong Equivalence of Programs in the Input Language of GRINGO . . . 270
Vladimir Lifschitz, Patrick Lühne, and Torsten Schaub

The Return of xorro . 284
Flavio Everardo, Tomi Janhunen, Roland Kaminski, and Torsten Schaub

Degrees of Laziness in Grounding: Effects of Lazy-Grounding Strategies
on ASP Solving . 298

Richard Taupe, Antonius Weinzierl, and Gerhard Friedrich

xx Contents

Enhancing DLV for Large-Scale Reasoning . 312
Nicola Leone, Carlo Allocca, Mario Alviano, Francesco Calimeri,
Cristina Civili, Roberta Costabile, Alessio Fiorentino, Davide Fuscà,
Stefano Germano, Giovanni Laboccetta, Bernardo Cuteri,
Marco Manna, Simona Perri, Kristian Reale, Francesco Ricca,
Pierfrancesco Veltri, and Jessica Zangari

Pruning External Minimality Checking for ASP Using
Semantic Dependencies . 326

Thomas Eiter and Tobias Kaminski

Declarative Local Search for Predicate Logic . 340
Tu-San Pham, Jo Devriendt, and Patrick De Causmaecker

Author Index . 347

Contents xxi

Applications

Train Scheduling with Hybrid ASP

Dirk Abels2 , Julian Jordi2, Max Ostrowski1, Torsten Schaub1,3,4,5(B) ,
Ambra Toletti2 , and Philipp Wanko1,3

1 Potassco Solutions, Potsdam, Germany
2 SBB, Bern, Switzerland

3 University of Potsdam, Potsdam, Germany
torsten@cs.uni-potsdam.de

4 Simon Fraser University, Burnaby, Canada
5 Griffith University, Brisbane, Australia

Abstract. We present an ASP-based solution to real-world train
scheduling problems, involving routing, scheduling, and optimization.
To this end, we pursue a hybrid approach that extends ASP withdif-
ference constraints to account for a fine-grained timing. More precisely,
we exemplarily show how the hybrid ASP system clingo[DL] can be
used to tackle demanding planning-and-scheduling problems. In particu-
lar, we investigate how to boost performance by combining distinct ASP
solving techniques, such as approximation, heuristic, and optimization
strategies.

1 Introduction

Densely-populated railway networks transport millions of people and carry mil-
lions of tons of freight daily; and this traffic is expected to increase even further.
Hence, for using a railway network to capacity, it is important to schedule trains
in a flexible and global way. This is however far from easy since the generation
of railway timetables is already known to be intractable for a single track [3].
While this is not so severe for sparse traffic, it becomes a true challenge when
dealing with dense networks. This is caused by increasing dependencies among
trains due to connections and shared resources.

We take up this challenge and show how to address real-world train schedul-
ing with hybrid Answer Set Programming (ASP [10]). Our hybrid approach
allows us to specifically account for the different types of constraints induced by
routing, scheduling, and optimization. While we address paths and conflicts with
regular ASP, we use difference constraints (over integers) to capture fine timings.
Similarly, to boost (multi-objective) optimization, we study approximations of
delay functions of varying granularity. This is complemented by various domain-
specific heuristics aiming at improving feasibility checking as well as solution
quality. We implement our approach with the hybrid ASP system clingo[DL] [8],
an extension of clingo [7] with difference constraints. Our approach provides us

This work was partially funded by DFG grants SCHA 550/9 and 11.

c© Springer Nature Switzerland AG 2019
M. Balduccini et al. (Eds.): LPNMR 2019, LNAI 11481, pp. 3–17, 2019.
https://doi.org/10.1007/978-3-030-20528-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20528-7_1&domain=pdf
http://orcid.org/0000-0002-6367-7815
http://orcid.org/0000-0002-7456-041X
http://orcid.org/0000-0002-1015-2820
http://orcid.org/0000-0003-4986-4881
https://doi.org/10.1007/978-3-030-20528-7_1

4 D. Abels et al.

with an exemplary study of using a variety of techniques for solving demanding
real-world planning-and-scheduling problems with hybrid ASP.

To begin with, we introduce in Sect. 3 a dedicated formalization of the train
scheduling problem. This is indispensable to master the complexness of the prob-
lem. Moreover, it guides the development of our hybrid ASP encodings, presented
in Sect. 4. We evaluate our approach along with various enhancements in Sect. 5
on increasingly difficult problem instances with up to 467 trains.

2 Background

We expect the reader to be familiar with the basic syntax, semantics, and termi-
nology of logic programs under stable models semantics, and focus below on the
introduction of non-standard concepts. The base syntax of our logic programs
follows the one of clingo [5]; its semantics is detailed in [4].

clingo[DL] extends the input language of clingo by (theory) atoms repre-
senting difference constraints. That is, atoms of the form ‘&diff{u-v}<= d’,
where u, v are symbolic terms and d a numeral term, represent difference con-
straints such as ‘u − v ≤ d’, where u, v serve as integer variables and d stands
for an integer.1 For instance, assume that ‘&diff{e(T)-b(T)}<= D’ stands
for the condition that the difference between the end and the beginning of a
task T must be less or equal than some duration D. This may get instantiated
to ‘&diff{e(7)-b(7)}<= 42’ to require that e(7) and b(7) take integer
values such that ‘e(7) − b(7) ≤ 42’. Note that u, v can be arbitrary terms; we
exploit this below to use tuples like (T,V) as integer variables.Among the alter-
native semantic couplings between (theory) atoms and constraints offered by
clingo[DL] (cf. [6,8]), we follow the defined, non-strict approach (i) tolerating
theory atoms in rule heads and (ii) enforcing their corresponding constraints
only if the atoms are derivable. Hence, if a theory atom is false, its associated
constraint is ignored. This approach has the advantage that we only need to con-
sider difference constraints occurring in the encoding and not their negations.
Obviously, the overall benefit of using such constraints is that their variables are
not subject to grounding.

For boosting performance, we take advantage of clingo’s heuristic directives
of form ‘#heuristic a:B.[w,m]’, where a is an atom and B is a body;
w is a numeral term and m a heuristic modifier, indicating how the solver’s
heuristic treatment of a should be changed whenever B holds. We use modifiers
sign and false. Whenever a is chosen by the solver, sign enforces that it
becomes either true or false depending on whether w is positive or negative,
respectively.Similarly, with false, a is always assigned false and additionally
pushed on priority level w (where 0 is the default; cf. [5]).

3 Real-World Train Scheduling

The train scheduling problem can be divided into three distinct tasks: routing,
conflict resolution and scheduling.
1 Strictly speaking, we had to distinguish the integer from its representation.

Train Scheduling with Hybrid ASP 5

1

2

3

4

5

6

7

8

9

10

11

12

sw1 sw2

t1 t2

connection from t2 to t1p = 1 p = 1

Fig. 1. Routing of two trains through a railway
network. (Color figure online)

t1 1 4 6 8 9 10
t2 3 4 5 7 9 12

V

t

14

12

10

8

6

4

2

dt1

dt2

Fig. 2. Scheduling of two trains.
(Color figure online)

First, each train is routed through a railway network. The directed graph in
Fig. 1 shows an example of such a network. It consists of all edges regardless of
coloring, and nodes numbered from 1 to 12 mark the entry (or exit) of different
edges of the track. Furthermore, Fig. 1 depicts a valid routing of two trains, t1
and t2, through the network. Blue edges are traveled by t1 and red edges by t2.
In this example, both trains have access to the whole network and may chose
among possible start nodes 1, 2 and 3, and end nodes 10, 11 and 12, respectively.

Second, edges of the railway network are associated with resources, and when-
ever the paths of two trains lead through an edge associated with the same
resource, there is a possible conflict and a decision has to be made which train
accesses the edge first. The train going second has to wait until the first one leaves
the edge plus a safety period. Each edge in the directed graph is associated with
a resource representing the track, thus prohibiting two trains from entering it
simultaneously. Furthermore, resources like railway switches may span several
edges. Here, there are two switches, sw1 and sw2, represented by rectangles cut-
ting the assigned edges. For instance, given the paths of t1 and t2, the two trains
have resource conflicts on edges (1, 4) and (3, 4), and similarly, on (9, 10) and
(8, 10), since the pairs of edges are assigned to sw1 and sw2, respectively.

Finally, for each train and each node visited by the trains, a time point
has to be scheduled avoiding conflicts between trains and meeting all timing
requirements, such as earliest arrival at nodes or connections between trains.
For all trains and each node, an earliest point of arrival is defined, as well as,
optionally, a latest point of arrival.Together, these two time points define the
time span in which the train might be at a node in its path. Given the paths in
Figs. 1, 2 shows the time spans and a valid schedule for t1 and t2. The horizontal
axis indicates the nodes that the trains travel and the vertical axis the time.
The light blue and light red areas show the possible arrival times for t1 and t2,
respectively. The light violet area indicates that both trains may arrive in this
time period. For instance, t1 may arrive at node 4 between time points 2 and 7,

6 D. Abels et al.

and t2 at node 5 between 6 and 11. The blue and red lines represent a feasible
schedule for t1 and t2, respectively. In our example, every edge takes one time
unit to pass, whenever conflicts are resolved, the second train may enter one time
unit after the first has left, and connecting trains have to arrive one time unit
before the train that ought to receive cargo or passengers leaves. The schedule
in Fig. 2 always prioritizes t1 in resource conflicts and schedules the points of
arrival as soon as possible. Resource conflicts at switch sw1 do not impact t2’s
schedule since t1 leaves these edges several time points before t2 may arrive.
Train t1 has to wait for t2 in between nodes 6 and 8 due to their connection,
and is allowed to leave at the earliest at time point 7, one time point after t2
has entered edge (5, 7). The resource conflicts induced by switch sw2 forces t2
to wait until time point 10, one time unit after t1 leaves sw2.

After obtaining a valid routing and scheduling, the resulting solution is eval-
uated regarding delay and quality of the trains’ paths. For that purpose, edges
are assigned penalties. Edges with higher penalties represent, for instance, tracks
that can take less workload. In our example, only edges (2, 4) and (9, 11) are
penalized, viz. p = 1. Figure 2 shows the time points after which trains t1 and
t2 are considered delayed via dashed lines dt1 and dt2 , respectively. Every time
point below the dashed lines is penalized for the respective train. Since both
trains avoid the penalized edges and manage to travel their routes without delay,
the solution shown in Fig. 2 is optimal.

We formalize the train scheduling problem as a triple (N,T,C). N stands
for the railway network (V,E,R,m, a, b), where (V,E) is a directed graph, R
is a set of resources, m : E → N assigns the minimum travel time of an edge,
a : R → 2E allocates resources in the railway network, and b : R → N gives the
time a resource is blocked after it was accessed by a train. Elements (S,L, e, l, w)
of T are trains to be scheduled on network N , where (S,L) is an acyclic sub-
graph of (V,E), e : S → N and l : S → N ∪ {∞} give the earliest and latest
time a train may arrive at a node, respectively,and w : L → N is the time a
train has to wait on an edge. Note that all functions are total unless specified
otherwise and we use seconds as the time unit. Elements (t1, e1, t2, e2, c) of C
are connections, denoting that t1 ∈ T on edge e1 ∈ E has a connection to t2 ∈ T
on e2 ∈ E requiring t2 not to leave e2 before t1 has arrived by at least c seconds
at e1.

In Fig. 1, the train scheduling problem is defined as: V = {1, . . . , 12},
E = {(1, 4), (2, 4), . . . , (9, 11), (9, 12)}, R = {sw1, sw2} ∪ {re | e ∈ E}, m(e) = 1
and a(re) = {e} for e ∈ E, a(sw1) = {(1, 4), (2, 4), (3, 4), (4, 5), (4, 6)}, a(sw2) =
{(7, 9), (8, 9), (9, 10), (9, 11), (9, 12)}, b(r) = 1 for r ∈ R, T = {t1, t2} with
t1 = (S1, L1, e1, l1, w1), t2 = (S2, L2, e2, l2, w2), where (V,E) equals (S1, L1) =
(S2, L2), e1, l1, e2, l2 are the upper and lower coordinates of the colored areas
in Fig. 2, w1(e) = w2(e) = 0 for e ∈ E, and C = {(t2, (5, 7), t1, (6, 8), 1),
(t2, (6, 8), t1, (5, 7), 1)}.

A solution (P,A) to a train scheduling problem (N,T,C) is a pair of (i) a
function P assigning each train the path it takes through the network, and (ii)
an assignment A of arrival times to each train at each node on their path.

Train Scheduling with Hybrid ASP 7

A path p is a connected sequence of nodes. We write v ∈ p and e ∈ p to
denote that node v ∈ V and edge e ∈ E are contained in path p, respectively. A
path P (t) = (v1, . . . , vn) for t = (S,L, e, l, w) ∈ T with vi ∈ S for 1 ≤ i ≤ n has
to satisfy:

(vj , vj+1) ∈ L for 1 ≤ j ≤ n − 1 (1)
in(v1) = 0 and out(vn) = 0, (2)

where in and out give the in- and out-degree of a node in graph (S,L), respec-
tively. Intuitively, Condition (1) forces the path to be connected and feasible
for the train in question and Condition (2) ensures that the path is between a
possible start and end node.

An assignment A is a partial function T ×V → N, where A(t, v) is undefined
for v �∈ P (t). Given paths P , an assignment has to satisfy:

A(t, vi) ≥ e(vi) (3)
A(t, vi) ≤ l(vi) (4)

A(t, vj) + m((vj , vj+1)) + w((vj , vj+1)) ≤ A(t, vj+1) (5)

for all t = (S,L, e, l, w) ∈ T, P (t) = (v1, . . . , vn), 1 ≤ i ≤ n, 1 ≤ j ≤ n − 1,

either A(t1, v′) + b(r) ≤ A(t2, u) or A(t2, u′) + b(r) ≤ A(t1, v) (6)

for r ∈ R, {t1, t2} ⊆ T, t1 �= t2, (v, v′) ∈ P (t1), (u, u′) ∈ P (t2) with {(v, v′),
(u, u′)} ⊆ a(r), and

A(t1, v) + c ≤ A(t2, u′) (7)

for (t1, (v, v′), t2, (u, u′), c) ∈ C with (v, v′) ∈ P (t1) and (u, u′) ∈ P (t2).
Intuitively, conditions (3), (4) and (5) ensure that a train arrives neither too

early nor too late and that waiting and traveling times are accounted for. Fur-
thermore, Condition (6) resolves conflicts between two trains that travel edges
sharing a resource, so that either the second train can only enter after the first
train has left for a specified time or vice versa. Finally, Condition (7) handles
connections between two trains: a train with a connection can only leave if the
other train has arrived for a specified time. Note that connections only apply if
both trains travel the specified edges.

For our solution in Fig. 2, P (t1) = (1, 4, 6, 8, 9, 10), P (t2) = (3, 4, 5, 7, 9, 12),
and A(t1, 1) = 0, . . . , A(t1, 8) = 7, . . . , A(t1, 10) = 9, A(t2, 3) = 4, . . . , A(t2, 5) =
6, A(t2, 7) = 10, . . . , A(t2, 12) = 12.

To determine the quality of a solution, the aggregated delay of all trains as
well as the quality of the paths through the network is taken into account. For
that purpose, we consider two functions: the delay function d and route penalty
function rp. Given train t = (S,L, e, l, w) ∈ T and a node s ∈ S, d(t, s) ∈ N

returns the time point after which the train t is considered late at node s. Note
that e(s) ≤ d(t, s) ≤ l(s). Given an edge e ∈ E, rp(e) ∈ N is the penalty a

8 D. Abels et al.

solution receives for each train traveling edge e. The quality of a solution (P,A)
is determined via the following equation:

∑
((t,v),a)∈A max{(a − d(t, v)), 0}/60 +

∑
e∈{u|p∈P,u∈p,e∈E} rp(e) (8)

In our example, we get rp((2, 4)) = 1, rp((9, 11)) = 1 and rp(v) = 0 for v ∈
V \ {(2, 4), (10, 12)}, and, for instance, d(t1, 1) = 4, d(t1, 10) = 9 and d(t2, 3) =
7, d(t2, 12) = 12. As mentioned, our solution obtains the optimal quality value
of 0.

4 An ASP-Based Solution to Real-World Train
Scheduling

In this section, we present our hybrid solution to the train scheduling problem.
We start by describing the factual representation of problem instances, continue
with the problem encoding and finish by introducing several domain-specific
heuristics aimed at improving solving performance and solution quality.

Fact Format. A train scheduling problem (N,T,C) with N = (V,E,R,m, a, b)
is represented by

train(t) edge(t, v, v′) m((v, v′),m((v, v′))) w(t, (v, v′), w((v, v′)))

for every t = (S,L, e, l, w) ∈ T and (v, v′) ∈ L. For every s ∈ S, we add

e(t, s, e(s)) l(t, s, l(s)), and start(t, s) or end(t, s)

if in(s) = 0 or out(s) = 0 in (S,L), respectively. We assign unique
terms to each train for identifiability. For example, facts train(t1),
edge(t1,1,4), e(t1,1,0), l(t1,1,6), start(t1,1), m((1,4),1) and
w(t1,(1,4),0) express that train t1 may travel between nodes 1 and 4 tak-
ing at least 1 s, waiting on this edge for 0 s, and arrives between time points 0
and 6 at node 1, which is a possible start node. Furthermore, we add

resource(r, e) b(r, b(r))

for r ∈ R and e ∈ a(r). Akin to trains, resources are assigned unique terms
to distinguish them. For example, facts resource(sw1,(1,4)), resource
(sw1,(4,5)) and b(sw1,1) assign resource sw1 to edges (1, 4) and (4, 5)
and the resource is blocked for 1 s after a train has left it. Finally, we add

connection(t, (v, v′), t′, (u, u′), c)

for all (t, (v, v′), t′, (u, u′), c) ∈ C. The fact that t1 may not leave (6, 8)
before t2 spent at least 1 s in (5, 7) is encoded by connection(t2,(5,7),
t1,(6,8),1).

Train Scheduling with Hybrid ASP 9

Given delay and route penalty functions d and rp, we add

potlate(t, s, u, p) penalty(m, rp(m))

for t = (S,L, e, l, w) ∈ T, s ∈ S,m ∈ L with {u, p} ⊆ N, d(t, s) < u ≤ l(t, s) to
evaluate a solution. While we encode route penalty optimization exactly, delay
optimization is approximated via a combination of difference constraints and
standard ASP optimization schemes. Intuitively, a fact potlate(t1,1,5,1)
denotes that a solution receives a penalty of 1 if train t1 travels over node 1 and
arrives there at time point 5 or later. In Sect. 4, we introduce several schemes to
create such facts and approximate the objective function to different degrees. For
brevity, we cannot present the full instance representing the example in Figs. 1
and 2 but make it available here2.

Encoding. In the following, we describe the general problem encoding. We
separate it into three parts handling path constraints, conflict resolution and
scheduling.

Listing 1.1. Encoding of path constraints.
1 1 { visit(T,V) : start(T,V) } 1 :- train(T).
2 1 { route(T,(V,V’)) : edge(T,V,V’) } 1 :- visit(T,V), not end(T,V).
3 visit(T,V’) :- route(T,(V,V’)).

The first part of the encoding in Listing 1.1 covers routing. First, exactly one valid
start node is chosen for each train to be visited (Line 1). From a node that is visited
by a train and is not an end node, an edge in the relevant sub-graph is chosen as
the next route (Line 2). The new route in turn leads to a node being visited by
the train (Line 3). This way, each train is recursively assigned a valid path. Since
those paths begin at a start node, finish at an end node and are connected via
edges valid for the respective trains, conditions (1) and (2) are ensured.

Listing 1.2. Encoding of conflict resolution.
4 shared(T,(V,V’),T’,(U,U’)) :- edge(T,V,V’), edge(T’,U,U’), T!=T’,
5 resource(R,(V,V’)), resource(R,(U,U’)), b(R,B),
6 e(T,V,E), l(T,V’,L), e(T’,U,E’),
7 E <= E’, E’ < L+B.
8 shared(T’,E’,T,E) :- shared(T,E,T’,E’).
9 conflict(T,E,T’,E’) :- shared(T,E,T’,E’), T < T’,

10 route(T,E), route(T’,E’).
11 { seq(T,E,T’,E’) } :- conflict(T,E,T’,E’).
12 seq(T’,E’,T,E) :- conflict(T,E,T’,E’), not seq(T,E,T’,E’).

The next part of the encoding shown in Listing 1.2 detects and resolves resource
conflicts. A resource conflict is possible, if two trains have an edge in their sub-
graphs that is assigned the same resource (lines 4 and 5), and they travel through
the edges around the same time (lines 6 and 7), more precisely, whenever the
time intervals in which the trains may enter and leave the edges in question,
extended by the time the resource is blocked, overlap. Now, if both trains are
routed through those edges a conflict occurs (lines 9 and 10). We resolve the
conflict by making a choice which train passes through their edge first (lines 11
and 12).
2

github.com/potassco/train-scheduling-with-clingo-dl/blob/master/example.lp.

10 D. Abels et al.

Listing 1.3. Encoding of scheduling.
13 &diff{ 0-(T,V) } <= -E :- e(T,V,E), visit(T,V).
14 &diff{ (T,V)-0 } <= L :- l(T,V,L), visit(T,V).
15 &diff{ (T,V)-(T,V’) } <= -D :- route(T,(V,V’)), E = (V,V’),
16 D=#sum{ M,m : m(E,M); W,w : w(T,E,W) }.
17 &diff{ (T,V’)-(T’,U) } <= -M :- seq(T,(V,V’),T’,(U,U’)),
18 M = #max{ B : resource(R,(V,V’)), b(R,B) }.
19 &diff{ (T,V)-(T’,U’) } <= -W :- connection(T,(V,V’),T’,(U,U’),W),
20 route(T,(V,V’)), route(T’,(U,U’)).

Finally, Listing 1.3 displays the encoding of scheduling via difference constraints.
We represent arrival times of train t at node v with an integer variable (t,v).
In the following, we use ground terms to describe how the rules function while in
the encoding variables are used. Lines 13 and 14 encode that every train arrives
at a node in their path neither too early nor too late, respectively. Given the
earliest arrival e and latest arrival l of a train t at node v in their path, dif-
ference constraint atoms &diff{0-(t,v)}<= − e and &diff{(t,v)-0}<= l
are derived. This ensures that e ≤ (t,v) ≤ l holds, therefore fulfilling con-
ditions (3) and (4). The rule in lines 15 and 16 first calculates the sum d of
minimal travel and waiting time for train t at edge (v,v’) in their path,
which is the minimal difference between arrival times at nodes v and v’ for
train t. Then, difference constraint atom &diff{(t,v)-(t,v’)}<= −d is
derived, which in turn ensures (t,v) + d ≤ (t,v’) (Condition (5)). The
rule in lines 17 and 18 utilizes conflict detection and resolution from List-
ing 1.2. Given the maximum blocked time b of resources shared on (v,v’) and
(u,u’), and the decision that t takes precedence over t’, we derive difference
constraint atom &diff{(t,v’)-(t’,u)}<= −b expressing linear constraint
(t,v’) + b ≤ (t′, u) for two conflicting trains t and t’ on edges (v,v’)
and (u,u’). Hence, t’ may only enter edge (u,u’) b seconds after t has
left (v,v’) (Condition (6)). Note that if several resources induce a conflict for
two trains on the same edges, only one difference constraint with the maximum
blocked time suffices since x + k ≤ y implies x + k′ ≤ y for k ≥ k′. Finally,
Line 19 handles connections in a similar fashion. If train t on (v,v’) has a
connection to t’ on (u,u’) with connection time w, a difference constraint
atom &diff{(t,v)-(t’,u’)}<= −w is derived, ensuring linear constraint
(t,v) + w ≤ (t’,u’) to hold (Condition (7)). This condition is required if
both trains are routed through the edges (Line 20).

Optimization. As mentioned above, we use instances of potlate/4 to indi-
cate when a train is considered late at a node and how to penalize its delay.
For this purpose, we choose sets Dt,v ⊆ N whose elements act as thresholds for
arrival time of train t at node v. Given delay function d, d(t, v) ≤ u ≤ l(v)
for every u ∈ Dt,v, train t = (S,L, e, l, w) ∈ T and v ∈ S. We create facts
potlate(t,v,u,u − u′)| for u, u′ ∈ Dt,v with u′ < u such that there is
no u′′ ∈ Dt,v with u′ < u′′ < u. We add potlate(t,v,u,u − d(t, v)) for
u = min(Dt,v). Intuitively, we choose the penalty of a potential delay as the
difference to the previous potential delay, or, if there is no smaller threshold,
the difference to the time point after which the train is considered delayed. This
way, the sum of penalties amounts to a lower bound on the train’s actual delay

Train Scheduling with Hybrid ASP 11

in seconds. For example, for Dt,v = {6, 10, 14} and d(t, v) = 5, we create facts
potlate(t,v,6,1), potlate(t,v,10,4) and potlate(t,v,14,4). Now,
if t arrives at v at 12, it is above thresholds 6 and 10 and should receive a penalty
of 5. This penalty is a lower bound on the actual delay of 7, and we know that
the value has to be between 5 and 9 since the next threshold adds a penalty of
4. This method approximates the exact objective function in (8) in two ways.
First, we do not divide by 60 and penalize in minutes since this would lead to
rounding problems. Second, our penalty only gives a lower bound to the actual
delay if thresholds are more than one second apart. While our method allows
us to be arbitrarily precise in theory, in practice, creating a threshold for each
possible second of delay leads to a explosion in size. We employ two schemes for
generating sets Dt,v given t = (S,L, e, l, w) ∈ T , v ∈ S and delay function d.

Binary. This approximation detects if a train is a second late and penalizes it
by one, therefore, only the occurrence of a delay is detected while its amount
disregarded. We set Dt,v = Bint,v = {d(t, v) + 1}.

Linear. This scheme for Dt,v evenly distributing thresholds m seconds apart
across the time span in which a delay might occur. Here, if train t arrives at
or after n ∗ m + d(t, v) at v, we know that the real delay is between n ∗ m and
(n+1)∗m for n ∈ N\{0}. We also add Bint,v to detect solutions without delay.
We set Dt,v = Bint,v ∪ Linm

t,v with Linm
t,v = {y ∈ N | y = x ∗ m + d(t, v), x ∈

N \ {0}, y ≤ l(v)}.

Listing 1.4. Delay and routing penalty minimization.
1 { late(T,V,D,W) : visit(T,V) } :- potlate(T,V,D,W).
2 &diff{ 0-(T,V) } <= -D :- late(T,V,D,W).
3 &diff{ (T,V)-0 } <= N :- not late(T,V,D,W), potlate(T,V,D,W),
4 N=D-1, visit(T,V).
5 #minimize{ W,T,V,D : late(T,V,D,W) }.
6 #minimize{ P,T,E : penalty(E,P), route(T,E) }.

Given thresholds Dt,v for all trains and nodes and the corresponding instances
of predicate potlate/4, Listing 1.4 shows the implementation of the delay
minimization. The basic idea is to use regular atoms to choose whether a
train is delayed on its path for every potential delay (Line 1), deriving dif-
ference constraint atoms expressing this information (lines 2–4), and ultimately
using the regular atoms in a standard minimize statement (Line 5). In detail,
for every potlate(t,v,u,w), a late(t,v,u,w) can be chosen if t vis-
its v. If late(t,v,u,w) is chosen to be true, a difference constraint atom
&diff{0-(t,v)}<= −u is derived expressing (t, v) ≥ u and, therefore, that t
is delayed at v at threshold u. Otherwise, &diff{(t,v)-0}<= u − 1 becomes
true so that (t, v) < u holds. The difference constraints ensure that if the truth
value of a late atom is decided, the schedule has to reflect this information.
The minimize statement then sums up and minimizes the penalties of the late
atoms that are true.

Finally, Line 6 in Listing 1.4 shows the straight forward encoding of the rout-
ing penalty minimization. The minimize statement merely collects the paths of
the trains, sums up their penalties, and minimizes this sum.

12 D. Abels et al.

Domain-Specific Heuristics. We devise several domain-specific heuristics to,
first, improve solving performance, and second, improve quality of solutions
regarding delay and routing.

Sequence Heuristic.The heuristic in Listing 1.5 attempts to order conflicting
trains by their possible arrival times at the edges where the conflict is located.
In essence, we analyze how the time intervals of the trains are situated and pre-
fer their sequence accordingly. Line 1 derives those intervals by collecting the
earliest and latest time a train might be at an edge. Given two trains t and t’
with intervals [e, l] and [e′, l′] at the conflicting edges, respectively, we calculate
s = e′ −e− (l− l′) to determine whether t should be scheduled before t’. If s is
positive, the preferred sign of the sequence atom is also positive, thus preferring
t to go before t’, if it is negative, the opposite is expressed. In detail, e′ − e
is positive if t’ may arrive later than t thus making it more likely that t can
go first without delaying t’. Similarly, if l − l′ is negative, t’ may leave later,
suggesting t to go first. If the results of both expressions have the same sign,
one interval is contained in the other and if the difference is positive, the center
of the interval of t is located earlier than the center of the interval of t’. For
example, in Fig. 2, we see that t1 and t2 share a resource in (1, 4) and (3, 4) and
the time intervals in which they potentially arrive at those edges are [0, 7] and
[4, 10], respectively. Due to 4 − 0 − (7 − 10) = 7, we prefer t1 to be scheduled
before t2, which in the example clearly is the correct decision, since t1 precedes
t2 without delaying t2.

Listing 1.5. Heuristic that orders conflicting trains by their possible arrival times.
1 range(T,(V,V’),E,L) :- edge(T,V,V’),e(T,V,E), l(T,V’,L).
2 #heuristic seq(T,E,T’,E’) : shared(T,E,T’,E’),
3 range(T,E,L,U),
4 range(T’,E’,L’,U’). [L’-L - (U-U’),sign]

Delay Heuristic. Listing 1.6 gives a heuristic aimed at avoiding delay at earlier
nodes in the paths. For that purpose, we first assign each node in the sub-graph
of a train a natural number signifying their relative position (lines 1–4). Start
nodes receive position 0, and from there, the number increases the farther a
node is apart from the start nodes, indicating that they are visited later in the
possible paths of the train. The maximum position of the end nodes is also the
longest possible path minus one (Line 5). For a potential delay, we then select
the position p and the maximum position m and modify the delay atom with
value m−p and modifier false. This accomplishes two things. First, the earlier
the node, the higher the value, thus delays for earlier nodes are decided first.
Second, the preferred sign of all delays is false. Intuitively, we assume that early
delays are to be avoided since they likely lead to delays at subsequent nodes.
Considering again our example in Fig. 2, node 1 for t1 receives position 0 and
node 5 position 3, respectively, while the maximum position is 5. Therefore, we
receive values 5 and 2 for nodes 1 and 5, respectively, avoiding the delay at node
1 first, while also preferring t1 to be on time at both nodes.

Train Scheduling with Hybrid ASP 13

Listing 1.6. Heuristic discouraging delays early on.
1 node(T,(V;V’)) :- edge(T,V,V’).
2 node_pos(T,V,0) :- start(T,V).
3 node_pos(T,V’,M+1) :- node(T,V’), not start(T,V’),
4 M = #max{ P : node_pos(T,V,P), edge(T,V,V’)}.
5 last_node(T,M) :- train(T), M = #max{ P : node_pos(T,V,P), end(T,V) }.
6 #heuristic late(T,V,U,W) : potlate(T,V,U,W),
7 node_pos(T,V,P),
8 last_node(T,Max). [Max-P,false]

Routing heuristic. Akin to the straight-forward routing penalty minimization,
the heuristic in Listing 1.7 merely tries to avoid routes where there is a penalty.
The higher the penalty, the more those routes are to be avoided. In our example
(Fig. 1), this amounts to t1 and t2 equally shunning (2, 4) and (9, 11).

Listing 1.7. Heuristic for avoiding paths with penalties.
1 #heuristic route(T,E) : train(T), penalty(E,P). [P,false]

Note that all three domain-specific heuristics are static, i.e., they are active
immediately at the start of solving.

5 Experiments

We evaluate our train scheduling solution using the hybrid solver clingo[DL] v1.0,
which is build upon the API of clingo 5.3.3 We use nine real-world instances
published by Swiss Federal Railway (SBB) to test different configurations
of clingo[DL] with optimization strategies and domain-specific heuristics (60
in total). For brevity, we omit slight grounding and propagation optimizations
in the encoding presented in Sect. 4; the full encoding and instance set is at
github.com/potassco/train-scheduling-with-clingo-dl. We vali-
date solution feasibility and quality via an external program also provided by
SBB.4 All benchmarks ran on Linux with a Xeon E3-1260L quad-core 2.9 GHz
processors and 32 GB RAM; each run limited to 3 hours and 32 GB RAM. In
detail, we examine the following techniques:

Optimization Schemes. (bb) Model-guided optimization iteratively producing
models of descending cost until the optimum is found by establishing unsat-
isfiability of finding a model with lower cost. (usc) Core-guided optimization
relying on successively identifying and relaxing unsatisfiable cores until a model
is obtained. (nt) Natural number n determines the number of threads with which
the solver is run. Threads use the same search space but might learn different
clauses that are exchanged. If either bb or usc is additionally specified, both
threads use the respective optimization scheme.

All other parameters are using the default of clingo[DL]. In particular, the
default for 2t configures thread 1 with bb and thread 2 with usc in the hope
that the shared information improves overall performance and solution quality.
3 We use the releases for both clingo[DL] and clingo that are available at
github.com/potassco/clingoDL and github.com/potassco/clingo.

4 www.crowdai.org/challenges/train-schedule-optimisation-challenge.

www.crowdai.org/challenges/train-schedule-optimisation-challenge

14 D. Abels et al.

Objective Function Approximation. We only vary delay optimization and use the
same minimize statement for route penalty (see Sect. 4). (bin) Delay approxi-
mation only penalizing instances and not amount of delay. We set Dt,v = Bint,v

for each train t at node v. (lin) Delay approximation creating thresholds evenly
within time span of possible delay. We set Dt,v = Bint,v ∪ Lin180

t,v for each train
t at node v. For lin, we chose the distance of thresholds, viz. 180, such that
there are 5 thresholds with a maximum threshold of 15 min. We also examined
an exponential distribution of thresholds where the distance doubles every time
so that the precision is higher for lower delays, and significant delays receive a
greater penalty. We omit the results since the approach does not improve quality
and displays worse performance compared to lin.

Domain-Specific Heuristics. For details, see Sect. 4. (none) Domain-specific
heuristics are disabled. (seq) Sequence heuristic in Listing 1.5. (delay) Delay
heuristic in Listing 1.6. (routes) Routing heuristic in Listing 1.7. (all) All
heuristics seq, delay and routes are enabled.

Table 1. Aggregated wall time and quality.

opt heu

none seq delay routes all

t qu t qu t qu t qu t qu

bin-1t 4767 175 4136 165 2578 165 3215 175 684 165

bin-2t 933 181 *575 184 937 173 909 175 574 165

bin-2t-bb 5050 166 4723 175 2481 165 1916 177 600 165

bin-2t-usc *877 165 581 184 *881 165 *881 175 574 173

lin-1t – – 23343 33 6380 33 – – 705 33

lin-2t 1118 33 694 33 1264 33 926 33 611 33

lin-2t-bb – – 16495 33 4561 33 11667 33 605 33

lin-2t-usc 4047 33 2351 33 – – – – – –

Table 2. Instance details and best
results.

ins #t #n #e all-bin-2t all-lin-2t-bb

t aqu qu t aqu qu

1 4 159 159 2 0 0 2 0 0

2 58 1839 1816 5 0 0 5 0 0

3 143 2117 2090 8 0 0 9 0 0

4 148 2371 2352 12 0 0 13 0 0

5 149 2376 2356 19 8 165 42 21 33

6 365 3128 3109 149 0 0 144 0 0

7 467 3128 3109 252 0 0 251 0 0

8 133 3228 3314 127 0 0 139 0 0

9 287 34488 34827 – – – – – –

In our experiments, we used clingo[DL] to report one optimal solution for
each configuration. Table 1 shows the sum of wall time in seconds in columns
t, and the value of the exact objective function as reported by the external
validation tool in columns qu, for all combinations of optimization strategy
(rows of the table) and domain-specific heuristics (columns of the table) that
were able to report one valid optimal solution for instances 1 through 8. Note
that all values are rounded to integers. We omit results for instance 9 since
grounding was not possible within 32 GB of memory. Combinations where some
instances timed out are marked with –. This way, we are able to exclude inferior
results while being able to accurately compare performance and solution quality
of successful configurations. The best results in a row and in a column for wall
time and quality are marked bold and with *, respectively, unless at least two
configurations achieved the same result.

Regarding wall time, all clearly performs best and improves performance
up to one order of magnitude compared to none. While each domain-specific

Train Scheduling with Hybrid ASP 15

heuristic has a positive impact, either reducing wall time or allowing all instances
to be solved optimally, we observe that seq has the most benefit on its own, but
the joint effect of the three heuristics is vital in achieving the best possible perfor-
mance. Furthermore, optimization approximation bin performs best, displaying
no timeouts and best aggregate wall time by a slight margin. Since weights in
the optimization statement for bin are all one, usc is very effective for it. For
lin, on the other hand, running both bb and usc simultaneously proved to be
successful, most likely due to a mixture of different weight values and the benefit
of the shared clauses between threads. As expected, the simple approximation of
the objective function bin is easier to solve but provides solutions of less qual-
ity. Note that while all the solutions returned by clingo[DL] were optimal, the
value of the exact objective function varies. If there are several optimal solu-
tions, a different one might be reported depending on heuristics or thread-based
interference, i.e., we cannot guarantee that the same optimal model is found
for different configurations. Approximations lin has overall more timeouts and
worse wall time, but solution quality is higher.

Table 2 shows for all instances the number of trains(#t), nodes(#n) and
edges(#e) along with wall time(t), approximated quality(aqu) and exact qual-
ity(qu) for the configuration with the best performance, viz. all-bin-2t, and
best quality-performance ratio, viz. all-lin-2t-bb. We found optimal solutions
to the approximated objective functions for instances with up to 467 trains, 3228
nodes and 3314 edges within 5 min. Except for instances 4 and 5, which were
crafted specifically to contain obstructions inducing delay, we could provide solu-
tions without any penalties regarding the exact objective function. For Instance
4, the delay is negligible and for Instances 5, we achieve a value close to the
best possible solution according to SBB. We see that bin is a good choice for
instances that are expected to be solvable without delay, but for more difficult
instances, like Instance 5, the approximation is too inaccurate. On the other
hand, lin achieves more accuracy with similar performance mostly thanks to
the domain-specific heuristics that steer the solving process to promising regions
of the search space.

Overall, we observe that all domain-specific heuristics, seq in particular,
linear approximation of delay optimization, and several threads with multiple
optimization strategies, allow us to successfully solve the train scheduling prob-
lem for a variety of real-world instances in acceptable time.

6 Discussion

At its core, train scheduling is similar to classical scheduling problems that were
already tackled by ASP. Foremost, job shop scheduling [16] is also addressed
by clingo[DL] and compared to other hybrid approaches in [8]; solutions based
on SMT, CP and MILP are given in [1,2,9,11], respectively. In fact, job shop
scheduling can be seen as a special case of our setting, in which train paths are
known beforehand. Solutions to this restricted variant via MILP and CP are pre-
sented in [12,15]. The difference to our setting is twofold: first, resource conflicts

16 D. Abels et al.

are not known beforehand since we take routing and scheduling simultaneously
into account. Second, our approach encompasses a global view of arbitrary pre-
cision, i.e., we model all routing and scheduling decisions across hundreds of
trains and possible lines down to inner-station conflict resolution. Furthermore,
using hybrid ASP with difference constraints gives us inherent advantages over
pure ASP and MILP. First, we show in [6] that ASP is not able to solve most
shop scheduling instances since grounding all the integer variables leads to an
explosion in problem size. We avoid this bottleneck by encapsulating scheduling
in difference constraints and, hence, avoid grounding integer variables. Second,
while difference constraints are less expressive than linear constraints in MILP,
they are sufficient for expressing the timing constraint needed for train schedul-
ing and are solvable in polynomial time. Finally, routing and conflict resolution
require Boolean variables and disjunctions for which ASP has effective means.

Since we produce timetables from scratch, our train scheduling problem can
be characterized as tactical scheduling [17]. In the future, we aim at addressing
re-scheduling [13,14], where existing timetables have to be adapted to sudden
deviations. While our hybrid ASP encoding can be easily modified to accom-
modate such advanced reasoning tasks, we currently could not address them
in real-time. The main challenge lies in reducing the size of the problem. We
have shown that, if grounding is possible, we can effectively solve real-world
train scheduling with clingo[DL]. The problem size can be reduced by first, com-
pressing the graph and removing nodes that are redundant in terms of timing
constraints that they pose to the schedule, and second, identifying groups of con-
flicts of trains that only require a single decision to be resolved in a preprocessing
step.

References

1. Baptiste, P., Pape, C.L., Nuijten, W.: Constraint-Based Scheduling: Applying Con-
straint Programming to Scheduling Problems, vol. 39. Springer, New York (2012)

2. Bofill, M., Palah́ı, M., Suy, J., Villaret, M.: Solving constraint satisfaction problems
with SAT modulo theories. Constraints 17(3), 273–303 (2012)

3. Caprara, A., Fischetti, M., Toth, P.: Modeling and solving the train timetabling
problem. Oper. Res. 50, 851–861 (2002)

4. Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V., Schaub, T.: Abstract gringo.
Theory Pract. Log. Program. 15(4–5), 449–463 (2015)

5. Gebser, M., et al.: Potassco User Guide, 2nd edn. (2015). http://potassco.org
6. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:

Theory solving made easy with clingo 5. In: Technical Communications of the
International Conference on Logic Programming (ICLP 2016), vol. 52, pp. 2:1–
2:15. OASIcs (2016)

7. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with
clingo. Theory Pract. Log. Program. 19(1), 27–82 (2019)

8. Janhunen, T., Kaminski, R., Ostrowski, M., Schaub, T., Schellhorn, S., Wanko, P.:
Clingo goes linear constraints over reals and integers. Theory Pract. Log. Program.
17(5–6), 872–888 (2017)

http://potassco.org

Train Scheduling with Hybrid ASP 17

9. Janhunen, T., Liu, G., Niemelä, I.: Tight integration of non-ground answer set
programming and satisfiability modulo theories. In: Proceedings of the Workshop
on Grounding and Transformation for Theories with Variables (GTTV 2011), pp.
1–13 (2011)

10. Lifschitz, V.: Answer set planning. In: Proceedings of the International Conference
on Logic Programming (ICLP 1999), pp. 23–37. MIT Press (1999)

11. Liu, G., Janhunen, T., Niemelä, I.: Answer set programming via mixed integer pro-
gramming. In: Proceedings of the International Conference on Principles of Knowl-
edge Representation and Reasoning (KR 2012), pp. 32–42. AAAI Press (2012)

12. Oliveira, E., Smith, B.: A job-shop scheduling model for the single-track railway
scheduling problem. University of Leeds, LU SCS RR (21) (2000)

13. Pellegrini, P., Douchet, G., Marlière, G., Rodriguez, J.: Real-time train routing
and scheduling through mixed integer linear programming: heuristic approach. In:
Proceedings of the International Conference on Industrial Engineering and System
Management, pp. 1–5 (2013)

14. Pellegrini, P., Marlière, G., Pesenti, R., Rodriguez, J.: RECIFE-MILP: an effective
MILP-based heuristic for the real-time railway traffic management problem. IEEE
Trans. Intell. Transp. Syst. 16(5), 2609–2619 (2015)

15. Rodriguez, J.: A constraint programming model for real-time train scheduling at
junctions. Transp. Res.: Methodol. 41(2), 231–245 (2007)

16. Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2),
278–285 (1993)

17. Törnquist, J.: Computer-based decision support for railway traffic scheduling and
dispatching: a review of models and algorithms. In: Proceedings of the Workshop
on Algorithmic Methods and Models for Optimization of Railways, vol. 2. OASIcs
(2006)

Telco Network Inventory Validation
with NoHR

Vedran Kasalica1, Ioannis Gerochristos2, José Júlio Alferes2,
Ana Sofia Gomes2, Matthias Knorr2, and João Leite2(B)

1 Department of Information and Computing Sciences, Utrecht University,
3584 CC Utrecht, The Netherlands

2 NOVA LINCS, Departamento de Informática, FCT-NOVA Lisboa,
2829-516 Caparica, Portugal

jleite@fct.unl.pt

Abstract. Network database inventory is a critical tool for the opera-
tions of any telecommunication company, by supporting network configu-
ration and maintenance, as well as troubleshooting of network incidents.
Whereas an incorrect inventory can often lead to severe implications
and financial losses, the sheer size of a telecommunication network, the
number of equipment involved, and other operational constraints, often
lead to outdated inconsistent inventories, which are usually validated
and updated by hand, during change management processes – a time-
consuming task highly prone to human error. In this paper, we describe
a solution to automate the validation of network inventories within the
context of a multinational telecommunication company, with operations
in several different countries, using NoHR, a reasoner that allows the
user to query (hybrid) knowledge bases composed of ontologies and non-
monotonic rules, both of which are necessary to perform the kind of
reasoning required by this task. In addition, to address severe perfor-
mance issues – essentially in terms of memory – resulting from NoHR
v3.0’s need to pre-process the entire database into OWL assertions or rule
facts, in this paper, we also present v4.0 of NoHR, which extends NoHR
v3.0 with native support for Databases, solving not only the memory
consumption problems, but also improving the average reasoning times.

1 Introduction

Network database inventory is a critical tool for any telecommunication com-
pany, maintaining information on what network nodes exist and their charac-
teristics (model, band, frequency, etc.); how nodes connect with each other,
their physical and logical paths; and general topology configuration. Network
inventory supports many different parts of a telecommunication organization.
In particular, it provides important inputs for planning and provisioning, but
it is absolutely critical to network operations, by supporting network configura-
tion and maintenance, as well as troubleshooting of network incidents. However,
given the sheer size of a telecommunication network, and the number of equip-
ment involved, network inventories are often outdated, providing a misleading
c© Springer Nature Switzerland AG 2019
M. Balduccini et al. (Eds.): LPNMR 2019, LNAI 11481, pp. 18–31, 2019.
https://doi.org/10.1007/978-3-030-20528-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20528-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-20528-7_2

Telco Network Inventory Validation with NoHR 19

image of the network configuration. On a network operation service, an incorrect
inventory can lead, for instance, to a wrong assessment of the problem root-cause,
evaluating an incident with the incorrect priority, or setting up an insufficient
work-around to restore operations. In any case, an incorrect inventory can often
lead to financial losses and implications.

Normally, on any telecommunication company, network inventories are stored
in the back-end of some specialized enterprise system, supported by some rela-
tional database. While some tools and processes may exist to automate inventory
validation and correctness, these are normally very limited and incomplete.

Most enterprise inventory solutions incorporate some constraints over the
data being inserted and updated, e.g., that a Radio Base Station (RBS) cannot
be inserted without a related Location, or that a Cell can only be created for
a given parent RBS. However, these validations are very limited and rely on
simple database constraints defined by the vendor. Additionally, since engineers
interact with the inventory at a user interface level without the context of a
transaction, they often may need to leave the database in an inconsistent state
during a planned work. As such, these solutions cannot implement very strong
constraints over what is being inserted, and one may, e.g., find a 3G RBS station
(aka NodeB) with a defined connection to a 2G Radio Controller (aka BSC),
although that simply cannot be the case.

Other more sophisticated solutions exist, which connect to the live network
and then compare it with the network inventory. However, these can overload the
live network with requests and impact network service, which requires that they
be planned with care, managed as low priority requests, and validation can take
several hours/days depending on the network size. Additionally, these solutions
rely on having connectors to each of the different telco hardware vendors and
technologies, which make the solution considerably expensive. In fact, all vendors
have closed and proprietary protocols to connect to each of their network nodes,
which may change (and be charged differently) depending on the technology
or even the equipment’s firmware version. Moreover, most telecommunication
companies have at least three generations of equipment and have contracts with
several different vendors. As a consequence, normally only some part of the
network is scanned with these tools, due to prohibitive integration costs. Finally,
these solutions do not perform any validation per se. They just update the
inventory with the current image of that day, and cannot validate if network
nodes are implemented according to the organization’s best-practices and rules.

Due to all these reasons, often these network inventories are simply validated
and updated by hand, during change management processes, which is a time-
consuming task highly prone to human error.

In this paper, we describe an implemented solution to automate the validation
of network inventories within the context of a multinational telecommunication
company, with operations in several different countries, based on NoHR (Nova
Hybrid Reasoner) [6,11,17]. NoHR v3.0 [17] is a reasoner theoretically founded
on the formalism of Hybrid MKNF under the well-founded semantics [15], with
support for paraconsistent reasoning [13], which allows the user to query (hybrid)

20 V. Kasalica et al.

knowledge bases composed of both ontologies and non-monotonic rules. Using a
top-down reasoning approach, which means that only the part of the ontology
and rules that is relevant for the query is actually evaluated, NoHR is imple-
mented in a way that combines the capabilities of the DL reasoners ELK [14],
HermiT [9], and Konclude [21] with the rule engine XSB Prolog,1 to deliver very
fast interactive response times.

Turning back to the network inventory validation problem, on closer inspec-
tion of the existing inventory data, we observe that even though operations in
different countries rely on data managed with very different levels of maturity
– from those with state-of-the-art enterprise inventory systems to those where
most up-to-date data is stored in very basic excel spreadsheets – ultimately, all is
accessible through a standard database connector such as ODBC. Also, although
the enterprise systems implemented in each of the countries are very different,
network inventories are, in their essence, all the same for any telecommunication
company. Namely, a Mobile Network is normally split into three domains and
networks: radio access network (RAN) which comprises the necessary equipment
for the interaction with a Client User Equipment; the CORE network that com-
prises all the equipment and technology to provide Voice, Data and any other
service; and the Transmission (Tx) Network that deals with transport between
the nodes and between the RAN and CORE. As a result, such generic knowledge
and concepts of a Mobile Network that are required to make sense and validate
the network inventories are naturally modelled through an ontology. Addition-
ally, over the years, the telecommunication company has maintained a body of
knowledge gathered from experts, encoding their reasoning when validating the
network inventory. This knowledge mostly encodes possible (and somewhat typ-
ical) problems usually found in inventories. For example, the experts know that,
except from those using Long Term Evolution (LTE) technology, every active
station must be connected to exactly one active controller, which means that
any non-LTE active station, in the inventory, with no connection to one active
controller, or with more than one active controller connected to it, must rep-
resent an error in the inventory. What this body of knowledge reveals is that
the kind of reasoning carried out by these experts – for example, referring to
defaults and exceptions – is the same kind of reasoning that requires and can be
expressed as non-monotonic rules.

Whereas, in principle, NoHR v3.0 would be sufficient to deal with all the
data and knowledge used in the validation of network inventories problem –
besides directly using the ontology and encoding the experts’ reasoning rules,
we would extract the data from the databases, convert it to a format that is
acceptable by the reasoner and then load it into the memory – this would be
complicated, time-consuming, and, depending on the data size, sometimes not
even feasible. Additionally, it would likely be far from optimal in the sense that
the working memory would likely be loaded with huge amounts of facts from the
database not required for the reasoning process. Finally, the static interaction
with database management systems would mean that any change in the database

1 http://xsb.sourceforge.net.

http://xsb.sourceforge.net

Telco Network Inventory Validation with NoHR 21

would yield an inconsistency with the working memory, which would require the
data extraction process to restart. It turns out that this is not a limitation
specific to the validation of network inventories problem: most of the data used
in modern industry is stored in some type of database management system, and
its use within NoHR would always result in a similar problem.

Addressing this issue, in this paper, we also describe v4.0 of NoHR, which
extends NoHR v3.0 with native support for Databases. From a theoretical stand-
point this support is encoded through the concept of mappings between predi-
cates in the hybrid knowledge base (both in the rules and the ontology) and SQL
query results from the corresponding database systems. In particular, the map-
pings allow to transparently and simultaneously integrate data stored in different
databases, which is of crucial importance to deal with the validation of network
inventories. From a practical perspective, the mappings are implemented using
ODBC drivers, thus allowing the integration of NoHR with all major database
management systems, together with a user interface.

The evaluation has shown that this implementation of NoHR v4.0 not only
solves the problems of memory consumption and preprocessing in case of loading
large amounts of data, but also managed to considerably improve the average
reasoning time over this data when making use of query optimizations based on
state-of-the-art database technology.

2 Background on NoHR

We start by providing some background information on the hybrid knowledge
bases considered within NoHR.

2.1 Description Logics

Description logics (DLs)2 are commonly decidable fragments of first-order logic,
defined over disjoint countably infinite sets of concept names NC, role names NR,
and individual names NI, matching unary and binary predicates, and constants,
respectively. Complex concepts (and complex roles) can be defined based on these
sets and the logical constructors a concrete DL admits to be used. An ontology
O is a finite set of inclusion axioms of the form C � D where C and D are
both (complex) concepts (or roles) and assertions of the form C(a) or R(a, b)
for concepts C, roles R, and individuals a, b. The semantics of such ontologies
is defined in a standard way for first-order logic.

The DL SROIQ [10] underlying the W3C standard OWL 2 is very general
and highly expressive, but reasoning with it is highly complex, which is why
the profiles OWL 2 EL, OWL 2 QL and OWL 2 RL have been defined [18], for
which reasoning is tractable. NoHR supports all three profiles, in fact, even a
combination of the constructors provided by them [17].3

2 We refer to [2] for a more general and thorough introduction to DLs.
3 We refer to [6,11,17] and pointers therein for all constructors supported by NoHR.

22 V. Kasalica et al.

For the use case, we require EL+
⊥, a large fragment of the DL underlying

OWL 2 EL, which only allows conjunction of concepts, existential restriction of
concepts, hierarchies of roles, and disjoint concepts, and, in addition, symmetric
roles. Hence, we use a combination of constructors from different OWL 2 profiles.

2.2 Hybrid Knowledge Bases

The hybrid knowledge bases we consider here are MKNF knowledge bases (KBs),
which build on the logic of minimal knowledge and negation as failure (MKNF)
[16]. Among the two different semantics defined for these [15,19], we focus on the
well-founded one [15], due to its lower computational complexity and amenability
to top-down querying without computing the entire model. Again, we only point
out important notions, and refer to [1,15] for the details.

A rule r is of the form H ← A1, . . . , An,not B1, . . . ,not Bm where the head
of r, H, and all Ai with 1 ≤ i ≤ n and Bj with 1 ≤ j ≤ m in the body of r
are atoms, possibly built from the unary and binary predicates occurring in the
ontology.4 A program P is a finite set of rules, O is an ontology, and an MKNF
knowledge base K is a pair (O,P). A rule r is safe if all its variables occur in at
least one Ai with 1 ≤ i ≤ n, and K is safe if all its rules are safe.5

The semantics of MKNF knowledge bases K is given by a translation π into
an MKNF formula π(K), i.e., a formula over first-order logic extended with two
modal operators K and not. The well-founded MKNF model can be computed
efficiently [15] in a bottom-up fashion, and queried based on SLG(O), as defined
in [1]. This procedure extends SLG resolution with tabling [4] with an oracle to
O that handles ground queries to the DL-part of K by returning (possibly empty)
sets of atoms that, together with O and information already proven true, allows
us to derive the queried atom. We refer to [1] for the full account of SLG(O).

3 Validating Telco Network Inventory Data

In this section, we illustrate how the knowledge relevant for the validation of telco
network inventory data can be expressed in an MKNF knowledge base so that
the reasoner NoHR can be applied to solve this problem. Following Sect. 1, we
thus have to represent the ontology on network inventories, the expert knowledge
on validating network inventories, and the data itself within an MKNF KB.

As outlined in the introduction, the ontology describes generic knowledge of
the network inventory, common to the inventories in all countries of the multi-
national telco company. E.g., the knowledge that RAN, CORE, and Tx are all

4 Conceptually, this allows to simultaneously view certain predicates under the closed
world semantics in rules and under the open world semantics in the ontology, and
admits the bidirectional flow of information between both the rules and the ontology.

5 In general, the notion of DL-safety is used in this context which requires that these
variables occur in atoms that do themselves not occur in the ontology, but due to
the reasoning method employed in NoHR, we can relax that restriction.

Telco Network Inventory Validation with NoHR 23

Fig. 1. Part of the inventories ontology

(disjoint) Mobile Nodes can be expressed as follows.

Core � MobileNode RAN � MobileNode Tx � MobileNode

Core � ¬RAN Core � ¬Tx RAN � ¬Tx

A further part of this hierarchical knowledge as shown in Fig. 1 can be repre-
sented similarly. Moreover, there are several axioms in the ontology encoding
specific knowledge about the telecom network topology. For example:

– Every BTS station is always connected to a BSC controller:

BTS � ∃isConnected.BSC (1)

– If a Radio Base Station is directly connected to a core node, then it is a 4G
station (aka eNodeB):

∃isConnected.CoreNode � RBS � eNodeB (2)

Note that these axioms do not represent integrity constraints. Rather, they allow
us to infer knowledge that is not explicitly present in the knowledge base, i.e., to
compensate for some incompleteness in the inventory. This is especially impor-
tant because not all inventories in the different countries have a detailed spec-
ification of all kinds of nodes, and sometimes leave the specification at higher
levels in the taxonomy.

The expert knowledge about possible problems in the inventories can be
encoded using non-monotonic rules. For example, the experts’ knowledge that,
except from those using Long Term Evolution (LTE) technology, every active
station must be connected to exactly one active controller, means that any non-
LTE active station in the inventory with no connection to one active controller,
or more than one connection to an active controller, must represent an error in
the inventory. Using rules, this can be encoded as follows.

24 V. Kasalica et al.

badnLTEConn(X) ←RBS(X),not lteNode(X), active(X),
not controllerConnected(X)

lteNode(X) ←eNodeB(X)
controllerConnected(X) ←isConnected(X,Y), active(Y), Controller(Y),

not duplicateController(X,Y)
duplicateController(X,Y) ←isConnected(X,Z), active(Z), Z �= Y,

Controller(Z), Controller(Y)

Note that the information on active(X) can be found in the database, and that
isConnected is a symmetric role in the ontology based on content in the database.

We emphasize that encoding this problem requires the usage of default nega-
tion, e.g., because we want to determine nodes that are not known to be con-
nected, i.e., connections not present in the database, as well as ontological infer-
ence, since the inventory usually does not explicitly store information on con-
trollers, but rather on more specific types of equipment that, according to the
ontology, can be inferred to be controllers, and since LTE nodes can be inferred
from the ontology given its connections (cf. axiom (2)). Further cases of such
expert knowledge can also be encoded with rules and will be discussed in Sect. 5.

Finally, regarding the data,6 it can be included in the reasoning process by
transforming it into rule facts or ontology assertions. As mentioned, in principle,
this readily allows the usage of NoHR v3.0 for validation of network inventory
data. However, this transformation of the data would be complicated, time con-
suming, and, depending on the data size, sometimes not even feasible. Moreover,
we would possibly load huge amounts of facts from the database not required
for the reasoning process,7 and any change in the database would require the
data extraction process to restart. This is why we next present the new version of
NoHR that overcomes these problems by providing native support for databases.

4 NoHR: Database Integration

In this section, we describe the new version of NoHR, NoHR v4.0, and discuss
several features of its implementation, with a particular focus on the novel native
support for databases including new functionalities and the associated benefits.

4.1 A Third Component for Hybrid KBs

In order to support the integration with external datasets, we have to extend
MKNF KBs. Such an extension could be realized by the addition of a database
component, effectively turning MKNF KBs into a triple comprising an ontology,
a program (of non-monotonic rules), and a database to which we wish to connect.
However, in the context of validating data of network inventory, in particular

6 As the actual database schemas are confidential, we cannot disclose them here.
7 E.g., there are around 200K of facts for one of the countries involved.

Telco Network Inventory Validation with NoHR 25

on a multi-national scale, it is clearly preferable to admit several databases to
be integrated. Arguably, one could join several databases into one for the sake
of the formalism, but this is not necessarily easy as it would require, e.g., to
handle (partially) repeated columns with potentially contradictory data, and,
from a practical point of view, we would like to simply consult data in tables of
different databases, and MKNF KBs should be conceptually close to this idea.

To tackle the integration of several databases within an MKNF KB, we intro-
duce the concepts of mappings and of a mapping knowledge base.8

Definition 1. Let p be a predicate, db a database and q a query defined over db,
where p and the tuples returned by q have the same arity. A triple 〈p, db, q〉 is
called a mapping for p, where the result set from db for the query q is mapped
to the predicate p. A set of mappings M is called a mapping knowledge base.

Essentially, mappings are used to create predicates that are populated with the
result set obtained from queries to external databases. Based on this we can
extend MKNF KBs as follows.

Definition 2. An MKNF knowledge base K is a triple K = (O,P,M), where
O is an ontology, P is a finite set of rules, and M is a mapping knowledge base.

For the semantics of such MKNF knowledge bases, we can extend the translation
function to mappings and the mapping knowledge base by turning, for each triple
〈p, db, q〉 in M, all tuples for p into rule facts. Based on this, it can be shown
that all technical results for the well-founded MKNF semantics [15], as well as
for top-down querying in SLG(O) [1] hold.

For reasons of space, we omit the details here, and proceed by showing how
this extension is reflected in the architecture of NoHR.

4.2 Architecture of NoHR

NoHR is available as a plugin for Protégé9, a well-known and widely used ontol-
ogy editor, and we describe the system architecture of this plugin NoHR v4.0
as shown in Fig. 2. When compared with NoHR v3.0, the architecture has been
extended with external databases, corresponding ODBC drivers and the inte-
gration of the mapping knowledge base (all labelled with a green background).

The input for the plugin consists of an OWL file, a rule file and a mappings
file. All three components can be edited in Protégé, using the built-in interface
for the ontology and the custom “NoHR Rules” and “NoHR Mappings” tabs,
provided by the plugin, for the rule and mapping components. After the inputs
(which can be empty) and the first query are provided, the ontology is translated
into a set of rules, using one of the provided reasoners, ELK [14], HermiT [9]
or Konclude [21], depending on the DL in which the ontology is written. This

8 Similar concepts have been used before for adding database support to rule systems,
such as DLV DB [22], and in ontology based data access, such as in ontop [3].

9 https://protege.stanford.edu/.

https://protege.stanford.edu/

26 V. Kasalica et al.

Fig. 2. System architecture of NoHR v4.0 with native database support

resulting set of rules is not equivalent to the ontology in general, but it yields
exactly the same answers for ground queries (for more details cf. [6,11,17]).
The resulting set is then combined with the rules and mappings provided by the
input. This joined result serves as input to XSB Prolog via InterProlog10, which is
an open-source Java front-end, allowing the communication between Java and a
Prolog engine, and the query is sent via the same interface to XSB to be executed.
During the execution, mappings are providing facts from the external databases
as they are requested in the reasoning process. This procedure is supported by
the installed ODBC connections and handled within XSB, thus providing full
control over the database access during querying and taking advantage of the
built-in optimization to access only the relevant part of the database. Answers
are returned to the query processor, which displays them to the user in a table
(in the Query Tab). The user may pose further queries, and the system will
simply send them directly to XSB, without any repeated preprocessing. If the
knowledge base is edited, the system recompiles only the part that was changed.

4.3 Implementing Database Support

We now discuss several of the design decisions on implementing database support
within NoHR 4.0 and the benefits we were able to leverage.

First, the connection to various databases is realized via the XSB - ODBC
Interface, because it is part of the query engine XSB used in NoHR, it supports
all major database management systems (DBMSs), and it provides an easy-to-
use and well-known connection driver independently of the operating system.

10 http://interprolog.com/java-bridge/.

http://interprolog.com/java-bridge/

Telco Network Inventory Validation with NoHR 27

Among the three levels of interaction with the database the XSB - ODBC
Interface provides, SQL level, relation level and view level, we chose the SQL
level, because, unlike the other two, it allows the usage of standard SQL syntax
and provides the flexibility to map an arbitrary SQL query to the predicate,
which also provides considerable performance gains compared to the other two.

To allow the user to create the necessary mappings, i.e., combinations of a
predicate, an SQL query and a database connection, the “Mappings Tab” has
been introduced to the Protégé plugin version of NoHR. It contains a parametriz-
able mapping form, which offers two different approaches to create mappings,
namely mapping with the SQL Designer and Manual SQL mappings.

The SQL Designer allows the creation of mappings based on the user’s spec-
ification of what columns from which tables of which database should be com-
bined, where the underlying SQL queries are dynamically generated, based on
the structure of the schema. As this interface has full control over the structure
of the SQL query, several optimizations are applied, including improved handling
of floating point number unification and of bounded variables. For example, the
WHERE clause of the SQL query is dynamically adjusted to fetch only the
relevant tuples, depending on the bounded variables in the predicate.

In order to generalize the DBMS integration, we also provide support for
Manual SQL mappings, i.e., arbitrary SQL queries, to take advantage of the
capabilities of the specific DBMS at hand. This allows, e.g., the usage of nested
queries and benefiting from the associated performance gains when querying.

5 Evaluation

Previous tests of NoHR have shown that different ontologies can be pre-processed
into rules in reasonably short amounts of time (around one minute for Snomed
CT with over 300,000 concepts), loading of rules is only linearly dependent on
the size of the rule file, and querying can often be done with interactive response
times (cf. [5,6,11,12,17]). Here, we evaluate three measures in the use case of
validating the network inventory that show that the native support of databases
comes with considerable performance benefits for the reasoning process of NoHR.

We compare NoHR 4.0 with its predecessor in terms of preprocessing time
and memory usage. To replicate the tests in the telco company, we generated
sets of facts corresponding to database instances of increasing size, closely resem-
bling the data used in the network inventory validation use case, and tested the
impact of loading these files in NoHR. All tests were performed on an i5-2.4 GHz
processor with 8 GB under win64. The results are shown in Fig. 3.

We first note that, since NoHR v4.0 does not require preloading of facts
corresponding to the data stored in a database, the observed values for NoHR
v4.0 can serve as a (constant) baseline in both cases. In terms of memory for
NoHR v3.0, we observe a steady increase of used memory until the limit of the
free available RAM is reached (around 20K of facts with many arguments). From
there on, memory usage does not increase any further. Rather virtual memory
is used increasing the size of the virtual address space beyond the available

28 V. Kasalica et al.

amount of RAM using paging and/or swapping to secondary storage. We can
observe that this has a considerable impact on the loading time, e.g., loading
100K of facts takes around 38 min since swapping/secondary storage is in general
considerably slower. In fact, we tried loading 200K (roughly the amount of data
corresponding to one of the countries in which validation of network inventory
is applied) and it failed to upload within the set time-out of one hour. We note
that the given times only consider the loading, and do not even include the time
necessary to transform the database content into rule facts in the right format.
Again, for NoHR v4.0, the problem ceases to exist, as there is no need to load
large amounts of facts corresponding to the database content into memory, which
makes the NoHR v4.0 usable also for applications with larger amounts of data.

Fig. 3. Memory usage and time of data preloading for NoHR v3.0 and v4.0.

In order to evaluate the effect of using external databases on querying, we
compare the time for answering several queries in the network inventory valida-
tion use case for NoHR v3.0 and NoHR v4.0. In fact, we consider two cases for
NoHR v4.0: one with (simple) direct mappings from predicates to corresponding
database columns, and one with advanced mappings using sophisticated queries
to make use of optimizations in efficient state-of-the-art DBMS where possible.
We use two sets of generated data instances of size 20K and 50K, resembling
the actual data used, and five queries inspired by the real use case, namely:
(1) find all active nodes that are located at a location that is marked as out
of order; (2) find all nodes (equipments) manufactured by Ericsson before 1995
that are connected to Huawei equipment manufactured after 2010 (because they
are incompatible); (3) find non-LTE active stations that are not connected to
exactly one active controller (cf. Sect. 3); (4) find two locations that share the
same coordinates and are both active; and (5) Find active nodes that are not
connected to any other node. Among the two general purpose DL reasoners avail-
able in NoHR (given that the ontology does not fit one profile), we used HermiT,
as it has been shown to be superior for all but the really large ontologies [17].

The results are shown in Fig. 4. As expected, NoHR v4.0 is slightly slower, on
average, when querying, as the connection via ODBC adds an overhead to the

Telco Network Inventory Validation with NoHR 29

query process. However, if we use advanced mappings, which allow to outsource
certain joins over data from XSB to the DBMS, then NoHR v4.0 outperforms
NoHR v3.0 by a considerable margin, in particular when advanced database
joins reduce the amount of data that needs to be sent to XSB for reasoning.

Overall, we observe that NoHR v4.0 is competitive with NoHR v3.0 in terms
of querying, and superior when part of the query can be processed by the DBMS
directly, while eliminating the memory usage and preprocessing time problems.

Fig. 4. Time of query answering in NoHR v3.0 and NoHR v4.0

6 Conclusions

We have presented an implemented solution to automate the validation of net-
work inventories within the context of a multinational telecommunication com-
pany, with operations in several different countries, based on the reasoner NoHR.
Since using NoHR v3.0 for this solution would require to load all the data into
memory, which is problematic given the amount of data in the context of the
multinational telco company, we also introduced NoHR v4.0, which extends
NoHR v3.0 with native database support. We have described this database sup-
port in NoHR extending the underlying formalism by mappings and its integra-
tion in NoHR’s architecture, and we have discussed important features such as
the flexible XSB-ODBC interface, general support for SQL queries, and inter-
faces for the creation of optimized SQL queries. The evaluation confirms that
using the new version is highly beneficial, in particular for use cases with large
amounts of data, such as the validation of network inventories, because it avoids
the overhead of transforming the database into facts in NoHR, reducing time and
memory usage considerably, as well as during querying where we can make use
of query optimizations that are based on state-of-the-art database technology.

In terms of future work, currently MySQL and Oracle DBMSs are fully sup-
ported, which sufficed for the validation use case. The XSB-OBDC interface
is, however, flexible, and making the necessary adjustments so that all major
DBMSs are supported is important, to admit the usage of NoHR in other use
cases (with different DBMSs). Adapting ideas on dynamic hybrid KB’s [20] and
semi-automatic mapping creation [22] is also promising to further improve usabil-
ity, and a comparison with the integration of databases with ontologies and rules

30 V. Kasalica et al.

in the HEX formalism [7], based on dl-programs [8], is of interest, even if arguably
less general than hybrid MKNF [19]. A more ambitious objective is the integra-
tion of data on the Semantic Web, i.e., Linked Open Data. While, conceptually,
the idea corresponds to database integration, the technical solution will certainly
differ, due to different standards and formats employed. Given the wide-spread
availability of Linked Open Data sets nowadays, such addition would provide a
valuable extension to NoHR for knowledge integration.

Acknowledgments. We would like to acknowledge the helpful comments by the
anonymous reviewers, the valuable contribution of N. Costa, V. Ivanov, and C. Lopes to
the development of NoHR, and partial support by FCT projects RIVER (PTDC/CCI-
COM/30952/2017) and NOVA LINCS (UID/CEC/04516/2013).

References

1. Alferes, J.J., Knorr, M., Swift, T.: Query-driven procedures for hybrid MKNF
knowledge bases. ACM Trans. Comput. Log. 14(2), 1–43 (2013)

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions, 3rd edn. Cambridge University Press, Cambridge (2010)

3. Calvanese, D., et al.: Ontop: answering SPARQL queries over relational databases.
Semant. Web 8(3), 471–487 (2017)

4. Chen, W., Warren, D.S.: Tabled evaluation with delaying for general logic pro-
grams. J. ACM 43(1), 20–74 (1996)

5. Costa, N., Knorr, M., Leite, J.: Querying LUBM with non-monotonic features in
protege using NoHR. In: Proceedings of ISWC Demonstrations, CEUR Proceed-
ings, vol. 1486 (2015)

6. Costa, N., Knorr, M., Leite, J.: Next step for NoHR: OWL 2 QL. In: Arenas, M.,
et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 569–586. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-25007-6 33

7. Eiter, T., Fink, M., Ianni, G., Krennwallner, T., Redl, C., Schüller, P.: A model
building framework for answer set programming with external computations.
TPLP 16(4), 418–464 (2016)

8. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining
answer set programming with description logics for the semantic web. Artif. Intell.
172(12–13), 1495–1539 (2008)

9. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: Hermit: an OWL 2
reasoner. J. Autom. Reason. 53(3), 245–269 (2014)

10. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Pro-
ceedings of KR. AAAI Press (2006)

11. Ivanov, V., Knorr, M., Leite, J.: A query tool for EL with non-monotonic rules.
In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 216–231. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-41335-3 14

12. Ivanov, V., Knorr, M., Leite, J.: Reasoning over ontologies and non-monotonic
rules. In: Pereira, F., Machado, P., Costa, E., Cardoso, A. (eds.) EPIA 2015. LNCS
(LNAI), vol. 9273, pp. 388–401. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-23485-4 39

13. Kaminski, T., Knorr, M., Leite, J.: Efficient paraconsistent reasoning with ontolo-
gies and rules. In: Proceedings of IJCAI. AAAI Press (2015)

https://doi.org/10.1007/978-3-319-25007-6_33
https://doi.org/10.1007/978-3-642-41335-3_14
https://doi.org/10.1007/978-3-319-23485-4_39
https://doi.org/10.1007/978-3-319-23485-4_39

Telco Network Inventory Validation with NoHR 31

14. Kazakov, Y., Krötzsch, M., Simanč́ık, F.: The incredible ELK: from polynomial
procedures to efficient reasoning with EL ontologies. J. Autom. Reason. 53, 1–61
(2013)

15. Knorr, M., Alferes, J.J., Hitzler, P.: Local closed world reasoning with description
logics under the well-founded semantics. Artif. Intell. 175(9–10), 1528–1554 (2011)

16. Lifschitz, V.: Nonmonotonic databases and epistemic queries. In: Mylopoulos, J.,
Reiter, R. (eds.) Proceedings of IJCAI. Morgan Kaufmann (1991)

17. Lopes, C., Knorr, M., Leite, J.: NoHR: integrating XSB prolog with the OWL 2
profiles and beyond. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS
(LNAI), vol. 10377, pp. 236–249. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-61660-5 22

18. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.):
OWL 2 Web Ontology Language: Profiles (Second Edition). W3C (2012)

19. Motik, B., Rosati, R.: Reconciling description logics and rules. J. ACM 57(5),
93–154 (2010)

20. Slota, M., Leite, J., Swift, T.: On updates of hybrid knowledge bases composed of
ontologies and rules. Artif. Intell. 229, 33–104 (2015)

21. Steigmiller, A., Liebig, T., Glimm, B.: Konclude: system description. J. Web
Semant. 27, 78–85 (2014)

22. Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting with recursive queries
in database and logic programming systems. TPLP 8(2), 129–165 (2008)

https://doi.org/10.1007/978-3-319-61660-5_22
https://doi.org/10.1007/978-3-319-61660-5_22

An ASP-Based Framework for the
Manipulation of Articulated Objects

Using Dual-Arm Robots

Riccardo Bertolucci1 , Alessio Capitanelli2 , Carmine Dodaro2 ,
Nicola Leone1 , Marco Maratea2(B) , Fulvio Mastrogiovanni2 ,

and Mauro Vallati3

1 DeMaCS, University of Calabria, Rende, Italy
{bertolucci,leone}@mat.unical.it

2 DIBRIS, University of Genova, Genova, Italy
{alessio.capitanelli,carmine.dodaro,

marco.maratea,fulvio.mastrogiovanni}@unige.it
3 University of Huddersfield, Huddersfield, UK

m.vallati@hud.ac.uk

Abstract. The manipulation of articulated objects is of primary impor-
tance in robotics, and is one of the most complex robotics tasks. Tradi-
tionally, this problem has been tackled by developing ad-hoc approaches,
that lack of flexibility and portability.

In this paper we present a framework based on Answer Set Program-
ming (ASP) for the automated manipulation of articulated objects in a
robot architecture. In particular, ASP is employed for representing the
configuration of the articulated object, for checking the consistency of
the knowledge base, as well as for generating the sequence of manipu-
lation actions. The framework is validated both in simulation and on
the Baxter dual-arm manipulator, showing the applicability of the ASP
methodology in this complex application scenario.

1 Introduction

The manipulation of articulated objects plays an important role in real-world
robot tasks, both in home and industrial environments [20,24]. Attention has
been paid to the development of approaches and algorithms for generating the
sequence of movements a robot has to perform in order to manipulate an articu-
lated object. In the literature, the problem of determining the 2D configuration
of articulated or flexible objects has received much attention in the past few
years [7,8,27,31], whereas the problem of obtaining a target configuration via
manipulation has been explored in motion planning [4,30,32]. A limitation of
such manipulation strategies is that they are often crafted specifically for the
problem at hand, with the relevant characteristics of the object and robot capa-
bilities being either hard coded or assumed; thus, in these contexts generalisation
property and scalability are somehow limited.
c© Springer Nature Switzerland AG 2019
M. Balduccini et al. (Eds.): LPNMR 2019, LNAI 11481, pp. 32–44, 2019.
https://doi.org/10.1007/978-3-030-20528-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20528-7_3&domain=pdf
http://orcid.org/0000-0001-7356-1579
http://orcid.org/0000-0001-8495-5987
http://orcid.org/0000-0002-5617-5286
http://orcid.org/0000-0002-9742-1252
http://orcid.org/0000-0002-9034-2527
http://orcid.org/0000-0001-5913-1898
http://orcid.org/0000-0002-8429-3570
https://doi.org/10.1007/978-3-030-20528-7_3

An ASP Framework for Articulated Objects Manipulation 33

Fig. 1. Two possible representations: absolute (top) and relative (bottom).

In this paper we present a framework based on Answer Set Programming
(ASP) [5,28] for the automated manipulation of articulated objects in a robot 2D
workspace. ASP is a general, prominent knowledge representation and reasoning
language with roots in logic programming and non-monotonic reasoning [17].
In particular, ASP is employed for performing all automated reasoning related
tasks, i.e., both for planning actions that the robot has to execute, and for
checking the consistency of the configurations of the articulated object as it
changes over time. The validity of the framework is finally demonstrated both
in simulation and on the Baxter dual-arm manipulator.

2 Problem Statement and the Reference Scenario

Our goal is to present (i) an efficient ASP-based planning and execution architec-
ture for the manipulation of articulated objects in terms of perceptual features,
their representation and the planning of manipulation actions, which maximises
the likelihood of being successfully executed by robots, and (ii) given a specific
object’s goal configuration, determine a plan to attain it, in which each step
involves one or more manipulation actions to be executed by a dual-arm robot.
Our working assumptions are:

A1 flexible objects can be appropriately modelled as articulated objects with a
high number of links and joints, as it is customary [32];

A2 an object’s configuration is only affected by robot manipulation actions, or
possibly by humans, and the effects of external forces such as gravity are not
considered;

A3 we do not consider possible issues related to grasping or dexterity during the
manipulation task;

A4 sensing is affected by noise, but the symbol grounding problem, i.e., the asso-
ciation between perceptual features and the corresponding symbols [19], is
assumed to be solved.

34 R. Bertolucci et al.

Fig. 2. The experimental scenario.

On the basis of assumption A1, we focus on articulated objects only. We
define an articulated object as a pair α = (L,J), where L is the ordered set
of its |L| links and J is the ordered set of its |J | joints. Each link l ∈ L is
characterised by two parameters, namely a length λl and an orientation θl. We
allow only for a limited number of possible orientations. This induces a set of
allowed angle orientations A with size |A|. If α is represented using absolute
angles (Fig. 1 on the top), then its configuration is a |L|-ple:

Cα,a =
(
θa
1 , . . . , θa

|L|
)

. (1)

Otherwise, if relative angles are used (Fig. 1 on the bottom), then the config-
uration must be augmented with an initial hidden link l0 in order to define a
reference frame:

Cα,r =
(
θr
1, θ

r
2, . . . , θ

r
|L|

)
. (2)

In fact, while in principle the relative approach could represent the configuration
of an articulated object with one joint less compared to the absolute one, the
resulting representation would not be unique, since the object maintains relative
orientations among its parts even when rotated as a whole.

In order to comply with assumption A2, we setup a scenario in which a
Baxter robot manipulates an articulated object located on a horizontal table
in front of it, assumed to be large enough to accommodate the object itself, see
Fig. 2. Therefore, rotations occur only around an axis perpendicular to the table.
We have crafted two wooden articulated objects of different size: the first has
three 40 cm long links (which are connected by two joints), and the second is
made up of seven 20 cm long links (connected by six joints). For both objects,
links are 3 cm thick. The two objects can be easily manipulated by the Baxter’s
standard grippers, which complies with assumption A3. The Baxter’s head is
equipped with a camera pointing downward to the table. QR tags are fixed
to each object link l, which is aimed at meeting assumption A4. Each QR code
provides an overall link pose, which directly maps to an absolute link orientation

An ASP Framework for Articulated Objects Manipulation 35

Fig. 3. The robot’s architecture: in green the ASP-based modules, in orange the
ROSPlan-based module. (Color figure online)

θa
l . Finally, if relative orientations are chosen, we compute them by performing

an algebraic sum between the two absolute poses of two consequent links, e.g.,
θr
1 = θa

2 − θa
1 . After this general scenario introduction, in the next section we

detail the architecture.

3 The Robot Architecture

The architecture of the Baxter from Rethink Robotics is shown in Fig. 3. It is
noteworthy that, in principle, the architecture can be adapted to other robot
platforms as well, either in simulation or in real-world conditions, as long
as appropriate perception, low-level motion planning tools, and manipulation
strategies are adopted.

In the current implementation, perception is managed using a camera sen-
sor located on top of the robot’s head and pointing downward, which provides
6D poses for each link, which update corresponding ASP-based representation
structures in the Knowledge Base module. The Consistency Checking module
performs a check for knowledge base validation. In case the check succeeds, the
Goal Checker module is notified and relevant parts of the current ASP Knowl-
edge Base are processed by the rules encoded in the Goal Checker module,
aimed at detecting whether the (already computed) plan can be successfully
executed, also in response to a possible human intervention. Whenever checks
that influence the knowledge base status are performed, a problem instance may
be generated, which depends on the target articulated object configuration and
the current configuration maintained in the Knowledge Base module. The Action
Planner module receives such problem instance and generates a plan in the form
of a suitable sequence of actions to be performed. Once a plan is generated, its
actions are processed sequentially to drive the overall behaviour of the robot
Motion Planner module, which is responsible of the execution. For the use case

36 R. Bertolucci et al.

described in this paper, each action involves one rotation operation on the target
link. Rotations occur only around axes centred on the object’s joints. Any action
may be either successful or not, depending on a number of reasons related to
noise and errors in perception, grasping, and manipulation in a real-world envi-
ronment. If an action is successful, the Motion Planner module proceeds with
the one that follows until the plan ends and the Knowledge Base module is noti-
fied about successful execution. Otherwise, an issue is raised and re-planning
occurs, thereby reiterating the whole work-flow described above.

Note that all modules except Motion Planner (i.e., all green modules in
Fig. 3) are based on ASP. The Motion Planner is the module that has to interact
with the robot, and has therefore to follow the constraints posed by the actual
machine.

4 ASP Modules

In this section we describe how ASP is used to implement the modules depicted
in Fig. 3. In the following, we assume the reader is familiar with ASP and ASP-
Core-2 input language specification [6].

4.1 Knowledge Base

The knowledge base consists of facts over atoms of the form joint(J), angle(A),
isLinked(J1,J2), time(T), hasAngle(J,A,T), and goal(J,A), and the con-
stants granularity and timemax. Atoms over the predicate joint represent
the joints of the articulated object. Atoms over the predicate angle represent
the possible angles reachable from the joints and they can range from 0 to 359.
Actually, the atom angle(0) must be always part of the knowledge base and
admissible angles are the ones that can be obtained by rotating a joint by the
degrees specified by the constant granularity, e.g., if the granularity is 90◦,
then the admissible angles are 0, 90, 180, and 270. Atoms over the predicate
isLinked represent links between joints J1 and J2. Atoms over the predicate
time represent the possible time steps, and they range from 0, which represents
the initial state, to timemax. Atoms over the predicate hasAngle represent the
angle A of the joint J at time T. Actually, knowledge base only contains the ini-
tial state of each joint, i.e., its angle at time 0. Finally, atoms over the predicate
goal represent the angle A that must be reached by the joint J at the time step
specified by timemax. An example of the input is represented by the facts and
constants reported in Fig. 4. Note that the constant timemax is not included in
the example, its usage will be described in Sect. 4.3.

4.2 Consistency Checking Module

The module performs some consistency checking on the knowledge base by using
the following ASP encoding:

An ASP Framework for Articulated Objects Manipulation 37

joint(1..5). angle(0). angle(90). angle(180). angle(270).

isLinked(1,2). isLinked(2,3). isLinked(3,4). isLinked(4,5).

hasAngle(1,90,0). hasAngle(2,180,0). hasAngle(3,180,0).

hasAngle(4,270,0). hasAngle(5,270,0). time(0..timemax).

goal(1,270). goal(2,270). goal(3,180). goal(4,270).

goal(5,270). #const granularity = 90.

Fig. 4. An example of an ASP knowledge base.

c1a :- isLinked(J1,J2), not joint(J1).

c1b :- isLinked(J1,J2), not joint(J2).

c2 :- isLinked(J,J).

c3a :- hasAngle(J,A,T), not joint(J).

c3b :- hasAngle(J,A,T), not angle(A).

c3c :- hasAngle(J,A,T), not time(T).

c4a :- goal(J,A), not joint(J).

c4b :- goal(J,A), not angle(A).

c5 moreThanOneGoal(J) :- joint(J), #count{A:goal(J,A)}>1.
c6 :- joint(J), moreThanOneGoal(J).

c7 oneStartingAngle(J) :- joint(J), #count{A:hasAngle(J,A,0)}=1.
c8 :- joint(J), not oneStartingAngle(J).

c9 :- not time(0).

c10 :- not angle(0).

c11 possibleAngle(0).

c12 possibleAngle(X) :- possibleAngle(Y), X=Y+granularity, X<360.

c13 :- not angle(X), possibleAngle(X).

c14 :- angle(X), not possibleAngle(X).

In particular, rules c1a and c1b check whether atoms over the predicate isLinked
represent the links between two joints, while c2 checks whether there is no link
between the same joint. Rules c3a, c3b, and c3c check the correctness of the
predicate hasAngle, whereas c4a and c4b check the correctness of the predicate
goal. Rules c5 and c6 check whether at most one goal is specified for each joint,
whereas rules c7 and c8 verify if each joint is in exactly one angle at time step
0. Rules c9 and c10 simply check the existence of the first time step and angle 0,
respectively. Finally, rules from c11 to c14 check whether atoms over the predicate
angle represent the possible angles.

4.3 Action Planning Module

ASP is not a planning-specific language, but it can be also used to specify encod-
ing for planning domains [26], like our target problem. We have defined several
encodings variants, for what concerns either the manipulation modes and the
strategy for computing plans. The encoding described in this section is embed-
ded into a classical iterative deepening approach in the spirit of SAT-based

38 R. Bertolucci et al.

planning [22], where timemax is initially set to 1 and then increased by 1 if a
plan is not found, which guarantees to return the shortest possible plans for a
sequential encoding, i.e., when the robot performs only one action for each step
(see Sect. 6 for some details about the other strategies).

r1 joint(0).

r2 hasAngle(0,0,0).

r3 isLinked(0,1).

r4 isLinked(J1,J2) :- isLinked(J2,J1).

r5 {changeAngle(J1,J2,A,Ai,T) : joint(J1), joint(J2), J1>J2, angle(A),

hasAngle(J1,Ai,T), A<>Ai, isLinked(J1,J2)} <= 1

:- time(T), T < timemax, T > 0.
r6 ok(J1,J2,A,Ai,T) :- changeAngle(J1,J2,A,Ai,T),

F1=(A+granularity)\360, F2=(Ai\360), F1=F2, A < Ai.

r7 ok(J1,J2,A,Ai,T) :- changeAngle(J1,J2,A,Ai,T),

F1=(Ai+granularity)\360, F2=(A\360), F1=F2, A > Ai.

r8 ok(J1,J2,A,0,T) :- changeAngle(J1,J2,A,0,T), A=360-granularity.

r9 ok(J1,J2,0,A,T) :- changeAngle(J1,J2,0,A,T), A=360-granularity.

r10 :- changeAngle(J1,J2,A,Ai,T), not ok(J1,J2,A,Ai,T).

r11 affected(J1,An,Ac,T) :- changeAngle(J2, ,A,Ap,T), hasAngle(J1,Ac,T),

J1>J2, angle(An), An=|(Ac + (A-Ap)) + 360|\360, time(T).

r12 hasAngle(J1,A,T+1) :- changeAngle(J1, ,A, ,T).

r13 hasAngle(J1,A,T+1) :- affected(J1,A, ,T).

r14 hasAngle(J1,A,T+1) :- hasAngle(J1,A,T), not changeAngle(J1, , , ,T),

not affected(J1, , ,T), T <= timemax.

r15 :- goal(J,A), not hasAngle(J,A,timemax).

Fig. 5. Base encoding: it allows for forward manipulations only.

Figure 5 reports our base encoding. Note that it uses operations \ and |· · · |,
which are not defined in the ASP-Core-2 standard but supported by Clingo [15],
and compute the remainder of the division and the absolute value, respectively.

Since we employ an absolute representation, r1, r2 and r3 add to the knowl-
edge base the joint(0), its angle and link to joint 1. This joint will not be
moved and it is used only to have a fixed reference between the robot and artic-
ulated object frames. Rule r4 enforces that bidirectionality of linked joints, i.e.,
if joint(1) is linked to joint(2) then joint(2) is also linked to joint(1).
Rule r5 selects an atom of the form changeAngle(J1,J2,A,Ai,T), where J1 is
the joint to move, J2 is the joint to keep steady, A is the desired angle, Ai is the
current angle of J1 and T is the current step. Rule r10 ensures the validity of
the configuration represented by the atom changeAngle(J1,J2,A,Ai,T), that
is when each action has a desired angle A that can be reached in one step (rules
r6, r7, r8, and r9). Rule r11 is used to identify which joints are affected from the
atom selected in r5. Rules r12 and r13 are used to update the joints angles for the
next step, while r14 states that if neither r12 nor r13 have affected a joint then
its angle remains unchanged. Finally, r15 states the the goal must be reached.

An ASP Framework for Articulated Objects Manipulation 39

4.4 Goal Checker

During the execution of a plan an external agent may interact with the articu-
lated object, e.g., a human may change the angle of some joints (see, e.g., [8]). In
such a case, the system must react to the changes if they are not compatible with
the plan executed by the robot. This is accomplished by asynchronously creating
a new input configuration according to the current status of the object, so that
the configuration is ready as soon as it is needed. The role of Goal Checker mod-
ule is to check when there is no need to create a new configuration, that is when
all goals have been reached. This is done by using rule r15 from the encoding in
Fig. 5.

5 Validation of the Framework

A validation scenario where a robot has to manipulate a 5-link articulated object
has been set up both in simulation and in real-world using the Baxter dual-arm
manipulator. Objects composed by 5 links provide a very valuable ground for
testing our approach, as they are not so long to make the manipulation difficult
for the robot, and at the same time they are articulated enough to require to
plan movements in order to reach a goal configuration. The use of Baxter is
justified by its widespread adoption as a research platform and by the necessity
to employ a robot with two arms in order to manipulate the object, i.e., the
robot should be able to keep a link of an object with one arm while it rotates
an adjacent one.

Simulations have some practical advantages in this scenario. Indeed, they
allow to run a greater number of planning-execution cycles with minimal human
supervision and shorter execution times. Moreover, they are less susceptible to
uncertainty and low-level motion planning failures, which are outside of the scope
of this work. Nevertheless, we also test with the real robot in order to provide
a more robust proof-of-concept of the proposed architecture. A video showing
the Baxter in operation, via the introduced framework, can be found at https://
tinyurl.com/yd6kqgjn.

In our setting, we employed (i) ALVAR, an AR tag tracking library, to detect
the absolute pose of the object’s links using a head-mounted camera; and (ii)
MoveIt!, as the de facto standard for motion planning and execution in the
robotic community. The system was implemented in the Robot Operating Sys-
tem (ROS, Indigo release) framework, while Gazebo 2 was used as simulation
environment for the relevant part. The system has been tested on a machine
with an Intel i7-4790 CPU and 16 GB of RAM. All the results of the evaluation
are available at https://tinyurl.com/ydzyefux.

The evaluation procedure unfolds as follows. First, the object is set up in
a random configuration coherent with the specified granularity and within an
acceptable margin of error. The initial and goal configurations are then repre-
sented in terms of the ASP atoms reported in Sect. 4.1, and processed by the
state-of-the-art ASP system Clingo [15] together with the encoding in Sect. 4.3
in order to generate a (valid) plan. Actions of the plan are then executed through

https://tinyurl.com/yd6kqgjn
https://tinyurl.com/yd6kqgjn
https://tinyurl.com/ydzyefux

40 R. Bertolucci et al.

a1 : changeAngle(2,1,90,180,1) a2 : changeAngle(1,0,180,90,2)
a3 : changeAngle(3,2,90,180,3) a4 : changeAngle(1,0,270,180,4)

Fig. 6. The planning and execution process on the sample scenario: an excerpt of the
answer set returned by Clingo (a1 . . . a4 are compact references for the ground actions).

Fig. 7. The planning and execution process on the sample scenario: The robot actions
and (intermediate) states induced by the computer plan.

the low-level motion planning layer, where an action consists of rotations around
the object’s joints perpendicular axes.

An example is shown in Figs. 4, 6 and 7: Fig. 4 reports the ASP representation
of the scenario in which the number of joints composing the articulated object,
their initial state and the goal to achieve are given, while Fig. 6 lists an excerpt
of an answer set obtained by Clingo with the encoding in Sect. 4.3. Each atom
of the form changeAngle in the answer set represents an action to perform on a
joint with the meaning detailed in Sect. 4.1.

An ASP Framework for Articulated Objects Manipulation 41

Eventually, Fig. 7 illustrates the execution process. In particular, starting
from the initial configuration of the articulated object (Fig. 7(1)), Fig. 7(2), (4),
(5) and (7) represent action’s execution for a1, a2, a3, and a4, respectively
(see Fig. 6), whereas Fig. 7(3), (4) and (6) represent intermediate configurations.
Finally, Fig. 7(8) shows the final state that corresponds to the required goal con-
figuration of the 5-link articulated object. It is important to note that Fig. 7(4)
displays both a3 execution and its resulting intermediate state since it was just
a rotation of the whole object.

Other than the sample scenario, we have performed an experimental analysis
on the Action Planning module by varying the number of joints (up to 14) and
the granularity, and by randomly generating initial and final configurations, for
a total of about 400 instances. On the successfully solved instances, Clingo took
1.5 s average processing time and could solve the problem in around 8 steps
on average, with results as low 0.01 s/4 steps and never above 2.2 s/9 steps,
which confirms the applicability of ASP reasoning in this context. All plans
have been validated with the VAL tool [21]. Albeit the performance deteriorates
when both the resolution and the links of the object are increased, they are
encouraging considering current workspace dimensions and dexterity levels for
bi-manual robots, which represent the true bottleneck in this scenario.

Remarkably, the proposed ASP approach is guaranteed to compute the short-
est plan, due to the use of an iterative deepening procedure. This is pivotal, as
it allows to minimise the actual execution time of the robot, which is the most
consuming part.

6 Related Work

In Sect. 4.3 we have shown one of our encoding with one particular manipula-
tion mode and search strategy but, as we already stated, we have designed a
series of encodings (available at https://tinyurl.com/ycbp798j), including differ-
ent manipulation modes, i.e., also backward (given our link ordering), and search
strategies. As far as the strategies are concerned, we have designed encoding in
which, imposing a reasonable timemax (i) by employing a strategy based on the
algorithm optsat [9,18], where the heuristic of the solver is modified in order to
prefer plans with increasing length, and (ii) by using a choice rule to select the
timestep and we let the solver to find a plan, of course possibly loosing optimality
(see also [10]).

In [7,8] a similar framework based on automated reasoning methodologies
has been presented. Such framework employs PDDL language and automated
planning engines for the planning module, and Description Logic (DL) solvers
in the configuration module, where data are explicitly stored in an ontology,
while we use a uniform language and approach (ASP-based) in the whole frame-
work. Moreover, differently from most of our approaches, encodings and solvers
employed in [7,8] are not currently able to return shortest plans, which is other-
wise important, given that in this context executing the actions can be expensive.
In [23], instead, a custom-designed multi-robot platform is presented, focused on

https://tinyurl.com/ycbp798j

42 R. Bertolucci et al.

HRI in indoor service robot for understanding natural language requests. Plan-
ning is specified using the action language BC [25].

The ASP architecture used in this paper can be integrated with ROSo-
Clingo [3], which is a system that combines the ASP solver Clingo (version 4)
with the ROS middleware. In particular, it provides a high-level ASP-based
interface to control the behaviour of a robot and to process the results of the
execution of the actions. In our framework the interaction with ROS is handled
by a custom script.

Moreover, it is worth pointing out that ASP has been employed in different
domains, e.g., [1,2], including robotic, e.g., [3,12–14,29]. These consider logistic
and ricochet robots domain, as well as cooperative robots, whose ultimate goal
is not the validation and exploitation of the techniques on a real robot, as in our
case. For a recent overview, the interested reader is referred to [11].

Focusing on planning encodings, recently the Plasp system [10] has been fur-
ther extended with both SAT-inspired and genuine encodings. Some of them
have helped to reduce the (still existing) gap with automated planning tech-
niques. Our aim in the design of the encoding was to obtain a devoted and
working solution for the problem at hand, rather than the fastest possible one.
Nonetheless, results in [10] could be employed to further speed-up our Action
Planning module.

7 Conclusions

In this paper we presented an ASP framework for the automated manipulation
of articulated objects in a robot 2D workspace. We demonstrated the validity
and usefulness of the proposed approach both in simulation and by running real-
world experiments with a Baxter, which is widely adopted for research purposes.
The experimental results of our validation also indicates that the proposed ASP-
based approach, using Clingo as a solver, is capable of generating optimal results,
with regards to the number of actions that the Baxter has to perform, in a very
limited amount of time.

We see several avenues for future work. First, we are interested in validat-
ing the framework on different dual-arm robots, possibly manipulating different
articulated objects: given the nature of the approach, we expect it to generalise
with a reasonably limited effort. We also plan to integrate our approach with
ROSoClingo, to simplify the interaction with robots. Then, we plan to extend
our approach in order to cope with different types of robots (e.g., those with
different number of arms/grippers), and to extend it to model and support the
3D manipulation of articulated objects. Finally, our instances could be an inter-
esting benchmark domain for ASP Competitions (see, e.g., [16]).

An ASP Framework for Articulated Objects Manipulation 43

References

1. Alviano, M., Dodaro, C., Maratea, M.: An advanced answer set programming
encoding for nurse scheduling. In: Esposito, F., Basili, R., Ferilli, S., Lisi, F.A.
(eds.) (AI*IA 2017). LNCS, vol. 10640, pp. 468–482. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-319-70169-1 35

2. Amendola, G., Dodaro, C., Leone, N., Ricca, F.: On the application of answer
set programming to the conference paper assignment problem. In: Adorni, G.,
Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS (LNAI), vol. 10037,
pp. 164–178. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49130-
1 13

3. Andres, B., Rajaratnam, D., Sabuncu, O., Schaub, T.: Integrating ASP into ROS
for reasoning in robots. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR
2015. LNCS (LNAI), vol. 9345, pp. 69–82. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-23264-5 7

4. Bodenhagen, L., et al.: An adaptable robot vision system performing manipulation
actions with flexible objects. IEEE Trans. Autom. Sci. Eng. 11(3), 749–765 (2014)

5. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

6. Calimeri, F., et al.: ASP-Core-2 Input Language Format (2013)
7. Capitanelli, A., Maratea, M., Mastrogiovanni, F., Vallati, M.: Automated planning

techniques for robot manipulation tasks involving articulated objects. In: Esposito,
F., Basili, R., Ferilli, S., Lisi, F. (eds.) AI*IA 2017. LNCS, pp. 483–497. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-319-70169-1 36

8. Capitanelli, A., Maratea, M., Mastrogiovanni, F., Vallati, M.: On the manipulation
of articulated objects in human-robot cooperation scenarios. Robot. Auton. Syst.
109, 139–155 (2018)

9. Di Rosa, E., Giunchiglia, E., Maratea, M.: Solving satisfiability problems with
preferences. Constraints 15(4), 485–515 (2010)

10. Dimopoulos, Y., Gebser, M., Lühne, P., Romero, J., Schaub, T.: plasp 3: towards
effective ASP planning. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017.
LNCS (LNAI), vol. 10377, pp. 286–300. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-61660-5 26

11. Erdem, E., Patoglu, V.: Applications of ASP in robotics. Künstliche Intelligenz
32(2–3), 143–149 (2018)

12. Erdem, E., Patoglu, V., Saribatur, Z.G.: Integrating hybrid diagnostic reasoning
in plan execution monitoring for cognitive factories with multiple robots. In: Pro-
ceedings of ICRA, pp. 2007–2013. IEEE (2015)

13. Erdem, E., Patoglu, V., Saribatur, Z.G., Schüller, P., Uras, T.: Finding optimal
plans for multiple teams of robots through a mediator: a logic-based approach.
Theory Pract. Log. Program. 13(4–5), 831–846 (2013)

14. Gebser, M., et al.: Ricochet robots: a transverse ASP benchmark. In: Cabalar, P.,
Son, T.C. (eds.) LPNMR 2013. LNCS (LNAI), vol. 8148, pp. 348–360. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40564-8 35

15. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:
Theory solving made easy with clingo 5. In: Proceedings of the Technical Com-
munications of the International Conference on Logic Programming (ICLP), pp.
2:1–2:15. Schloss Dagstuhl (2016)

16. Gebser, M., Maratea, M., Ricca, F.: The sixth answer set programming competi-
tion. J. Artif. Intell. Res. 60, 41–95 (2017)

https://doi.org/10.1007/978-3-319-70169-1_35
https://doi.org/10.1007/978-3-319-49130-1_13
https://doi.org/10.1007/978-3-319-49130-1_13
https://doi.org/10.1007/978-3-319-23264-5_7
https://doi.org/10.1007/978-3-319-23264-5_7
https://doi.org/10.1007/978-3-319-70169-1_36
https://doi.org/10.1007/978-3-319-61660-5_26
https://doi.org/10.1007/978-3-319-61660-5_26
https://doi.org/10.1007/978-3-642-40564-8_35

44 R. Bertolucci et al.

17. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of the International Conference on Logic Programming (ICLP), pp.
1070–1080. MIT Press (1988)

18. Giunchiglia, E., Maratea, M.: Solving optimization problems with DLL. In: Brewka,
G., Coradeschi, S., Perini, A., Traverso, P. (eds.) Proceedings of the 17th European
Conference on Artificial Intelligence (ECAI 2006). Frontiers in Artificial Intelli-
gence and Applications, vol. 141, pp. 377–381. IOS Press (2006)

19. Harnad, S.: The symbol grounding problem. Physica D 42, 335–346 (1990)
20. Heyer, C.: Human-robot interaction and future industrial robotics applications. In:

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 4749–4754. IEEE (2010)

21. Howey, R., Long, D., Fox, M.: VAL: automatic plan validation, continuous effects
and mixed initiative planning using PDDL. In: Proceedings of the IEEE Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI), pp. 294–301. IEEE
Computer Society (2004)

22. Kautz, H.A., Selman, B.: Planning as satisfiability. In: Proceedings of the European
Conference on Artificial Intelligence (ECAI), pp. 359–363 (1992)

23. Khandelwal, P., Zhang, S., Sinapov, J., Leonetti, M., Thomason, J., Yang, F., Gori,
I., Svetlik, M., Khante, P., Lifschitz, V., Aggarwal, J.K., Mooney, R.J., Stone, P.:
Bwibots: a platform for bridging the gap between AI and human-robot interaction
research. Int. J. Robot. Res. 36(5–7), 635–659 (2017)

24. Krüger, J., Lien, T.K., Verl, A.: Cooperation of human and machines in assembly
lines. CIRP Ann. 58(2), 628–646 (2009)

25. Lee, J., Lifschitz, V., Yang, F.: Action language BC: preliminary report. In: Rossi,
F. (ed.) Proceedings of the 23rd International Joint Conference on Artificial Intel-
ligence (IJCAI 2013), pp. 983–989. IJCAI/AAAI (2013)

26. Lifschitz, V.: Answer set programming and plan generation. Artif. Intell. J. 138(1–
2), 39–54 (2002)

27. Nair, A., et al.: Combining self-supervised learning and imitation for vision-
based rope manipulation. In: Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), pp. 2146–2153. IEEE (2017)

28. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. AMAI 25(3–4), 241–273 (1999)

29. Schäpers, B., Niemueller, T., Lakemeyer, G., Gebser, M., Schaub, T.: ASP-based
time-bounded planning for logistics robots. In: Proceedings of the International
Conference on Automated Planning and Scheduling (ICAPS), pp. 509–517. AAAI
Press (2018)

30. Schulman, J., Ho, J., Lee, C., Abbeel, P.: Learning from demonstrations through
the use of non-rigid registration. In: Inaba, M., Corke, P. (eds.) Robotics Research.
STAR, vol. 114, pp. 339–354. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-28872-7 20

31. Wakamatsu, H., Arai, E., Hirai, S.: Knotting/unknotting manipulation of
deformable linear objects. Int. J. Robot. Res. 25(4), 371–395 (2006)

32. Yamakawa, Y., Namiki, A., Ishikawa, M.: Dynamic high-speed knotting of a rope
by a manipulator. IJARS 10, 1–12 (2013)

https://doi.org/10.1007/978-3-319-28872-7_20
https://doi.org/10.1007/978-3-319-28872-7_20

C-ASP: Continuous ASP-Based
Reasoning over RDF Streams

Thu-Le Pham1(B) , Muhammad Intizar Ali1 , and Alessandra Mileo2

1 Insight Centre for Data Analytics, National University of Ireland, Galway,
IDA Bussiness Park, Lower Dangan, Galway, Ireland
{thule.pham,ali.intizar}@insight-centre.org

2 Insight Centre for Data Analytics, Dublin City University,
Glasnevin, Dublin 9, Ireland

alessandra.mileo@insight-centre.org

Abstract. The ability to perform complex reasoning over data streams
has recently become an important area of research in the Semantic Web
community. Most of SPARQL-inspired engines have limitations in cap-
turing sophisticated user requirements and dealing with complex reason-
ing tasks. To address these challenges, we propose and implement C-ASP,
a reasoning system based on the Answer Set Programming (ASP) system
Clingo and extended to handle continuous reasoning requests over RDF
streams. We provide the syntax of the C-ASP language, as well as a set
of examples in order to illustrate its expressive power. In addition, we
present preliminary experimental results showing C-ASP performances.

Keywords: Stream reasoning · Answer Set Programming ·
Semantic Web · RDF

1 Introduction

In recent years, Semantic Web (SW) research has contributed to advancing the
state-of-the-art in RDF Stream Processing (RSP) with several engines such as
C-SPARQL [2] and CQELS [7], among others. Despite all these efforts, reasoning
capabilities are still limited and cannot support complex reasoning such as the
ability to handle defaults, preferences, recursion, and non-determinism. Some
work in this direction leverages the expressive power of non-monotonic reasoning
techniques to build a stream reasoning (SR) system, relying on both advances
in RSP technologies for representing and processing data streams, and non-
monotonic reasoning for performing complex rule-based inference. For instance,
ASR [6] and StreamRule [8] rely on ASP by hard-coding a subprocess that
performs repetitive calls to the ASP solver to infer new knowledge from data
streams and a given rule set. Therefore, they do not provide a flexible way to
seamlessly integrate the stream processing and reasoning functionalities.

This research is partially funded by Science Foundation Ireland (SFI) under grant No.
SFI/12/RC/2289 and SFI/16/RC/3918.

c© Springer Nature Switzerland AG 2019
M. Balduccini et al. (Eds.): LPNMR 2019, LNAI 11481, pp. 45–50, 2019.
https://doi.org/10.1007/978-3-030-20528-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20528-7_4&domain=pdf
http://orcid.org/0000-0003-0615-2913
http://orcid.org/0000-0002-0674-2131
https://doi.org/10.1007/978-3-030-20528-7_4

46 T.-L. Pham et al.

Recently, two new SR engines, namely Ticker [5] and Laser [3], have been
implemented from a fragment of LARS [4]. LARS programs are encoded as ASP
rules. However, Laser restricts its expressivity to positive and stratified programs
and ASP encodings of Ticker’s programs use mainly normal ASP rules. As a
result, they do not fully exploit the expressive power of ASP, including the ability
to handle disjunction, optimization, aggregations, and preferences. Moreover,
they do not support the ability to query SW streams, which we believe is the
key in ensuring the scalability of such systems when handling real IoT streams.

Aiming to (i) exploit full capabilities of ASP to perform reasoning over RDF
streams, and (ii) seamlessly provide flexible ways of combining semantic stream
processing and non-monotonic reasoning, this paper proposes C-ASP, an exten-
sion of ASP to support continuous reasoning over semantic streams. The C-ASP
language allows users to specify their reasoning requests which include their
sophisticated reasoning requirements, input streams, and how to access those
streams. Such requests are registered with the C-ASP engine and continuously
executed over RDF streams by the means of windows.

2 The C-ASP Processing Model

The processing model of C-ASP combines RSP and ASP-based reasoning in one
single framework. Similarly to other RSP engines, C-ASP takes multiple RDF
data streams as inputs and produces outputs as streams. It also supports the
integration with background knowledge from static RDF knowledge bases. Users
express their requirements and preferences in the form of continuous reasoning
requests using the C-ASP language, an extension of the ASP language described
in Sect. 3. A C-ASP reasoning request (RR) is registered with the C-ASP engine
and evaluated continuously over the input streams and the knowledge bases.

Definition 1. A C-ASP reasoning request RR is defined as RR = (P, I,R,O)
where P defines a set of constants indicating namespace prefixes; I = Istream ∪
Ikb, where Istream identifies a set of RDF input streams and the windows to
specify how to extract data elements from streams, and Ikb identifies a set of
RDF static datasets; R identifies a set of ASP rules; and O identifies a selections
of output data.

When evaluating RR at time t, only a portion of the input stream is con-
sidered. The evaluation process can be broken down into 3 steps: windowing
(from streams to relations) - select subsets of the most recent elements of the
input streams; evaluating (from relations to relations) - perform reasoning on the
finite and intermediate data portions; and streaming (from relations to streams)
- convert the final solutions back into streams.

3 Implementation: The C-ASP Language

This section defines how a C-ASP reasoning request is expressed in an exten-
sion of the ASP language with RDF streaming features, and provides a set of
examples.

C-ASP: Continuous ASP-Based Reasoning over RDF Streams 47

3.1 C-ASP Reasoning Request

In Fig. 1, we provide the syntax to express each component in RR. First, to deal
with RDF data format, we use a PrefixClause statement which captures each
element in P . This PrefixClause is adopted from the syntax for prefixes used
to abbreviate IRIs1 in SW. The identification of input streams and static knowl-
edge bases in I is expressed by means of FromStreamClause and FromClause,
respectively. In FromStreamClause, each input stream is coupled with a window
(represented by Window) to guide the C-ASP engine on how to extract related
data from the stream. In FromClause, static knowledge bases are specified via
their paths and the C-ASP engine integrates them with input streams before
performing ASP-based reasoning over them.

PrefixClause → #prefix prefixName : 〈〈〈IRI〉〉〉;
FromStreamClause → #from stream streamIRI Window;

Window → Time-basedWindow | Tuple-basedWindow

Time-basedWindow → [time number TimeUnit step number TimeUnit]
TimeUnit → d | h | m | s | ms

Tuple-basedWindow → [count number step number]
FromClause → #from 〈〈〈knowledge base〉〉〉;
RuleClause → ASP rule;
OutputClause → #show predicateSymbol///number;;;

Fig. 1. C-ASP syntax

A rule in R follows the ASP-core2 language standard2 and the C-ASP imple-
mentation relies on the Clingo solver. However, the extension of ASP rules to
deal with RDF streams introduces predicate symbols, which are obtained from
converting an RDF triple 〈s, p, o〉, in form of prefixName p. The predicate sym-
bol prefixName p identifies that this predicate is from RDF input streams or
RDF datasets while p (without prefixName) is an internal predicate defined
and used within the ASP rules. In this way, an input RDF triple with a times-
tamp (〈s, p, o〉, t) is automatically converted into an ASP predicate of the form
prefixName p(s, o, t).

In addition, output statements identify output predicates the C-ASP engine
needs to provide after reasoning. The syntax of an output statement in O is
defined in OutputClause. The variable number in OutputClause identifies the
number of arguments in predicateSymbol. If number = 2 then the C-ASP
engine provides output as (timestamped) RDF streams by converting output
atoms (i.e., predicateSymbol(s,o)) to triples (i.e., <s,predicateSymbol,o>)
and assigning timepstamps to them (i.e., (<s, predicateSymbol,o>, t)). Oth-
erwise, C-ASP outputs (timestamped) predicate-format streams.
1 https://www.w3.org/TR/rdf11-concepts/#section-IRIs.
2 https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03b.pdf.

https://www.w3.org/TR/rdf11-concepts/#section-IRIs
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03b.pdf

48 T.-L. Pham et al.

3.2 Examples of a C-ASP Reasoning Request

In what follows we present some of the features of the C-ASP language defined
above by providing examples of continuous reasoning requests.

RR1, illustrated in Listing 1, is a simple C-ASP reasoning request with aggre-
gation3. The request is made by the travel company in order to know how many
hotels have been booked during the last hour. It will notify the company every
30 min.

#from stream <http :// t r a v e l . org /booking> [time 1h step 30m];
bookedHotel (Hotel) :− t l booked (User , Hotel , Time) ;
noH(N) :− N = #count{Hotel : bookedHotel (Hotel) };
#show noH/1;

Listing 1. RR1

Assume that the information of hotels and streets are stored in static RDF
datasets, hotelkb.rdf and streetkb.rdf respectively. The company wants to
know which 5-star hotels located on a main street have been booked in the last
hour. The reasoning request RR2 in Listing 2 shows the combination of static
and streaming data.

#from stream <http :// t r a v e l . org /booking> [time 1h step 30m];
#from <hote lkb . rdf>;
#from <s t r e e tkb . rdf>;
bookedHotel (Hotel) :− t l booked (User , Hotel , Time) ;
f i v e S t a r (Hotel) :−bookedHotel (Hotel) , h t s t a r (Hotel , Star) ,

Star = 5;
ex fmHotel (Hotel , S t r e e t) :− f i v e S t a r (Hotel) ,

h t l o c a t ed (Hotel , S t r e e t) ,
r d f t ype (Street , ” ct MainStreet ”) ;

#show ex fmHotel /2;

Listing 2. RR2

To illustrate an example of combining multiple input streams, we assume that
the company also records information when a user cancels a booking. The reason-
ing request RR3 (Listing 3) notifies the company on which below-3-star hotels
located on a main street have been booked and then canceled during the last
hour. This request also allows the company to decide how to deal with incomplete
information about hotels’ stars via the negation-as-failure rule bcStar(Hotel):-
bcHotel(Hotel), not hasStar(Hotel);.

We now showcase an example of C-ASP that can capture more sophisticated
requirements via optimization statements in ASP. Imagine that the company
wants to know the most expensive and highest star hotels that have been booked
during the last hour. They do not want to get notification of those hotels located

3 Due to space limitation, we omit the PrefixClause of the following prefixes from the
reasoning request: #prefix tl : 〈http://travel.org/〉; #prefix ht : 〈http://hotel.org/〉;
#prefix ct : 〈http://city.org/〉; #prefix rdf : 〈http://www.w3.org/1999/02/22-rdf-
syntax-ns#〉; #prefix ex : 〈http://example.org/〉;.

C-ASP: Continuous ASP-Based Reasoning over RDF Streams 49

in a noisy area (we assume that a hotel located on a main street is noisy). More-
over, they are more interested in the most expensive hotels. RR4 expresses such
request as illustrated in Listing 4. This request takes advantage of the ability of
ASP to handle expressive reasoning such as managing optimization statements.

#from stream <http :// t r a v e l . org /booking> [time 1h step 30m];
#from stream <http :// t r a v e l . org / cance l ing> [time 1h step 30m];
#from <hote lkb . rdf>;
#from <s t r e e tkb . rdf>;
bcHotel (Hotel) :− t l booked (User , Hotel , Time1) ,

t l c a n c e l e d (User , Hotel , Time2) ,Time1<Time2;
bcStar (Hotel) :−bcHotel (Hotel) , h t s t a r (Hotel , Star) , Star <= 3;
hasStar (Hotel) :− h t s t a r (Hotel , Star) ;
bcStar (Hotel) :−bcHotel (Hotel) , not hasStar (Hotel) ;
ex bcmHotel (Hotel , S t r e e t) :−bcStar (Hotel) ,

h t l o c a t ed (Hotel , S t r e e t) ,
r d f t ype (Street , ” ct MainStreet ”) ;

#show ex bcmHotel /2;

Listing 3. RR3

#from stream <http :// t r a v e l . org /booking> [time 1h step 30m];
#from <hote lkb . rdf>;
#from <s t r e e tkb . rdf>;
1{bookedHotel (Hotel) : t l booked (User , Hotel , Time) }1;
no i syHote l (Hotel) :−bookedHotel (Hotel) ,

h t l o c a t ed (Hotel , S t r e e t) ,
r d f t ype (Street , ” ct MainStreet ”) ;

:− no i syHote l (Hotel) ;
#maximize {Y@1 : h t s t a r (Hotel , Star) , bookedHotel (Hotel) } ;
#maximize {Y@2 : h t c o s t (Hotel , Cost) , bookedHotel (Hotel) } ;
#show bookedHotel /1;

Listing 4. RR4

4 Evaluation

We compare the performance of C-ASP against one of the most mature RSP
engines, C-SPARQL, with respect to latency and memory consumption, by using
the well-known RSP benchmark CityBench [1]. The experiment was conducted
on a machine with 24-core Intel(R) Xeon(R) 2.40 GHz and 96G RAM. First,
we evaluate the performance of the two engines with a frequency f = 1 (i.e.,
replay streams at the original rate). We stream data for 10 min to C-SPARQL
queries Q1C, Q2C, and Q10C as representative samples in terms of number
of query patterns and presence of join operators (respectively, R1C, R2C, and
R10C for C-ASP reasoning requests). Results indicate that the latency of C-
ASP is minimal compared to C-SPARQL for all three queries. More specifically,
C-ASP performs almost 3 times (or more) faster than C-SPARQL for queries

50 T.-L. Pham et al.

Q1C, Q2C and slightly faster for query Q10C. In addition, it is noticeable in
those figures that the memory consumption of C-ASP is less than a half of the
C-SPARQL memory consumption. We then increase the frequency of streams to
f = 2 and re-run the experiment with the similar setting. We observe the similar
results as in f = 1.

5 Conclusion and Future Work

This paper presents C-ASP, an ASP-based approach for performing complex rea-
soning over RDF streams. The C-ASP language, which leverages the full expres-
sive power of ASP, allows users to express their requirements and preferences in
the form of C-ASP reasoning requests. C-ASP enables the continuous reasoning
capability in ASP by adding RDF streams to the input data types, windowing
operators to capture the most relevant portions of data from streams, (stable
model semantics) entailment at window-level, and streaming operators to stream
out the results. The experimental evaluation shows that the C-ASP engine out-
performs the state-of-the-art RSP engine C-SPARQL. Our future work includes
optimization techniques to scale up the engine such as incremental evaluation as
applied in [3,5] or parallel reasoning as applied in [9].

References

1. Ali, M.I., Gao, F., Mileo, A.: CityBench: a configurable benchmark to evaluate RSP
engines using smart city datasets. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS,
vol. 9367, pp. 374–389. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
25010-6 25

2. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: C-SPARQL: a
continuous query language for RDF data streams. Int. J. Semant. Comput. 4(01),
3–25 (2010)

3. Bazoobandi, H.R., Beck, H., Urbani, J.: Expressive stream reasoning with laser.
In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 87–103. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68288-4 6

4. Beck, H., Dao-Tran, M., Eiter, T.: LARS: a logic-based framework for analytic
reasoning over streams. Artif. Intell. 261, 16–70 (2018)

5. Beck, H., Eiter, T., Folie, C.: Ticker: a system for incremental ASP-based stream
reasoning. Theory Pract. Log. Program. 17(5–6), 744–763 (2017)

6. Do, T.M., Loke, S.W., Liu, F.: Answer set programming for stream reasoning. In:
Butz, C., Lingras, P. (eds.) AI 2011. LNCS (LNAI), vol. 6657, pp. 104–109. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21043-3 13

7. Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and adap-
tive approach for unified processing of linked streams and linked data. In: Aroyo, L.,
et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 370–388. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25073-6 24

8. Mileo, A., Abdelrahman, A., Policarpio, S., Hauswirth, M.: StreamRule: a nonmono-
tonic stream reasoning system for the semantic web. In: Faber, W., Lembo, D. (eds.)
RR 2013. LNCS, vol. 7994, pp. 247–252. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-39666-3 23

9. Pham, T.-L., Ali, M.I., Mileo, A.: Enhancing the scalability of expressive stream
reasoning via input-driven parallelization. Semantic Web, (Preprint), 1–17

https://doi.org/10.1007/978-3-319-25010-6_25
https://doi.org/10.1007/978-3-319-25010-6_25
https://doi.org/10.1007/978-3-319-68288-4_6
https://doi.org/10.1007/978-3-642-21043-3_13
https://doi.org/10.1007/978-3-642-25073-6_24
https://doi.org/10.1007/978-3-642-39666-3_23
https://doi.org/10.1007/978-3-642-39666-3_23

Internet Routing and Non-monotonic
Reasoning

Anduo Wang(B) and Zhijia Chen

Temple University, Philadelphia, USA
{adw,zhijia.chen}@temple.edu

Abstract. Internet routing is the process of selecting paths across the
Internet to connect the communicating hosts, it is unique in that path
selection is jointly determined by a network of independently operated
networks, known as domains or Autonomous Systems (ASes), that inter-
connect to form the Internet. In fact, the present routing infrastructure
takes such an extreme position that it favors local autonomy—an AS can
use arbitrary path preference to override the default shortest path policy,
at the expense of potential global oscillation—a collection of AS prefer-
ences (policies) can fail to converge on a stable path, a path that is also
the most preferred possible for every AS along the path. In this paper,
we examine the route oscillation problem with non-monotonic reasoning.
We observe that, in the absence of any AS specific policies, Internet rout-
ing degenerates into the monotonic computation of shortest path—a pre-
ferred (shorter) (super)path always extends another preferred (sub)path;
But fully autonomous AS policies are non-monotonic—a path favored by
one AS can be an extension of a less preferred path of a neighbor, to which
an “upgrade” to a better path can cause this AS to downgrade to a less
preferred path previously discarded. Based on this insight, we present
an Answer Set Programming (ASP) formulation that allows for auto-
matic oscillation detection. Our evaluation using the clingo ASP solver
is promising: on realistic Internet topology and representative policies,
clingo can detect anomalies within 35 s.

1 Introduction

The Internet is at once the world-wide information infrastructure that has rev-
olutionized the computers and communications like nothing before. Behind its
tremendous success as a means for information dissemination and a medium for
collaboration and interaction between geographically distributed computers, is
one common service—to provide end to end data paths that connect the com-
municating hosts. To select the much needed communication paths, the Internet
relies on a process called routing.

c© Springer Nature Switzerland AG 2019
M. Balduccini et al. (Eds.): LPNMR 2019, LNAI 11481, pp. 51–57, 2019.
https://doi.org/10.1007/978-3-030-20528-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20528-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-20528-7_5

52 A. Wang and Z. Chen

Routing on the global Internet is unique in that, the Internet is a network of
independently operated networks—known as domains or Autonomous Systems
(ASes) that are driven by their own economic concerns. This makes routing a
process jointly determined by all the ASes along the path. In particular, border
gateway protocol (BGP) [9] is currently the only interdomain (i.e. across ASes)
routing protocol that stitches together the Internet, it allows the ASes to set
arbitrary path preference—local policies—to override the path decision based on
shortest path metric—by default, without any AS-specific policies, BGP behaves
like the distributed execution of the Dijkstra algorithm on a (AS-level) graph
and always selects the path with fewest AS hops.

This extreme position taken by BGP—favoring local autonomy, allowing an
AS to influence path selection based solely on its own concerns without any global
coordination—has an important consequence. The BGP protocol suffers a global
anomaly called route oscillation [7]: BGP system is not guaranteed to converge
on a unique best path. There exists some AS policies when the BGP system
is unable to agree upon a global policy-compliant path, and keeps oscillating
between several sub-optimal ones. Much efforts in the networking community [4–
6] have been on using abstract combinatorial models and derived structures—
e.g., state transition machines, circular dependency graphs—to understand and
detect such routing oscillation.

In this position paper, instead of relying on specialized combinatorial struc-
tures or expert-guided reasoning, we use non-monotonic reasoning as a means to
understand, explain, and automatically detect policies that can lead to routing
oscillation.

We observe that, in the absence of any AS policies, Internet routing degenerates
into the monotonic computation of shortest path: For a particular destination, any
shortest path to that destination, denoted byPx, selected byAS x,must also extend
another shortest path that has been selected by some neighbor AS y that is one hop
closer to the destination. This has been captured by the Bellman-Ford equation
that lies at the heart of the Dijkstra algorithm—Px = spy{x added toPy}, where
sp is the aggregate function that returns the shortest path1.

The Bellman-Ford equation implies that, path improvement to x’s neighbor—
y selects a better (thus shorter) path P ′

y—can only benefit x, resulting in a
P ′
x no worse than before. Since the set of available paths are finite, all ASes

will eventually converge on the path that is also their best possible choice. But
independently set AS policies make path selection non-monotonic: The local
policy of AS x may prefer a path (Px) that extends a path (Py) disliked by a
neighbor y. As y learns and gets promoted to a better path—moving away from
the less preferred Py, it also unfortunately makes the much liked Px unavailable
at x, causing x to downgrade to a less preferred path.

1 The original Bellman-Ford equation addresses computation of the cost of the short-
est path. We presented a modified version for the shortest path—a list of nodes that
constitute the path.

Internet Routing and Non-monotonic Reasoning 53

Based on this observation, we developed a systematic encoding of policy con-
figurations in Answer Set Programming (ASP) [2,3] that allows for automated
analysis. Our main result is that, the ASP solution to our policy formulation
coincides with the paths selected by the policy-based routing system, thus pro-
viding a means to detect oscillation: The policies are guaranteed to converge on
a single best path if the ASP solver gives a unique solution; The policies can
lead to oscillation in some circumstances but converge in other cases if the ASP
solver finds multiple solutions; The policies will result in permanent oscillation
in any circumstances if the ASP solver cannot find any solution.

We also evaluated our ASP formulation using the clingo [1] solver, showing
promising result: on realistic Internet topology with up to 10 k nodes and 51 k
edges, clingo can correctly recognize routing oscillation problems for several rep-
resentative policy configurations within 35 s; Our encoding also scales gracefully,
the clingo searching time increases linearly with respect to the topology size (in
terms of number of nodes under the same edge density).

2 Internet Routing and Non-monotonic Reasoning

In this section, we provide the necessary background on BGP and a detailed
analysis of route oscillation with non-monotonic reasoning. We begin with a brief
review of BGP using an abstract model called the stable path problem (SPP)
formalism. SPP offers a simple semantics for AS policies while abstracting away
all nonessential details, such as implementation specifics of BGP.

Fig. 1. (left) Example: the SPP model for AS policies. (right) Policy-based route
selection.

An instance of SPP, S = (G,P,R), as shown in Fig. 1 (left), is an AS graph
G—0 is the pre-fixed destination of interests, together with the permitted paths
P at each AS, and the path ranking (preference) functions R—a vertical list next
to each AS, with the highest ranked path at the top going down to the lowest
ranked path at the bottom. In Fig. 1 (left), each AS prefers the counter-clockwise
path of length 2 over all other paths to 0. For example, AS1 prefers the longer
path 120 over its direct path 10.

54 A. Wang and Z. Chen

Fig. 2. Route selection with “disagreeing”
AS policies is non-monotonic.

Given an SPP, BGP can be viewed
as a distributed algorithm for find-
ing the most preferred paths to 0:
ASes exchange routing announcements
with their neighbors. Each announce-
ment is the current best path cho-
sen by the sending AS, and it indi-
cates that the sending AS is willing
to carry traffic destined to 0 from the
receiving AS. That is, traffic flow in
the opposite direction, from announce-
ment receivers to senders. When multi-
ple announcements are received by an

AS, one single best path is selected by the AS’s local policy. In Fig. 1 (right),
AS2, upon receiving three announcements from its neighbors, uses its local policy
to filter out the path 210—which does not occur in the permitted path list, and
picks the highest ranked path 210 as the selected one. It is also worth noting
that, since an AS only selects one single best path, the announcement of a new
(better) path implicitly retracts the previously exposed (older) path.

This path selection process was originally designed for using within an AS
under one single administrative domain that often employs a single (global)
ranking function—e.g., shortest path policy that always favors fewer hops. The
global ranking ensures that all nodes will converge onto a stable path, a path
that is not only globally optimal but also coincides with every node’s local best.

But fully autonomous policies of BGP can lead to non-monotonic behavior.
By fully autonomous we mean an AS is free to prefer a path that extends a
path disliked by a neighbor. The ASes do not need to take a consistent view
of the paths based on some universally agreed criteria. For example, in Fig. 1
(left), 210 is the most preferred path by AS2, but it extends the less preferred
10 from AS1. Note how this policy configuration diverges from the Bellman-
Ford equation discussed in Sect. 1. Such “disagreeing” policies lead to route
oscillation shown in Fig. 2: Suppose the current best path selected by AS1 and
AS2 are 10 and 210, respectively. When AS1 learns a new path 30 from AS3, it
will elevate 130 to be its best path and expose it to AS2, which also implicitly
withdraws 10, resulting in the retraction of AS2’s top choice 210. Now, AS2 needs
to downgrade to the less preferred 10. In fact, all three ASes will keep exchanging
route announcements and exhibit similar oscillation: their choices of best path
bounce back and forth as the subpaths they depends on are announced and
withdrawn by the corresponding neighbors.

3 An ASP Formulation for Automatic Oscillation
Detection

An advantage of our non-monotonic reasoning approach is that it lends itself
to an ASP formulation [2,3] that, readily recognizable by modern ASP solvers,
allows for automatic analysis.

Internet Routing and Non-monotonic Reasoning 55

First, we present a straightforward ASP encoding of the AS policies defined
in Sect. 2, thanks to ASP’s native support for negation and constraints. Our for-
mulation involves two predicates r and b: r(p) states that the path p is permitted
at some AS, b(p) says that p is selected as the best path, and p is a tuple that
contains the list of nodes along the path. To fully specify the policy-based route
selection of an AS, we only need to describe how to generate the permitted and
selected paths r,b.

A permitted path is either a direct path to the destination AS or an extension
to paths received from a neighbor, which must also be that neighbor’s current
best path. Take AS2 in Fig. 1 (left) as an example, it can generate two permitted
candidates, one direct path from itself to 0, and an indirect one extending the
best path of AS1.

1 % direct path as known fact(s)

2 r((2,0)).

3 % an indirect path generated by route announcements from a neighbor

4 r((2,1,0)) :- b((1,0)).

The best paths are determined by the path ranking function, the encod-
ing of which is also straightforward. For every pi in a list of paths p1 · · · , pn
ranked from the most preferred to the least preferred, we only need a rule of
the form b(pi) :- r(pi), not r(p1-1), ..., not r(p1), meaning that, pi can
be promoted to be the best path only if it is available, while none of the more
preferred paths are presented. Continuing with AS2, its ranking function is cap-
tured by the rules as follows.

1 % ranking function of the permitted paths at AS2

2 b((2,0)) :- r((2,0)), not r((2,1,0)).

3 b((2,1,0)) :- r((2,1,0)).

Finally, we need to ensure that only one best path is selected. To achieve
this, we only need to make sure that, for any pi from a list of permitted paths
p1, · · · , pn, the presence of pi will prevent the derivation of pj , j �= i. In other
words, for any pi, pj(i �= j), it follows that b(pi) and b(pj) cannot be simultane-
ously true. For the two paths—210,20—permitted at AS2, we have:

1 % only one permitted path can be selected as the best path

2 :- b((2,1,0)), b((2,0)).

The strength of this formulation is that, for a set of AS policies, the solution
to this ASP encoding coincides with all the stable best paths that can be selected
by the BGP system. For example, running the ASP program for Fig. 1 yields no
solution. More importantly, this correspondence gives a method for detecting
BGP oscillation, stated as follows:

Let L denote an ASP program that encodes a set of AS policies as described
in this section, we can use the solution(s) to L to detect route oscillation as
follows: (1) 0 solution implies permanent oscillation since the policies fail to give
any stable path selection; (2) 1 solution indicates convergence since the policies

56 A. Wang and Z. Chen

will select a unique set of best paths under all circumstances—any ordering of
route announcement exchanges; (3) multiple solutions mean possible oscillation:
depending on the ordering of route announcement exchange, the policies can
converge onto different set of best paths, but it is also possible that the BGP
system may oscillate on other circumstances.

4 Preliminary Evaluation

In this section, we evaluate our ASP formulation with the clingo solver [1,3], on
various network topologies and policy configurations. Our preliminary result is
promising. Clingo can correctly recognize oscillation problem in all cases within
1 min. The solution time also scales well with the size of the network. All the
experiments are performed on the macOS platform with 3.4 GHz Intel Core i5
processor and 16 GB 2400 MHz DDR4 RAM.

Setup. We use the popular GT-ITM tool [8] to generate various Internet-like
topologies—2-level hierarchical graphs where the top level mimics a set of well
connected network service providers, and the second layer represents smaller
providers that access (and thus are customers of) the top providers. Compared
to the actual Internet topology inferred from real-world network traffic, GT-
ITM has the advantage of generating topologies of various sizes, allowing us
to study the scalability of our ASP formulation. Specifically, we generate six
topologies with 1000, 2000, 4000, 6000, 8000, 10000 nodes; 5092, 10304, 20766,
31595, 42880, 54954 edges; and a node-to-edge ratio of 0.196, 0.194, 0.192, 0.190,
0.187 and 0.182, respectively.

On every GT-ITM topology, we randomly pick a node as the destination
of interest, and populate the rest of the nodes with all possible paths to that
destination. The policy configurations we embed in the topology include three
scenarios: In the “good” scenario, all paths are permitted and shortest path
policy is used to rank the permitted paths. In the“disagree” scenario, we embed
circular ranking (similar to Fig. 1 (left)) between two randomly picked neighbors
and use shortest path for the rest of the nodes. In the last “bad” scenario, we
embed the circular ranking of Fig. 1 (left). The bad configuration is known to
exhibit permanent route oscillation while the disagree scenario only oscillates
under certain ordering of route announcement exchanges.

Fig. 3. Solution searching time for the
good, disagree, and bad policies

Fig. 4. ASP scales gracefully: the
searching time increases linearly

Internet Routing and Non-monotonic Reasoning 57

Correctness and Performance. Using the analysis method described in
Sect. 3, clingo correctly recognizes the good, disagree, and bad policies on the
graph with 1000 nodes and 5092 edges. The solution times for all three cases are
depicted in Fig. 3: we plotted the average running time (the box height) and the
standard deviation (the bar length) for 10 runs. The solution time on different
cases are very close—2.843 s, 2.850 s and 2.846 s for good, disagree and bad case,
respectively.

Scalability. Our formulation also scales gracefully. Figure 4 shows the searching
time for the disagree case on various topology sizes: as the network size increases
from 2000 nodes and 10304 edges to 10000 nodes and 54954 edges, clingo search
time grows linearly from 6.578 s to 34.786 s. Each data point in the figure is
averaged on 3 runs.

References

1. The clingo system. https://potassco.org/
2. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Com-

mun. ACM 54(12), 92–103 (2011)
3. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.:

Potassco: the Potsdam answer set solving collection. Ai Commun. 24(2), 107–124
(2011)

4. Griffin, T.G., Shepherd, F.B., Wilfong, G.: The stable paths problem and interdo-
main routing. IEEE Trans. Netw. 10, 232–243 (2002)

5. Griffin, T.G., Wilfong, G.: An analysis of BGP convergence properties. In: SIG-
COMM (1999)

6. Griffin, T.G., Wilfong, G.: A safe path vector protocol. In: INFOCOM (2000)
7. McPherson, D., Gill, V., Walton, D., Retana, A.: Border Gateway Protocol (BGP)

persistent route oscillation condition (2002)
8. Modeling Topology of Large Internetworks. http://www.cc.gatech.edu/projects/

gtitm/
9. Rekhter, Y., Li, T., Hares, S.: A Border Gateway Protocol 4 (BGP-4) (2006)

https://potassco.org/
http://www.cc.gatech.edu/projects/gtitm/
http://www.cc.gatech.edu/projects/gtitm/

Argumentation

Assessing Arguments with Schemes
and Fallacies

Pierre Bisquert1(B), Florence Dupin de Saint-Cyr2 , and Philippe Besnard2

1 INRA, Montpellier, France
pierre.bisquert@inra.fr

2 IRIT - CNRS, Université Paul Sabatier, Toulouse, France
{florence.bannay,philippe.besnard}@irit.fr

Abstract. We present a logical framework allowing us to express assess-
ment of facts (is it proven?) and arguments (is it sound?) together with
a proof system to answer these questions. Our motivation is to clarify the
notion of validity in the context of logic-based arguments along different
aspects (such as the formulas used and the inference scheme). Origi-
nality lies in the possibility for the user to design their own argument
schemes. We show that classical inference obtains when arguments are
based on classical schemes (e.g. Hilbert axioms). We go beyond classical
logic by distinguishing “proven” formulas from “uncontroversial” ones
(whose negation is not proven). Hence a formal definition of a fallacious
argument : it uses controversial formulas or schemes recognized as illicit.
We express some rational arguments and fallacies in the form of schemes.

Keywords: Logic-based arguments · Fallacies · Soundness · Validity ·
Inference · Hilbert system

1 Introduction

Finding a good way to convince another individual (or oneself) is a crucial task
that must have been done from the beginning of humanity and is still part of
everyone’s daily life. This may explain why this topic has been addressed by
many researchers and is still a very hot topic which is studied from many differ-
ent perspectives: philosophy, psychology, linguistics, logic, artificial intelligence,
multi-agent communication, legal reasoning, etc.

There are at least two ways to interpret the word “argument” as expressed by
Johnson and Blair [15]: (1) “An interaction, usually verbal and usually between
two or more people, that is normally occasioned by a difference of opinion”,
we will call this option Argumentation, (2) “What someone makes or formu-
lates (reasons or evidence) as grounds or support for an opinion (the basis for
believing it)”. We will call this second option Assessing Arguments. Hence the
first sense is more related to dialogues where people argue by giving arguments
and counter-arguments. In artificial intelligence, it concerns researchers working
on action communication languages (see e.g. [2,10,25]), dialogues [3,30], and
c© Springer Nature Switzerland AG 2019
M. Balduccini et al. (Eds.): LPNMR 2019, LNAI 11481, pp. 61–74, 2019.
https://doi.org/10.1007/978-3-030-20528-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20528-7_6&domain=pdf
http://orcid.org/0000-0001-7891-9920
https://doi.org/10.1007/978-3-030-20528-7_6

62 P. Bisquert et al.

abstract argumentation [8] (where arguments are represented by vertices of a
graph whose arcs are attacks between them). The second sense is the one we are
going to use in this paper where, as expressed by [15], “The account for argument
cogency is that of acceptability, relevance or sufficiency (or good grounds)”. In
this context, arguments are structures containing reasons and conclusions such
that the reasons are intended to be seen as proofs of the conclusions. However,
Argumentation and Assessing Arguments coincide when a proof is simulated by
a dialogue between an agent PRO (in favor of a formula) and an agent CON
(against it) [17]. Moreover, inquiry dialogues as defined by [30] show also the
need to bring together “validity” and communication act since, in this type of
dialogues, participants aim to jointly find a “proof” for a particular formula.

In contrast with the first view of Argumentation where the question of what
is an argument is often not evoked at all, the definition of an argument is at
the heart of the Assessing Arguments research field. A first definition could be
found in the diagrams of [31]. Later, [27] decomposes structurally an argument
in five sub-components (the Claim, the Data supporting this Claim, the Warrant
providing a licence to infer the Claim from the Data, the Backing for this War-
rant and the Rebuttal condition that encapsulates exceptions). A more recent
work by [29] defines argument schemes on the basis of critical questions. Beyond
this precise decomposition of an argument, there seems to be a consensus on the
definition of a deductive structured argument with two parts (the premises and
the claim) where the premises constitute a minimal proof of its claim. In that
simpler context, assessing an argument amounts to check if it is sound, i.e. quot-
ing Kelley [16]: “We evaluate [deductive] arguments by two basic standards: (1)
Are the premises true? (2) How well do the premises support the conclusion?”

A major trend of research must be mentioned: the study of fallacy. Quoting
Woods [32]: “in the broadest sense of the term, a fallacy is any error in reasoning.
But the term is normally restricted to certain patterns of errors that occur with
some frequency, usually because the reasoning involved has a certain surface
plausibility. To the unwary, the premises of a fallacious argument seem relevant
to the conclusion, even though they are not; or the argument seems to have more
strength than it actually does. This is why fallacies are committed with some
frequency”. Understanding fallacious reasoning has two benefits: first, learn how
to detect it in everyday life; second, progress in the understanding of what is a
good argument by opposition to fallacies. This explains why fallacies have been
broadly studied and seminal works [13] categorizing them in patterns is famous.

We propose a unified system for dealing with fallacies, since as far as we know,
few authors [7,33,34] attempted to set a generic logical system that helps a user
to assess an argument. Note that the introduction of meta-level predicates for
assessing arguments has been explored but restricted to a dialectical argumen-
tation framework [14,24]. Indeed, in this paper we propose a logical system that
takes an argument and some knowledge as input then, either the argument is
sound and the licit schemes that were implicitly used in the argument are listed
to the user, or the argument is not sound and the system answers that some
premises are missing and/or gives a list of the fallacious schemes that were used.
It is important to note that the aim of our work is not to formalize argumentation

Assessing Arguments with Schemes and Fallacies 63

schemes “à la Walton/Toulmin”, but to provide a logic-based formalization of
arguments considered as structured proofs. In this regard, the argumentation
schemes of Walton/Toulmin are particular cases of “non standard” inference
rules hence can be seen as licit schemes in our framework.

The paper is organized as follows: we define a formal language that enables us
to give a formal definition of concepts related to argument assessment (validity,
soundness, etc.) wrt. a set of argumentation schemes, and we show that this can
mimic classical logic when the schemes amount to classical inference, exemplify-
ing it with Hilbert axioms. We give a list of fallacious schemes (fallacies) and a
definition of a fallacious argument wrt. a set of recorded (potentially fallacious)
schemes. We show that a fallacious argument will be detected as “non robust”.

2 Language

We use a language L split into two parts: L = L0 ∪ L1, L0 is the language for
describing the world, L1 is a metalanguage for describing inferences between
arguments and formulas based on schemes and facts defined in the language. L0

is based on a finite set of user-defined predicates P0, a finite set of variables X0

and a finite set of constants C0. A term of L0 is a variable of X0 or a constant of
C0, a vector of terms is denoted T. An atom has the form p(T) where p is a n-ary
predicate of P0 and either n = 0 and T is empty; or for all i ∈ [1...n], T[i] is a
term. Let At0 be the set of all atoms based on P0, X0 and C0, they will represent
factual information on the world. Let X1 be a set of variable symbols (starting
with a capital letter) that can represent any member of At0 (atoms of L0), they
will be used in L1. Let I be an index set (serving as scheme identifiers).

Definition 1 (Syntax of L0 and L1)
L0 : ϕ,ψ :: p(T);X;ϕ → ψ;¬ϕ
L1 :: licit(Ψ, ϕ); proven(ϕ); sound(Ψ, ϕ);unctrv(ϕ); robust(Ψ, ϕ)
where p(T) ∈ At0 and X ∈ X1 and Ψ ::{}; {ϕ} ∪ Ψ

Let K ⊆ L0 be a set of formulas representing a set of factual knowledge, and
S ⊆ I ×2L0 ×L0 be a list of triples of the form (id, Ψ, ϕ) where id is an identifier
from I, Ψ is a set of formulas of L0 (the premise) and ϕ is a formula of L0 (the
conclusion), that represent the recorded “schemes” defined on L0. S needs not
to represent axioms that capture classical logic. We will see both the cases where
S allows to capture classical logic and where S captures other kinds of schemes.

Licit, proven, sound are L1-counterparts to validity and soundness in classical
logic. An argument is licit if obtained by a substitution upon a recorded scheme.
Since using an argument can be viewed as applying an inference scheme, a for-
mula is proven if it can be reached by a sequence of inference schemes from the
knowledge base. An argument is sound if it is licit and its premises are proven.

Definition 2 (Semantics of licit, proven and sound)

– K,S |=L licit(Ψ, ϕ) iff there exist (id, A, α) ∈ S and a substitution
σ : X1 → At0 s.t. (Ψ, ϕ) = (σ(A), σ(α)).

64 P. Bisquert et al.

– K,S |=L proven(ϕ) if ϕ ∈ K or ∃Ψ ∈ 2L0 s.t. K,S |=L sound(Ψ, ϕ).
– K,S |=L sound(Ψ, ϕ) if K,S |=L licit(Ψ, ϕ) and ∀ψ ∈ Ψ , K,S |=L proven(ψ).
– The last two items are the only way to establish proven(ϕ) and sound(Ψ, ϕ)

(structural minimality).

Example 1. Let K be a knowledge base expressing that it rains and that observ-
ing rain implies taking an umbrella K = {rain, rain → take(umbrella)}. Let
modus ponens be the only licit scheme, S = {(modusponens, {X, X → Y }, Y)}.

The argument saying that “since it rains and due to the implication between
rain and taking an umbrella, then the user should take an umbrella” is licit and
sound, and allows us to prove that the user should take an umbrella. Formally,
with Ψ = {rain, rain → take(umbrella)} and ϕ = take(umbrella), it holds that
K,S |=L licit(Ψ, ϕ) and K,S |=L sound(Ψ, ϕ) and K,S |=L proven(ϕ).

It is easier to visualize that a formula is proven by building a proof tree,
according to Definition 3 and Proposition 1 (proof trees are used in some proofs).

Definition 3 (Proof tree, �S). Given a knowledge base K and a set of
schemes S s.t. scheme (id, Ψ, ϕ) ∈ S, a graph G = (V,E) where each vertex
of V contains exactly one formula of L0 is a proof tree for ϕ wrt. K and S iff

– either G is a tree of only one node v0 containing ϕ which is a leaf: G =
({v0}, ∅) and ϕ ∈ K,

– or G is a directed tree of root v0 containing ϕ and v0 is a node with k ≤
sup{|Ψ | : (id, Ψ, ϕ) ∈ S} children v1, . . . , vk s.t.

• ∀i ∈ [1, k], vi contains a formula ϕi, vi is the root of a proof tree of ϕi,
• ({ϕ1, . . . , ϕk}, ϕ) is s.t. there exist (id, A, α) ∈ S and a substitution

σ : X1 → At0 s.t. ({ϕ1, . . . , ϕk}, ϕ) = (σ(A), σ(α)).

Notation: K �S ϕ iff there exists a finite proof tree for ϕ wrt K and S.

Proposition 1. K,S |=L proven(ϕ) iff K �S ϕ

In L1 the expressions uncontroversial and robust are cautious counterparts of
proven and sound as is standard [4,9]. A formula is uncontroversial if its negation
is not proven and either it is a fact or the conclusion of a robust argument where
a robust argument is a licit one whose premises are all uncontroversial.

Definition 4 (semantics of uncontroversial and robust)

– K,S |=L unctrv(ϕ) iff K,S �|=L proven(¬ϕ) and (ϕ ∈ K or ∃Ψ ∈ 2L s.t.
K,S |=L robust(Ψ, ϕ)).

– K,S |=L robust(Ψ, ϕ) iff K,S |=L licit(Ψ, ϕ) and ∀ψ ∈ Ψ , K,S |=L

unctrv(ψ).

Assessing Arguments with Schemes and Fallacies 65

Example 1 (continued): Supplement K with color(umbrella, yellow) and
¬rain: K ′ = {rain → take(umbrella), rain, ¬rain, color(umbrella, yellow)}.
Then, K,S |=L proven(take(umbrella)) and K,S �|=L uncontroversial(take
(umbrella)). This is because the argument ({rain, rain → take(umbrella)},
take(umbrella)) is no longer robust due to rain ceasing to be uncontroversial
(now, both proven(rain) and proven(¬rain) hold).

Even if K is inconsistent, it is possible to infer that some non absurd for-
mula hold, since K, S |=L unctrv(color(umbrella, yellow)) (there is no proof
tree concluding ¬color(umbrella, yellow) because the fact does not exist and no
implication concludes this negation). Such an inference system is paraconsistent,
although not very powerful: e.g. modus tollens is not a licit scheme in it.

The next property shows that uncontroversial is a particular case of proven.

Proposition 2. If K,S |=L unctrv(ϕ) then K,S |=L proven(ϕ).

Proof. If ϕ is uncontroversial then it is possible to build a particular proof tree
for ϕ wrt. K and S (where each formula ψ of a node is such that proven(¬ψ)
does not hold). Hence K �S ϕ.

3 Soundness and Completeness of this Framework

In this section we show that the framework is sound and complete when the set
of schemes S is licit and complete wrt. classical logic. For any set of schemes
S =

⋃
i∈IS

(i, Ψi, ϕi), we say that S is cl-valid (standing for valid wrt classical
logic) iff ∀i ∈ IS , Ψi |= ϕi. We say that S is cl-complete iff |= ϕ implies �S ϕ.

Proposition 3 (cl-validity). Let S =
⋃

i∈IS
(i, Ψi, ϕi) be a set of cl-valid

schemes, IS ⊆ I, ∀ϕ ∈ L0, ∀K ⊆ L0, if K,S |=L proven(ϕ) then K |= ϕ.

Proof. Due to Proposition 1, K,S |=L proven(ϕ) implies K �S ϕ. Since S is
cl-valid, this implies that K |= ϕ.

Proposition 4 (cl-completeness). Let S =
⋃

i∈IS
(i, Ψi, ϕi) be a cl-complete

set, IS ⊆ I, ∀ϕ ∈ L0, ∀K ⊆ L0, if K |= ϕ then K,S |=L proven(ϕ)

Proof. By mapping the classical proof tree of ϕ to a proof tree for proven(ϕ) wrt.
K and S (inverting the arcs) and using Proposition 1 we get K,S |=L proven(ϕ).

Next, as expected, we show that introducing the notions of uncontroversial
and robust provides a nice way to circumvent the ex falso quodlibet1.

Proposition 5 (Escaping ex falso quodlibet). Let S =
⋃

i∈IS
(i, Ψi, ϕi) be

a set of schemes, IS ⊆ I. If S is both cl-valid and cl-complete then ∀ϕ ∈ L0,
∀K ⊆ L0, K,S |=L unctrv(ϕ) iff K �|= ⊥ and K |= ϕ

1 The ex falso quodlibet expresses that from inconsistency anything can be deduced.

66 P. Bisquert et al.

Proof. (⇒) K,S |=L unctrv(ϕ) by Proposition 2, K,S |=L proven(ϕ), by Propo-
sition 3, K |= ϕ. Now, K,S |=L unctrv(ϕ) implies K,S �|=L proven(¬ϕ), due to
Proposition 4 K �|= ¬ϕ, i.e., K �|= ⊥ (since K |= ⊥ implies ∀ψ,K |= ψ).
(⇐) Due to Proposition 4, K |= ϕ implies K,S |=L proven(ϕ). Due to Propo-
sition 1, K �S ϕ. Assume that there is a node v containing a formula ψ in this
proof tree s.t. K,S |=L proven(¬ψ) then due to Proposition 3 K |= ¬ψ, more-
over v should be s.t. K,S |=L proven(ψ) (by Definition 1). Due to Proposition 3
this implies K |= ψ), i.e., K |= ⊥. Hence if K |= ϕ and K �|= ⊥ then there
is a proof tree for ϕ in K,S s.t. for each node containing any formula ψ in
this tree K,S �|=L proven(¬ψ) which is a particular proof tree translating that
K,S |=L unctrv(ϕ).

4 Computing Licitness and Soundness of an Argument

A Prolog program has been implemented that assesses arguments. For the sake
of efficiency, we define a predicate arg/2 with which the user declares all the
arguments to be used in the proof. The implementation is an encoding of the
above definitions via the predicates proven, licit sound, uncontroversial, robust.
In Prolog, these predicates have a parameter which can be set to an unbound
variable that will contain a list of schemes and facts to be used to prove a formula.

Example 1 (continued): The knowledge base given above is implemented as

|?- proven([take(umbrella)], Schemes).
Schemes = [[modusponens, fact(rain),

fact(implies(rain, take(umbrella)))]]

This means that we are able to prove take(umbrella) based on the facts rain and
rain → take(umbrella) and the modus ponens scheme.

4.1 Example of Implementation of an Hilbert System

We now show how our framework captures classical logic by encoding a Hilbert
system, namely Mendelson’s axiom system for implies and not. These axioms
are all valid and modus ponens preserves validity. As to completeness, the case
is similar hence the schemes corresponding to this Hilbert system allows us to
capture classical entailment, as is stated by the next corollary.

Corollary 1 (Inference with Hilbert Schemes)

Let SH = {(hilbertK, ∅,X → (Y → X)), (modusponens, {X,X → Y)}, Y)
(hilbertS, ∅, (X → (Y → Z)) → ((X → Y) → (X → Z)))
(hilbertNot, ∅, (¬Y → ¬X) → ((¬Y → X) → Y))}

∀K ⊆ L0, ∀ϕ ∈ L0, we have K,SH |=L proven(ϕ) iff K |= ϕ

Proof. The Hilbert axiomatic system has been shown to be valid, modus ponens
has been shown to preserve validity hence SH is valid, using Proposition 3 we
get the implication from left to right, Hilbert system with modus ponens has
been show to be complete, using Proposition 4 we get the reverse implication.

Assessing Arguments with Schemes and Fallacies 67

It is then possible to check if f → f can be proven:

|?- proven([implies(f,f)], S).
S = [[modusponens,[modusponens,[hilbertK],[hilbertS]],[hilbertK]]]

This list gives the sequence of schemes that are used to prove f →f : hilbertK,
hilbertS, modus ponens, hilbertK and modus ponens.

5 Reasoning with Schemes and Fallacies

In this section, we show how our framework can be used to assess arguments
using particular argument schemes or, possibly, fallacies.

5.1 Sound and Fallacious Use of the Expert Scheme

We start with an example in which it is possible to produce “expert argu-
ments”, i.e. arguments using an expert’s opinion to support a conclusion. Such
arguments can be fallacious or sound according to the credibility of the expert
(called “Authority” in the fallacy 2a “Appeal to Authority”, see next section).
Let the facts K1 = {expert(doctorWho,weather), topic(sunny,weather),
said(doctorWho, sunny)} and schemes S1 = {{(expertarg, {expert (Agent,
Topic), topic (Claim, Topic), said (Agent, Claim)}, Claim}} form the knowl-
edge base. It is possible to construct the argument: a1 = ({expert (doctorWho,
weather), topic (sunny, weather), said (doctorWho , sunny)}, sunny) such
that we have:

K1, S1 |=L licit(a1) K1, S1 |=L robust(a1) K1, S1 |=L unctrv(sunny)

Indeed, the argument a1 follows exactly the “expert argument” scheme provided
in S1 (a1 is thus licit) and its premises belong to K (it is the case of no contradict-
ing piece of information) so it is robust. Since the argument is robust, its conclu-
sion sunny is uncontroversial. If K does not contain expert(doctorWho,weather)
then argument a1 is no longer sound (nor robust) but it remains licit wrt. S1.

Let us now observe how the addition of new information may give another
result regarding the robustness of a1 with the following knowledge base:

K2 = K1 ∪ {nodiploma(doctorWho,weather),
nodiploma(Agent, Topic) → ¬expert(Agent, Topic)},

S2 = S1 ∪ {(modusponens, {X,X → Y }, Y)}.

With the argument a2 =
({nodiploma (doctorWho, weather), nodiploma

(Agent, Topic) → ¬ expert(Agent, Topic)}, ¬ expert(doctorWho, weather)
)
,

we get:

K2, S2 |=L licit(a2) K2, S2 |=L sound(a2)
K2, S2 �|=L robust(a2) K2, S2 |=L proven(¬expert(doctorWho,weather))

68 P. Bisquert et al.

Because of a2, the provability of one of the premises of a1 has been challenged.
I.e., we still have a proof for expert(doctorWho,weather), but we also have a proof
for its negation. And, thus, the conclusion of a1 is not uncontroversial anymore:

K2, S2 �|=L unctrv(sunny) K2, S2 |=L proven(sunny).

However, sunny is still proven since a1 is still sound (its premises are still in the
knowledge base). Our Prolog implementation provides the list of schemes used
for assessing the argument or for proving the formula.

|?- proven([sunny], S).
S = [[expertarg]]

|?- proven([neg(expert(doctorWho, weather))], T).
T = [[modusponens]]

This provides the schemes used for proving respectively sunny (expertarg)
and ¬(expert(doctorWho,weather)). Since we are able to list every scheme that
is used then it is possible to detect those that are regarded fallacious, and to let
the user know about it. We illustrate this on the following knowledge base:

K3 = K1 ∪ {young(doctorWho)},

S3 = S1 ∪ {(tooyoung, {young(Agent)}),¬expert(Agent, weather)}.

This scheme expresses that a young person cannot be an expert about weather,
which is fallacious (viewed as an instance of Hasty Generalization meaning that
“young” implies “inexperienced” hence “not expert”). Yet, one can have argu-
ment

a3 = ({young(doctorWho)},¬expert(doctorWho,weather)).

In this context, a3 is licit regarding S3 and it challenges a1 in the same way as
a2. However, the possibility to detect this particular tooyoung fallacious scheme
might allow to prompt the user to change its arguments or provide grounding
for its (hitherto fallacious) scheme.

5.2 Encoding the Schemes of Some Usual Fallacies

In this section, we show how our framework is able to handle usual fallacies. Since
Aristotle’s On Sophistical Refutations, there have been a lot of work on fallacies,
including [13], along time the list of fallacies is growing, and is exposed in books
or even on web pages2. Here, we choose to use the classification given by [16] who
studied fallacies with the same goal as many authors including Aristotle, i.e., first
for helping people to identify and avoid them, second because “understanding
why these patterns of arguments are fallacious will help us understand the nature
of good reasoning”. In this section, we propose to examine fallacies that Kelley
2 See e.g. https://www.logicallyfallacious.com/tools/lp/Bo/LogicalFallacies.

https://www.logicallyfallacious.com/tools/lp/Bo/LogicalFallacies

Assessing Arguments with Schemes and Fallacies 69

discussed in [16], Chap. 5. For example we do not consider fallacies that refer to
an opponent’s argument like “strawman” (misrepresenting someone’s argument
to make it easier to attack). Quoting Kelley, “the varieties of bad reasoning are
too numerous to catalog here” hence we restrict to Kelley’s four categories:

1. Subjectivist fallacies: these are inferences that involve the violation of objec-
tivity in one way or another.
(a) Subjectivism: “I believe in p” or “I want p” hence p holds.
(b) Appeal to majority: The majority believes p hence p is true.
(c) Appeal to emotion: use (explicitly or implicitly) emotion instead of evi-

dence to make accepted a belief.
(d) Appeal to force (Argumentum ad Baculum): use a threat instead of evi-

dence (which may be regarded as an appeal to the emotion “scared”).
2. Fallacies involving credibility:

(a) Appeal to Authority (Argumentum ad Verecundiam): agent A says p
hence p is true. It is a fallacy when A has not been proven to be compe-
tent and objective, when the conditions of credibility are not satisfied.

(b) Ad Hominem: using a negative trait of a speaker as evidence that his
statement is false: A says p, A has some negative trait hence p is false.

3. Fallacies of Context: “jumping to conclusions.”
(a) False Alternative3: Either p or q, ¬q hence p which is deductively valid

but the soundness depends on whether the premises take into account all
the relevant alternatives.

(b) Post Hoc4: X occurred before Y hence X caused Y .
(c) Hasty Generalization: drawing conclusions too quickly, on the basis of

insufficient evidence (with not enough variety to be representative).
(d) Accident or Hasty application: applying a generalization to a special case

without regard to the circumstances that make the case an exception to
the general rule.

(e) Slippery Slope: Action X will lead to Y that will lead to Z, Z is very bad
hence 5 X should be avoided.

(f) Composition (and Division): inferring p is true of a part (the whole) must
be true of the whole (a part) without considering whether the nature of
p makes it rational.

4. Fallacies of Logical Structure
(a) Begging the Question (Circular Argument): p hence p, usually p is for-

mulated in two different ways6.
(b) Equivocation: a word used in premise and conclusion switches meaning.
(c) Appeal to Ignorance: ¬p has not been proven true hence p is true7.

3 Also called False Dichotomy when the premises posit just two alternatives.
4 This is short for post hoc ergo propter hoc: “after this, therefore because of this.”.
5 There could be any number of items in the series of projected consequences.
6 This fallacy occurs when the circle is enlarged to include more than one step: The

conclusion p is supported by premise q, which in turn is supported by p (though
there could be any number of intervening steps).

7 One application is the legal principle that a person is innocent until proven guilty.

70 P. Bisquert et al.

(d) Diversion: changing the issue in the middle of an argument. Another form
of diversion is called the Straw man argument: distorts an opponent’s
position and then refutes it. An extreme form is the Non sequitur fallacy
when the premises are completely unrelated to the conclusion.

Table 1 is a first attempt to encode the schemes that could be associated to
these fallacies in our framework. We regard all the items followed by a star as
rational schemes. However, a number of instances of these schemes are fallacious
because they are used with unproven premises. As already said, this is the case
for the Authority argument which is not fallacious by itself, it is fallacious when
expert(A, T) fails to be unctrv. It is also the case for False Alternative: the
scheme is rational but the premise may not be true in the context, i.e., there
may be other alternatives than Y when X does not hold (¬X → Y is false).

Table 1. Proposal of fallacious schemes encoding.

Fallacy Scheme

Subjectivism (f1a, {likeable(X)}, X)

Majority (f1b, {majoritarian(X)}, X)

Authority* (f2a, {expert(A, T), topic(X,T), said(A,X)}, X)

Ad Hominem (f2b, {said(A,X),¬likeable(A)}, ¬X)

False alternative* (f3a, {X → ¬Y,¬X → Y,¬X}, Y)

Post Hoc (f3b, {before(X,Y)}, cause(X,Y))

Hasty generalization (f3c, {hasProp(X,P), Y → X}, hasProp(Y, P))

Accident (f3d, {hasProp(X,P), X → Y }, hasProp(Y, P)

Slippery slope (f3e, {cause(X,Y), cause(Y, Z)¬likeable(Z)},¬do(X)}
Composition (f3f, {hasProp(X,P), part(X,Y)}, hasProp(Y, P))

Begging the question* (f4a, {X}, X)

The items for which no scheme is proposed in the table are those that either
are based on natural language or semantic interpretations like Emotion, Force,
Equivocation and Non Sequitur. Appeal to Ignorance is of another type since
it is a meta-argument that speaks about provability; we could encode it with
(f4c, {¬holds(X)},¬X), however this would require to have a more complex
definition of the language L0 that includes the predicate holds. This would lead
to a more complex definition of the semantics of L.

Definition 5. Given a knowledge base K and a set of (rational and sophistic)
schemes S = SR ∪ SS and an argument a ∈ 2L0 × L0:

a is fallaciouswrt.K, S iff K, SR �|= robust(a)

This definition allows us to emphasize the fallacious aspects of arguments in
our model: a = (Ψ, ϕ) is fallacious in the following cases:

Assessing Arguments with Schemes and Fallacies 71

1. ∃ψ ∈ Ψ , K,SR �|=L proven(ψ): it uses a premise that is not rationally proven,
2. ∀ψ ∈ Ψ , K,SR |=L proven(ψ) and ∃ψ′ ∈ Ψ K,SR |=L proven(¬ψ′): there is

a controversial premise,
3. K,SR �|=L licit(a): it uses a sophistic scheme or an unrecorded scheme.

The last case allows us to characterize the Non Sequitur fallacy which seems
appropriate here. This also enables us to cover cases like Appeal to Emotion and
Appeal to Force where the use of a premise that refers to emotion or threat is not
following any rational deductive scheme towards a conclusion. The occurrence
of the third case may disappoint a user by pointing out that her argument is not
licit because not based on a recorded scheme. However our program will inform
her about all the licit schemes and uncontroversial premises that she has used.

Proposition 6. Given a knowledge base K and a set of schemes S = SR ∪ SS

s.t. K ∪{(σ(Ψ) → σ(ϕ) | σ ∈ X1 → At0, (id, Ψ, ϕ) ∈ SR} � ⊥, for any argument
a ∈ 2L0 × L0, a is fallaciouswrt.K, S iff K,SR �|=L sound(a)

This last result shows that when the rational schemes do not allow to infer
inconsistent formulas from the knowledge base then a fallacious argument is sim-
ply an unsound argument. Hence a “non fallacious” argument uses the rational
schemes with proven premises (which cannot be controversial in this context).
This goes beyond classical logic because schemes ((id, Ψ, ϕ)) need not be cl-valid
(Ψ |= ϕ) to be applied (i.e. to belong to SR).

6 Discussion and Related Work

This framework, and its Prolog implementation, allows us to assess arguments
with regard to a knowledge base and a set of argumentation schemes. A merit of
our work is to clarify various forms of validity depending on the nature of the tar-
get. Namely, we have distinguished three targets: logical deduction, instantiated
argument, generic argument scheme. Each of them can be associated with a dif-
ferent definition of validity, which leads us to propose different names for them:
“valid/unvalid” applies to a deduction between logical formulas, “licit/illicit”
and “sound/unsound” concern an instantiated argument, a “rational scheme” is
opposed to a “sophism” in order to qualify an argument scheme. More precisely,
an instantiated argument is said to be licit if it follows a recognized scheme.
It is said to be sound (or robust) if it has proven (or uncontroversial) premises.
Distinguishing between proven and uncontroversial formulas allows in turn to cir-
cumvent the ex falso quodlibet that derives anything. Our framework is flexible
enough to represent Hilbert axioms, granting the possibility to express classical
logic, but could also be used with “argument schemes” or even sophistic schemes.
One benefit of the encoding in a formal logical language is the ability to express
and decide about soundness of arguments in the logical language itself.

The idea to axiomatize invalid statements is not new: it is called rejection
calculi, first introduced by �Lukasiewicz [18] and has been developed for differ-
ent logics like classical logic, intuitionistic logic, modal logics [11,22,26]. Some

72 P. Bisquert et al.

proposals were dedicated to the detection of one particular fallacy, like [19]’s
dialogue game for detecting the fallacy of petitio principii. In contrast, our app-
roach deals with multiple fallacies and is highly flexible since it may be used
with any user-defined inference scheme. For instance, by allowing the user to
define non-classical inference schemes, our system may allow the closed world
assumption or defeasible reasoning. This unified formalism may also allow us
to better circumscribe usual commonsense inferences done with e.g., causes and
counterfactuals that should deserve specific schemes (as also claimed by [20]).

While this paper is about the assessment of arguments, there are interesting
links with the other interpretation of the word “argument”, that is the subject of
dialectical argumentation. The latter focuses on the study of argument validity
in the sense of winning the dispute: “can this argument defend itself against
any other argument?”. We take the viewpoint of logic through argumentation,
trying to extract the intrinsic validity of an argument, i.e. its soundness, from
the way it is built. Some approaches like ABA [21], ASPIC+ [23] and Carneades
[12] are relating structured arguments to Dung like interaction argumentation,
and base the assessment of argument on its relation to counter-arguments. The
problem with such approaches is that they use argumentation semantics, where
these semantics do not depend on the intrinsic content of arguments but is only
based on the interactions, leading to counter-intuitive results as proven in [1].
An idea could be to detect fallacies based on the existence of attacks. Moreover,
if no counter-argument has been stated against a given (fallacious) argument,
this does not mean that the argument is a correct evidence for its conclusion.

Our work is but an opening for a number of new studies. Thus, it would be
interesting to study what schemes can be added to cover more types of ratio-
nal reasoning (and their possible flaws). Another perspective is to extend our
definitions so as to allow for more complex arguments, e.g. directly referring to
another argument (as a premise or counterargument) with the long term view to
handle dialogues. Our aim is not to help users build convincing tricky fallacies,
our aim is to help people build efficiently sound arguments and to allow them to
fight fallacies: the closer a fallacy is from a sound argument the more the agent
can be inclined to use it especially in case of low cognitive availability [6].

Our long term goal is to use our framework to offer a protocol governing the
authorized moves in a dialogue. It would be worth incorporating it as a part
of a “dialogue support system” that could ensure for instance the correct use
of the speech act Argue (that commits the agent to be able to provide a sound
proof of her claim from some premises). So, our proposal enables an automatic
verification of compliance of this speech act with regard to a set of rational
schemes. The dialog support system could make the user aware of her biased
reasoning and prompt her to give “better” grounds for her argumentation. An
idea could be to take into account the notion of critical questions [5,27,29] in
order to assess arguments and following the work of Verheij [28] we could help
a user to provide more accurate justifications for any unproven premises (via
other arguments), or even to introduce new justified schemes in her base.

Assessing Arguments with Schemes and Fallacies 73

References

1. Amgoud, L., Besnard, P.: Logical limits of abstract argumentation frameworks. J.
Appl. Non-class. Log. 23(3), 229–267 (2013)

2. Amgoud, L., Maudet, N., Parsons, S.: An argumentation-based semantics for agent
communication languages. In: 15th European Conference on Artificial Intelligence,
vol. 2, pp. 38–42 (2002)

3. Bench-Capon, T., Dunne, P., Leng, P.: A dialogue game for dialectical interaction
with expert systems. In: 12th Annual Conference Expert Systems & Applications,
pp. 105–113 (1992)

4. Benferhat, S., Dubois, D., Prade, H.: Argumentative inference in uncertain and
inconsistent knowledge bases. In: 9th Conference on Uncertainty in AI, pp. 411–
419 (1993)

5. Besnard, P., et al.: Introducing structured argumentation. Argum. Comput. 5(1),
1–4 (2014)

6. Bisquert, P., Croitoru, M., de Saint Cyr, F.D., Hecham, A.: Formalizing cognitive
acceptance of arguments: durum wheat selection interdisciplinary study. Minds
Mach. 27(1), 233–252 (2017)

7. D’Agostino, M., Modgil, S.: Classical logic, argument and dialectic. Artif. Intell.
J. 262, 15–51 (2018)

8. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. J. 77,
321–357 (1995)

9. Elvang-Gøransson, M., Krause, P., Fox, J.: Dialectic reasoning with inconsistent
information. In: 9th Conference on Uncertainty in AI, pp. 114–121 (1993)

10. FIPA: ACL message structure specification. Foundation for Intelligent Physical
Agents (2002). http://www.fipa.org/specs/fipa00061/SC00061G.html. Accessed 30
June 2004

11. Goranko, V.: Refutation systems in modal logic. Stud. Log. 53(2), 299–324 (1994)
12. Gordon, T.F., Prakken, H., Walton, D.: The Carneades model of argument and

burden of proof. Artif. Intell. J. 171(10–15), 875–896 (2007)
13. Hamblin, C.L.: Fallacies. Methuen, London (1970)
14. Hunter, A.: Reasoning about the appropriateness of proponents for arguments. In:

23rd AAAI Conference on Artificial Intelligence, pp. 89–94 (2008)
15. Johnson, R.H., Blair, J.A.: Logical Self-defense. IDEA, New York (2006)
16. Kelley, D.: The Art of Reasoning: An Introduction to Logic and Critical Thinking.

W.W. Norton & Company, New York (2013)
17. Lorenz, K., Lorenzen, P.: Dialogische Logik. WBG, Darmstadt (1978)
18. Lukasiewicz, J.: Aristotle’s Syllogistic from the Standpoint of Modern Formal

Logic, 2nd edn. Clarendon Press, Oxford (1957)
19. Mackenzie, J.D.: Question-begging in non-cumulative systems. J. Philos. Log. 8(1),

117–133 (1979)
20. Mendelson, E.: Introduction to Mathematical Logic, 6th edn. CRC Press, Boca

Raton (2015)
21. Modgil, S., Prakken, H.: A general account of argumentation with preferences.

Artif. Intell. J. 195, 361–397 (2013)
22. Oetsch, J., Tompits, H.: Gentzen-type refutation systems for three-valued logics

with an application to disproving strong equivalence. In: Delgrande, J.P., Faber, W.
(eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp. 254–259. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20895-9 28

http://www.fipa.org/specs/fipa00061/SC00061G.html
https://doi.org/10.1007/978-3-642-20895-9_28

74 P. Bisquert et al.

23. Prakken, H.: An abstract framework for argumentation with structured arguments.
Argum. Comput. 1(2), 93–124 (2010)

24. Prakken, H., Wyner, A., Bench-Capon, T., Atkinson, K.: A formalization of argu-
mentation schemes for legal case-based reasoning in ASPIC+. J. Log. Comput.
25(5), 1141–1166 (2015)

25. Singh, M.P.: Agent communication languages: rethinking the principles. Computer
31(12), 40–47 (1998)

26. Skura, T.: Refutation systems in propositional logic. In: Gabbay, D., Guenthner,
F. (eds.) Handbook of Philosophical Logic, vol. 16, 2nd edn, pp. 115–157. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-94-007-0479-4 2

27. Toulmin, S.: The Uses of Argument. Cambridge University Press, Cambridge
(1958)

28. Verheij, B.: Evaluating arguments based on Toulmin’s scheme. Argumentation
19(3), 347–371 (2005)

29. Walton, D., Gordon, T.F.: Critical questions in computational models of legal
argument. In: Argumentation in Artificial Intelligence and Law Workshop, pp.
103–111. Wolf Legal Publishers (2005)

30. Walton, D., Krabbe, E.C.W.: Commitment in Dialogue: Basic Concepts of Inter-
personal Reasoning. State University of New York Press, Albany (1995)

31. Wigmore, J.H.: The Principles of Judicial Proof, 2nd edn. Little, Brown (1931)
32. Woods, J.: Is the theoretical unity of the fallacies possible? Informal Log. XVI,

77–85 (1994)
33. Wooldridge, M., McBurney, P., Parsons, S.: On the meta-logic of arguments. In:

Parsons, S., Maudet, N., Moraitis, P., Rahwan, I. (eds.) ArgMAS 2005. LNCS
(LNAI), vol. 4049, pp. 560–567. Springer, Heidelberg (2006). https://doi.org/10.
1007/11794578 3

34. Yuan, T., Manandhar, S., Kelly, T., Wells, S.: Automatically detecting fallacies in
system safety arguments. In: Baldoni, M., et al. (eds.) IWEC/CMNA 2014-2015.
LNCS (LNAI), vol. 9935, pp. 47–59. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46218-9 4

https://doi.org/10.1007/978-94-007-0479-4_2
https://doi.org/10.1007/11794578_3
https://doi.org/10.1007/11794578_3
https://doi.org/10.1007/978-3-319-46218-9_4
https://doi.org/10.1007/978-3-319-46218-9_4

Simple Contrapositive Assumption-Based
Frameworks

Jesse Heyninck1(B) and Ofer Arieli2

1 Institute of Philosophy II, Ruhr University Bochum, Bochum, Germany
jesse.heyninck@rub.de

2 School of Computer Science, The Academic College of Tel-Aviv, Tel Aviv, Israel
oarieli@mta.ac.il

Abstract. Assumption-based argumentation is one of the most promi-
nent formalisms for logical (or structured) argumentation. It has been
shown useful for representing defeasible reasoning and has tight links
to logic programming. In this paper we study the Dung semantics for
extended forms of assumption-based argumentation frameworks (ABFs),
based on any contrapositive propositional logic, and whose defeasible
rules are expressed by arbitrary formulas in that logic. In particular,
new results on the well-founded semantics for such ABFs are reported,
the redundancy of the closure condition is shown, and the use of dis-
junctive attacks is investigated. Finally, some useful properties of the
generalized frameworks are considered.

1 Introduction

Assumption-based argumentation frameworks (ABFs), thoroughly described
in [4], were introduced in the 1990s as a computational structure to capture
and generalize several formalisms for defeasible reasoning, including logic pro-
gramming [4,6]. Their definition was inspired by Dung’s semantics for abstract
argumentation and logic programming with its dialectical interpretation of the
acceptability of negation-as-failure assumptions based on the notion of “no-
evidence-to-the-contrary”.

In this paper, which is a companion of [13], we study the Dung-style seman-
tics [11] and the entailment relations induced from a large family of ABFs, called
simple contrapositive, that are based on any contrapositive propositional logic,
and whose defeasible rules are expressed by arbitrary formulas in that logic.1

Among others, the following contributions and new findings concerning these
frameworks are shown in this paper:
1 While both this paper and [13] refer to Dung semantics for simple contrapositive

ABFs, the topics that each paper addresses are different, thus the papers are com-
plementary.

This work is supported by the Israel Science Foundation (grant number 817/15). The
first author is also supported by the Sofja Kovalevskaja award of the Alexander von
Humboldt-Foundation, funded by the German Ministry for Education and Research.

c© Springer Nature Switzerland AG 2019
M. Balduccini et al. (Eds.): LPNMR 2019, LNAI 11481, pp. 75–88, 2019.
https://doi.org/10.1007/978-3-030-20528-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20528-7_7&domain=pdf
http://orcid.org/0000-0002-3825-4052
http://orcid.org/0000-0002-6588-886X
https://doi.org/10.1007/978-3-030-20528-7_7

76 J. Heyninck and O. Arieli

(1) The well-founded semantics for ABFs is considered, and its strong relations
to reasoning with maximally consistent subsets of the premises is shown.
Moreover, we show that under a simple condition this semantics coincides
with the grounded semantics for the same ABFs.

(2) We show that for simple contrapositive ABFs the closure requirement on
the frameworks’ extensions is in fact redundant. As a consequence, most
of the concepts that are related to such ABFs are simplified, and their
computation becomes easier. To the best of our knowledge, this is the first
time that such a question has been asked and answered for assumption-
based argumentation.

(3) We consider a generalization of the attack relation in ABFs, called disjunc-
tive attacks. The use of these attacks avoids some problems of the grounded
semantics under standard attacks. Concerning the other types semantics,
we show that (as in the case of ordinary attacks), preferred and stable
semantics are reducible to naive semantics, and that the correspondence
to reasoning with maximally consistent subsets is preserved. This means
that we define a formalism that preserves consistency and correspondence
to maximal consistency-based reasoning even under disjunctive attacks,
thus avoiding some of the long-standing problems that were reported by [7]
for other logic-based argumentation formalisms using disjunctive attacks
(called undercut in [7]).

(4) We show that the entailment relations induced from the ABFs with dis-
junctive attacks are preferential for skeptical reasoning and cumulative for
credulous reasoning [14]. For these kinds of entailments the property of
non-interference [5] is satisfied.

The remaining of this paper is organized as follows: in the next section we
review some notions and relevant results from [13]. In Sect. 3 we provide some
new results concerning the Dung-style semantics of simple contrapositive ABFs,
and in Sect. 4 we consider some properties of the induced entailment relations.
In Sect. 5 we discuss our results in light of related work and conclude.2

2 Preliminaries

In this section we define the notion of simple contrapositive ABFs, and recall
the main results concerning their semantics (see [13]).

We denote by L an arbitrary propositional language. Atomic formulas in L
are denoted by p, q, r, compound formulas are denoted by ψ, φ, σ, and sets of
formulas in L are denoted by Γ , Δ. The powerset of L is denoted by ℘(L).

Definition 1. A (propositional) logic for a language L is a pair L = 〈L ,�〉,
where � is a (Tarskian) consequence relation for L , that is, a binary relation
between sets of formulas and formulas in L , which is reflexive (if ψ ∈ Γ then
Γ � ψ), monotonic (if Γ � ψ and Γ ⊆ Γ ′, then Γ ′ � ψ), and transitive (if Γ � ψ

2 An extended abstract of this paper appears in the proceedings of AAMAS’2019.

Simple Contrapositive Assumption-Based Frameworks 77

and Γ ′, ψ � φ, then Γ, Γ ′ � φ). We also assume that � is non-trivial (there
are Γ, ψ for which Γ � ψ), structural (i.e., closed under substitutions: for every
substitution θ and every Γ, ψ, if Γ � ψ then {θ(γ) | γ ∈ Γ} � θ(ψ)), and finitary
(if Γ � ψ then there is a finite Γ ′ ⊆ Γ such that Γ ′ � ψ).

The �-transitive closure of a set Γ of L -formulas is Cn�(Γ) = {ψ | Γ � ψ}.
When the consequence relation is clear from the context we will sometimes just
write Cn(Γ).

We shall assume that the language L contains at least the following (prim-
itive or defined) connectives: �-negation ¬, satisfying: p �� ¬p and ¬p �� p (for
every atomic p); �-conjunction ∧, satisfying: Γ � ψ ∧ φ iff Γ � ψ and Γ � φ;
�-disjunction ∨, satisfying: Γ, φ ∨ ψ � σ iff Γ, φ � σ and Γ, ψ � σ; �-implication
⊃, satisfying: Γ, φ � ψ iff Γ � φ ⊃ ψ; and �-falsity constant F, satisfying: F � ψ
for every formula ψ.

For a finite set of formulas Γ we denote by
∧

Γ (respectively, by
∨

Γ), the
conjunction (respectively, the disjunction) of the formulas in Γ . Also, we denote
¬Γ = {¬γ | γ ∈ Γ}. We say that Γ is �-consistent , if Γ �� F.

Definition 2. A logic L = 〈L ,�〉 is explosive, if for L -formula ψ, the set
{ψ,¬ψ} is �-inconsistent.3 We say that L is contrapositive, if for every Γ and
ψ it holds that Γ � ¬ψ iff either ψ = F, or for every φ ∈ Γ we have that
Γ \ {φ}, ψ � ¬φ.

Example 1. Classical logic, intuitionistic logic, and modal logics with standard
modal semantics, are all specific cases of explosive and contrapositive logics.

Next, we generalize the definition in [4] of assumption-based frameworks.

Definition 3. An assumption-based framework is a tuple ABF = 〈L, Γ,Ab,∼〉,
where:

– L = 〈L ,�〉 is a propositional Tarskian logic
– Γ (the strict assumptions) and Ab (the candidate or defeasible assumptions)

are distinct countable sets of L -formulas, where the former is assumed to be
�-consistent and the latter is assumed to be nonempty.

– ∼: Ab → ℘(L) is a contrariness operator, assigning a finite set of L -formulas
to every defeasible assumption in Ab, such that for every
ψ ∈ Ab where ψ �� F it holds that ψ �� ∧∼ψ and

∧∼ψ �� ψ.

A simple contrapositive ABF is an assumption-based framework ABF =
〈L, Γ,Ab,∼〉, where L is an explosive and contrapositive logic, and ∼ψ = {¬ψ}.

Note 1. Unlike the setting of [4], an ABF may be based on any Tarskian logic
L. Also, the strict as well as the candidate assumptions are formulas that may
not be just atomic. Concerning the contrariness operator, note that it is not a
connective of L , as it is restricted only to the candidate assumptions.
3 That is, ψ, ¬ψ � F. In explosive logics every formula follows from inconsistent asser-

tions.

78 J. Heyninck and O. Arieli

Note 2. Traditionally, ABFs make use of some set of domain dependent rules as
known from e.g. logic programming (i.e., rules of the form φ1, . . . , φn → φ, as in
logic programming). It is not difficult to see that our setting also applies to this
subclass of ABFs by assuming that the implication ⊃ is deductive (i.e., it is an
�-implication, see above) and treating such rules as strict premises

∧n
i=1 φi ⊃ φ.

Such a framework is a simple contrapositive ABF if the rules are closed under
contraposition.

Defeasible assertions in an ABF may be attacked by counterarguments.

Definition 4. Let ABF = 〈L, Γ,Ab,∼〉 be an assumption-based framework,
Δ,Θ ⊆ Ab, and ψ ∈ Ab. We say that Δ attacks ψ iff Γ,Δ � φ for some φ ∈ ∼ψ.
Accordingly, Δ attacks Θ if Δ attacks some ψ ∈ Θ.

The last definition gives rise to the following adaptation to ABFs of the usual
semantics for abstract argumentation frameworks [11].

Definition 5. [4] Let ABF = 〈L, Γ,Ab,∼〉 be an assumption-based framework,
and let Δ ⊆ Ab. Below, maximum and minimum are taken with respect to set
inclusion. Then:

– Δ is closed if Δ = Ab ∩ Cn�(Γ ∪ Δ).
– Δ is conflict-free iff there is no Δ′ ⊆ Δ that attacks some ψ ∈ Δ.
– Δ is naive iff it is closed and maximally conflict-free.
– Δ defends a set Δ′ ⊆ Ab iff for every closed set Θ that attacks Δ′ there is

Δ′′ ⊆ Δ that attacks Θ.
– Δ is admissible iff it is closed,

conflict-free, and defends every Δ′ ⊆ Δ.
– Δ is complete iff it is admissible and contains every Δ′ ⊆ Ab that it defends.
– Δ is grounded iff it is minimally complete.
– Δ is preferred iff it is maximally admissible.
– Δ is stable iff it is closed, conflict-free, and attacks every ψ ∈ Ab \ Δ.
– Δ is well-founded iff Δ =

⋂{Θ ⊆ Ab | Θ is complete}.

The set of naive (respectively, complete, preferred, stable, grounded,
well-founded) extensions of ABF is denoted by Naive(ABF) (respectively,
Com(ABF), Prf(ABF), Stb(ABF), Grd(ABF), WF(ABF)). Clearly, the well-
founded extension of an ABF is unique.

In [13] the Dung-style extensions considered above are characterized in terms
of the maximal consistent subsets of the defeasible assumptions:

Definition 6. Let ABF = 〈L, Γ,Ab,∼〉. A set Δ ⊆ Ab is maximally consistent
in ABF, if (a) Γ,Δ �� F and (b) Γ,Δ′ � F for every Δ � Δ′ ⊆ Ab. The set of
the maximally consistent sets in ABF is denoted MCS(ABF).

Proposition 1. [13] Let ABF = 〈L, Γ,Ab,∼〉 be a simple contrapositive ABF.
Then: Naive(ABF) = Prf(ABF) = Stb(ABF) = MCS(ABF). If F ∈ Ab then
also Grd(ABF) =

⋂
MCS(ABF).

Simple Contrapositive Assumption-Based Frameworks 79

Apart of the correspondence to reasoning with maximal consistency, Proposi-
tion 1 also shows that in simple contrapositive ABFs preferred and stable seman-
tics collapse to naive semantics. This is not surprising, as similar results for
specific argumentation frameworks are reported in [1] and [3]. Yet, as shown
in [3], when more expressive languages, and/or attack relations, and/or entail-
ment relations are involved, this phenomenon ceases to hold. This is also the
case with ABFs, even when the definition of the contrariness operator is kept.
Here is a simple example:

Example 2. Let ABF = 〈L, {p ⊃ ¬q}, {p, q},∼〉 be an ABF where L is a logic
with a negation ¬, and implication ⊃, and where ∼ A = {¬A} for any A ∈ L .
Suppose further that Modus Ponens holds in L, but contraposition does not.
Then {q} is naive but not preferred, since q doesn’t defend itself from the attack
from {p}.

3 Some Generalizations

In this section we give a series of new results concerning Dung’s semantics for
simple contrapositive ABFs and some of is useful enhancements.

3.1 The Well-Founded Extension

First, we consider the well-founded semantics for ABFs (recall Definition 5). This
semantics has not been considered in [13], and it is useful when there is no unique
minimal complete extension.

The existence of a well-founded extension for any simple contrapositive ABF
follows from the following claim:4

Proposition 2. Any simple contrapositive ABF has a complete extension.

Proof. Follows from Proposition 1 and the fact that every stable extension is
complete. To see the latter, suppose for a contradiction that Δ is stable, yet
some A ∈ Ab\Δ is defended by Δ. Since Δ is stable Γ,Δ � ¬A. Since Δ defends
A, Δ attacks itself, a contradiction to Δ being conflict-free. ��

The next example shows that, as in the case of the grounded semantics, the
well-founded extension of an assumption-based framework ABF does not always
coincide with

⋂
MCS(ABF).

Example 3. Let L be classical logic (CL), Γ = ∅, and Ab = {p,¬p, s}.
A corresponding attack diagram is shown in Fig. 1. In this case, we have
that Com(ABF) = {∅, {p, s}, {¬p, s}}, thus WF(ABF) = ∅. However,⋂
MCS(ABF) = {s}.

Again (see Proposition 1), the situation in Example 3 can be avoided by
requiring that F ∈ Ab (Intuitively, this means that any inconsistent set of argu-
ments is attacked by the emptyset, thus any admissible set is defended from it).
4 In the sequel, some proofs will be sketched or omitted altogether due to space restric-

tions.

80 J. Heyninck and O. Arieli

Fig. 1. An attack diagram for Example 3

Proposition 3. Let ABF = 〈L , Γ,Ab,∼〉 be a simple contrapositive ABF. If
F ∈ Ab then WF(ABF) =

⋂
MCS(ABF).

Proof. In [13] it is shown that in case that F ∈ Ab, there exists a unique grounded
extension for any ABF. From this it follows that

⋃
Grd(ABF) ⊆ Δ for any

Δ ∈ Com(ABF). This implies that
⋂
Com(ABF) =

⋃
Grd(ABF), that is:

WF(ABF) = Grd(ABF). ��
By Propositions 1 and 3 we thus have:

Corollary 1. Let ABF = 〈L , Γ,Ab,∼〉 be a simple contrapositive ABF. If
F ∈ Ab then WF(ABF) = Grd(ABF).

3.2 Lifting the Closure Requirement

According to Definition 5, extensions of an ABF are required to be closed. This
is a standard requirement for ABFs (see, e.g., [4,9,18]), In this section we show
that the closure condition is not necessary for simple contrapositive ABFs.

Definition 7. Let ABF = 〈L, Γ,Ab,∼〉 be an assumption-based framework, a
subset Δ ⊆ Ab is weakly admissible (in ABF) iff it is conflict-free, and defends
every Δ′ ⊆ Δ. We say that Δ is weakly complete (in ABF) iff it is weakly
admissible and contains every Δ′ ⊆ Ab that it defends.

Weakly admissibility (weak completeness) is thus admissibility (complete-
ness) without the closure requirement.

Below, we fix a simple contrapositive argumentation framework ABF =
〈L, Γ,Ab,∼〉. We show that closure is redundant in the definition of stable, naive
and preferred semantics:

Proposition 4. A set Δ ⊆ Ab is:

– stable iff it is conflict-free and attacks every ψ ∈ Ab \ Δ.
– naive iff it is maximally conflict-free.
– preferred iff it is maximally weakly admissible.

Simple Contrapositive Assumption-Based Frameworks 81

Concerning the grounded semantics, we note that when F �∈ Ab the closure
condition is not superfluous. For instance, when Γ = {s, s ⊃ q} and Ab =
{p,¬p, q}, and classical logic is the base logic, the emptyset is minimally complete
in Ab.5 Yet, the emptyset is not closed, since Γ � q.

When F ∈ Ab, the following proposition shows that the grounded extension
is closed.

Proposition 5. If F ∈ Ab, a set Δ ⊆ Ab is grounded iff it is minimally weakly
complete.

3.3 Using Disjunctive Attacks

The next generalization that we consider is concerned with the attack relation.
Below, we allow disjunctive attacks rather than pointed attacks (Definition 4).

Definition 8. Let ABF = 〈L, Γ,Ab,∼〉 be a simple contrapositive ABF. We
say that a set Δ ⊆ Ab attacks a set Θ ⊆ Ab if there is a finite subset Θ′ ⊆ Θ
such that Γ,Δ � ∨¬Θ′.

Note 3. When the ABF is not simple (that is, when the contrariness operator is
defined by sets of formulas), disjunctive attacks may be defined as follows: We
let ∼θ′ = {∼ν | ν ∈ θ′} and say that a set Δ ⊆ Ab attacks a set Θ ⊆ Ab if there
is a finite subset Θ′ ⊆ Θ such that Γ,Δ � ∨

θ′∈Θ′
∨

σ′∈Σ′⊆∼θ′ σ′.

Example 4. Let L = CL, Γ = ∅, and Ab = {p,¬p, s}. A corresponding attack
diagram is shown in Fig. 2, where the strict lines represent standard attacks
(Definition 4), and the dashed lines represent attacks that are applicable only
according to the disjunctive version of attacks (Definition 8).

Fig. 2. An attack diagram for Example 4.

Note that the ‘contaminating’ set {p,¬p, s} attacks the set {s}. However,
when disjunctive attacks are allowed the attacking set {p,¬p, s} is counter-
attacked by the emptyset (since ∅ � ¬p∨¬¬p), thus {s} is defended by ∅ (which
is not the case when only ‘standard’ attacks are allowed, cf. Example 3).

5 In particular, the emptyset does not defend q from the attack p, ¬p � ¬q.

82 J. Heyninck and O. Arieli

In what follows we again fix some simple contrapositive ABF, this time with
disjunctive attacks as in Definition 8. We further assume that the base logic L
respects the following de Morgan rules:

de Morgan I:
∨

¬Δ � ¬
∧

Δ, de Morgan II: ¬
∧

Δ �
∨

¬Δ. (1)

One clear benefit of using disjunctive attacks in this setting is that the incon-
sistency problems of argumentation-based extensions, first discussed in [7], are
avoided. In that paper it was shown that in the framework of deductive argumen-
tation, the use of preferred semantics in combination with disjunctive attacks
might give rise to admissible (and thus preferred) extensions that contain argu-
ments with mutually inconsistent conclusions. As shown next, the formalism of
simple contrapositive ABFs provides a solution to this long-standing problem of
finding a way to do consistent deductive argumentation using disjunctive attacks.

Proposition 6. Let L be a logic in which de Morgan’s rules in (1) are satisfied,
and let ABF = 〈L, Γ,Ab,∼〉 be a simple contrapositive ABF with disjunctive
attacks. If Δ ⊆ Ab is conflict-free then there are no φ1, . . . , φn ∈ Δ such that
Γ,Δ � ¬∧n

i=1 φi.

Proof. Suppose for a contradiction that Δ ⊆ Ab is conflict-free yet there are some
φ1, . . . , φn ∈ Δ s.t. Γ,Δ � ¬∧n

i=1 φi. By de Morgan II, Γ,Δ � ∨ ¬{φ1, . . . , φn}.
But then Δ attacks itself, a contradiction to the assumption that it is conflict-
free. ��

Another benefit of using disjunctive attacks is that the notion of defense in
Definition 5 can be independent of closed sets (see also Sect. 3.1). Indeed, the
following definition is the same as Definition 5, but without any reference to
closed sets.

Definition 9. We say that Δ purely defends Δ′ ⊆ Ab iff for every Θ that attacks
Δ′ there is some Δ′′ ⊆ Δ that attacks Θ.

Proposition 7. When disjunctive attacks are used, the notions of defense and
pure defense coincide.

Note 4. To see that the condition of having disjunctive attacks is indeed neces-
sary for Proposition 7, consider again Example 4. As indicated in that example,
when only standard attacks are used, {s} cannot be purely defended from the
attacking set {p,¬p}. On the other hand, {s} is defended according to Defini-
tion 5, simply because any attacker of {s} not containing F is not closed (e.g.,
{p,¬p} is not closed since {p,¬p} � F).6

The main results of this section is that, again, in this case: (a) preferred
and stable semantics are reducible to naive semantics, (b) the correspondence to

6 This is exactly the reason why the restriction to closed sets is imposed when standard
attacks are used, while for disjunctive attacks this is not necessary.

Simple Contrapositive Assumption-Based Frameworks 83

reasoning with maximally consistent subsets is preserved, and (c) the grounded
extension is well-behaved for disjunctive attacks, even without requiring that
F ∈ Ab.

To show these results we first indicate that when switching to the more gen-
eralized (disjunctive) attacks, the closure requirement in the definitions of naive,
preferred, and stable extensions (Definition 5) remains redundant. Namely:

Proposition 8. For a set Δ ⊆ Ab, we have:

1. Δ is stable iff it is conflict-free in ABF and attacks every ψ ∈ Ab \ Δ.
2. Δ is naive iff it is maximally conflict-free in ABF.
3. Δ is preferred iff it is maximally weakly admissible in ABF.

Now we can show that also when disjunctive attacks are incorporated in
simple contrapositive ABFs, preferred and stable semantics collapse to naive
semantics and are related to maximally consistent subsets.

Theorem 1. Let L be a logic in which de Morgan’s rules in (1) hold, and let
ABF = 〈L, Γ,Ab,∼〉 be a simple contrapositive ABF with disjunctive attacks.
Then:

Naive(ABF) = Prf(ABF) = Stb(ABF) = MCS(ABF).

Proof (outline). We show the following fragment of the theorem:

Proposition 9. Δ is naive in ABF iff it is in MCS(ABF).

Proof. [⇒]: Let Δ be a naive set in Ab. Suppose for a contradiction that Γ,Δ � F.
By explosion, this means that Γ,Δ � ∨ ¬Δ′ for any Δ′ ⊆ Δ, contradicting the
conflict-freeness of Δ. Thus Δ is consistent. To see that Δ is maximally consistent
in ABF, note that since Δ is maximally conflict-free, for every proper superset
Δ′ of Δ there is some Θ ⊆ Δ′ such that Γ,Δ′ � ∨ ¬Θ. By de Morgan I and
transitivity, then, Γ,Δ′ � ¬∧

Θ. On the other hand, Θ ⊆ Δ′, and so Γ,Δ′ � ∧
Θ.

This implies that Γ,Δ′ � F. Thus, Δ is maximally consistent in ABF.
[⇐]: Let Δ ∈ MCS(ABF) and suppose for a contradiction that Γ,Δ � ∨ ¬Δ′ for
some Δ′ ⊆ Δ. Again, by de Morgan I and transitivity we get on one hand that
Γ,Δ � ¬∧

Δ′, and since Δ′ ⊆ Δ, by reflexivity we get on the other hand that
Γ,Δ � ∧

Δ′, which together contradict the assumption that Γ,Δ �� F. Thus Δ is
conflict-free. To see that Δ is maximally conflict-free, suppose for a contradiction
that Δ∪{φ} is conflict-free for some φ ∈ Ab\Δ. Since Δ is maximally consistent,
Γ,Δ, φ � F, thus by explosion Γ,Δ, φ � ¬δ for every δ ∈ Δ ∪ {φ}, contradicting
the assumption that Δ ∪ {φ} is conflict-free. ��

We now turn to the use of disjunctive attacks with the grounded semantics.
The next example helps to appreciate the role of the former in such cases.

Example 5. Recall Examples 3 and 4 (together with, respectively, Figs. 1 and 2),
in which L = CL, Γ = ∅, and Ab = {p,¬p, s}. As indicated in these examples,
when only standard attacks are allowed, the grounded semantics is the emptyset,

84 J. Heyninck and O. Arieli

while when disjunctive attacks are allowed the grounded semantics is the set {s}
(which is defended by the emptyset). As s should not be contaminated by the
inconsistency about p and ¬p, having {s} as the grounded extension makes much
more sense in this case, and – what is more – it holds that Grd(ABF) = {{s}} =
{⋂

MCS(ABF)} (cf. Theorem 2 below).

In what follows we shall show that the grounded extension is well-behaved
for disjunctive attacks, even without requiring that F ∈ Ab (cf. Proposition 1).
For this, we first consider an algorithm for constructing grounded extensions.
As the following example shows, the standard iterative process that starts with
non-attacked arguments and propagates through defended arguments (used for
simple contrapositive ABF with standard attacks in [13]) needs to be slightly
revised when disjunctive attacks are incorporated.

Example 6. Suppose that L is a logic which does not satisfy the rule of resolution,
and let Ab = {p, s, t} and Γ = {p ⊃ (¬s ∨ ¬t)}. Since resolution is not available,
formulas like p ⊃ ¬s and p ⊃ ¬t are not derivable from Γ ∪ {t} and Γ ∪ {s}
respectively, and therefore neither t nor s is attacked. A process that gathers
all the non-attacked defeasible assumptions will then include all the elements in
{p, t, s} in the result, although the set {s, t} is attacked by p.

We therefore slightly generalize the construction of the grounded extension
in [13]:

Definition 10. Let ABF = 〈L, Γ,Ab,∼〉 be an assumption-based framework. A
set Δ ⊆ Ab is a maximally unattacked set of ABF iff it is not attacked by any
Θ ⊆ Ab and any proper superset of Δ is attacked by some Θ ⊆ Ab. We say
that Δ ⊆ Ab is a maximally defended set of Δ′ if Δ′ defends Δ but Δ′ does not
defend any proper superset of Δ.

Definition 11. Let ABF = 〈L, Γ,Ab,∼〉 be an ABF. We denote:
G0(ABF) =

⋂{Δ ⊆ Ab | Δ is a maximally unattacked set of ABF},
Gi+1(ABF) = Gi(ABF) ∪ ⋂{Δ ⊆ Ab | Δ is a maximally defended set of
Gi(ABF)},
G (ABF) =

⋃
i�0 Gi(ABF).

When ABF is clear from the context we will often drop the reference to it and
just write G0, Gi and G .

Example 7 (Example 6 continued). In Example 6 we have that G0 = {p, s} ∩
{p, t} = {p}. Since {p} defends no other set of assumptions, G = {p}.

We now state the adequacy of this definition and the relation of the grounded
extension to maximally consistent subsets:

Theorem 2. Let L be a logic in which de Morgan’s rules in (1) are satisfied, and
let ABF = 〈L, Γ,Ab,∼〉 be a simple contrapositive assumption-based framework
with disjunctive attacks. Then Grd(ABF) = {G } =

⋂
MCS(ABF).

Simple Contrapositive Assumption-Based Frameworks 85

4 Properties of the Induced Entailments

The results in the previous sections imply some properties of the entailment
relations that are induced from ABFs by Dung’s semantics. In this section we
show a few of them.

Definition 12. For ABF = 〈L, Γ,Ab,∼〉, Sem ∈ {Naive,Grd,Prf,Stb} and λ ∈
{∪,∩}, we denote: ABF |∼ λ

Semψ iff ψ ∈ λΔ∈Sem(ABF)(Cn�(Γ ∪ Δ)).

Note 5. Unlike standard entailment relations, which are relations between sets
of formulas and formulas, the entailments in Definition 12 are relations between
ABFs and formulas. This will not cause any confusion in what follows.

In the following, when it holds that ABF |∼ ψ for some ABF = 〈L, Γ,Ab,∼〉,
we shall sometimes just write Γ,Ab |∼ ψ.7 Also, in this section we continue to
assume that de Morgan’s rules in (1) are satisfied in the base logic L.

4.1 Cumulativity, Preferentiality and Rationality

Theorems 1 and 2 are useful for showing cumulativity and preferentiality in the
sense of Kraus, Lehmann and Magidor [14]:

Definition 13. A relation |∼ between ABFs and formulas (like those in Defini-
tion 12) is called cumulative, if the following conditions are satisfied:

– Cautious Reflexivity (CR): For every �-consistent ψ it holds that ψ |∼ ψ
– Cautious Monotonicity (CM): If Γ,Ab |∼ φ and Γ,Ab |∼ ψ then Γ,Ab, φ |∼ ψ
– Cautious Cut (CC): If Γ,Ab |∼ φ and Γ,Ab, φ |∼ ψ then Γ,Ab |∼ ψ
– Right Weakening (RW): If φ � ψ and Γ,Ab |∼ φ then Γ,Ab |∼ ψ
– Left Logical Equivalence (LLE): If φ � ψ and ψ � φ then Γ,Ab, φ |∼ ρ iff

Γ,Ab, ψ |∼ ρ

A cumulative relation is called preferential, if it satisfies the following condi-
tion:

– Distribution (OR): If Γ,Ab, φ |∼ ρ and Γ,Ab, ψ |∼ ρ then Γ,Ab, φ ∨ ψ |∼ ρ.

Theorem 3. Let L be a logic in which de Morgan’s rules in (1) hold, and let
ABF = 〈L , Γ,Ab,∼〉 be a simple contrapositive ABF with disjunctive attacks.
Then |∼∩

Sem is preferential for Sem ∈ {Naive,Grd,Prf,Stb}, and |∼∪
Sem is cumula-

tive for Sem ∈ {Naive,Prf,Stb}.8,9

7 Note that this writing is somewhat ambiguous, since, e.g. when Γ, Ab, ψ are the
premises, ψ may be either a strict or a defeasible assumption. This will not cause
problems in what follows.

8 We refer to [13] for an example that shows that |∼∪
Sem is not preferential even for

ABFs with standard (non-disjunctive) attacks.
9 Note that by Theorem 2, |∼∪

Grd = |∼∩
Grd, and so |∼∪

Grd is not only cumulative, but also
preferential.

86 J. Heyninck and O. Arieli

Proof (outline). The proof is based on Theorems 1 and 2. Here we show,
as an example, the property LLE for Sem ∈ {Naive,Prf,Stb}: Suppose that
Γ,Ab |∼∩

Sem ψ. By Theorem 1 we have that Γ,Δ � ψ for every Δ ∈ MCS(ABF).
Thus, by cut with ψ � φ, it holds that Γ,Δ � φ for every Δ ∈ MCS(ABF). By
Theorem 1 again, Γ,Ab |∼∩

sem φ. The converse is dual. ��
We now consider the following more controversial rule from [14], called Ratio-

nal Monotonicity (RM):

IfΓ,Ab |∼ φ and Γ,Ab �|∼ ¬ψ, then Γ,Ab, ψ |∼ φ.

The next example shows that RM does not hold for skeptical entailments.

Example 8. [17] Let ABF = 〈CL, ∅, Ab,∼〉 be an assumption-based framework in
which Ab = {r, p∧q∧¬r, (p∧r) ⊃ ¬q, ¬p∧q}. By the first item of Proposition 1 we
may consider MCS(ABF) = {{r, (p∧r) ⊃ ¬q,¬p∧q}, {p∧q∧¬r, (p∧r) ⊃ ¬q}}.
Note that none of the two members of MCS(ABF) implies ¬p, while both of
them imply q.

Now, let ABF′ = 〈CL, ∅, Ab ∪ {p},∼〉. We get: MCS(ABF′) = {{r, (p ∧ r) ⊃
¬q,¬p∧q}, {p∧q∧¬r, (p∧r) ⊃ ¬q, p}, {r, p, (p∧r) ⊃ ¬q}}. Since {r, p, (p∧r) ⊃
¬q} ��CL q, we have ∅, Ab, p �|∼ ∩

Semq (for every Sem ∈ {Naive,Prf,Stb}). Thus,
rational monotonicity does not hold for |∼∩

Sem.

For the credulous entailments, however, RM does hold:

Proposition 10. Let L be a logic in which de Morgan’s rules in (1) hold, and let
ABF = 〈L , Γ,Ab,∼〉 be a simple contrapositive ABF with disjunctive attacks.
Then |∼∪

Sem satisfies RM for Sem ∈ {Naive,Prf,Stb}.

4.2 Non-interference

Another property that is carried on to contrapositive ABFs with disjunctive
attacks is non-interference [5]. Below, for ABFi = 〈L, Γi, Abi,∼i〉 (i = 1, 2), we
let:

ABF1 ∪ ABF2 = 〈L, Γ1 ∪ Γ2, Ab1 ∪ Ab2,∼1 ∪ ∼2〉.
Definition 14. An entailment |∼ satisfies non-interference, if for every two
frameworks ABF1 = 〈L, Γ1, Ab1,∼1〉 and ABF2 = 〈L, Γ2, Ab2,∼2〉 such that
no atomic formula appears both in Γ1∪Ab1 and in Γ2∪Ab2, and where Γ1∪Γ2 is
consistent, it holds that ABF1 |∼ψ iff ABF1 ∪ABF2 |∼ ψ for every L -formula
ψ that mentions only atomic formulas in Γ1 ∪ Ab1.

Proposition 11. For Sem ∈ {Naive,Grd,Prf,Stb}, both |∼ ∪
Sem and |∼ ∩

Sem sat-
isfy non-interference with respect to simple contrapositive ABFs with disjunctive
attacks.

Proof. By Theorems 1 and 2, and since ABF1, ABF2 do not have common
atomic formulas, MCS(ABF1 ∪ ABF2) = {Δ1 ∪ Δ2 | Δ1 ∈ MCS(ABF1),Δ2 ∈
MCS(ABF2)}. ��

Simple Contrapositive Assumption-Based Frameworks 87

5 Summary and Conclusion

Assumption-based argumentation is an outstanding method in the context of
logical argumentation, which has obvious links to logic programming (see, e.g.,
[4,6]). In this paper we have considered the main Dung semantics for an extended
family of assumption-based argumentation frameworks, based on any contrapos-
itive propositional logic, where the defeasible assumptions are expressed by arbi-
trary formulas in the language, and attacks may be disjunctive. To the best of
our knowledge, apart of the companion paper [13], the semantics of such ABFs
have not been studied before.10 Among the new insights provided in this paper
are the following issues:

1. We delineated a class of problems in the application of the well-founded
semantics and specified conditions under which these problems can be
avoided. Similar problems have been discussed in [8], to which we suggest
simple solutions.

2. The relation between well-founded semantics and grounded semantics in sim-
ple contapositive ABFs is clarified.

3. For simple contrapositive ABFs the argumentation semantics may be simpli-
fied (in comparison to those of [4]) by lifting the closure requirement.11

4. Attacks between arguments are extended to disjunctive variations. This
assures some desirable properties of the grounded semantics that cannot be
guaranteed for standard attacks (see [13]). This extension also provides a solu-
tion to the consistency problem of deductive argumentation with disjunctive
attacks [7].

5. Relations to other general patterns of non-monotonic reasoning are investi-
gated. In particular:

– connections to the KLM theory [14] (including rational systems [15]) are
studied, and

– relations to reasoning with maximal consistency [16] that were investi-
gated so far for other forms of logical argumentation (see, e.g., [2,3,7,19]),
are now shown also for assumption-based frameworks. Note, also, that
while all of the other approaches give rise to an infinite number of argu-
ments even for a finite set Ab of defeasible assumptions, our approach
avoids this problem by considering sets of assumptions as nodes in the
argumentation graph, whose size is bounded by the size of the power-set
of Ab.

10 We note that works such as [12] use similar terminology when referring to attacks
among arguments, but the nature of the attacks (disjunctive formulas vs. conjunctive
formulas), as well as the context of those works (other structured frameworks), are
different.

11 The fact that a redundant closure condition reduces the computational complexity
has been exploited in [10], for the analysis of flat ABFs (i.e., for ABFs in which
no assumptions are derivable from other assumptions), in which case the closure
assumption is indeed redundant. Our results now establish that for a wide class of
non-flat ABFs, the closure condition can be safely dropped.

88 J. Heyninck and O. Arieli

Future work includes, among others, the incorporation of more expressive
languages, involving preferences among arguments, and the introduction of other
kinds of contrariness operators.

References

1. Amgoud, L., Besnard, P.: A formal characterization of the outcomes of rule-based
argumentation systems. In: Liu, W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM
2013. LNCS (LNAI), vol. 8078, pp. 78–91. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40381-1 7

2. Amgoud, L., Besnard, P.: Logical limits of abstract argumentation frameworks. J.
Appl. Non-class. Log. 23(3), 229–267 (2013)

3. Arieli, O., Borg, A., Straßer, C.: Reasoning with maximal consistency by argumen-
tative approaches. J. Log. Comput. 28(7), 1523–1563 (2018)

4. Bondarenko, A., Dung, P.M., Kowalski, R., Toni, F.: An abstract, argumentation-
theoretic approach to default reasoning. Artif. Intell. 93(1), 63–101 (1997)

5. Caminada, M., Carnielli, W., Dunne, P.: Semi-stable semantics. J. Log. Comput.
22(5), 1207–1254 (2011)

6. Caminada, M., Schulz, C.: On the equivalence between assumption-based argu-
mentation and logic programming. J. Artif. Intell. Res. 60, 779–825 (2017)

7. Cayrol, C.: On the relation between argumentation and non-monotonic coherence-
based entailment. In: Proceedings of the IJCAI 1995, pp. 1443–1448 (1995)

8. Čyras, K., Fan, X., Schulz, C., Toni, F.: Assumption-based argumentation: dis-
putes, explanations, preferences. In: Handbook of Formal Argumentation, pp.
2407–2456 (2018)

9. Čyras, K., Toni, F.: Non-monotonic inference properties for assumption-based
argumentation. In: Black, E., Modgil, S., Oren, N. (eds.) TAFA 2015. LNCS
(LNAI), vol. 9524, pp. 92–111. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-28460-6 6

10. Dimopoulos, Y., Nebel, B., Toni, F.: On the computational complexity of
assumption-based argumentation for default reasoning. Artif. Intell. 141(1/2), 57–
78 (2002)

11. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77,
321–358 (1995)

12. Gabbay, D.M., Gabbay, M.: Theory of disjunctive attacks, part I. Log. J. IGPL
24(2), 186–218 (2016)

13. Heyninck, J., Arieli, O.: On the semantics of simple contrapositive assumption-
based argumentation frameworks. In: Proceedings of the COMMA 2018. Frontiers
in Artificial Intelligence and Applications, vol. 305, pp. 9–20. IOS Press (2018)

14. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-
els and cumulative logics. Artif. Intell. 44(1), 167–207 (1990)

15. Lehmann, D.J., Magidor, M.: What does a conditional knowledge base entail?
Artif. Intell. 55(1), 1–60 (1992)

16. Rescher, N., Manor, R.: On inference from inconsistent premisses. Theory Decis.
1(2), 179–217 (1970)

17. Straßer, C.: Tutorial on nonmonotonic logics. In: Nat@Logic Workshop (2015)
18. Toni, F.: Assumption-based argumentation for epistemic and practical reasoning.

Comput. Model. Law Lang. Dialogues Games Ontol. 4884, 185–202 (2008)
19. Vesic, S.: Identifying the class of maxi-consistent operators in argumentation. J.

Artif. Intell. Res. 47, 71–93 (2013)

https://doi.org/10.1007/978-3-642-40381-1_7
https://doi.org/10.1007/978-3-642-40381-1_7
https://doi.org/10.1007/978-3-319-28460-6_6
https://doi.org/10.1007/978-3-319-28460-6_6

Argumentation-Based Explanations
for Answer Sets Using ADF

Lena Rolf1 , Gabriele Kern-Isberner1 , and Gerhard Brewka2(B)

1 TU Dortmund, Dortmund, Germany
2 Leipzig University, Leipzig, Germany
brewka@informatik.uni-leipzig.de

Abstract. This paper presents so-called asl-explanation graphs for
answer set programming based on a translation of extended logic pro-
grams to abstract dialectical frameworks (ADF). The graphs show how
a literal can be derived from the program, and they evaluate in an argu-
mentative way why necessary assumptions about literals not contained in
an answer set hold. With the set of all asl-explanation graphs for a literal
and an answer set, it is possible to explain and justify thoroughly why
the literal is or is not contained in that answer set. Additionally, we pro-
vide a criterion to improve the clarity of explanations by pruning nodes
without loss of information and selecting most significant asl-explanation
graphs.

Keywords: Answer set programming ·
Abstract dialectical frameworks · Argumentation · Explanation

1 Introduction

Explainable AI is a highly relevant topic of current research, see e.g. the DARPA
XAI initiative (www.darpa.mil/program/explainable-artificial-intelligence). In
this paper we focus on explanations in answer set programming (ASP). ASP
has been applied to various problems of academic research and industry (cf.
[4]). An example for the use in industry is the generation of teams of employees
for the seaport of Gioia Tauro [7]. The utilization of ASP for decision support
is examined for a lot of additional fields, e.g. physician-advisory systems [3] or
logistics [13], in which ASP-based systems support users that are not familiar
with logic programming. Because logic programs are nonmonotonic, it is difficult
to retrace the results of a solver, i.e. even ASP-knowledgeable persons can some-
times hardly reconstruct why a literal is contained in an answer set. To improve
a user’s acceptance of suggestions by ASP-based decision support systems, it is
helpful to explain why the suggested decision is chosen and alternative solutions,
possibly expected by the user, are not.

This research has been supported by DFG (Research Unit 1513 and BR 1817/7-2).

c© Springer Nature Switzerland AG 2019
M. Balduccini et al. (Eds.): LPNMR 2019, LNAI 11481, pp. 89–102, 2019.
https://doi.org/10.1007/978-3-030-20528-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20528-7_8&domain=pdf
http://orcid.org/0000-0002-8893-235X
http://orcid.org/0000-0001-8689-5391
http://orcid.org/0000-0001-9001-6820
www.darpa.mil/program/explainable-artificial-intelligence
https://doi.org/10.1007/978-3-030-20528-7_8

90 L. Rolf et al.

To provide helpful explanations, in this paper we focus on answering the
question why a literal is or is not in a given answer set with abstract dialectical
frameworks (ADFs), a generalization of Dung argumentation frameworks that
allows for flexible modelling (cf. [1]). We develop a translation from extended
logic programs with constraints to ADFs and show that there is a 1-to-1 rela-
tion between answer sets and stable models of the ADF. The transformation is
used to construct argumentative answer set literal-explanation (asl-explanation)
graphs based on the characterization of stable models by Sylwia Polberg in [10].
Every asl-explanation graph for a literal in an answer set contains a possible
derivation of the literal based on the program and an explanation for why this
derivation is not restrained. Moreover, for a literal not present in an answer set,
asl-explanation graphs reveal why its derivation is inhibited. The set of all asl-
explanation graphs can thus be used to explain why a literal is (not) contained
in the given answer set. Additionally, we propose a criterion based on specificity
to reduce the size and number of explanations. The main contributions of this
paper which is based on [12] are:

– Translation from extended logic programs with constraints to ADF
– Definition of asl-explanation graphs based on positive dependency evaluations

[10]
– Construction of asl-explanations from asl-explanation graphs

The rest of the paper is organized as follows: Sects. 2 and 3 contain back-
ground information on ASP and ADFs and an overview over related work. The
translation from logic programs to ADFs and the relation between answer sets
and stable models are described in Sect. 4. Based on that, the construction of
asl-explanations and the reducing criterion are described in Sect. 5. Section 6
concludes and points out future work.

2 Preliminaries on ASP and ADF

Answer Set Programming. A literal L is an atom A or a strictly-negated
atom ¬A where A is an atomic formula of propositional logic. An extended logic
program P is a set of rules of the form H ← B1, . . . , Bn,notBn+1, . . . , notBn+m.
with m,n ≥ 0 where H, . . . , B1, . . . , Bn+m are literals and Bn+1, . . . , Bn+m

Negation-as-Failure (NAF) literals. Lit(P) denotes the set of all literals in
P . For a rule r, the set {H} is denoted by head(r), the sets {B1, . . . , Bn}
resp. {Bn+1, . . . , Bn+m} are denoted with body+(r) resp. body−(r). Rules with
n+m = 0 are called facts and denoted with H for short, rules with head(r) = ∅
are called constraints. For the remainder of this paper, id is a bijective mapping
that maps a rule of P to an identifier. If not stated otherwise, the function maps
every rule r ∈ P to an identifier of {r1, . . . , r|P |} according to its appearance
in P . As defined in [6], the reduct of P w.r.t. S ⊆ Lit(P) is obtained from
P by (1) deleting every rule H ← B1, . . . , Bn,not Bn+1, . . . , not Bn+m. ∈ P
with {Bn+1, . . . , Bn+m}∩S �= ∅ and (2) deleting all NAF literals in the remain-
ing rules. A set S ⊆ Lit(P) is an answer set of P iff S is the smallest sub-
set of Lit(P) that does not contain any complementary literals A,¬A so that
{B1, . . . , Bn} ⊆ S ⇒ {H} ∩ S �= ∅ holds for every rule H ← B1, . . . , Bn. ∈ PS

Argumentation-Based Explanations for Answer Sets Using ADF 91

Abstract Dialectical Frameworks. According to [2], an Abstract Dialectical
Framework (ADF) is a tuple D = (S,L,C) with a set of statements S, a set of
links L ⊆ S ×S and a set of acceptance conditions C for statements of S. In this
paper, an acceptance condition for a statement s ∈ S is given as a propositional
formula φs on the parents of s, i.e. the statements with direct link to s. For
the rest of the paper, φs(S′) for a set S′ ⊆ S denotes the formula that can
be obtained from φs by replacing every occurrence of a statement s′ with

(tautology) if s′ ∈ S′ and with ⊥ (contradiction) otherwise. As L is implicitly
contained in C, it is not always specified explicitly in the following. M ⊆ S is a
model of D if φm(M) ≡
 ⇔ m ∈ M holds. M is the grounded model of D if it
is the least fixpoint of ΓD(A,R) = (acc(A,R), reb(A,R)) for A,R ⊆ S with

acc(A,R) = {r ∈ S | ∀S′, A ⊆ S′ ⊆ (S \ R) : φr(S′) ≡
}, (1)
reb(A,R) = {r ∈ S | ∀S′, A ⊆ S′ ⊆ (S \ R) : φr(S′) ≡ ⊥}. (2)

M is a stable model of D if M is a model of D and the grounded model of
the reduct DM of D w.r.t. M with DM = (M,L ∩ (M × M), CM) and CM =
{φs[p/⊥ : p /∈ M] | s ∈ M} where every occurrence of a statement p /∈ M in
each formula φs is replaced by ⊥.

3 Related Work

The approach described in this paper is related to the debugging of ASP pro-
grams (e.g. [8,9]) although these approaches reconstruct the computation of
answer sets and aim at locating the source of unexpected behavior by a developer.
Other related approaches in examining the characteristics of a logic program and
understanding its results are based on graph representation of the programs. The
approach in [11] also uses graphs to compute offline-justifications that illustrate
how a literal depends on literals of the answer set for logic programs without
strict negation. The Argument-Based Answer Set Justification in [14] and the
different justifications in [15] use argumentation to explain why a literal is (not)
in an answer set. Both papers use a translation from ASP to an ASPIC+ resp.
assumption-based argumentation framework and construct justifications based
on the arguments of a stable extension and relations between arguments. In [15],
different labels indicate whether literals are facts or NAF-literals and if they
are contained in the underlying stable extension. The approaches in [11,14,15]
have something in common with the approach presented in this paper as they
show different relations between literals, but there are important differences: The
graphs constructed in [11] mainly show recursively how a literal can be derived
from the rules of a program and which literals must not be in the answer set.
The papers [14] and [15] use argumentation frameworks different from ADF for
the translations and provide a different relation between answer sets and sta-
ble extensions. All three papers do not consider strict negation and constraints
explicitly. Similar to the asl-explanation graphs in this paper, the justifications
in [14] and [15] do not consider every literal in a derivation, but they do not

92 L. Rolf et al.

give any criteria to compare justifications, or to reduce their size reasonably to
improve clarity. The criterion presented in this paper is related to the notion
of specificity used in Defeasible Logic Programming that is based on the sets of
facts and defeasible rules in an argument (cf. [5]) while the specificity defined in
this paper takes facts and default negated literals into account.

4 Translations and Relations Between ASP and ADFs

In this section, a translation from a logic program to a corresponding ADF is
presented and it is shown that answer sets of the program correspond exactly
to the stable models of the ADF. To be able to distinguish strict negation for
literals in programs from negation in propositional formulas as used in ADFs, a
mapping + is used that maps a literal to a corresponding statement s.t. an atom
is mapped to itself and a strictly-negated atom ¬A to A resp. a set of literals L
to {L+ | L ∈ L}.

The statement set of an ADF corresponding to a logic program P contains
the identifier of all rules of P , a statement for each literal in Lit(P) and a
statement cmp(A) for every pair of complementary literals A,¬A ∈ Lit(P).
Statements of the form cmp(A) serve the purpose that no model of the ADF
contains statements for complementary literals.

Definition 1 (Translation for extended logic programs). Let P be an
extended logic program and LitC(P) resp. LitR(P) sets of all identifiers of con-
straints resp. rules with non-empty rule-head. Then ADF (P) = (S,C) is the
ADF corresponding to P with:

S ={L+ | L ∈ Lit(P)} ∪ {cmp(A) | A, ¬A ∈ Lit(P)} ∪ LitC(P) ∪ LitR(P)

C ={φid(r) = B+
1 ∧ · · · ∧ B+

n ∧ ¬B+
n+1 ∧ · · · ∧ ¬B+

n+m |
r = H ← B1, . . . , Bn,not Bn+1, . . . , not Bn+m. ∈ P}

∪ {φid(c) = ¬id(c) ∧ B+
1 ∧. . .∧B+

n ∧¬B+
n+1 ∧. . .∧¬B+

n+m |
c =← B1, . . . , Bn,not Bn+1, . . . , not Bn+m. ∈ P}

∪ {φH+ =
∨

{H}=head(r),r∈P
id(r) | H ∈ Lit(P)}

∪ {φcmp(A) = ¬cmp(A) ∧ A ∧ A | A, ¬A ∈ Lit(P)}

We illustrate the construction of ADF (P) in the following example.

Example 1. Let P be the logic program containing exactly the following rules
associated with their rule identifiers:

r1 : bike ← not hurt,not ¬bike. r2 : ¬bike ← far, exhausting.
r3 : ¬bike ← far,not ¬steep,not ebike. r4 : ¬bike ← heat, badWeather.
r5 : car ← not bike,not ¬car. r6 : ¬car ← broke,not children.
r7 : exhausting ← not ¬steep. r8 : badWeather ← winter.
r9 : badWeather ← rainy,not warm. r10 : hurried ← not holidays.
r11 : winter ← not ¬winter. r12 : ¬winter ← not winter.
r13 : ← heat, winter.
r14 : warm. r15 : far. r16 : ebike. r17 : ¬steep. r18 : heat. r19 : broke. r20 : rainy.

Argumentation-Based Explanations for Answer Sets Using ADF 93

The ADF corresponding to P is given below by the set of acceptance conditions
of all statements.
φr1 = ¬hurt ∧ ¬bike φr2 = far ∧ exhausting φr3 = far ∧ ¬steep ∧ ¬ebike
φr4 = heat ∧ badWeather φr5 = ¬bike ∧ ¬car φr6 = broke ∧ ¬children
φr7 = ¬steep φr8 = winter φr9 = rainy ∧ ¬warm
φr10 = ¬holidays φr11 = ¬winter φr12 = ¬winter
φr13 = ¬r13 ∧ heat ∧ winter φr14 = · · · = φr20 = �

φbadWeather = r8 ∨ r9 φbike = r1 φbike = r2 ∨ r3 ∨ r4 φbroke = r19
φcar = r5 φcar = r6 φchildren = ⊥ φebike = r16
φexhausting = r7 φfar = r15 φheat = r18 φholidays = ⊥
φhurried = r10 φhurt = ⊥ φsteep = r17 φrainy = r20
φwarm = r14 φwinter = r11 φwinter = r12

φcmp(bike) = ¬cmp(bike) ∧ bike ∧ bike φcmp(car) = ¬cmp(car) ∧ car ∧ car

φcmp(winter) = ¬cmp(winter) ∧ winter ∧ winter

Obviously, for an acceptance condition φid(r) for a statement id(r) ∈ LitR(P)
and every set M ⊆ Lit(P) it must hold that: φid(r)(M+) ≡
 ⇔ body+(r) ⊆ M
and body−(r) ∩ M = ∅. The acceptance condition for r3 in Example 1, e.g., is
satisfied by every set S′ ⊆ S with far ∈ S′ and {steep, ebike} ∩ S′ = ∅. For
a constraint c, the cyclic dependency caused by the membership of ¬id(c) in
the acceptance condition effects that id(c) ∈ S′ ⇒ φid(c)(S′) ≡ ⊥ for every
statement set S′ ⊆ S thus no model M of the ADF can satisfy body+(c) ⊆ M
and body−(c) ∩ M = ∅. Because of the constraint c =← heat, winter. of P
in Example 1, the corresponding ADF contains a statement r13 with φr13 =
¬r13 ∧ heat ∧ winter. For a set S′ ⊆ S with {heat, winter} ⊆ S′, φr13(S

′) ≡

holds iff r13 /∈ S′ and φr13(S

′) ≡ ⊥ holds iff r13 ∈ S′. Similarly, no model can
contain two statements A,A for complementary literals A,¬A.

ADF (P) has been constructed in such a way that membership of a literal in
an answer set corresponds to membership of the corresponding statement in a
stable model and that answer sets have a 1-to-1 relation to stable models.

Theorem 1. Let P be an extended logic program, ADF (P) = (S,C) the ADF
corresponding to P and S ⊆ S the set of statements corresponding to strictly
negated literals of Lit(P).

1. M is an answer set of P iff M ′ = M+ ∪ {id(r) ∈ LitR(P) | body+(r) ⊆
M, body−(r) ∩ M = ∅} is a stable model of ADF (P).

2. M ′ is a stable model of ADF (P) iff M = {A ∈ Lit(P) | A ∈ M ′ \S}∪{¬A ∈
Lit(P) | A ∈ M ′ ∩ S} is an answer set of P .

Proof sketch. (1) If M is an answer set of P , M ′ is a model of ADF (P) by
construction of the acceptance conditions. It can be shown by induction over
the steps of the Γ-operator that M ′ is the grounded model of ADF (P)M

′
. If M ′

is a stable model of ADF (P), M ′ does not contain statements corresponding
to complementary literals A,¬A ∈ Lit(P) because of the cyclic dependency
in φcmp(A). It can be shown that M satisfies every rule of PM and that, if

94 L. Rolf et al.

M were not minimal, the Γ-operator for ADF (P)M
′

would have accepted a
statement s ∈ S \ M ′. (2) Every stable model of ADF (P) is a subset of {l+ |
l ∈ Lit(P)} ∪ {id(r) ∈ LitR}, because statements of the form cmp(A) or id(c)
for a constraint c cannot be contained in a model of ADF (P) by construction.
The relation thus follows from (1).

Example 2. Program P of Example 1 has one answer set M = {warm, far, heat,
ebike, broke, rainy,¬steep,¬winter, bike,¬car, hurried} thus the corresponding
ADF has the corresponding stable model M ′ = {warm, far, heat, ebike, broke,
rainy, steep, winter, bike, car, hurried, r1, r6, r10, r12, r14, . . . , r20}. M ′ contains
statements for literals in M and the identifiers of those rules whose bodies are
satisfied by M .

5 Construction of Explanations

The construction of asl-explanations is based on the translation presented in
Sect. 4 and the characterization of stable models of ADFs in [10]. Useful defini-
tions from [10] are recalled in the following.

Definition 2 (pdf, cf. [10]). Let D = (S,C) be an ADF, E ⊆ S and N a fixed
symbol. A positive dependency function (pdf) on E is a function pd that maps
every s ∈ E to a tuple (As, Rs) so that (1) As ⊆ E,Rs ⊆ S, (2) φs(S′) ≡
 for
all S′ with As ⊆ S′ ⊆ S \Rs, and (3) pd(s) is minimal1 among all tuples (A,R)
satisfying (1) and (2); or to the symbol N if no tuple (As, Rs) exists.

Definition 3 (pde, [10]). Let D = (S,C) be an ADF, E ⊆ S and pd a pdf on S.
An (acyclic) positive dependency evaluation (pde) on E for a statement e ∈ E is
a tuple

(
(a0, . . . , an), B

)
with an = e and (1) (a0, . . . , an) is a sequence of distinct

elements of E with ∀ai ∈ {a0, . . . , an} : pd(ai) �= N , (2) Ai ⊆ {a0, . . . , ai−1} for
every i ∈ {1, . . . , n} with pd(ai) = (Ai, Ri), A0 = ∅ for pd(a0) = (A0, R0), (3)
B =

⋃n
i=0 Ri with (Ai, Ri) as defined in (2). (a0, . . . , an) is called sequence and

B blocking set of
(
(a0, . . . , an), B

)
.

In this paper, only acyclic pdes are used so a pde is assumed to be acyclic
if not stated otherwise. A pde for a statement s can be interpreted as a part of
an evaluation of the ADF in which s is accepted whenever every statement of
B is rebutted, or in which operator ΓD inserts the statements of the sequence,
including s, in set (1) and the statements of B in set (2) during the recursion.

Definition 4 (Blocking, [10]). Let D = (S,C) be an ADF, E ⊆ S and(
(a0, . . . , an), B

)
a pde on E for a statement e ∈ E. A set X ⊆ S blocks(

(a0, . . . , an), B
)

iff ∃b ∈ B : b ∈ X or ∃s ∈ {a0, . . . , an} : s /∈ X.

Theorem 2 (cf. [10, Theorem 6.12]). Let D = (S,C) be an ADF and E ⊆ S
a model of D. Then E is a stable model of D iff there exists a pde on E for every
e ∈ E that is not blocked by E.
1 I.e., there is no other such tuple (A′

s, R
′
s) with A′

s ⊆ As and R′
s ⊆ Rs.

Argumentation-Based Explanations for Answer Sets Using ADF 95

Proposition 1. Let D = (S,C) be an ADF,
(
(a0, . . . , an), B

)
a pde on S and

M ⊆ S a model of D. Then {a0, . . . , an} ⊆ M if M ∩ B = ∅.
Proof. Let M ∩B = ∅, and assume {a0, . . . , an} �⊆ M . Then there is a statement
ai ∈ {a0, . . . , an} with ai /∈ M and {a0, . . . , ai−1} ⊆ M . Then φai

(S′) ≡

holds for every {a0, . . . , ai−1} ⊆ S′ ⊆ S \ B by Definition 3. Since B ∩ M = ∅,
φai

(M) ≡
 and that causes a contradiction because M is a model of D.

The characterization of stable models by Theorem 2 can be used to evaluate
recursively why a pde is (not) blocked by a set of statements. Because of the
relation between a logic program and the corresponding ADF in Theorem1, the
set of evaluations for all pdes for a given statement w.r.t. a stable model provides
an explanation for why a literal is (not) in the corresponding answer set. Thus
Proposition 1 yields the following helpful corollary.

Corollary 1. Let P be a logic program, ADF (P) its corresponding ADF, M
an answer set of P and M ′ its corresponding stable model of ADF (P). A literal
l ∈ Lit(P) is in M iff there is a pde for the corresponding statement l+ on S
with blocking set B and M ′ ∩ B = ∅.

A justification tree represents an evaluation for a statement w.r.t. a stable
model by recursively checking the pdes of the statements in the blocking set.

Definition 5 (justification tree). Let D = (S,C) be an ADF, M ′ ⊆ S a
stable model of D, s ∈ S a statement and P the set of pdes on S. A justification
tree for s based on P w.r.t. M ′ is a marked tree T = (V,E) such that the
following conditions hold:

– The root node v ∈ V is marked with
• label(v) =

(
(a0, . . . , s), B,+

)
with

(
(a0, . . . , s), B

) ∈ P if M ′ ∩ B = ∅ or
• label(v) =

(
(a0, . . . , s), B,−)

with
(
(a0, . . . , s), B

) ∈ P if M ′ ∩ B �= ∅.
– Every node v ∈ V with label(v) =

(
(a0, . . . , an), B,+

)
has a child node v′ ∈ V

with label(v′) =
(
(a′

0, . . . , a
′
n), B′,−)

for every pde
(
(a′

0, . . . , a
′
n), B′) ∈ P with

a′
n ∈ B. v is a leaf iff no such child exists.

– Every node v ∈ V with label(v) =
(
(a0, . . . , an), B,−)

has exactly one child
node v′ ∈ V for an a′

n ∈ M ′ ∩ B with label(v′) =
(
(a′

0, . . . , a
′
n), B′,+

)
for(

(a′
0, . . . , a

′
n), B′) ∈ P with B′ ∩ M ′ = ∅.

T is positive resp. negative if the root node is marked with + resp. −. A node
v ∈ V with label(v) =

(
(a0, . . . , s), B, l

)
is positive if l = + and negative if l = −.

For a positive node, i.e., a pde that is not blocked by the stable model,
all pdes for possibly blocking statements are evaluated to show that and why
every of them is blocked by the stable model. For a negative node, i.e. a pde
that is blocked by the stable model, one unblocked pde for one statement of the
blocking set is evaluated. Thus there can be different justification trees for the
same pde in the root node that represent different “strategies” how to block the
not contained statements. Note that, by definition, every subtree of a justification
tree is a justification tree.

96 L. Rolf et al.

Lemma 1. Let D = (S,C) be an ADF, s ∈ S, P the set of all pdes on S and
M ′ a stable model of D.

1. There is a positive justification tree for s based on P w.r.t. M ′ iff s ∈ M ′.
2. There is a negative justification tree for s based on P w.r.t. M ′ with root

node v and label(v) =
(
(a0, . . . , s), B,−)

for every pde
(
(a0, . . . , s), B

) ∈ P if
s /∈ M ′.

Lemma 1 states that there is a positive justification tree for a statement s
iff it is contained in the stable model M ′ and that there are otherwise negative
justification trees that show why every pde for s is blocked by M ′. Although
justification trees can be used to explain why a literal is (not) in an answer set
in principle, they are unsuitable for practical use. The main reason for this is
the large number of different pdes for one and the same statement: Definition 3
does not claim minimality of the sequence so that, for an ADF corresponding to
a logic program, the set of rule identifiers in a pde need not be minimal w.r.t.
set inclusion. Thus, a corresponding derivation may contain superfluous rules.

Definition 6. Let P be a logic program, ADF (P) = (S,C) its corresponding
ADF and pde =

(
(a0, . . . , an), B

)
a pde on a set S′ ⊆ S for s ∈ S. pde is

– sequence-minimal iff there is no pde for an = s with a sequence (a′
0, . . . , a

′
m =

an) and {a′
0, . . . , a

′
m} ⊂ {a0, . . . , an}.

– consistent iff (1) there is no A ∈ Lit(P) with A,A ∈ {a0, . . . , an}, and (2)
there is no constraint r with body−(r) = ∅ s.t. body+(r) ⊆ {a0, . . . , an}.
If pdes are interpreted as possible derivations of literals, inconsistent pdes are

derivations that contain complementary literals or a set of literals that ensures
that a constraint body is satisfied, i.e. they require sets of literals that cannot
belong to the same answer set. Because of the construction of the acceptance
conditions, an inconsistent pde can be blocked by every model of the ADF thus
the evaluation of inconsistent pdes does not provide relevant information. For
sake of clarity, a pde for a statement s is transformed into its set representation
that is a tuple consisting of s, the sets of facts resp. rule identifiers in the sequence
and the literals in its blocking set. Other literals which are derived by non-factual
rules are omitted.

Definition 7 (set representation of a pde). Let P be a logic program and
ADF (P) = (S,C) the corresponding ADF. The set representation of a pde(
(a0, . . . , an), B

)
on S with {a0, . . . , an} = Seq is

〈an, Seq ∩ {x+ | x. ∈ P}, B, Seq ∩ {id(r) | r ∈ P}〉
Example 3. p1 =

(
(r18, heat, r11, winter, r8, badWeather, r4, bike), {winter}) is

a pde for the statement bike corresponding to literal ¬bike of program P in
Example 1. Because P contains constraint r =← heat, winter. with body−(r) = ∅
and {winter, heat} = body+(r), p1 is inconsistent. The set representation of p1 is
〈bike, {heat}, {winter}, {r18, r11, r8, r4}〉. (

(r18, heat, r11, winter, r8, r20, rainy,

r9, badWeather, r4, bike), {winter, warm}) is not sequence-minimal. The deriva-
tion uses r8 and r9 with the rule head badWeather so one rule is superfluous.

Argumentation-Based Explanations for Answer Sets Using ADF 97

Definition 8 (asl-explanation graph). Let P be a logic program, ADF (P) =
(S,C) the corresponding ADF, M ′ a stable model of ADF (P), l ∈ Lit(P), P
the set of all consistent, sequence-minimal pdes on S and T = (V,E) a positive
resp. negative justification tree for l+ based on P w.r.t. M ′ and root node w.
Let f be a function that maps a node v with label(v) =

(
(a0, . . . , an), B,m

)

to a tuple
(〈an, F,B,R〉,m)

where 〈an, F,B,R〉 is the set representation of(
(a0, . . . , an), B

)
. A graph G = (V ′, E′) with V ′ = {f(v) | v ∈ V } and

E′ = {(f(v), f(v′)) | (v, v′) ∈ E} is a positive resp. negative asl-explanation
graph for l w.r.t. M ′.

Analogously to justification trees, a node with m = − is called negative, and
positive for m = +. For a positive resp. negative node, the outgoing edges are
called attack edges resp. defense edges. f(w) ∈ V ′ is called goal node of G where
w is the root of T . Every positive node of V ′ \ {f(w)} is called defender in G.

In asl-explanation graphs, only consistent, sequence-minimal pdes are con-
sidered by construction. The use of the set representation reduces the number
of nodes, because two pdes with equal blocking sets and sequences that contain
exactly the same statements, in a possibly different order, are combined to one
node, and provide the most important information in the context of ASP. If the
sets contain many statements, the visualization of the pde becomes confusing.
In that case, for an implementation and use in practice, the number of showed
statements can be limited and the full visualization can be restricted. Despite
of these modifications, the existence of asl-explanation graphs is guaranteed in
a way that is analogous to the existence of justification trees in Lemma1.

〈car, ∅, {bike, car}, {r5}〉,−)

〈car, {broke}, {children}, {r6, r19}〉,+)

Fig. 1. asl-explanation graph G1 for car (see Example 4), the goal node is surrounded
by a dashed line, solid arrows represent defense edges

Example 4. Consider program P and ADF (P) in Example 1 and the stable
model M ′ of ADF (P) (Example 2). Figures 1, 2 and 3 show all asl-explanation
graphs G1, G2, G3 for car w.r.t. M ′. G2 and G3 differ only in the additional
defending node for the pde for ebike that is only contained in G2.

98 L. Rolf et al.

Definition 9 (asl-explanation). Let P be a logic program, ADF (P) the cor-
responding ADF, M an answer set of P , M ′ its corresponding stable model of
ADF (P) and l ∈ Lit(P).

– If l ∈ M , every positive asl-explanation graph for l w.r.t. M ′ is a positive
asl-explanation for l w.r.t. M .

– If l /∈ M , the set of all asl-explanation graphs for l w.r.t. M ′ is the negative
asl-explanation for l w.r.t. M .

〈car, ∅, {bike, car},
{r5}〉,−)

〈bike, ∅, {bike, hurt}, {r1}〉,+)

〈bike, {far}, {ebike, steep},
{r3, r15}〉,−) 〈bike, {far}, {steep},

{r2, r7, r15}〉,−) 〈bike, {rainy, heat},
{warm}, {r4, r9, r18, r20}〉,−)

〈ebike, {ebike}, ∅, {r16}〉,+) 〈steep, {steep}, ∅, {r17}〉,+) 〈warm, {warm}, ∅, {r14}〉,+)

Fig. 2. asl-explanation graph G2 for car (see Example 4), dash-dotted arrows represent
attack edges

Example 5. The set of the asl-explanation graphs depicted in Figs. 1, 2 and 3
is a negative asl-explanation for car w.r.t. the answer set M in Example 2. For
bike, there are two positive asl-explanations w.r.t. M that can be obtained from
G2 resp. G3 in Figs. 2 and 3 by deleting the node

(〈car, ∅, {bike, car}, {r5}〉,−)

and the corresponding edge and setting
(〈bike, ∅, {bike, hurt}, {r1}〉,+)

as goal
node.

An asl-explanation for a literal with respect to an answer set provides an
explanation for why a literal is (not) in the given answer set. A positive asl-
explanation for a literal l w.r.t. an answer set M is a positive asl-explanation
graph and shows how l can be derived from facts and rules in the goal node
and why required NAF-literals can be satisfied with respect to the answer set.
A negative asl-explanation for a literal l w.r.t. an answer set M contains an asl-
explanation graph with a corresponding goal node for every pde for l. A negative
asl-explanation thus provides an explanation for why every possible derivation
of l based on P is blocked by M resp. why there is at least one NAF-Literal
that is necessary for the derivation but is not satisfied with respect to M . The
negative asl-explanation is empty iff there is no pde for l on a set of statements.

Argumentation-Based Explanations for Answer Sets Using ADF 99

〈car, ∅, {bike, car}, {r5}〉,−)

〈bike, ∅, {bike, hurt}, {r1}〉,+)

〈bike, {far}, {ebike, steep},
{r3, r15}〉,−) 〈bike, {far}, {steep},

{r2, r7, r15}〉,−) 〈bike, {rainy, heat},
{warm}, {r4, r9, r18, r20}〉,−)

〈steep, {steep}, ∅, {r17}〉,+) 〈warm, {warm}, ∅, {r14}〉,+)

Fig. 3. asl-explanation graph G3 for car (see Example 4)

Example 5 shows that different positive asl-explanations and the set of
asl-explanation graphs in negative asl-explanations can contain similar rela-
tions between pdes that don’t provide additional information. G1 of Fig. 1
shows how the derivation in the goal node can be inhibited by car resp.
¬car. G2 and G3 in Figs. 2 and 3 show an alternative “defense-strategy”
via bike. The comparison of G2 and G3 shows: The set of defending nodes
in G3 is a proper subset of the set of defending nodes in G2, G3 is thus
a more compact way to defend the positive node with bike. Both graphs
contain nodes n1 =

(〈bike, {far}, {ebike, steep}, {r3, r15}〉,−)
and n2 =(〈bike, {far}, {steep}, {r2, r7, r15}〉,−)

to evaluate why the corresponding pdes
are blocked by the stable model. Intuitively, the evaluation of n1 seems to be
unnecessary because every explanation for why the pde corresponding to n2 can
be blocked is also an explanation for the pde corresponding to n1. To improve
the benefit of asl-explanations in practice w.r.t. these observations, a criterion
to compare pdes is defined.

Definition 10 (specificity). Let ADF (P) = (S,C) be the ADF corresponding
to a logic program P , p =

(
(a0, . . . , an, s), B

)
with set representation 〈s, F,B,R〉

and p′ =
(
(a′

0, . . . , a
′
m, s), B′) with set representation 〈s, F ′, B′, R′〉 two pdes for

s on S. p is more specific than p′ (p � p′) if (1) F ′ ⊆ F and B′ ⊂ B or (2)
F ′ ⊂ F and B′ ⊆ B hold.

Because specificity depends on statements for facts and the blocking set only,
pdes with the same set-representation behave identically w.r.t. specificity. Speci-
ficity is used in Definition 11 to reduce the size of asl-explanation graphs by the
restriction to least resp. most specific pdes for negative resp. positive nodes.

Definition 11 (reduced asl-explanation graph). Let P be a logic program,
ADF (P) its corresponding ADF, M ′ a stable model of ADF (P), G = (V,E)
an asl-explanation graph for l ∈ Lit(P) w.r.t. M ′ and the goal node t. Let G′ =
(V ′, E′) be a subgraph of G with t ∈ V ′ such that the following conditions hold:

1. For every positive node (〈s, F,B,R〉,+) ∈ V ′ and pde p corresponding to
〈s, F,B,R〉 there is no pde p′ that is not blocked by M ′ s.t. p′ � p.

100 L. Rolf et al.

2. For every negative node (〈s, F,B,R〉,−) ∈ V ′ and pde p corresponding to
〈s, F,B,R〉 there is no pde p′ s.t. p � p′.

The subgraph of G′ that contains goal node t, all nodes reachable from t and
associated edges is a reduced asl-explanation graph for l w.r.t. M ′.

Based on reduced asl-explanation graphs, it is possible to build reduced asl-
explanations that can be defined analogously to Definition 9 but based on the
set of reduced asl-explanation graphs only.

〈car, ∅, {bike, car}, {r5}〉,−)

〈bike, ∅, {bike, hurt}, {r1}〉,+)

〈bike, {far}, {steep}, {r2, r7, r15}〉,−) 〈bike, {rainy, heat}, {warm}, {r4, r9, r18, r20}〉,−)

〈steep, {steep}, ∅, {r17}〉,+) 〈warm, {warm}, ∅, {r14}〉,+)

Fig. 4. reduced asl-explanation graph G′
2 for car (see Example 6)

Example 6. For program P in Example 1, there are two reduced asl-explanation
graphs for car w.r.t. the stable model M ′ (see Example 2). The asl-explanation
graph in Fig. 1 is reduced because it does not contain two nodes for the same
literal, the second graph is depicted in Fig. 4. The reduced asl-explanation for
car w.r.t. M thus consists of G1 and G′

2.

A reduced asl-explanation graph contains no nodes with pdes that are com-
parable with respect to specificity (disregarding the goal node). Negative nodes
in reduced asl-explanation graphs correspond to least specific pdes whose block-
ing set is minimal w.r.t. set inclusion. According to the definition of specificity
and asl-explanation graphs, every node that can be linked to a node correspond-
ing to a least specific pde via a defense edge can also be linked to a node for
a more specific pde. The defenders in a reduced asl-explanation graph are thus
particularly meaningful as the evaluation of the blocking set of the least specific
pde explains why more specific pdes are blocked. Positive nodes in reduced asl-
explanation graphs correspond to most specific pdes that are not blocked by the
stable model. The set of evaluated outgoing attack edges for a most specific pde
is a superset of the evaluated attack edges for nodes with a less specific pde. The
evaluation of less specific pdes thus provides no additional information and the
size of an asl-explanation graph can be reduced.

Specificity of pdes may also be used as a criterion to filter the set of positive
resp. negative asl-explanation graphs w.r.t. their information content by compar-
ing the pdes corresponding to the goal nodes and selecting only the graphs with

Argumentation-Based Explanations for Answer Sets Using ADF 101

the most resp. least specific ones. Another criterion to compare asl-explanation
graphs for the same literal and answer set could be the sets of defending nodes.
An asl-explanation graph with a set of defending nodes that is minimal w.r.t.
set inclusion represents a very compact defending strategy. Further details on
these two filtering strategies can be found in [12].

Due to the specificity criterion, the number of considered pdes and asl-
explanation graphs can be reduced. Thus, for larger programs, the size and
number of asl-explanation graphs for a literal do not necessarily increase.

6 Conclusion and Future Work

In this paper we presented asl-explanation graphs as a possibility to compose
argumentative explanations for why a literal is or is not contained in a given
answer set. A prototypical implementation allows one to compute (reduced) asl-
explanations and the visualization of asl-explanation graphs, depending on user
input, and is to provide explanations for logistics applications of ASP [13]. In
[12], an extension of the translation shown in Sect. 4 is presented that is able to
deal with disjunctive rules and cardinality rules, and provides the base for an
adapted definition of asl-explanations. Furthermore, it is shown how the trans-
lation, particularly the statements for complementary literals and constraints,
and (stable) model semantics of ADFs can be used to explain why a given literal
set is not an answer set of the program. Directions for future work can be the
development of further mechanisms to improve clarity, e.g. for non-ground input
programs, or the consideration of other parts of the input language for solvers
as conditional literals or optimization statements.

References

1. Brewka, G., Ellmauthaler, S., Strass, H., Wallner, J.P., Woltran, S.: Abstract
dialectical frameworks. An overview. IFCoLog J. Log. Their Appl. 4(8), 2263–2317
(2017)

2. Brewka, G., Strass, H., Ellmauthaler, S., Wallner, J.P., Woltran, S.: Abstract
dialectical frameworks revisited. Proc. IJCAI 2013, 803–809 (2013)

3. Chen, Z.: Automating disease management using answer set programming pro-
gramming. In: Technical Communications of the 32nd International Conference on
Logic Programming, ICLP 2016 TCs, pp. 22:1–22:10. OASICS (2016)

4. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI
Mag. 37(3), 53 (2016)

5. Garćıa, A.J., Simari, G.R.: Defeasible logic programming: an argumentative app-
roach. Theory Pract. Log. Program. 4(2), 95–138 (2004)

6. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3), 365–385 (1991)

7. Grasso, G., Iiritano, S., Leone, N., Lio, V., Ricca, F., Scalise, F.: An ASP-based
system for team-building in the Gioia-Tauro seaport. In: Carro, M., Peña, R. (eds.)
PADL 2010. LNCS, vol. 5937, pp. 40–42. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-11503-5 5

https://doi.org/10.1007/978-3-642-11503-5_5
https://doi.org/10.1007/978-3-642-11503-5_5

102 L. Rolf et al.

8. Oetsch, J., Pührer, J., Tompits, H.: Catching the ouroboros: on debugging non-
ground answer-set programs. Theory Pract. Log. Program. 10(4–6), 513–529
(2010)

9. Oetsch, J., Pührer, J., Tompits, H.: Stepping through an answer-set program. In:
Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp.
134–147. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20895-
9 13

10. Polberg, S.: Extension-based semantics of abstract dialectical frameworks. CoRR
abs/1405.0406 (2014)

11. Pontelli, E., Son, T.C., El-Khatib, O.: Justifications for logic programs under
answer set semantics. Theory Pract. Log. Program. 9(1), 1–56 (2009)

12. Rolf, L.: Argumentation für Erklärung und Debugging von clingo-ASP-Lösungen
(Argumentation for explaining and debugging of Clingo-ASP-solutions), TU Dort-
mund (2018)

13. Schieweck, S., Kern-Isberner, G., ten Hompel, M.: Various approaches to the appli-
cation of answer set programming in order-picking systems with intelligent vehi-
cles. In: Proceedings of the 9th International Joint Conference on Computational
Intelligence, vol. 1, pp. 25–34 (2017)

14. Schulz, C., Sergot, M., Toni, F.: Argumentation-based answer set justification. In:
Working Notes of the 11th International Symposium on Logical Formalizations of
Commonsense Reasoning (2013)

15. Schulz, C., Toni, F.: Justifying answer sets using argumentation. Theory Pract.
Log. Program. 16(01), 59–110 (2016)

https://doi.org/10.1007/978-3-642-20895-9_13
https://doi.org/10.1007/978-3-642-20895-9_13

Foundations and Complexity

Treewidth and Counting Projected
Answer Sets

Johannes K. Fichte1 and Markus Hecher2(B)

1 TU Dresden, Dresden, Germany
johannes.fichte@tu-dresden.de

2 TU Wien, Vienna, Austria
hecher@dbai.tuwien.ac.at

Abstract. In this paper, we introduce novel algorithms to solve pro-
jected answer set counting (#PAs). #PAs asks to count the number
of answer sets with respect to a given set of projection atoms, where
multiple answer sets that are identical when restricted to the projection
atoms count as only one projected answer set. Our algorithms exploit
small treewidth of the primal graph of the input instance by dynamic
programming (DP).

We establish a new algorithm for head-cycle-free (HCF) programs and
lift very recent results from projected model counting to #PAs when the
input is restricted to HCF programs. Further, we show how established
DP algorithms for tight, normal, and disjunctive answer set programs can
be extended to solve #PAs. Our algorithms run in polynomial time while
requiring double exponential time in the treewidth for tight, normal, and
HCF programs, and triple exponential time for disjunctive programs.

Finally, we take the exponential time hypothesis (ETH) into account
and establish lower bounds of bounded treewidth algorithms for #PAs.
Under ETH, one cannot significantly improve our obtained worst-case
runtimes.

1 Introduction

Answer Set Programming (ASP) [6] is an active research area of artificial intelli-
gence. It provides a logic-based declarative modeling language and problem solv-
ing framework for hard computational problems. In ASP, questions are encoded
into rules and constraints that form a disjunctive (logic) program over atoms.
Solutions to the program are so-called answer sets. Lately, two computational
problems of ASP have received increasing attention, namely, #As [12] and
#PAs [1]. The problem #As asks to output the number of answer sets of a
given disjunctive program. When considering computational complexity #As
can be classified as #·coNP-complete [12], which is even harder than count-
ing the models of a Boolean formula. A natural abstraction of #As is to con-
sider projected counting where we ask to count the answer sets of a disjunctive

This work extends an abstract [11] explaining only concepts, and a preliminary work-
shop paper, and has been supported by Austrian Science Fund (FWF): Y698 and DFG:
HO 1294/11-1. Hecher is also affiliated with University of Potsdam, Germany.

c© Springer Nature Switzerland AG 2019
M. Balduccini et al. (Eds.): LPNMR 2019, LNAI 11481, pp. 105–119, 2019.
https://doi.org/10.1007/978-3-030-20528-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20528-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-20528-7_9

106 J. K. Fichte and M. Hecher

program with respect to a given set of projection atoms (#PAs). Particularly,
multiple answer sets that are identical when reduced to the projection atoms
are considered as only one solution. Intuitively, #PAs is needed to count answer
sets without counting functionally independent auxiliary atoms. Under standard
assumptions the problem #PAs is complete for the class #·Σ2P . However, if we
take all atoms as projected, then #PAs is again #·coNP-complete and if there
are no projection atoms then it is simply Σp

2 -complete. But some fragments of
ASP have lower complexity. A prominent example is the class of head-cycle-free
(HCF) programs [2], which requires the absence of cycles in a certain graph rep-
resentation of the program. Deciding whether a HCF program has an answer set
is NP-complete.

A way to solve computationally hard problems is to employ parameterized
algorithmics [7], which exploits certain structural restrictions in a given input
instance. Because structural properties of an input instance often allow for algo-
rithms that solve problems in polynomial time in the size of the input and expo-
nential time in a measure of the structure, whereas under standard assumptions
an efficient algorithm is not possible if we consider only the size of the input.
In this paper, we consider the treewidth of a graph representation associated
with the given input program as structural restriction, namely the treewidth of
the primal graph [18]. Generally speaking, treewidth measures the closeness of a
graph to a tree, based on the observation that problems on trees are often easier
to solve than on arbitrary graphs.

Our results are as follows: We establish the classical complexity of #PAs
and a novel algorithm that solves ASP problems by exploiting treewidth when
the input program is restricted to HCF programs in runtime single exponential
in the treewidth. We introduce a framework for counting projected answer sets
by exploiting treewidth. Therefore, we lift recent results from projected model
counting in the domain of Boolean formulas to counting projected answer sets.
We establish algorithms that are (i) double exponential in the treewidth if the
input is restricted to tight, normal or HCF programs and (ii) triple exponential
in the treewidth if we allow disjunctive programs. Using the exponential time
hypothesis (ETH), we establish that #PAs cannot be solved in time better than
double exponential in the treewidth for tight, normal, and HCF programs, and
not better than triple exponential for disjunctive programs, respectively.

Related Work. Gebser, Kaufmann and Schaub [14] considered projected enu-
meration for ASP. Aziz [1] introduced techniques to modify modern solvers to
count projected answer sets. Fichte et al. [12] presented algorithms to solve #As
for the full standard syntax of modern ASP solvers. Recently, Fichte et al. [13]
gave DP algorithms for projected #SAT including lower bounds, c.f., Table 1.

2 Preliminaries

Basics and Combinatorics. For given sequence s and integer i > 0, s(i) refers
to the i-th element of s and <s := {(s(i), s(j)) | 1 ≤ i < j ≤ |s|} denotes its

Treewidth and Counting Projected Answer Sets 107

induced ordering. Given finite sets X1, X2, . . ., Xn, the generalized inclusion-
exclusion principle states that

∣
∣∪n

j=1Xj

∣
∣ = ΣI⊆{1,...,n},I �=∅(−1)|I|−1 |∩i∈IXi|.

Computational Complexity. For parameterized complexity we refer to [7] and
for counting complexity classes to [8]. Let Σ and Σ′ be finite alphabets, I ∈ Σ∗

be an instance and ‖I‖ denote its size. A witness function W : Σ∗ → 2Σ′∗

maps an instance I ∈ Σ∗ to its witnesses. A parameterized counting problem L :
Σ∗ ×N → N0 is a function that maps a given instance I ∈ Σ∗ and an integer k ∈
N to the cardinality of its witnesses |W(I)|. Let C be a decision complexity
class, e.g., P. Then, # · C denotes the class of all counting problems whose
witness function W satisfies (i) there is a function f : N0 → N0 such that for every
instance I ∈ Σ∗ and every W ∈ W(I) we have |W | ≤ f(‖I‖) and f is computable
in time O(‖I‖c) for some constant c and (ii) for every instance I ∈ Σ∗ decision
problem W(I) is in C.

Answer Set Programming (ASP). We follow standard definitions of propo-
sitional disjunctive ASP. For comprehensive foundations, we refer to introduc-
tory literature [6]. Let �, m, n be non-negative integers such that � ≤ m ≤ n,
a1, . . ., an be distinct atoms. We refer by literal to an atom or the nega-
tion thereof. A program Π is a finite set of rules of the form a1 ∨ · · · ∨
a� ← a�+1, . . . , am,¬am+1, . . . ,¬an. For a rule r, we let Hr := {a1, . . . , a�},
B+

r := {a�+1, . . . , am}, and B−
r := {am+1, . . . , an}. We denote the sets of

atoms occurring in a rule r or in a program Π by at(r) := Hr ∪ B+
r ∪ B−

r

and at(Π) := ∪r∈Πat(r). Let Π be a program. A program Π ′ is a sub-program
of Π if Π ′ ⊆ Π. Π is normal if |Hr| ≤ 1 for every r ∈ Π. The positive
dependency digraph DΠ of Π is the directed graph defined on the set of atoms
from

⋃

r∈Π Hr ∪ B+
r , where for every rule r ∈ Π two atoms a ∈ B+

r and b ∈ Hr

are joined by an edge (a, b). A head-cycle of DΠ is an {a, b}-cycle1 for two distinct
atoms a, b ∈ Hr for some rule r ∈ Π. Program Π is tight (head-cycle-free [2])
if DΠ contains no cycle (head-cycle).

An interpretation I is a set of atoms. I satisfies a rule r if (Hr ∪ B−
r) ∩ I �= ∅

or B+
r \ I �= ∅. I is a model of Π if it satisfies all rules of Π, in symbols I |= Π.

The Gelfond-Lifschitz (GL) reduct of Π under I is the program ΠI obtained
from Π by first removing all rules r with B−

r ∩ I �= ∅ and then removing all ¬z
where z ∈ B−

r from the remaining rules r [15]. I is an answer set of a program Π
if I is a minimal model of ΠI . Deciding whether a disjunctive program has an
answer set is ΣP

2 -complete [9]. The problem is called consistency (As) of an ASP
program. If the input is restricted to normal programs, the complexity drops to
NP-complete [3]. A head-cycle-free program Π can be translated into a normal
program in polynomial time [2]. The following well-known characterization of
answer sets is often invoked when considering normal programs [19]. Given a
model I of a normal program Π and an ordering σ of atoms over I. An atom a ∈ I
is proven if there is a rule r ∈ Π with a ∈ Hr where (i) B+

r ⊆ I, (ii) b <σ a
for every b ∈ B+

r , and (iii) I ∩ B−
r = ∅ and I ∩ (Hr \ {a}) = ∅. Then, I is an

1 Let G = (V, E) be a digraph and W ⊆ V . Then, a cycle in G is a W -cycle if it
contains all vertices from W .

108 J. K. Fichte and M. Hecher

answer set of Π if (i) I is a model of Π, and (ii) every atom a ∈ I is proven. This
characterization vacuously extends to head-cycle-free programs by applying the
results of Ben-Eliyahu and Dechter [2]. Given a program Π, we assume in the
following that every atom a ∈ at(Π) occurs in some head of a rule of Π.

Example 1. Consider Π := {
r1

︷ ︸︸ ︷

a ∨ b ← ;

r2
︷ ︸︸ ︷

c ∨ e ← ;

r3
︷ ︸︸ ︷

d ∨ e ← b;

r4
︷ ︸︸ ︷

b ← e, ¬d;

r5
︷ ︸︸ ︷

d ← ¬b}.

It is easy to see that Π is a head-cycle-free program. The set A = {b, c, d} is an
answer set of Π. Consider the ordering σ = 〈b, c, d〉, from which we can prove
atom b by rule r1, atom c by rule r2, and atom d by rule r3. Further answer sets
are B = {a, c, d}, C = {b, e}, and D = {a, d, e}. �

Counting Projected Answer Sets. An instance is a pair (Π,P), where Π is
a program and P ⊆ at(Π) is a set of projection atoms. The projected answer sets
count of Π with respect to P is the number of subsets I ⊆ P such that I ∪ J is
an answer set of Π for some set J ⊆ at(Π) \ P . The counting projected answer
sets problem (#PAs) asks to output the projected answer sets count of Π, i.e.,
|{I ∩ P | I ∈ S}| where S is the set of all answer sets of Π. Note that #As
is #PAs, where P = at(Π), and that deciding As equals #PAs, where P = ∅.

Example 2. Consider program Π from Example 1 and its four answer sets
{a, c, d}, {b, c, d}, {b, e}, and {a, d, e}, as well as the set P := {d, e} of pro-
jection atoms. When we project the answer sets to P , we only have the three
answer sets {d}, {e}, and {d, e}, i.e., the projected answer sets count of (Π,P)
is 3. �

Theorem 1 (�2). The problem #PAs is #·Σ2P -complete for disjunctive pro-
grams and #·NP-complete for head-cycle-free, normal or tight programs.

Tree Decompositions (TDs). We follow standard terminology on graphs and
digraphs. For a tree T = (N,A, n) with root n and a node t ∈ N , we let
children(t, T) be the sequence of all nodes t′ in arbitrarily but fixed order, which
have an edge (t, t′) ∈ A. Let G = (V,E) be a graph. A tree decomposition (TD)
of graph G is a pair T = (T, χ), where T = (N,A, n) is a rooted tree, n ∈ N
the root, and χ a mapping that assigns to each node t ∈ N a set χ(t) ⊆ V ,
called a bag, such that the following conditions hold: (i) V =

⋃

t∈N χ(t) and E ⊆
⋃

t∈N{{u, v} | u, v ∈ χ(t)}; and (ii) for each r, s, t, such that s lies on the path
from r to t, we have χ(r)∩χ(t) ⊆ χ(s). Then, width(T) := maxt∈N |χ(t)|−1. The
treewidth tw(G) of G is the minimum width(T) over all TDs T of G. For arbitrary
but fixed w ≥ 1, it is feasible in linear time to decide if a graph has treewidth
at most w and, if so, to compute a TD of width w [4]. For simplifications we
always use so-called nice TDs, which can be computed in linear time without
increasing the width [5] and are defined as follows. For a node t ∈ N , we say
that type(t) is leaf if children(t, T) = 〈〉; join if children(t, T) = 〈t′, t′′〉 where
χ(t) = χ(t′) = χ(t′′) �= ∅; int (“introduce”) if children(t, T) = 〈t′〉, χ(t′) ⊆ χ(t)

2 Proofs marked with “�” are in extended version at: https://tinyurl.com/y6gkrblc.

https://tinyurl.com/y6gkrblc

Treewidth and Counting Projected Answer Sets 109

and |χ(t)| = |χ(t′)| + 1; rem (“removal”) if children(t, T) = 〈t′〉, χ(t′) ⊇ χ(t)
and |χ(t′)| = |χ(t)| + 1. If for every node t ∈ N , type(t) ∈ {leaf, join, int, rem},
and χ(t′) = ∅ for root and leaf t′, the TD is nice.

Example 3. Figure 1 illustrates a graph G1 and a tree decomposition of G1 of
width 2. By a property of tree decompositions [5], the treewidth of G1 is 2. �

3 Dynamic Programming on TDs

In order to use TDs for ASP solving, we need a dedicated graph representation
of ASP programs [12]. The primal graph GΠ of program Π has the atoms of Π
as vertices and an edge {a, b} if there exists a rule r ∈ Π and a, b ∈ at(r).

e

b
a

c

d {c, e}t1 {b, d, e}
t2

{a, b, e}t3

Fig. 1. Graph G1 and a tree decomposition of G1.

Example 4. Recall program Π from Example 1 and observe that graph G1 in
Fig. 1 is the primal graph GΠ of Π. �

Let T = (T, χ) be a TD of primal graph GΠ of a program Π. Further, let
T = (N, ·, n) and t ∈ N . The bag-program is defined as Πt := {r | r ∈ Π, at(r) ⊆
χ(t)}, the program below t as Π≤t := {r | r ∈ Πt′ , t′ ∈ post-order(T, t)}, and the
program strictly below t as Π<t := Π≤t \Πt. It holds that Π≤n = Π<n = Π [12].
Analogously, we define the atoms below t by at≤t := ∪t′∈post-order(T,t)χ(t′), and
the atoms strictly below t by at<t := at≤t \ χ(t).

Algorithms that decide consistency or solve #As [12] proceed by dynamic
programming (DP) along the TD (in post-order) where at each node of the
tree information is gathered [5] in a table by a (local) table algorithm A. More
generally, a table is a set of rows, where a row u is a sequence of fixed length.
Similar as for sequences when addressing the i-th element, for a set U of rows
(table) we let U(i) := {u(i) | u ∈ U}. The actual length, content, and meaning of
the rows depend on the algorithm A. Since we later traverse the TD repeatedly
running different algorithms, we explicitly state A-row if rows of this type are
syntactically used for algorithm A and similar A-table for tables. In order to
access tables computed at certain nodes after a traversal as well as to provide
better readability, we attribute TDs with an additional mapping to store tables.
Formally, a tabled tree decomposition (TTD) of graph G is a triple T = (T, χ, τ),
where (T, χ) is a TD of G and τ maps nodes t of T to tables. If not specified
otherwise, we assume that τ(t) = {} for every node t of T . When a TTD has been
computed using algorithm A after traversing the TD, we call the decomposition
the A-TTD of the given instance. DP for ASP performs the following steps:

110 J. K. Fichte and M. Hecher

Listing 1. Algorithm DPA((Π, P), T): Dynamic programming on TTD T , c.f., [12].

In: Problem instance (Π, P), TTD T = (T, χ, ι) of GΠ such that n is the root
of T , children(t, T) = 〈t1, . . . , t�〉. Out: A-TTD (T, χ, o), A-table mapping o.

1 o ← empty mapping
2 for iterate t in post-order(T,n) do
3 o(t) ← A(t, χ(t), ι(t), (Πt, P), 〈o(t1), . . . , o(t�)〉)
4 return (T, χ, o)

1. Given program Π, compute a tree decomposition of the primal graph PΠ .
2. Run algorithm DPA (see Listing 1). It takes a TTD T = (T, χ, ι) with T =

(N, ·, n) and traverses T in post-order3. At each node t ∈ N it computes a new
A-table o(t) by executing the algorithm A. Algorithm A has a “local view”
on the computation and can access only t, the atoms in the bag χ(t), the
bag-program Πt, and A-table o(t′) for any child t′ of t.4 Finally, DPA returns
an A-TTD (T, χ, o).

3. Print the result by interpreting table o(n) for root n of T .

Then, the actual computation of algorithm A is a somewhat technical case
distinction of the types type(t) we see when considering node t. Algorithms
for counting answer sets of disjunctive programs and its extensions [12] have
already been established. Implementations of these algorithms can be useful also
for solving [12], but the running time is clearly double exponential time in the
treewidth in the worst case. We, however, establish an algorithm (PHC) that is
restricted to head-cycle-free programs. The runtime of our algorithm is factorial
in the treewidth and therefore faster than previous algorithms. Our constructions
are inspired by ideas used in previous DP algorithms. In the following, we first
present the table algorithm for deciding whether a head-cycle-free program has
an answer set (As). In the end, this algorithm outputs a new TTD, which we
later reuse to solve the actual counting problem. Note that the TD itself remains
the same, but for readability, we keep computed tables and nodes aligned.

Consistency of Head-Cycle-Free Programs. We can use algorithm DPPHC

to decide the consistency problem As for head-cycle-free programs and simply
specify our new table algorithm (PHC) that “transforms” tables from one node
to another. As graph representation we use the primal graph. The idea is to
implicitly apply along the TD the characterization of answer sets by Lin and
Zhao [19] extended to head-cycle-free programs [2]. To this end, we store in
table o(t) at each node t rows of the form 〈I,P, σ〉. The first position consists of
an interpretation I restricted to the bag χ(t). For a sequence u, we write I(u) :=
u(1) to address the interpretation part. The second position consists of a set P ⊆
I that represents atoms in I for which we know that they have already been
proven. The third position σ is a sequence of the atoms in I such that there is a

3 Post-order(T, n) provides the sequence of nodes for tree T rooted at n.
4 Note that in Listing 1, A takes in addition as input set P and table ιt, used later.

Later, P represents the projection atoms and ιt is a table at t from an earlier
traversal.

Treewidth and Counting Projected Answer Sets 111

Listing 2. Table algorithm PHC(t, χt, ·, (Πt, ·), 〈τ1, . . .〉).
In: Node t, bag χt, bag-program Πt, 〈τ1, . . .〉 is the sequence of PHC-tables

of children of t. Out: PHC-table τt.
1 if type(t) = leaf then τt := {〈∅, ∅, 〈〉〉}
2 else if type(t) = int and a ∈ χt is the introduced atom then
3 τt := {〈J, P ∪ proven(J, σ′, Πt), σ

′〉
| 〈I, P, σ〉 ∈ τ1, J ∈ {I, I+

a }, J |= Πt, σ′ ∈ ords(σ, {a} ∩ J)}
4 else if type(t) = rem and a �∈ χt is the removed atom then
5 τt := {〈I−

a , P−
a , σ∼

a 〉 | 〈I, P, σ〉 ∈ τ1, a ∈ P ∪ ({a} \ I)}
6 else if type(t) = join then
7 τt := {〈I, P1 ∪ P2, σ〉 | 〈I, P1, σ〉 ∈ τ1, 〈I, P2, σ〉 ∈ τ2}
8 return τt

σ∼
σi

:=〈σ1, . . . , σi−1, σi+1, . . . , σk〉 where σ = 〈σ1, . . . , σk〉, S+
e :=S ∪ {e}, S−

e :=S \ {e}.

super-sequence σ′ of σ, which induces an ordering <σ′ . Our table algorithm PHC

stores interpretation parts always restricted to bag χ(t) and ensures that an
interpretation can be extended to a model of sub-program Π≤t. More precisely,
it guarantees that interpretation I can be extended to a model I ′ ⊇ I of Π≤t

and that the atoms in I ′ \ I (and the atoms in P ⊆ I) have already been proven,
using some induced ordering <σ′ where σ is a sub-sequence of σ′. In the end, an
interpretation I(u) of a row u of the table o(n) at the root n proves that there
is a superset I ′ ⊇ I(u) that is an answer set of Π = Π≤n.

Listing 2 presents the algorithm PHC. Intuitively, whenever an atom a is
introduced (int), we decide whether we include a in the interpretation, determine
bag atoms that can be proven in consequence of this decision, and update the
sequence σ accordingly. To this end, we define for a given interpretation I and
a sequence σ the set proven(I, σ,Πt) := ∪r∈Πt,a∈Hr

{a | B+
r ⊆ I, I ∩ B−

r =
∅, I ∩ (Hr \ {a}) = ∅, B+

r <σ a} where B+
r <σ a holds if b <σ a is true for every

b ∈ B+
r . Moreover, given a sequence σ = 〈σ1, . . . , σk〉 and a set A of atoms, we

compute the potential sequences involving A. Therefore, we let ords(σ,A) :=
{σ | A = ∅} ∪

⋃

a∈A{〈a, σ1, . . . , σk〉, . . . , 〈σ1, . . . , σk, a〉}. When removing (rem)
an atom a, we only keep those rows where a has been proven (contained in P)
and then restrict remaining rows to the bag (not containing a). In case the node
is of type join, we combine two rows in two different child tables, intuitively, we
are enforced to agree on interpretations I and sequences σ. However, concerning
individual proofs P, it suffices that an atom is proven in one of the rows.

Example 5. Recall program Π from Example 1. Figure 2 depicts a TD T =
(T, χ) of the primal graph G1 of Π. Further, the figure illustrates a snippet
of tables of the TTD (T, χ, τ), which we obtain when running DPPHC on pro-
gram Π and TD T according to Listing 2. In the following, we briefly discuss
some selected rows of those tables. Note that for simplicity and space reasons,
we write τj instead of τ(tj) and identify rows by their node and identifier i in
the figure. For example, the row u13.3 = 〈I13.3,P13.3, σ13.3〉 ∈ τ13 refers to the
third row of table τ13 for node t13. Node t1 is of type leaf. Table τ1 has only
one row, which consists of the empty interpretation, empty set of proven atoms,

112 J. K. Fichte and M. Hecher

and the empty sequence (Line 1). Node t2 is of type int and introduces atom a.
Executing Line 3 results in τ2 = {〈∅, ∅, 〈〉〉, 〈{a}, ∅, 〈a〉〉}. Node t3 is of type int
and introduces b. Then, bag-program at node t3 is Πt3 = {a ∨ b ←}. By con-
struction (Line 3) we ensure that interpretation I3.i is a model of Πt3 for every
row 〈I3.i,P3.i, σ3.i〉 in τ3. Node t4 is of type rem. Here, we restrict the rows such
that they contain only atoms occurring in bag χ(t4) = {b}. To this end, Line 5
takes only rows u3.i of table τ3 where atoms in I3.i are also proven, i.e., contained
in P3.i. In particular, every row in table τ4 originates from at least one row in τ3
that either proves a ∈ P3.i or where a �∈ I3.i. Basic conditions of a TD ensure
that once an atom is removed, it will not occur in any bag at an ancestor node.
Hence, we also encountered all rules where atom a occurs. Nodes t5, t6, t7, and t8
are symmetric to nodes t1, t2, t3, and t4. Nodes t9 and t10 again introduce atoms.
Observe that P10.4 = {e} since σ10.4 does not allow to prove b using atom e.
However, P10.5 = {b, e} as the sequence σ10.5 allows to prove b. In particular,
in row u10.5 atom e is used to derive b. As a result, atom b can be proven,
whereas ordering σ10.4 = 〈b, e〉 does not serve in proving b. We proceed similar
for nodes t11 and t12. At node t13 we join tables τ4 and τ12 according to Line 7.
Finally, τ14 �= ∅, i.e., Π has an answer set; joining interpretations I of yellow
marked rows of Fig. 2 leads to {b, e}. �

∅ t1

{a}t2

{a, b} t3

{b} t4

∅t5

{c}t6

{c, e}t7

{e}t8

{d, e}t9

{b, d, e}t10

{b, d}t11

{b}t12

{b}t13

∅
t14

T :

〈I3.i, P3.i, σ3.i〉
〈{a}, {a}, 〈a〉〉
〈{b}, {b}, 〈b〉〉
〈{a, b},∅, 〈a, b〉〉
〈{a, b},∅, 〈b, a〉〉

τ3
i

1
2
3
4

〈I4.i,P4.i,σ4.i〉
〈∅, ∅, 〈〉〉
〈{b},{b}, 〈b〉〉

τ4

i

1
2

i

1
2
3
4
5

〈I9.i, P9.i, σ9.i〉
〈∅, ∅, 〈〉〉
〈{d}, ∅, 〈d〉〉
〈{e}, {e}, 〈e〉〉
〈{d, e},{e}, 〈d, e〉〉
〈{d, e},{e}, 〈e, d〉〉

τ9

〈I13.i,P13.i,σ13.i〉
〈∅, ∅, 〈〉〉
〈{b}, {b}, 〈b〉〉

τ13

i

1
2

〈I1.i,P1.i,σ1.i〉
〈∅, ∅, 〈〉〉

τ1
i

1

〈I12.i,P12.i,σ12.i〉
〈∅, ∅, 〈〉〉
〈{b}, ∅, 〈b〉〉
〈{b}, {b}, 〈b〉〉

τ12

〈I11.i, P11.i, σ11.i〉
〈{d}, {d}, 〈d〉〉
〈{b}, ∅, 〈b〉〉
〈{b}, {b}, 〈b〉〉
〈{b, d},∅, 〈d, b〉〉
〈{b, d},∅, 〈b, d〉〉
〈{b, d},{d}, 〈b, d〉〉

τ11

i

1
2
3
4
5
6

i

1
2
3

〈I10.i, P10.i, σ10.i〉
〈{d}, {d}, 〈d〉〉
〈{b, d}, ∅, 〈d, b〉〉
〈{b, d}, {d}, 〈b, d〉〉
〈{b, e}, {e}, 〈b, e〉〉
〈{b, e}, {b, e}, 〈e, b〉〉
〈{d, e}, {d, e}, 〈d, e〉〉
〈{d, e}, {d, e}, 〈e, d〉〉
〈{b, d, e},{e}, 〈b, d, e〉〉
〈{b, d, e},{e}, 〈b, e, d〉〉
〈{b, d, e},{e}, 〈d, b, e〉〉
〈{b, d, e},{e}, 〈e, b, d〉〉
〈{b, d, e},{e}, 〈d, e, b〉〉
〈{b, d, e},{e}, 〈e, d, b〉〉

τ10
i

1
2
3
4
5
6
7
8
9
10
11
12
13

Fig. 2. Selected tables of τ obtained by DPPHC on TD T .

Next, we provide a notion to reconstruct answer sets from a computed TTD,
which allows for computing for a given row its predecessor rows in the corre-
sponding child tables, c.f., [13]. Let Π be a program, T = (T, χ, τ) be an A-
TTD of GΠ , and t be a node of T where children(t, T) = 〈t1, . . . , t�〉. Given a
sequence s = 〈s1, . . . , s�〉, we let 〈{s}〉 :=〈{s1}, . . . , {s�}〉. For a given A-row u,
we define the originating A-rows of u in node t by A-origins(t,u) :={s | s ∈
τ(t1) × · · · × τ(t�),u ∈ A(t, χ(t), ·, (Πt, ·), 〈{s}〉)}. We extend this to an A-table ρ
by A-origins(t, ρ) :=

⋃

u∈ρ A-origins(t,u).

Treewidth and Counting Projected Answer Sets 113

Example 6. Consider program Π and PHC-TTD (T, χ, τ) from Example 5. We
focus on u1.1 = 〈∅, ∅, 〈〉〉 of table τ1 of leaf t1. The row u1.1 has no preceding row,
since type(t1) = leaf. Hence, we have PHC-origins(t1,u1.1) = {〈〉}. The origins
of row u11.1 of table τ11 are given by PHC-origins(t11,u11.1), which correspond
to the preceding rows in table τ10 that lead to row u11.1 of table τ11 when run-
ning algorithm PHC, i.e., PHC-origins(t11,u11.1) = {〈u10.1〉, 〈u10.6〉, 〈u10.7〉}.
Origins of row u12.2 are given by PHC-origins(t12,u12.2) = {〈u11.2〉, 〈u11.6〉}.
Note that u11.4 and u11.5 are not among those origins, since d is not proven.
Observe that PHC-origins(tj ,u) = ∅ for any row u �∈ τj . For node t13 of type join
and row u13.2, PHC-origins(t13,u13.2) = {〈u4.2, u12.2〉, 〈u4.2, u12.3〉}. �

Next, we provide statements on correctness and a runtime analysis.

Theorem 2 (�). Given a head-cycle-free program Π and a TTD T = (T, χ, ·)
of GΠ where T = (N, ·, n) with root n. Then, DPPHC((Π, ·), T) returns the PHC-
TTD (T, χ, τ) such that Π has an answer set if and only if 〈∅, ∅, 〈〉〉 ∈ τ(n).

Theorem 3 (�). Given a head-cycle-free program Π and a TD T = (T, χ)
of GΠ of width k with g nodes. Algorithm DPPHC runs in time O(3k · k! · g) =
O(2k·log(k) · g).

A natural question is whether we can significantly improve this algorithm
for fixed k. To this end, we take the exponential time hypothesis (ETH) into
account [17], which states that there is some real s > 0 such that we cannot
decide satisfiability of a given 3-CNF formula F in time 2s·|F | · ‖F‖O(1).

Proposition 1 (�). Unless ETH fails, consistency of head-cycle-free, normal
or tight program Π cannot be decided in time 2o(k) · ‖Π‖o(k) where k = tw(GΠ).

In the construction above, we store an arbitrary but fixed ordering σ on the
involved atoms. We believe that we cannot avoid these orderings in general,
since we have to compensate arbitrarily “bad” orderings induced by the decom-
position. Hence, we claim that As for head-cycle-free programs is slightly super-
exponential, rendering our algorithm asymptotically worst-case optimal. Loksh-
tanov, Marx and Saurabh confirm such an expectation [20] whenever orderings
are required.

Conjecture 1. Unless ETH fails, consistency of a head-cycle-free program Π can-
not be decided in time 2o(k·log(k)) · ‖Π‖o(k) where k = tw(GΠ).

4 Dynamic Programming for #PAs

In this section, we present our DP algorithm5 PCNTA, which allows for solving the
projected answer set counting problem (#PAs). PCNTA is based on an approach
of projected counting for Boolean formulas [13] where TDs are traversed multiple
times. We show that ideas from that approach can be fruitfully extended to
5 Later we use (among others) PCNTPHC where A = PHC.

114 J. K. Fichte and M. Hecher

Listing 3. Table algorithm PROJ(t, ·, νt, (·, P), 〈π1, . . .〉) for projected counting.

In: Node t, purged table mapping νt, projection atoms P , sequence 〈π1, . . .〉 of

PROJ-tables of children of t. Out: PROJ-table πt of pairs 〈ρ, c〉, ρ ⊆ νt, c ∈ N.

1 πt ←
{
〈ρ, ipasc(t, ρ, 〈π1, . . .〉)〉

∣
∣ ρ ∈ sub-bucketsP (νt)

}
return πt

answer set programming. First, we construct the primal graph GΠ of the input
program Π and compute a TD of Π. Then, we traverse the TD a first time
by running DPA (Step 2a), which outputs a TTD Tcons = (T, χ, τ), where T =
(N, ·, n). Afterwards, we traverse Tcons in pre-order and remove all rows from
the tables that cannot be extended to an answer set (“Purge non-solutions”). In
other words, we keep only rows u of table τ(t) at node t, if u is involved in those
rows that are used to construct an answer set of Π, and let the resulting TTD6

be Tpurged = (T, χ, ν). We refer to ν as purged table mapping. In Step 2b (DPPROJ),
we traverse Tpurged to count interpretations with respect to the projection atoms
and obtain Tproj = (T, χ, π). From the table π(n) at the root n of T , we can then
read the projected answer sets count of the input instance. In the following, we
only describe the table algorithm PROJ, since the traversal in DPPROJ is the same
as before. For PROJ, a row at a node t is a pair 〈ρ, c〉 ∈ π(t), where ρ ⊆ ν(t) is
an A-table and c is a non-negative integer. In fact, integer c stores the number
of intersecting solutions (ipasc). However, we aim for the projected answer sets
count (pasc), whose computation requires to extend previous definitions [13].
In the remainder, we assume (Π,P) to be an instance of #PAs, (T, χ, τ) to be
an A-TTD of GΠ and the mappings τ , ν, and π as used above. Further, let t be
a node of T with children(t, T) = 〈t1, . . . , t�〉 and let ρ ⊆ ν(t). The relation =P ⊆
ρ×ρ considers equivalent rows with respect to the projection of its interpretations
by =P :={(u,v) | u,v ∈ ρ, I(u)∩P = I(v)∩P}. Let bucketsP (ρ) be equivalence
classes induced by =P on ρ, i.e., bucketsP (ρ) := (ρ/=P) = {[u]P | u ∈ ρ}, where
[u]P = {v | v=P u,v ∈ ρ}. Further, sub-bucketsP (ρ) := ∪S|∅�=S⊆bucketsP (ρ) {S}.

Example 7. Consider program Π, set P , TTD (T, χ, τ), and table τ10 from
Example 2 and Fig. 2. Rows u10.2 and u10.8, . . . ,u10.13 are removed (high-
lighted gray) during purging, since they are not involved in any answer set,
resulting in ν10.Then, u10.4 =P u10.5 and u10.6 =P u10.7. The set ν10/=P of
equivalence classes of ν10 is bucketsP (ν10) = {{u10.1}, {u10.3}, {u10.4,u10.5},
{u10.6,u10.7}}.

Later, we require to construct already computed projected counts for tables of
children of a given node t. Therefore, we define the stored ipasc of a table ρ ⊆ ν(t)
in table π(t) by s-ipasc(π(t), ρ) :=Σ〈ρ,c〉∈π(t)c. We extend this to a sequence s =
〈π(t1), . . . , π(t�)〉 of tables of length � and a set O = {〈ρ1, . . . , ρ�〉, 〈ρ′

1, . . . , ρ
′
�〉, . . .}

of sequences of � tables by s-ipasc(s,O) = Πi∈{1,...,�} s-ipasc(s(i), O(i)).Sowe select
the i-th position of the sequence together with sets of the i-th positions.

Intuitively, when we are at a node t in algorithm DPPROJ we have already
computed π(t′) of Tproj for every node t′ below t. Then, we compute the

6 Table ν(t) contains rows obtained by recursively following origins of τ(n) for root n.

Treewidth and Counting Projected Answer Sets 115

projected answer sets count of ρ ⊆ ν(t). Therefore, we apply the inclusion-
exclusion principle to the stored projected answer sets count of origins. We define
pasc(t, ρ, 〈π(t1), . . .〉) :=Σ∅�O⊆A-origins(t,ρ) (−1)(|O|−1) · s-ipasc(〈π(t1), . . .〉, O).
Intuitively, pasc determines the A-origins of table ρ, goes over all subsets of
these origins and looks up stored counts (s-ipasc) in PROJ-tables of children ti
of t.

Example 8. Consider again program Π and TD T from Example 1 and Fig. 2.
First, we compute the projected count pasc(t4, {u4.1}, 〈π(t3)〉) for row u4.1 of
table ν(t4), where π(t3) :=

{

〈{u3.1}, 1〉, 〈{u3.2}, 1〉, 〈{u3.1,u3.2}, 1〉
}

with u3.1 =
〈∅, ∅, 〈〉〉 and u3.2 = 〈{a}, ∅, 〈a〉〉. Note that t5 has only the child t4 and therefore
the product in s-ipasc consists of only one factor. Since PHC-origins(t4,u4.1) =
{〈u3.1〉}, only the value of s-ipasc for set {〈u3.1〉} is non-zero. Hence, we obtain
pasc(t4, {u4.1}, 〈π(t3)〉) = 1. Next, we compute pasc(t4, {u4.1,u4.2}, 〈π(t3)〉).
Observe that PHC-origins(t4, {u4.1,u4.2}) = {〈u3.1〉, 〈u3.2〉}. We sum up
the values of s-ipasc for sets {u4.1} and {u4.2} and subtract the one for
set {u4.1,u4.2}. Hence, we obtain pasc(t4, {u4.1,u4.2}, 〈π(t3)〉) = 1+1−1 = 1.�

Next, we provide a definition to compute ipasc at a node t for given
table ρ ⊆ ν(t) by computing pasc for children ti of t using stored ipasc
values from tables π(ti), and subtracting and adding ipasc values for sub-
sets ∅ � ϕ � ρ accordingly. Formally, ipasc(t, ρ, s) :=1 if type(t) = leaf
and otherwise ipasc(t, ρ, s) :=

∣
∣ pasc(t, ρ, s) +Σ∅�ϕ�ρ(−1)|ϕ| · ipasc(t, ϕ, s)

∣
∣ where

s = 〈π(t1), . . .〉. In other words, if a node is of type leaf the ipasc is one, since bags
of leaf nodes are empty. Otherwise, we compute the “non-overlapping” count of
given table ρ ⊆ ν(t) with respect to P , by exploiting inclusion-exclusion principle
on A-origins of ρ such that we count every projected answer set only once. Then
we have to subtract and add ipasc values (“all-overlapping” counts) for strict
subsets ϕ of ρ, accordingly. Finally, Listing 3 presents table algorithm PROJ,
which stores π(t) consisting of every sub-bucket of given table ν(t) together
with its ipasc.

Example 9. Recall instance (Π,P), TD T , and tables τ1, . . ., τ14 from Exam-
ples 2, 5, and Fig. 2. Figure 3 depicts selected tables of π1, . . . , π14 obtained after
running DPPROJ for counting projected answer sets. We assume that row i in
table πt corresponds to vt.i = 〈ρt.i, ct.i〉 where ρt.i ⊆ ν(t). Recall that there are
rows among different PHC-tables that are removed (highlighted gray in Fig. 2)
during purging. By purging we avoid to correct stored counters (backtracking)
whenever a row has no “succeeding” row in the parent table. Next, we discuss
selected rows obtained by DPPROJ((Π,P), (T, χ, ν)). Tables π1, . . ., π14 are shown
in Fig. 3. Since type(t1) = leaf, we have π1 = 〈{〈∅, ∅, 〈〉〉}, 1〉. Intuitively, at t1
the row 〈∅, ∅, 〈〉〉 belongs to 1 bucket. Node t2 introduces atom a, which results
in table π2 :=

{

〈{u2.1}, 1〉, 〈{u2.2}, 1〉, 〈{u2.1,u2.2}, 1〉
}

, where u2.1 = 〈∅, ∅, 〈〉〉
and u2.2 = 〈{a}, ∅, 〈a〉〉 (derived similarly to table π4 as in Example 8). Node t10
introduces projection atom e, and node t11 removes e. For row v11.1 we com-
pute the count ipasc(t11, {u11.1}, 〈π10〉) by means of pasc. Therefore, take
for ϕ the singleton set {u11.1}. We simply have ipasc(t11, {u11.1}, 〈π10〉) =

116 J. K. Fichte and M. Hecher

∅ t1

{a}t2

{a, b}t3

{b} t4

∅t5

{c}t6

{c, e}t7

{e}t8

{d, e} t9

{b, d, e}t10

{b, d}t11

{b}t12

{b} t13

∅ t14T :

〈ν3.i, c3.i〉
〈{〈{a}, {a}, 〈a〉〉},1〉
〈{〈{b}, {b}, 〈b〉〉}, 1〉
〈{〈{a}, {a}, 〈a〉〉, 1〉〈{b}, {b}, 〈b〉〉},

π3

i

1
2

3

〈ν4.i, c4.i〉
〈{〈∅, ∅, 〈〉〉}, 1〉
〈{〈{b}, {b}, 〈b〉〉},1〉
〈{〈∅, ∅, 〈〉〉, 1〉〈{b}, {b}, 〈b〉〉},

π4

i

1
2

3

〈ν9.i, c9.i〉
〈{〈{d}, ∅, 〈〉〉}, 1〉
〈{〈{e}, {e}, 〈e〉〉}, 1〉
〈{〈{d, e}, {e}, 〈d, e〉〉},1〉
〈{〈{d, e}, {e}, 〈e, d〉〉},1〉
〈{〈{d, e}, {e}, 〈d, e〉〉, 1〉〈{d, e}, {e}, 〈e, d〉〉},

π9

i

1
2
3
4

5

〈ν13.i, c13.i〉
〈{〈∅, ∅, 〈〉〉}, 2〉
〈{〈{b}, {b}, 〈b〉〉},2〉
〈{〈∅, ∅, 〈〉〉, 1〉〈{b}, {b}, 〈b〉〉},

π13

i

1
2

3

〈ν1.i, c1.i〉
〈{〈∅, ∅, 〈〉〉},1〉

π1

〈ν14.i, c14.i〉
〈{〈∅, ∅, 〈〉〉},3〉

π14

i

1

i

1

〈ν12.i, π12 c12.i〉
〈{〈∅, ∅, 〈〉〉}, 2〉
〈{〈{b}, ∅, 〈b〉〉}, 2〉
〈{〈{b}, {b}, 〈b〉〉}, 1〉
〈{〈∅, ∅, 〈〉〉, 〈{b}, ∅, 〈b〉〉}, 1〉
〈{〈∅, ∅, 〈〉〉, 〈{b}, {b}, 〈b〉〉}, 0〉
〈{〈{b}, ∅, 〈b〉〉, 〈{b}, {b}, 〈b〉〉},1〉
〈{〈∅, ∅, 〈〉〉, 〈{b}, ∅, 〈b〉〉, 0〉〈{b}, {b}, 〈b〉〉},

i

1
2
3
4
5
6

7

〈ν10.i, c10.i〉
〈{〈{d}, {d}, 〈d〉〉}, 1〉
〈{〈{b, d}, {d}, 〈b, d〉〉}, 1〉
〈{〈{d}, {d}, 〈d〉〉, 1〉〈{b, d}, {d}, 〈b, d〉〉},

〈{〈{b, e}, {e}, 〈b, e〉〉}, 1〉
〈{〈{b, e}, {b, e}, 〈e, b〉〉}, 1〉
〈{〈{b, e}, {e}, 〈b, e〉〉, 1〉〈{b, e}, {b, e}, 〈e, b〉〉},

〈{〈{d, e}, {d, e}, 〈d, e〉〉},1〉
〈{〈{d, e}, {d, e}, 〈e, d〉〉},1〉
〈{〈{d, e}, {d, e}, 〈d, e〉〉, 1〉〈{d, e}, {d, e}, 〈e, d〉〉},

π10

〈ν11.i, c11.i〉
〈{〈{d}, {d}, 〈d〉〉}, 2〉
〈{〈{b, d}, {d}, 〈b, d〉〉}, 1〉
〈{〈{d}, {d}, 〈d〉〉, 1〉〈{b, d}, {d}, 〈b, d〉〉},

〈{〈{b}, ∅, 〈b〉〉}, 1〉
〈{〈{b}, {b}, 〈b〉〉}, 1〉
〈{〈{b}, ∅, 〈b〉〉, 1〉〈{b}, {b}, 〈b〉〉},

〈{〈{d, e}, {d, e}, 〈d, e〉〉},1〉

π11

i

1
2

3

4
5

6

7

i

1
2

3

4
5

6

7
8

9

Fig. 3. Selected tables of π obtained by DPPROJ on TD T and purged table mapping ν
(obtained by purging on τ , c.f, Fig. 2).

pasc(t11, {u11.1}, 〈π10〉). To compute pasc(t11, {u11.1}, 〈π10〉), we take for O the
sets {u10.1}, {u10.6}, {u10.7}, and {u10.6,u10.7} into account, since all other
non-empty subsets of origins of u11.1 in ν10 do not occur in π10. Then, we take
the sum over the values s-ipasc(〈π10〉, {u10.1}) = 1, s-ipasc(〈π10〉, {u10.6}) = 1,
s-ipasc(〈π10〉, {u10.7}) = 1 and subtract s-ipasc(〈π10〉, {u10.6,u10.7}) = 1.
This results in pasc(t11, {u11.1}, 〈π10〉) = c10.1 + c10.7 + c10.8 − c10.9 = 2.
We proceed similarly for row v11.2, resulting in c11.2 = 1. Then for row v11.3,
ipasc(t11, {u11.1,u11.6}, 〈π10〉) = |pasc(t11, {u11.1,u11.6}, 〈π10〉) − ipasc(t11, {
u11.1}, 〈π10〉) − ipasc(t11, {u11.6}, 〈π10〉)| = |2 − c11.1− c11.2| = |2− 2 − 1| =
|−1| = 1 = c11.3. Hence, c11.3 = 1 represents the number of projected answer
sets, both rows u11.1 and u11.6 have in common. We then use it for table t12.
Node t12 removes projection atom d. For node t13 where type(t13) = join one
multiplies stored s-ipasc values for A-rows in the two children of t13 accordingly.
In the end, the projected answer sets count of Π is s-ipasc(〈π14〉,u14.1) = 3.�
Next, we present upper bounds on the runtime of DPPROJ. Therefore, let γ(n) ∈
O(n · log n · log log n) [16] be the runtime for multiplying two n-bit integers.

Theorem 4 (�). DPPROJ runs in time O(24m · g · γ(‖Π‖)) for instance (Π,P)
and TTD Tpurged = (T, χ, ν) of GΠ of width k with g nodes, where m :=
maxt inT (|ν(t)|).
Corollary 1 (�). Given an instance (Π,P) of #PAs where Π is head-cycle-
free and k = tw(GΠ). Then, PCNTPHC runs in time O(23

k+1.27·k! · ‖Π‖ · γ(‖Π‖)).

Theorem 5 (Lower Bound, �). Under ETH, #PAs cannot be solved in time
22

o(k) ·‖Π‖o(k) for (Π,P) s.t. Π is head-cycle-free, normal or tight, k = tw(GΠ).

Solving #PAs for Disjunctive Programs. We extend our algorithm to pro-
jected answer set counting for disjunctive programs. Therefore, we simply use

Treewidth and Counting Projected Answer Sets 117

a table algorithm A=PRIM for disjunctive ASP as in previous literature [12].
Recall algorithm PCNTA. First, we heuristically compute a TD of the primal
graph. Then, we run DPPRIM as first traversal resulting in TTD (T, χ, τ). Next,
we purge rows of τ , which cannot be extended to an answer set resulting in
TTD (T, χ, ν). Finally, we use (T, χ, ν) to compute the projected answer sets
count by DPPROJ.

Table 1. Overview of upper and lower bounds using treewidth k of the primal graph
of instance Π; bold entries were established in the course of this paper.

Problem Restriction Upper Bound Lower Bound (under ETH)
SAT, #SAT - 2O(k) · poly(‖Π‖) [21] 2Ω(k) · poly(‖Π‖) [17]
As, #As tight 2O(k) · poly(‖Π‖) 2Ω(k) · poly(‖Π‖) [17]
As, #As normal, HCF 2O(k·log(k)) · poly(‖Π‖) 2Ω(k) · poly(‖Π‖) [17]
As, #As disjunctive 22

O(k) · poly(‖Π‖) [18] 22
Ω(k) · poly(‖Π‖) [12]

Proj. #SAT - 22
O(k) · poly(‖Π‖) [13] 22

Ω(k) · poly(‖Π‖) [13]
#PAs tight 22O(k) · poly(‖Π‖) 22Ω(k) · poly(‖Π‖)
#PAs normal, HCF 22O(k·log(k)) · poly(‖Π‖) 22Ω(k) · poly(‖Π‖)
#PAs disjunctive 222O(k)

· poly(‖Π‖) 222Ω(k)

· poly(‖Π‖)

Lemma 1 (�). PCNTPRIM runs in time O(22
2k+3

· ‖Π‖ · γ(‖Π‖)) for given
instance (Π,P) of #PAs where Π is a disjunctive program, and k = tw(GΠ).

Theorem 6 (Lower Bound, �). #PAs cannot be solved in time 22
2o(k)

·
‖Π‖o(k) for given instance (Π,P), where k = tw(GΠ), unless ETH fails.

In total, we obtain results presented in Table 1. Indeed, there is an increase of
complexity when going from As and #As to #PAs (c.f., Theorem 4). For solv-
ing As (#As) on tight programs one can again reuse Algorithm PHC (Listing 2)
without the orderings σ, or encode [10] to SAT and use established DP algo-
rithms [21] for SAT (#SAT). Then, #PAs on tight programs can be solved
after purging, followed by computing projected answer sets by means of DPPROJ.

5 Conclusions

We introduced novel algorithms to count the projected answer sets (#PAs) of
tight, normal, head-cycle-free, and arbitrary disjunctive programs. Our algo-
rithms employ dynamic programming and exploit small treewidth of the primal
graph of the input program. More precisely, for disjunctive programs, the run-
time is triple exponential in the treewidth and polynomial in the size of the
instance, which can not be significantly improved under the exponential time
hypothesis. When we restrict the input to tight, normal, and head-cycle-free

118 J. K. Fichte and M. Hecher

programs, the runtime drops to double exponential, c.f., Table 1. Our results
extend previous work to answer set programming and we believe it is applicable
to further hard combinatorial problems, such as quantified Boolean formulas and
circumscription [8].

References

1. Aziz, R.A.: Answer set programming: founded bounds and model counting. Ph.D.
thesis, The University of Melbourne, September 2015

2. Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic pro-
grams. Ann. Math. Artif. Intell. 12(1), 53–87 (1994)

3. Bidóıt, N., Froidevaux, C.: Negation by default and unstratifiable logic programs.
TCS 78(1), 85–112 (1991)

4. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

5. Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the path-
width and treewidth of graphs. J. Algorithms 21(2), 358–402 (1996)

6. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

7. Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-319-21275-3

8. Durand, A., Hermann, M., Kolaitis, P.G.: Subtractive reductions and complete
problems for counting complexity classes. TCS 340(3), 496–513 (2005)

9. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming:
propositional case. Ann. Math. Artif. Intell. 15(3–4), 289–323 (1995)

10. Fages, F.: Consistency of Clark’s completion and existence of stable models. Meth.
Logic CS 1(1), 51–60 (1994)

11. Fichte, J.K., Hecher, M.: Exploiting treewidth for counting projected answer sets.
In: KR 2018, pp. 639–640. AAAI Press (2018)

12. Fichte, J.K., Hecher, M., Morak, M., Woltran, S.: Answer set solving with bounded
treewidth revisited. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS
(LNAI), vol. 10377, pp. 132–145. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-61660-5 13

13. Fichte, J.K., Hecher, M., Morak, M., Woltran, S.: Exploiting treewidth for pro-
jected model counting and its limits. In: Beyersdorff, O., Wintersteiger, C.M. (eds.)
SAT 2018. LNCS, vol. 10929, pp. 165–184. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-94144-8 11

14. Gebser, M., Kaufmann, B., Schaub, T.: Solution enumeration for projected boolean
search problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS,
vol. 5547, pp. 71–86. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-01929-6 7

15. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3/4), 365–386 (1991)

16. Harvey, D., van der Hoeven, J., Lecerf, G.: Even faster integer multiplication. J.
Complex. 36, 1–30 (2016)

17. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

18. Jakl, M., Pichler, R., Woltran, S.: Answer-set programming with bounded
treewidth. In: IJCAI 2009, vol. 2, pp. 816–822 (2009)

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-61660-5_13
https://doi.org/10.1007/978-3-319-61660-5_13
https://doi.org/10.1007/978-3-319-94144-8_11
https://doi.org/10.1007/978-3-319-94144-8_11
https://doi.org/10.1007/978-3-642-01929-6_7
https://doi.org/10.1007/978-3-642-01929-6_7

Treewidth and Counting Projected Answer Sets 119

19. Lin, F., Zhao, J.: On tight logic programs and yet another translation from nor-
mal logic programs to propositional logic. In: IJCAI 2003, pp. 853–858. Morgan
Kaufmann (2003)

20. Lokshtanov, D., Marx, D., Saurabh, S.: Slightly superexponential parameterized
problems. In: SODA, pp. 760–776. SIAM (2011)

21. Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Discrete
Algorithms 8(1), 50–64 (2010)

Splitting Epistemic Logic Programs

Pedro Cabalar1(B), Jorge Fandinno2, and Luis Fariñas del Cerro2

1 University of Corunna, Corunna, Spain
cabalar@udc.es

2 IRIT, University of Toulouse, CNRS, Toulouse, France
{jorge.fandinno,farinas}@irit.fr

Abstract. Epistemic logic programs constitute an extension of the
stable models semantics to deal with new constructs called subjective
literals. Informally speaking, a subjective literal allows checking whether
some regular literal is true in all or some stable models. As it can be
imagined, the associated semantics has proved to be non-trivial, as the
truth of subjective literals may interfere with the set of stable models
it is supposed to query. As a consequence, no clear agreement has been
reached and different semantic proposals have been made in the litera-
ture. Unfortunately, comparison among these proposals has been limited
to a study of their effect on individual examples, rather than identifying
general properties to be checked. In this paper, we propose an extension
of the well-known splitting property for logic programs to the epistemic
case. We formally define when an arbitrary semantics satisfies the epis-
temic splitting property and examine some of the consequences that can
be derived from that, including its relation to conformant planning and to
epistemic constraints. Interestingly, we prove (through counterexamples)
that most of the existing proposals fail to fulfill the epistemic splitting
property, except the original semantics proposed by Gelfond in 1991.

1 Introduction

The language of epistemic specifications, proposed by Gelfond in 1991 [3], con-
stituted an extension of disjunctive logic programming that introduced modal
operators to quantify over the set of stable models [5] of a program. These
new constructs were later incorporated as an extension of the Answer Set Pro-
gramming (ASP) paradigm in different implemented solvers (see [8] for a recent
survey). The new constructs, subjective literals, have the form K l and M l and
allow respectively checking whether regular literal l is true in every stable model
(cautious consequence) or in some stable model (brave consequence). In many
cases, these subjective literals can be seen as simple queries, but what makes

A preliminary version of this work was presented at [1]. Partially supported by
MINECO, Spain, grant TIC2017-84453-P, Xunta de Galicia, Spain (GPC ED431B
2016/035 and 2016-2019 ED431G/01, CITIC). The second author is funded by the
Centre International de Mathématiques et d’Informatique de Toulouse (CIMI) through
contract ANR-11-LABEX-0040-CIMI within the program ANR-11-IDEX-0002-02.

c© Springer Nature Switzerland AG 2019
M. Balduccini et al. (Eds.): LPNMR 2019, LNAI 11481, pp. 120–133, 2019.
https://doi.org/10.1007/978-3-030-20528-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20528-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-20528-7_10

Splitting Epistemic Logic Programs 121

them really interesting is their use in rule bodies, which may obviously affect
the set of stable models they are meant to quantify. This feature makes them
suitable for modelling introspection but, at the same time, easily involves cyclic
specifications whose intuitive behaviour is not always easy to define. For instance,
the semantics of an epistemic logic program may yield alternative sets of stable
models, each set being called a world view. Deciding the intuitive world views
of a cyclic specification has motivated a wide debate in the literature. In fact,
in Gelfond’s original semantics (G91) [3] or in its extension [12], some cyclic
examples manifested self-supportedness, so in [4] Gelfond himself and, later on,
other authors [2,6,10,11] proposed different variants trying to avoid unintended
results. Unfortunately, comparison among these variants was limited to studying
their effect on a set of “test” examples, leading to a lack of confidence as any
proposal is always subject to the appearance of new counterintuitive examples. A
next methodological step would consist in defining formal properties to be estab-
lished and that would cover complete families of examples and, hopefully, could
help to reach an agreement on some language fragments. For instance, one would
expect that, at least, the existing approaches agreed on their interpretation of
acyclic specifications. Regretfully, as we will see, this is not the case.

In this paper we propose a candidate property, we call epistemic splitting,
that not only defines an intuitive behaviour for stratified epistemic specifica-
tions but also goes further, extending the splitting theorem [9], well-known for
standard logic programs, to the epistemic case. Informally speaking, we say that
an epistemic logic program can be split if a part of the program (the top) only
refers to the atoms of the other part (the bottom) through subjective literals.
A given semantics satisfies epistemic splitting if, given any split program, it is
possible to get its world views by first obtaining the world views of the bottom
and then using the subjective literals in the top as “queries” on the bottom part
previously obtained. If epistemic splitting holds, the semantics immediately sat-
isfies other properties. For instance, if the use of epistemic operators is stratified,
the program has a unique world view at most. Similarly, epistemic constraints
(those only consisting of subjective literals) can be guaranteed to only rule out
candidate world views. As we will see, however, only the G91 semantics satis-
fies epistemic splitting among the previously cited approaches. So, somehow, the
recent attempts to fix the behaviour of cycles has neglected the attention on the
effects produced on acyclic specifications. In fact, a different property of epis-
temic splitting was already proved in [13] as a method to compute world views
for this semantics. However, this definition is based on a “safety” condition that
needs to be checked for all possible world views and is specific for G91 semantics,
so it is harder to justify as a general property required for other approaches.

The rest of the paper is organised as follows. First, we motivate the main idea
through a well-known example. After that, we recall basic definitions of (non-
epistemic) ASP and splitting, introduce the language of epistemic specifications
and define the G91 semantics. In the next section, we proceed to define the
property of epistemic splitting and study some of its consequences. Then, we
formally prove that G91 satisfies this property while we provide counterexamples
for the other approaches, concluding the paper after that.

122 P. Cabalar et al.

2 Motivation

To illustrate the intuition behind our proposal, let us consider the well-known
standard example introduced in [3].

Example 1. A given college uses the following set of rules to decide whether a
student X is eligible for a scholarship:

eligible(X) ← high(X) (1)

eligible(X) ← minority(X), fair(X) (2)

∼eligible(X) ← ∼fair(X),∼high(X) (3)

Here, ‘∼’ stands for strong negation and high(X) and fair(X) refer to the grades
of student X. We want to encode the additional college criterion “The students
whose eligibility is not determined by the college rules should be interviewed by
the scholarship committee” as another rule in the program. ��
The problem here is that, for deciding whether eligible(X) “can be determined,”
we need to check if it holds in all the answer sets of the program, that is, if it is
one of the cautious consequences of the latter. For instance, if the only available
information for some student mike is the disjunction

fair(mike) ∨ high(mike) (4)

we get that program {(1)–(4)} has two stable models, {high(mike),
eligible(mike)} and {fair(mike)} so eligible(mike) cannot be determined and
an interview should follow. Of course, if we just want to query cautious and
brave consequences of the program, we can do it inside ASP. For instance, the
addition of constraint:

⊥ ← eligible(mike)

allows us to decide if eligible(mike) is a cautious consequence by just checking
that the resulting program has no answer sets. The difficulty comes from the need
to derive new information from a cautious consequence. This is where subjective
literals come into play. Rule

interview(X) ← notK eligible(X), notK ∼eligible(X) (5)

allows us to prove that interview(X) holds whenever neither eligible(X) nor
∼eligible(X) are cautious consequences of {(1)–(4)}. Recall that Kl holds when
the literal l is true in all stable models of the program. The novel feature here
is that (5) is also part of the program, and so, it affects the answer sets queried
by K too, which would actually be:

{fair(mike), interview(mike)} (6)
{high(mike), eligible(mike), interview(mike)} (7)

Splitting Epistemic Logic Programs 123

So, there is a kind of cyclic reasoning: operators K and M are used to query a
set of stable models that, in their turn, may depend on the application of that
query. In the general case, this kind of cyclic reasoning is solved by resorting to
multiple world views, but in our particular example, however, this does not seem
to be needed. One would expect that separating the queried part {(1)–(4)} and
the rule that makes the query (5) should be correct, since the first four rules do
not depend on (5) and the latter exclusively consults them without interacting
with their results. This same reasoning could be applied if we added one more
level such as, for instance, by including the rule:

appointment(X) ← K interview(X) (8)

The two answer sets of program {(1)–(5)} contain interview(mike) and so
appointment(mike) can be added to both answer sets incrementally. This method
of analysing a program by division into independent parts shows a strong resem-
blance to the splitting theorem [9], well-known in standard ASP. Splitting is
applicable when the program can be divided into two parts, the bottom and the
top, in such a way that the bottom never refers to head atoms in the top. When
this happens, we can first compute the stable models of the bottom and then, for
each one, simplify the top accordingly, getting new stable models that complete
the information. We could think about different ways of extending this method
for the case of epistemic logic programs, depending on how restrictive we want
to be on the programs where it will be applicable. However, we will choose a
very conservative case, looking for a wider agreement on the proposed behaviour.
The condition we will impose is that our top program can only refer to atoms in
the bottom through epistemic operators. In this way, the top is seen as a set of
rules that derive facts from epistemic queries on the bottom. Thus, each world
view W of the bottom will be used to replace the subjective literals in the top
by their truth value with respect to W . For the sake of completeness, we recall
next the basic definitions of ASP and splitting, to proceed with a formalization
of epistemic splitting afterwards.

3 Background of ASP and Epistemic Specifications

Given a set of atoms At, a regular literal is either an atom or a truth constant1,
that is a ∈ At ∪ {
,⊥}, or its default negation, not a. A rule r is an implication
of the form:

a1 ∨ · · · ∨ an ← L1, . . . , Lm (9)

with n ≥ 0 and m ≥ 0, where each ai ∈ At is an atom and each Lj a regular
literal. The left hand disjunction of (9) is called the rule head and abbreviated
as Head(r). When n = 0, it corresponds to ⊥ and r is called a constraint. The
right hand side of (9) is called the rule body and abbreviated as Body(r). When
1 For a simpler description of program transformations, we allow truth constants with

their usual meaning.

124 P. Cabalar et al.

m = 0, the body corresponds to
 and r is called a fact (in this case, the body
and the arrow symbol are usually omitted). A (regular) program Π is a (possibly
infinite) set of rules. We write Atoms(F) to represent the set of atoms occurring
in any syntactic construct F (a literal, head, body, rule or program). A proposi-
tional interpretation I is a set of atoms. We assume that strong negation ‘∼a’ is
just another atom in At and that the constraint ⊥ ← a,∼a is implicitly included
in the program. We allow the use of variables, but understood as abbreviations
of their possible ground instances. Given any syntactic construct F , we write
I |= F to stand for “I satisfies F” in classical propositional logic, where the
commas correspond to conjunctions, ‘not’ corresponds (under this interpreta-
tion) to classical negation and ‘←’ is just a reversed material implication. An
interpretation I is a (classical) model of a program Π if it satisfies all its rules.
The reduct of a program Π with respect to some propositional interpretation I,
in symbols ΠI , is obtained by replacing in Π every negative literal not a by
 if
I |= not a or by ⊥ otherwise. A propositional interpretation I is a stable model
of a program Π iff it is a ⊆-minimal model of ΠI . By SM[Π], we denote the set
of all stable models of Π. The following is a well-known property in ASP.

Property 1 (Supraclassicality). Any stable model of a (regular) program Π is
also a classical model of Π.

We extend now the syntax of ASP to the language of epistemic specifications.
Given a set of atoms At, we call subjective literal to any expression of the form
K l, M l, not K l or not M l, for any regular literal l. We keep the same syntax
for rules as in (9) excepting that body literals Lj can also be subjective literals
now. Given rule r we define the sets Bodyreg(r) and Bodysub(r) respectively
containing the regular and the subjective literals in Body(r). Rules or programs
are regular if they do not contain subjective literals. We say that a rule is a
subjective constraint if it is a constraint, Head(r) = ⊥, and its body exclusively
consists of subjective literals, that is Body(r) = Bodysub(r).

We can define the concept of model of a program, in a similar way as we
did for classical models in regular ASP. A modal interpretation M = 〈W, I〉 is
pair where I is a propositional interpretation and W ⊆ 2At is a non-empty set
of propositional interpretations. A modal interpretation M = 〈W, I〉 satisfies a
literal L, written 〈W, I〉 |= L, if

1. 〈W, I〉 |=
,
2. 〈W, I〉 �|= ⊥,
3. 〈W, I〉 |= a if a ∈ I, for any atom a ∈ At,
4. 〈W, I〉 |= K l if 〈W, I ′〉 |= l for all I ′ ∈ W ,
5. 〈W, I〉 |= M l if 〈W, I ′〉 |= l for some I ′ ∈ W , and
6. 〈W, I〉 |= not L if 〈W, I〉 �|= L.

Since for a subjective literal L, 〈W, I〉 |= L does not depend on I, we sometimes
write W |= L. For a rule r of the form (9), we write 〈W, I〉 |= r iff either
〈W, I〉 |= ai for some 1 ≤ i ≤ n or 〈W, I〉 �|= Lj for some 1 ≤ j ≤ m. We say
that 〈W, I〉 is a model of a program Π, written 〈W, I〉 |= Π, if it satisfies all

Splitting Epistemic Logic Programs 125

its rules. Among the possible models of an epistemic logic program, all semantic
approaches agree on selecting some preferred models called world views, each one
being characterized by the W component. These world views satisfy a similar
property to that of supraclassicality (Property 1) in non-epistemic ASP. In this
case, however, rather than talking about classical models, we resort to modal
logic S5, so all world views of a program are also S5 models of the program. This
property can be formally stated as follows:

Property 2 (Supra-S5). A semantics satisfies supra-S5 when for every world view
W of an epistemic program Π and for every I ∈ W , 〈W, I〉 |= Π. ��
To the best of our knowledge, all existing semantics satisfy supra-S5. Another
property that is shared by all semantics is that, when Π is a regular ASP program
(it has no modal epistemic operators) then it has a unique world view containing
all the stable models of Π. We will formalize this property in the following way.

Property 3 (Supra-ASP). A semantics satisfies supra-ASP if for any regular pro-
gram Π either Π has a unique world view W = SM[Π] �= ∅ or SM[Π] = ∅ and
Π has no world view at all. ��

Originally, some semantics like [3] or [12], allowed empty world views W = ∅
when the program has no stable models, rather than leaving the program without
world views. Since this feature is not really essential, we exclusively refer to non-
empty world views in this paper.

We define next a useful transformation extending the idea of the reduct to
epistemic specifications, and generalized for a given signature.

Definition 1 (Subjective reduct). The subjective reduct of a program Π
with respect to a set of propositional interpretations W and a signature U ⊆
At, also written ΠW

U , is obtained by replacing each subjective literal L with
Atoms(L) ⊆ U by;
 if W |= L or by ⊥ otherwise. When U = At we just
write ΠW . ��
We use the same notation ΠW as for the standard reduct, but ambiguity is
removed by the type of W (a set of interpretations now). This subjective reduct
can be used to define [3] (G91) semantics in the following way.

Definition 2 (G91-world view). A non-empty set of interpretations W is a
G91-world view of an epistemic program Π if W = SM[ΠW]. ��

We will not provide the formal definitions of the rest of semantics compared
in this paper, since none of them satisfies our goal property of epistemic splitting.
In those cases, it will suffice with providing counterexamples and the reader can
check their behaviour by resorting to the corresponding original definition.

4 Epistemic Splitting

We proceed now to introduce our definition of the epistemic splitting property.
To do so, we begin extending the idea of splitting set from [9]. For space reasons,
we refer the reader to [9] for the formal definition of splitting set.

126 P. Cabalar et al.

Definition 3 (Epistemic splitting set). A set of atoms U ⊆ At is said to
be an epistemic splitting set of a program Π if for any rule r in Π one of the
following conditions hold

(i) Atoms(r) ⊆ U ,
(ii) (Atoms(Bodyreg(r) ∪ Head(r))) ∩ U = ∅
We define an splitting of Π as a pair 〈BU (Π), TU (Π)〉 satisfying BU (Π) ∩
TU (Π) = ∅, BU (Π) ∪ TU (Π) = Π, all rules in BU (Π) satisfy (i) and all rules
in TU (Π) satisfy (ii). ��
With respect to the original definition of splitting set, we have replaced the con-
dition for the top program, Atoms(Head(r)) ∩ U = ∅, by the new condition (ii),
which in other words means that the top program may only refer to atoms U in
the bottom through epistemic operators. Note that this introduces a new kind
of “dependence,” so that, as happens with head atoms, regular literals in the
body also depend on atoms in subjective literals. For instance, if U = {p, q}, the
program Π1 = {p ∨ q , s ← p,K q} would not be splittable due to the second
rule, since s �∈ U and we would also need the regular literal p �∈ U . The reason
for this restriction is to avoid imposing (to a potential semantics) a fixed way of
evaluating p with respect to the world view [{p}, {q}] for the bottom.

Another observation is that we have kept the definition of BU (Π) and TU (Π)
non-deterministic, in the sense that some rules can be arbitrarily included in
one set or the other. These rules correspond to subjective constraints on atoms
in U , since these are the only cases that may satisfy conditions (i) and (ii)
simultaneously.

If we retake our example program Π2 = {(1)–(5)}, we can see that the set
U consisting of atoms high(mike), fair(mike), eligible(mike),minority(mike)
and their corresponding strong negations is an epistemic splitting set that divides
the program into the bottom BU (Π2) = {(1)–(4)} and the top TU (Π2) = {(5)}.
As in regular splitting, the idea is computing first the world views of the bot-
tom program BU (Π) and for each one, W , simplifying the corresponding sub-
jective literals in the top program. Given an epistemic splitting set U for a
program Π and set of interpretations W , we define EU (Π,W) def= TU (Π)WU ,
that is, we make the subjective reduct of the top with respect to W and sig-
nature U . A pair 〈Wb,Wt〉 is said to be a solution of Π with respect to an
epistemic splitting set U if Wb is a world view of BU (Π) and Wt is a world
view of EU (Π,Wb). Notice that this definition is semantics-dependent in the
sense that each alternative semantics for epistemic specifications will define its
own solutions for a given U and Π, since it defines the selected world views
for a program in a different way. Back to our example, notice that BU (Π2) is
a regular program without epistemic operators. Thus, any semantics satisfy-
ing supra-ASP will provide Wb = [{fair(mike)}, {high(mike), eligible(mike)}]
as the unique world view for the bottom. The corresponding simplification
of the top would be EU (Π2,Wb) containing (after grounding) the single rule
interview(mike) ← not ⊥, not ⊥ Again, this program is regular and its unique
world view would be Wt = [{interview(mike)}]. Now, in the general case, to
reconstruct the world views for the global program we define the operation:

Splitting Epistemic Logic Programs 127

Wb � Wt = { Ib ∪ It | Ib ∈ Wb and It ∈ Wt }
(remember that both the bottom and the top may produce multiple world views,
depending on the program and the semantics we choose). In our example, Wb �
Wt would exactly contain the two stable models (6) and (7) we saw in the
introduction.

Property 4 (Epistemic splitting). A semantics satisfies epistemic splitting if for
any epistemic splitting set U of any program Π: W is a world view of Π iff there
is a solution 〈Wb,Wt〉 of Π with respect to U such that W = Wb � Wt. ��

In the example, this means that the world view we obtained in two steps
is indeed the unique world view of the whole program, under any semantics
satisfying epistemic splitting. Uniqueness of world view was obtained in this
case because both the bottom program BU (Π2) and the top, after simplification,
EU (Π2,Wb) were regular programs and we assumed supra-ASP. In fact, as we
see next, we can still get a unique world view (at most) when there are no
cyclic dependences among subjective literals. This mimics the well-known result
for stratified negation in logic programming. Let us define a modal dependence
relation among atoms in a program Π so that dep(a, b) is true iff there is a rule
r ∈ Π such that a ∈ Atoms(Head(r) ∪ Bodyreg(r)) and b ∈ Atoms(Bodysub(r)).
Definition 4. We say that an epistemic program Π is epistemically stratified if
we can assign an integer mapping λ : At → N to each atom such that λ(a) > λ(b)
for any pair of atoms a, b satisfying dep(a, b). ��

Take, for instance, the extended program Π3 = {(1)–(5), (8)}. We can assign
atoms high(mike), fair(mike), minority(mike) and eligible(mike) layer 0. Then
interview(mike) could be assigned layer 1 and, finally, appointment(mike) can
be located at layer 2. So, Π3 is epistemically stratified.

Theorem 1. Let Π be a finite, epistemically stratified program. Then, any
semantics satisfying supra-ASP and epistemic splitting assigns, at most, a unique
world view to Π. ��

The proof of the theorem just relies on multiple applications of splitting to
each layer backwards and the fact that each simplification EU (Π,Wb) will be a
regular program. This is very easy to see in the extended example Π3. We can
split the program using as U all atoms but appointment(mike) to get a bottom
Π2 and a top {(8)}. Program Π2 can be split in its turn as we saw before,
producing the unique world view [(6), (7)]. Then EU (Π3, {(6), (7)}) contains
the single rule appointment(mike) ←
 that is a regular program whose unique
world view is [{appointment(mike)}] and, finally, the combination of these two
world views yields again a unique world view [(6) ∪{appointment(mike)}, (7)
∪{appointment(mike)}].

Another consequence of epistemic splitting is that subjective constraints will
have a monotonic behaviour. Note first that, for a subjective constraint r, we can
abbreviate 〈W, I〉 |= r as W |= r since the I component is irrelevant. Addition-
ally, W |= r means that Body(r) = Bodysub(r) is falsified, since Head(r) = ⊥.

128 P. Cabalar et al.

Property 5 (subjective constraint monotonicity). A semantics satisfies subjective
constraint monotonicity if, for any epistemic program Π and any subjective
constraint r, W is a world view of Π ∪ {r} iff both W is a world view of Π and
W |= r. ��
Theorem 2. Epistemic splitting implies subjective constraint monotonicity. ��

To conclude the exploration of consequences of epistemic splitting, let us
consider a possible application to conformant planning. To this aim, consider
the following simple example.

Example 2. To turn on the light in a room, we can toggle one of two lamps l1
or l2. In the initial state, lamp l1 is plugged but we ignore the state of l2. Our
goal is finding a plan that guarantees we get light in the room in one step.

A logic program that encodes this scenario for a single transition2 could be Π4:

plugged(l1) light ← toggle(L), plugged(L)
plugged(l2) ∨ ∼plugged(l2) ⊥ ← toggle(l1), toggle(l2)

for L ∈ {l1, l2}. As we can see, toggle(l1) would constitute a conformant plan,
since we obtain light regardless of the initial state, while this does not hap-
pen with plan toggle(l2). In order to check whether a given sequence of actions
A0, . . . , An is a valid conformant plan one would expect that, if we added those
facts to the program, a subjective constraint should be sufficient to check that
the goal holds in all the possible outcomes. In our example, we would just use:

⊥ ← not K light (10)

and check that the program Π4 ∪ {toggle(L)}∪ {(10)} has some world view,
varying L ∈ {l1, l2}. Subjective constraint monotonicity guarantees that the
addition of this “straighforward” formalisation has the expected meaning.

This method would only allow testing if the sequence of actions constitutes
a conformant plan, but does not allow generating those actions. A desirable
feature would be the possibility of applying the well-known ASP methodology
of separating the program into three sections: generate, define and test. In our
case, the “define” and the “test” sections would respectively be Π4 and (10),
but we still miss a “generate” part, capable of considering different alternative
conformant plans. The problem in this case is that we cannot use a simple choice:

toggle(L) ∨ ∼toggle(L)

because this would allow a same action to be executed in some of the stable
models and not executed in others, all inside a same world view. Let us assume
that our epistemic semantics has some way to non-deterministically generate

2 For simplicity, we omit time arguments or inertia, as they are not essential for the
discussion.

Splitting Epistemic Logic Programs 129

a world view in which either K a or K not a holds using a given set of rules3

Choice(a). Then, take the program Π5 consisting of rules

Choice(toggle(L)) (11)

with L ∈ {l1, l2} plus Π4 and (10). If our semantics satisfies epistemic splitting,
it is safe to obtain the world views in three steps: generate first the alternative
world views for toggle(l1) and toggle(l2) using (11), apply Π4 and rule out those
world views not satisfying the goal light in all situations using (10). To fulfill the
preconditions for applying splitting, we would actually need to replace regular
literal toggle(L) by K toggle(L) in all the bodies of Π4, but this is safe in the
current context. Now, we take the bottom program to obtain 4 possible world
views W0 = [{toggle(l1)}], W1 = [{toggle(l2)}], W2 = [{toggle(l1), toggle(l2)}]
and W3 = [∅]. When we combine them with the top Π4 we obtain W ′

0 consisting
of two stable models:

{toggle(l1), plugged(l2), light, . . . } {toggle(l1),∼plugged(l2), light, . . . }
and W ′

1 consisting of other two stable models:

{toggle(l2), plugged(l2), light, . . . } {toggle(l2),∼plugged(l2), . . . }
where the latter does not contain light. Finally, constraint (10) would rule
out W ′

1.
To sum up, epistemic splitting provides a natural way of formulating con-

formant planning problems by a separation into three sections: a generation
part, the usual encoding of the actions scenario and a test part consisting of a
subjective constraint to guarantee that the goal is always reached.

5 Splitting in Some Existing Semantics

In this section we study the property of epistemic splitting for the approaches
mentioned in the introduction. We will begin by stating that G91 actually sat-
isfies this property. The proof of the following theorm can be found in the
appendix.

Main Theorem. Semantics G91 satisfies epistemic splitting. ��
A similar proof can be developed to show that [12], that generalises4 [3] from

subjective literals to subjective formulas, also satisfies epistemic splitting.
To illustrate the behaviour of other semantics with respect to splitting, we

will use several examples. Let us take the program Π6 consisting of rules:

a ∨ b (12)
c ∨ d ← not K a (13)

3 For instance, in the G91-semantics, this could be just the rule a ← not K not a.
Other semantics may have alternative ways of expressing this intended behaviour.

4 In fact, [12] defines several semantics but, among them, we refer here to the epistemic
stable model semantics.

130 P. Cabalar et al.

The set U = {a, b} splits the program into the bottom (12) and the top (13).
The bottom has a unique world view Wb = [{a}, {b}] so K a does not hold and
the top is simplified as EU (Π6,Wb) containing the unique rule

c ∨ d ← not ⊥ (14)

This program has a unique world view Wt = [{c}, {d}] that, combined with Wb

yields [{a, c}, {b, c}, {a, d}, {b, d}] as the unique solution for Π6, for any semantics
satisfying epistemic splitting (and so, also for G91). Let us elaborate the example
a little bit further. Suppose we add now the constraint:

⊥ ← c (15)

The top must also include this rule and has now a unique stable model, yielding
the world view Wt = [{d}], so the world view for the complete program would
be [{a, d}, {b, d}]. Finally, let us forbid the inclusion of atom d too:

⊥ ← d (16)

so we consider Π7 = {(12), (13), (15), (16)}. This last constraint leaves the sim-
plified top program EU (Π6,Wb) = {(14), (15), (16)} without stable models, so
epistemic splitting would yield that program Π7 has no world view at all. This is
the result we obtain, indeed, in [3,4]5 and in [12]. Surprisingly, recent approaches
like [2,6,10,11] yield world view [{a}], violating the epistemic splitting property.
For instance, in the case of [6], the reduct of Π7 with respect to [{a}] is the
program

a ← not b c ∨ d ← not a ⊥ ← c
b ← not a ⊥ ← d

which has a unique stable model {a}. As a second example, take the program
Π8 consisting of the same bottom program (12) and the rule:

c ← K a (17)

As expected, all approaches agree that Π8 has a unique world view Wb =
[{a}, {b}] because K a is not satisfied and rule (17) is not applicable. Under
epistemic splitting, we get that EU (Π8,Wb) is the rule:

c ← ⊥ (18)

whose unique world view is [∅], so that Wb � [∅] = Wb. But let us further
elaborate the example taking Π ′

8 containing Π8 plus:

⊥ ← not c (19)

5 These two semantics actually produce empty world views, but as we said before, we
disregard them, as they just point out that the program has no solution.

Splitting Epistemic Logic Programs 131

Under epistemic splitting, the new top EU (Π ′
8,Wb) contains now (19) and (18)

which have no stable models. As a result, no world view can be combined with
Wb and we obtain that Π ′

8 has no world views at all. This is the result we
obtain under [3,12], which agree that the program is inconsistent. However, [4]
joins [2,6,10,11] in the group of approaches that provide the world view [{a, c}].
That is, in all these approaches, adding a constraint intended to remove all belief
sets that do not satisfy c, may surprisingly lead to justify c. Note that, according
to [3,12], the reduct of Π ′

8 with respect to [{a, c}] is {a ← not b, b ← not a, }
c ←
, ⊥ ← not c which has two stable models, {a, c} and {b, c}, so [{a, c}] is not
a world view. In contrast, the reduct with respect to [4] and [6] is {a ← not b, }
b ← not a, c ← a, ⊥ ← not c which has a unique stable model {a, c}, so [{a, c}]
is a world view.

6 Conclusions

We have introduced a formal property for semantics of epistemic specifications.
This property that we call epistemic splitting has a strong resemblance to the
splitting theorem well-known for regular ASP programs. Epistemic splitting can
be applied when we can divide an epistemic logic program into a bottom part
for a subset U of atoms and a top part, that only refers to atoms in U through
subjective literals (those using modal epistemic operators). When this happens,
the property of splitting states that we should be able to compute the world views
of the program in two steps: first, computing the world views of the bottom and,
second, using each bottom world view W to replace subjective literals for atoms
in U in the top by their truth value with respect to W .

We have studied several consequences of epistemic splitting: for instance, if
the program is stratified with respect to subjective literals then it will have a
unique world view, at most. Another consequence is that constraints only consist-
ing of subjective literals will have a monotonic behaviour, ruling out world views
that satisfy the constraint body.6 We have also explored how epistemic splitting
may facilitate the simple application of the generate-define-test methodology,
well-known in ASP, to the formalisation of conformant planning. The applica-
tion of epistemic specifications to conformat planning was first discussed in [6],
though with a more complex formulation due to the lack of epistemic splitting.

Our study of the main semantics in the literature has shown that only the
original semantics [3] (G91), and its generalisation [12], satisfy epistemic splitting
while the rest of approaches we considered do not, as we showed with counterex-
amples. As said in the introduction, a different kind of epistemic splitting had
also been proved for G91 in [13], reinforcing the idea that this semantics can
be interpreted in a modular way. Notice that the sets of programs that can be
split under these two definitions is incomparable. We do not mean with this,
however, that G91 is always intuitive. As it is well-known, G91 suffers from self-
supportedness: for instance, the program consisting of the single rule p ← K p

6 The lack of monotonicity suffered by epistemic constraints in some semantics has
been recently discussed by [7].

132 P. Cabalar et al.

yields two world views [∅] and [{p}] but the latter justifies p by the mere assump-
tion of K p without further evidence, something that seems counterintuitive.
What we claim instead is that G91 has a reasonable behaviour when subjective
literals are stratified. Unfortunately, later attempts to solve self-supportedness
on cyclic epistemic specifications have somehow spoiled that feature.

Acknowledgements. We are thankful to Michael Gelfond, Richard Watson and
Patrick T. Kahl for their helpful comments on early versions of this work. We are
also thankful to the anonymous reviewers for their valuable feedback, which helped to
improve the paper.

References

1. Cabalar, P., Fandinno, J., Fariñas del Cerro, L.: Splitting epistemic logic programs.
In: Proceedings of the 17th International Workshop on Non-monotonic Reasoning
(NMR 2018), pp. 81–89 (2018)

2. Fariñas del Cerro, L., Herzig, A., Su, E.I.: Epistemic equilibrium logic. In: Proceed-
ings of the International Joint Conference on Artificial Intelligence (IJCAI 2015),
pp. 2964–2970. AAAI Press (2015)

3. Gelfond, M.: Strong introspection. In: Dean, T.L., McKeown, K. (eds.) Proceedings
of the AAAI Conference, vol. 1, pp. 386–391. AAAI Press/The MIT Press (1991)

4. Gelfond, M.: New semantics for epistemic specifications. In: Delgrande, J.P., Faber,
W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp. 260–265. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-20895-9 29

5. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of the 5th International Conference on Logic Programming (ICLP
1988), pp. 1070–1080 (1988)

6. Kahl, P., Watson, R., Balai, E., Gelfond, M., Zhang, Y.: The language of epistemic
specifications (refined) including a prototype solver. J. Log. Comput. (2015). (Spe-
cial issue article)

7. Leclerc, A.P., Kahl, P.T.: Epistemic logic programs with world view constraints.
In: Technical communication of the 34th International Conference on Logic Pro-
gramming (ICLP 2018) (2018)

8. Leclerc, A.P., Kahl, P.T.: A survey of advances in epistemic logic program solvers.
In: Proceedings of the 11th International Workshop on Answer Set Programming
and Other Computer Paradigms (ASPOCP 2018) (2018)

9. Lifschitz, V., Turner, H.: Splitting a logic program. In: Proceedings of the Inter-
national Conference on Logic Programming (ICLP 1994), pp. 23–37. MIT Press
(1994)

10. Shen, Y., Eiter, T.: Evaluating epistemic negation in answer set programming
(extended abstract). In: Proceedings of the International Joint Conference on Arti-
ficial Intelligence (IJCAI 2017), pp. 5060–5064 (2017)

11. Son, T.C., Le, T., Kahl, P.T., Leclerc, A.P.: On computing world views of epistemic
logic programs. In: Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI 2017), pp. 1269–1275 (2017). https://www.ijcai.org

https://doi.org/10.1007/978-3-642-20895-9_29
https://www.ijcai.org

Splitting Epistemic Logic Programs 133

12. Truszczyński, M.: Revisiting epistemic specifications. In: Balduccini, M., Son, T.C.
(eds.) Logic Programming, Knowledge Representation, and Nonmonotonic Reason-
ing. LNCS (LNAI), vol. 6565, pp. 315–333. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-20832-4 20

13. Watson, R.: A splitting set theorem for epistemic specifications. CoRR: Proceed-
ings of the 8th International Workshop on Non-monotonic Reasoning, NMR 2000
cs.AI/0003038 (2000). http://arxiv.org/abs/cs.AI/0003038

https://doi.org/10.1007/978-3-642-20832-4_20
https://doi.org/10.1007/978-3-642-20832-4_20
http://arxiv.org/abs/cs.AI/0003038

Founded World Views with
Autoepistemic Equilibrium Logic

Pedro Cabalar1(B), Jorge Fandinno2, and Fariñas del Cerro Luis2

1 University of A Coruña, A Coruña, Spain
cabalar@udc.es

2 IRIT University of Toulouse, CNRS, Toulouse, France
{jorge.fandinno,farinas}@irit.fr

Abstract. Defined by Gelfond in 1991 (G91), epistemic specifications
(or programs) are an extension of logic programming under stable models
semantics that introduces subjective literals. A subjective literal allows
checking whether some regular literal is true in all (or in some of) the
stable models of the program, being those models collected in a set
called world view. One epistemic program may yield several world views
but, under the original G91 semantics, some of them resulted from self-
supported derivations. During the last eight years, several alternative
approaches have been proposed to get rid of these self-supported world
views. Unfortunately, their success could only be measured by studying
their behaviour on a set of common examples in the literature, since
no formal property of “self-supportedness” had been defined. To fill this
gap, we extend in this paper the idea of unfounded set from standard
logic programming to the epistemic case. We define when a world view
is founded with respect to some program and propose the foundedness
property for any semantics whose world views are always founded. Using
counterexamples, we explain that the previous approaches violate found-
edness, and proceed to propose a new semantics based on a combination
of Moore’s Autoepistemic Logic and Pearce’s Equilibrium Logic. The
main result proves that this new semantics precisely captures the set of
founded G91 world views.

1 Introduction

The language of epistemic specifications, proposed by Gelfond in 1991 [4], extends
disjunctive logic programs (under the stable model [6] semantics) with modal
constructs called subjective literals. Using these constructs, it is possible to check

This work was partially supported by MINECO, Spain, grant TIC2017-84453-P, Xunta
de Galicia, Spain (GPC ED431B 2016/035 and 2016–2019 ED431G/01, CITIC).
The second author is funded by the Centre International de Mathématiques et
d’Informatique de Toulouse (CIMI) through contract ANR-11-LABEX-0040-CIMI
within the program ANR-11-IDEX-0002-02.

c© Springer Nature Switzerland AG 2019
M. Balduccini et al. (Eds.): LPNMR 2019, LNAI 11481, pp. 134–147, 2019.
https://doi.org/10.1007/978-3-030-20528-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20528-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-20528-7_11

Founded World Views with Autoepistemic Equilibrium Logic 135

whether a regular literal l is true in every stable model (written K l) or in some
stable model (written M l) of the program. For instance, the rule:

a ← ¬K b (1)

means that a must hold if we cannot prove that all the stable models con-
tain b. The definition of a “satisfactory” semantics for epistemic specifications has
proved to be a non-trivial enterprise, as shown by the list of different attempts
proposed so far [2,4,5,9,20–22]. The main difficulty arises because subjective
literals query the set of stable models but, at the same time, occur in rules that
determine those stable models. As an example, the program consisting of:

b ← ¬K a (2)

and (1) has now two rules defining atoms a and b in terms of the presence of those
same atoms in all the stable models. To solve this kind of cyclic interdependence,
the original semantics by Gelfond [4] (G91) considered different alternative world
views or sets of stable models. In the case of program (1)–(2), G91 yields two
alternative world views1, [{a}] and [{b}], each one containing a single stable
model, and this is also the behaviour obtained in the remaining approaches
developed later on. The feature that made G91 unconvincing, though, was the
generation of self-supported world views. A prototypical example for this effect
is the epistemic program consisting of the single rule:

a ← K a (3)

whose world views under G91 are [∅] and [{a}]. The latter is considered as
counter-intuitive by all authors2 because it relies on a self-supported derivation:
a is derived from K a by rule (3), but the only way to obtain K a is rule (3) itself.
Although the rejection of world views of this kind seems natural, the truth is
that all approaches in the literature have concentrated on studying the effects
on individual examples, rather than capturing the absence of self-supportedness
as a formal property. To achieve such a goal, we would need to establish some
kind of derivability condition in a very similar fashion as done with unfounded
sets [3] for standard logic programs. To understand the similarity, think about
the (tautological) rule a ← a. The classical models of this rule are ∅ and {a}, but
the latter cannot be a stable model because a is not derivable applying the rule.
Intuitively, an unfounded set is a collection of atoms that is not derivable from
a given program and a fixed set of assumptions, as happens to {a} in the last
example. As proved by [12], the stable models of any disjunctive logic program
are precisely its classical models that are founded, that is, that do not admit any
unfounded set. As we can see, the situation in (3) is pretty similar to a ← a but,
this time, involves derivability through subjective literals. An immediate option
1 For the sake of readability, sets of propositional interpretations are embraced with

[] rather than { }.
2 This includes Gelfond himself, who proposed a new variant in [5] motivated by this

same example and further modified this variant later on in [9].

136 P. Cabalar et al.

is, therefore, extending the definition of unfounded sets for the case of epistemic
programs – this constitutes, indeed, the first contribution of this paper.

Once the property of founded world views is explicitly stated, the paper pro-
poses a new semantics for epistemic specifications, called Founded Autoepistemic
Equilibrium Logic (FAEEL), that fulfills that requirement. In the spirit of [2,22],
our proposal actually constitutes a full modal non-monotonic logic where K
becomes the usual necessity operator applicable to arbitrary formulas. Formally,
FAEEL is a combination of Pearce’s Equilibrium Logic [17], a well-known logical
characterisation of stable models, with Moore’s Autoepistemic Logic (AEL) [15],
one of the most representative approaches among modal non-monotonic logics.
The reason for choosing Equilibrium Logic is quite obvious, as it has proved its
utility for characterising other extensions of ASP, including the already men-
tioned epistemic approaches in [2,22]. As for the choice of AEL, it shares with
epistemic specifications the common idea of agent’s introspection where Kϕ
means that ϕ is one of the agent’s beliefs. The only difference is that those
beliefs are just classical models in the case of AEL whereas epistemic specifica-
tions deal with stable models instead. Interestingly, the problem of self-supported
models has also been extensively studied in AEL [11,13,16,18], where the for-
mula K a → a, analogous to (3), also yields an unfounded world view3 [{a}].
Our solution consists in combining the monotonic bases of AEL and Equilib-
rium Logic (the modal logic KD45 and the intermediate logic of Here-and-There
(HT) [8], respectively), but defining a two-step models selection criterion that
simultaneously keeps the agent’s beliefs as stable models and avoids unfounded
world views from the use of the modal operator K. As expected, we prove that
FAEEL guarantees the property of founded world views, among other features.
Our main result, however, goes further and asserts that the FAEEL world views
of an epistemic program are precisely the set of founded G91 world views. We
reach, in this way, an analogous situation to the case of standard logic program-
ming, where stable models are the set of founded classical models of the program.

The rest of the paper is organised as follows. Section 2 and 3 respectively
revisit the background knowledge about equilibrium logic and epistemic specifi-
cations necessary for the rest of the paper. Section 4 introduces the foundedness
property for epistemic logic programs. In Sect. 5, we introduce FAEEL and show
that its world views precisely coincide with the set of founded G91 world views.
Finally, Sect. 6 concludes the paper.

2 Background

We begin recalling the basic definitions of equilibrium logic and its relation to
stable models. We start from the syntax of propositional logic, with formulas
built from combinations of atoms in a set AT with operators ∧,∨,⊥ and → in
the usual way. We define the derived operators ϕ ↔ ψ def= (ϕ → ψ) ∧ (ψ → ϕ),
(ϕ ← ψ) def= (ψ → ϕ), ¬ϕ def= (ϕ → ⊥) and 	 def= ¬⊥.
3 Technically, AEL is defined in terms of theory expansions but each one can be char-

acterised by a canonical S5-model with the same form of a world view [14,19].

Founded World Views with Autoepistemic Equilibrium Logic 137

A propositional interpretation T is a set of atoms T ⊆ AT . We write T |= ϕ
to represent that T classically satisfies formula ϕ. An HT-interpretation is a pair
〈H,T 〉 (respectively called “here” and“there”) of propositional interpretations
such that H ⊆ T ⊆ AT ; it is said to be total when H = T . We write 〈H,T 〉 |= ϕ
to represent that 〈H,T 〉 satisfies a formula ϕ under the recursive conditions:

– 〈H,T 〉 |= ⊥
– 〈H,T 〉 |= p iff p ∈ H
– 〈H,T 〉 |= ϕ ∧ ψ iff 〈H,T 〉 |= ϕ and 〈H,T 〉 |= ψ
– 〈H,T 〉 |= ϕ ∨ ψ iff 〈H,T 〉 |= ϕ or 〈H,T 〉 |= ψ
– 〈H,T 〉 |= ϕ → ψ iff both (i) T |= ϕ → ψ and (ii) 〈H,T 〉 |= ϕ or 〈H,T 〉 |= ψ

As usual, we say that 〈H,T 〉 is a model of a theory Γ , in symbols 〈H,T 〉 |= Γ , iff
〈H,T 〉 |= ϕ for all ϕ ∈ Γ . It is easy to see that 〈T, T 〉 |= Γ iff T |= Γ classically.
For this reason, we will identify 〈T, T 〉 simply as T and will use ‘|=’ indistinctly.
By CL[Γ] we denote the set of all classical models of Γ . Interpretation 〈T, T 〉 = T
is a stable (or equilibrium) model of a theory Γ iff T |= Γ and there is no H ⊂ T
such that 〈H,T 〉 |= Γ . We write SM[Γ] to stand for the set of all stable models
of Γ . Note that SM[Γ] ⊆ CL[Γ] by definition.

3 G91 Semantics for Epistemic Theories

In this section we provide a straightforward generalisation of G91 allowing its
application to arbitrary modal theories. Formulas are extended with the necessity
operator K according to the following grammar:

ϕ ::= ⊥ | a | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | Kϕ for any atom a ∈ AT .

An (epistemic) theory is a set of formulas. In our context, the epistemic reading
of Kψ is that “ψ is one of the agent’s beliefs.” Thus, a formula ϕ is said to be
subjective if all its atom occurrences (having at least one) are in the scope of
K. Analogously, ϕ is said to be objective if K does not occur in ϕ. For instance,
¬K a ∨ K b is subjective, ¬a ∨ b is objective and ¬a ∨ K b none of the two.

To represent the agent’s beliefs we will use a set W of propositional interpre-
tations. We call belief set to each element I ∈ W and belief view to the whole
set W. The difference between belief and knowledge is that the former may not
hold in the real world. Thus, satisfaction of formulas will be defined with respect
to an interpretation I ⊆ AT , possibly I ∈ W, that accounts for the real world:
the pair (W, I) is called belief interpretation (or interpretation in modal logic
KD45). Modal satisfaction is also written (W, I) |= ϕ (ambiguity is removed by
the interpretation on the left) and follows the conditions:

– (W, I) |= ⊥,
– (W, I) |= a iff a ∈ I, for any atom a ∈ AT ,
– (W, I) |= ψ1 ∧ ψ2 iff (W, I) |= ψ1 and (W, I) |= ψ2,
– (W, I) |= ψ1 ∨ ψ2 iff (W, I) |= ψ1 or (W, I) |= ψ2,
– (W, I) |= ψ1 → ψ2 iff (W, I) |= ψ1 or (W, I) |= ψ2, and

138 P. Cabalar et al.

– (W, I) |= Kψ iff (W, J) |= ψ for all J ∈ W.

Notice that implication here is classical, that is, ϕ → ψ is equivalent to
¬ϕ ∨ ψ in this context. A belief interpretation (W, I) is a belief model of Γ iff
(W, J) |= ϕ for all ϕ ∈ Γ and all J ∈ W ∪ {I}. We say that W is an epistemic
model of Γ , and abbreviate this as W |= Γ , iff (W, J) |= ϕ for all ϕ ∈ Γ and
all J ∈ W. Belief models defined in this way correspond to modal logic KD45
whereas epistemic models correspond to S5.

Example 1. Take the theory Γ1 = {¬K b → a} corresponding to rule (1). An
epistemic model W |= Γ1 must satisfy: 〈W, J〉 |= K b or 〈W, J〉 |= a, for all
J ∈ W. We get three epistemic models from K b, [{b}], [{a, b}], and [{b}, {a, b}]
and the rest of cases must force a true, so we also get [{a}] and [{a}, {a, b}]. In
other words, Γ1 has the same epistemic models as K b ∨ K a. ��

Note that rule (1) alone did not seem to provide any reason for believing b, but we
got three epistemic models above satisfying K b. Thus, we will be interested only
in some epistemic models (we will call world views) that minimize the agent’s
beliefs in some sense. To define such a minimisation we rely on the following
syntactic transformation provided by [21].

Definition 1 (Subjective reduct). The subjective reduct of a theory Γ with
respect to a belief view W, also written ΓW, is obtained by replacing each maximal
subformula of the form Kϕ by: 	, if W |= Kϕ; by ⊥, otherwise. Notice that
ΓW is a classical, non-modal theory. ��

Finally, we impose a fixpoint condition where, depending on whether each belief
set I ∈ W is required to be a stable model of the reduct or just a classical model,
we get G91 or AEL semantics, respectively.

Definition 2 (AEL and G91 world views). A belief view W is called an
AEL-world view of a theory Γ iff W = CL[ΓW], and is called a G91-world view
of Γ iff W = SM[ΓW]. ��

Example 2 (Example 1 revisited). Take any W such that W |= K b. Then, ΓW
1 =

{⊥ → a} with CL[ΓW
1] = [∅, {a}, {b}, {a, b}] and SM[ΓW

1] = [∅]. None of the two
satisfy K b so W cannot be fixpoint for G91 or AEL. If W |= K b instead, we
get ΓW

1 = {	 → a}, whose classical models are {a} and {a, b}, but only the
former is stable. As a result, W = [{a}, {a, b}] is the unique AEL world view and
W = [{a}] the unique G91 world view. ��

Example 3. Take now the theory Γ3 = {K a → a} corresponding to rule (3). If
W |= K a we get ΓW

3 = {	 → a} and CL[ΓW
3] = SM[ΓW

3] = {a} so W = [{a}] is
an AEL and G91 world view. If W |= K a, the reduct becomes ΓW

3 = {⊥ → a},
a classical tautology with unique stable model ∅. As a result, W = [∅, {a}] is the
other AEL world view, while W = [∅] is the a second G91 world view. ��

Founded World Views with Autoepistemic Equilibrium Logic 139

As we can see, the difference between AEL and G91 is that we use classical
CL[ΓW] instead of stable SM[ΓW] models, respectively. It is well known that
adding the excluded middle axiom a ∨ ¬a for all atoms makes equilibrium logic
collapse into classical logic. This leads us to the following result.

Theorem 1. W is an AEL world view of some theory Γ iff W is a G91-world
view of Γ ∪ {a ∨ ¬a | a ∈ AT }. ��

4 Founded World Views of Epistemic Specifications

As we explained in the introduction, world view [{a}] of {K a → a} is considered
to be “self-supported” in the literature but, unfortunately, there is no formal
definition for such a concept, to the best of our knowledge. To cover this lack,
we proceed to extend here the idea of unfounded sets from disjunctive logic
programs to the epistemic case. For this purpose, we focus next on the original
language of epistemic specifications [4] (a fragment of epistemic theories closer
to logic programs) on which most approaches have been actually defined.

Let us start by introducing some terminology. An objective literal is either
an atom a ∈ AT , its negation ¬a or its double negation ¬¬a. A subjective literal
is any of the formulas4 K l, ¬K l or ¬¬K l where l an objective literal. A literal
is either an objective or a subjective literal, and is called negative if it contains
negation and positive otherwise. A rule is a formula of the form

a1 ∨ . . . ∨ an ← B1 ∧ . . . ∧ Bm (4)

with n ≥ 0, m ≥ 0 and m + n > 0, where each ai is an atom and each Bj

is a literal. For any rule r like (4), we define its body as Body(r) def= B1 ∧
. . . ∧ Bm and its head Head(r) def= a1 ∨ . . . ∨ an, which we sometimes use as
the set of atoms {a1, . . . , an}. When n = 0, Head(r) = ⊥ and the rule is a
constraint, whereas if m = 0 then Body(r) = 	 and the rule is a fact. The set
Body+

ob(r) collects all atoms occurring in positive objective literals in the body
while Body+

sub(r) collects all atoms occurring in positive subjective literals. An
epistemic specification or program is a set of rules. As with formulas, a program
without occurrences of K is said to be objective (it corresponds to a standard
disjunctive logic program with double negation).

Definition 3 (Unfounded set). Let Π be a program and W a belief view. An
unfounded set S with respect to Π and W is a non-empty set of pairs where, for
each 〈X, I〉 ∈ S, we have that X and I are sets of atoms and there is no rule
r ∈ Π with Head(r) ∩ X = ∅ satisfying:

1. (W, I) |= Body(r)
2. Body+

ob(r) ∩ X = ∅
4 We focus here on the study of the operator K, but epistemic specifications also allow

a second operator M l whose relation to K is also under debate and, for this reason,
we leave it future work.

140 P. Cabalar et al.

3. (Head(r) \ X) ∩ I = ∅
4. Body+

sub(r) ∩ Y = ∅ with Y =
⋃

{ X ′ | 〈X ′, I ′〉 ∈ S }. ��

The definition works in a similar way to standard unfounded sets [12, Defini-
tion 3.1]. In fact, the latter corresponds to the first three conditions above, except
that we use (W, I) to check Body(r), as it may contain now subjective literals.
Intuitively, each I represents some potential belief set (or stable model) and X is
some set of atoms without a “justifying” rule, that is, there is no r ∈ Π allowing
a positive derivation of atoms in X. A rule like that should have a true Body(r)
(condition 1) but not because of positive literals in X (condition 2) and is not
used to derive other head atoms outside X (condition 3). The novelty in our
definition is the addition of condition 4: to consider r a justifying rule, we addi-
tionally require not using any positive literal K a in the body such that atom a
also belongs to any of the unfounded components X ′ in S.

Definition 4 (Founded world view). Let Π be a program and W be a belief
view. We say that W is unfounded if there is some unfounded-set S s.t., for
every 〈X, I〉 ∈ S, we have I ∈ W and X ∩ I = ∅. W is called founded otherwise.

��

When Π is an objective program, each pair 〈X, I〉 corresponds to a standard
unfounded set X of some potential stable model I in the traditional sense of [12].

Example 4. Given the single disjunctive rule a ∨ b suppose we check the
(expected) world view W = [{a}, {b}]. For I = {a} and X = {a}, rule a ∨ b
satisfies the four conditions and justifies a. The same happens for I = {b} = X.
So, W is founded. However, suppose we try with W

′ = [{a, b}] instead. For
I = {a, b} we can form X = {a} and X ′ = {b} and in both cases, the only rule
in the program, a ∨ b, violates condition 3. As a result, W′ is unfounded due to
the set S

′ = {〈{b}, {a, b}〉, 〈{a}, {a, b}〉}. ��

To illustrate how condition 4 works, let us continue with Example 3.

Example 5 (Example 3 continued). Theory Γ3 = {K a → a} is also a program.
Given belief set W = [{a}] we can observe that S = [〈{a}, {a}〉] makes W

unfounded because the unique rule in Γ3 does not fulfill condition 4: we cannot
derive a from a rule that contains a ∈ Body+

sub(r). On the other hand, the other
G91 world view, W = [∅], is trivially founded. ��

Since Definition 4 only depends on some epistemic program and its selected
world views, we can raise it to a general property for any epistemic semantics.

Property 1 (Foundedness). A semantics satisfies foundedness when all the world
views it assigns to any program Π are founded. ��

Approaches proposed after G91 do remove unfounded world views in the
examples studied in the literature, but unfortunately, this does not mean that
they generally satisfy foundedness. Let us consider a common counterexample.

Founded World Views with Autoepistemic Equilibrium Logic 141

Example 6. Take the epistemic logic program:

a ∨ b a ← K b b ← K a (Π1)

whose G91-world views are W = [{a}, {b}] and W
′ = [{a, b}]. These are, indeed,

the two cases we analysed in Example 4. W is again founded because a ∨ b
keeps justifying both possible 〈X, I〉 pairs, that is, [〈{a}, {a}〉] and [〈{b}, {b}〉].
However, for W′ we still have the unfounded set S′ = [〈{a}, {a, b}〉, 〈{b}, {a, b}〉]
which violates condition 3 for the first rule as before, but also condition 4 for the
other two rules. ��
Note how S

′ allows us to spot the root of the derivability problem: to justify a in
〈{a}, {a, b}〉 we cannot use a ← K b because b is part of the unfounded structure
X in the other pair 〈{b}, {a, b}〉, and vice versa. Since the variants by Gelfond
in [5] (G11) and Kahl et al. [9] (K15) also assign the unfounded world view W

′

to Π1 (in fact, they coincide with G91 for this program), we can conclude that
G11 and K15 do not satisfy foundedness either.

A more elaborated strategy is adopted by the recent approaches by Fariñas
et al. [2] (F15) and Shen and Eiter [20] (S17), that treat the previous world views
as candidate solutions5, but select the ones with minimal knowledge in a sec-
ond step. This allows removing the unfounded world view [{a, b}] in Example 6,
because the other solution [{a}, {b}] provides less knowledge. Unfortunately, this
strategy does not suffice to guarantee foundedness, since other formulas (such
as constraints) may remove the founded world view, as explained below.

Example 7 (Example 6 continued). Take the program Π2 = Π1 ∪ {⊥ ← ¬K a}.
The constraint rules out W = [{a}, {b}] because the latter satisfies ¬K a. In
G91, G11, F15 and S17, only world view W

′ = [{a, b}] is left, so knowledge
minimisation has no effect. However, W′ is still unfounded in Π2 since constraints
do not affect that feature (their empty head never justifies any atom). ��

As a conclusion, semantics F15 and S17 do not satisfy foundedness either.

5 Founded Autoepistemic Equilibrium Logic

We present now the semantics proposed in this paper, introducing Founded
Autoepistemic Equilibrium Logic (FAEEL). The basic idea is an elaboration of
the belief (or KD45) interpretation (W, I) already seen but replacing belief sets
by HT pairs. Thus, we extend now the idea of belief view W to a non-empty set of
HT-interpretations W = {〈H1, T1〉, . . . , 〈Hn, Tn〉} and say that W is total when
Hi = Ti for all of them, coinciding with the form of belief views W = {T1, . . . , Tn}
we had so far. Similarly, a belief interpretation is now redefined as (W, 〈H,T 〉),
or simply (W,H, T), where W is a belief view and 〈H,T 〉 stands for the real
world, possibly not in W. Next, we redefine the satisfaction relation from a com-
bination of modal logic KD45 and HT. A belief interpretation I = (W,H, T)
satisfies a formula ϕ, written I |= ϕ, iff:
5 In [2], these candidate world views are called epistemic equilibrium models while

selected world views receive the name of autoepistemic equilibrium models.

142 P. Cabalar et al.

– I |= ⊥,
– I |= a iff a ∈ H, for any atom a ∈ AT ,
– I |= ψ1 ∧ ψ2 iff I |= ψ1 and I |= ψ2,
– I |= ψ1 ∨ ψ2 iff I |= ψ1 or I |= ψ2,
– I |= ψ1 → ψ2 iff both: (i) I |= ψ1 or I |= ψ2; and (ii) (Wt, T) |= ψ1 or

(Wt, T) |= ψ2, where W
t = {Ti | 〈Hi, Ti〉 ∈ W}.

– I |= Kψ iff (W,Hi, Ti) |= ψ for all 〈Hi, Ti〉 ∈ W.

For total belief interpretations, this new satisfaction relation collapses to the
one in Sect. 3 (that is, KD45). Interpretation (W,H, T) is a belief model of Γ iff
(W,Hi, Ti) |= ϕ for all 〈Hi, Ti〉 ∈ W ∪ {〈H,T 〉} and all ϕ ∈ Γ – additionally,
when 〈H,T 〉 ∈ W, we further say that W is an epistemic model of Γ , abbreviated
as W |= Γ .

Proposition 1 (Persistence). (W,H, T) |= ϕ implies (Wt, T) |= ϕ. ��
A belief model just captures collections of HT models which need not be in

equilibrium. To make the agent’s beliefs correspond to stable models we impose
a particular minimisation criterion on belief models.

Definition 5. We define the partial order I ′ � I for belief interpretations I ′ =
(W′,H ′, T ′) and I = (W,H, T) when the following three conditions hold:

1. T ′ = T and H ′ ⊆ H, and
2. for every 〈Hi, Ti〉 ∈ W, there is some 〈H ′

i, Ti〉 ∈ W
′, with H ′

i ⊆ Hi.
3. for every 〈H ′

i, Ti〉 ∈ W
′, there is some 〈Hi, Ti〉 ∈ W, with H ′

i ⊆ Hi. ��
As usual, I ′ ≺ I means I ′ � I and I ′ = I. The intuition for I ′ � I is that I ′

contains less information than I for each fixed Ti component. As a result, I ′ |= ϕ
implies I |= ϕ for any formula ϕ without implications other than ¬ψ = ψ → ⊥.

Definition 6. A total belief interpretation I = (W, T) is said to be an equilib-
rium belief model of some theory Γ iff I is a belief model of Γ and there is no
other belief model I ′ of Γ such that I ′ ≺ I. ��
By EQB[Γ] we denote the set of equilibrium belief models of Γ . As a final step,
we impose a fixpoint condition to minimise the agent’s knowledge as follows.

Definition 7. A belief view W is called an equilibrium world view of Γ iff:

W = { T | (W, T) ∈ EQB[Γ] } ��
Example 8 (Example 5 continued). Back to Γ3 = {K a → a}, remember its
unique founded G91-world view was [∅]. It is easy to see that I = ([∅], ∅) ∈
EQB[Γ3] because ([∅], ∅) |= Γ3 and no smaller belief model can be obtained.
Moreover, [∅] is an equilibrium world view of Γ3 since no other T ∈ [∅] satisfies
([∅], T) ∈ EQB[Γ3]. The only possibility is ([∅], {a}) but it fails because there is
a smaller belief model ([∅], ∅, {a}) satisfying K a → a. As for the other potential
world view [{a}], it is not in equilibrium: we already have I ′ = ([{a}], {a}) ∈
EQB[Γ3] because the smaller interpretation I ′′ = ([〈∅, {a}〉], {a}, {a}) also sat-
isfies Γ3. In particular, note that I ′′ |= K a and, thus, clearly satisfies K a → a.

��

Founded World Views with Autoepistemic Equilibrium Logic 143

The logic induced by equilibrium world views is called Founded Autoepistemic
Equilibrium Logic (FAEEL). A first important property is:

Theorem 2. FAEEL satisfies foundedness. ��

A second interesting feature is that equilibrium world views are also G91-
world views though the converse may not be the case (as we just saw in Exam-
ple 8). This holds, not only for programs, but in general for any theory:

Theorem 3. For any theory Γ , its equilibrium world views are also G91-world
views of Γ . ��

In other words, FAEEL is strictly stronger than G91, something that, as we
see next, is not the case in other approaches in the literature.

Example 9. The following program:

a ∨ b c ← K a ⊥ ← ¬c (Π3)

has no G91-world views, but according to G11, K15, F15 and S17 has world
view [{a, c}]. This example was also used in [1] to show that these semantics do
not satisfy another property, called there epistemic splitting. ��

Example 10 (Example 6 continued). Take again program Π1 whose G91-world
views were W = [{a}, {b}] and W

′ = [{a, b}]. Since W
′ is unfounded, it cannot

be an equilibrium world view (Theorem2), leaving W as the only candidate
(Theorem 3). Let us check that this is in fact an equilibrium world view. First,
note that I = ([{a}, {b}], {a}) ∈ EQB[Π1] because there is no model I ′ of Π1

such that I ′ � I. In fact, it is easy to see that ([〈H1, {a}〉, 〈H2, {b}〉],H3, {a}) is
not a model of the rule a ∨ b if Hi = ∅ for any i ∈ {1, 2, 3}. Symmetrically, we
have that I ′ = ([{a}, {b}], {b}) ∈ EQB[Π1] too. Finally, we have to check that
no other T ∈ [{a}, {b}] can form an equilibrium belief model. For the case T = ∅,
it is easy to check that ([{a}, {b}], ∅) does not satisfy a ∨ b. For T = {a, b}, we
have that I ′′ = ([{a}, {b}], {a, b}) ∈ EQB[Π1] because, for instance, the smaller
I ′′′ = ([{a}, {b}], {a}, {a, b}) is a model of Π1. ��

Theorems 2 and 3 assert that any equilibrium world view is a founded G91-
world view. The natural question is whether the opposite also holds. In Exam-
ples 8, 9 and 10 we did not find any counterexample, and this is in fact a general
property, as stated below.

Main Theorem. Given any program Π, its equilibrium world views coincide
with its founded G91-world views. ��

An interesting observation is that in all the original examples of epistemic
specifications [4,7] used by Gelfond to introduce G91, modal operators occurred
in the scope of negation. Negated beliefs never incur unfoundedness, so this
feature could not be spotted using this family of examples. In fact, under this
syntactic restriction, FAEEL and G91 coincide.

144 P. Cabalar et al.

program world views

a ∨ b [{a}, {b}]
a ∨ b

[{a}, {b}]
a ← K b

a ∨ b
[{a}]

a ← ¬K b

a ∨ b
[{a, c}, {b, c}]

c ← ¬K b

a ← ¬K b
[{a}] , [{b}]

b ← ¬K a

a ← ¬K¬a
[{a}]

a ← ¬K a

program G91/G11/FAEEL K15/F15/S17

a ← ¬K¬a [∅] , [{a}] [{a}]
a ∨ b

none [{a}]
a ← ¬K¬b

a ∨ b
[{a}] , [{a}, {b}] [{a}, {b}]

a ← K¬b
a ← b

[∅] , [{a, b}] [{a, b}]
b ← ¬K¬a
a ← ¬K¬b

[∅] , [{a}, {b}] [{a}, {b}]
b ← ¬K¬a

Fig. 1. On the left, examples where G91, G11, K15, F15, S17 and FAEEL agree. On
the right, examples where FAEEL/G91/G11 differ from K15/F15/S17.

Proposition 2. For any theory where all occurrences of K are in the scope
of negation, we have that the equilibrium world views and the G91-world views
coincide. ��

Proposition 2 also holds for semantics [21,22] that are conservative extensions
of G91, as well as for G11. Apart from foundedness, [1] recently proposed other
four properties for semantics of epistemic specifications. We analyse here three
of them, omitting the so-called epistemic splitting due to lack of space.

1. supra-ASP holds when, for any objective theory Γ , either Γ has a unique
world view W = SM[Γ] = ∅ or SM[Γ] = ∅ and Γ has no world view.

2. supra-S5 holds when every world view W of a theory Γ is also an S5-model
of Γ (that is, W |= Γ).

3. subjective constraint monotonicity holds when, for any theory Γ and any
subjective constraint ⊥ ← ϕ, we have that W is a world view of Γ ∪{⊥ ← ϕ}
iff both W is a world view of Γ and W is not an S5-model of ϕ.

Proposition 3. FAEEL satisfies supra-ASP, supra-S5 and subjective constraint
monotonicity. ��
All semantics discussed in this paper satisfy the above first two properties but
most of them fail for subjective constraint monotonicity, as first discussed in [10].
In fact, a variation of Example 9 can be used to show that K15, F15 and S17 do
not satisfy this property.

Example 11 (Example 9 continued). Suppose we remove the constraint (last rule)
from Π3 getting the program Π4 = {a ∨ b , c ← K a}. All semantics, including
G91 and FAEEL, agree that Π4 has a unique world view [{a}, {b}]. Suppose we
add now a subjective constraint Π5 = Π4 ∪ {⊥ ← ¬K c}. This addition leaves
G91 and FAEEL without world views (due to subjective constraint monotonic-
ity) the same happens for G11, but not for K15, F15 and S17, which provide a
new world view [{a, c}] not obtained before adding the subjective constraint. ��

Founded World Views with Autoepistemic Equilibrium Logic 145

Tables 1 and 2 show a list of examples taken from Table 4 in [2] and their
world views according to different semantics.

program G91 G11/FAEEL K15 F15/S17
a ← ¬K¬b ∧ ¬b

[∅] , [{a}, {b}] [{a}, {b}]
b ← ¬K¬a ∧ ¬a

a ← K a [∅] , [{a}] [∅]
a ← K a

[{a}] none
a ← ¬K a

Fig. 2. Examples splitting different semantics. Examples 6 and 9 in the paper can be
used to further split FAEEL and G11.

6 Conclusions

In order to characterise self-supported world-views, already present in Gelfond’s
1991 semantics [4] (G91), we have extended the definition of unfounded sets from
standard logic programs to epistemic specifications. As a result, we proposed
the foundedness property for epistemic semantics, which is not satisfied by other
approaches in the literature. Our main contribution has been the definition of a
new semantics, based on the so-called Founded Autoepistemic Equilibrium Logic
(FAEEL), that satisfies foundedness. This semantics actually covers the syntax
of any arbitrary modal theory and is a combination of Equilibrium Logic and
Autoepistemic Logic. As a main result, we were able to prove that, for the syntax
of epistemic specifications, FAEEL world views coincide with the set of G91
world views that are founded. We showed how this semantics behaves on a set of
common examples in the literature and proved that it satisfies other three basic
properties: all world views are S5 models (supra-S5); standard programs have
(at most) a unique world view containing all the stable models (supra-ASP);
and subjective constraints just remove world views (monotonicity). FAEEL also
satisfies the property of epistemic splitting as proposed in [1], but we leave the
proof and discussion for future work, together with a formal comparison with
other approaches.

Acknowledgements. We are thankful to Michael Gelfond and David Pearce for their
helpful comments on early versions of this work and to the anonymous reviewers for
their valuable feedback in improving the paper.

146 P. Cabalar et al.

References

1. Cabalar, P., Fandinno, J., Fariñas del Cerro, L.: Splitting Epistemic Logic Pro-
grams. arXiv e-prints arXiv:1812.08763. December 2018

2. Fariñas del Cerro, L., Herzig, A., Su, E.I.: Epistemic equilibrium logic. In: Proceed-
ings of the International Joint Conference on Artificial Intelligence, IJCAI 2015,
pp. 2964–2970. AAAI Press (2015)

3. Gelder, A.V., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. J. ACM 38(3), 620–650 (1991)

4. Gelfond, M.: Strong introspection. In: Dean, T.L., McKeown, K. (eds.) Proceedings
of the AAAI Conference, vol. 1, pp. 386–391. AAAI Press/The MIT Press (1991)

5. Gelfond, M.: New semantics for epistemic specifications. In: Delgrande, J.P., Faber,
W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp. 260–265. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-20895-9 29

6. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming.
In: Proceedings of the 5th International Conference on Logic Programming, ICLP
1988, pp. 1070–1080 (1988)

7. Gelfond, M., Przymusinska, H.: Reasoning on open domains. In: Proceedings of the
International Conference on Logic Programming and Non-Monotonic Reasoning,
LPNMR 1993, pp. 397–413. MIT Press (1993)

8. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der
Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse,
pp. 42–56 (1930)

9. Kahl, P., Watson, R., Balai, E., Gelfond, M., Zhang, Y.: The language of epistemic
specifications (refined) including a prototype solver. J. Logic Comput. (2015). (Spe-
cial issue article)

10. Kahl, P.T., Leclerc, A.P.: Epistemic logic programs with world view constraints.
In: ICLP (Technical Communications), vol. 64, pp. 1:1–1:17. OASICS, Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2018)

11. Konolige, K.: On the relation between default and autoepistemic logic. Artif. Intell.
35(3), 343–382 (1988)

12. Leone, N., Rullo, P., Scarcello, F.: Disjunctive stable models: unfounded sets, fix-
point semantics, and computation. Inf. Comput. 135(2), 69–112 (1997)

13. Marek, V.W., Truszczynski, M.: Relating autoepistemic and default logics. In: KR,
pp. 276–288. Morgan Kaufmann (1989)

14. Moore, R.C.: Possible-world semantics for autoepistemic logic. In: Proceedings of
the Non-Monotonic Reasoning Workshop, Mohonk Mountain House, New Paltz,
NY 12561, USA, 17–19 October 1984. pp. 344–354. American Association for Arti-
ficial Intelligence (AAAI) (1984)

15. Moore, R.C.: Semantical considerations on nonmonotonic logic. Artif. Intell. 25(1),
75–94 (1985). https://doi.org/10.1016/0004-3702(85)90042-6

16. Niemelä, I.: Constructive tightly grounded autoepistemic reasoning. In: IJCAI, pp.
399–405. Morgan Kaufmann (1991)

17. Pearce, D.: A new logical characterisation of stable models and answer sets. In:
Dix, J., Pereira, L.M., Przymusinski, T.C. (eds.) NMELP 1996. LNCS, vol. 1216,
pp. 57–70. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0023801

18. Schwarz, G.: Autoepistemic logic of knowledge. In: Nerode, A., Marek, V.W., Sub-
rahmanian, V.S. (eds.) Logic Programming and Non-monotonic Reasoning, Pro-
ceedings of the First International Workshop, Washington, D.C., USA, July 1991,
pp. 260–274. The MIT Press (1991)

http://arxiv.org/abs/arXiv:1812.08763
https://doi.org/10.1007/978-3-642-20895-9_29
https://doi.org/10.1016/0004-3702(85)90042-6
https://doi.org/10.1007/BFb0023801

Founded World Views with Autoepistemic Equilibrium Logic 147

19. Schwarz, G.: Minimal model semantics for nonmonotonic modal logics. In: Pro-
ceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science
1992, LICS 1992, pp. 34–43. IEEE (1992)

20. Shen, Y., Eiter, T.: Evaluating epistemic negation in answer set programming
(extended abstract). In: Proceedings of the International Joint Conference on Arti-
ficial Intelligence, IJCAI 2017, pp. 5060–5064 (2017)

21. Truszczyński, M.: Revisiting epistemic specifications. In: Balduccini, M., Son, T.C.
(eds.) Logic Programming, Knowledge Representation, and Nonmonotonic Reason-
ing. LNCS (LNAI), vol. 6565, pp. 315–333. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-20832-4 20

22. Wang, K., Zhang, Y.: Nested epistemic logic programs. In: Baral, C., Greco, G.,
Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 279–
290. Springer, Heidelberg (2005). https://doi.org/10.1007/11546207 22

https://doi.org/10.1007/978-3-642-20832-4_20
https://doi.org/10.1007/978-3-642-20832-4_20
https://doi.org/10.1007/11546207_22

Towards Dynamic Answer Set
Programming over Finite Traces

Pedro Cabalar2 , Mart́ın Diéguez1 , and Torsten Schaub3,4,5(B)

1 ENIB, Brest, France
martin.dieguez@enib.fr

2 University of Corunna, A Coruña, Spain
pedro.cabalar@udc.es

3 University of Potsdam, Potsdam, Germany
torsten@cs.uni-potsdam.de

4 Simon Fraser University, Burnaby, Canada
5 Griffith University, Brisbane, Australia

Abstract. Our ultimate goal is to conceive an extension of Answer Set
Programming with language constructs from dynamic (and temporal)
logic to provide an expressive computational framework for modeling
dynamic applications. To address this in a semantically well founded way,
we generalize the definition of Dynamic Equilibrium Logic to accommo-
date finite linear time and extend it with a converse operator in order to
capture past temporal operators. This results in a general logical frame-
work integrating existing dynamic and temporal logics of Here-and-There
over both finite and infinite time. In the context of finite time, we then
develop a translation of dynamic formulas into propositional ones that
can in turn be translated into logic programs.

1 Introduction

Answer Set Programming (ASP [13]) has become a popular approach to solving
knowledge-intense combinatorial search problems due to its performant solv-
ing engines and expressive modeling language.However, both are mainly geared
towards static domains and lack native support for handling dynamic applica-
tions. We have addressed this shortcoming over the last decade by creating a
temporal extension of ASP [1] based on Linear Temporal Logic (LTL [15]) that
has recently led to the temporal ASP system telingo [5]. The approach of LTL
has however its limitations when it comes to expressing control over temporal
trajectories. Such control can be better addressed with Dynamic Logic (DL [16]),
offering a more fine-grained approach to temporal reasoning thanks to the pos-
sibility to form complex actions from primitive ones. 1 To this end, DL relies on
modal propositions, like [ρ]ϕ, to express that all executions of (complex) action
ρ terminate in a state satisfying ϕ. As an example, consider a “Russian roulette”
variation of the Yale-shooting-scenario, so the turkey is dead after we pull the
1 The same consideration led to GOLOG [12] in the context of the situation calculus.

c© Springer Nature Switzerland AG 2019
M. Balduccini et al. (Eds.): LPNMR 2019, LNAI 11481, pp. 148–162, 2019.
https://doi.org/10.1007/978-3-030-20528-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20528-7_12&domain=pdf
http://orcid.org/0000-0001-7440-0953
http://orcid.org/0000-0003-3440-4348
http://orcid.org/0000-0002-7456-041X
https://doi.org/10.1007/978-3-030-20528-7_12

Towards Dynamic Answer Set Programming over Finite Traces 149

trigger as many times as needed until we reach the loaded chamber. This can
be expressed in DL via the proposition: [while ¬loaded do trigger ; trigger] dead .
The term within brackets delineates trajectories matching the regular expres-
sion ‘(¬loaded?; trigger)∗; loaded?; trigger ’, where ϕ? tests whether ϕ holds at
the state at hand, and ‘;’ and ‘∗’ are the sequential composition and iteration
operators, respectively. With this, the above proposition is satisfied whenever
the state following a matching trajectory entails dead .

This expressive power motivated us to introduce the basic foundations of an
extension of ASP with dynamic operators from DL in [4]. In what follows, we
build upon these foundations (i) to introduce a general logical framework com-
prising previous dynamic and temporal extensions and (ii) to elaborate upon a
translation to propositional theories that can in turn be compiled into logic pro-
grams. To this end, we follow the good practice of first introducing an extension
to ASP’s base logic, the Logic of Here-and-There (HT [11]), and then to devise
an appropriate reduction. An HT interpretation 〈H,T 〉 is a pair of interpreta-
tions that can be seen as being three-valued, where atoms in H are “certainly
true,” atoms not in T are “false” and atoms in T are “potentially true.” This
explains the usual condition H ⊆ T , meaning that anything certainly true is also
potentially true. An HT interpretation 〈H,T 〉 is said to be total if H = T , that
is, the mapping becomes two-valued. Total interpretations satisfying a certain
minimality condition are known to correspond to stable models; they are also
referred to as equilibrium models, and the resulting logic is called Equilibrium
Logic (EL). For capturing (linear) time, sequences of such HT interpretations are
considered, similar to LTL. In accord with [7], we argue that such linear traces
provide an appropriate semantic account of time in our context, and thus base
also our dynamic extension of ASP on the same kind of semantic structures.

Our ultimate goal is to conceive an extension of ASP with language con-
structs from dynamic (and temporal) logic in order to provide an expressive
computational framework for modeling dynamic applications. To address this in
a semantically well founded way, we generalize the definition of Dynamic HT
and EL (DHT/DEL [4]) to accommodate finite traces and augment it with a
converse operator (in order to capture past temporal operators). This not only
allows us to embed temporal extensions of ASP, such as Temporal Equilibrium
Logic over finite traces (TELf [5]) along with its past and future operators, and
more standard ones like LTLf [7], but moreover provides us with blueprints for
implementation on top of existing (temporal) ASP solvers like telingo. Indeed,
DELf can be regarded as a non-monotonic counterpart of LTLf [7], being in
an analogous relationship as classical and equilibrium logic, or SAT and ASP,
respectively.

More precisely, we start in Sect. 2 by defining a general logical framework
integrating existing dynamic and temporal logics of Here-and-There and their
associated Equilibrium logics over both finite and infinite traces. Section 3 is
dedicated to the computational development of our approach in the context of
finite traces. We introduce a translation from dynamic formulas to propositional
ones by relying on a normal form for complex actions. Finally, Sect. 4 concludes
the paper.

150 P. Cabalar et al.

2 Linear Dynamic Equilibrium Logic

Given a set A of propositional variables (called alphabet), dynamic formulas ϕ
and path expressions ρ are mutually defined as in [7] by the pair of grammar
rules:

ϕ ::=a | ⊥ | � | [ρ]ϕ | 〈ρ〉ϕ , ρ ::=� | ϕ? | ρ + ρ | ρ ; ρ | ρ∗ | ρ− .

Each ρ is a regular expression formed with the truth constant � plus the test
construct ϕ? typical of Dynamic Logic (DL [9]). An important feature that
departs from DL is that, in the latter, atomic path expressions are formed with
a sort of so-called atomic actions that is separated from propositional atoms in
A, used for formulas. We adopt the approach of [7] and considering that the
only atomic path expression is �, keeping the test construct ϕ? that may refer
to propositional atoms in the (single) alphabet A.

As we show further below, the above language allows us to capture several
derived operators, like the Boolean and temporal ones:

ϕ ∧ ψ
def
= 〈ϕ?〉ψ ϕ ∨ ψ

def
= 〈ϕ? + ψ?〉 �

ϕ → ψ
def
= [ϕ?]ψ ¬ϕ

def
= ϕ → ⊥

def
= [�]⊥ I def

= [�−]⊥
◦ϕ

def
= 〈�〉ϕ •ϕ

def
= 〈�−〉ϕ

◦̂ϕ
def
= [�]ϕ •̂ϕ

def
= [�−]ϕ

♦ϕ
def
= 〈�∗〉ϕ �ϕ

def
= 〈�∗−〉ϕ

�ϕ
def
= [�∗]ϕ �ϕ

def
= [�∗−]ϕ

ϕ ψ
def
= 〈(ϕ?;�)∗〉ψ ϕ S ψ

def
= 〈(ϕ?;�)∗−〉ψ

ϕ ψ
def
= (ψ (ϕ ∧ ψ)) ∨ �ψ ϕ T ψ

def
= (ψ S (ϕ ∧ ψ)) ∨ �ψ

While negation ¬ is expressed as usual in HT via implication, all other connec-
tives are defined in terms of the dynamic operators 〈·〉 and [·] . This involves the
Booleans’ ∧, ∨, and →, among which the definition of → is most noteworthy
since it hints at the implicative nature of [·] , as well as the future temporal oper-
ators , standing for final, next, weak next, eventually, always,
until, and release, and their past-oriented counterparts: I, •, •̂, �, �, S, T. The
weak one-step operators, ◦̂ and •̂, are of particular interest when dealing with
finite traces, since their behavior differs from their genuine counterparts only
at the ends of a trace. In fact, ◦̂ϕ can also be expressed as (and •̂ as
•ϕ∨ I). Finally, note that the converse operator ρ− is essential for expressing all
temporal past operators, whose addition in temporal logic is exponentially more
succinct than using only future operators [2]. A formula is propositional, if all its
connectives are Boolean, and temporal, if it includes only Boolean and temporal
ones. A dynamic formula is said to be conditional if it contains some occurrence
of an atom p ∈ A inside a [·] operator; it is called unconditional otherwise. Note
that formulas with atoms in implication antecedents or negated formulas are also
conditional, since they are derived from [·] . For instance, [p?]⊥ is conditional,

Towards Dynamic Answer Set Programming over Finite Traces 151

and is actually the same as p → ⊥ and ¬p. As usual, a (dynamic) theory is a set
of (dynamic) formulas.

Following the definition of linear DL (LDL) in [7], we sometimes use a propo-
sitional formula φ as a path expression actually standing for (φ?;�). Another
abbreviation is the sequence of n repetitions of some expression ρ defined as
ρ0

def
= �? and ρn+1 def

= ρ; ρn. For instance, ρ3 = ρ; ρ; ρ;�? which amounts to
ρ; ρ; ρ, as we see below.

Given a ∈ N and b ∈ N∪{ω}, we let [a..b] stand for the set {i ∈ N | a ≤ i ≤ b}
and [a..b) for {i ∈ N | a ≤ i < b}. For the semantics, we start by defining a trace
of length λ over alphabet A as a sequence 〈Hi〉i∈[0..λ) of sets Hi ⊆ A. A trace
is infinite if λ = ω and finite otherwise, that is, λ = n for some natural number
n ∈ N. Given traces H = 〈Hi〉i∈[0..λ) and H′ = 〈H ′

i〉i∈[0..λ) both of length λ,
we write H ≤ H′ if Hi ⊆ H ′

i for each i ∈ [0..λ); accordingly, H < H′ iff both
H ≤ H′ and H �= H′.

A Here-and-There trace (for short HT-trace) of length λ over alphabet A is
a sequence of pairs 〈Hi, Ti〉i∈[0..λ) such that Hi ⊆ Ti ⊆ A for any i ∈ [0..λ). As
before, an HT-trace is infinite if λ = ω and finite otherwise. We often represent
an HT-trace as a pair of traces 〈H,T〉 of length λ where H = 〈Hi〉i∈[0..λ) and
T = 〈Ti〉i∈[0..λ) and H ≤ T. A particular type of HT-traces satisfy H = T and
are called total.

We proceed by generalizing the extension of HT with dynamic operators,
called DHT in [4], to HT-traces of fixed length in order to integrate finite as well
as infinite traces, and by adding the converse operator. The overall definition of
DHT satisfaction relies on a double induction. Given any HT-trace M = 〈H,T〉,
we define DHT satisfaction of formulas, M, k |= ϕ, in terms of an accessibility
relation for path expressions ‖ρ‖M ⊆ N

2 whose extent depends again on |=.

Definition 1 (DHT satisfaction). An HT-trace M = 〈H,T〉 of length λ over
alphabet A satisfies a dynamic formula ϕ at time point k ∈ [0..λ), written
M, k |= ϕ, if the following conditions hold:

1. M, k |= � and M, k � |= ⊥
2. M, k |= a if a ∈ Hk for any atom a ∈ A
3. M, k |= 〈ρ〉ϕ if M, i |= ϕ for some i with (k, i) ∈ ‖ρ‖M
4. M, k |= [ρ]ϕ if M′, i |= ϕ for all i with (k, i) ∈ ‖ρ‖M′

for both M′ = M and M′ = 〈T,T〉
where, for any HT-trace M, ‖ρ‖M ⊆ N

2 is a relation on pairs of time points
inductively defined as follows.

5. ‖�‖M def
= {(i, i + 1) | i, i + 1 ∈ [0..λ)}

6. ‖ϕ?‖M def
= {(i, i) | M, i |= ϕ}

7. ‖ρ1+ρ2‖M def
= ‖ρ2‖M ∪ ‖ρ2‖M

8. ‖ρ1 ; ρ2‖M def
= {(i, j) | (i, k) ∈ ‖ρ1‖Mand (k, j) ∈ ‖ρ2‖Mfor some k}

9. ‖ρ∗‖M def
=

⋃

n≥0 ‖ρn‖M
10. ‖ρ−‖M def

= {(i, j) | (j, i) ∈ ‖ρ‖M} ��

152 P. Cabalar et al.

The following properties can be easily observed by inspection of the semantics.

Proposition 1. Relation ‖ρ‖M defined above satisfies ‖ρ‖M ⊆ [0..λ) × [0..λ).��
Proposition 2. If ρ is converse-free and (i, j) ∈ ‖ρ‖M then i ≤ j. ��

As we can see, 〈ρ〉ϕ and [ρ]ϕ quantify over time points i that are reachable
under path expression ρ at the current point k, that is, (k, i) ∈ ‖ρ‖M. The main
difference with respect to [4] is that ‖ρ‖M ⊆ [0..λ)×[0..λ) so that all pairs in that
relation are now confined to the set of defined time points [0..λ). This additional
restriction is due to two reasons. First, it is now possible to access time points
in the past i < k using the converse operator ρ−, something impossible with the
converse-free path expressions in [4]. As a result, we must restrict i ≥ 0 to avoid
going backwards, further than the initial situation. Second, for a similar reason,
when we have a finite length λ = n, we must also impose i < n, something not
needed for infinite traces λ = ω since any natural number obviously satisfies
i < ω.

An HT-trace M is a model of a dynamic theory Γ if M, 0 |= ϕ for all ϕ ∈ Γ .
We write DHT(Γ, λ) to stand for the set of DHT models of length λ of a theory
Γ , and define DHT(Γ) def

=
⋃ω

λ=0 DHT(Γ, λ), that is, the whole set of models of
Γ of any length. When Γ = {ϕ} we just write DHT(ϕ, λ) and DHT(ϕ).

A formula ϕ is a tautology (or is valid), written |= ϕ, iff M, k |= ϕ for
any HT-trace and any k ∈ [0..λ). We call the logic induced by the set of all
tautologies (Linear) Dynamic logic of Here-and-There (DHT for short). Two
formulas ϕ,ψ are said to be equivalent, written ϕ ≡ ψ, whenever M, k |= ϕ iff
M, k |= ψ for any HT-trace M and any k ∈ [0..λ). This allows us to replace ϕ
by ψ and vice versa in any context, and is the same as requiring that ϕ ↔ ψ
is a tautology. Note that this relation, ϕ ≡ ψ, is stronger than coincidence
of models DHT(ϕ) = DHT(ψ). For instance, DHT(•�) = DHT(〈�−〉�) = ∅
because models are checked at the initial situation k = 0 and there is no previous
situation at that point, so DHT(•�) = DHT(⊥). However, in general, •� �≡ ⊥
since •� is satisfied for any k > 0 (for instance ◦•� �≡ ◦⊥ but ◦•� ≡ � instead).

As with formulas, we say that path expressions ρ1, ρ2 are equivalent, written
ρ1 = ρ2, when ‖ρ1‖M = ‖ρ2‖M for any HT-trace M. For instance, it is easy to
see that:

(ρ1; ρ2); ρ3 = ρ1; (ρ2; ρ3) ρ∗ = �? + (ρ; ρ∗)
�?; ρ = ρ;�? = ρ ρ; ρ∗ = ρ∗; ρ

The following equivalences of path expressions allow us to push the converse
operator inside, until it is only applied to �.

Proposition 3. For all path expressions ρ1, ρ2 and ρ and for all formulas ϕ,
the following equivalences hold:

(ρ−)− = ρ (ϕ?)− = ϕ? (ρ∗)− = (ρ−)∗

(ρ1 + ρ2)− = ρ−
1 + ρ−

2 (ρ1; ρ2)− = ρ−
2 ; ρ−

1

Towards Dynamic Answer Set Programming over Finite Traces 153

We prove next that a pair of basic properties from HT already satisfied in [4]
are maintained in the current extension of DHT.

Proposition 4 (Persistence). For any HT-trace 〈H,T〉 of length λ, any
dynamic formula ϕ and any path expression ρ, we have:

1. 〈H,T〉, k |= ϕ implies 〈T,T〉, k |= ϕ, for all k ∈ [0..λ)
2. ‖ρ‖〈H,T〉 ⊆ ‖ρ‖〈T,T〉. ��
Persistence is a property known from intuitionistic logic; it expresses that acces-
sible worlds satisfy the same or more formulas than the current world, where T
is “accessible” from H in HT. This also explains the semantics of [ρ]ϕ, which
behaves as a kind of intuitionistic implication (used to define ‘→’ as a derived
operator) and so, it must hold for all accessible worlds, viz. 〈H,T〉 and 〈T,T〉.

For simplicity, we refrain from introducing the semantics of LDL [7], since it
just corresponds to DHT on total traces 〈T,T〉, as stated below. Let us simply
use T, k |= ϕ to denote the satisfaction of ϕ by a trace T at point k in LDL
and ‖ρ‖T the LDL accessibility relation for ρ and T.

Proposition 5. For any total HT-trace 〈T,T〉 of length λ, any dynamic for-
mula ϕ and any path expression ρ, we have: (1) 〈T,T〉, k |= ϕ iff T, k |= ϕ,
for all k ∈ [0..λ); and (2) ‖ρ‖〈T,T〉 = ‖ρ‖T. ��
Accordingly, any total HT-trace 〈T,T〉 can be seen as the LDL-trace T. In
fact, under total models, the satisfaction of dynamic operators 〈ρ〉 and [ρ] in
DHT collapses to that in LDL. Moreover, the first item implies that any DHT
tautology is also an LDL tautology, so the former constitutes a weaker logic. To
show that, in fact, DHT is strictly weaker, note that it does not satisfy some
classical tautologies like the excluded middle ϕ ∨ ¬ϕ, while LDL is a proper
extension of classical logic. In fact, the addition of the axiom schema

�(a ∨ ¬a) for each atom a ∈ A in the alphabet (EM)

forces total models and so, makes DHT collapse to LDL. Propositions 4 and 5
imply that ϕ is DHTf satisfiable iff it is LDLf satisfiable. Since the latter is a
PSpace-complete problem [7], the same applies to DHTf satisfiability.

The next theorem shows that derived operators follow the expected defini-
tions from HT and THT (and LTL).

Theorem 1. Let M = 〈H,T〉 be an HT-trace of length λ over alphabet A. Given
the respective definitions of derived operators, we get the following satisfaction
conditions:

1. M, k |= ϕ ∧ ψ iff M, k |= ϕ and M, k |= ψ
2. M, k |= ϕ ∨ ψ iff M, k |= ϕ or M, k |= ψ
3. M, k |= ϕ → ψ iff M′, k � |= ϕ or M′, k |= ψ, for both M′ = M and

M′ = 〈T,T〉

154 P. Cabalar et al.

4. M, k |= ¬ϕ iff 〈T,T〉, k � |= ϕ

5. iff k + 1 = λ
6. M, k |= ◦ϕ iff k + 1 < λ and M, k+1 |= ϕ
7. M, k |= ◦̂ϕ iff k + 1 = λ or M, k+1 |= ϕ
8. M, k |= ♦ϕ iff M, i |= ϕ for some i ∈ [k..λ)
9. M, k |= �ϕ iff M, i |= ϕ for all i ∈ [k..λ)

10. iff for some j ∈ [k..λ), we have M, j |= ψ and M, i |= ϕ
for all i ∈ [k..j)

11. iff for all j ∈ [k..λ), we have M, j |= ψ or M, i |= ϕ for
some i ∈ [k..j)

12. M, k |= I iff k = 0
13. M, k |= • ϕ iff k > 0 and M, k−1 |= ϕ
14. M, k |= •̂ ϕ iff k = 0 or M, k−1 |= ϕ
15. M, k |= �ϕ iff M, i |= ϕ for all i ∈ [0..k]
16. M, k |= �ϕ iff M, i |= ϕ for some i ∈ [0..k]
17. M, k |= ϕSψ iff for some j ∈ [0..k], we have M, j |= ψ and M, i |= ϕ for

all i ∈ [j + 1..k]
18. M, k |= ϕ T ψ iff for all j ∈ [0..k], we have M, j |= ψ or M, i |= ϕ for

some i ∈ [j + 1..k]

as well as the relation:

19. ‖φ‖M = {(i, i + 1) | M, i |= φ} for any propositional formula φ. ��
An important observation above is that the satisfaction conditions for the
Boolean operators amounts to standard HT while the interpretation of LTL
operators (temporal formulas) subsume all the different previous versions of the
Temporal logic of Here and There (THT), including the original definition for
infinite traces [1], its extension to past operators [2], and its variant on finite
traces [5].

Corollary 1. Let ϕ be a temporal formula, M an HT-trace and k ≥ 0. Then,
M, k |= ϕ under THT satisfaction iff M, k |= ϕ under DHT satisfaction. ��
Since our new definition also subsumes DHT for infinite traces [4] (when λ = ω),
we may classify all these previous approaches as follows. In analogy to [5], we
consider several logics that are stronger than DHT and that can be obtained by
the addition of axioms (or the corresponding restriction on sets of traces). For
instance, we denote [4] as DHTω and define it as , that is, DHT
where we exclusively consider infinite HT-traces. The finite-trace version, we call
DHTf , corresponds to instead. Linear Dynamic Logic for possibly
infinite traces, LDL, can be obtained as DHT+{(EM)}, that is, DHT with total
HT-traces. Accordingly, we can define LDLω as DHTω + {(EM)}, i.e. infinite
and total HT-traces, and obtain LDLf as DHTf +{(EM)}, that is, LDL on finite
traces [7]. Then, the variants THTω, THTf , LTLω, LTLf respectively refer to
DHTω, DHTf , LDLω, LDLf on the restricted syntax of temporal formulas.

Towards Dynamic Answer Set Programming over Finite Traces 155

We now introduce non-monotonicity by selecting a particular set of traces
that we call temporal equilibrium models. First, given an arbitrary set S of HT-
traces, we define the ones in equilibrium as follows.

Definition 2 (Temporal Equilibrium/Stable models). Let S be some set
of HT-traces. A total HT-trace 〈T,T〉 ∈ S is an equilibrium trace of S iff there
is no other 〈H,T〉 ∈ S such that H < T. If this is the case, we also say that
trace T is a stable trace of S. We further talk about temporal equilibrium or
temporal stable models of a theory Γ when S = DHT(Γ), respectively. ��
We write DEL(Γ, λ) and DEL(Γ) to stand for the temporal equilibrium models
of DHT(Γ, λ) and DHT(Γ) respectively. Note that, due to Proposition 5, stable
traces in DEL(Γ) are also LDL-models of Γ and, thus, DEL is stronger than
LDL. Besides, as the ordering relation among traces is only defined for a fixed
λ, it is easy to see:

Proposition 6. The set of temporal equilibrium models of Γ can be partitioned
by the trace length λ, that is,

⋃ω
λ=0 DEL(Γ, λ) = DEL(Γ). ��

(Linear) Dynamic Equilibrium Logic (DEL) is the non-monotonic logic
induced by temporal equilibrium models of dynamic theories. We obtain the
variants DELω and DELf by applying the corresponding restriction to infinite
or finite traces, respectively.

To illustrate non-monotonicity, take the formula:

[(¬h)∗] (¬h → s) (1)

whose reading is “keep sending an sos (s) while no help (h) is perceived.” Intu-
itively, [(¬h)∗] behaves as a conditional referring to any future state after n ≥ 0
repetitions of (¬h?;�). Then, ¬h → s checks whether h fails one more time at
k = n: if so, it makes s true again. Without additional information, this formula
has a unique temporal stable model per each length λ satisfying �(¬h∧ s), that
is, h is never concluded, and so, we repeat s all over the trace. Suppose we add
now the formula 〈�5〉h, that is, h becomes true after five transitions. Then, there
is a unique temporal stable model for each λ > 5 satisfying:

〈(¬h ∧ s)5;h ∧ ¬s; (¬h ∧ ¬s)∗〉�

Clearly, �(¬h∧s) is not entailed any more (under temporal equilibrium models)
showing that DEL is non-monotonic.

One important logical feature that emerges when dealing with a non-
monotonic logic is the concept of strong equivalence [14]. Under a non-monotonic
inference relation, the fact that two theories Γ1 and Γ2 yield the same conse-
quences is too weak to consider that one can be “safely” replaced by the other,
since the addition of new information Γ may make them behave in a different
way. Instead, we normally define a stronger notion of equivalence, requiring that
Γ1 ∪ Γ and Γ2 ∪ Γ have the same behavior, for any additional theory Γ (provid-
ing a context). An important property proved in [14] is that strong equivalence

156 P. Cabalar et al.

of propositional logic programs (and in fact, of arbitrary propositional theories)
corresponds to regular equivalence in the monotonic logic of HT. This result
reinforces the adequacy of the logic of HT as a monotonic basis for equilibrium
logic and Answer Set Programming. Now, considering our setting, we can still
prove that DHT plays a similar role with respect to DEL. Formally, we say
that two dynamic theories Γ1, Γ2 are strongly equivalent if Γ1 ∪ Γ and Γ2 ∪ Γ
have the same temporal equilibrium models, for any additional LDL theory Γ .
Then, we get the following result, by a direct application of the proof obtained
for (converse-free) DHTω (Theorem 2 in [4]) to the general case with converse
operator and arbitrary length λ ∈ N ∪ {ω}:

Theorem 2. Dynamic theories Γ1 and Γ2 are strongly equivalent iff Γ1 ≡ Γ2 in
DHT.

This result shows that DHT-equivalence precisely captures the property of
strong equivalence of dynamic theories. Thus, it is worth commenting some pos-
sible ways of deriving DHT equivalences. We already know that any DHT equiv-
alence must also hold in LDL while, in general, the opposite does not hold, as
with [ρ] q ≡ ¬〈ρ〉 ¬q. Still, some LDL equivalences are preserved in DHT, like
the following unfolding properties.

Proposition 7. The following equivalences hold in DHT.

〈ρ + ρ′〉ϕ ≡ 〈ρ〉ϕ ∨ 〈ρ′〉ϕ
〈ρ ; ρ′〉ϕ ≡ 〈ρ〉 〈ρ′〉ϕ

〈ρ∗〉ϕ ≡ ϕ ∨ 〈ρ〉 〈ρ∗〉ϕ

[ρ + ρ′]ϕ ≡ [ρ]ϕ ∧ [ρ′]ϕ
[ρ ; ρ′]ϕ ≡ [ρ] [ρ′]ϕ

[ρ∗]ϕ ≡ ϕ ∧ [ρ] [ρ∗]ϕ

In Proposition 2 in [4], we proved that (converse-free) LDLω equivalences for
unconditional formulas can also be guaranteed in DHTω. We extend below the
same result for DHT and LDL with converse operator and traces of arbitrary
length.

Proposition 8. For unconditional formulas ϕ and ψ, ϕ ≡ ψ in LDL iff ϕ ≡ ψ
in DHT.

This result suffices to prove the three leftmost equivalences above by resorting to
LDL, but cannot be applied for proving the right ones, as they are conditional—
they contain arbitrary path expressions inside [·] . An interesting fragment are
temporal formulas without → or ¬. They are unconditional, since the definition
of temporal operators only use [·] for �ϕ = [�∗]ϕ and its dual �ϕ = [�∗−]ϕ,
and these formulas do not use atoms in the path expressions. As a consequence of
Proposition 8, the DHT equivalence for temporal formulas without implications
or negations can be directly checked in LTL.

Given any dynamic formula ϕ, we define ϕ− as the result of replacing in ϕ
each (maximal) path expression ρ by ρ−. For instance, given ϕ = [p; q] 〈r−〉 s
we get ϕ = [(p; q)−] 〈r−−〉 s. Notice that the effect of this transformation on
temporal operators is just switching their future/past versions. As an example:

(♦•̂p)− = (〈�∗〉 [�−] p)− = 〈�∗−〉 [�−−] p = �◦̂p

Towards Dynamic Answer Set Programming over Finite Traces 157

Lemma 1. There exists a mapping 	 on finite HT-traces of a fixed length λ =
n ∈ N such that, M, k |= ϕ iff 	(M), n − k |= ϕ−, for any k ∈ [0..λ), any
dynamic formula ϕ and any HT-trace M of length λ = n.

Theorem 3 (Temporal duality theorem). A dynamic formula ϕ is a DHTf

tautology iff ϕ− is a DHTf tautology.

This property does not hold for infinite traces, where is valid but its dual,
¬�I, is false in all traces (we can always reach the initial situation at some point
in the past).

3 Reducing Converse-Free DELf to Propositional ASP

In this section, we show that converse-free DELf can be reduced to propositional
theories (under stable models semantics) by using indexed atoms. Given a set A
of atoms and λ ∈ N, we define Aλ def

= {ai | i ∈ [0..λ) and a ∈ A}. We define the
translation of a converse-free dynamic formula ϕ at i ∈ [0..λ), in symbols

(

ϕ
)

i
,

as follows:

(⊥)

i

def
= ⊥ (�)

i

def
= � (

p
)

i

def
= pi for each p ∈ A

(〈ϕ?〉ψ
)

i

def
=

(

ϕ
)

i
∧ (

ψ
)

i

(

[ϕ?]ψ
)

i

def
=

(

ϕ
)

i
→ (

ψ
)

i

(〈�〉ϕ
)

i

def
=

{
(

ϕ
)

i+1
if i + 1 < λ

⊥ if i + 1 = λ

(

[�]ϕ
)

i

def
=

{
(

ϕ
)

i+1
if i + 1 < λ

� if i + 1 = λ

and, for any other formula α starting with 〈·〉 or [·] , we apply the equivalences
α ≡ β in Proposition 7 to unfold

(

α
)

i
into

(

β
)

i
, further assuming

(

ϕ ⊗ ψ
)

i
=

(

ϕ
)

i
⊗(

ψ
)

i
for ⊗ ∈ {∧,∨}. As an example, consider the formula [p∗] q and assume

that λ = 3:
(
[p∗] q

)
0

=
(
q
)
0

∧ (
[p] [p∗] q

)
0

= q0 ∧ (
[p?] [�] [p∗] q

)
0

= q0 ∧ (p0 → (
[p∗] q

)
1
) then, repeating the pattern

= q0 ∧ (p0 → (q1 ∧ (p1 → (
[p∗] q

)
2
))) that is HT-equivalent to

= q0 ∧ (p0 → q1) ∧ (p0 ∧ p1 → (
[p∗] q

)
2
)

= q0 ∧ (p0 → q1) ∧ (p0 ∧ p1 → (p2 ∧ (
[p] [p∗] q

)
2︸ ︷︷ ︸

�

))

= q0 ∧ (p0 → q1) ∧ (p0 ∧ p1 → p2)

It is easy to see that, applying the same pattern for
(

(1)
)

0
and λ = 3, we get:

(¬h0 → s0) ∧ (¬h0 → (¬h1 → s1)) ∧ (¬h0 ∧ ¬h1 → (¬h2 → s2))
= (¬h0 → s0) ∧ (¬h0 ∧ ¬h1 → s1) ∧ (¬h0 ∧ ¬h1 ∧ ¬h2 → s2)

158 P. Cabalar et al.

Theorem 4 (Partial correctness). Let
(

α
)

i
terminate for formula α and i ∈

[0..λ) with λ ∈ N. For any finite HT-trace M = 〈H,T〉 of length λ, and its
(one-to-one) corresponding HT-interpretation M = 〈{ai | a ∈ Hi}, {ai | a ∈ Ti}〉
on Aλ, we have M, i |= α in DHT iff M |= (

α
)

i
in HT.

As stated above, the previous result only guarantees a partial correctness for the
recursive translation

(

ϕ
)

i
—to get total correctness we further need to guarantee

termination, and this does not hold in the general case.To see why, just consider
the formula [�?∗] q (being equivalent to q) whose translation at i yields

(

[�?∗] q
)

i
= qi ∧ (

[�?] [�?∗] q
)

i
= qi ∧ (� → (

[�?∗] q
)

i
) = qi ∧ (

[�?∗] q
)

i

and generates an infinite sequence of calls to
(

[�?∗] q
)

i
. This problem arises

because the starred expression, �?, leaves situation i unaltered, something that
does not happen with p∗ = (p?;�)∗ used before, as it generated incremental
jumps i + 1 > i and a sequence of calls

(

[p∗] q
)

0
,
(

[p∗] q
)

1
,
(

[p∗] q
)

2
progressing

towards i = λ − 1. We show next that any converse-free path expression ρ∗ can
be equivalently reformulated in such a way that its translation proceeds in a
strictly incremental way, guaranteeing termination. We begin by defining the
following types of path expressions: a (sequential) component θ, a sequence σ
and a normalized disjunction δ are defined by the grammar rules:

θ ::=� | ϕ? | δ∗ σ ::=θ | σ1;σ2 δ ::=θ | δ1 + δ2

Given that addition satisfies distributivity with respect to sequence, viz.

(ρ1 + ρ2); ρ3 ≡ (ρ1; ρ2) + (ρ2; ρ3) ρ1; (ρ2 + ρ3) ≡ (ρ1; ρ2) + (ρ1; ρ3),

it is easy to obtain the following result.

Proposition 9 (Disjunctive Normal Form). Any arbitrary path expression
ρ can be equivalently reformulated as a normalized disjunction δ.

As an example, to normalize the expression (a∗ +b); (c?; d+e?)∗ we can proceed,
for instance, by reducing the inner expression (c?; d+e?) to (c?; d)+(c?; e?) and
then go on applying distributivity outside:

(a∗ + b); (c?; d + e?)∗ = (a∗ + b); ((c?; d) + (c?; e?))∗

= (a∗; ((c?; d) + (c?; e?))∗) + (b; ((c?; d) + (c?; e?))∗)

The last expression is already in normal form. We say that a sequence σ =
θ1; . . . ; θn is incremental if θi = � for some i = 1, . . . , n. A normalized disjunc-
tion δ = σ1 + · · · + σm is incremental if σi is incremental for every i = 1, . . . , m.

Proposition 10. Let δ be an incremental, normalized disjunction and M an
HT-trace. Then, (i, j) ∈ ‖δ‖M implies j > i.

Towards Dynamic Answer Set Programming over Finite Traces 159

In other words, incremental disjunctions always shift the time point strictly
forward. Obviously, not any normalized disjunction δ is incremental, but this is
not a problem as long as it is not combined with the star operator. We say that
a normalized disjunction δ is star-incremental if all the sub-expressions (δ′)∗

of δ satisfy that δ′ is incremental. The key point for guaranteeing termination
is that we can transform any arbitrary path expression into a star-incremental,
normalized disjunction.

Proposition 11. For any expression ρ and formulas ϕ1, . . . , ϕn, we have that
(ρ + (ϕ1?; . . . ;ϕn?))∗ = (ρ)∗ and (ϕ1?; . . . ;ϕn?)∗ = �?.

In other words, we can remove test-only sequences from any iterated disjunction.
As an example ((c?; d) + (c?; e?))∗ amounts to (c?; d)∗. Similarly, if we only
have tests (a?; b?)∗ the whole expression can be just replaced by �?.

Now, to transform any normalized disjunction to become star-incremental,
we can proceed in a bottom-up manner, as described in the proof of the following
proposition, included below to illustrate the process.

Proposition 12. Any converse-free path expression can be transformed into an
equivalent star-incremental, normalized disjunction.

Proof. By Proposition 9, we can assume that we start from a normalized disjunc-
tion. Then, we begin with all the sub-expressions δ∗ where δ is star-free, and
so, trivially star-incremental. To make δ∗ star-incremental too, it suffices with
removing its test-only sequences, applying Proposition 11. Then, we proceed with
δ∗ where δ is not star-free, but is already star-incremental by application of pre-
vious steps. Any non-incremental sequence in δ is a combination of tests and
starred expressions. Suppose we take some non-incremental sequence of δ of
the form σ; ρ∗;σ′. Note that, if σ1 or σ2 are not present, we can assume they
correspond to �?. Then, we can apply the unfolding:

σ; ρ∗;σ′ = σ; (�? + ρ; ρ∗);σ′

= (σ;�?;σ′) + (σ; ρ; ρ∗;σ′)
= (σ;σ′) + (σ; ρ; ρ∗;σ′)

where ρ∗ does not occur in the first sequence, whereas in the second, we can
apply distributivity on all sequences from the first occurrence of ρ. Since δ is
star-incremental, ρ is incremental and so, all the sequences obtained in that
way are incremental too. We would then proceed in the same way with the
next starred-expression in (σ;σ′). The final result, δ′, is equivalent to δ but
contains incremental sequences or test-only expressions. But in (δ′)∗ we can
further remove the test-only expressions (Property 11) and we eventually get a
star-incremental expression. ��

As an example, given (a?; (b + c)∗; d?; e∗)∗, we can unfold (b + c)∗ into

(a?; (b + c)∗; d?; e∗)∗ = ((a?; d?; e∗) + (a?; (b + c); (b + c)∗; d?; e∗))∗

160 P. Cabalar et al.

and unfold again the first sequence into:

= ((a?; d?) + (a?; d?; e; e∗) + (a?; (b + c); (b + c)∗; d?; e∗))∗

By Proposition 11, the test-only sequence (a?; d?) can be removed

= ((a?; d?; e; e∗) + (a?; (b + c); (b + c)∗; d?; e∗))∗

and, now, applying distributivity on (b + c), we get

= ((a?; d?; e; e∗) + (a?; b; (b + c)∗; d?; e∗) + (a?; c; (b + c)∗; d?; e∗))∗

= ((a?; d?; e?;�; e∗) + (a?; b?;�; (b + c)∗; d?; e∗) + (a?; c?;�; (b + c)∗; d?; e∗))∗

and all remaining sequences are incremental.

Theorem 5. Let ϕ be a formula where all its path expressions are star-
incremental, normalized disjunctions, and let i ∈ [0..λ) with λ ∈ N, λ > 0.
Then,

(

ϕ
)

i
terminates.

Corollary 2. Given a fixed length λ ∈ N, any converse-free dynamic theory can
be reduced to a propositional theory with a one-to-one correspondence among the
respective HT-traces (of length λ) and HT-models.

Given that any propositional theory can be translated into an HT-equivalent
disjunctive logic program (cf. [6]), we get the following result.

Corollary 3. Given a fixed length λ ∈ N, any converse-free dynamic theory
can be reduced to a disjunctive logic program with a one-to-one correspondence
among the respective HT-traces (of length λ) and HT-models.

4 Discussion and Conclusions

As we have seen, our current definition of Dynamic Equilibrium Logic (DEL),
covers the previous modal variants of Equilibrium Logic for dealing with time,
including the original Temporal Equilibrium Logic (TEL) [1], its extension to
past operators [2] and its variant on finite traces [5], but also generalizes the
first definition of DEL in [4] by possibly allowing for finite traces and a converse
operator. The recent introduction of Dynamic Logic operators in modal Equi-
librium Logic and the use of finite traces have been obviously motivated by [7],
that previously presented LTL and LDL on finite traces. DEL can be seen as
a non-monotonic extension that allows for capturing temporal stable models of
LDL theories. As happens in the non-temporal case, when we add the excluded
middle axiom, DEL and TEL respectively collapse to the monotonic versions
LDL and LTL. A different approach for extending ASP with linear-time and
dynamic operators was studied in [8], for a rule-based syntax, and later general-
ized in [3] for arbitrary dynamic logic theories. The main difference with respect
to DEL is that [8] starts from the linear version of DL in [10] and keeps separate
alphabets for atomic actions and propositions. Still, as shown in [4], both [8]

Towards Dynamic Answer Set Programming over Finite Traces 161

and [3] can be encoded in DELω. The approaches in [17,18] give encodings of
GOLOG-like control in ASP planning by enforcing that traces are compatible
with a given path expression without any logical underpinnings.

Apart from the general definition of DEL and its relation to other formalisms,
a second contribution of the paper is the translation of any converse-free arbitrary
DELf theory into a propositional logic program. This translation has proved to
be non-trivial: it is based on unfolding path expressions, something potentially
equivalent to the execution of a sequential program. Termination was guaran-
teed by a previous preprocessing of path expressions. Future work includes the
implementation of this translation for the converse-free fragment of the language
together with the extension to other fragments involving the converse operator.

Acknowledgments. This work was partially supported by MINECO, Spain, (grant
TIC2017-84453-P), Xunta de Galicia, Spain, (grant 2016–2019 ED431G/01, CITIC),
ANR, France, (grant ANR-16-ASMA-0002) and DFG, Germany, (grant SCHA 550/9).

References

1. Aguado, F., Cabalar, P., Diéguez, M., Pérez, G., Vidal, C.: Temporal equilibrium
logic: a survey. J. Appl. Non-Class. Log. 23(1–2), 2–24 (2013)

2. Aguado, F., Cabalar, P., Diéguez, M., Pérez, G., Vidal, C.: Temporal equilibrium
logic with past operators. J. Appl. Non-Class. Log. 27(3–4), 161–277 (2017)

3. Aguado, F., Pérez, G., Vidal, C.: Integrating temporal extensions of answer set
programming. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS (LNAI), vol.
8148, pp. 23–35. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40564-8 3

4. Bosser, A., Cabalar, P., Diéguez, M., Schaub, T.: Introducing temporal stable
models for linear dynamic logic. In: Proceedings of the International Conference
on Principles of Knowledge Representation and Reasoning, pp. 12–21. AAAI Press
(2018)

5. Cabalar, P., Kaminski, R., Schaub, T., Schuhmann, A.: Temporal answer set pro-
gramming on finite traces. Theor. Pract. Log. Program. 18(3–4), 406–420 (2018)

6. Cabalar, P., Pearce, D., Valverde, A.: Reducing propositional theories in equilib-
rium logic to logic programs. In: Bento, C., Cardoso, A., Dias, G. (eds.) EPIA 2005.
LNCS (LNAI), vol. 3808, pp. 4–17. Springer, Heidelberg (2005). https://doi.org/
10.1007/11595014 2

7. De Giacomo, G., Vardi, M.: Linear temporal logic and linear dynamic logic on finite
traces. In: Proceedings of the International Joint Conference on AI, pp. 854–860.
IJCAI/AAAI Press (2013)

8. Giordano, L., Martelli, A., Dupré, D.T.: Reasoning about actions with temporal
answer sets. Theor. Pract. Log. Program. 13(2), 201–225 (2013)

9. Harel, D., Tiuryn, J., Kozen, D.: Dynamic Logic. MIT Press, Cambridge (2000)
10. Henriksen, J., Thiagarajan, P.: Dynamic linear time temporal logic. Ann. Pure

Appl. Log. 96(1–3), 187–207 (1999)
11. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. In: Sitzungsberichte

der Preussischen Akademie der Wissenschaften, p. 42–56. (1930)
12. Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.: GOLOG: a logic

programming language for dynamic domains. J. Log. Program. 31(1–3), 59–83
(1997)

https://doi.org/10.1007/978-3-642-40564-8_3
https://doi.org/10.1007/978-3-642-40564-8_3
https://doi.org/10.1007/11595014_2
https://doi.org/10.1007/11595014_2

162 P. Cabalar et al.

13. Lifschitz, V.: Answer set planning. In: Proceedings of the International Conference
on Logic Programming, pp. 23–37. MIT Press (1999)

14. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Transact. Comput. Log. 2(4), 526–541 (2001)

15. Pnueli, A.: The temporal logic of programs. In: Proceedings of the Symposium on
Foundations of Computer Science, pp. 46–57. IEEE Computer Society Press (1977)

16. Pratt, V.: Semantical consideration on Floyd-Hoare logic. In: Proceedings of the
Symposium on Foundations of Computer Science, pp. 109–121. IEEE Computer
Society Press (1976)

17. Ryan, M.: Efficiently implementing GOLOG with answer set programming. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence, pp. 2352–2357. AAAI
Press (2014)

18. Son, T., Baral, C., Nam, T., McIlraith, S.: Domain-dependent knowledge in answer
set planning. ACM Transact. Comput. Log. 7(4), 613–657 (2006)

A Sequent-Type Calculus
for Three-Valued Default Logic, Or:
Tweety Meets Quartum Non Datur

Sopo Pkhakadze(B) and Hans Tompits

Institute of Logic and Computation, Knowledge-Based Systems Group E192-03,
Technische Universität Wien, Favoritenstraße 9-11, 1040 Vienna, Austria

{pkhakadze,tompits}@kr.tuwien.ac.at

Abstract. Sequent-type proof systems constitute an important and
widely-used class of calculi well-suited for analysing proof search. In
this paper, we introduce a sequent-type calculus for a variant of default
logic employing �Lukasiewicz’s three-valued logic as the underlying base
logic. This version of default logic has been introduced by Radzikowska
addressing some representational shortcomings of standard default logic.
More specifically, our calculus axiomatises brave reasoning for this ver-
sion of default logic, following the sequent method first introduced in
the context of nonmonotonic reasoning by Bonatti, which employs a
complementary calculus for axiomatising invalid formulas, taking care of
expressing the consistency condition of defaults.

1 Introduction

Sequent-type proof systems, first introduced in the 1930s by Gerhard
Gentzen [15] for classical and intuitionistic logic, are among the basic calculi
used in automated deduction for analysing proof search. In the area of non-
monotonic reasoning, Bonatti [8] introduced in the early 1990s sequent-style
systems for default logic [31] and autoepistemic logic [25], and a few years later
together with Olivetti [9] also for circumscription [24]. A distinguishing feature
of these calculi is the usage of a complementary calculus for axiomatising invalid
formulas, i.e., of non-theorems, taking care of formalising consistency conditions,
which makes these calculi arguably particularly elegant and suitable for proof-
complexity elaborations as, e.g., recently undertaken by Beyersdorff et al. [5].
In a complementary calculus, the inference rules formalise the propagation of
refutability instead of validity and establish invalidity by deduction and thus in
a purely syntactic manner. Complementary calculi are also referred to as refu-
tation calculi or rejection calculi and the first axiomatic treatment of rejection
was done by �Lukasiewicz in his formalisation of Aristotle’s syllogistic [18].

The first author was supported by the European Master’s Program in Computational
Logic (EMCL).

c© Springer Nature Switzerland AG 2019
M. Balduccini et al. (Eds.): LPNMR 2019, LNAI 11481, pp. 163–177, 2019.
https://doi.org/10.1007/978-3-030-20528-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20528-7_13&domain=pdf
http://orcid.org/0000-0003-2247-8147
http://orcid.org/0000-0001-5673-2460
https://doi.org/10.1007/978-3-030-20528-7_13

164 S. Pkhakadze and H. Tompits

In this paper, we introduce a sequent-type calculus for brave reasoning in
the style of Bonatti [8] for a variant of default logic due to Radzikowska [30].
This version of default logic uses Lukasiewicz’s three-value logic [17] as under-
lying logical apparatus for addressing certain shortcomings of standard default
logic [31]. In particular, three-valued default logic allows a more fine-grained dis-
tinction between formulas obtained by applying defaults and formulas which are
known for certain, in order to avoid counter-intuitive conclusions by successive
applications of defaults.

Our calculus, called B3, consists of three parts, similar to Bonatti’s calculus
for standard default logic [31], viz. a sequent calculus for �Lukasiewiz’s three-
valued logic, a complementary anti-sequent calculus for three-valued logic, and
specific default inference rules. For many-valued logics, different kinds of sequent-
style systems exist in the literature, like systems [4,6] based on (two-sided)
sequents in the style of Gentzen [15] employing additional non-standard rules,
or using hypersequents [2], which are tuples of Gentzen-style sequents. In our
sequent and anti-sequent calculi for �Lukasiewicz’s three-valued logic, we adopt
the approach of Rousseau [33], which is a natural generalisation for many-valued
logics of the classical two-sided sequent formulation of Gentzen. The respective
calculi are obtained from a systematic construction for many-valued logics as
described by Zach [37] and Bogojeski [7].

2 Background

We first recapitulate the basic elements of the three-valued logic �L3 of
�Lukasiewicz for the propositional case and afterwards we discuss a propositional
version of the three-valued default logic DL3 of Radzikowska [30] which is based
on �L3. Our exposition of both formalisms follows Radzikowska [30].

�Lukasiewicz’s Three-Valued Logic �L3. The alphabet of �L3 consists of (i) a denu-
merable set P of propositional constants, (ii) the primitive logical connectives
¬ (“negation”) and ⊃ (“implication”), (iii) the truth constants � (“truth”), ⊥
(“falsehood”), and � (“undetermined”), and (iv) the punctuation symbols “(”
and “)”. The class of formulas is built from the elements of the alphabet of �L3 in
the usual inductive fashion, whereby the propositional constants and the truth
constants constitute the atomic formulas.

The additional connectives ∨ (“disjunction”), ∧ (“conjunction”), and ≡
(“equivalence”) are defined in the following way: (A ∨ B) := ((A ⊃ B) ⊃
B), (A ∧ B) := ¬(¬A ∨ ¬B), and (A ≡ B) := ((A ⊃ B) ∧ (B ⊃ A)).
Furthermore, we make use of the unary operators L (“certainty operator”) and M
(“possibility operator”), defined by LA := ¬(A ⊃ ¬A) and MA := (¬A ⊃ A),
which, according to �Lukasiewicz [17], were first formalised in 1921 by Tarski.
Intuitively, LA expresses that A is certain, whilst MA means that A is possible.
These operators will be used below to distinguish between certain knowledge
and defeasible conclusions. Given L and M, we also define IA := (MA ∧ ¬LA),
expressing that A is contingent or modally indifferent.

A Sequent-Type Calculus for Three-Valued Default Logic 165

¬
t f
u u
f t

⊃ t u f

t t u f
u t t u
f t t t

∨ t u f

t t t t
u t u u
f t u f

∧ t u f

t t u f
u u u f
f f f f

≡ t u f

t t u f
u u t u
f f u t

L
t t
u f
f f

M
t t
u t
f f

I
t f
u t
f f

Fig. 1. Truth tables for the connectives of �L3.

A (three-valued) interpretation is a mapping m assigning to each proposi-
tional constant from P an element from {t, f ,u}. We refer to each of the symbols
t, f , and u as a truth value, and of m(p) as the truth value of p under m. We
assume a total order ≤ over the truth values such that f ≤ u ≤ t holds.

The truth value, Vm(A), of an arbitrary formula A under an interpretation
m is given subject to the following conditions: (i) if A = �, then Vm(A) = t;
(ii) if A = �, then Vm(A) = u; (iii) if A = ⊥, then Vm(A) = f ; (iv) if A is
an atomic formula, then Vm(A) = m(A); and (v) if A = ¬B, for some formula
B, or A = (C ⊃ D), for some formulas C and D, then Vm(A) is determined
according to the truth tables in Fig. 1 (there, the corresponding truth conditions
for the defined connectives are also given).

If Vm(A) = t, then A is true under m, if Vm(A) = u, then A is undetermined
under m, and if Vm(A) = f , then A is false under m. If A is true under m, then
m is a model of A. If A is true in every interpretation, then A is valid (in �L3),
written |= �L3 A.

Clearly, the classically valid principle of tertium non datur, i.e., the law of
excluded middle, A ∨ ¬A, as well as the corresponding law of non-contradiction,
¬(A ∧ ¬A), are not valid in �L3. However, their three-valued pendants, viz., the
principle of quartum non datur, i.e., the law of excluded fourth, A ∨ IA ∨ ¬A,
and the corresponding extended non-contradiction principle, ¬(A ∧ ¬IA ∧ ¬A),
are valid in �L3.

As usual, by a theory we understand a set of formulas. An interpretation is a
model of a theory T iff it is a model of each element of T . A theory is satisfiable
iff it has a model; otherwise, it is unsatisfiable. Theories T and T ′ are equivalent
iff they have the same models. A theory T is said to entail a formula A, or A is
a consequence of T , symbolically T |= �L3 A, iff every model of T is also a model
of A.

Sound and complete Hilbert-style axiomatisations of �L3 can be readily found
in the literature [22,32]; the first one was introduced by Wajsberg in 1931 [36].
We write T
 �L3 A if A has a derivation (in some fixed Hilbert-style calcu-
lus) from T in �L3. As well, the deductive closure operator of �L3 is given by
Th �L3(T) := {A | T
 �L3 A}, where T is a theory. A theory T is deductively
closed iff T = Th �L3(T). We say that a theory T is consistent iff there is a for-
mula A such that T �
 �L3 A. Clearly, T is consistent iff it is satisfiable. Moreover,
a formula A is consistent with T iff T �
 �L3 ¬A. Note that the consistency of a
formula A with a theory T implies the consistency of the theory T ∪ {MA}, but
not necessarily of the theory T ∪ {A}. For instance, ¬p is consistent with {Mp},
so {Mp,M¬p} is consistent, but {Mp,¬p} is not.

166 S. Pkhakadze and H. Tompits

Three-Valued Default Logic. Radzikowska’s three-valued default logic DL3 [30]
differs from Reiter’s standard default logic [31] in two aspects: not only is in DL3

the deductive machinery of classical logic replaced with �L3, but there is also a
modified consistency check for default rules employed in which the consequent of
a default is taken into account as well. The latter feature is somewhat reminis-
cent to the consistency checks used in justified default logic [19] and constrained
default logic [12,34], where a default may only be applied if it does not lead to
a contradiction a posteriori.

Formally, a default rule, or simply a default, d, is an expression of form
A : B1, . . . , Bn

C
,

where A is the prerequisite, B1, . . . , Bn are the justifications, and C is the con-
sequent of d. The intuitive meaning of such a default is: if A is believed, and
B1, . . . , Bn and LC are consistent with what is believed, then MC is asserted.
Note that under this reading, by applying a default of the above form, it is
assumed that C cannot be false, but it is not assumed that C is true in all sit-
uations. It is only assumed that C must be true in at least one such situation.
This reflects the intuition that accepting a default conclusion, we are prepared
to rule out all situations where it is false, but we can imagine at least one such
situation in which it is true. As a consequence, we cannot conclude both MC
and M¬C simultaneously.

In what follows, formulas of the form MC obtained by applying defaults will
be referred to as default assumptions. For simplicity, defaults will also be written
in the form (A : B1, . . . , Bn/C).

A default theory, T , is a pair 〈W,D〉, where W is a set of formulas (i.e.,
a theory in �L3) and D is a set of defaults. An extension of a default theory
T = 〈W,D〉 in the three-valued default logic DL3 is defined thus: For a set S
of formulas, let ΓT (S) be the smallest set K of formulas obeying the following
conditions:

(i) K = Th �L3(K);
(ii) W ⊆ K;
(iii) if (A : B1, . . . , Bn/C) ∈ D, A ∈ K, ¬B1 �∈ S, . . . ,¬Bn �∈ S, and ¬LC /∈ S,

then MC ∈ K.

Then, E is an extension of T iff ΓT (E) = E.
Note that the criterion of the applicability of a default in DL3 makes the two

defaults d = (A : B1, . . . , Bn/C) and d′ = (A : MB1, . . . ,MBn/C) equivalent in
the sense that the application of d implies the application of d′ and vice versa.
Thus, in a default theory T = 〈W,D〉, we can replace all d ∈ D with their
corresponding version d′ without changing extensions.

There are two basic reasoning tasks in the context of default logic, viz., brave
reasoning and skeptical reasoning. The former task is the problem of checking
whether a closed formula A belongs to at least one extension of a given closed
default theory T , whilst the latter task examines whether A belongs to all exten-
sions of T . Our aim is to give a sequent-type axiomatisation of brave default
reasoning, following the approach of Bonatti [8] for standard default logic.

A Sequent-Type Calculus for Three-Valued Default Logic 167

To conclude our review of three-valued default logic, we give two examples,
as discussed by Radzikowska [30], showing the representational advantages of
DL3.

Example 1 ([20]). Consider T = 〈W,D〉, where W = {Summer ,¬Sun Shining}
and D = {(Summer : ¬Rain/Sun Shining)}. The only default of this theory
is inapplicable since W
 �L3 ¬LSun Shining . Hence, T has one extension, E =
Th �L3(W). Note that T has no extension in Reiter’s default logic due to the
weaker consistency check which yields to a vicious circle where the application
of the default violates its justification for applying it. ��
Example 2 ([29]). Consider the default rules d1 = (P : Q/Q) and d2 = (Q :
R/R), where P , Q, and R are atomic formulas respectively standing for “Joe
recites passages from Shakespeare”, “Joe can read and write”, and “Joe is over
seven years old”. Obviously, common sense suggests that, given P , there are
perfect reasons to apply both defaults to infer that Joe is over seven years old.
Suppose now that we add the default rule d3 = (S : Q/Q), where S stands for
“Joe is a child prodigy”. Given S, it is reasonable to infer that Joe can read and
write, but the inference that Joe is over seven years old seems to be unjustified.
In standard default logic, a common way of suppressing R in the second case
of this example would be to employ a default rule with exceptions of the form
d′
2 = (Q : R ∧ ¬S)/R). However, this remedy is somewhat unsatisfactory as

it requires every default with a possibly large number of conceivable exceptions
which, each time a new default is added, the previous ones must be revised,
which is arguably ad hoc. In DL3, however, this can easily be accommodated
by using the defaults (P : LQ/LQ), (Q : LR/LR), and (MS : Q/Q) instead of
d1, d2, and d3, respectively. ��

3 Preparatory Characterisations: Residues and
Extensions

We now discuss some properties of extensions concerning adding defaults to
default theories which lays the groundwork on which our subsequent calculus is
built. In doing so, we first introduce an alternative formulation of DL3 exten-
sions, adapting a proof-theoretical characterisation as described by Marek and
Truszczyński [23] for standard default logic, and afterwards we provide results
concerning so-called residues, which are inference rules resulting from defaults
satisfying their consistency condition. The latter endeavour generalises the app-
roach of Bonatti [8] to the three-valued case and follows the exposition given by
Tompits [35] for standard default logic.

Definition 1. Let E be a set of formulas. A default (A : B1, . . . , Bn/C) is active
in E iff E
 �L3 A and {¬B1, . . . ,¬Bn,¬LC} ∩ E = ∅.

168 S. Pkhakadze and H. Tompits

Definition 2. Let D be a set of defaults and E a set of formulas. The reduct
of D with respect to E, denoted by DE, is the set consisting of the following
inference rules:

DE :=
{

A

MC

∣∣∣∣ A : B1, . . . , Bn

C
∈ D and {¬B1, . . . ,¬Bn,¬LC} ∩ E = ∅

}
.

An inference rule A/MC is called residue of a default (A : B1, . . . , Bn/C).

For a set R of inference rules, let
R
�L3

be the inference relation obtained from

 �L3 by augmenting the postulates of the Hilbert-type calculus underlying
 �L3

with the inference rules from R. The corresponding deductive closure operator for

R

�L3
is given by ThR

�L3
(W) := {A | W
R

�L3
A}. Clearly, Th∅

�L3
(W) = Th �L3(W).

We then obtain the following characterisation of the operator ΓT , mirroring
the analogous property for standard default logic as discussed by Marek and
Truszczyński [23]:

Theorem 1. Let T = 〈W,D〉 be a default theory, E a set of formulas, and DE

the reduct of D with respect to E. Then, ΓT (E) = ThDE

�L3
(W).

Corollary 1. Let T = 〈W,D〉 be a default theory. A set E of formulas is an
extension of T iff ThDE

�L3
(W) = E.

Now we show some properties of extensions with respect to active and non-
active defaults which are relevant for our sequent calculus. We start with two
obvious results whose proofs are straightforward.

Lemma 1. Let R, R′ be sets of inference rules, and W , W ′ sets of formulas.
Then:

(i) W ⊆ ThR
�L3

(W);
(ii) ThR

�L3
(W) = ThR

�L3
(ThR

�L3
(W));

(iii) if R ⊆ R′, then ThR
�L3

(W) ⊆ ThR′
�L3

(W); and
(iv) if W ⊆ W ′, then ThR

�L3
(W) ⊆ ThR

�L3
(W ′).

Lemma 2. Let A and B be formulas, W and E sets of formulas, and R a set
of inference rules. Then:

(i) if A �∈ ThR
�L3

(W), then ThR
�L3

(W) = ThR∪ {A/B}
�L3

(W);

(ii) if A ∈ ThR∪ {A/B}
�L3

(W), then ThR∪ {A/B}
�L3

(W) = ThR
�L3

(W ∪ {B}).

For convenience, we employ the following notation in what follows: for a
default d = (A : B1, . . . , Bn/C), we write p(d) := A, j(d) := {B1, . . . , Bn,LC},
and c(d) := MC. Furthermore, for a set S of formulas, ¬S := {¬A | A ∈ S}.

Theorem 2. Let T = 〈W,D〉 be a default theory, E a set of formulas, and d a
default not active in E. Then, E is an extension of 〈W,D〉 iff E is an extension
of 〈W,D ∪ {d}〉.

A Sequent-Type Calculus for Three-Valued Default Logic 169

Proof. If ¬j(d)∩E �= ∅, then (D ∪ {d})E = DE . So, Th(D∪{d})E
�L3

(W) = ThDE

�L3
(W)

and the statement of the lemma holds quite trivially by Corollary 1.
For the rest of the proof, assume thus ¬j(d) ∩ E = ∅. Since d is not active in

E, E �
 �L3 p(d) must then hold. Furthermore, (D ∪ {d})E = DE ∪ {p(d)/c(d)}
holds.

Suppose E is an extension of T = 〈W,D〉, i.e., E = ThDE

�L3
(W). Since E �
 �L3

p(d) and E is deductively closed, we obtain p(d) �∈ E, and so p(d) �∈ ThDE

�L3
(W).

By Lemma 2(i), ThDE

�L3
(W) = ThDE∪{p(d)/c(d)}

�L3
(W). But DE ∪ {p(d)/c(d)} =

(D ∪ {d})E , hence ThDE

�L3
(W) = Th(D∪{d})E

�L3
(W). Since E = ThDE

�L3
(W), we

obtain E = Th(D∪{d})E
�L3

(W) and E is extension of 〈W,D ∪ {d}〉.
This proves the “only if” direction; the “if” direction follows by essentially

the same arguments, but employing additionally Lemma1(iii). ��
Theorem 3. Let E be a set of formulas and d a default.

(i) If E is an extension of 〈W,D ∪ {d}〉 and d is active in E, then E is an
extension of 〈W ∪ {c(d)},D〉.

(ii) If E is an extension of the default theory 〈W ∪{c(d)},D〉, W
 �L3 p(d), and
¬j(d) ∩ E = ∅, then E is an extension of 〈W,D ∪ {d}〉.

Proof. We only show item (ii); the proof of (i) is similarly. Assume that the
preconditions of (ii) hold. Since E is an extension of 〈W ∪ {c(d)},D〉, E =
ThDE

�L3
(W ∪{c(d)}). Furthermore, by the hypothesis W
 �L3 p(d), we have p(d) ∈

ThDE∪{p(d)/c(d)}
�L3

(W). We thus get ThDE∪{p(d)/c(d)}
�L3

(W) = ThDE

�L3
(W ∪ {c(d)}) in

view of Lemma 2(ii), and therefore E = ThDE∪{p(d)/c(d)}
�L3

(W). By observing that
the assumption ¬j(d)∩E = ∅ implies DE ∪{p(d)/c(d)} = (D ∪ {d})E , the result
follows. ��

4 A Sequent Calculus for DL3

We now introduce our sequent calculus for brave reasoning in DL3. Our calculus
adapts the approach of Bonatti [8], defined for standard default logic, for the
three-valued case.

Analogous to Bonatti’s system, our calculus, which we denote by B3, com-
prises three kinds of sequents: assertional sequents for axiomatising validity in
�L3, anti-sequents for axiomatising invalidity, i.e., non-theorems of �L3, taking
care of the consistency check of defaults, and proper default sequents. Although
it would be possible to use just one kind of sequents, this would be at the expense
of losing clarity of the sequents’ structure. As well, the current separation of types
of sequents also reflects the interactions between the underlying monotonic proof
machinery the nonmonotonic inferences in a much clearer manner.

As far as sequent-type calculi for three-valued logics are concerned—or, more
generally, many-valued logics—, different techniques have been discussed in the
literature [2,3,6,11,16,37]. Here, we use an approach due to Rousseau [33],

170 S. Pkhakadze and H. Tompits

Γ | Δ | Π, A Γ, B | Δ | Π
(⊃ : f)

Γ, A ⊃ B | Δ | Π

Γ | Δ, A, B | Π Γ, B | Δ | Π, A
(⊃ : u)

Γ | Δ, A ⊃ B | Π

Γ, A | Δ, A | Π, B Γ, A | Δ, B | Π, B
(⊃ : t)

Γ | Δ | Π, A ⊃ B

Γ | Δ | Π, A
(¬ : f)

Γ, ¬A | Δ | Π

Γ | Δ, A | Π
(¬ : u)

Γ | Δ, ¬A | Π

Γ, A | Δ | Π
(¬ : t)

Γ | Δ | Π, ¬A

Γ | Δ | Π
(w : f)

Γ, A | Δ | Π

Γ | Δ | Π
(w : u)

Γ | Δ, A | Π

Γ | Δ | Π
(w : t)

Γ | Δ | Π, A

Fig. 2. Rules of the sequent calculus S�L3.

which is a natural generalisation for many-valued logics of the classical two-
sided sequent formulation as pioneered by Gentzen [15]. In Rousseau’s approach,
a sequent for a three-valued logic is a triple of sets of formulas where each com-
ponent of the sequent represents one of the three truth values.

Formally, we introduce sequents for �L3 as follows:

Definition 3. A (three-valued) sequent is a triple of form Γ1 | Γ2 | Γ3, where
each Γi (i ∈ {1, 2, 3}) is a finite set of formulas, called component of the sequent.

For an interpretation m, a sequent Γ1 | Γ2 | Γ3 is true under m if, for at
least one i ∈ {1, 2, 3}, Γi contains some formula A such that Vm(A) = vi, where
v1 = f , v2 = u, and v3 = t. Furthermore, a sequent is valid if it is true under
each interpretation.

Obviously, a standard classical sequent Γ
 Δ corresponds to a pair Γ | Δ with
the usual two-valued semantics. As customary for sequents, we write sequent
components comprised of a singleton set {A} simply as “A” and similarly Γ ∪{A}
as “Γ,A”.

For obtaining the postulates of a many-valued logic in Rousseau’s approach,
the conditions of the logical connectives of the given logic are encoded in two-
valued logic by means of a so-called partial normal form [32] and expressed by
suitable inference rules.

The calculus we introduce for �L3, which we denote by S�L3, is obtained from
a systematic construction of sequent-style calculi for many-valued logics due
to Zach [37] and by applying some optimisations of the corresponding partial
normal form [7].1 The axioms of S�L3 consist of sequents of the form A | A | A,
where A is a formula, and the inference rules depicted in Fig. 2. Note that from
1 S�L3 has optimised rules for ⊃ compared to those of the calculus for �L3 given by

Malinowski [22]; also note that S�L3 does not require a cut rule.

A Sequent-Type Calculus for Three-Valued Default Logic 171

Γ � Δ � Π, A
(⊃ : f1)r

Γ, A ⊃ B � Δ � Π

Γ, B � Δ � Π
(⊃ : f2)r

Γ, A ⊃ B � Δ � Π

Γ � Δ, A, B � Π
(⊃ : u1)r

Γ � Δ, A ⊃ B � Π

Γ, B � Δ � Π, A
(⊃ : u2)r

Γ � Δ, A ⊃ B � Π

Γ, A � Δ, A � Π, B
(⊃ : t1)r

Γ � Δ � Π, A ⊃ B

Γ, A � Δ, B � Π, B
(⊃ : t2)r

Γ � Δ � Π, A ⊃ B

Γ � Δ � Π, A
(¬ : f)r

Γ, ¬A � Δ � Π

Γ � Δ, A � Π
(¬ : u)r

Γ � Δ, ¬A � Π

Γ, A � Δ � Π
(¬ : t)r

Γ � Δ � Π, ¬A

Γ, A � Δ � Π
(w : f)r

Γ � Δ � Π

Γ � Δ, A � Π
(w : u)r

Γ � Δ � Π

Γ � Δ � Π, A
(w : t)r

Γ � Δ � Π

Fig. 3. Rules of the anti-sequent calculus R�L3.

the inference rules of S�L3 we can easily obtain derived rules for the defined
connectives of �L3. Furthermore, the last three rules in Fig. 2 are also referred to
as weakening rules.

Soundness and completeness of S�L3 follows directly from the method
described by Zach [37].

Theorem 4. A sequent Γ | Δ | Π is valid iff it is provable in S�L3.

Note that sequents in the style of Rousseau are truth functional rather than
formalising entailment directly, but the latter can be expressed simply as follows:

Theorem 5. For a theory T and a formula A, T
 �L3 A iff the sequent T | T | A
is provable in S�L3.

As for axiomatising non-theorems of �L3, Bogojeski [7] describes a systematic
construction of refutation calculi for many-valued logics, which is obtained by
adapting the approach of Zach [37]. The refutation calculus we introduce now
for axiomatising invalid sequents in �L3, denoted by R�L3, is obtained from the
method of Bogojeski [7].

Definition 4. A (three-valued) anti-sequent is a triple of form Γ1 � Γ2 � Γ3,
where each Γi (i ∈ {1, 2, 3}) is a finite set of formulas, called component of the
anti-sequent.

For an interpretation m, an anti-sequent Γ1 � Γ2 � Γ3 is refuted by m, or
m refutes Γ1 � Γ2 � Γ3, if, for every i ∈ {1, 2, 3} and every formula A ∈ Γi,
Vm(A) �= vi, where vi is defined as in Definition 3.

If m refutes Γ1 � Γ2 � Γ3, then m is also said to be a counter-model of
Γ1 � Γ2 � Γ3. An anti-sequent Γ1 � Γ2 � Γ3 is refutable, if there is at least one
interpretation that refutes Γ1 � Γ2 � Γ3.

172 S. Pkhakadze and H. Tompits

Γ | Γ | A

Γ ; ∅ ⇒ A; ∅ l1
Γ � Γ � A

Γ ; ∅ ⇒ ∅;A l2
Γ ; ∅ ⇒ Σ1;Θ1 Γ ; ∅ ⇒ Σ2;Θ2

Γ ; ∅ ⇒ Σ1, Σ2;Θ1, Θ2

mu

Γ ;Δ ⇒ Σ;Θ, A

Γ ;Δ, (A : B1, . . . , Bn/C) ⇒ Σ;Θ
d1

Γ ;Δ ⇒ Σ, ¬B;Θ
Γ ;Δ, (A : . . . , B, . . . /C) ⇒ Σ;Θ

d2

Γ ;Δ ⇒ Σ, ¬LC;Θ
Γ ;Δ, (A : B1, . . . , Bn/C) ⇒ Σ;Θ

d3

Γ ; ∅ ⇒ A; ∅ Γ,MC;Δ ⇒ Σ;Θ, ¬B1, . . . , ¬Bn, ¬LC

Γ ;Δ, (A : B1, . . . , Bn/C) ⇒ Σ;Θ
d4

Fig. 4. Additional rules of the calculus B3.

Clearly, an anti-sequent Γ1 � Γ2 � Γ3 is refutable iff the corresponding sequent
Γ1 | Γ2 | Γ3 is not valid.

The postulates of R�L3 are as follows: the axioms of R�L3 are anti-sequents
whose components are sets of propositional constants such that no constant
appears in all components. Furthermore, the inference rules of R�L3 are given
in Fig. 3.

Note that, in contrast to S�L3, the inference rules of R�L3 have only single
premisses. Indeed, this is a general pattern in sequent-style rejection calculi: if
an inference rule for standard (assertional) sequents for a connective have n
premisses, then there are usually n corresponding unary inference rules in the
associated rejection calculus. Intuitively, what is exhaustive search in a standard
sequent calculus becomes nondeterminism in a rejection calculus.

Again, soundness and completeness of R�L3 follows from the systematic
construction as described by Bogojeski [7]. Likewise, non-entailment in �L3 is
expressed similarly as for S�L3.

Theorem 6. An anti-sequent Γ � Δ � Π is refutable iff it is provable in R�L3.
Moreover, for a theory T and a formula A, T �
 �L3 A iff T � T � A is provable
in R�L3.

We are now in a position to specify our calculus B3 for brave reasoning in
DL3.

Definition 5. By a (brave) default sequent we understand an ordered quadruple
of the form Γ ;Δ ⇒ Σ;Θ, where Γ , Σ, and Θ are finite sets of formulas and Δ
is a finite set of defaults.

A default sequent Γ ;Δ ⇒ Σ;Θ is true iff there is an extension E of the
default theory 〈Γ,Δ〉 such that Σ ⊆ E and Θ ∩ E = ∅; E is called a witness
of Γ ;Δ ⇒ Σ;Θ.

The default sequent calculus B3 consists of three-valued sequents, anti-
sequents, and default sequents. It incorporates the systems S�L3 for three-valued
sequents and R�L3 for anti-sequents. Additionally, it has axioms of the form

A Sequent-Type Calculus for Three-Valued Default Logic 173

Γ ; ∅ ⇒ ∅; ∅, where Γ is a finite set of formulas, and the inference rules as depicted
in Fig. 4.

The informal meaning of the nonmonotonic inference rules is the following.
First of all, rules l1 and l2 combine three-valued sequents and anti-sequents
with default sequents, respectively. Rule mu is the rule of “monotonic union”; it
allows the joining of information in case that no default is present. Rules d1–d4
are the default introduction rules: rules d1, d2, and d3 take care of introducing
non-active defaults, whilst rule d4 allows to introduce an active default.

Theorem 7 (Soundness). If Γ ;Δ ⇒ Σ;Θ is provable in B3, then it is true.

Proof. We show that all axioms are true, and that the conclusions of all inference
rules are true whenever its premisses are true (resp., valid or refutable in case of
l1 and l2).

First of all, an axiom Γ ; ∅ ⇒ ∅; ∅ is trivially true, because Th �L3(Γ) is the
unique extension of the default theory 〈Γ, ∅〉 and hence the unique witness of
Γ ; ∅ ⇒ ∅; ∅.

Suppose Γ | Γ | A is the premiss of the rule l1 and assume it is valid. Hence,
Γ
 �L3 A and therefore A ∈ Th �L3(Γ). But Th �L3(Γ) is the unique extension of
〈Γ, ∅〉, so Th �L3(Γ) is the unique witness of Γ ; ∅ ⇒ A; ∅. Likewise, if the premiss
Γ � Γ � A of the rule l2 is refutable, then A �∈ Th �L3(Γ), and therefore Th �L3(Γ)
is the (unique) witness of Γ ; ∅ ⇒ ∅;A.

If the two premises Γ ; ∅ ⇒ Σ1;Θ1 and Γ ; ∅ ⇒ Σ2;Θ2 of the rule mu are
true, then they must have the same witness E = Th �L3(Γ). Hence, E is also the
(unique) witness of Γ ; ∅ ⇒ Σ1, Σ2;Θ1, Θ2.

As for the soundness of the rules d1, d2, and d3, we only show the case for
d3; the other two are similar. Let E be a witness of Γ ;Δ ⇒ Σ,¬LC;Θ. Then,
E is an extension of 〈Γ,Δ〉, Σ ∪ {¬LC} ⊆ E, and Θ ∩ E = ∅. So, ¬LC ∈ E and
thus the default (A : B1, . . . , Bn/C) is not active in E. By Theorem 2, it follows
that E is an extension of 〈Γ,Δ∪{(A : B1, . . . , Bn/C)}〉. Moreover, since Σ ⊆ E
and Θ ∩ E = ∅, E is a witness of Γ ;Δ, (A : B1, . . . , Bn/C) ⇒ Σ;Θ.

Finally, assume that the premisses of rule d4 are true. Let E1 be a witness of
Γ ; ∅ ⇒ A; ∅ and E2 a witness of Γ,MC;Δ ⇒ Σ;Θ,¬B1, . . . ,¬Bn,¬LC. Thus,
E2 is an extension of 〈Γ ∪ {MC},Δ〉 and {¬B1, . . . ,¬Bn,¬LC} ∩ E2 = ∅. So,
E1 is an extension of 〈Γ, ∅〉 with A ∈ E1, and therefore Γ
 �L3 A. Hence, by
Theorem 3(ii), E2 is an extension of 〈Γ,Δ ∪ {(A : B1, . . . , Bn/C)}〉. Clearly,
Σ ⊆ E2 and Θ ∩E2 = ∅, so E2 is a witness of Γ ;Δ, (A : B1, . . . , Bn/C) ⇒ Σ;Θ.

��
Theorem 8 (Completeness). If Γ ;Δ ⇒ Σ;Θ is true, then it is provable
in B3.

Proof. Suppose S = Γ ;Δ ⇒ Σ;Θ is true, with E as its witness. The proof
proceeds by induction on the cardinality |Δ| of Δ.

Induction Base. Assume |Δ| = 0. If Σ = Θ = ∅, then S is an axiom and
hence provable in B3. So suppose that either Σ �= ∅ or Θ �= ∅. Since Th �L3(Γ) is

174 S. Pkhakadze and H. Tompits

the unique extension of 〈Γ, ∅〉, we have E = Th �L3(Γ). Furthermore, Σ ⊆ E and
Θ ∩ E = ∅. It follows that for any A ∈ Σ, Γ | Γ | A is provable in S�L3, and for
any B ∈ Θ, Γ � Γ � B is provable in R�L3. Repeated applications of rules l1, l2,
and mu yield a proof of S in B3.

Induction Step. Assume |Δ| > 0, and let the statement hold for all default
sequents Γ ′;Δ′ ⇒ Σ′;Θ′ such that |Δ′| < |Δ|. We distinguish two cases: (i)
there is some default in Δ which is active in E, or (ii) none of the defaults in Δ
is active in E.

If (i) holds, then there must be some default d = (A : B1, . . . , Bn/C) in
Δ such that d is active in E and Γ
 �L3 A. Consider Δ0 := Δ \ {d}. Then,
|Δ0| = |Δ| − 1 and Δ0 ∪ {d} = Δ. By Theorem 3(i), E is an extension of
〈Γ ∪{MC},Δ0〉. Since d is active in E, {¬B1, . . . ,¬Bn,¬LC}∩E = ∅; and since
E is a witness of S = Γ ;Δ ⇒ Σ;Θ, Σ ⊆ E and Θ ∩ E = ∅. So, E is a witness
of S′ = Γ,MC;Δ0 ⇒ Σ;Θ,¬B1, . . . ,¬Bn,¬LC. Since |Δ0| < |Δ|, by induction
hypothesis there is some proof α in B3 of S′. Furthermore, Γ
 �L3 A, so there is
some proof β of Γ | Γ | A in S�L3. The following figure is a proof of S in B3:

β
Γ | Γ | A

Γ ; ∅ ⇒ A; ∅ l1 α
Γ,MC;Δ0 ⇒ Σ;Θ,¬B1, . . . ,¬Bn,¬LC

Γ ;Δ ⇒ Σ;Θ
d4

Now assume that (ii) holds, i.e., no default in Δ is active in E. Since
|Δ| > 0, there is some default d = (A : B1, . . . , Bn/C) in Δ such that
Δ = Δ0 ∪ {d} with Δ0 := Δ \ {d}. Since d is not active in E, according to
Theorem 2, E is an extension of 〈Γ,Δ0〉. Furthermore, either (i) E �
 �L3 A,
(ii) there is some Bi0 ∈ {B1, . . . , Bn} such that ¬Bi0 ∈ E, or (iii) ¬LC ∈ E.
Consequently, E is either a witness of (i) Γ ;Δ0 ⇒ Σ;Θ,A, (ii) Γ ;Δ0 ⇒
Σ,¬Bi0 ;Θ, or (iii) Γ ;Δ0 ⇒ Σ,¬LC;Θ. Since |Δ0| < |Δ|, by induction
hypothesis there is either (i) a proof α in B3 of Γ ;Δ0 ⇒ Σ;Θ,A, (ii) a
proof β in B3 of Γ ;Δ0 ⇒ Σ,¬Bi0 ;Θ, or (iii) a proof γ in B3 of Γ ;Δ0 ⇒
Σ,¬LC;Θ. Therefore, one of the three figures below constitutes a proof of S :

α
Γ ;Δ0 ⇒ Σ;Θ,A

Γ ;Δ ⇒ Σ;Θ
d1

β
Γ ;Δ0 ⇒ Σ,¬Bi0 ;Θ

Γ ;Δ ⇒ Σ;Θ
d2

γ
Γ ;Δ0 ⇒ Σ,¬LC;Θ

Γ ;Δ ⇒ Σ;Θ
d3

��

5 Conclusion

In this paper, we introduced a sequent-type calculus for brave reasoning for a
three-valued version of default logic [30] following the method of Bonatti [8].
This form of axiomatisation yields a particular elegant formulation mainly due
to their usage of anti-sequents. Also, the approach is flexible and can be applied
to formalise different versions of nonmonotonic reasoning. Indeed, other variants
of default logic besides the three-valued version studied in our paper, including

A Sequent-Type Calculus for Three-Valued Default Logic 175

justified default logic [19] and constrained default logic [12,34], have also been
axiomatised by this sequent method [13,21].

Related to the sequent approach discussed here are also works employing
tableau methods. In particular, Niemelä [26] introduces a tableau calculus for
inference under circumscription. Other tableau approaches, however, do not
encode inference directly, rather they characterise models (resp., extensions)
associated with a particular nonmonotonic reasoning formalism [1,10,14,28].

A variation of our calculus can be obtained by using different calculi for the
underlying three-valued logic. We opted here for the style of calculi as discussed
by Rousseau [33] and Zach [37] because they naturally model the underlying
semantic conditions of the considered logic. Alternatively, we could also use two-
sided sequent and anti-sequent calculi like the ones described by Avron [2] and
Oetsch and Tompits [27], respectively. By employing such two-sided sequents,
however, one then deals with calculi having also “non-standard” inference rules
introducing two connectives simultaneously. Another prominent proof method
for many-valued logics are hypersequent calculi [3] which are basically disjunc-
tions of two-sided sequents. However, no rejection calculus based on hyperse-
quents exist as far as we know; establishing such a system in particular for �L3

would be worthwhile.
Another topic for future work is to develop a calculus for skeptical reasoning

in DL3 and other variants of default logic, similar to the system for skeptical
reasoning in standard default logic as introduced by Bonatti and Olivetti [9]. In
that work, they introduced also a different version of a calculus for brave default
reasoning—extending this calculus to DL3 would provide an alternative to B3.

References

1. Amati, G., Aiello, L.C., Gabbay, D., Pirri, F.: A proof theoretical approach to
default reasoning I: Tableaux for default logic. J. Log. Comput. 6(2), 205–231
(1996)

2. Avron, A.: Natural 3-valued logics - Characterization and proof theory. J. Symb.
Log. 56(1), 276–294 (1991)

3. Avron, A.: The method of hypersequents in the proof theory of propositional non-
classical logics. In: Logic: From Foundations to Applications, pp. 1–32. Clarendon
Press (1996)

4. Avron, A.: Classical Gentzen-type methods in propositional many-valued logics.
In: Fitting, M., Orlowska, E. (eds.) Theory and Applications in Multiple-Valued
Logics, pp. 113–151. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-
7908-1769-0 5

5. Beyersdorff, O., Meier, A., Thomas, M., Vollmer, H.: The complexity of reasoning
for fragments of default logic. J. Log. Comput. 22(3), 587–604 (2012)

6. Béziau, J.Y.: A sequent calculus for Lukasiewicz’s three-valued logic based on
Suszko’s bivalent semantics. Bull. Sect. Log. 28(2), 89–97 (1999)

7. Bogojeski, M.: Gentzen-type Refutation Systems for Finite-valued Logics. Bache-
lor’s thesis, Technische Universität Wien, Institut für Informationssysteme (2014)

8. Bonatti, P.A.: Sequent calculi for default and autoepistemic logics. In: Miglioli, P.,
Moscato, U., Mundici, D., Ornaghi, M. (eds.) TABLEAUX 1996. LNCS, vol. 1071,
pp. 127–142. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61208-
4 9

https://doi.org/10.1007/978-3-7908-1769-0_5
https://doi.org/10.1007/978-3-7908-1769-0_5
https://doi.org/10.1007/3-540-61208-4_9
https://doi.org/10.1007/3-540-61208-4_9

176 S. Pkhakadze and H. Tompits

9. Bonatti, P.A., Olivetti, N.: Sequent calculi for propositional nonmonotonic logics.
ACM Transact. Comput. Log. 3(2), 226–278 (2002)

10. Cabalar, P., Odintsov, S.P., Pearce, D., Valverde, A.: Partial equilibrium logic.
Ann. Math. Artif. Intell. 50(3–4), 305–331 (2007)

11. Carnielli, W.A.: On sequents and tableaux for many-valued logics. J. Non-Class.
Log. 8(1), 59–76 (1991)

12. Delgrande, J., Schaub, T., Jackson, W.: Alternative approaches to default logic.
Artif. Intell. 70(1–2), 167–237 (1994)

13. Egly, U., Tompits, H.: A sequent calculus for intuitionistic default logic. In: Pro-
ceedings of WLP 1997, pp. 69–79. Forschungsbericht PMS-FB-1997-10, Institut für
Informatik, Ludwig-Maximilians-Universität München (1997)

14. Gebser, M., Schaub, T.: Tableau calculi for logic programs under answer set seman-
tics. ACM Transact. Comput. Log. 14(2), 15:1–15:40 (2013)

15. Gentzen, G.: Untersuchungen über das logische Schließen I. Math. Z. 39(1), 176–
210 (1935)

16. Hähnle, R.: Tableaux for many-valued logics. In: Handbook of Tableaux Methods,
pp. 529–580. Kluwer (1999)

17. �Lukasiewicz, J.: Philosophische Bemerkungen zu mehrwertigen Systemen des Aus-
sagenkalküls. Comptes rendus des séances de la Société des Sciences et des Lettres
de Varsovie Cl. 3(23), 51–77 (1930)

18. �Lukasiewicz, J.: O sylogistyce Arystotelesa. Sprawozdania z Czynności i Posiedzeń
Polskiej Akademii Umiejȩtności 44, 220–227 (1939)

19. �Lukaszewicz, W.: Considerations on default logic - An alternative approach. Com-
put. Intell. 4, 1–16 (1988)

20. �Lukaszewicz, W.: Non-Monotonic Reasoning: Formalization of Commonsense Rea-
soning. Ellis Horwood Series in Artificial Intelligence. Ellis Horwood, Chichester
(1990)

21. Lupea, M.: Axiomatization of credulous reasoning in default logics using sequent
calculus. In: Proceedings of SYNASC 2008. IEEE Xplore (2008)

22. Malinowski, G.: Many-valued logic and its philosophy. In: Handbook of the History
of Logic, vol. 8, pp. 13–94. North-Holland (2007)

23. Marek, W., Truszczyński, M.: Nonmonotonic Logic: Context-Dependent Reason-
ing. Springer, Berlin (1993). https://doi.org/10.1007/978-3-662-02906-0

24. McCarthy, J.: Circumscription - A form of non-monotonic reasoning. Artif. Intell.
13, 27–39 (1980)

25. Moore, R.C.: Semantical considerations on nonmonotonic logic. Artif. Intell. 25,
75–94 (1985)

26. Niemelä, I.: Implementing circumscription using a tableau method. In: Proceedings
of ECAI 1996, pp. 80–84. Wiley (1996)

27. Oetsch, J., Tompits, H.: Gentzen-type refutation systems for three-valued logics
with an application to disproving strong equivalence. In: Delgrande, J.P., Faber, W.
(eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp. 254–259. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20895-9 28

28. Pearce, D., de Guzmán, I.P., Valverde, A.: A tableau calculus for equilibrium
entailment. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS (LNAI), vol. 1847,
pp. 352–367. Springer, Heidelberg (2000). https://doi.org/10.1007/10722086 28

29. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers, San Mateo (1988)

30. Radzikowska, A.: A three-valued approach to default logic. J. Appl. Non-Class.
Log. 6(2), 149–190 (1996)

https://doi.org/10.1007/978-3-662-02906-0
https://doi.org/10.1007/978-3-642-20895-9_28
https://doi.org/10.1007/10722086_28

A Sequent-Type Calculus for Three-Valued Default Logic 177

31. Reiter, R.: A logic for default reasoning. Artif. Intell. 13, 81–132 (1980)
32. Rosser, J.B., Turquette, A.R.: Many-valued Logics. North-Holland, Amsterdam

(1952)
33. Rousseau, G.: Sequents in many valued logic I. Fundamenta Math. 60, 23–33 (1967)
34. Schaub, T.: On constrained default theories. Technical report AIDA-92-2, FG

Intellektik, FB Informatik, TH Darmstadt (1992)
35. Tompits, H.: On Proof Complexities of First-Order Nonmonotonic Logics. Ph.D.

thesis, Technische Universität Wien, Institut für Informationssysteme (1998)
36. Wajsberg, M.: Aksjomatyzacja trójwartościowego rachunku zdań. Comptes rendus

des séances de la Société des Sciences et des Lettres de Varsovie Cl. 3(24), 136–148
(1931)

37. Zach, R.: Proof Theory of Finite-valued Logics. Master’s thesis, Technische Uni-
versität Wien, Institut für Computersprachen (1993)

Knowledge Representation and
Reasoning

Diagnosing Data Pipeline Failures
Using Action Languages

Jori Bomanson1 and Alex Brik2(B)

1 Department of Computer Science, Aalto University, Espoo, Finland
2 Google Inc., Mountain View, USA

abrik@google.com

Abstract. This paper discusses diagnosis of industrial data processing
pipelines using action languages. Solving the problem requires reasoning
about actions, effects of the actions and mechanisms for accessing out-
side data sources. To satisfy these requirements, we introduce an action
language, Hybrid ALE that combines elements of the action language
Hybrid AL [6] and the action language CTAID [8]. We discuss some of the
practical aspects of implementing Hybrid ALE and describe an example
of its use.

Answer Set Programming (ASP) is a knowledge representation formalism
with the stable model semantics [11] that allows for a concise representation
of defaults and uncertainty. Action languages [12] allow to formalize reasoning
about effects of actions in dynamic domains. Descriptions in an action language
are usually compiled into ASP. ASP solvers can then be used to find answer
sets of the compiled descriptions, which specify possible trajectories of the mod-
eled dynamic domain. Action languages have been used in various applications,
such as planning [13], biological modeling [2], and diagnostic reasoning [1]. In
this paper we discuss our work towards automating diagnosis of certain data
processing pipelines at Google Inc. using action languages.

Industrial data processing pipelines can consists of hundreds of jobs, with
outputs of some jobs consumed as inputs by others within the pipeline. In addi-
tion, pipelines themselves can have input dependencies on other pipelines. When
working well, this architecture allows efficient and effective processing of large
amounts of data. When a malfunction occurs, it can bring related data process-
ing tasks to a halt, causing a set of cascading failures. The failures can cause an
alert being dispatched to on-call engineers.

For the engineers, an alert presents a diagnostic challenge, as it can point to
one of the later among the cascading failures, rather than an earlier one. The
earlier causes have to be found before the underlying problem can be resolved
thoroughly, and this can be tedious and time consuming. Moreover, multiple
possible causes of failure may have to be investigated. Automating the diagnosing
process can decrease the time required to fix failures. This can improve the fault
tolerance of the system as well as decrease the workload for the engineers.

Earlier action languages, such as AL [3] focus on formalizing possible state-
action-state transitions as well as applicability of actions. In diagnosing data
c© Springer Nature Switzerland AG 2019
M. Balduccini et al. (Eds.): LPNMR 2019, LNAI 11481, pp. 181–194, 2019.
https://doi.org/10.1007/978-3-030-20528-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20528-7_14&domain=pdf
http://orcid.org/0000-0002-9218-9562
http://orcid.org/0000-0002-0891-4355
https://doi.org/10.1007/978-3-030-20528-7_14

182 J. Bomanson and A. Brik

processing pipelines, we found that reasoning also about the necessity of actions
is conducive for creative adequate diagnostic software. CTAID [8] is the earliest
action language we found that provides all the needed language constructs.

In the context of our application, there remains, however a problem that
CTAID does not solve. In order to limit the number of possible diagnoses, it
may be necessary to query outside sources for information about the diagnosed
system (outside information). Such outside information may be, for instance the
completion status of a diagnosed job, or properties of temporary files created
while the diagnosed pipeline was running. In some cases precomputing all of the
outside information is impractical, because of the large amount of data required
to address the needs of all plausible trajectories. A more practical approach is
to query the outside environment during the inference, since as the inference
progresses the set of the plausible trajectories decreases in size.

Standard ASP does not provide the ability to interact with the outside envi-
ronment during inference. Since action languages such as AL or CTAID are trans-
lated into ASP, their ability to interact with the outside environment is likewise
limited. There are extensions of ASP, however that provide the needed func-
tionality. These include DLV DB [14], V I programs [7], GRINGO grounder [10],
HEX [9] and Hybrid ASP (H-ASP) [4]. The only action language known to us
that translates into one of these extensions is Hybrid AL [6], which translates
into H-ASP. We introduce a new action language Hybrid ALE, which extends
Hybrid AL with the language constructs of CTAID. We then discuss the use of
Hybrid ALE for diagnostic reasoning in our application.

In this paper we refer to an example data processing pipeline and focus on
a single job process data1 that requires an input file input.data before it starts
processing and is suspended until the input file is produced. Upon successful
termination, the job produces a single output file, output <timestamp>.data,
which can then be used as an input into a next job in the data processing
pipeline. The timestamp is the timestamp of the output file and is part of its
name. Upon a malfunction, the output file is not created.

To provide a meaningful diagnosis, in our example it is necessary to determine
whether the input file and the output files exist. This can be done outside of the
system description. In general, however such precomputing may not be feasible
because of the large number of the possible trajectories of the diagnosed system.
During inference, however, the space of the possible trajectories decreases as
some possible trajectories are found invalid. Thus, if the checks are performed
as needed during the inference, the computations can become more feasible.

The rest of the paper is structured as follows. In Sect. 1 we review H-ASP. In
Sect. 2 we define Hybrid ALE. In Sect. 3 we discuss the compilation of Hybrid
ALE descriptions into H-ASP programs. A theorem demonstrating the correct-
ness of the translation is discussed in the same section. In Sect. 4 we discuss
an example of the use of Hybrid ALE for diagnostic reasoning. A discussion of
some of the practical aspects of implementing Hybrid ALE is in Sect. 5 followed
by the conclusion.

Diagnosing Data Pipeline Failures Using Action Languages 183

1 Hybrid ASP

We now give a brief overview of H-ASP restricted to rules used in this work. A
H-ASP program P has an underlying parameter space S and a set of atoms At.
Elements of S, called generalized positions, are of the form p = (t, x1, . . . , xm)
where t is time and xi are parameter values. We let t(p) denote t and pi denote
xi for i = 1, . . . ,m. For convenience we name certain parameters, and use their
names instead of their indexes so that for instance if a parameter i is named n
we may use n (p) to mean pi.

A literal is an atom a or its negation ¬a. For a literal b we define b = ¬a if
b = a for some atom a, and b = a if b = ¬a for some atom a.

The universe of P is At × S. A pair (Z,p) where Z ⊆ At and p ∈ S is
referred to as a hybrid state. For M ⊆ At × S we write GP(M) = {p ∈ S :
(∃a ∈ At)((a,p) ∈ M)}, WM (p) = {a ∈ At : (a,p) ∈ M}, and (Z,p) ∈ M
if p ∈ GP(M) and WM (p) = Z. A block B is an object of the form B = a1,
. . . , an, not b1, . . . , not bm where a1, . . . , an, b1, . . . , bm ∈ At. We let B− = not
b1, . . . , not bm, and B+ = a1, . . . , an. We write M |= (B,p), if (ai, p) ∈ M for
i = 1, . . . , n and (bj , p) /∈ M for j = 1, . . . , m.

Advancing rules are of the form: a ← B : A,O. Here B is a block, O ⊆ S,
for all p ∈ O A(p) ⊆ S, and for all q ∈ A(p), t(q) > t(p). The idea is that if
p ∈ O and B is satisfied at p, then A can be applied to p to produce a set of
generalized positions O′ such that if q ∈ O′, then t(q) > t(p) and (a, q) holds.
A is called an advancing algorithm.

Stationary-i rules (for i = 1 or i = 2) are of the form: a ← Bi; B1 : H,O
(where for i = 1 we mean a ← B1 : H,O). Here Bi are blocks and H is a Boolean
algorithm defined on O. The idea is that if (pi,p1) ∈ O (where for i = 1 we
mean p1 ∈ O), Bk is satisfied at pk for k = 1, i, and H(pi,p1) is true (where
for i = 1 we mean H(p1)), then (a, pi) holds. H is called a predicate algorithm.

The stable model semantics for H-ASP [4] defines a set of answer sets for an
H-ASP program in terms of a reduct in a way similar to ASP, but it is omitted
here due to space constraints.

We now introduce additional definitions which are used later in this paper.
An advancing algorithm A lets a parameter y be free if the domain of y is Y and
for all generalized positions p and q and all y′ ∈ Y , whenever q ∈ A(p), then
there exist q′ ∈ A(p) such that y(q′) = y′ and that q and q′ are identical in all
parameter values except possibly y. An advancing algorithm A fixes a parameter
y if A does not let y be free. Intuitively, A fixes y if A is intended to specify
values for y, and A lets y be free otherwise.

We use T to indicate a predicate algorithm or a set constraint that always
returns true. As a short hand notation, if we omit a predicate algorithm or a set
constraint from a rule, then by that we mean that T is used.

A pair of generalized positions (q,p) is a step (with respect to a H-ASP
program P) if there exists an advancing rule a ← B : A,O in P such that p ∈ O
and q ∈ A(p). Then we say that p is a source and q is a destination. We assume
that the underlying parameter space of P contains a parameter Prev defined so

184 J. Bomanson and A. Brik

that, for a step (q,p), we have Prev(q) = (x1(p), ..., xn(p)). We also define a
Boolean algorithm IsStep(p, q) that is true iff
Prev(q) = (x1(p), ..., xn(p)) and [t(q) = t(p) + stepSize].

Given one-place Boolean algorithms A, B, we write A ∨ B, A ∧ B, and A for
Boolean algorithms that map generalized positions q to A(q)∨B(q), A(q)∧B(q),
and not A(q) respectively. The same holds for two-place Boolean algorithms.

For a set of literals M , we denote by rules(M) and defaults (M) the sets of
stationary-1 rules {m ← : T |m ∈ M} and {m ← not m| m ∈ M} respectively.

A notation of the form ← a1, ..., am : P stands for a constraint, i.e., a
stationary-1 rule fail ← a1, ..., am, not fail : P , where fail is a new auxiliary
atom. An analogous notation holds for a stationary-2 rule.

If we omit an advancing algorithm from an advancing rule, by that we mean
an advancing rule where an algorithm A is used such that if q ∈ A (p) then
(q,p) is a step, and A lets all the parameters except time and Prev be free.

An algorithm Dest [P] is defined to hold for p,q iff P (p).

2 Action Language Hybrid ALE

A key concept related to action languages is that of a transition diagram, which is
a labeled directed graph, where vertices are states of a dynamic domain, and edge
labels are subsets of actions. An edge indicates that simultaneous execution of
the actions in the label of an edge can transform a source state into a destination
state. The transformation is not necessarily deterministic, and for a given source
state there can be multiple edges having different destination states, labeled with
the same set of actions. In Hybrid ALE, just as in Hybrid AL, one considers
hybrid transition diagrams, which are directed graphs with two types of vertices:
action states and domain states. A domain state is a pair (A,p) where A is a set
of propositional atoms and p is a vector of sequences of 0s and 1s. We can think
of A as a set of Boolean properties of a system, and p as a description of the
parameters used by external computations. An action state is a tuple (A,p, a)
where A and p are as in the domain state, and a is a set of actions. An out edge
from a domain state must have an action state as its destination. An out edge
from an action state must have a domain state as its destination. Moreover, if
(A,p) is a domain state that has an out-edge to an action state (B, r, a), then
A = B and p = r. We note that there is a simple bijection between the set of
transition diagrams and the set of hybrid transition diagrams.

We now define Hybrid ALE syntax. In Hybrid ALE, there are two types of
atoms: fluents and actions. There are two types of parameters: domain param-
eters and time. The fluents are partitioned into inertial and default. A domain
literal l is a fluent atom p or its negation ¬p. For a generalized position q, we
let q|domain denote a vector of domain parameters. The domain parameters are
partitioned into inertial and default.

A domain algorithm is a Boolean algorithm P such that for all generalized
positions q and r, if q|domain = r|domain, then P (q) = P (r). An action algorithm
is an advancing algorithm A such that for all q and for all r ∈ A(q), time(r) =

Diagnosing Data Pipeline Failures Using Action Languages 185

time(q)+1. For an action algorithm A, the signature of A, sig(A), is the vector
of parameter indices i1, ..., ik of domain parameters fixed by A.

Hybrid ALE allows the following types of statements.

1. Default declaration for fluents: default fluent l
2. Default declaration for parameters: default parameter i with value w
3. Causal laws: a causes 〈l, L〉 with A if p0, ..., pm : P ,
4. State constraints: 〈l, L〉 if p0, ..., pm : P ,
5. Noconcurrency condition: impossible a0, ..., ak if p0, ..., pm : P ,
6. Allow condition: allow a if p0, ..., pm : P ,
7. Trigger condition: trigger a if p0, ..., pm : P ,
8. Inhibition condition: inhibit a if p0, ..., pm : P

where l is a domain literal, i is a parameter index, w is a parameter value, a
is an action, A is an action algorithm, i0, ..., ik are parameter indices, L and P
are domain algorithms, p0, ..., pm are domain literals, and a0, ..., ak are actions
k ≥ 0 and m ≥ −1. If L or P are omitted then the algorithm T is substituted.

A default declaration for fluents declares a default fluent and specifies its
default value. If l is a positive literal, then the default value is true, and if l
is a negative fluent then the default value is false. A default declaration for
parameters declares that i is a default parameter and that w is its default value.
A causal law specifies that if p0, ..., pm hold and P is true when a occurs, then l
holds and L is true after the occurrence of a. In addition, after a occurs, the values
of the parameters sig(A) are specified by the output of the action algorithm A. A
state constraint specifies that whenever p0, ..., pm hold and P is true, l also holds
and L is true. A noconcurrency condition specifies that whenever p0, ..., pm hold
and P is true, a0, ..., ak cannot occur concurrently pairwise. An allow condition
specifies that whenever p0, ..., pm hold and P is true, an action a can occur
(although not necessarily so). A trigger condition specifies that whenever p0,
..., pm hold and P is true, an action a necessarily occurs (unless inhibited). An
inhibition condition specifies that whenever p0, ..., pm hold and P is true, action
a cannot occur. A system description SD is a set of Hybrid ALE statements.

There are several differences between Hybrid AL and Hybrid ALE. First,
Hybrid ALE allows specifying defaults for fluents and parameters. This is not
allowed in Hybrid AL. In Hybrid ALE the noconcurrency condition specify-
ing pairwise noconcurrency replaces the executability condition specifying set
noconcurrency of Hybrid AL. The compatibility condition of Hybrid AL allow-
ing concurrent evaluation of action algorithms with intersecting signatures is not
in Hybrid ALE. The allow condition, trigger condition and inhibition condition,
which allow reasoning about actions, are new to Hybrid ALE.

The H-ASP programs discussed below assume the parameter space consisting
of parameters t (time), domain parameters and the parameter Prev. Such a
parameter space is called the parameter space of SD.

Let Πc(SD) denote the logic program: for every state constraint of the form
(4), Πc(SD) contains the rules l ← p0, ..., pm : P and ← p0, ..., pm : P ∧ L.

186 J. Bomanson and A. Brik

Definition 1. Let (σ,q) be a hybrid state, and let σ′ ⊆ σ and σ′′ ⊆ σ. If σ is a
complete and consistent set of domain literals, then (σ,q) is a Hybrid ALE state
relative to σ′, σ′′ if (σ,q) is an answer set of the program Πc(SD) ∪ rules(σ′) ∪
defaults (σ′′) with the initial condition q.

Next, we introduce a number of definitions needed to specify a transition.
A causal law or a state constraint is applicable in (σ,q) if {p0, ..., pm} ⊆ σ and

P (q) holds. The logical effects of an action a in a state (σ,q) are LE((σ,q), a) =
{l : (a causes 〈l, L〉 with A if p0, ..., pm : P) is applicable in (σ,q)}. For a set of
actions B we define LE ((σ,q) , B) =

⋃

a∈B

LE ((σ,q) , a).

For a generalized position q and action algorithm A with signature (i1, ..., ik)
we define the binary effects of A in q as BE(q,A) = {((i1, r1), ..., (ik, rk)) :
(r1, ..., rk) ∈ A (q)}.

A tuple u = ((i1, r1), ..., (ik, rk)) where ijs are parameter indexes and rjs
are the values of the corresponding parameters is called an assignment tuple. We
define sig(u) = (i1, ..., ik) and values(u) = (r1, ..., rk).

The binary effects of a set of actions D, in a state (σ,q) are BE((σ,q),D) =
{BE(q,A) : (a causes 〈l, L〉 with A if p0, ..., pm : P) is applicable in (σ,q) and
a ∈ D}.

For the binary effects of the actions B let Δp (B) = ((j1, r1), ..., (jn, rn))
where (j1, ..., jn) are the parameters not present among those that are in B,
and for a parameter jm, rm = qjm if jm is an inertial parameter, and rm = w
if jm is a default parameter with the default w. A binary effects completion of
B is B = B ∪ { Δp (B) } . That is a binary effects completion of B contains B
and the assignment tuple for the parameters not found in B.

If w is an assignment tuple ((j1, q1), ..., (jk, qn)) and sig(u)∩sig (w) = ∅ then
the product of u and w is an assignment tuple ((l1, p1), ..., (lk+n, pk+n)) where
l1, ..., lk+n is the arrangement of the indexes i1, ..., ik, j1, ..., jn in increasing order
and p1, ..., pk+n is the corresponding arrangement of the values.

For a set S of assignment tuples let sig (S) = { sig(u) : u ∈ S}. We say
that S is valid if whenever s1, s2 ∈ sig (S) are such that s1 ∩ s2 = ∅ where the
intersection of the two tuples is a tuple of the elements in the intersection of s1,
s2 with s1 and s2 treated as sets.

For a valid set S of assignment tuples and a signature s ∈ sig(S) we define
AT (s, S) = {x : x ∈ S and sig (x) = s}. A partition of S by signatures is
Part(S) = {AT (s, S) : s ∈ sig (S) }.

The set of the candidate successor generalized positions at (σ,q) with respect
to a set of actions D is

CSGP ((σ,q),D) = ∅ if BE((σ,q),D) is not valid, and otherwise
CSGP ((σ,q),D) = values(

∏
Part(BE((σ,q),D) ∪ { (0, t (q) + 2) } ∪

{ (Prev, q|domain) })).
This specifies that given the binary effects of the action algorithms of the

applicable causal laws, the candidate successor generalized positions can be con-
structed by taking the “cross products” of the binary effects of the corresponding

Diagnosing Data Pipeline Failures Using Action Languages 187

action algorithms and by substituting any missing parameters i with qi if i is
an inertial parameter, or the default value of i if it is a default parameter.

For a state (σ0,q) and a set of actions B we define the set of consequent
states as:

CS((σ0,q), B) = { (σ, r) : r ∈ CSGP ((σ0,q), B) and L(r) holds for all
L s.t. (a causes 〈l, L〉 with A if p0, ..., pm : P) is applicable at (σ0,q) and
a ∈ B and LE((σ0,q), B) ⊆ σ and (σ, r) is a Hybrid ALE state relative to
LE((σ0,q), B), {l : l ∈ σ0 and l is inertial} ∪ {l : l is a default fluent} }.

That is the set of consequent states are constructed by combining the set
of the candidate successor generalized positions with the Hybrid ALE states
relative to the set of the logical effects of the applicable actions.

Finally, we specify the sets of possible and necessary actions similarly to [8].
An inhibition condition, an allow condition, a trigger condition and a nocon-
currency condition is active in (σ,q) if {p0, ..., pm} ⊆ σ and P (q) holds. Let
AI (σ,q) = {a : there exists an active inhibition condition in SD containing a}.
Let AT (σ,q) = {a : there exists an active trigger condition in SD containing a
and a /∈ AI (σ,q)}. Let AA (σ,q) = {a : there exists an active allow condition in
SD containing a and a /∈ AI (σ,q)}. Let AN (σ,q) = {(a1, ..., an) : there exists
an active noconcurrency condition with a1, ..., an}.

Definition 2 (Transition). Hybrid ALE states (σ0,q), (σ1, r) and a nonempty
set of actions B form a transition of SD if (σ1, r) ∈ CS((σ0,q) , B) and
AT (σ0,q) ⊆ B ⊆ AT (σ0,q) ∪ AA (σ0,q) and for all B′ ∈ AN (σ0,q) we have
|B ∩ B′| ≤ 1.

In a transition there is always a reason for an action occurring. The definition
ensures that no inhibited action is included in B, that all the triggered actions
that are not inhibited are in B, that the remaining actions in B are allowed
and that actions prohibited from executing concurrently by a noconcurrency
condition are not all in B.

3 Compilation

A system description SD in Hybrid ALE is compiled into H-ASP. In the defini-
tion below we assume that the Hybrid ALE statements are of the form (1)–(8)
specified in the syntax definition. The encoding Π(SD) of the system description
SD consists of the following:

1. For every action algorithm A, we have an atom alg (A). If A has a signature
(i0, ..., ik) then we add the following rules for j ∈ {0, ..., k} that specify all
the parameters fixed by A and execute the algorithm A when appropriate:
a stationary-1 rule, will fix (ij) ← action state, exec(alg (A)),
a stationary-2 rule, fix (ij) ←; action state, exec(alg (A)),
an advancing rule, domain state ← action state, exec(alg (A)) : A.
For every pair of algorithms A1 and A2 with a nonempty signature inter-
section, we add the following stationary-1 rule,

188 J. Bomanson and A. Brik

← action state, exec (alg (A1)) , exec(alg (A2)), to prevent situations where
two different algorithms are setting the values of the same parameter in the
same state.

2. Inertia axioms for parameters. For every inertial domain parameter i, we
have an advancing rule
fix (i) ← action state, not will fix (i) : Default [i]
where Default [i] (p) = {q : pi = qi}. The inertia axioms for parameters
cause the values of the inertial parameters not fixed by one of the action
algorithms to be copied to the successor states.

3. Default axioms for parameters. For every default parameter i with the value
w, we have an advancing rule
fix (i) ← action state, not will fix (i) : Default [i, w]
where Default[i, w] (p) = {q : pi = w}. The default axioms for parameters
cause the values of the default parameters not fixed by one of the action
algorithms to be set to the default value.

4. State restriction constraints for the parameters. We restrict the possible
domain states to only those where every parameter is marked as fixed. For
every domain parameter i, we have a stationary-1 rule
← not fix (i) , domain state

5. For every causal law c ∈ SD of the form (3):
(a) a stationary-2 rule specifying that the law is applicable if the prerequisites

are satisfied
causal (c) ← action state, occurs (a) , h (p0) , ..., h (pm) : P
where causal (c) is an atom uniquely identifying the causal law.

(b) a stationary-1 rule specifying that the advancing algorithm A is to be
evaluated if the prerequisites are satisfied,
exec (alg (A)) ← causal (c)

(c) a stationary-2 rule to derive h (l) in the successor state,
h (l) ← ; causal (c) : IsStep

(d) a stationary-2 rule specifying that L must be true in the successor state,
← ; causal (c) : IsStep ∧ Dest[L].

6. For every state constraint s ∈ SD of the form (4):
(a) a stationary-1 rule indicating that the state constraint is applicable

constraint (s) ← domain state, h (p0) , ..., h (pm) : P
where constraint (s) is an atom identifying s.

(b) a stationary-1 rule to derive h (l),
h (l) ← constraint (s) , domain state

(c) and a stationary-1 rule to verify that L holds if the rule is applicable
← constraint (s) , domain state : L

7. For every noconcurrency condition n ∈ SD of the form (5):
(a) a stationary-1 rule indicating that the condition is applicable

noconcurrency (n) ← action state, h (p0) , ..., h (pm) : P
(b) a stationary-1 rule for every pair ai, aj ∈ {a0, ..., ak} to make the concur-

rent occurrence of ai and aj impossible
← occurs (ai) , occurs (aj) , noconcurrency (n)

Diagnosing Data Pipeline Failures Using Action Languages 189

8. For every trigger condition of the form (7), a stationary-1 rule to trigger the
occurrence of a
occurs (a) ← action state, not ab (occurs (a)) , h (p0) , ..., h (pm) : P

9. For every inhibition condition of the form (8), a stationary-1 rule to inhibit
the occurrence of a
ab (occurs (a)) ← action state, h (p0) , ..., h (pm) : P

10. For every allow condition of the form (6) to make the occurrence of the
action a possible:
allow (a) ← action state, h (p0) , ..., h (pm) , not ab (occurs (a)) : P
occurs (a) ← allow (a) , not ¬occurs (a)
¬occurs (a) ← allow (a) , not occurs (a)

11. Axioms for interleaving domain states and action states. A stationary-2 rule
domain state ← ; action state : IsStep
and an advancing rule
action state ← domain state : CreateActionState
where for a generalized position p
CreateActionState (p) = {q: where p|domain = q|domain and time (q) =
time (p) + 1, Prev (q) = p|domain }.

12. Stationary-1 rules for making an action state with no actions invalid:
a constraint, ← action state, not valid action state,
and for every action a the rule, valid action state ← action state,
occurs (a).

13. Rules for copying fluents from a domain state to an action state. For every
fluent l, stationary-2 rules
h (l) ← ; domain state, h (l) : IsStep

14. For every inertial literal l, a stationary-2 rule encoding inertia axioms
h (l) ← not h (l); action state, h (l) : IsStep

15. For every default literal l, a stationary-1 rule encoding the default
h (l) ← domain state, not h (l)

16. Π (SD) contains closed world assumptions (CWA, for short) for actions. For
every action a, a stationary-1 rule
¬occurs (a) ← action state, not occurs (a)

The encoding H (σ0) of the initial state is a set of stationary-1 rules:
H (σ0) = { h (l) ← : IsT ime [0] : l ∈ σ0} ∪{ domain state ← : IsT ime [0]},

where IsT ime [0] (p) holds iff t (p) = 0.

Theorem 1 (correctness of the translation). Hybrid ALE states (σ0,q), (σ1, r)
where t (q) = 0 and a set of actions B is a transition of SD iff there exists a
stable model M of Π (SD)∪H (σ0) with respect to q such that {q, r} ⊆ GP (M)

and { l : h (l) ∈ WM (q)} = σ0

and { l : h (l) ∈ WM (r)} = σ1

and there exists s ∈ GP (M) with IsStep (s,q) and IsStep (r, s) holding (i.e.
s is a successor generalized position of q and r is a successor generalized
position of s) and { a : occurs (a) ∈ WM (s)} = B.

190 J. Bomanson and A. Brik

The proof of the forward direction is by constructing M and then applying
induction on the reduct of Π (SD) ∪ H (σ0) with respect to M and q to show
that M is a stable model of Π (SD)∪H (σ0) with respect to q. The proof of the
reverse direction uses induction on the reducts to show that a stable model of
Π (SD) ∪ H (σ0) is a transition. The proof is omitted due to space constraints.

4 Example

In this section, we will discuss the example described in the beginning of the
paper. Note that in the example the output file has a timestamp dependent
name, which therefore cannot be hard coded. We use an advancing algorithm to
find the name and to store it under a parameter. The parameter value can then
be used in subsequent diagnosis stages to check the existence of the file.

We have two actions do(1) and fail(1). The action do(1) indicates the
attempted execution of a job. The action fail(1) indicates a malfunction. We
use a default parameter input filename1 to contain the name of the input file,
and we use a default parameter output filename1 to contain the name of the
output file. We use the default fluent ready(1) with the default value false, to
indicate that the input file exists and that the processing can start. All other
fluents are inertial. finished(1) indicates a completed processing, whether suc-
cessful or not. failed(1) indicates that the processing has failed, and succeeded(1)
indicates that the processing has succeeded. Because ready(1) is a default fluent
with the default value false, we know that the fluent holds only at a specific time
in the trajectory. Thus, we do not need to check the negative conditions when
checking the existence of the fluent. The predicate algorithm Exists[file name]
returns true if the value of the parameter file name is not empty, which indicates
the existence of the corresponding file. We use an advancing algorithm GetOut-
putFileName1 to determine the output file name if it exists, and to associate
the file name (or empty value, if the file does not exist) with the parameter
output filename1.

We then use a state constraint to determine whether the processing can start:
(1) ready(1) if -finished(1) : Exists[input filename1]

ready(1) triggers the processing with an optional failure:
(2) trigger do(1) if ready(1)
(3) allow fail(1) if ready(1)

Indicate the completion of the processing and determine the output file name,
if the file exists.

(4) do(1) causes finished(1) with GetOutputFileName1
(5) fail(1) causes failed(1)

Define success as an absence of failure.
(6) succeeded(1) if finished(1), -failed(1)

Make it invalid to fail if an output file exists, and to succeed if it does not.

Diagnosing Data Pipeline Failures Using Action Languages 191

(7) < failed(1), -Exists[output filename1] > if failed(1)
(8) < succeeded(1), Exists[output filename1] > if succeeded(1)
We now consider the two trajectories described by the above system descrip-

tion. We assume that the input file exists, the parameter input filename1 at the
generalized position q contains the input file name, and -finished(1) is derived
at a generalized position q. We consider the case where the output file exists.

(1) derives (ready(1), q). Consequently (2) and the absence of active inhi-
bition conditions for the action do(1) cause an action do(1) to occur at state
corresponding to q. (3) is active and creates two transitions: one containing
action fail(1) and one not containing the action. In both transitions, (4) derives
(finished(1), r). Since the output file exists, (4) makes the parameter out-
put filename1 at the generalized position r contain the name of the file. (5) is
not active in the first transition, but in the second transition it derives (failed(1),
r). (6) derives (succeeded(1), r) in the first transition, and (6) is not active in
the second transition. (7) is not active in the first transition, but it invalidates
the second transition, since -Exists[output filename1] returns false. (8) is active
in the first transition, but it simply rederives (succeeded(1), r).

Then the following transition is derived (we omit negative atoms from the
description for brevity):

({ ready(1) }, q), { do(1) }, ({finished(1), succeeded(1)}, r)

where input filename1(q), output filename1(r) contain the name of the input
file and the name of the output file respectively.

Since only one transition is valid, and it contains (succeeded(1), r), the diag-
nosing engineer can conclude that process data1 has not failed.

If the output file did not exist, then the following transition would be derived:
({ ready(1) }, q), { do(1), fail(1) }, ({finished(1), failed(1)}, v)

where input filename1(q) contains the name of the input file, and output
filename1(v) is empty.

Since only one transition is valid, and it contains (failed(1), r), the diagnosing
engineer can conclude that process data1 has failed.

In our example we consider a data processing job typical of those found in
the data pipelines we have worked with. Such data pipelines may contain many
jobs, with outputs of some being the inputs of others. Each such jobs requires its
own Hybrid ALE description. To create a diagnostic description for the entire
pipeline, individual job descriptions need to be assembled into a single pipeline
description. In many cases doing so is simplified because the interactions of the
jobs is limited to the following scenario: an output of a job X is an input to a
job Y. We can thus “chain” the descriptions together by using finished(X) as a
condition for ready(Y). If Y starts only upon a successful termination of X then
- failed(X) has to be added to the condition for ready(Y) as well.

5 Computation

While a detailed discussion of all the relevant computational aspects is outside
of the scope of this paper, we would like to note a few here. To compute with

192 J. Bomanson and A. Brik

the Hybrid ASP programs compiled from Hybrid ALE descriptions, supporting
only advancing rules of arity 1, and stationary rules of arity 1 and arity 2 is
required. Moreover, computations can be made more efficient by assuming that
any stationary-2 rule are applicable only in the generalized positions that form
a step. In [5] it was shown that with the above and some additional adaptations
all of the maximal trajectories can be computed using the Local Algorithm.
Informally, the algorithm does the following. For a given hybrid state (A,p) it
first computes a set S = { (B,q) } of candidate successor states via the use
of the advancing rules applicable at (A,p). Then for each (B,q) ∈ S it uses
stationary-2 rules applicable at (B,q), (A,p) and stationary-1 rules applicable
at (B,q) to compute a set of the successor states at the generalized position
q. This is an iterative process that produces a tree, with hybrid states (A,p)
as nodes having their successor states as children. The trajectories can then be
recovered by following tree paths from leaf nodes to the root.

Another adaptation is a deferred evaluation of domain algorithms. Evalua-
tion of the domain algorithms can be computationally expensive, and for sta-
tionary rules, it is thus desirable to evaluate domain algorithms only once the
satisfaction of boolean atoms is verified. We illustrate the deferred domain algo-
rithm evaluation using the example of a stationary-1 rule: constraint (s) ←
domain state, h (p0) , ..., h (pm) : P . For stationary-2 rules the implementa-
tion is similar. We introduce two atoms pos(domain(P)) and neg(domain(P))
that encode the possible values of evaluating P . We also add an atom
exec(domain(P)) to indicate domain algorithms P that need to be evaluated.
We then substitute the above stationary-1 rule with the following rules.

constraint (s) ← domain state, h (p0) , ..., h (pm) , pos(domain(P))
to indicate that constraint (s) can be derived only if all the predicate require-
ments are satisfied and P evaluates to true. We add a rule to indicate that
P needs to be evaluated if all the propositional constraints of the original
stationary-1 rule are satisfied:

exec(domain(P)) ← domain state, h (p0) , ..., h (pm)

We then add rules that guess the value of P :

pos(domain(P)) ← exec(domain(P)), not neg(domain(P)), and
neg(domain(P)) ← exec(domain(P)), not pos(domain(P)).

The guess is then verified by the Hybrid ASP solver in the following way. In
every state where exec(domain(P)) atom is present, P is evaluated. If the state
contains atom pos(domain(P)) and the value of P is false, or if the state contains
atom neg(domain(P)) and the value of P is positive then the state is rejected.

6 Conclusion

In this paper we introduced an action language Hybrid ALE in order to facili-
tate the development of diagnostic programs for the industrial data processing

Diagnosing Data Pipeline Failures Using Action Languages 193

pipelines. The nature of the application is such as to require the diagnostic pro-
gram to access outside sources. As precomputing all of the facts derivable from
the outside sources can be impractical, access to those sources has to be done
during inference. This poses a challenge to action languages that compile to
ASP, since ASP does not provide mechanisms for accessing outside sources. We
have thus chosen as a starting point action language Hybrid AL, which com-
piles into Hybrid ASP—one of the extensions of ASP that provides access to
outside sources. While Hybrid AL provides the syntactic structure for reasoning
about the consequences of actions, it lacks structure such as found in CTAID for
reasoning about the actions themselves. We thus extended Hybrid AL with the
structure for reasoning about actions, as found in CTAID. The resulting action
language Hybrid ALE can be viewed as a more expressive version of CTAID

that compiles to Hybrid ASP instead of ASP. A system implementing Hybrid
ALE was developed and is now being used at Google Inc. to help engineers with
diagnosing malfunctions of certain data processing pipelines.

References

1. Balduccini, M., Gelfond, M.: Diagnostic reasoning with A-Prolog. TPLP 3(4–5),
425–461 (2003)

2. Baral, C., Chancellor, K., Nam, T.H., Tran, N., Joy, A.M., Berens, M.E.: A knowl-
edge based approach for representing and reasoning about signaling networks. In:
Proceedings Twelfth International Conference on Intelligent Systems for Molecu-
lar Biology/Third European Conference on Computational Biology 2004, 31 July–4
August 2004, Glasgow, UK, pp. 15–22 (2004)

3. Baral, C., Gelfond, M.: Reasoning agents in dynamic domains. In: Minker, J. (ed.)
Logic Based Artificial Intelligence, vol. 597, pp. 257–279. Springer, Boston (2000).
https://doi.org/10.1007/978-1-4615-1567-8 12

4. Brik, A., Remmel, J.B.: Hybrid ASP. In: Gallagher, J.P., Gelfond, M. (eds.)
ICLP (Technical Communications). LIPIcs, vol. 11, pp. 40–50. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2011)

5. Brik, A., Remmel, J.B.: Computing a finite horizon optimal strategy using hybrid
ASP. In: NMR (2012)

6. Brik, A., Remmel, J.: Action language hybrid AL. In: Balduccini, M., Janhunen,
T. (eds.) LPNMR 2017. LNCS (LNAI), vol. 10377, pp. 322–335. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-61660-5 29

7. Calimeri, F., Cozza, S., Ianni, G.: External sources of knowledge and value inven-
tion in logic programming. Ann. Math. Artif. Intell. 50(3–4), 333–361 (2007)

8. Dworschak, S., Grell, S., Nikiforova, V.J., Schaub, T., Selbig, J.: Modeling biologi-
cal networks by action languages via answer set programming. Constraints 13(1–2),
21–65 (2008)

9. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-
order reasoning and external evaluations in answer-set programming. In: Kaelbling,
L.P., Saffiotti, A. (eds.) IJCAI 2005, Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence, 30 July–5 August 2005, Edinburgh,
Scotland, UK, pp. 90–96. Professional Book Center (2005)

10. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider,
M.T.: Potassco: the potsdam answer set solving collection. AI Commun. 24(2),
107–124 (2011)

https://doi.org/10.1007/978-1-4615-1567-8_12
https://doi.org/10.1007/978-3-319-61660-5_29

194 J. Bomanson and A. Brik

11. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP, pp. 1070–1080 (1988)

12. Gelfond, M., Lifschitz, V.: Action languages. Electron. Trans. Artif. Intell. 2, 193–
210 (1998)

13. Lifschitz, V.: Answer set programming and plan generation. Artif. Intell. 138(1–2),
39–54 (2002)

14. Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting with recursive queries
in database and logic programming systems. TPLP 8(2), 129–165 (2008)

Repair-Based Degrees of Database
Inconsistency

Leopoldo Bertossi1,2(B)

1 RelationalAI Inc., Toronto, Canada
2 Carleton University, Ottawa, Canada

bertossi@scs.carleton.ca

Abstract. We propose and investigate a concrete numerical measure
of the inconsistency of a database with respect to a set of integrity
constraints. It is based on a database repair semantics associated to
cardinality-repairs. More specifically, it is shown that the computation
of this measure can be intractable in data complexity, but answer-set
programs are exhibited that can be used to compute it. Furthermore, its
is established that there are polynomial-time deterministic and random-
ized approximations. The behavior of this measure under small updates
is analyzed, obtaining fixed-parameter tractability results. We explore
abstract extensions of this measure that appeal to generic classes of
database repairs. Inconsistency measures and repairs at the attribute
level are investigated as a particular, but relevant and natural case.

1 Introduction

Intuitively, a relational database may be more or less consistent than other
databases with the same schema, and with respect to the same integrity con-
straints (ICs). This comparison can be accomplished by assigning a measure of
inconsistency to databases, which represents a quantitative degree of satisfaction
of the intended ICs by the database. In this work we propose such an inconsis-
tency measure, we investigate its computational properties, and we propose a
generalization and abstraction that gives rise to a whole family of inconsistency
measures that depend on how consistency is restored.

The problem of measuring inconsistency has been investigated mostly by the
knowledge representation (KR) community, but scarcely by the data manage-
ment community. Furthermore, the approaches and results obtained in KR do
not immediately apply to databases, or do not address problems that are natu-
ral and relevant in databases, such as the computational complexity in terms of
the size of the database, i.e. in data complexity. Actually, several (in)consistency
measures have been considered in KR [20,21,32], mostly for propositional knowl-
edge bases, or have been applied with grounded first-order representations,
obtaining in essence a propositional representation. It becomes interesting to

Member of the “Millenium Institute for Foundational Research on Data” (IMFD,
Chile).

c© Springer Nature Switzerland AG 2019
M. Balduccini et al. (Eds.): LPNMR 2019, LNAI 11481, pp. 195–209, 2019.
https://doi.org/10.1007/978-3-030-20528-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20528-7_15&domain=pdf
http://orcid.org/0000-0002-1144-3179
https://doi.org/10.1007/978-3-030-20528-7_15

196 L. Bertossi

consider inconsistency measures that are closer to database applications, and
whose formulation and computation stay at the relational, first-order level.

In this work we make these ideas concrete by introducing and investigating
a particular and natural inconsistency measure. We provide an approach to the
computation of the inconsistency measure that is based on answer-set program-
ming (ASP) [9], also known as logic programming with stable model semantics
[19]. This is a natural choice since: (a) an inconsistency measure is non-monotonic
in general; (b) the complexity results for its computation show that ASPs provide
the exact expressive and computational power needed to compute this measure;
(c) database repairs are the basis for the measure, and there are already ASPs
that specify them [12] (more on this point below).

The investigation we carry out for the particular inconsistency measure is,
independently from possible alternative measures, interesting per se: In addition
to staying at the relational level, we stress computability and complexity issues
in terms of the size of the database. This provides a pattern for the investigation
of other possible consistency measures, along similar lines. We are not aware
of research that emphasizes computational aspects of inconsistency measures;
and here we start filling in this gap. It is likely that other possible consistency
measures in the relational setting are also polynomially-reducible to the one we
investigate here (or the other way around), and results for one of them can be
leveraged for the others. This is a matter of future research.

The particular inconsistency measure we investigate in detail is motivated by
one used before to measure the degree of satisfaction of functional dependencies
(FDs) in a relational database [25]. We extend and reformulate it in terms of
database repairs that are based on tuple deletions.1 As such, it can be applied to
the larger class of denial constraints [3], and even more, to any class of monotonic
ICs (in the sense that, as the database grows, only more violations can be added).
However, this measure can also be applied to non-monotonic classes of ICs, such
as inclusion- and tuple-generating dependencies, as long as we repair, i.e. restore
consistency, only through tuple deletions.2 Actually, the connection between the
inconsistency measure and database repairs motivates our use of ASPs for its
computation: We can rely on ASPs that specify and compute the repairs of a
database (cf. [3] for a survey and references).

The particular connection of the inconsistency measure and a particular class
of database repairs is used here as a basis for proposing more general and abstract
inconsistency measures, which have origin in different classes of repairs. From
this point of view, we can capture the intuition that the inconsistency degree
of a database D with respect to (wrt.) a set of ICs Σ depends on how complex
it is to restore consistency (as represented by the admissible class of repairs of
D wrt. Σ). More technically, our take is that a degree of inconsistency depends

1 Intuitively, a repair of an inconsistent database D is an alternative instance for the
same schema that satisfied the given ICs, and is “maximally close” to D.

2 The measure can be easily redefined using the symmetric difference between the
original database and the repairs when tuple insertions are also allowed as repair
actions.

Repair-Based Degrees of Database Inconsistency 197

upon a repair semantics, and then, on the admissible repair actions, and on how
close we want stay to the instance at hand.

Our main contributions are the following: (a) We introduce an inconsistency
measure that is based on cardinality-repairs (Sect. 3). (b) We introduce answer-
set programs to compute the inconsistency-measures (Sect. 4); and we show that
they provide the required expressive power (Sect. 5). (c) We obtain data complex-
ity results for the inconsistency measure, showing that its computation (as a deci-
sion problem) is NP-complete for denial constraints (DCs) and some classes of
FDs (Sect. 5). (d) We obtain deterministic and randomized PTIME approxima-
tion results for the inconsistency measure, with approximation ratio d (Sect. 5).
(e) We establish that the inconsistency measure behaves well under updates, in
that small updates keep the inconsistency measure within narrow boundaries.
Furthermore, we establish that the computation of the inconsistency measure
is fixed-parameter tractable when one starts with a consistent instance, and
the parameter is the number of updates (Sect. 6). (f) We introduce a general
inconsistency-measure based on an abstract repair-semantics (Sect. 7), and we
instantiate it using attribute-based repairs (Sect. 8). (g) We briefly introduce a
causality-based notion of contribution of individual tuples to the inconsistency
of the database (Sect. 9). All the proofs, additional examples, and an extended
discussion can be found in the extended version of this work [1]. All the com-
plexity statements refer to data complexity, i.e. in the size of the DB instance at
hand.

2 Background on Relational Databases and Repairs

A relational schema R contains a domain of constants, C, and a set of predicates
of finite arities, P. R gives rise to a language L(R) of first-order (FO) predicate
logic with built-in equality, =. Variables are usually denoted with x, y, z, ...,
and finite sequences thereof with x̄, ...; and constants with a, b, c, ..., etc. An
atom is of the form P (t1, . . . , tn), with n-ary P ∈ P and t1, . . . , tn terms, i.e.
constants, or variables. An atom is ground (a.k.a. a tuple) if it contains no
variables. A DB instance, D, for R is a finite set of ground atoms; and it serves
as an interpretation structure for L(R).

A conjunctive query (CQ) is a FOformula, Q(x̄), of the form ∃ȳ (P1(x̄1 ∧
· · · ∧ Pm(x̄m)), with Pi ∈ P, and (distinct) free variables x̄ := (

⋃
x̄i) � ȳ. If Q

has n (free) variables, c̄ ∈ Cn is an answer to Q from D if D |= Q[c̄], i.e. Q[c̄]
is true in D when the variables in x̄ are componentwise replaced by the values
in c̄. Q(D) denotes the set of answers to Q from D. Q is a boolean conjunctive
query (BCQ) when x̄ is empty; and when true in D, Q(D) := {true}. Otherwise,
it is false, and Q(D) := ∅. Sometimes CQs are written in Datalog notation as
follows: Q(x̄) ← P1(x̄1), . . . , Pm(x̄m).

We consider as integrity constraints, i.e. sentences of L(R): (a) denial
constraints (DCs), i.e. of the form κ : ¬∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)), where
Pi ∈ P, and x̄ =

⋃
x̄i; and (b) functional dependencies (FDs), i.e. of the form

198 L. Bertossi

ϕ : ¬∃x̄(P (v̄, ȳ1, z1) ∧ P (v̄, ȳ2, z2) ∧ z1 �= z2).3 Here, x̄ = ȳ1 ∪ ȳ2 ∪ v̄ ∪ {z1, z2},
and z1 �= z2 is an abbreviation for ¬z1 = z2. A key constraint (KC) is
a conjunction of FDs:

∧k
j=1 ¬∃x̄(P (v̄, ȳ1) ∧ P (v̄, ȳ2) ∧ yj

1 �= yj
2), with k =

|ȳ1| = |ȳ2|, and generically yj stands for the jth variable in ȳ. For example,
∀x∀y∀z(Emp(x, y) ∧ Emp(x, z) → y = z), is an FD (and also a KC) that could
say that an employee (x) can have at most one salary. This FD is usually writ-
ten as EmpName → EmpSalary . In the following, we will include FDs and key
constraints among the DCs. If an instance D does not satisfy the set Σ of DCs
associated to the schema, we say that D is inconsistent, which is denoted with
D � |= Σ.

When a database instance D does not satisfy its intended ICs, it is repaired,
by deleting or inserting tuples from/into the database. An instance obtained in
this way is a repair of D if it satisfies the ICs and minimally departs from D [3]. In
this work, mainly to fix ideas and simplify the presentation, we consider mostly
sets Σ of ICs that are monotone, in the sense that D � |= Σ and D ⊆ D′ imply
D′ � |= Σ. This is the case for DCs.4 For monotone ICs, repairs are obtained by
tuple deletions (later on we will also consider value-updates as repair actions).
We introduce the most common repairs of databases wrt. DCs by means of an
example.

Example 1. The DB D = {P (a), P (e), Q(a, b), R(a, c)} is inconsistent wrt. Σ
containing the DCs κ1 : ¬∃x∃y(P (x) ∧ Q(x, y)), and κ2 : ¬∃x∃y(P (x) ∧
R(x, y)). Here, D � |= {κ1, κ2}.

A subset-repair, in short S-repair, of D wrt. Σ is a ⊆-maximal subset of
D that is consistent, i.e. no proper superset is consistent. The following are S-
repairs: D1 = {P (e), Q(a, b), R(a, c)} and D2 = {P (e), P (a)}. Under this repair
semantics, both repairs are equally acceptable. A cardinality-repair, in short a
C-repair, is a maximum-cardinality S-repair. D1 is the only C-repair. �

For an instance D and a set Σ of DCs, the sets of S-repairs and C-repairs
are denoted with Srep(D,Σ) and Crep(D,Σ), resp. It holds: Crep(D,Σ) ⊆
Srep(D,Σ). More generally, for a set Σ of ICs, not necessarily DCs, they can
be defined by (cf. [3]): (a) Srep(D,Σ) = {D′ : D′ |= Σ, and D � D′

is minimal under set inclusion}; and (b) Crep(D,Σ) = {D′ : D′ |= Σ, and
D�D′ is minimal in cardinality}. Here, D�D′ is the symmetric set-difference
(D � D′) ∪ (D′

� D).

3 An Inconsistency Measure

In this section we consider a concrete inconsistency measure. It is natural, and
has been consider already in knowledge representation [21], but its investigation

3 The variables in v̄ do not have to go first in the atomic formulas; what matters is
keeping the correspondences between the variables in those formulas.

4 Put in different terms, a DC is associated to (or is the negation of) a conjunctive
queries Q, which is monotone in the usual sense: D |= Q and D ⊆ D′ ⇒ D′ |= Q.

Repair-Based Degrees of Database Inconsistency 199

in a database context has not been undertaken yet. It has also appeared in
[25], as measure g3, among other possible measures and in a restricted form in
relation to the satisfaction of FDs, but it was not analyzed much. Its analysis
in terms of applicability and properties in the context of DBs, that we here
undertake, should serve as a pattern to follow for the analysis of other possible
inconsistency measures for DBs. To fix ideas, we consider only DCs. For them,
the repair semantics Srep(D,Σ) and Crep(D,Σ) provide repairs D′ that are is
maximally contained in the initial instance D. On this basis, we define:

inc-degs,g3(D,Σ) :=
|D| − max{|D′| : D′ ∈ Srep(D,Σ)}

|D| , (1)

inc-degc,g3(D,Σ) :=
|D| − max{|D′| : D′ ∈ Crep(D,Σ)}

|D| . (2)

The first is relative to S-repairs and the second, to C-repairs.

Example 2. (Example 1 cont.) Here, Srep(D,Σ) = {D1,D2}, and Crep(D,Σ) =
{D1}. They provide the inconsistency degrees:

inc-degs,g3(D, Σ) =
4 − |D1|

4
=

1

4
, and inc-degc,g3(D, Σ) =

4 − |D1|
4

=
1

4
. �

It holds Crep(D,Σ) ⊆ Srep(D,Σ), but max{|D′| : D′ ∈ Crep(D,Σ)} =
max{|D′| : D′ ∈ Srep(D,Σ)}, so it holds inc-degs,g3(D,Σ) = inc-degc,g3(D,Σ).
This measure always takes a value between 0 and 1. The former when D is con-
sistent (so it itself is its only repair). This measure will be generalized in Sect. 7.
Before that, in the next sections we investigate this measure of inconsistency.

4 ASP-Based Computation of the Inconsistency Measure

We concentrate here on the computation of the inconsistency measure
inc-degc,g3(D,Σ) in (2), which appeals to repairs in Crep(D,Σ). This can be
done through a compact specification of repairs by means of ASPs.5 More pre-
cisely, given a database instance D and a set of ICs Σ (not necessarily DCs),
it is possible to write an ASP whose intended models, i.e. the stable models or
answer sets, are in one-to-one correspondence with the S-repairs of D wrt. Σ
(cf. [12] for a general formulation). Here we show only some cases of ICs and
examples. In them we use, only to ease the formulation and presentation, global
unique tuple identifiers (tids), i.e. every tuple R(c̄) in D is represented as R(t; c̄)
for some integer (or constant) t that is not used by any other tuple in D.

If Σ is a set of DCs containing κ : ¬∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)), we first
introduce for a predicate Pi of the database schema, a nickname predicate P ′

i

that has, in addition to a first attribute for tids, an extra, final attribute to

5 This approach was followed in [2] to compute maximum responsibility degrees of
database tuples as causes for violations of DCs, appealing to a causality-repair con-
nection [7].

200 L. Bertossi

hold an annotation from the set {d, s}, for “delete” and “stays”, resp. Nickname
predicates are used to represent and compute repairs. Next, the repair-ASP,
Π(D,Σ), for D and Σ contains all the tuples in D as facts (with tids), plus the
following rules for κ:

P ′
1(t1; x̄1, d) ∨ · · · ∨ P ′

m(tn; x̄m, d) ← P1(t1; x̄1), . . . , Pm(tm; x̄m).
P ′

i (ti; x̄i, s) ← Pi(ti; x̄i), not P ′
i (ti; x̄i, d). i = 1, · · · ,m.

A stable model M of the program determines a repair D′ of D: D′ :=
{P (c̄) |P ′(t; c̄, s) ∈ M}, and every repair can be obtained in this way [5,12].

For an FD in Σ, say ϕ : ¬∃xyz1z2vw(R(x, y, z1, v) ∧ R(x, y, z2, w) ∧ z1 �= z2),
which makes the third attribute functionally depend upon the first two, the
repair program contains the rules:

R′(t1;x, y, z1, v, d) ∨ R′(t2;x, y, z2, w, d) ← R(t1;x, y, z1, v), R(t2;x, y, z2, w),
z1 �= z2.

R′(t;x, y, z, v, s) ← R(t;x, y, z, v), not R′(t;x, y, z, v, d).

For DCs and FDs, the repair programs can be made normal, i.e. non-disjunctive,
by moving all the disjuncts but one, in turns, in negated form to the body of the
rule [12]. For example, the rule P (a) ∨ R(b) ← Body , can be written as the two
rules P (a) ← Body ,not R(b) and R(b) ← Body ,not P (a).6 Still the resulting
program can be non-stratified if there is recursion via negation [18], e.g. for FDs
and DCs with self-joins.

Example 3. (Example 1 cont.) The initial instance with tids is D =
{P (1, e), P (2, a), Q(3, a, b), R(4, a, c), }. The repair program contains the fol-
lowing rules, with the first and second for κ1 and κ2, resp.:

P ′(t1;x, d) ∨ Q′(t2;x, y, d) ← P (t1;x), Q(t2;x, y).
P ′(t1;x, d) ∨ R′(t2;x, y, d) ← P (t1;x), R(t2;x, y).

P ′(t;x, s) ← P (t;x), not P ′(t;x, d). etc.

The repair program Π(D, {κ1, κ2}) has the stable models: M1 = {P ′(1, e, s),
Q′(3, a, b, s), R′(4, a, c, s), P ′(2, a, d)} ∪ D and M2 = {P ′(1, e, s), P ′(2, a, s),
Q′(3, a, b, d), R′(4, a, c, d)} ∪ D, which correspond to the S-repairs D1,D2, resp. �

In order to compute inc-degc,g3(D,Σ) via C-repairs, we need to specify the latter,
which can be achieved by adding to Π: (a) rules to collect the tids of deleted
tuples; (b) a rule with aggregation to compute the number of deleted tuples; and
(c) a weak program-constraint (WC) [26] that eliminates all the stable models
(equivalently, S-repairs) that violate the body of the WC a non-minimum number
of times:

(a) Del(t) ← P ′
i (t, x̄i, d). i = 1, . . . , m

(b) NumDel(n) ← #count{t : Del(t)} = n. (c) :∼ Del(t).

6 This transformation preserves the semantics, because these repair-ASPs turn out to
be head-cycle-free [12].

Repair-Based Degrees of Database Inconsistency 201

With them, in each model of the program the tids of deleted tuples are col-
lected and counted; only the models where the number of deletions is a minimum
are kept.7 With the WC we keep only cardinality repairs, but not the S-repairs
that are maximal, but not maximum subinstances of D.

Example 4. (Example 3 cont.) If we add to Π the rule Del(t) ← R′(t, x, y, d),
similarly for Q′ and P ′; and the rule counting the deleted tuples, NumDel(n) ←
#count{t : Del(t)} = n, the stable model M1 of the original program would be
extended with the atoms Del(2),NumDel(1). Similarly for M2. If we also add
the WC :∼ Del(t), only (the extended) model M1 remains. It corresponds to
the only C-repair. �

The value for NumDel in any of the remaining models can be used to compute
inc-degc,g3(D,Σ). So, there is no need to explicitly compute all stable models,
their sizes, and compare them. This value can be obtained by means of the
query “: − NumDel(x)?”, answered by the extended program under the brave
semantics (returning answers that hold in some stable model). An extended
example with DLV-Complex [11,26] is shown in the extended version [1].

Brave reasoning under ASPs with weak constraints is ΔP
2 (log(n))-complete in

data complexity, i.e. in the size of the database [10]. As we will see in Sect. 5 (cf.
Theorem 1), this complexity matches the intrinsic complexity of the computation
of the inconsistency measure.

5 Complexity of the Inconsistency Measure Computation

We recall that the functional complexity class FPNP(log(n)) contains computation
problems whose counterparts as decision problems are in the class PNP(log(n)),
i.e. they are solvable in polynomial time with a logarithmic number of calls to
an NP -oracle [30].

Theorem 1. For DCs, computing inc-degc,g3(D,Σ) belongs to the functional
class FPNP(log(n)); and there is a relational schema and a set of DCs Σ for which
computing inc-degc,g3(D,Σ) is FPNP(log(n))-complete (in data complexity). �

This result still holds for a set F of two FDs of the form: A → B, B → C
[1], which deserves a comment: In [27] it is established that if a set of FDs is
“simplifiable”, then a C-repair can be computed in polynomial time. Clearly
if we can build such a repair, we can immediately compute the inconsistency
measure in polynomial time (one C-repair suffices). As expected, the set F is
not simplifiable.

7 If we had a (hard) program-constraint instead, written ← Del(t), we would be pro-
hibiting the satisfaction of the rule body (in this case, deletions would be prohibited),
and we would be keeping only the models where there are no deletions. This would
return no model or the original D depending on whether D is inconsistent or not.

202 L. Bertossi

Remark 1. In the following we make use several times of the fact that, for a set Σ
of DCs and an instance D, one can build a conflict-hypergraph, CG(D,Σ), whose
vertices are the tuples in D and hyperedges are subset-minimal sets of tuples
that simultaneously participate in the violation of one of the DCs in Σ [13,28].
More precisely, for a DC κ : ¬∃x̄(P1(x̄1) ∧ . . . ∧ Pl(x̄l)) in Σ, S ⊆ D forms a
hyperedge, if S satisfies the BCQ associated to κ, Qκ ← P1(x̄1), . . . , Pl(x̄l), and S
is subset-minimal for this property.8 A C-repair turns out to be the complement
of a minimum-size vertex cover for the conflict-hypergraph; equivalently, of a
minimum-size hitting-set for the set of hyperedges; or, equivalently, a maximum-
size independent set of CG(D,Σ). �

The complexity results above show that the normal ASPs introduced in
Sect. 4 have the right expressive power to deal with the computational problem
at hand. Despite the high-complexity results above, there is a good polynomial-
time algorithm, appID , that approximates inc-degc,g3(D,Σ).

Theorem 2. There is a polynomial-time, deterministic algorithm that returns
an approximation appID(D, Σ) to inc-degc,g3(D,Σ), with the maximum number
d of atoms in a DC in Σ as constant factor: appID(D,Σ) ≤ d×inc-degc,g3(D,Σ).

�

Another approach to the approximate computation of the inconsistency mea-
sure is based on randomization applied to a relaxed, linear-programming version
of the hitting-set (HS) problem for the set of d-bounded hyperedges (or, equiva-
lently, as vertex-covers in hypergraphs with d-bounded hyperedges). In our case,
this occurs when each of the DCs in Σ has a number of atoms bounded by d. In
this case, we say Σ is d-bounded, and the hyperedges in the conflict-hypergraph
have all size at most d. The algorithm in [15] returns a “small”, possibly non-
minimum HS, which in our case is a set of database tuples whose removal from
D restores consistency. The size of this HS approximates the numerator of the
inconsistency measure.

Proposition 1. There is a polynomial-time, randomized algorithm that
approximates inc-degc,g3(D,Σ) within a ratio d, and with probability 3

5 . �

In this result, d is determined by the fixed set of DCs, and does not depend
on D. Actually, as shown in [15], the ratio of the algorithm can be improved
to (d − 8

Δ), where Δ ≤ 1
4 |D| 1

4 , and d is the maximum degree of a vertex, i.e.
in our case the maximum number of tuples that co-violate a DC.9 For FDs we
have conflict-graphs, and d = 2.

8 More technically, each DC κ : ¬∃x̄(P1(x̄1) ∧ . . . ∧ Pl(x̄l) ∧ . . .) gives rise to con-
junctive queries Qκ

Pl
(x̄l) ← P1(x̄1), . . . , Pl(x̄l), A tuple P (ā) participates in the

violation of κ if ā is an answer to Qκ
P (x̄).

9 It is known that there is no polynomial-time approximation with ratio of the form
(d − ε) for any constant ε [24].

Repair-Based Degrees of Database Inconsistency 203

6 Inconsistency Degree Under Updates

Let us assume we have a inc-degs,g3(D,Σ) for an instance D and a set of DCs Σ.
If, possibly virtually or hypothetically for exploration purposes, we insert m new
tuples into D, the resulting instance, D′, may suffer from more IC violations than
D. The question is how much can the inconsistency measure change. The next
results tell us that the inconsistency degree does not experiments unexpected
jumps under small updates. They can be seen as a sensitivity analysis, and the
result as a continuity property of the inconsistency measure.

Proposition 2. Given an instance D and a set Σ of DCs, if ε × |D| new tuples
are added to D, with 0 < ε < 1, obtaining instance D′, then inc-degc,g3(D′, Σ) ≤
inc-degc,g3(D,Σ) + 1

1+ 1
ε

; and inc-degc,g3(D,Σ) ≤ 1
1−ε × inc-degc,g3(D′, Σ). �

When tuples are deleted, the number of DC violations can only decrease,
but also the reference size of the database decreases. However, the inconsistency
degree stays within a tight upper bound.

Proposition 3. Given an instance D and a set Σ of DCs, if ε × |D| tuples are
deleted from D, with 0 < ε < 1, obtaining instance D′, then inc-degc,g3(D′, Σ) ≤
1

1−ε × inc-degc,g3(D,Σ); and inc-degc,g3(D,Σ) ≤ 1
1−ε × inc-degc,g3(D′, Σ) + ε.

The last term can be dropped if the tuples deleted form D did not participate
in DC violations. �

A natural situation occurs when D is consistent wrt. a set Σ of DCs, and one
adds a set U of m tuples (deletions will not affect consistency). It turns out that
if Σ is d-bounded, then computing the inconsistency measure is fixed-parameter
tractable [16], where the fixed parameter is m.

Theorem 3. For a fixed set of d-bounded DCs Σ, a database D that is consis-
tent wrt. Σ, and U a set of extra tuples, computing inc-degc,g3(D ∪ U,Σ) is fixed-
parameter tractable with parameter m = |U |. More precisely, there is an algo-
rithm that computes the inconsistency measure in time O(log(m)×(Cm+mN)),
where N = |D|, m = |U |, and C is a constant that depends on d. �

The complexity is exponential in the number of updates, but linear in the
size of the initial database. In many situations, m would be relatively small in
comparison to |D|.

7 Repair Semantics and Inconsistency Degrees

In general terms, a repair semantics S for a schema R that includes a set Σ of ICs
assigns to each instance D for R (which may not satisfy Σ), a class RepS(D,Σ)
of S-repairs of D wrt. Σ. These are the instances for R that satisfy Σ and
minimally depart from D according to some minimization criterion. Beside the
repairs introduced in Example 1, several repair semantics have been investigated,
e.g. prioritized repairs [31], attribute-based repairs that change attribute values

204 L. Bertossi

by other data values [33], or by a null value, NULL, as in SQL databases [2]. The
latter will be retaken in Sect. 8.

According to our take on how an inconsistency degree depends on database
repairs, we define the inconsistency degree of an instance D wrt. a set of ICs Σ
in relation to a given repair semantics S. Namely, as the distance from D to the
class RepS(D,Σ):

inc-degS(D,Σ) := dist(D,RepS(D,Σ)). (3)

This is an abstract measure that depends on S and a numerical function that
gives the distance, dist(W,W), from a world W to a set W of possible worlds,
which in this case are database instances. Under the assumption that any repair
semantics should return D when D is consistent wrt. Σ and dist(D, {D}) = 0,
a consistent instance D should have 0 as inconsistency degree.10

The class RepS(D,Σ) might contain instances that are not sub-instances of
D, for example, for different forms of inclusion dependencies (INDs) we may want
to insert tuples;11 or even under DCs, we may want to appeal to attribute-based
repairs. In the rest of this section, we consider only repairs that are sub-instances
of the given instance. Still this leaves much room open for different kinds of
repairs. For example, we may prefer to delete some tuples over others [31]. Or,
as in database causality [7,29], the database can be partitioned into endogenous
and exogenous tuples, assuming we have more control on the former, or we trust
more the latter; and we prefer endogenous repairs that delete only, or preferably,
endogenous tuples [2]. The consistency measure we have investigated so far can
be defined with an abstract class RepS(D,Σ):

inc-degS,g3(D, Σ) := distg3(D,RepS(D, Σ)) :=
|D|−max{|D′| : D′ ∈ RepS(D, Σ)}

|D|

=
min{|D � D′| : D′ ∈ RepS(D, Σ)}

|D| . (4)

This measure can be applied more generally as a “quality measure”, not only
in relation to inconsistency, but also whenever possibly several intended “quality
versions” of a dirty database exist, e.g. as determined by additional contextual
information [8]. Particularly prominent is the instantiation of (4) on S-repairs
(cf. Sect. 3).

The measure in (4) takes the value 1 only when RepS(D,Σ) = ∅ (assuming
that max{ |D′| : D′ ∈ ∅} = 0), i.e. the database is irreparable, which is never
the case for DCs and S-repairs: there is always an S-repair. However, it could
be irreparable with different, but related repair semantics. As mentioned before,
in database causality [29] tuples can be endogenous or exogenous, being the
former those we can play with, e.g. applying virtual updates on them, producing
10 Abstract distances between two point-sets are investigated in [14], with their com-

putational properties. Our setting is a particular case.
11 For INDs repairs based only on tuple deletions can be considered [13].

Repair-Based Degrees of Database Inconsistency 205

counterfactual scenarios. One can define endogenous repairs as those obtained
updating only endogenous tuples [7].

Example 5. (Example 2 cont.) Assume D is partitioned into endogenous and
exogenous tuples, say resp. D = Dn

.∪ Dx, with Dn = {Q(a, b), R(a, c)}
and Dx = {P (a), P (e)}. In this case, the endogenous-repair semantics that
allows only a minimum number of deletions of endogenous tuples, defines
the class of repairs: Crepn(D,Σ) = {D2}, with D2 as above. In this case,12

inc-degc,n,g3(D,Σ) = 4−2
4 = 1

2 . Similarly, if now Dn = {P (a), Q(a, b)} and Dx =
{P (e), R(a, c)}, there are no endogenous repairs, and inc-degc,n,g3(D,Σ) = 1.

�

8 Adapting inc-degs,g3 to Attribute-Based Repairs

Database repairs that are based on changes of attribute values in tuples have
been considered in [6,33], and implicitly in [4]. In this section we adapt the incon-
sistency measure we have considered so far, to make it depend upon attribute-
repairs. We emphasize that these repairs may not be subinstances of the initial
instance even in the presence of DCs. We rely here on repairs introduced in [2],
which we show with an example.13

Example 6. For the database instance D = {S(a2), S(a3), R(a3, a1), R(a3, a4),
R(a3, a5)}, and the DC κ : ¬∃x∃y(S(x) ∧ R(x, y)), it holds D � |= κ. Notice
that value a3 matters here in that it enables the join, e.g. D |= S(a3) ∧ R(a3, a1),
which could be avoided by replacing it by a null value as used in SQL databases.

More precisely, for the instance D1 = {S(a2), S(a3), R(null , a1), R(null , a4),
R(null , a5)}, where null stands for the null value, which cannot be used to sat-
isfy a join, it holds D1 |= κ. Similarly with D2 = {S(a2), S(null),R(a3, a1),
R(a3, a4), R(a3, a5)}, and D3 = {S(a2), S(null), R(null , a1), R(null , a4),
R(null , a5)}, among others obtained from D through replacement of attribute
values by null. �

In relation to the special constant null we assume that all atoms with built-in
comparisons, say null θ null , and null θ c, with c a non-null constant, are all false
for θ ∈ {=, �=, <,>, . . .}. In particular, since a join, say R(. . . , x) ∧ S(x, . . .), can
be written as R(. . . , x) ∧ S(x′, . . .) ∧ x = x′, it can never be satisfied through
null. This assumption is compatible with the use of NULL in SQL databases (cf.
[5, sect. 4] for a detailed discussion, also [4, sect. 2]). Changes of attribute values
by null as repair actions offer a natural and deterministic solution. It appeals to
the generic data value used in SQL databases to represent the uncertainty and
12 For certain forms of prioritized repairs, such as endogenous repairs, the normalization

coefficient |D| might be unnecessarily large. In this particular case, it might be better
to use |Dn|.

13 We believe the developments in this section could be applied to inconsistency mea-
sures based on repairs that update attribute values using other constants from the
domain [6,33].

206 L. Bertossi

incompleteness of the database that inconsistency produces. In order to keep
track of changes, we introduce numbers as first arguments in tuples, as global,
unique tuple identifiers (tids).

Example 7. (Example 6 cont.) With tids D becomes D = {S(1; a2), S(2; a3),
R(3; a3, a1), R(4; a3, a4), R(5; a3, a5)}; and D1 becomes D1 = {S(1; a2),
S(2; a3), R(3;null , a1), R(4;null , a4), R(5;null , a5)}. The changes are collected
in Δnull(D,D1) := {R[3; 1], R[4; 1], R[5; 1]}, showing that (the original)
tuple (with tid) 3 has its first-argument changed into null , etc. Similarly,
Δnull(D,D2) := {S[2; 1]}, and Δnull(D,D3) := {S[2; 1], R[3; 1], R[4; 1], R[5; 1]}.

D1 and D2 are the only repairs based on attribute-value changes (into null)
that are minimal under set inclusion of changes. More precisely, they are consis-
tent, and there is not other consistent repaired version of this kind D′ for which
Δnull(D,D′) � Δnull(D,D1). Similarly for D2. We denote this class of repairs
(and the associated repair semantics) by Srepnull(D,Σ). Since Δnull(D,D1) �

Δnull(D,D3), D3 /∈ Srepnull(D, {κ}). So, Srepnull(D, {κ}) = {D1,D2}.
As with S-repairs, we can consider the subclass of repairs that minimize

the number of changes, denoted Crepnull(D,Σ). In this example, Crepnull

(D, {κ}) = {D2} �

Inspired by (4), we define:

inc-degc,null,g3(D,Σ) :=
min{|Δnull(D,D′)| : D′ ∈ Crepnull(D,Σ)}

|atv(D)| ,

where atv(D) is the number of values in attributes of tuples in D.

Example 8. (Example 7 cont.) inc-degc,null,g3(D, {κ}) = 1
8 , but inc-degc,g3(D,

{κ}) = 1
5 . Here, it is easy to restore consistency: only one attribute value has to

be changed. �
The computation of this measure can be done on the basis of ASPs that specify
null-based attribute repairs that were introduced in [2], to specify and compute
causes for query answers at the attribute level.

9 Tuple-Level Inconsistency Degrees

The inconsistency measure is global in that it applies to the whole database.
However, one could also investigate and measure the contribution by individual
tuples to the degree of inconsistency of the database. Such local measures have
been investigated before in a logical setting [22]. In our case, the global inconsis-
tency measure can be expressed in terms of the responsibility of tuples as causes
for the violation of the DCs.

Connections between database causality [29] and repairs were investigated in
[7], where it was established that the responsibility of a tuple τ as a cause for
D � |= Σ is:

ρ
D,Σ

(τ) =
1

|D| − max(|S|) ,

Repair-Based Degrees of Database Inconsistency 207

where S ⊆ D is an S-repair of D wrt. Σ and τ /∈ S (but ρ
D,Σ

(τ) := 0 if there is
not such an S). Combining this with (1) and (2), we can see that

inc-degc,g3(D,Σ) =
1

ρ
D,Σ

(τ) × |D| , (5)

where τ is one and any of the maximum-responsibility tuples τ as causes for
D � |= Σ. We can also consider the responsibility of tuple, ρ

D,Σ
(τ), as its degree

of contribution to the inconsistency of the database, and those with the highest
responsibility as those with a largest degree of contribution. According to (5),
the global inconsistency measure turns out to be an aggregation over local, tuple-
level, degrees of inconsistency.

10 Conclusions

We have scratched the surface of some of the problems and research directions
we considered in this work. Certainly all of them deserve further investigation,
most prominently, the analysis of other possible distance-based inconsistency
measures along the lines of our work; and also the relationships between those
measures. Also a deeper analysis of the incremental case (cf. Sect. 6) would be
interesting. It is also left for ongoing and future research establishing a con-
nection to the problem of computing specific repairs, and using them [27]. The
same applies to the use of the inconsistency measure to explore the causes for
inconsistency, in particular, to analyze how the measure changes when tuples or
combinations thereof are removed from the database. Such an application sounds
natural given the established connection between database repairs, causality and
causal responsibility [2,7].

It is natural to think of a principled, postulate-based approach to inconsis-
tency measures, similar in spirit to postulates for belief-updates [23]. This has
been done in logic-based knowledge representation [20], but as we argued before,
a dedicated, specific approach for databases becomes desirable.

In relation to the abstract setting of Sect. 7, we could consider a class
RepS�

(D,Σ) of prioritized repairs [31], and through them introduce prioritized
measures of inconsistency. Repair programs for the kinds of priority relations �
investigated in [31] could be constructed from the ASPs introduced and inves-
tigated in [17] for capturing different optimality criteria. The repair programs
could be used to specify and compute the corresponding prioritized inconsistency
measures.

Acknowledgments. Research supported by NSERC Discovery Grant #06148. The
author is grateful to Jordan Li for his help with DLV; and to Benny Kimelfeld, Sudeepa
Roy and Ester Livshits for stimulating general conversations. The author appreciates
the support from RelationalAI, and its excellent human and research environment.

208 L. Bertossi

References

1. Bertossi, L.: Repair-based degrees of database inconsistency: computation and
complexity. Corr arxiv Paper cs.DB/1809.10286 (2018). (extended version of this
work)

2. Bertossi, L.: Characterizing and computing causes for query answers in databases
from database repairs and repair programs. In: Ferrarotti, F., Woltran, S. (eds.)
FoIKS 2018. LNCS, vol. 10833, pp. 55–76. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-90050-6 4

3. Bertossi, L.: Database Repairing and Consistent Query Answering. Synthesis Lec-
tures on Data Management. Morgan & Claypool, San Rafael (2011)

4. Bertossi, L., Li, L.: Achieving data privacy through secrecy views and null-based
virtual updates. IEEE Trans. Knowl. Data Eng. 25(5), 987–1000 (2013)

5. Bertossi, L., Bravo, L.: Consistency and trust in peer data exchange systems. The-
ory Pract. Log. Program. 17(2), 148–204 (2017)

6. Bertossi, L., Bravo, L., Franconi, E., Lopatenko, A.: The complexity and approxi-
mation of fixing numerical attributes in databases under integrity constraints. Inf.
Syst. 33(4), 407–434 (2008)

7. Bertossi, L., Salimi, B.: From causes for database queries to repairs and model-
based diagnosis and back. Theory Comput. Syst. 61(1), 191–232 (2017)

8. Bertossi, L., Rizzolo, F., Jiang, L.: Data quality is context dependent. In: Castel-
lanos, M., Dayal, U., Markl, V. (eds.) BIRTE 2010. LNBIP, vol. 84, pp. 52–67.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22970-1 5

9. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 93–103 (2011)

10. Buccafurri, F., Leone, N., Rullo, P.: Enhancing disjunctive datalog by constraints.
IEEE Trans. Knowl. Data Eng. 12(5), 845–860 (2000)

11. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: An ASP system with functions, lists,
and sets. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS (LNAI),
vol. 5753, pp. 483–489. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04238-6 46

12. Caniupan-Marileo, M., Bertossi, L.: The consistency extractor system: answer set
programs for consistent query answering in databases. Data Knowl. Eng. 69(6),
545–572 (2010)

13. Chomicki, J., Marcinkowski, J.: Minimal-change integrity maintenance using tuple
deletions. Inf. Comput. 197(1–2), 90–121 (2005)

14. Eiter, T., Mannila, H.: Distance measures for point sets and their computation.
Acta Informatica 34, 109–133 (1997)

15. El Oualia, M., Fohlin, H., Srivastav, A.: A randomised approximation algorithm
for the hitting set problem. Theor. Comput. Sci. 555, 23–34 (2014)

16. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006). https://doi.org/10.1007/3-540-29953-X

17. Gebser, M., Kaminski, R., Schaub, T.: Complex optimization in answer set pro-
gramming. Theory Pract. Log. Program. 11(4–5), 821–839 (2011)

18. Gelfond, M., Kahl, Y.: Knowledge Representation and Reasoning, and the Design
of Intelligent Agents. Cambridge University Press, Cambridge (2014)

19. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3/4), 365–386 (1991)

20. Grant, J., Martinez, M.V. (eds.): Measuring Inconsistency in Information. College
Publications (2018)

https://doi.org/10.1007/978-3-319-90050-6_4
https://doi.org/10.1007/978-3-319-90050-6_4
https://doi.org/10.1007/978-3-642-22970-1_5
https://doi.org/10.1007/978-3-642-04238-6_46
https://doi.org/10.1007/978-3-642-04238-6_46
https://doi.org/10.1007/3-540-29953-X

Repair-Based Degrees of Database Inconsistency 209

21. Grant, J., Hunter, A.: Analysing inconsistent information using distance-based
measures. Int. J. Approx. Reason. 89, 3–26 (2017)

22. Hunter, A., Konieczny, S.: On the measure of conflicts: shapley inconsistency val-
ues. Artif. Intell. 174(14), 1007–1026 (2010)

23. Katsuno, H., Mendelzon, A.O.: Propositional knowledge base revision and minimal
change. Artif. Intell. 52(3), 263–294 (1992)

24. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-epsilon.
J. Comput. Syst. Sci. 74(3), 335–349 (2008)

25. Kivinen, J., Mannila, H.: Approximate inference of functional dependencies from
relations. Theor. Comput. Sci. 149, 129–l49 (1995)

26. Leone, N., et al.: The DLV system for knowledge representation and reasoning.
ACM Trans. Comput. Logic. 7(3), 499–562 (2006)

27. Livshits, E., Kimelfeld, B., Roy, S.: Computing optimal repairs for functional
dependencies. In: Proceedings of PODS 2018, pp. 225–237 (2018)

28. Lopatenko, A., Bertossi, L.: Complexity of consistent query answering in databases
under cardinality-based and incremental repair semantics. In: Schwentick, T.,
Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 179–193. Springer, Heidelberg
(2006). https://doi.org/10.1007/11965893 13

29. Meliou, A., Gatterbauer, W., Moore, K.F., Suciu, D.: The complexity of causality
and responsibility for query answers and non-answers. In: Proceedings of VLDB
2010, pp. 34–41 (2010)

30. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Boston (1994)
31. Staworko, S., Chomicki, J., Marcinkowski, J.: Prioritized repairing and consistent

query answering in relational databases. Ann. Math. Artif. Intell. 64(2–3), 209–246
(2012)

32. Thimm, M.: On the compliance of rationality postulates for inconsistency mea-
sures: a more or less complete picture. Künstliche Intelligenz 31(1), 31–39 (2017)

33. Wijsen, J.: Database repairing using updates. ACM Trans. Database Syst. 30(3),
722–768 (2005)

https://doi.org/10.1007/11965893_13

Elect: An Inconsistency Handling
Approach for Partially Preordered

Lightweight Ontologies

Sihem Belabbes1(B) , Salem Benferhat1(B) , and Jan Chomicki2(B)

1 CRIL, CNRS, Université d’Artois, Lens, France
{belabbes,benferhat}@cril.fr

2 SUNY at Buffalo, Buffalo, NY, USA
chomicki@buffalo.edu

Abstract. We focus on the problem of handling inconsistency in light-
weight ontologies. We assume terminological knowledge bases (TBoxes)
are specified in DL-Lite and that assertional facts (ABoxes) are par-
tially preordered and may be inconsistent with respect to TBoxes. One
of the main contributions of this paper is the provision of an efficient
and safe method, called Elect, to restore consistency of the ABox with
respect to the TBox. In the case where the assertional bases are flat
(no priorities are associated with the ABoxes) or totally preordered, our
method collapses with the well-known IAR semantics and non-defeated
semantics, respectively. The semantic justification of Elect is obtained
by first viewing a partially preordered ABox as a family of totally pre-
ordered ABoxes, and then applying non-defeated inference to each of the
totally preordered ABoxes. We introduce the concept of elected asser-
tions which allows us to provide an equivalent characterization of Elect
without explicitly generating all totally preordered ABoxes. Finally we
show that the computation of Elect is done in polynomial time.

Keywords: Inconsistency · Lightweight ontologies ·
Partially preordered knowledge bases

1 Introduction

In this paper, we are interested in handling inconsistencies arising in ontologies
that are specified in DL-Lite [13], a family of lightweight fragments of Description
Logics (DLs) with good computational properties. In the context of Description
Logics, a knowledge base (KB) consists of two components, namely the TBox
which contains the terminological knowledge and the ABox which is an asser-
tional base (set of ground facts). The content of the TBox is oftentimes con-
sidered as correct and free of conflicts. In this paper, we adopt such reasonable
assumption and hence elements of the TBox are not questionable in the pres-
ence of conflicts. However, assertions in the ABox may be questionable when
the whole KB is inconsistent. Several strategies have been designed to allow for
c© Springer Nature Switzerland AG 2019
M. Balduccini et al. (Eds.): LPNMR 2019, LNAI 11481, pp. 210–223, 2019.
https://doi.org/10.1007/978-3-030-20528-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20528-7_16&domain=pdf
http://orcid.org/0000-0002-8159-7122
http://orcid.org/0000-0002-4853-3637
http://orcid.org/0000-0002-5030-1544
https://doi.org/10.1007/978-3-030-20528-7_16

Inconsistency Handling for Partially Preordered Lightweight Ontologies 211

meaningful reasoning with inconsistent KBs [10,12,23] (see also [2] for a survey).
This often amounts to computing repairs for the ABox. A repair is a maximal
subset of the ABox that is consistent with respect to the TBox.

The well-known ABox Repair (AR) semantics [17] amounts to repairing the
ABox in a minimal way (in terms of set inclusion) without modifying the TBox.
Query answering is based on the answers holding in every repair. The AR seman-
tics is often viewed as a safe way to deal with conflicts. However, the computa-
tion of AR query answers is expensive, even for lightweight ontology logic such as
DL-Lite. The Intersection ABox Repair (IAR) semantics [17] is more cautious. It
queries one consistent sub-base of the ABox obtained from the intersection of all
the repairs. The IAR-repair has the advantage of being computable in polyno-
mial time. In [3], the notion of non-defeated repair of an inconsistent prioritized
ABox was introduced. The approach assumes the ABox is partitioned into strata
by way of a total preorder on the assertions. Intuitively, the non-defeated repair
is based on the iterative application of IAR semantics to a cumulative sequence
of strata. This is also achieved in polynomial time [21] for DL-Lite.

In this paper, we address the problem of seeking for a tractable computation
of repairs of an inconsistent DL-Lite knowledge base where the priority relation
over assertions is a partial preorder. Namely, certain statements are deemed as
more reliable than others and there are some statements whose reliability is
incomparable. We provide an efficient and safe method, called Elect, to restore
consistency of the ABox with respect to the TBox. We show that Elect gener-
alizes both IAR semantics and non-defeated semantics. This is achieved in the
case where the assertional bases are flat (no priorities are associated with the
ABoxes) for the former, and for totally preordered ABoxes for the latter.

The semantic justification of Elect is obtained by first viewing the partial
preorder associated with the ABox as a family of total preorders, then apply-
ing non-defeated inference to each of the totally preordered ABoxes and lastly
computing their intersection to produce a single repair. Elect is safe since there
is no arbitrary choice between the total preorders and hence all total pre-orders
are taken into account for defining Elect. We introduce the concept of elected
assertions which intuitively are those assertions that are strictly preferred to all
of their opponents. This allows us to provide an equivalent characterization of
Elect, hence a repair is obtained without explicitly computing all total preorders.
Finally we show that the computation of Elect is done in polynomial time. Hence
Elect maintains the tractability of IAR semantics and non-defeated semantics
for partially preordered ABoxes.

This paper is structured as follows. Section 2 contains preliminaries on DL-
Lite. Section 3 presents the IAR semantics for non-prioritized ABoxes. Section 4
discusses the non-defeated repair for ABoxes prioritized with a total preorder.
Section 5 deals with partially preordered ABoxes. We introduce our method
called Elect and provide a characterization for it. Section 6 provides some dis-
cussions on how to go beyond Elect.

212 S. Belabbes et al.

2 The Description Logic DL-Lite

Description Logics (DLs) [1] are a family of successful logic-based knowledge rep-
resentation formalisms meeting many applications, notably in the formalisation
of ontologies. The so-called lightweight fragments of DLs, of which DL-Lite [13]
is an example, are particularly interesting since they provide a good trade-off
between expressive power and computational complexity. Indeed, query answer-
ing from a DL-Lite knowledge base can be carried out efficiently. There are a
few variants of DL-Lite, such as DL-LiteR and on which we shall focus.

The language of DL-LiteR is built upon a finite set of concept names C, a finite
set of role names R and a finite set of individual names I, such that C, R and I
are pairwise disjoint. DL-LiteR concepts are defined according to the following
rules: R −→ P | P− E −→ R | ¬R B −→ A | ∃R C −→ B | ¬B.
Above, A denotes a concept name, P a role name, and P− the converse of P .
With R we denote a basic role, while E stands for a complex role. Moreover, B
denotes a basic concept and C a complex one.

Example 1. For a concrete example, we can have:

– C = {Dances,Mdances, Tdances,DancesWP,DancesWoP, Props}, stand-
ing for: dances, modern dances, traditional dances, dances with props, dances
without props as well as the props that are used in some dances, respectively.

– R = {HasProps}, representing the props used in some dances and which can
be flowers (fl for short), a hat, or handkerchiefs (hk for short).

– I = {d1, d2, d3, d4, d5} ∪ {fl, hat, hk} where each di, i = 1, ..., 5, represents
dances and the rest represents props.

Some examples of complex concepts are: ¬DancesWP and ¬∃HasProps. ��

An inclusion axiom on concepts (resp. on roles) is a statement of the form
B � C (resp. R � E). Concept inclusions with ¬ in the right-hand side are
called negative inclusion axioms, otherwise they are called positive inclusion
axioms. Concrete examples of concept inclusion axioms are:

DancesWoP � ¬DancesWP and ∃HasProps− � Props.
A DL-LiteR TBox T is a finite set of inclusion axioms (including positive

and negative ones). An assertion is a statement of the form A(a) or P (a, b), with
a, b ∈ I. Examples of assertions are Mdances(d1) and HasProps(d3, hat).

A DL-LiteR ABox A is a finite set of assertions. Given T and A, we denote
a DL-LiteR knowledge base (KB) with K =def 〈T ,A〉.

We shall use the following running example throughout the paper.

Example 1. Assume that we have the following TBox:

T =

⎧
⎪⎪⎨

⎪⎪⎩

1. Mdances � Dances, 2. Tdances � Dances,
3. Tdances � DancesWP, 4. Mdances � DancesWoP,
5. DancesWoP � ¬DancesWP, 6. DancesWoP � ¬∃HasProps,
7. ∃HasProps− � Props, 8. ∃HasProps � DancesWP

⎫
⎪⎪⎬

⎪⎪⎭

Inconsistency Handling for Partially Preordered Lightweight Ontologies 213

The first two axioms state that modern dances and traditional dances are dances.
The third axiom means that traditional dances are dances that use props.
Axiom 4 states that modern dances do not use props. Axiom 5 expresses the
fact that the list of modern dances and the list of traditional dances are dis-
joint. Axiom 6 represents the fact that a modern dance does not have props.
Axiom 7 expresses the fact that elements used by dances, given by role name
HasProps, should belong to the list of elements specified by the concept name
Props. Axiom 8 specifies that anything having props must be a dance with
props.

Let us now describe the ABox given by the following assertions:

A =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Mdances(d1),Mdances(d2),
Tdances(d2), Tdances(d3), Tdances(d4),
DancesWP (d3),DancesWP (d5),
DancesWoP (d5),HasProps(d2, f l),
HasProps(d3, hat),HasProps(d4, hk)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

��

A knowledge base K is said to be consistent if it admits at least one model, it
is inconsistent otherwise. A TBox T is incoherent if there is A ∈ C such that A
is empty in every model of T , it is coherent otherwise. For more details on the
DL-Lite family of DLs, we refer the reader to the work of Calvanese et al. [13].
In the rest of this paper, we shall refer to DL-LiteR as DL-Lite for simplicity.

3 IAR Semantics for Flat Assertional Bases

In this section, we consider a KB K = 〈T ,A〉 that may be inconsistent. We
assume that the TBox T is coherent and reliable, that is, its elements are not
questionable in the presence of conflicts, unlike assertions in A which may be
questionable. Besides, we assume that the ABox A is flat (or non-prioritized),
that is, all assertions have the same level of priority. A standard way of dealing
with inconsistency proceeds by first computing the set of maximal consistent
subsets of A, called repairs, then using them to perform inference (i.e. query
answering). More formally a repair is defined as follows [17]:

Definition 1. Let K = 〈T ,A〉 be a flat and inconsistent DL-Lite KB. A sub-
base R ⊆ A is a repair if 〈T ,R〉 is consistent, and ∀R′: R � R′,〈T ,R′〉 is
inconsistent. Furthermore if 〈T ,A〉 is consistent, then there exists only one repair
R = A.

Consequently, when K is inconsistent, adding any assertion f from A \ R
to R entails the inconsistency of 〈T ,R ∪ {f}〉. We denote by MAR(A) the set of
repairs of A with respect to T . Using the notion of repairs, handling inconsistency
from flat DL-Lite KB can be done by applying standard query answering, either
using the whole set of repairs (universal entailment or AR entailment [17]) or
using only one repair (namely, using the so-called brave entailment [9]). It is

214 S. Belabbes et al.

well known that brave semantics is very adventurous and may return unsafe
conclusions, while AR semantics is safe but computationally expensive.

An alternative is the IAR semantics [17] which selects one consistent sub-base
of A, denoted by IAR(A). Before introducing IAR semantics, let us first intro-
duce the notion of an assertional conflict. Basically, it is a minimal inconsistent
subset of assertions that contradicts the TBox.

Definition 2. Let K = 〈T ,A〉 be a DL-Lite KB. A sub-base C ⊆ A is an
assertional conflict of K iff 〈T , C〉 is inconsistent and ∀f ∈ C, 〈T , C \ {f}〉 is
consistent.

We denote by C(A) the set of conflicts in A. From Definition 2, we see that
removing any fact f from C restores the consistency of 〈T , C〉. A nice feature of
DL-Lite is that computing the set of conflicts is done in polynomial time [12].
Besides, a conflict C involves exactly two assertions [12]. In this case, if f and g
are two assertions that belong to a conflict, we simply denote the conflict as a
pair (f, g) and we say that f and g are conflicting.

We now introduce the notion of non-conflicting or free elements.

Definition 3. Let K = 〈T ,A〉 be a DL-Lite KB. An assertion f ∈ A is free iff
∀C ∈ C(A):f /∈ C.

Intuitively, free assertions correspond to elements that are not involved in
any conflict. The notion of free elements was originally proposed in [4] in the
context of propositional logic.

Henceforth, we shall denote by IAR(A) the set of free elements in A. Namely:

Definition 4. IAR(A) = {f : f ∈ A and f is free}.

Definition 4 is an equivalent rewriting of the standard definition of IAR(A)
given by IAR(A) =

⋂
R∈MAR(A) R [4,17]. Namely, IAR(A) is the intersection

of all repairs. Query answering in IAR semantics comes down to performing
standard query answering from 〈T , IAR(A)〉 (since 〈T , IAR(A)〉 is consistent).

Example 2. Let us consider Example 1. The list of conflicts in 〈T ,A〉 is:

C(A) =

⎧
⎨

⎩

{Mdances(d2), Tdances(d2)},
{Mdances(d2),HasProps(d2, f l)},
{DancesWP (d5),DancesWoP (d5)}

⎫
⎬

⎭

In order to define IAR(A), it is enough to remove all assertions of C(A) from
A. This leads to:

IAR(A) =
{
Mdances(d1), Tdances(d3), Tdances(d4),
DancesWP (d3),HasProps(d3, hat),HasProps(d4, hk)

}

Inconsistency Handling for Partially Preordered Lightweight Ontologies 215

4 Non-defeated Repair for Prioritized Assertional Bases

In this section, we shall consider prioritized DL-Lite KBs wherein a total preorder
relation ≥ is applied only to the ABox component which we denote by (A,≥).
The relation ≥ is reflexive, transitive and ∀f, g ∈ A, either f ≥ g or g ≥ f . Let >
and = stand for the strict and equality relations associated with ≥. Besides, for
convenience, we represent (A,≥) by a well-ordered partition of A induced by ≥.
Namely, given (A,≥), we view A as being partitioned into n layers (or strata)
of the form A = (S1, . . . ,Sn), such that:

– S1 = {f : ∀g ∈ A, f ≥ g}, and
– Si = {f : ∀g ∈ A \ (S1 ∪ · · · ∪ Si−1), f ≥ g}, for i = 2, . . . , n.

In other words, assertions in each layer Si have the same level of priority i
and they are considered as more reliable than the ones contained in a layer Sj

for j > i. Thus S1 contains the most important assertions, while Sn contains the
least important ones. Obviously, A = S1 ∪ · · · ∪ Sn.

Several studies consider the notion of priority when querying inconsistent
databases (e.g. [18,20]) or DL knowledge bases (e.g. [8,15]). Most of these frame-
works extend the notions of repair and AR semantics, hence they are compu-
tationally expensive. In particular, the concepts of preferred repairs semantics
were introduced in [8] (in the spirit of what has been done in prioritized propo-
sitional logic [11,19]). It revisits AR and IAR semantics by replacing the notion
of repair by different types of preferred repairs based on: set cardinality, priority
levels on the ABox and weights on the assertions. However, this formalism often
induces an increase in computational complexity for the proposed semantics.
Most notably, the tractability of IAR semantics in a flat context (i.e. polynomial
time) is lost when a total preorder is applied to the ABox.

In [3], a particular attention was devoted to approaches that select a sin-
gle preferred repair. One of such approaches is the so-called non-defeated repair
which is tractable without being adventurous. Basically, non-defeated repair con-
sists of iteratively collecting, layer per layer, the set of free assertions like so:

Definition 5. Let K be a prioritized DL-Lite KB where the ABox (A,≥) is
totally preordered. Let A = (S1, . . . ,Sn) be the well-ordered partition associated
with ≥. The non-defeated repair, denoted by nd(A,≥) = S ′

1 ∪ . . . ∪ S ′
n, is:

∀i = 1, .., n : S ′
i = IAR(S1 ∪ . . . ∪ Si)

where ∀i : IAR(S1 ∪ . . .∪Si) denotes the set of IAR base of (S1 ∪ . . .∪Si), given
by Definition 4.

The definition of the non-defeated sub-base is an adaptation of the one pro-
posed in [5] within a propositional logic framework. However, non-defeated repair
is computed in polynomial time in DL-Lite while its computation is hard in
propositional logic. Lastly, in [6] a rewriting (similar to that of IAR(A)) is given
for nd(A,≥). Basically, an assertion f ∈ Si is said to be defeated if there exists
an assertion g ∈ Sj such that j ≤ i and g is conflicting with f . It has been shown
in [6] that nd(A,≥) consists of all non-defeated assertions.

216 S. Belabbes et al.

Example 3. Let us continue our running example and consider a total preorder ≥
over assertions of the ABox as per Fig. 1, where f = g means that the two
assertions have the same level of priority, and the arrow f → g means that f
has a higher priority than g (i.e. f > g).

Tdances(d2) = Mdances(d1) = Tdances(d3) = HasProps(d3, hat)

HasProps(d2, f l) = DancesWP (d5) = DancesWoP (d5) = DancesWP (d3)

Mdances(d2) = Tdances(d4) = HasProps(d4, hk)

Fig. 1. A total preorder over the ABox

From this totally preordered ABox, one can compute the non-defeated sub-
class of A. The well-ordered partition associated with this ordering is:

S1 = {Tdances(d2),Mdances(d1), Tdances(d3),HasProps(d3, hat)}.
S2 = {HasProps(d2, f l), DancesWP (d5), DancesWoP (d5), DancesWP (d3)}.
S3 = {Mdances(d2), Tdances(d4),HasProps(d4, hk)}.

We have nd(A,≥) = IAR(S1) ∪ IAR(S1 ∪ S2) ∪ IAR(S1 ∪ S2 ∪ S3), where:

– IAR(S1) = {Tdances(d2),Mdances(d1), Tdances(d3),HasProps(d3, hat)}
– IAR(S1 ∪ S2) = {Tdances(d2),Mdances(d1), Tdances(d3), HasProps(d3, hat),

HasProps(d2, f l), DancesWP (d3)} .

– IAR(S1 ∪ S2 ∪ S3) = IAR(A) (given in Example 2).

Therefore:
nd(A,≥) = {Tdances(d2),Mdances(d1), Tdances(d3),HasProps(d3, hat),

HasProps(d2, f l),DancesWP (d3), Tdances(d4),HasProps(d4, hk)} .

5 Partially Preordered Assertional Bases

A nice feature about IAR semantics (for a flat ABox) and non-defeated semantics
(for a totally preordered ABox) is their efficiency in dealing with inconsistency
since they produce a single sub-base of the ABox as a repair and they do so in
polynomial time. In this section, we also aim at producing a single repair when
only a partial preorder (denoted �) is applied to assertions of the ABox which
we denote by (A,�). We denote by � the strict order (irreflexive and transitive)
and by �= the equality order associated with �.

A minimal requirement is to maintain tractability. Namely, we seek for a
tractable method that also returns one (preferred) repair for a partially pre-
ordered ABox. We call our method ‘Elect’ and denote by Elect(A,�) the repair
it returns. As we shall see later, Elect extends both IAR semantics and non-
defeated semantics in the cases where � is flat and totally preordered respec-
tively. Henceforth, we do not make explicit the TBox T .

Inconsistency Handling for Partially Preordered Lightweight Ontologies 217

5.1 From a Partial Preorder to a Family of Total Preorders

In order to achieve our aim, we first view a partial preorder � as a family of
total preorders, each of which should be a total extension of � defined like so:

Definition 6. A total preorder ≥ over A is a total extension of � over A iff
∀f, g ∈ A, if f � g then f ≥ g.

Viewing a partially preordered KB as a family of totally preordered KBs is a
natural representation that has been used in other frameworks such as partially
ordered possibilistic logic [7,22] and credal probabilistic networks [14].

Example 4. Let us assume a partial preorder � over assertions of the ABox
which are split up into the following four subsets:

A = {Tdances(d2) �= Mdances(d1)
�= Tdances(d3)

�= HasProps(d3, hat)},
B = {HasProps(d2, f l)

�= DancesWP (d3)
�= DancesWoP (d5)

�= Dances
WP (d5)},

C = {Mdances(d2)},
D = {Tdances(d4) �= HasProps(d4, hk)},

where f
�= g means that the two assertions have the same level of priority. The

relation � is depicted in Fig. 2, where the arrow A → B (for instance) means
that ∀f ∈ A,∀g ∈ B, f has a higher priority than g (i.e. f � g).

A

B C

D

Fig. 2. A partial preorder over the ABox

It follows that set A (resp. D) contains assertions having the highest (resp.
lowest) priority. Assertions of sets B and C are not comparable. Hence the
partial preorder � can be viewed as a family of three total preorders: in ≥1

set B is strictly preferred to set C, in ≥2 sets B and C are equally preferred,
and in ≥3 set C is strictly preferred to set B. This is depicted in Fig. 3. ��

Now the question is how to handle this family of totally preordered ABoxes?
We would like to avoid arbitrary choice consisting in the selection of one total
preorder over others. Hence, all total preorders should be taken into account. A
safe way to get a single consistent assertional sub-base is to consider the inter-
section of all non-defeated repairs associated with all total preorders. Formally:

Definition 7. Let K be a DL-Lite KB with a partially preordered ABox (A,�).

– Elect(A,�) =
⋂

{nd(A,≥) s.t. ≥ is a total extension of �}, where nd(A,≥)
is given by Definition 5.

218 S. Belabbes et al.

A

B

C

D

≥1

A

B = C

D

≥2

A

C

B

D

≥3

Fig. 3. Total extensions of the partial preorder

– Let q be a query. Then q is an Elect-consequence of K if q follows from
Elect(A,�) (using standard DL-lite inference).

We illustrate this idea on our running example.

Example 5. The non-defeated repairs associated with the totally preordered
ABoxes (A,≥1), (A,≥2) and (A,≥3) are:

– nd(A,≥1) = A ∪ {HasProps(d2, f l),DancesWP (d3)} ∪ D
– nd(A,≥2) = A ∪ {DancesWP (d3)} ∪ D
– nd(A,≥3) = A ∪ {DancesWP (d3)} ∪ D

Elect(A,�) = nd(A,≥1) ∩ nd(A,≥2) ∩ nd(A,≥3)
= A ∪ {DancesWP (d3)} ∪ D.

��

An important result stated in Proposition 1 is that the computation of
Elect(A,�) can be achieved in polynomial time. This means that in order to
compute Elect(A,�), there is no need to exhibit all possible extensions of �.

Proposition 1. Computing Elect(A,�) is done in polynomial time (w.r.t. the
size of the ABox).

The next proposition states that, as expected, the KB having Elect(A,�) as
ABox is consistent.

Proposition 2. 〈T , Elect(A,�)〉 is consistent.

Another interesting feature of Elect is that it collapses with IAR semantics
(resp. non-defeated semantics) when the ABox is flat (resp. totally preordered).

Proposition 3. If the partial preorder � is flat, then Elect(A,�) = IAR(A).
If the partial preorder � is a total preorder, then Elect(A,�) = nd(A,�).

The proofs of Propositions 1–3 are established by providing a characterization
of Elect(A,�) presented in the next section.

Inconsistency Handling for Partially Preordered Lightweight Ontologies 219

5.2 Characterizing Elect(A,�)

In this section we provide a characterization of Elect(A,�) without having to
compute all total extensions of �. This is done by introducing the concept of
elected assertions. Intuitively, an assertion f is elected in (A,�) if f is strictly
preferred to all of its conflicting assertions. Formally:

Definition 8. An assertion f ∈ A is elected iff ∀g ∈ A, if (f, g) are conflicting
then f � g (i.e. f is strictly preferred to g).

Definition 8 extends the concept of free assertions given in Definition 3.
Indeed, if � is flat (namely, ∀f, g ∈ A, f � g and g � f), then f is elected
in (A,�) iff f is free. Obviously, the converse does not hold in general (when �
is no longer flat), since an elected assertion may not be a free assertion, however
its reliability is strictly more important than that of its opponents. This defi-
nition also extends the notion of non-defeated assertions given for non-defeated
repairs in totally preordered KBs [6]. Lastly, the concept of elected assertions is
in the spirit of the one of accepted beliefs introduced in uncertainty theories [16].

As shown in Proposition 4, it turns out that the set of elected assertions
matches exactly the set of assertions in Elect(A,�).

Proposition 4. An assertion f ∈ A is elected in (A,�) iff f ∈ Elect(A,�).

Proof. Let (A,�) be a partially preordered assertional base.

(i) Let f ∈ A be an elected assertion. Let us show that for each total extension
(A,≥) of (A,�), we have f ∈ nd(A,≥). Let (S1, . . . ,Sn) be the well-ordered
partition associated with ≥. Let i be the first stratum where f ∈ Si.
Recall that f is elected in (A,�) means that ∀g ∈ A, if (f, g) are conflicting
then f � g (i.e. f is strictly preferred to g with respect to �). And since ≥
is a total extension of �, then this also means that f > g. This also means
that ∀g such that (f, g) are conflicting, g ∈ Sj with j > i. Hence, f ∈
IAR(S1 ∪ . . . ∪ Si). Therefore f ∈ nd(A,≥).

(ii) Let us now show the converse. Assume that f ∈ A is not elected and let us
build a total extension (A,≥) of (A,�) such that f /∈ nd(A,≥).
f is not elected means that ∃g ∈ A such that (f, g) are conflicting but f � g
does not hold. This means that there exists a total extension ≥ of � where
g ≥ f . If (f, g) are conflicting and (S1, . . . ,Sn) is the well-ordered partition
associated with ≥, then if f ∈ Si it follows that g ∈ Sj with j ≤ i. Hence,
∀k ∈ {1, . . . , n}, f /∈ IAR(S1 ∪ . . . ∪ Sk) which means that f /∈ nd(A,≥).

With this result at hand, we can now prove Propositions 1, 2 and 3.

1. Regarding the computational complexity, we recall that computing the set of
conflicts C(A) is done in polynomial time with respect to the size of A. Hence,
computing Elect(A,�) is also done in polynomial time. Indeed, checking if
some assertion f ∈ A is elected boils down to parsing all assertional conflicts
in C(A). This is done in linear time with respect to the size of C(A) (the size
is itself bounded by O(|A|2)).

220 S. Belabbes et al.

2. Let us show that Elect(A,�) is consistent with respect to T . Assume that
this is not the case. This means that ∃f ∈ Elect(A,�), ∃g �= f ∈ Elect(A,�)
such that 〈T , {f, g}〉 are conflicting. Since f and g are in Elect(A,�), then
this means that f � g and g � f which is impossible.

3. Lastly, by construction of Elect(A,�), it is easy to check that when � is a
total preorder, then Elect(A,�) collapses with the non-defeated repair of �.
And if � is flat (namely ∀f, g ∈ A, f � g and g � f), then Elect(A,�) =
IAR(A) = {f ∈ A : �g ∈ A, (f, g) are conflicting}. ��

Example 6. We reproduce the result of Elect(A,�) given in Example 5 using
the notion of elected assertions of Definition 8. One can check that:

– Mdances(d2) is not elected, since it is conflicting with Tdances(d2) and
Mdances(d2) � Tdances(d2) does not hold.

– DancesWoP (d5) and DancesWP (d5) are conflicting and have the same pri-
ority levels. Hence, they cannot be elected assertions.

– HasProps(d2, f l) is in conflict with Mdances(d2) but HasProps(d2, f l) �
Mdances(d2) is not true. Hence HasProps(d2, f l) is not an elected assertion.

– The remaining assertions are all elected. Namely:
Elect(A,�) = {Mdances(d1), Tdances(d2), Tdances(d3), Tdances(d4),

DancesWP (d3),HasProps(d3, hat),HasProps(d4, hk)}.

We thus obtain the same result as in Example 5 where we considered all total
extensions of �.

6 Discussions on How to Go Beyond Elect(A,�)

This section provides a brief discussion on how to go beyond Elect(A,�) (an
in-depth investigation of these issues is left for future work).

How to Tractably Go Beyond Elect? A legitimate question is how to obtain
a base that is larger (more productive) than Elect but without increasing its
computational complexity? A natural solution to achieve this aim is to use the
concept of positive deductive closure (the closure of the ABox is defined w.r.t.
positive axioms in T). But this begs the question of when is it appropriate to
apply the closure: on the initial ABox or on all non-defeated repairs of all total
extensions that have been computed? The first option, which consists in applying
the positive closure to the initial ABox, in the spirit of ICAR semantics for flat
ABoxes [17], raises two issues. Firstly in semantic terms, ICAR may be debatable
since it may entail consequences which are derived from questionable assertions.
Secondly, there are different ways to define the reliability of the derived elements.
For instance, assume that the TBox contains {A � B,E � B} and that the
ABox contains {A(x), E(x)}. Assume that A(x) and E(x) are incomparable.
B(x) is entailed from A(x) but also from E(x). The question is then where to
place B(x)? The intuition is to consider B(x) is at least as plausible as A(x) and

Inconsistency Handling for Partially Preordered Lightweight Ontologies 221

E(x), but this is not straightforward to define in a general way (especially for
expressive DLs).

The second option is to define the closure on all non-defeated repairs. This
would be our favourite choice. Namely, this leads to computing a repair as the
intersection of the closed non-defeated repairs [3], a method we would call CElect.
CElect would then be larger than Elect. Besides, we argue that for flat ABoxes,
CElect would be equivalent to the closure of IAR (which is different from ICAR),
and for totally preordered ABoxes, CElect would be equivalent to the closure of
non-defeated repair. Lastly, we expect to single out specific cases for which the
complexity of CElect would also be polynomial in DL-Lite.

Beyond Non-defeated Repair. The question addressed here is whether one can
use a semantics other than non-defeated as a basis for defining Elect(A,�)?
From a semantic point of view, the answer is yes. For instance, one can use a
preferred repair defined in [8] instead of non-defeated repair in our definition of
Elect(A,�). Let us first recall the concept of preferred repairs defined for totally
preordered ABoxes. Let A = (S1, . . . ,Sn) be a prioritized ABox. Let R1 and R2

be two consistent sub-bases of S1 ∪ · · · ∪ Sn. Then R1 is said to be preferred to
R2 iff R1 ∩ Si = R2 ∩ Si for every i, 1 ≤ i ≤ n, or there is some i, 1 ≤ i ≤ n
such that R2 ∩ Si � R1 ∩ Si and for all j, 1 ≤ j < i, R1 ∩ Sj = R2 ∩ Sj (in
this case, R1 is strictly preferred to R2). Then R is said to be a preferred repair
if �R′ s.t. R′ is strictly preferred to R (see [8] for more details). The notion of
preferred repairs can then be used as an alternative for defining a repair associ-
ated with partial preorders �. We would call the new setting PartialPR(A,�)
(where PR stands for preferred repairs). Like Elect(A,�), PartialPR(A,�)
would consider all total extensions ≥ of �. However instead of computing⋂

{nd(A,≥) s.t. ≥ is an extension of �} like in Elect(A,�), we would com-
pute

⋂
{IAR(A,≥) s.t. ≥ is an extension of �}, where IAR(A,≥) =

⋂
R{R

is a preferred repair of ≥} as defined in [8]. We argue that PartialPR(A,�)
produces a repair that is larger than a base computed by Elect(A,�). However
PartialPR(A,�) is intractable since the complexity of IAR(A,�) is coNP [8] if
� is simply a total preorder. Thus Proposition 1 no longer holds.

Beyond DL-Lite. Another question is whether one can generalize the Elect
method to partially preordered ABoxes expressed in logics other than DL-Lite?
From a semantic point of view, we see no limitations and the obtained results
would also collapse with IAR (for flat ABoxes) and non-defeated repair (for
totally preordered ABoxes). However from a computational point of view, it is
mandatory to have an efficient way to handle conflicts in order for Proposition 1
to still hold. In particular, assertional conflicts C ∈ C(A) need not be binary
(i.e. involve two assertions) provided that they can be computed in polynomial
time. In the presence of non-binary conflicts, we need to redefine the notion
of an elected assertion as the one that is more preferred than all its conflict-
ing assertions. This would allow for our characterization (without computing
all total preorders) to still hold. Hence, Elect(A,�) could be generalized into

222 S. Belabbes et al.

languages that are more expressive than DL-Lite provided that the computation
of conflicts is efficient.

7 Conclusion

We tackled the problem of restoring consistency of a partially preordered ABox
that may be inconsistent w.r.t. the TBox in DL-Lite ontologies. We proposed
a method called Elect which generalizes the IAR semantics (flat ABox) and
the non-defeated semantics (totally preordered ABox). Basically, using Elect, a
partial preorder is viewed as a family of total preorders to which non-defeated
inference is applied, thus producing non-defeated repairs. We introduced the
concept of elected assertions that help us to have an equivalent characterization
of Elect. Most importantly, we showed that the complexity of Elect is polynomial.
In future work, we plan to investigate the three issues raised in Sect. 6 on how
to go beyond Elect.

Acknowledgements. This work was supported by the European project H2020-
MSCA-RISE: AniAge (High Dimensional Heterogeneous Data based Animation Tech-
niques for Southeast Asian Intangible Cultural Heritage).

References

1. Baader, F., Calvanese, D., Mcguinness, D., Nardi, D., Patel-Schneider, P.: The
Description Logic Handbook: Theory, Implementation, and Applications (2007)

2. Baget, J., et al.: A general modifier-based framework for inconsistency-tolerant
query answering. In: KR, Cape Town, South Africa, pp. 513–516 (2016)

3. Benferhat, S., Bouraoui, Z., Tabia, K.: How to select one preferred assertional-
based repair from inconsistent and prioritized DL-Lite knowledge bases? In: IJCAI,
Buenos Aires, Argentina, pp. 1450–1456 (2015)

4. Benferhat, S., Dubois, D., Prade, H.: Representing default rules in possibilistic
logic. In: Knowledge Representation and Reasoning, pp. 673–684 (1992)

5. Benferhat, S., Dubois, D., Prade, H.: Some syntactic approaches to the handling
of inconsistent knowledge bases: a comparative study: Part 2: the prioritized case.
Studia Logica 24, 473–511 (1998). Physica-Verlag, Heidelberg

6. Benferhat, S., Bouraoui, Z., Chadhry, H., Fc, M.S.B.M.R., Tabia, K., Telli, A.:
Characterizing non-defeated repairs in inconsistent lightweight ontologies. In:
SITIS, pp. 282–287 (2016)

7. Benferhat, S., Lagrue, S., Papini, O.: Reasoning with partially ordered information
in a possibilistic logic framework. Fuzzy Sets Syst. 144(1), 25–41 (2004)

8. Bienvenu, M., Bourgaux, C., Goasdoué, F.: Querying inconsistent description logic
knowledge bases under preferred repair semantics. In: AAAI, pp. 996–1002 (2014)

9. Bienvenu, M., Rosati, R.: Tractable approximations of consistent query answering
for robust ontology-based data access. In: IJCAI, pp. 775–781 (2013)

10. Bienvenu, M., Bourgaux, C.: Inconsistency-tolerant querying of description logic
knowledge bases. In: Pan, J.Z., et al. (eds.) Reasoning Web 2016. LNCS, vol. 9885,
pp. 156–202. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49493-7 5

https://doi.org/10.1007/978-3-319-49493-7_5

Inconsistency Handling for Partially Preordered Lightweight Ontologies 223

11. Brewka, G.: Preferred subtheories: an extended logical framework for default rea-
soning. In: IJCAI, pp. 1043–1048 (1989)

12. Calvanese, D., Kharlamov, E., Nutt, W., Zheleznyakov, D.: Evolution of DL-lite
knowledge bases. In: International Semantic Web Conference, vol. 1. pp. 112–128
(2010)

13. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: the DL-Lite family.
J. Autom. Reason. 39(3), 385–429 (2007)

14. Cozman, F.G.: Credal networks. Artif. Intell. J. 120, 199–233 (2000)
15. Du, J., Qi, G., Shen, Y.: Weight-based consistent query answering over inconsistent

SHIQ knowledge bases. Knowl. Inf. Syst. 34(2), 335–371 (2013)
16. Dubois, D., Fargier, H., Prade, H.: Ordinal and probabilistic representations of

acceptance. J. AI Res. 22, 23–56 (2004)
17. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant

semantics for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010.
LNCS, vol. 6333, pp. 103–117. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15918-3 9

18. Martinez, M.V., Parisi, F., Pugliese, A., Simari, G.I., Subrahmanian, V.S.: Incon-
sistency management policies. In: KRR, pp. 367–377. AAAI Press (2008)

19. Rescher, N., Manor, R.: On inference from inconsistent premisses. Theory Decis.
1(2), 179–217 (1970)

20. Staworko, S., Chomicki, J., Marcinkowski, J.: Prioritized repairing and consistent
query answering in relational databases. AMAI 64(2–3), 209–246 (2012)

21. Telli, A., Benferhat, S., Bourahla, M., Bouraoui, Z., Tabia, K.: Polynomial algo-
rithms for computing a single preferred assertional-based repair. KI 31(1), 15–30
(2017)

22. Touazi, F., Cayrol, C., Dubois, D.: Possibilistic reasoning with partially ordered
beliefs. J. Appl. Log. 13(4), 770–798 (2015)

23. Trivela, D., Stoilos, G., Vassalos, V.: Querying expressive DL ontologies under the
ICAR semantics. In: Proceedings of the 31st DL Workshop, Tempe, USA (2018)

https://doi.org/10.1007/978-3-642-15918-3_9
https://doi.org/10.1007/978-3-642-15918-3_9

Elaboration Tolerant Representation
of Markov Decision Process via
Decision-Theoretic Extension

of Probabilistic Action Language pBC+

Yi Wang(B) and Joohyung Lee

School of Computing, Informatics, and Decision Systems Engineering,
Arizona State University, Tempe, USA

{ywang485,joolee}@asu.edu

Abstract. We extend probabilistic action language pBC+ with the
notion of utility in decision theory. The semantics of the extended pBC+
can be defined as a shorthand notation for a decision-theoretic extension
of the probabilistic answer set programming language LPMLN. Alterna-
tively, the semantics of pBC+ can also be defined in terms of Markov
Decision Process (MDP), which in turn allows for representing MDP in
a succinct and elaboration tolerant way as well as leveraging an MDP
solver to compute a pBC+ action description. The idea led to the design
of the system pbcplus2mdp, which can find an optimal policy of a pBC+
action description using an MDP solver.

Keywords: Answer set programming · Action language ·
Markov Decision Process

1 Introduction

Many problems in Artificial Intelligence are about what actions to choose to
maximize the agent’s utility. Since actions may also have stochastic effects, the
main computational task is, rather than to find a sequence of actions that leads
to a goal, to find an optimal policy, that states which actions to execute in each
state to achieve the maximum expected utility.

While a few decades of research on action languages has produced several
expressive languages, such as A [5], B [6], C+ [7], BC [8], and BC+ [1], that are
able to describe actions and their effects in a succinct and elaboration tolerant
way, these languages are not equipped with constructs to represent stochastic
actions and the utility of a decision. In this paper, we present an action language
that overcomes the limitation. Our method is to equip probabilistic action lan-
guage pBC+ [11] with the notion of utility and define policy optimization prob-
lems in that language.

Following the way that pBC+ is defined as a shorthand notation of proba-
bilistic answer set programming language LPMLN for describing a probabilistic
c© Springer Nature Switzerland AG 2019
M. Balduccini et al. (Eds.): LPNMR 2019, LNAI 11481, pp. 224–238, 2019.
https://doi.org/10.1007/978-3-030-20528-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20528-7_17&domain=pdf
https://doi.org/10.1007/978-3-030-20528-7_17

Elaboration Tolerant Representation of MDP via pBC+ 225

transition system, we first extend LPMLN by associating a utility measure to
each soft stable model in addition to its already defined probability. We call this
extension DT-LPMLN. Next, we define a decision-theoretic extension of pBC+ as
a shorthand notation for DT-LPMLN. It turns out that the semantics of pBC+
can also be directly defined in terms of Markov Decision Process (MDP), which
in turn allows us to define MDP in a succinct and elaboration tolerant way. The
result is theoretically interesting as it formally relates action languages to MDP
despite their different origins, and furthermore justifies the semantics of the
extended pBC+ in terms of MDP. It is also computationally interesting because
it allows for applying a number of algorithms developed for MDP to computing
pBC+. Based on this idea, we design the system pbcplus2mdp, which turns a
pBC+ action description into the input language of an MDP solver and leverages
MDP solving to find an optimal policy for the pBC+ action description.

The extended pBC+ can thus be viewed as a high-level representation of MDP
that allows for compact and elaboration tolerant encodings of sequential decision
problems. Compared to other MDP-based planning description languages, such
as PPDDL [18] and RDDL [13], it inherits the nonmonotonicity of the stable
model semantics to be able to compactly represent recursive definitions and
indirect effects of actions, which can save the state space significantly. Section 5
contains such an example.

This paper is organized as follows. After Sect. 2 reviews preliminaries, Sect. 3
extends LPMLN with the notion of utility, through which we define the extension
of pBC+ with utility in Sect. 4. Section 5 defines pBC+ as a high-level represen-
tation language for MDP and presents the prototype system pbcplus2mdp. We
discuss the related work in Sect. 6.

2 Preliminaries

Due to the space limit, the reviews are brief. We refer the reader to the original
papers [10,11], or the technical report of this paper [15] for the reviews of pre-
liminaries. The technical report also contains all proofs and experiments with
the system pbcplus2mdp.

2.1 Review: Action Language pBC+
Like BC and BC+, language pBC+ assumes that a propositional signature σ is
constructed from “constants” and their “values.” A constant c is a symbol that
is associated with a finite set Dom(c), called the domain. The signature σ is
constructed from a finite set of constants, consisting of atoms c = v for every
constant c and every element v in Dom(c). If the domain of c is {false,true},
then we say that c is Boolean, and abbreviate c=true as c and c=false as ∼c.

There are four types of constants in pBC+: fluent constants, action constants,
pf (probability fact) constants and initpf (initial probability fact) constants. Flu-
ent constants are further divided into regular and statically determined. The
domain of every action constant is restricted to Boolean. An action description

226 Y. Wang and J. Lee

Fig. 1. Causal laws in pBC+ and their translations into LPMLN

is a finite set of causal laws, which describes how fluents depend on each other
statically and how their values change from one time step to another. Figure 1
lists causal laws in pBC+ and their translations into LPMLN. A fluent formula
is a formula such that all constants occurring in it are fluent constants.

We use σfl (σact, σpf , and σinitpf , respectively) to denote the set of all
atoms c = v where c is a fluent constant (action constant, pf constant, initpf
constant, respectively) of σ and v is in Dom(c). For any subset σ′ of σ and any
i ∈ {0, . . . ,m}, we use i : σ′ to denote the set {i : A | A ∈ σ′}. For any formula
F of signature σ, by i : F we denote the result of inserting i : in front of every
occurrence of every constant in F .

The semantics of a pBC+ action description D is defined by a translation into
an LPMLN program Tr(D,m) = Dinit∪Dm. Below we describe the essential part
of the translation that turns a pBC+ description into an LPMLN program.

The signature σm of Dm consists of atoms of the form i :c = v such that

– for each fluent constant c of D, i ∈ {0, . . . , m} and v ∈ Dom(c),
– for each action constant or pf constant c of D, i ∈ {0, . . . ,m − 1} and v ∈

Dom(c).

Dm contains LPMLN rules obtained from static laws, fluent dynamic laws,
and pf constant declarations as described in the third column of Fig. 1, as well
as {0 : c = v}ch for every regular fluent constant c and every v ∈ Dom(c), and
{i : c = true}ch, {i : c = false}ch (i ∈ {0, . . . , m−1) for every action constant c
to state that the fluents at time 0 and the actions at each time are exogenous.1

Dinit contains LPMLN rules obtained from initial static laws and initpf constant
declarations as described in the third column of Fig. 1. Both Dm and Dinit also
contain constraints asserting that each constant is mapped to exactly one value

1 {A}ch denotes the choice rule A ← not not A.

Elaboration Tolerant Representation of MDP via pBC+ 227

in its domain. In the presence of these constraints, we identify an interpretation
of σm with the value assignment function that maps each constant to its value.

For any LPMLN program Π of signature σ1 and an interpretation I of a
subset σ2 of σ1, we say I is a residual (probabilistic) stable model of Π if there
exists an interpretation J of σ1 \ σ2 such that I ∪ J is a (probabilistic) stable
model of Π.

For any interpretation I of σ, by i : I we denote the interpretation of i : σ
such that i : I |= (i : c) = v iff I |= c = v. For x ∈ {act, fl, pf}, we use σx

m to
denote the subset of σm, which is {i :c = v ∈ σm | c = v ∈ σx}.

A state of D is an interpretation Ifl of σfl such that 0 : Ifl is a residual
(probabilistic) stable model of D0. A transition of D is a triple 〈s, e, s′〉 where
s and s′ are interpretations of σfl and e is an interpretation of σact such that
0:s ∪ 0:e ∪ 1 : s′ is a residual stable model of D1. A pf-transition of D is a pair
(〈s, e, s′〉, pf), where pf is a value assignment to σpf such that 0 : s ∪ 0 : e ∪ 1 :
s′ ∪ 0:pf is a stable model of D1.

The following simplifying assumptions are made on action descriptions in
pBC+.

1. No Concurrency: For all transitions 〈s, e, s′〉, we have e |= a=true for at
most one action constant a;

2. Nondeterministic Transitions are Determined by pf constants: For
any state s, any value assignment e of σact, and any value assignment pf of
σpf , there exists exactly one state s′ such that (〈s, e, s′〉, pf) is a pf-transition;

3. Nondeterminism on Initial States are Determined by Initpf con-
stants: For any value assignment pfinit of σinitpf , there exists exactly one
value assignment fl of σfl such that 0 : pfinit ∪ 0 : fl is a stable model of
Dinit ∪ D0.

With the above three assumptions, the probability of a history, i.e., a
sequence of states and actions, can be computed as the product of the prob-
abilities of all the transitions that the history is composed of, multiplied by the
probability of the initial state (Corollary 1 in [11]).

2.2 Review: Markov Decision Process

A Markov Decision Process (MDP) M is a tuple 〈S,A, T,R〉 where (i) S is a set
of states; (ii) A is a set of actions; (iii) T : S × A × S → [0, 1] defines transition
probabilities; (iv) R : S × A × S → R is the reward function.

Given a history 〈s0, a0, s1, . . . , sm−1, am−1, sm〉 such that each si ∈ S (i ∈
{0, . . . , m}) and each ai ∈ A (i ∈ {0, . . . , m − 1}), the total reward RM of the
history under MDP M is defined as

RM (〈s0, a0, s1, . . . , sm−1, am−1, sm〉) =
m−1∑

i=0

R(si, ai, si+1).

The probability PM of 〈s0, a0, s1, . . . , sm−1, am−1, sm〉 under MDP is defined as

228 Y. Wang and J. Lee

PM (〈s0, a0, s1, . . . , sm−1, am−1, sm〉) =
m−1∏

i=0

T (si, ai, si+1).

A non-stationary policy π : S × ST �→ A is a function from S × ST to A, where
ST = {0, . . . , m − 1}. The expected total reward of a non-stationary policy π
starting from the initial state s0 under MDP M is

ERM (π, s0) = E
〈s1,...,sm〉:

si∈S for i∈{1,...,m}
[RM (〈s0, π(s0, 0), s1, . . . , sm−1, π(sm−1, m − 1), sm〉)]

=
∑

〈s1,...,sm〉:
si∈S for i∈{1,...,m}

(m−1∑

i=0

R(si, π(si, i), si+1)
)

×
(m−1∏

i=0

T (si, π(si, i), si+1)
)
.

The finite horizon policy optimization problem starting from s0 is to find a
non-stationary policy π that maximizes its expected total reward starting from
s0, i.e., argmaxπ ERM (π, s0).

Various algorithms for MDP policy optimization have been developed, such
as value iteration [3] for exact solutions, and Q-learning [16] for approximate
solutions.

3 DT-LPMLN

We extend the syntax and the semantics of LPMLN to DT-LPMLN by introducing
atoms of the form

utility(u, t) (1)

where u is a real number, and t is an arbitrary list of terms. These atoms can
only occur in the head of hard rules of the form

α : utility(u, t) ← Body (2)

where Body is a list of literals. We call these rules utility rules.
The weight and the probability of an interpretation are defined the same as

in LPMLN. The utility of an interpretation I under Π is defined as

UΠ(I) =
∑

utility(u,t)∈I

u.

The expected utility of a proposition A is defined as

E[UΠ(A)] =
∑

I |=A

UΠ(I) × PΠ(I | A). (3)

A DT-LPMLN program is a pair (Π,Dec) where Π is an LPMLN program with
a propositional signature σ (including utility atoms) and Dec is a subset of σ
consisting of decision atoms. We consider two reasoning tasks with DT-LPMLN.

Elaboration Tolerant Representation of MDP via pBC+ 229

– Evaluating a Decision. Given a propositional formula e (“evidence”) and
a truth assignment dec of decision atoms Dec, represented as a conjunction
of literals over atoms in Dec, compute the expected utility of decision dec in
the presence of evidence e, i.e., compute

E[UΠ(dec ∧ e)] =
∑

I |= dec∧e

UΠ(I) × PΠ(I | dec ∧ e).

– Finding a Decision with Maximum Expected Utility (MEU). Given
a propositional formula e (“evidence”), find the truth assignment dec on Dec
such that the expected utility of dec in the presence of e is maximized, i.e.,
compute

argmax
dec : dec is a truth assignment on Dec

E[UΠ(dec ∧ e)]. (4)

Example 1. Consider a directed graph G representing a social network: (i) each
vertex v ∈ V (G) represents a person; each edge (v1, v2) represents that v1 influ-
ences v2; (ii) each edge e = (v1, v2) is associated with a probability pe represent-
ing the probability of the influence; (iii) each vertex v is associated with a cost
cv, representing the cost of marketing the product to v; (iv) each person who
buys the product yields a reward of r.

The goal is to choose a subset U of vertices as marketing targets so as to
maximize the expected profit. The problem can be represented as a DT-LPMLN

program Πmarket as follows:

α : buy(v) ← marketTo(v).
α : buy(v2) ← buy(v1), influence(v1, v2).
α : utility(r, v) ← buy(v).

with the graph instance represented as follows:

– for each edge e = (v1, v2), we introduce a probabilistic fact ln(pe

1−pe
) :

influence(v1, v2);
– for each vertex v ∈ V (G), we introduce the following rule:

α : utility(−cv, v) ← marketTo(v).

For simplicity, we assume that marketing to a person guarantees that the
person buys the product. This assumption can be removed easily by changing
the first rule to a soft rule.

The MEU solution of DT-LPMLN program (Πmarket, {marketTo(v) | v ∈
V (G)}) corresponds to the subset U of vertices that maximizes the expected
profit.

230 Y. Wang and J. Lee

For example, consider the directed graph on the
right, where each edge e is labeled by pe and each
vertex v is labeled by cv. Suppose the reward for
each person buying the product is 10. There are
26 = 64 different truth assignments on decision
atoms, corresponding to 64 choices of marketing
targets. The best decision is to market to Alice
only, which yields the expected utility of 17.96.

4 pBC+ with Utility

We extend pBC+ by introducing the following expression called utility law that
assigns a reward to transitions:

reward v if F after G (5)

where v is a real number representing the reward, F is a formula that contains
fluent constants only, and G is a formula that contains fluent constants and
action constants only (no pf, no initpf constants). We extend the signature of
Tr(D,m) with a set of atoms of the form (1). We turn a utility law of the form
(5) into the LPMLN rule

α : utility(v, i + 1, id) ← (i + 1 : F) ∧ (i : G) (6)

where id is a unique number assigned to the LPMLN rule and i ∈ {0, . . . , m−1}.
Given a nonnegative integer m denoting the maximum timestamp, a

pBC+ action description D with utility over multi-valued propositional sig-
nature σ is defined as a high-level representation of the DT-LPMLN program
(Tr(D,m), σact

m).
We extend the definition of a probabilistic transition system as follows: A

probabilistic transition system T (D) represented by a probabilistic action descrip-
tion D is a labeled directed graph such that the vertices are the states of D, and
the edges are obtained from the transitions of D: for every transition 〈s, e, s′〉 of
D, an edge labeled e : p, u goes from s to s′, where p = PrD1(1 : s′ | 0 : s ∧ 0 : e)
and u = E[UD1(0 :s ∧ 0 :e ∧ 1 :s′)]. The number p is called the transition proba-
bility of 〈s, e, s′〉, denoted by p(s, e, s′), and the number u is called the transition
reward of 〈s, e, s′〉, denoted by u(s, e, s′).

Example 2. The following action description Dsimple describes a simple proba-
bilistic action domain with two Boolean fluents P , Q, and two actions A and B.
A causes P to be true with probability 0.8, and if P is true, then B causes Q
to be true with probability 0.7. The agent receives the reward 10 if P and Q
become true for the first time (after then, it remains in the state {P,Q} as it is
an absorbing state).

Elaboration Tolerant Representation of MDP via pBC+ 231

A causes P if Pf 1
B causes Q if P ∧ Pf 2
inertial P, Q
constraint ¬(Q∧ ∼P)
caused Pf 1 = {true : 0.8, false : 0.2}
caused Pf 2 = {true : 0.7, false : 0.3}

reward 10 if P ∧ Q after ¬(P ∧ Q)
caused InitP = {true : 0.6, false : 0.4}
initially P = x if InitP = x
caused InitQ = {true : 0.5, false : 0.5}
initially Q if InitQ ∧ P
initially ∼Q if ∼P.

The transition system T (Dsimple) is as follows:

4.1 Policy Optimization

Given a pBC+ action description D, we use S to denote the set of states, i.e,
the set of interpretations Ifl of σfl such that 0 : Ifl is a residual (probabilistic)
stable model of D0. We use A to denote the set of interpretations Iact of σact

such that 0:Iact is a residual (probabilistic) stable model of D1. Since we assume
at most one action is executed each time step, each element in A makes either
only one action or none to be true.

A (non-stationary) policy π (in pBC+) is a function π : S×{0, . . . ,m−1} �→ A
that maps a state and a time step to an action (including doing nothing). By
〈s0, s1 . . . , sm〉t (each si ∈ S) we denote the formula 0:s0∧1:s1∧· · ·∧m :sm, and
by 〈s0, a0, s1 . . . , sm−1, am−1, sm〉t (each si ∈ S and each ai ∈ A) the formula

0:s0 ∧ 0:a0 ∧ 1:s1 ∧ · · · ∧ m − 1:am−1 ∧ m :sm.

We say a state s is consistent with Dinit if there exists at least one probabilis-
tic stable model I of Dinit such that I |= 0:s. The Policy Optimization problem
from the initial state s0 is to find a policy π that maximizes the expected utility
starting from s0, i.e., π with

argmax
π is a policy

E[UTr(Π,m)(Cπ,m ∪ 〈s0〉t)]

where Cπ,m is the following formula representing policy π:
∧

s∈S, π(s,i)=a, i∈{0,...,m−1}
i :s → i :a.

We define the total reward of a history 〈s0, a0, s1, . . . , sm〉 under the action
description D as

RD(〈s0, a0, s1, . . . , sm〉) = E[UTr(D,m)(〈s0, a0, s1, a1, . . . , am−1, sm〉t)].

232 Y. Wang and J. Lee

Although it is defined as an expectation, the following proposition tells us
that any stable model X of Tr(D,m) such that X |= 〈s0, a0, s1, . . . , sm〉 has
the same utility, and consequently, the expected utility of 〈s0, a0, s1, . . . , sm〉 is
the same as the utility of any single stable model that satisfies the history.

Proposition 1. For any two stable models X1,X2 of Tr(D,m) that satisfy a
history 〈s0, a0, s1, a1, . . . , am−1, sm〉, we have

UTr(D,m)(X1) = UTr(D,m)(X2) = E[UTr(D,m)(〈s0, a0, s1, a1, . . . , am−1, sm〉t)].

It can be seen that the expected utility of π can be computed from the
expected utility from all possible state sequences.

Proposition 2. Given any initial state s0 that is consistent with Dinit, for any
non-stationary policy π, we have
E[UT r(D,m)(Cπ,m ∧ 〈s0〉t)] =

∑

〈s1,...,sm〉:si∈S

RD(〈s0, π(s0), s1, . . . , π(sm−1), sm〉) × PT r(D,m)(〈s0, s1, . . . , sm〉t | 〈s0〉t ∧ Cπ,m).

Definition 1. For a pBC+ action description D, let M(D) be the MDP
〈S,A, T,R〉 where (i) the state set S is S; (ii) the action set A is A; (iii) transi-
tion probability T is defined as T (s, a, s′) = PD1(1 : s′ | 0 : s ∧ 0 : a); (iv) reward
function R is defined as R(s, a, s′) = E[UD1(0 : s ∧ 0 : a ∧ 1 : s′)].

We show that the policy optimization problem for a pBC+ action description
D can be reduced to the policy optimization problem for M(D) for the finite
horizon. The following theorem tells us that for any history following a non-
stationary policy, its total reward and probability under D defined under the
pBC+ semantics coincide with those under the corresponding MDP M(D).

Theorem 1. Given an initial state s0 ∈ S that is consistent with Dinit, for any
non-stationary policy π and any finite state sequence 〈s0, s1, . . . , sm−1, sm〉 such
that each si in S (i ∈ {0, . . . , m}), we have

– RD(〈s0, π(s0), s1, . . . , π(sm−1), sm〉) = RM(D)(〈s0, π(s0,) . . . , π(sm−1), sm〉)
– PTr(D,m)(〈s0, s1, . . . , sm〉t | 〈s0〉t ∧ Cπ,m) = PM(D)(〈s0, π(s0,) . . . , π(sm−1), sm〉).

It follows that the policy optimization problem for pBC+ action descriptions
coincides with the policy optimization problem for MDP with finite horizon.

Theorem 2. For any nonnegative integer m and an initial state s0 ∈ S that is
consistent with Dinit, we have

argmax
π is a non-stationary policy

E[UTr(D,m)(Cπ,m ∧ 〈s0〉t)] = argmax
π is a non-stationary policy

ERM(D)(π, s0).

Theorem 2 justifies using an implementation of DT-LPMLN to compute opti-
mal policies of MDP M(D) as well as using an MDP solver to compute optimal
policies of the pBC+ descriptions. Furthermore, the theorems above allow us to
check the properties of MDP M(D) by using formal properties of LPMLN, such
as whether a certain state is reachable in a given number of steps.

Elaboration Tolerant Representation of MDP via pBC+ 233

5 pBC+ as a High-Level Representation Language
of MDP

An action description consists of causal laws in a human-readable form describing
the action domain in a compact and high-level way, whereas it is non-trivial to
describe an MDP instance directly from the domain description in English. The
result in the previous section shows how to construct an MDP instance M(D)
for a pBC+ action description D so that the solution to the policy optimization
problem of D coincide with that of MDP M(D). In that sense, pBC+ can be
viewed as a high-level representation language for MDP.

As its semantics is defined in terms of LPMLN, pBC+ inherits the nonmono-
tonicity of the stable model semantics to be able to compactly represent recur-
sive definitions or transitive closure. The static laws in pBC+ prune out invalid
states to ensure that only meaningful value combinations of fluents will be given
to MDP as states, thus reducing the size of state space at the MDP level.

Example 3. Robot and Blocks There are two rooms R1, R2, and three blocks
B1, B2, B3 that are originally located in R1. A robot can stack one block on top
of another block if the two blocks are in the same room. The robot can also
move a block to a different room, resulting in all blocks above it also moving if
successful (with probability p). Each moving action has a cost of 1. What is the
best way to move all blocks to R2?

The example can be represented in pBC+ as follows. x, x1, x2 range over
B1, B2, B3; r, r1, r2 ranges over R1, R2. TopClear(x), Above(x1, x2), and
GoalNotAchieved are Boolean statically determined fluent constants; In(x) is a
regular fluent constant with Domain {R1, R2}, and OnTopOf (x1, x2) is a Boolean
regular fluent constant. MoveTo(x, r) and StackOn(x1, x2) are action constants
and Pf Move is a Boolean pf constant. In this example, we make the goal state
absorbing, i.e., when all the blocks are already in R2, then all actions have no
effect.

Moving block x to room r causes x to be in r with probability p:

MoveTo(x, r) causes In(x) = r if Pf Move ∧ GoalNotAchieved
caused Pf Move = {true : p, false : 1 − p}.

Successfully Moving a block x1 to a room r2 causes x1 to be no longer underneath
the block x2 that x1 was underneath in the previous step, if r2 is different from
where x2 is:

MoveTo(x1, r2) causes ∼OnTopOf (x1, x2)

if Pf Move ∧ In(x1) = r1 ∧ OnTopOf (x1, x2) ∧ GoalNotAchieved (r1 	= r2).

Stacking a block x1 on another block x2 causes x1 to be on top of x2, if the top
of x2 is clear, and x1 and x2 are at the same location:

StackOn(x1, x2) causes OnTopOf (x1, x2)
if TopClear(x2) ∧ At(x1) = r ∧ At(x2) = r ∧ GoalNotAchieved(x1 �= x2).

234 Y. Wang and J. Lee

Stacking a block x1 on another block x2 causes x1 to be no longer on top of the
block x where x1 was originally on top of:

StackOn(x1, x2) causes ∼OnTopOf (x1, x) if TopClear(x2) ∧ At(x1) = r ∧ At(x2) = r∧
OnTopOf (x1, x) ∧ GoalNotAchieved (x2 	= x, x1 	= x2).

Two different blocks cannot be on top of the same block, and a block cannot be
on top of two different blocks:

constraint ¬(OnTopOf (x1, x) ∧ OnTopOf (x2, x)) (x1 �= x2)
constraint ¬(OnTopOf (x, x1) ∧ OnTopOf (x, x2)) (x1 �= x2).

By default, the top of a block x is clear. It is not clear if there is another block
x1 that is on top of it:

default TopClear(x)
caused ∼TopClear(x) if OnTopOf (x1, x).

The relation Above between two blocks is the transitive closure of the relation
OnTopOf : A block x1 is above another block x2 if x1 is on top of x2, or there
is another block x such that x1 is above x and x is above x2:

caused Above(x1, x2) if OnTopOf (x1, x2)
caused Above(x1, x2) if Above(x1, x) ∧ Above(x, x2).

One block cannot be above itself; two blocks cannot be above each other:

caused ⊥ if Above(x1, x2) ∧ Above(x2, x1).

If a block x1 is above another block x2, then x1 has the same location as x2:

caused At(x1) = r if Above(x1, x2) ∧ At(x2) = r. (7)

Each moving action has a cost of 1:

reward − 1 if after MoveTo(x, r).

Achieving the goal when the goal is not previously achieved yields a reward of
10:

reward 10 if ∼GoalNotAchieved after GoalNotAchieved .

The goal is not achieved if there exists a block x that is not at R2. It is achieved
otherwise:

caused GoalNotAchieved if At(x) = r (r �= R2)
default ∼GoalNotAchieved .

At(x) and OnTopOf (x1, x2) are inertial:

inertial At(x),OnTopOf (x1, x2).

Finally, we add a1∧a2 causes ⊥ for each distinct pair of ground action constants
a1 and a2, to ensure that at most one action can occur each time step.

It can be seen that stacking all blocks together and moving them at once
would be the best strategy to move them to R2.

Elaboration Tolerant Representation of MDP via pBC+ 235

In Example 3, many value combinations of fluents do not lead to a valid
state, such as {OnTopOf (B1, B2),OnTopOf (B2, B1), ...}, where the two blocks
B1 and B2 are on top of each other. Moreover, the fluents TopClear(x) and
Above(x1, x2) are completely dependent on the value of the other fluents. There
would be 23+3×3+3+3×3 = 224 states if we define a state as any value combination
of fluents. On the other hand, the static laws in the above action description
reduce the number of states to only (13 + 9) × 2 = 44.2

Furthermore, in this example, Above(x, y) needs to be defined as a transitive
closure of OnTopOf (x, y), so that the effects of StackOn(x1, x2) can be defined in
terms of the (inferred) spatial relation of blocks. Also, the static law (7) defines
an indirect effect of MoveTo(x, r).

We implemented the prototype system pbcplus2mdp, which takes an action
description D and time horizon m as input, and finds an optimal policy by
constructing the corresponding MDP M(D) and invoking an MDP solver mdp-
toolbox.3 The current system uses LPMLN 1.0 [9] (http://reasoning.eas.asu.
edu/lpmln) for exact inference to find states, actions, transition probabilities,
and transition rewards. The system is publicly available at https://github.com/
ywang485/pbcplus2mdp, along with several examples. The current system is
not quite scalable because generating exact transition probability and reward
matrices requires enumerating all stable models of D0 and D1.

6 Related Work

There have been quite a few studies and attempts in defining factored represen-
tations of (PO)MDP, with feature-based state descriptions and more compact,
human-readable action definitions. PPDDL [18] extends PDDL with constructs
for describing probabilistic effects of actions and reward from state transitions.
One limitation of PPDDL is the lack of static causal laws, which prohibits
PPDDL from expressing recursive definitions or transitive closure. This may
yield a large state space to explore as discussed in Sect. 5. RDDL (Relational
Dynamic Influence Diagram Language) [13] improves the expressivity of PPDDL
in modeling stochastic planning domains by allowing concurrent actions, contin-
uous values of fluents, state constraints, etc. The semantics is defined in terms of
lifted dynamic Bayes network extended with influence graph. A lifted planner can
utilize the first-order representation and potentially achieve better performance.
Still, indirect effects are hard to be represented in RDDL. Compared to PPDDL
and RDDL, the advantages of pBC+ are in its simplicity and expressivity origi-
nating from the stable model semantics, which allows for elegant representation
of recursive definitions, defeasible behaviors, and indirect effects.

Zhang et al. [19] adopt ASP and P-Log [2] which respectively produces a
refined set of states and a refined probability distribution over states that are
then fed to POMDP solvers for low-level planning. The refined sets of states
2 This can be verified by counting all possible configurations of 3 blocks with 2 loca-

tions.
3 https://pymdptoolbox.readthedocs.io.

http://reasoning.eas.asu.edu/lpmln
http://reasoning.eas.asu.edu/lpmln
https://github.com/ywang485/pbcplus2mdp
https://github.com/ywang485/pbcplus2mdp
https://pymdptoolbox.readthedocs.io

236 Y. Wang and J. Lee

and probability distribution over states take into account commonsense knowl-
edge about the domain, and thus improve the quality of a plan and reduce
computation needed at the POMDP level. Yang et al. [17] adopts the (deter-
ministic) action description language BC for high-level representations of the
action domain, which defines high-level actions that can be treated as deter-
ministic. Each action in the generated high-level plan is then mapped into more
detailed low-level policies, which takes stochastic effects of low-level actions into
account. Similarly, Sridharan et al. [14] introduce a framework with planning
in a coarse-resolution transition model and a fine-resolution transition model.
Action language ALd is used for defining the two levels of transition models.
The fine-resolution transition model is further turned into a POMDP for detailed
planning with stochastic effects of actions and transition rewards. While a pBC+
action description can fully capture all aspects of (PO)MDP including transi-
tion probabilities and rewards, the ALd action description only provides states,
actions and transitions with no quantitative information. Leonetti et al. [12], on
the other hand, use symbolic reasoners such as ASP to reduce the search space
for reinforcement learning based planning methods by generating partial policies
from planning results generated by the symbolic reasoner. The exploration of the
low-level RL module is constrained by actions that satisfy the partial policy.

Another related work is [4], which combines ASP and reinforcement learning
by using action language BC+ as a meta-level description of MDP. The BC+
action descriptions define non-stationary MDPs in the sense that the states
and actions can change with new situations occurring in the environment. The
algorithm ASP(RL) proposed in this work iteratively calls an ASP solver to
obtain states and actions for the RL methods to learn transition probabilities
and rewards, and updates the BC+ action description with changes in the envi-
ronment found by the RL methods, in this way finding optimal policy for a
non-stationary MDP with the search space reduced by ASP. The work is similar
to ours in that ASP-based high-level logical description is used to generate states
and actions for MDP, but the difference is that we use an extension of BC+ that
expresses transition probabilities and rewards.

7 Conclusion

Our main contributions are as follows.

– We presented a decision-theoretic extension of LPMLN, through which we
extended pBC+ with the language constructs for representing rewards of tran-
sitions;

– We showed that the semantics of pBC+ can be equivalently defined in terms
of the decision-theoretic LPMLN or MDP;

– We presented the system pbcplus2mdp, which solves pBC+ policy optimiza-
tion problems with an MDP solver.

Formally relating action languages and MDP opens up interesting research
to explore. Dynamic programming methods in MDP can be utilized to compute

Elaboration Tolerant Representation of MDP via pBC+ 237

action languages. In turn, action languages may serve as a formal verification
tool for MDP as well as a high-level representation language for MDP that
describes an MDP instance in a succinct and elaboration tolerant way. As many
reinforcement learning tasks use MDP as a modeling language, the work may
be related to incorporating symbolic knowledge to reinforcement learning as
evidenced by [12,17,19].

DT-LPMLN may deserve attention on its own for static domains. We are
currently working on an implementation that extends LPMLN system to handle
utility. We expect that the system can be a useful tool for verifying properties
for MDP.

The theoretical results in this paper limit attention to MDP in the finite
horizon case. When the maximum step m is sufficiently large, we may view it as
an approximation of the infinite horizon case, in which case, we allow discount
factor γ by replacing v in (6) with γi+1v. While it appears intuitive to extend
the theoretical results in this paper to the infinite case, it requires extending
the definition of LPMLN to allow infinitely many rules, which we leave for future
work.

Acknowledgements. We are grateful to the anonymous referees for their useful com-
ments and to Siddharth Srivastava, Zhun Yang, and Yu Zhang for helpful discussions.
This work was partially supported by the National Science Foundation under Grant
IIS-1815337.

References

1. Babb, J., Lee, J.: Action language BC+. J. Log. Comput. exv062 (2015). https://
doi.org/10.1093/logcom/exv062

2. Baral, C., Gelfond, M., Rushton, J.N.: Probabilistic reasoning with answer sets.
Theory Pract. Log. Program. 9(1), 57–144 (2009)

3. Bellman, R.: A markovian decision process. Indiana Univ. Math. J. 6, 679–684
(1957)

4. Ferreira, L.A., Bianchi, R.A.C., Santos, P.E., de Mantaras, R.L.: Answer set pro-
gramming for non-stationary Markov decision processes. Appl. Intell. 47(4), 993–
1007 (2017)

5. Gelfond, M., Lifschitz, V.: Representing action and change by logic programs. J.
Log. Program. 17, 301–322 (1993)

6. Gelfond, M., Lifschitz, V.: Action languages. Electron. Trans. Artif. Intell. 3, 195–
210 (1998). http://www.ep.liu.se/ea/cis/1998/016/

7. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal
theories. Artif. Intell. 153(1–2), 49–104 (2004)

8. Lee, J., Lifschitz, V., Yang, F.: Action language BC+: preliminary report. In: Pro-
ceedings of International Joint Conference on Artificial Intelligence (IJCAI) (2013)

9. Lee, J., Talsania, S., Wang, Y.: Computing LPMLN using ASP and MLN solvers.
Theory Pract. Log. Program. 17(5–6), 942–960 (2017)

10. Lee, J., Wang, Y.: Weighted rules under the stable model semantics. In: Proceed-
ings of International Conference on Principles of Knowledge Representation and
Reasoning (KR), pp. 145–154 (2016)

https://doi.org/10.1093/logcom/exv062
https://doi.org/10.1093/logcom/exv062
http://www.ep.liu.se/ea/cis/1998/016/

238 Y. Wang and J. Lee

11. Lee, J., Wang, Y.: A probabilistic extension of action language BC+. Theory Pract.
Log. Program. 18(3–4), 607–622 (2018)

12. Leonetti, M., Iocchi, L., Stone, P.: A synthesis of automated planning and rein-
forcement learning for efficient, robust decision-making. Artif. Intell. 241, 103–130
(2016)

13. Sanner, S.: Relational dynamic influence diagram language (RDDL): language
description. Unpublished ms, p. 32. Australian National University (2010)

14. Sridharan, M., Gelfond, M.: Using knowledge representation and reasoning tools in
the design of robots. In: Workshop on Knowledge-Based Techniques for Problem
Solving and Reasoning (KnowProS) (2016)

15. Wang, Y., Lee, J.: Elaboration tolerant representation of Markov decision process
via decision theoretic extension of pBC+. arXiv e-prints (2019). http://arxiv.org/
abs/1904.00512

16. Watkins, C.J.C.H.: Learning from delayed rewards. Ph.D. thesis, King’s College,
Cambridge, UK, May 1989. http://www.cs.rhul.ac.uk/∼chrisw/new thesis.pdf

17. Yang, F., Lyu, D., Liu, B., Gustafson, S.: PEORL: integrating symbolic planning
and hierarchical reinforcement learning for robust decision-making. In: Proceedings
of International Joint Conference on Artificial Intelligence, pp. 4860–4866 (2018)

18. Younes, H.L., Littman, M.L.: PPDDL1.0: an extension to PDDL for expressing
planning domains with probabilistic effects. Technical report, CMU-CS-04-162,
April 2004

19. Zhang, S., Stone, P.: CORPP: commonsense reasoning and probabilistic planning,
as applied to dialog with a mobile robot. In: Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, pp. 1394–1400 (2015)

http://arxiv.org/abs/1904.00512
http://arxiv.org/abs/1904.00512
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf

Systems

Evaluation of Disjunctive Programs
in WASP

Mario Alviano1 , Giovanni Amendola1 , Carmine Dodaro2(B) ,
Nicola Leone1 , Marco Maratea2 , and Francesco Ricca1

1 DEMACS, University of Calabria, Rende, Italy
{alviano,amendola,leone,ricca}@mat.unical.it

2 DIBRIS, University of Genoa, Genoa, Italy
{dodaro,marco}@dibris.unige.it

Abstract. Answer Set Programming (ASP) is a well-established declar-
ative programming language based on logic. The success of ASP is mainly
due to the availability of efficient ASP solvers, therefore their develop-
ment is still an important research topic. In this paper we report the
recent improvements of the well-known ASP solver wasp. The new ver-
sion of wasp includes several improvements of the main solving strategies
and advanced reasoning techniques for computing paracoherent answer
sets. Indeed, wasp is the first ASP solver handling paracoherent rea-
soning under two mainstream semantics, namely semi-stable and semi-
equilibrium. However, semi-equilibrium semantics may require the intro-
duction of several disjunctive rules, which are usually considered as a
source of inefficiency for modern solvers. Such a drawback is addressed
in wasp by implementing ad-hoc techniques to efficiently handle disjunc-
tive logic programs. These techniques are presented and evaluated in this
paper.

Keywords: Answer set programming · Answer set computation ·
Disjunctive logic programs

1 Introduction

Answer set programming (ASP) [17] is a declarative formalism for knowledge
representation and reasoning based on the stable model semantics [27]. The suc-
cess of ASP is witnessed by the increasing number of academic and industrial
applications [1,11,14,20,28], and it is mainly due to the combination of its high
knowledge-modeling power with robust solving technology [5,23]. For this rea-
son, the development of new efficient solvers and solving techniques is still an
important research topic.

In this paper we present the progress in the development of the ASP solver
wasp [4,5]. Among the features recently included in wasp, advanced reasoning
techniques for computing paracoherent answer sets [9] are of particular inter-
est, as in fact wasp is the first solver that is able to compute paracoherent
c© Springer Nature Switzerland AG 2019
M. Balduccini et al. (Eds.): LPNMR 2019, LNAI 11481, pp. 241–255, 2019.
https://doi.org/10.1007/978-3-030-20528-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20528-7_18&domain=pdf
http://orcid.org/0000-0002-2052-2063
http://orcid.org/0000-0002-2111-9671
http://orcid.org/0000-0002-5617-5286
http://orcid.org/0000-0002-9742-1252
http://orcid.org/0000-0002-9034-2527
http://orcid.org/0000-0001-8218-3178
https://doi.org/10.1007/978-3-030-20528-7_18

242 M. Alviano et al.

answer sets according to two mainstream semantics, namely semi-stable and
semi-equilibrium [10,12,13]. In this context, it is important to emphasize that
the evaluation of ASP programs under the semi-equilibrium semantics may lead
to a deterioration of the performance of the solver due to a significant amount
of disjunctive rules introduced by the implemented algorithm [8].

Disjunctive rules are a common source of inefficiency for many ASP solvers
based on the Clark’s completion [18], such as cmodels [29], lp2sat [30], and
clasp [23]. In particular, in the disjunctive case, such solvers apply a rewriting
technique, called shift [16], that causes a quadratic blow-up of the input program.
This drawback is addressed in wasp by applying a linear rewriting technique that
extends Clark’s completion to the disjunctive case [3] (see Sect. 3.1). Moreover,
disjunctive rules might increase the computational complexity of several reason-
ing tasks because the evaluation of disjunctive logic programs may require to
perform an additional co-NP-complete task, usually referred to as answer set
checking (or stability checking).

Answer set checking is usually carried out by checking the unsatisfiability of
a propositional formula, which can be constructed according to different strate-
gies. The first of such strategies was implemented in the ASP solver dlv and is
based on the reduct of the input program with respect to the answer set candi-
date to be checked [32]. Albeit the construction of such a formula can be done
in polynomial time, in practice its creation is often more expensive than the
unsatisfiability check. Moreover, the traditional reduct-based approach cannot
reuse any information from previous checks and requires to build a new formula
each time the stability check is required. An alternative strategy was imple-
mented in the ASP solver clasp, where a characterization of answer sets based
on unfounded sets is used to obtain a formula that can be reused for all stability
checks [24]. However, the formula built using this strategy is quadratic in the
size of the program, while the reduct-based approach produces linear formulas.

The main contribution of this paper is to show how to improve the efficiency
of the mainstream strategies for handling disjunctive logic programs under stable
model semantics. In particular, we describe how the reduct-based approach can
be modified in order to use the same formula in all answer set checks (Sect. 3.2),
and we propose a slight, yet effective, modification of the unfounded-based app-
roach so to make it linear (Sect. 3.3); the new algorithms are integrated in the
solver wasp. After that, we empirically assess the impact of the new features on
several benchmarks, showing that wasp can efficiently handle disjunctive ASP
programs (Sect. 4).

2 Preliminaries

2.1 Propositional Logic

Syntax. Let A be a fixed, countable set of (propositional) atoms. A literal � is
either an atom p, or its negation ¬p. For a negative literal ¬p, ¬¬p := p. A clause
is a set of literals representing a disjunction, and a propositional formula ϕ is a set
of clauses representing a conjunction, i.e., only formulas in conjunctive normal

Evaluation of Disjunctive Programs in WASP 243

form (CNF) are considered here. For a formula ϕ, size(ϕ) :=
∑

c∈ϕ |c|, and
At(ϕ) is the set of atoms appearing in ϕ. For n ≥ 0, and �0, . . . , �n being literals,
formula �0 ↔ �1 ∧ · · · ∧ �n is a compact representation of the following clauses:
{�0} ∪ {¬�i | i ∈ [1..n]}; {¬�0, �i}, for all i ∈ [1..n]. Similarly, �0 ↔ �1 ∨ · · · ∨ �n

is a compact representation of the following clauses: {�0,¬�i}, for all i ∈ [1..n];
{¬�0} ∪ {�i | i ∈ [1..n]}.

Semantics. An interpretation I is a set of atoms in A. Intuitively, atoms in I
are true, and those in A\ I are false. Relation |= is defined as follows: for p ∈ A,
I |= p if p ∈ I, and I |= ¬p if p /∈ I; for a clause c, I |= c if I |= � for some
� ∈ c; for a formula ϕ, I |= ϕ if I |= c for all c ∈ ϕ. If I |= ϕ then I is a model
of ϕ, I satisfies ϕ, and ϕ is true w.r.t. I. If I �|= ϕ then I is not a model of ϕ, I
violates ϕ, and ϕ is false w.r.t. I. Similarly for literals, and clauses. A formula
ϕ is satisfiable if there is an interpretation I such that I |= ϕ; otherwise, ϕ is
unsatisfiable.

2.2 Answer Set Programming

A literal � is either an atom p, or its negation ∼p, where ∼ denotes negation as
failure. ∼ p Let � denote the complement of �, i.e., p := ∼p, and ∼p := p, for all
p ∈ A. This notation is extended to sets of literals, i.e., for a set S of literals,
S := {� | � ∈ S}.

A disjunctive logic program Π is a finite set of rules of the following form:

a1 | · · · | an ← b1, · · · , bk, ∼bk+1, · · · , ∼bm (1)

where n ≥ 1, m ≥ k ≥ 0, and a1, . . . , an, b1, . . . , bm are atoms in A. For a
rule r of the form (1), set {a1, . . . , an} is called head of r, and denoted H(r);
while {b1, . . . , bk, ∼bk+1, . . . , ∼bm} is named body of r, and denoted B(r); sets
{b1, . . . , bk} and {bk+1, . . . , bm} of positive and negative literals in B(r) are
denoted B+(r) and B−(r), respectively. Given an atom p, heads(Π, p) := {r |
r ∈ Π, p ∈ H(r)}. For a rule r of the form (1), size(r) := n + m. For a program
Π, size(Π) :=

∑
r∈Π size(r) and At(Π) denotes the set of atoms appearing in

Π.

Semantics. An interpretation I is a set of atoms in A. Relation |= is extended
as follows: for a negative literal ∼a, I |= ∼a if I �|= a; for a rule r, I |= B(r) if
I |= � for all literals � ∈ B(r), I � |= B(r) if I � |= � for a literal � ∈ B(r), I |= r
if H(r) ∩ I �= ∅ whenever I |= B(r); for a program Π, I |= Π if I |= r for all
r ∈ Π. An interpretation I is a model of Π if I |= Π. An interpretation I is
supported in Π if for all p ∈ I there is a rule r ∈ Π such that I |= B(r) and
H(r) ∩ I = {p}. The definition of answer set is based on a notion of program
reduct [27]: Let Π be a disjunctive logic program, and I an interpretation. The
reduct of Π with respect to I, denoted ΠI , is obtained from Π by deleting each
rule r such that I �|= B(r), and removing negative literals and false head atoms
in the remaining rules. A supported model I of Π is an answer set if there is
no J ⊂ I such that J |= ΠI . Let AS (Π) denote the set of answer sets of Π.
Program Π is coherent if AS (Π) �= ∅; otherwise, it is incoherent.

244 M. Alviano et al.

3 Answer Set Computation

In this section, we review the main techniques employed by wasp for the compu-
tation of an answer set. In particular, wasp first encodes the input program Π
as a propositional formula by applying the (Clark’s) completion (see Sect. 3.1),
whose models are all supported models of Π [18,33]. After that, wasp searches
for an answer set by implementing a variant of the CDCL backtracking algorithm
on the completion of Π as described in [5].

The backtracking algorithm is based on the pattern choose-propagate-learn.
In a nutshell, the algorithm builds an answer set step-by-step starting from an
empty set of literals A. At each step, a literal, called branching literal, is added to
A (choice), and the deterministic consequences of this choice are propagated, that
is, other literals are added to A. Propagation is carried out by applying several
inference rules, called propagators. In case the propagation leads to a conflict,
i.e., an atom and its negation are both in A, the algorithm learns a new clause,
undoes the choices leading to the conflict, and restores the consistency of A. This
process is repeated until the incoherence of Π is proven or I := A ∩ atoms(Π)
is a (supported) model of Π. In the latter case, a stability check on I is possibly
performed (more specifically, if Π is non head-cycle-free [24]); if the stability
check is successful, I is an answer set and the algorithm terminates, otherwise
a conflict is raised and a new clause is learned. The stability check amounts to
checking the satisfiability of a formula ϕ, built starting from Π and I. Actually,
in wasp the formula ϕ can be created according to two strategies, referred to as
reduct-based (Sect. 3.2) and unfounded-based (Sect. 3.3).

3.1 Completion

In the following, we briefly recall the Clark’s completion [18] and we describe the
completion implemented by wasp. First, consider programs without disjunction,
i.e., where for each rule of the form (1), n is equal to 1. In particular, given a
program Π without disjunction, the completion of Π, denoted Comp(Π), is the
set of clauses:

ar
1 ↔ b1 ∧ · · · ∧ bk ∧ ¬bk+1 ∧ · · · ∧ ¬bm (2)

for all r ∈ Π of the form (1) with n = 1, where ar
1 is a fresh atom (true if and

only if r is a support of a1), together with

a ↔
∨

r∈heads(Π,a)

ar (3)

for all a ∈ At(Π). Note that the construction of the completion is linear in size.
In order to apply completion to programs in general, a transformation

known as shift [16] is first applied to the input program Π, so to obtain a
program Shift(Π) with the same supported models. Formally, for a program
Π, Shift(Π) is defined as follows. For all rules r ∈ Π of the form (1) and
for all ai ∈ H(r), Shift(Π) contains a rule r′, such that H(r′) := {ai} and

Evaluation of Disjunctive Programs in WASP 245

B(r′) := B(r)∪ (H(r) \ {ai}). The strength of the shift is to preserve supported
models, however the construction is not linear, but quadratic in size. This weak-
ness is circumvented in wasp by directly extending completion to the disjunctive
case [3]. In particular, auxiliary atoms ar

i will be used with the same meaning
of the disjunction-free case, i.e., rule r of the form (1) supports atom ai, for
i ∈ [1..n]. However, since n may be greater than 1, other atoms occurring in
the head of r have to be taken into account. Additional auxiliary atoms will be
thus used, and in particular: sr

i , true if and only if rule r may support ai, for
i ∈ [1..n]; dr

i , true if and only if the disjunction ai ∨ · · ·∨an is true, for i ∈ [2..n].
The completion of a program Π, denoted Comp∨(Π), is the set of clauses:

dr
i ↔ ai ∨ dr

i+1 ∀i ∈ [2..n − 1] (4)
dr

n ↔ an if n ≥ 2 (5)
sr
1 ↔ b1 ∧ · · · ∧ bk ∧ ¬bk+1 ∧ · · · ∧ ¬bm (6)

sr
i ↔ sr

i−1 ∧ ¬ai−1 ∀i ∈ [2..n] (7)
ar

i ↔ sr
i ∧ ¬dr

i+1 ∀i ∈ [1..n − 1] (8)
ar

n ↔ sr
n (9)

for all r ∈ Π of the form (1), together with (3) for all a ∈ At(Π). Note that (5)
defines dr

n as an alias of an. Similarly, (9) defines sr
n as an alias of ar

n. It turns
out that dr

n and sr
n could be simplified in the above construction, but they are

left to ease the reading. Note that for n = 1 the above equations essentially give
(2): only (6) and (9) are used in this case, and (6) is precisely (2) if sr

1 is replaced
by its alias ar

1.
Finally, we mention that wasp supports a disjunctive propagator, which is

used to compactly represent clauses from (4) to (9), as detailed in [3]. The
disjunctive propagator usually reduces the memory footprint and the solving
time of wasp.

3.2 Reduct-Based Stability Check

Let Π be a program, and I be an interpretation. Let C(Π, I) be the propositional
formula {C(r, I) | r ∈ ΠI}, where for each rule r, C(r, I) is the following clause:

(H(r) ∩ I) ∪ {¬b | b ∈ B+(r)}.

Intuitively, the clauses C(Π, I) encode the program reduct ΠI . Let c⊂(I) denote
the clause {¬a | a ∈ I}, enforcing at least one atom in I to be assigned false.
Formula redbas(Π, I) is thus C(Π, I) ∪ {c⊂(I)}.

The following mapping between stability and satisfiability checks is estab-
lished.

Proposition 1 (Theorem 4.2 of [32]). Let Π be a program, and I be an
interpretation. I ∈ AS (Π) if and only if redbas(Π, I) is unsatisfiable.

246 M. Alviano et al.

Note that both C(Π, I), and c⊂(I) depend on I. Therefore, sensibly different
propositional formulas have to be built for each stability check, and in general
exponentially many checks may be performed while searching for an answer set
of the input program. The following example should better clarify this aspect.

Example 1. Consider the following program Π1:

a | b ← c a ← b, ∼e b ← a, ∼e c | d ← e | f ← a ← ∼b

and the answer set candidate to check is I1 := {a, b, c, f}. Then, C(Π1, I1)
is composed by {a, b,¬c}, {a,¬b}, {b,¬a}, {c}, and {f}; while c⊂(I1) :=
{¬a,¬b,¬c,¬f}. Formula redbas(Π1, I1) is unsatisfiable, thus I1 is an answer set.
Consider again the program Π1 and suppose that the answer set candidate to
check is I2 = {a, b, d, f}. In this case, C(Π1, I2) is composed by {a,¬b}, {b,¬a},
{d}, and {f}; while c⊂(I2) = {¬a,¬b,¬d,¬f}. Formula redbas(Π1, I2) is satis-
fiable, thus I2 is not an answer set. Note that the two formulas redbas(Π1, I1),
and redbas(Π1, I2) have in common several clauses, i.e., {a,¬b}, {b,¬a}, {f}.
However, at each check the formula is rebuilt without taking into account this
information. �

In order to overcome the main weakness of the basic stability check, the
propositional formula redbas(Π, I) is replaced by a refined formula redadv (Π, I)
such that each of its clauses depends on either Π, or I, but not both. Actually,
many clauses of the new formula will only depend on Π, which will allow to
reuse them in subsequent stability checks. As will be clarified soon, these clauses
compactly encode all possible reducts for the input program Π, so that the
specific reduct ΠI for the interpretation I to be checked can be selected by
properly adding to redadv (Π, I) a set of unit clauses, i.e., clauses consisting of a
single literal.

Formally, for a rule r, let C(r) denote the following clause:

H(r) ∪ {¬b | b ∈ B+(r)} ∪ {b′ | b ∈ B−(r)}

where each b′ is a fresh atom, i.e., an atom not occurring in Π. These fresh atoms
are required because the interpretation of negative literals in program reducts is
fixed by definition: their falsity implies the deletion of r, and their truth imply
their own elimination. For a program Π, let C(Π) be the propositional formula
{C(r) | r ∈ Π}.

For an interpretation I, define fix (I) to be the following set of clauses:

{{¬a} | a ∈ A \ I} ∪ {{b′} | b ∈ I} ∪ {{¬b′} | b ∈ A \ I}.

Intuitively, fix (I) fixes the interpretation of false as well as fresh atoms. Finally,
formula redadv (Π, I) is defined as C(Π) ∪ fix (I) ∪ {c⊂(I)}.

It is important to observe that simplifying C(Π) by means of the unary
clauses in fix (I) would result in the formula C(Π, I). The analogous of Proposi-
tion 1 can thus be established for the advanced stability check.

Evaluation of Disjunctive Programs in WASP 247

Theorem 1. Let Π be a program, and I be an interpretation. I ∈ AS (Π) if
and only if redadv (Π, I) is unsatisfiable.

Example 2. Consider the program Π1 of Example 1. Suppose that the answer
set candidate to check is I1 := {a, b, c, f}. Then, C(Π1) comprises the clauses
{a, b,¬c}, {a,¬b, e′}, {b,¬a, e′}, {c, d}, {f, e}, and {a, b′}. The set of clauses
fix (I1) comprises {¬d}, {¬e}, {¬e′} and {b′}; while c⊂(I1) := {¬a,¬b,¬c,¬f}.
Note that fix (I1) should also contain the unit clauses {a′}, {c′}, {¬d′}, {f ′}
which however are not necessary since such atoms do not appear in any other
clause. The formula redadv (Π1, I1) is then unsatisfiable, thus I1 is an answer set.
Consider again the program Π1. Suppose that the answer set candidate to check
is I2 = {a, b, d, f}. Note that, C(Π1) is not dependent on the interpretation thus
it can be reused also in this check. Then, fix (I2) is composed by {¬c}, {¬e},
{¬e′}, and {b′}; while c⊂(I2) = {¬a,¬b,¬d,¬f}. The formula redadv (Π1, I2) is
satisfiable, thus I2 is not an answer set. �

3.3 Unfounded-Based Stability Check

Let Π be a program, and I be an interpretation. A set X of atoms is an
unfounded set for Π with respect to I if for each r ∈ Π with H(r)∩X �= ∅ then
I �|= B(r), or B+(r) ∩ X �= ∅, or (H(r) \ X) ∩ I �= ∅. Note that, I is an answer
set of Π iff I |= Π and no unfounded set X is such that X ∩ I �= ∅. In the
following, for a rule r we define ¬B(r) := {¬q | q ∈ B+(r)} ∪ {q | q ∈ B−(r)}.

Given a program Π and an interpretation I, the stability of I can be checked
by encoding the unfounded conditions. In more detail, for each atom p ∈ A
two auxiliary atoms are used, namely up and hp, where atom up is true iff p is
unfounded and atom hp is true iff p is true and founded. Then, U(r, p) denotes
the following clause:

{¬up} ∪ ¬B(r) ∪ {uq | q ∈ B+(r)} ∪ {hq | q ∈ H(r) \ {p}}

and U(Π) is the formula {U(r, p) | r ∈ Π, p ∈ H(r)}. Moreover, let H(p) be the
clauses hp ↔ p ∧ ¬up, H(Π) be the formula {H(p) | p ∈ At(Π)} and c(Π) be
the clause {up | p ∈ At(Π)}. For an interpretation I, define fix ′(I) to be the
formula:

{¬up | p �∈ I} ∪ {¬p | p �∈ I} ∪ {p | p ∈ I}
Finally, formula unf qdt(Π, I) is defined as U(Π) ∪ H(Π) ∪ {c(Π)} ∪ fix ′(I).

Proposition 2 (Theorem 3 of [24]). Let Π be a program, and I be an inter-
pretation. I ∈ AS (Π) if and only if unf qdt(Π, I) is unsatisfiable.

Example 3. Consider the program Π1 in Example 1. Suppose that the
answer set candidate to check is I1 := {a, b, c, f}. Then, U(Π1) is
{¬ua,¬c, uc, hb}, {¬ub,¬c, uc, ha}, {¬ua,¬b, ub, e}, {¬ub,¬a, ua, e}, {¬uc, hd},
{¬ud, hc}, {¬ue, hf}, {¬uf , he}, and {¬ua, b}. Moreover, for p ∈ {a, b, c, d, e, f},
H(p) comprises {¬hp, p}, {¬hp,¬up}, {hp,¬p, up}; while c(Π1) is the clause

248 M. Alviano et al.

{ua, ub, uc, ud, ue, uf}. The clauses in fix ′(I1) are {¬ud}, {¬ue}, {¬d}, {¬e},
{a}, {b}, {c}, and {f}. The formula unf qdt(Π1, I1) is then unsatisfiable, thus I1
is an answer set. Consider again the program Π1. Suppose that the answer set
candidate to check is I2 = {a, b, d, f}. Interestingly, U(Π1), H(Π1), and c(Π1)
are not dependent on the interpretation thus they can be reused also in this
check. Then, fix ′(I2) is composed by {¬uc}, {¬ue}, {¬c}, {¬e}, {a}, {b}, {d},
and {f}. The formula unf qdt(Π1, I2) is satisfiable, thus I2 is not an answer set.

�

A weakness of unf qdt(Π, I) is that its size is not always linear with respect
to the size of Π, as formalized next.

Proposition 3. In the worst case, for a rule r of a program Π, size({U(r, p) |
p ∈ H(r)}) is quadratic with respect to size(r).

Proof. Let r be of the form (1). Hence, |{U(r, p) | p ∈ H(r)}| = n, and each
U(r, p) has size n+m + k. Hence, size({U(r, p) | p ∈ H(r)}) = n · (n+m + k). ��

In order to circumvent this weakness, in the following we propose a modifica-
tion of the formula U(Π). In particular, U ′(r, p) denotes the clause {¬up, aux r}
and U ′(r) denotes the clause {¬aux r} ∪ ¬B(r) ∪ {uq | q ∈ B+(r)} ∪ {hq | q ∈
H(r)}, where aux r is a fresh atom not appearing elsewhere in the formula, and
U ′(Π) is the formula {U ′(r, p) | r ∈ Π, p ∈ H(r)} ∪ {U ′(r) | r ∈ Π}. Finally,
formula unf lin(Π, I) is defined as U ′(Π) ∪ H(Π) ∪ {c(Π)} ∪ fix ′(I).

Theorem 2. Let Π be a program, and I be an interpretation. I ∈ AS (Π) if
and only if unf lin(Π, I) is unsatisfiable.

Proof. We know that I ∈ AS (Π) iff unf qdt(Π, I) is unsatisfiable (Theorem 3
of [24]). Hence, to prove our claim we can show that unf lin(Π, I) is satisfiable
iff unf qdt(Π, I) is satisfiable. For an interpretation M , let ext(M) be (M ∩
At(unf qdt(Π, I))) ∪ {aux r | r ∈ Π,M |= U ′(r) \ {¬aux r}}. We shall show the
following properties:

(i) if M |= unf qdt(Π, I), then ext(M) |= unf lin(Π, I);
(ii) if M |= unf lin(Π, I), then M ∩ At(unf qdt(Π, I)) |= unf qdt(Π, I).

Proof of (i). Let M |= unf qdt(Π). We have to show that ext(M) |= U ′(Π)
(since the other clauses in unf lin(Π, I) also belong to unf qdt(Π, I)). Recall that
U ′(Π) contains clause U ′(r) for each r ∈ Π, and clause U ′(r, p) for each atom p ∈
H(r). Let us first consider a clause U ′(r). If ext(M) |= ¬aux r, then ext(M) |=
U ′(r) trivially. Otherwise, if ext(M) |= aux r, then M |= U ′(r) \ {¬aux r} by
construction of ext(M); hence, ext(M) |= U ′(r). Let us now consider a clause
U ′(r, p). If ext(M) |= aux r, then ext(M) |= U ′(r, p) trivially. Otherwise, if
ext(M) |= ¬aux r then M �|= U ′(r)\{¬aux r} by construction of ext(M); hence,
M �|= U(r, p)\{¬up} (because U(r, p)\{¬up} ⊂ U ′(r)\{¬aux r}), and therefore
M |= ¬up (because M |= U(r, p) by assumption). We can thus conclude that
ext(M) |= U ′(r, p).

Evaluation of Disjunctive Programs in WASP 249

Proof of (ii). Let M |= unf lin(Π) and M ′ be M ∩At(unf qdt(Π, I)). We have to
show that M ′ |= U(Π) (since the other clauses in unf qdt(Π, I) also belong to
unf lin(Π, I)). Recall that U(Π) contains clause U(r, p) for each rule r ∈ Π and
for each atom p ∈ H(r). If M |= ¬up then M ′ |= U(r, p) trivially. Otherwise,
if M |= up, then M |= auxr (because M |= U ′(r, p)) and M |= ¬hp (because
M |= H(p)). Hence, M ′ |= U ′(r)\{¬auxr, hp}, and since U ′(r)\{¬auxr, hp} =
U(r, p) \ {¬up} we can conclude that M ′ |= U(r, p). ��
Example 4. Let r be the rule a | b ← c of program Π1 in Example 3. Then,
U ′(r) is {¬auxr,¬c, uc, ha, hb}, while U ′(r, a) is {¬ua, auxr} and U ′(r, b) is
{¬ub, auxr}. �

Proposition 4. In the worst case, for a rule r of a program Π, size({U ′(r, p) |
p ∈ H(r)} ∪ {U ′(r)}) is linear with respect to size(r).

Proof. Let r be of the form (1). Then, size({U ′(r, p) | p ∈ H(r)}) = 2 · n, while
size({U ′(r) | r ∈ Π}) = 1+m+k +n. Thus, size({U ′(r, p) | p ∈ H(r)}∪{U ′(r) |
r ∈ Π}) = 3 · n + m + k + 1. ��

4 Experiments

The impact of the techniques described in this paper on the performance of wasp
was assessed empirically on three benchmarks: (i) instances from the latest ASP
Competition [25] containing cyclic disjunctive rules; (ii) a synthetic benchmark
containing disjunctive rules with increasing size of heads; and (iii) computation
of paracoherent answer sets of programs from [8]. For (i) and (ii), wasp was
executed with the reduct-based and unfounded-based strategies for answer set
checking, referred to as waspred and waspunf, respectively; and compared with
clasp [22,23] version 3.3.3. For (iii), wasp was also compared with clasp version
3.3.3. Since the latter does not support paracoherent reasoning, we used the
preprocessor of wasp for the computation of the externally extended supported
program as described in [10]. Then, this program is extended by adding weak
constraints as in the algorithm weak, described in [9], in such a way that each
optimal answer set of the new program is guaranteed to be a paracoherent answer
set. For both solvers, we used a similar algorithm based on unsatisfiable cores [6,
22] for computing an optimal answer set. In all cases, the completion was enabled
using the strategy auto that applies the syntactic rewriting Comp∨ for rules
whose head size is at most 4, and the propagator for rules with larger heads.
The experiment was run on an Intel CPU 2.4 GHz with 16 GB of RAM. Time and
memory were limited to 1200 seconds and 15 GB, respectively. All instances were
grounded by gringo 4.5.4 [21], whose execution time and memory consumption
are accounted in our analysis. Benchmarks can be found at https://doi.org/10.
5281/zenodo.2605076.

Concerning benchmark (i), the tested encodings are Complex Optimization
Of Answer Sets, Minimal Diagnosis, and Random Disjunctive Programs [15].
Results are provided in Table 1, where the number of solved instances is reported

https://doi.org/10.5281/zenodo.2605076
https://doi.org/10.5281/zenodo.2605076

250 M. Alviano et al.

for each solver. waspred solves 47 instances, whereas the performance achieved
by waspunf is slightly worse, with 43 solved instances. clasp is the best per-
forming solver on this benchmark: it solves 54 instances in the allotted time;
its advantage is due to the good performance on Random Disjunctive Programs,
where it solves 6 instances more than wasp.

Table 1. Results of benchmark (i) executed on the instances from the latest ASP
competition.

Problem # clasp waspred waspunf

Complex Optimization Of Answer Sets 20 20 19 16

Minimal Diagnosis 20 20 20 19

Random Disjunctive Programs 20 14 8 8

The advantage of the linear rewriting techniques for handling disjunctive
rules does not emerge on the instances of benchmark (i), whose head sizes are
at most 2. Hence, in order to assess the scalability of the proposed techniques,
we considered the synthetic benchmark (ii). The idea is to have a prototypical
family of programs that allows to link the efficiency of a solver with the size
of disjunctive heads. Specifically, we generated programs of the following form
varying the constant n: {a1 | · · · | an ← } ∪ {ai+1 ← ai | i ∈ [1..n − 1]} ∪ {a1 ←
an}. The results of our experiment are reported on Fig. 1. We observe that clasp
scales worse than both waspred and waspunf, and cannot solve the instance with
n = 10000 in the allotted time. On the contrary, we verified that wasp scales
linearly also for larger values of n: waspred and waspunf solve the instance with
n = 100000 in 60 and 90 s, respectively. We report that the advantage of the
linear rewriting techniques is also visible in terms of memory usage. Indeed,
the memory footprint of clasp is 2450 MB for n = 10000, while waspred and
waspunf use 40 and 49 MB, respectively. Actually, clasp exceeds the allotted
memory with n ≥ 30000, while waspred and waspunf use 318 and 402 MB when
n = 100000, respectively.

As for the benchmark (iii), we considered the Stable Roommates Problem as
presented in [8], which is interesting since the semi-equilibrium transformation
may produce long disjunctive rules. In our experiment, we considered different
numbers of persons (from 500 to 1500), and for each of them we randomly
generated 5 instances. Table 2 reports, for the different number of persons, the
cumulative number, the minimum size, the maximum size, and the average size
of disjunctions, respectively. Results show that wasp solves all 55 instances,
while clasp solves 30 instances, and in general wasp scales better than clasp as
shown in Fig. 2. Actually, wasp is faster than clasp in all the tested instances as
shown in the instance-wise comparison of the solving time reported in Fig. 3(a).
Moreover, we observe that wasp uses less memory than clasp as illustrated
in Fig. 3(b). Indeed, the latter exceeds the allotted memory in all the instances

Evaluation of Disjunctive Programs in WASP 251

Fig. 1. Scalability analysis on the benchmark (ii).

Fig. 2. Comparison of clasp and wasp on benchmark (iii).

Table 2. Sizes of disjunctive rules after the semi-equilibrium transformation on bench-
mark (iii).

#Persons #Disjunctive rules Min size Max size Avg size

500 5246 2 499 238

600 6252 2 599 288

700 7240 2 699 338

800 8244 2 799 388

900 9282 2 899 436

1000 10304 2 999 485

1100 11260 2 1099 537

1200 12438 2 1199 579

1300 13246 2 1299 638

1400 14244 2 1399 688

1500 15304 2 1499 735

with a number of persons greater than or equal to 1100, whereas wasp uses on
average 4205 MB on the instances with 1500 persons.

252 M. Alviano et al.

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

0 3072 6144 9216 1228815360
0

3072

6144

9216

12288

15360

Fig. 3. Instance-wise comparison of solving time in seconds (a) and memory usage in
MB (b) of clasp and wasp on benchmark (iii).

5 Related Work

Answer set computation is performed by wasp applying the CDCL algorithm
on the (Clark’s) completion of the input program. Clark’s completion was intro-
duced in the solver assat [33] and later on also adopted by cmodels [29],
lp2sat [30] and clasp [22,23], as well as by wasp 2 [5]. In case of disjunctive
programs, such solvers apply a technique called shift, which is quadratic in size.
The completion employed by the new version of wasp is instead linear and it can
be applied as it is also by the aforementioned solvers. Interestingly, the quadratic
blow-up of the shift does not affect dlv [7], gnt [31] and wasp 1 [4], which are
not based on the Clark’s completion but they employ custom data structures and
algorithms to handle disjunction. However, the (Clark’s) completion can lead to
an exponential performance gain [26], and custom data structures are in general
harder to maintain and require complex optimizations to achieve efficiency [5].

Concerning the stability checks, the reduct-based approach based on redbas
was introduced by dlv [32]. A major drawback of this approach consists of
building a new propositional formula at each stability check. This limitation is
overcome in wasp by using the formula redadv , which is built once and then
reused in all stability checks. The unfounded-based stability check based on the
formula unf qdt was instead introduced in [24] and implemented in clasp. As
observed in Sect. 3.3, the formula unf qdt is in general quadratic in size. Such a
drawback is addressed by wasp by applying the formula unf lin , which is instead
linear in size. Interestingly, the formula unf qdt is more compact than unf lin
up to rules with disjunctive heads of size 3, since for a rule r with |H(r)| ≤ 3,
size({U(r, p) | p ∈ H(r)}) < size(U ′(r) ∪ {U ′(r, p) | p ∈ H(r)}). Thus, one can
also combine U and U ′ by selecting the best one according to the rule size.

6 Conclusion and Future Work

In this paper we presented the techniques employed by wasp for evaluating
disjunctive logic programs. Results of our empirical analysis show that wasp

Evaluation of Disjunctive Programs in WASP 253

can efficiently handle disjunctive programs, even with long disjunctive rules. As
future work, we plan to revise strategy redadv because in principle it may intro-
duce exponentially many clauses of the form c⊂(I), even if we never observed
such a drawback in our tests. Our idea is to replace c⊂(I) with alternative
implementations, among them a compact representation via pseudo-Boolean con-
straints, introducing the notion of or-assumptions literals, or driving the heuristic
choices as in the algorithm opt [19]. Finally, we mention that wasp is part of
the system dlv2 [2] and is available at https://www.mat.unical.it/DLV2/wasp.

References

1. Adrian, W.T., Manna, M., Leone, N., Amendola, G., Adrian, M.: Entity set expan-
sion from the web via ASP. In: Technical Communications of ICLP. OASICS,
vol. 58, pp. 1:1–1:5. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017).
https://doi.org/10.4230/OASIcs.ICLP.2017.1

2. Alviano, M., et al.: The ASP system DLV2. In: Balduccini, M., Janhunen, T. (eds.)
LPNMR 2017. LNCS (LNAI), vol. 10377, pp. 215–221. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-61660-5 19

3. Alviano, M., Dodaro, C.: Completion of disjunctive logic programs. In: IJCAI, pp.
886–892. IJCAI/AAAI Press (2016)

4. Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: WASP: a native ASP
solver based on constraint learning. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013.
LNCS (LNAI), vol. 8148, pp. 54–66. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40564-8 6

5. Alviano, M., Dodaro, C., Leone, N., Ricca, F.: Advances in WASP. In: Calimeri,
F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS (LNAI), vol. 9345, pp.
40–54. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23264-5 5

6. Alviano, M., Dodaro, C., Marques-Silva, J., Ricca, F.: Optimum stable model
search: algorithms and implementation. J. Log. Comput. (2015, in press). https://
doi.org/10.1093/logcom/exv061

7. Alviano, M., Faber, W., Leone, N., Perri, S., Pfeifer, G., Terracina, G.: The dis-
junctive datalog system DLV. In: de Moor, O., Gottlob, G., Furche, T., Sellers,
A. (eds.) Datalog 2.0 2010. LNCS, vol. 6702, pp. 282–301. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-24206-9 17

8. Amendola, G.: Solving the stable roommates problem using incoherent answer
set programs. In: RiCeRcA Workshop. CEUR Workshop Proceedings, vol. 2272.
CEUR-WS.org (2018)

9. Amendola, G., Dodaro, C., Faber, W., Leone, N., Ricca, F.: On the computation
of paracoherent answer sets. In: AAAI, pp. 1034–1040. AAAI Press (2017)

10. Amendola, G., Dodaro, C., Faber, W., Ricca, F.: Externally supported models for
efficient computation of paracoherent answer sets. In: AAAI, pp. 1720–1727. AAAI
Press (2018)

11. Amendola, G., Dodaro, C., Leone, N., Ricca, F.: On the application of answer
set programming to the conference paper assignment problem. In: Adorni, G.,
Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS (LNAI), vol. 10037,
pp. 164–178. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49130-
1 13

https://www.mat.unical.it/DLV2/wasp
https://doi.org/10.4230/OASIcs.ICLP.2017.1
https://doi.org/10.1007/978-3-319-61660-5_19
https://doi.org/10.1007/978-3-642-40564-8_6
https://doi.org/10.1007/978-3-642-40564-8_6
https://doi.org/10.1007/978-3-319-23264-5_5
https://doi.org/10.1093/logcom/exv061
https://doi.org/10.1093/logcom/exv061
https://doi.org/10.1007/978-3-642-24206-9_17
https://doi.org/10.1007/978-3-319-49130-1_13
https://doi.org/10.1007/978-3-319-49130-1_13

254 M. Alviano et al.

12. Amendola, G., Eiter, T., Fink, M., Leone, N., Moura, J.: Semi-equilibrium models
for paracoherent answer set programs. Artif. Intell. 234, 219–271 (2016). https://
doi.org/10.1016/j.artint.2016.01.011

13. Amendola, G., Eiter, T., Leone, N.: Modular paracoherent answer sets. In: Fermé,
E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 457–471. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11558-0 32

14. Amendola, G., Greco, G., Leone, N., Veltri, P.: Modeling and reasoning about
NTU games via answer set programming. In: IJCAI, pp. 38–45. IJCAI/AAAI Press
(2016)

15. Amendola, G., Ricca, F., Truszczynski, M.: Generating hard random Boolean for-
mulas and disjunctive logic programs. In: IJCAI, pp. 532–538 (2017). https://doi.
org/10.24963/ijcai.2017/75. ijcai.org

16. Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic pro-
grams. Ann. Math. Artif. Intell. 12(1–2), 53–87 (1994). https://doi.org/10.1007/
BF01530761

17. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011). https://doi.org/10.1145/2043174.2043195

18. Clark, K.L.: Negation as failure. In: Symposium on Logic and Data Bases, pp.
293–322. Advances in Data Base Theory. Plemum Press (1977)

19. Di Rosa, E., Giunchiglia, E., Maratea, M.: Solving satisfiability problems with
preferences. Constraints 15(4), 485–515 (2010). https://doi.org/10.1007/s10601-
010-9095-y

20. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI
Mag. 37(3), 53–68 (2016)

21. Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V., Schaub, T.: Abstract gringo.
TPLP 15(4–5), 449–463 (2015). https://doi.org/10.1017/S1471068415000150

22. Gebser, M., Kaminski, R., Kaufmann, B., Romero, J., Schaub, T.: Progress in clasp
series 3. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS
(LNAI), vol. 9345, pp. 368–383. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-23264-5 31

23. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from
theory to practice. Artif. Intell. 187, 52–89 (2012). https://doi.org/10.1016/j.
artint.2012.04.001

24. Gebser, M., Kaufmann, B., Schaub, T.: Advanced conflict-driven disjunctive
answer set solving. In: IJCAI, pp. 912–918. IJCAI/AAAI (2013)

25. Gebser, M., Maratea, M., Ricca, F.: The design of the seventh answer set program-
ming competition. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS
(LNAI), vol. 10377, pp. 3–9. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-61660-5 1

26. Gebser, M., Schaub, T.: Tableau calculi for logic programs under answer set seman-
tics. ACM Trans. Comput. Log. 14(2), 15:1–15:140 (2013). https://doi.org/10.
1145/2480759.2480767

27. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3/4), 365–386 (1991). https://doi.org/10.1007/
BF03037169

28. Gençay, E., Schüller, P., Erdem, E.: Applications of non-monotonic reasoning to
automotive product configuration using answer set programming. J. Intell. Manuf.
30(3), 1407–1422 (2019). https://doi.org/10.1007/s10845-017-1333-3

29. Giunchiglia, E., Lierler, Y., Maratea, M.: Sat-based answer set programming. In:
AAAI, pp. 61–66. AAAI Press/The MIT Press (2004)

https://doi.org/10.1016/j.artint.2016.01.011
https://doi.org/10.1016/j.artint.2016.01.011
https://doi.org/10.1007/978-3-319-11558-0_32
https://doi.org/10.24963/ijcai.2017/75
https://doi.org/10.24963/ijcai.2017/75
http://ijcai.org
https://doi.org/10.1007/BF01530761
https://doi.org/10.1007/BF01530761
https://doi.org/10.1145/2043174.2043195
https://doi.org/10.1007/s10601-010-9095-y
https://doi.org/10.1007/s10601-010-9095-y
https://doi.org/10.1017/S1471068415000150
https://doi.org/10.1007/978-3-319-23264-5_31
https://doi.org/10.1007/978-3-319-23264-5_31
https://doi.org/10.1016/j.artint.2012.04.001
https://doi.org/10.1016/j.artint.2012.04.001
https://doi.org/10.1007/978-3-319-61660-5_1
https://doi.org/10.1007/978-3-319-61660-5_1
https://doi.org/10.1145/2480759.2480767
https://doi.org/10.1145/2480759.2480767
https://doi.org/10.1007/BF03037169
https://doi.org/10.1007/BF03037169
https://doi.org/10.1007/s10845-017-1333-3

Evaluation of Disjunctive Programs in WASP 255

30. Janhunen, T.: Cross-translating answer set programs using the ASPTOOLS collec-
tion. In: KI 32(2-3), 183–184 (2018). https://doi.org/10.1007/s13218-018-0529-9

31. Janhunen, T., Niemelä, I.: GNT—a solver for disjunctive logic programs. In: Lifs-
chitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 331–335.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24609-1 29

32. Koch, C., Leone, N., Pfeifer, G.: Enhancing disjunctive logic programming systems
by SAT checkers. Artif. Intell. 151(1–2), 177–212 (2003). https://doi.org/10.1016/
S0004-3702(03)00078-X

33. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT
solvers. Artif. Intell. 157(1–2), 115–137 (2004). https://doi.org/10.1016/j.artint.
2004.04.004

https://doi.org/10.1007/s13218-018-0529-9
https://doi.org/10.1007/978-3-540-24609-1_29
https://doi.org/10.1016/S0004-3702(03)00078-X
https://doi.org/10.1016/S0004-3702(03)00078-X
https://doi.org/10.1016/j.artint.2004.04.004
https://doi.org/10.1016/j.artint.2004.04.004

telingo =ASP+Time

Pedro Cabalar1 , Roland Kaminski2 , Philip Morkisch2 ,
and Torsten Schaub2,3,4(B)

1 University of Corunna, A Coruña, Spain
pedro.cabalar@udc.es

2 University of Potsdam, Potsdam, Germany
{kaminski,torsten}@cs.uni-potsdam.de, morkisch@uni-potsdam.de

3 Simon Fraser University, Burnaby, Canada
4 Griffith University, Brisbane, Australia

Abstract. We describe telingo, an extension of the ASP system clingo
with temporal operators over finite linear time and provide insights into
its implementation. telingo takes temporal logic programs as input whose
rules contain only future and present operators in their heads and past
and present operators in their bodies. Moreover, telingo extends the
grammar of clingo’s input language with a variety of temporal opera-
tors that can even be used to represent nested temporal formulas. By
using clingo’s interface for manipulating the abstract syntax tree of non-
ground programs, temporal logic programs are transformed into regu-
lar ones before grounding. The resulting regular logic program is then
solved incrementally by using clingo’s multi-shot interface. Notably, this
involves the consecutive unfolding of future temporal operators that is
accomplished via external atoms. Finally, we provide an empirical evalua-
tion contrasting standard incremental ASP programs with their temporal
counterparts in telingo’s input language.

1 Introduction

Answer Set Programming (ASP [15]) has become a popular approach to solving
knowledge-intense combinatorial search problems due to its performant solving
engines and expressive modeling language. However, both are mainly geared
towards static domains and lack native support for handling dynamic applica-
tions. This shortcoming was addressed over the last decade by creating a tempo-
ral extension of ASP based on Linear Temporal Logic (LTL [17]) and referred to
as Temporal Equilibrium Logic (TEL [1,5]). Recently, this was distilled into a
computationally more feasible version based on finite linear time. The resulting
logic, TELf [4] has meanwhile led to the temporal ASP system telingo [4], which
we describe in this system description. telingo extends the full-fledged model-
ing language of the ASP system clingo by future and past temporal operators
and solves the corresponding temporal logic programs incrementally by means
of clingo’s multi-shot solving interface. Hence, we also provide insights into how
clingo’s infrastructure can be used to implement more complex ASP languages.

c© Springer Nature Switzerland AG 2019
M. Balduccini et al. (Eds.): LPNMR 2019, LNAI 11481, pp. 256–269, 2019.
https://doi.org/10.1007/978-3-030-20528-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20528-7_19&domain=pdf
http://orcid.org/0000-0001-7440-0953
http://orcid.org/0000-0002-1361-6045
http://orcid.org/0000-0002-3915-2808
http://orcid.org/0000-0002-7456-041X
https://doi.org/10.1007/978-3-030-20528-7_19

telingo = ASP+ Time 257

2 Temporal Equilibrium Logic over Finite Traces

The semantics of TELf rests upon finite traces (or sequences) of equilibrium
models (cf. [4]), just as LTLf rests upon finite traces of regular models [6]. In fact,
LTLf is obtained by adding the law of the excluded middle for each propositional
atom and each time point, or in terms of ASP, by adding a corresponding choice
rule (see below). Hence, telingo can be used just as well for computational tasks
in LTLf .

TELf extends the language of propositional logic by the future and past
temporal operators listed in the second and fifth row of Table 1. The first line
gives the two nullary operators that hold exclusively at the initial and
final state of a trace, respectively. The common one-step operators • and ◦ allow
us to test whether a proposition holds in the previous or next state in a trace,

respectively. Their weak versions are defined as ,
respectively. The unary operators � and � allow us to refer to one or all states
in the past, respectively, while their counterparts ♦ and � relate to the future.
Common to all operators, a bold version indicates a past operator, while an
outlined one refers to the future. As a simple example, the proposition •�p
requires that p must be true in all states of a trace starting from the state
preceding the one at hand. For another example, consider the formula

Table 1. Past and future temporal operators in telingo and TELf

�(shoot ∧ •�shoot ∧ �unloaded → ♦fail) (1)

expressing the sentence: “If we shoot twice with a gun that was never loaded, it
will eventually fail.” Finally, an atom p is put under the semantics of LTLf by
adding �(p ∨ ¬p).

For the binary operators along with more details and illustra-
tion regarding the temporal language and its semantics the interested reader is
referred to [1,4].

Any temporal formula can be translated into a (strongly equivalent) temporal
logic program. Given an alphabet A, such programs consist of three types of
temporal rules

258 P. Cabalar et al.

where B = b1 ∧ · · · ∧ bn with n ≥ 0, A = a1 ∨ · · · ∨ am with m ≥ 0 and the bi

and aj are temporal literals as in {a,¬a, •a,¬•a | a ∈ A} for dynamic rules, and
regular literals {a,¬a | a ∈ A} for initial and final rules.

As their names suggest, initial and final rules impose conditions on the first
and last state of a trace, respectively. The former can also be expressed in analogy
to the latter as �(I → (B → A)). A temporal program consisting of initial rules
only amounts to a regular logic program. Dynamic rules capture transitions
among states. To this end, they comprise regular and temporal literals that may
refer to a preceding state via the previous operator •. To avoid referring to states
beyond the initial and final state, dynamic rules are preceded with the weak next
operator ◦̂ operator.

A temporal logic program can be converted into a regular one by adorning
literals with explicit timestamps (cf. [14]). For this, let Ak = {ak | a ∈ A} be a
time stamped copy of alphabet A for each time point k. We outline below the
module-based translation introduced in [4] since it accounts for telingo’s incre-
mental approach to computing traces: A module P is a triple (P, I,O) consisting
of a logic program P over alphabet AP and sets I and O of input and output
atoms such that (i) I ∩ O = ∅, (ii) AP ⊆ I ∪ O, and (iii) H(P) ⊆ O, where
H(P) gives all atoms occurring in rule heads in P (cf. [16]). Whenever clear
from context, we associate P with (P, I,O). In our setting, a set X of atoms
is a stable model of P, if X is a stable model of logic program P .1 Two mod-
ules P1 and P2 are compositional, if O1 ∩ O2 = ∅ and O1 ∩ C = ∅ or O2 ∩ C = ∅
for every strongly connected component C of the positive dependency graph
of the logic program P1 ∪ P2. In other words, all rules defining an atom must
belong to the same module, and no positive recursion is allowed among mod-
ules. Whenever P1 and P2 are compositional, their join is defined as the module
P1 � P2 = (P1 ∪ P2, (I1 \ O2) ∪ (I2 \ O1), O1 ∪ O2). The module theorem [16]
ensures that compatible stable models of P1 and P2 can be mapped to one of
P1 � P2, and vice versa.

Given this, the translation τ at time point k is defined for temporal literals
as

τk(a) def
= ak τk(¬a) def

= ¬ak for a ∈ A
τk(•a) def

= ak−1 τk(¬•a) def
= ¬ak−1 for a ∈ A

and for temporal rules r in a temporal logic program P partitioned into its initial,
I (P), dynamic, D(P), and final rules, F (P), as

τk(r) def
= τk(a1) ∨ · · · ∨ τk(am) ← τk(b1) ∧ · · · ∧ τk(bn) if r ∈ I (P) ∪ D(P)

τk(r) def
= τk(a1) ∨ · · · ∨ τk(am) ← τk(b1) ∧ · · · ∧ τk(bn) ∧ ¬qk+1 if r ∈ F (P)

1 Note that the default value assigned to input atoms is false in multi-shot solving [10];
this differs from the original definition [16] where a choice rule is used.

telingo = ASP+ Time 259

for a new atom q /∈ A. The modules Pk corresponding to a temporal logic
program P over A at time point k are then defined as

P0
def
= (P0, {q1},A0) Pk

def
= (Pk,Ak−1 ∪ {qk+1},Ak ∪ {qk}) for k > 0

where

P0
def
= {τ0(r) | r ∈ I (P)} ∪ {τ0(r) | r ∈ F (P)} (2)

Pk
def
= {τk(r) | r ∈ D(P)} ∪ {τk(r) | r ∈ F (P)} ∪ {qk ←} (3)

The idea is to associate the rules at each time point with a module and to
successively add modules corresponding to increasing time points (while leaving
all previous modules unchanged). A stable model obtained after k compositions
then corresponds to a trace of length k.

To ensure the compositionality of modules, dynamic rules are restricted to
heads of regular literals; such rules are called present-centered [4]. This restriction
warrants that modules only incorporate atoms from previous time points, as
reflected by Ak−1 in the input of Pk, and thus that no positive cycles can occur
across modules.

The exception are auxiliary atoms like qk+1 that belong to the input of
each Pk for k > 0 but only get defined in the next module Pk+1. The goal
of introducing atoms like qk+1 in the translation of final rules r ∈ F (P) is to
deactivate their image τk(r) whenever k is incremented. More precisely, the idea
is to let atom qk+1 be false at each horizon k (by declaring it as a yet undefined
input atom), while all previous atoms q1, . . . , qk are set to true via the facts added
in P1, . . . , Pk, respectively. In this way, for r ∈ F (P) only τk(r) is potentially
applicable at time point k, while all rules τi(r) are inapplicable for earlier time
points i = 1..k−1.

3 The telingo Language

telingo extends the full-fledged modeling language of clingo by the future and
past temporal operators listed in the first and fourth row of Table 1.

Although telingo’s inner workings rely on present-centered temporal logic
programs (to support incremental ASP solving), it offers a more general input
language. This is because the fragment of past-future rules is reducible to present-
centered programs [4]. A temporal formula is a past-future rule if it has form
A ← B where B and A are just temporal formulas with the following restrictions:
B and A contain no implications (other than negations2), B contains no future
operators, and A contains no past operators. An example of a past-future rule is
(1). This fragment is not only quite expressive but also rather natural when using
the causal reading of program rules by drawing upon the past in rule bodies and
referring to the future in rule heads. Considering that, past-future rules also
serve as the design guideline for telingo’s input language.

2 Recall that ¬ϕ
def
= ϕ → ⊥ in the logic of here-and-there and thus in TELf , too.

260 P. Cabalar et al.

To this end, telingo allows for enclosing a nested temporal formula ϕ in an
expression of the form &tel{ϕ}. Formulas like ϕ are formed via the temporal
operators in Line 3 to 8 in Table 1 along with the Boolean operators &, |, ˜
for conjunction, disjunction, and negation, respectively (thus avoiding nested
implications). The underlying idea is to use the smaller symbol < as the basis
of all past operators, and to combine it with a question mark ? or a Kleene
star * depending on whether the semantics of the respective operator relies
on an existential or universal quantification over states. This is nicely exempli-
fied by the always and eventually operators, represented by <* and <?. In fact,
the symbols <* and <? are overloaded due to their usage as binary and unary
operators. For a simple example, consider the formula •p ∨ �r represented as
‘&tel{< p | <? p}’. Similarly, future operators are built with the greater sym-
bol ‘>’ as their basis. More generally, temporal expressions of the form &tel{ϕ}
are treated like atoms in telingo’s input language (and constitute theory atoms
in clingo [9]); they are compiled away by telingo’s preprocessing that ultimately
yields present-centered logic programs. In order to keep this translation simple,
the current version of telingo, viz 1.0, restricts their occurrence in temporal rules
A ← B to being positive in A and preceded by one or two negations in their
body B.3 No restriction is imposed on their occurrences in integrity constraints.

For example, the integrity constraint ‘shoot ∧ �unloaded ∧ •�shoot → ⊥’ is
expressible in several alternative ways.

:- &tel { shoot & <* unloaded & < <? shoot }.
:- shoot, &tel { <* unloaded & < <? shoot }.
:- shoot, &tel { <* unloaded }, &tel { < <? shoot }.

Alternatively, present-centered logic programs can be written directly by
using the alternative notation for the common one-step operators • and ◦. Here,
a quote is used either at the beginning or the end of a predicate symbol to indi-
cate that the literal at hand must be true in the previous or next state in the
trace, respectively. For instance, •p(7) is represented by ’p(7), while ◦q(X) is
q’(X). For convenience, telingo 1.0 allows for using ◦ in singleton rule heads;4

as above, this is compiled away during preprocessing.
The distinction between different types of temporal rules is done in telingo

via clingo’s #program directives [10], which allow us to partition programs into
subprograms. More precisely, each rule in telingo’s input language is associated
with a temporal rule r of form A ← B and interpreted as
depending on whether it occurs in the scope of a program declaration headed
by initial, dynamic, or final, respectively. Additionally, telingo offers
always for gathering rules preceded by � (thus dropping ◦̂ from dynamic rules).
A rule outside any such declaration is regarded to be in the scope of initial.

3 The extension to arbitrary occurrences is no hurdle and foreseen in future versions
of telingo.

4 As above, the extension to disjunctions is no principal hurdle and foreseen in future
versions of telingo; currently they must be expressed by using &tel.

telingo = ASP+ Time 261

1 #program always.

3 item(fox;beans;goose).
4 route(river_bank,far_bank). route(far_bank,river_bank).
5 eats(fox,goose). eats(goose,beans).

7 #program initial.

9 at(farmer,river_bank).
10 at(X,river_bank) :- item(X).

12 #program dynamic.

14 move(farmer).
15 0 { move(X) : item(X) } 1.

17 at(X,B) :- ’at(X,A), move(X), route(A,B).
18 :- move(X), item(X), ’at(farmer,A), not ’at(X,A).

20 at(X,A) :- ’at(X,A), not move(X).

22 #program always.

24 :- at(X,A), at(X,B), A<B.
25 :- eats(X,Y), at(X,A), at(Y,A), not at(farmer,A).

27 #program final.

29 :- at(X,river_bank).

31 #show move/1.
32 #show at/2.

Listing 1. telingo encoding for the Fox, Goose and Beans Puzzle

For illustration, we give in Listing 1 an exemplary telingo encoding of the
Fox, Goose and Beans Puzzle available at https://github.com/potassco/telingo/
tree/master/examples/river-crossing.

Once upon a time a farmer went to a market and purchased a fox, a goose,
and a bag of beans. On his way home, the farmer came to the bank of a
river and rented a boat. But crossing the river by boat, the farmer could
carry only himself and a single one of his purchases: the fox, the goose, or
the bag of beans. If left unattended together, the fox would eat the goose, or
the goose would eat the beans. The farmer’s challenge was to carry himself
and his purchases to the far bank of the river, leaving each purchase intact.
How did he do it?
(https://en.wikipedia.org/wiki/Fox, goose and bag of beans puzzle)

In Listing 1, lines 3–5 and 9–10 provide facts holding in all and the initial states,
respectively; this is indicated by the program directives headed by always and

https://github.com/potassco/telingo/tree/master/examples/river-crossing
https://github.com/potassco/telingo/tree/master/examples/river-crossing
https://en.wikipedia.org/wiki/Fox,_goose_and_bag_of_beans_puzzle

262 P. Cabalar et al.

initial. The dynamic rules in lines 14–22 describe the transition function.
The farmer moves at each time step (Line 14), and may take an item or not
(Line 15). Line 17 describes the effect of action move/1, Line 18 its precondition,
and Line 20 the law of inertia. The second part of the always rules give state
constraints in Line 24 and 25. The final rule in Line 29 gives the goal condition.

All in all, we obtain two shortest plans consisting of eight states in about
20 ms. Restricted to the move predicate, telingo reports the following solutions:

Time Solution 1 Solution 2

1
2 move(farmer) move(goose) move(farmer) move(goose)
3 move(farmer) move(farmer)
4 move(beans) move(farmer) move(farmer) move(fox)
5 move(farmer) move(goose) move(farmer) move(goose)
6 move(farmer) move(fox) move(beans) move(farmer)
7 move(farmer) move(farmer)
8 move(farmer) move(goose) move(farmer) move(goose)

We have chosen this example since it was also used by [3] to illustrate the
working of stelp, a tool for temporal answer set programming with TELω. We
note that stelp and telingo differ syntactically in describing transitions by using
next or previous operators, respectively. Since telingo extends clingo’s input
language, it offers a richer input language, as witnessed by the cardinality con-
straints in Line 15 in Listing 1. Finally, stelp uses a model checker and outputs
an automaton capturing all infinite traces while telingo returns finite traces cor-
responding to plans.

4 The telingo System

The implementation of telingo draws heavily on the functionality provided by
clingo’s application programming interface (API5). This is also why telingo
allows us to extend the full-fledged modeling and solving capabilities of clingo.

We outline telingo’s operation below by following its workflow.

4.1 Parsing Temporal Logic Programs

All of the temporal language additions are designed to use available syntax fea-
tures, so that clingo’s (or better gringo’s [11]) parser can be used as is. Atoms
like &initial, &final, and &tel, as well as the temporal operators in the
first and fourth column of Table 1 rely on clingo’s theory language capacities
that allow for defining customized syntactic expressions by supplementing a dedi-
cated (theory) grammar (cf. [9]). Also, clingo tolerates quotes in predicate names.
Finally, telingo uses clingo’s #program directive [10] for partitioning temporal
logic programs into their four types of rules.
5 https://potassco.org/clingo.

https://potassco.org/clingo

telingo = ASP+ Time 263

4.2 Translating Temporal Logic Programs into Regular Ones

The translation of temporal logic programs into regular ones relies on the pro-
cessing of the temporal adornments described in Sect. 4.1. This information is
used for generating an (incremental) logic program, as described in Sect. 2. In
practice, the resulting program is equipped with program directives that allow
clingo to use its multi-shot solving capabilities (cf. [10,13]) for solving the pro-
gram incrementally. The actual translation is accomplished by means of the func-
tionalities of clingo’s API for manipulating the abstract syntax tree of a logic
program. That is, the list of rules is extracted, rewritten, and finally passed back
to clingo.

The most intriguing part in this process is the (incremental) rewriting of
future-oriented operators in heads of past-future rules. In fact, the restriction
of having future operators occur in rule heads only and past operators occur in
rule bodies results in a normal form where all future operators occur negatively
in rule bodies and rule heads do not contain temporal operators anymore. In
general, this normal form creates a temporal program with an infinite number
of rules but only a finite number of them are required for a fixed horizon. The
translation rests on the idea that for past-future rules there can be no positive
cycles involving an atom from the current step and an atom from a future step.
This allows us to shift rule heads and bring a program in the above normal form.
The formal elaboration of this translation is detailed in a companion paper, and
we focus below on an example-driven presentation.

Let us begin by illustrating the elimination of negative occurrence of future
operators in rule bodies. As just mentioned, they appear during telingo’s trans-
lation in an intermediate step but can be turned back into present-centered
temporal logic programs.6 For example, consider an occurrence of ¬◦♦a (viz.
‘not &tel { > >? a }’) in a rule body, since this pops up below again. Each
such negative occurrence of ◦♦a is replaced by an auxiliary atom �◦♦a:

�(A ← ¬◦♦a ∧ B) �→ �(A ← ¬�◦♦a ∧ B)

Since the occurrence of ◦♦a is negative, TEL allows us to treat it as in classical
(linear time) logic, namely by starting from �(�◦♦a ↔ ◦♦a), we get �(�◦♦a ↔
◦a∨◦◦♦a),7 which we decompose into three integrity constraints in the standard
way:

�(�◦♦a ∨ ¬�◦♦a)
�(⊥ ← �◦♦a ∧ ¬◦a ∧ ¬◦◦♦a) (4)
�(⊥ ← ¬�◦♦a ∧ ◦a)
�(⊥ ← ¬�◦♦a ∧ ◦◦♦a) (5)

While the first rule makes us choose the truth value of �◦♦a, the last three
rules result from rewriting the above equivalence (into two classical implications).
6 This is also why this extension to the past-future format is tolerated in telingo’s

input language.
7 ◦♦a ↔ ◦a ∨ ◦◦♦a is valid in TEL.

264 P. Cabalar et al.

Finally, replacing in (4) and (5) the remaining occurrences of ◦♦a by �◦♦a

and time shifting the inner part backwards by one and the outer one forward
again by prepending ◦̂ results in the following set of present-centered rules

all of which are now ready to be compiled into regular rules with the translation
given in Sect. 2. The application of the (weak) next operator shifts the temporal
context of the actual rules one step ahead; the usage of the weak version ◦̂ makes
sure that they are not falsified at the end of the trace. The final rule in (6) is
added to ensure that �◦♦a is false in the final state. All in all, we get a translation
linear in the size of the original literal.

Now, to illustrate the actual rewriting of future-oriented operators in rule
heads, let us start with a simple past-future temporal rule

�(a ∨ ◦b ← �) (7)

where � can be thought of as an auxiliary atom, representing the original body.
a ∨ ◦b means that a is true now or b is true at the next point in time.

The translation consists of three parts. First, we time-shift a rule for all
possible time points, in which an atom, viz. a or b, can be made true. For the
above rule, there are only two relevant rules:

�(a ∨ ◦b ← �)
◦̂�(•a ∨ b ← •�)

Until this point, both rules together are strongly equivalent to the original one
in (7). Note that •a ∨ b means (outside of any temporal context) that a is true
at the previous point in time or b is true now.

Then, in the resulting rules, we double negate each outermost next and pre-
vious operator in the rule head. For our example, this results in:

�(a ∨ ¬¬◦b ← �)
◦̂�(¬¬•a ∨ b ← •�)

Here, we loose strong equivalence but the past-future condition guarantees that
the solutions of the obtained programs are the same.

Finally, we can unfold the formulas in the usual way. For our example, this
is:

�(a ← ¬◦b ∧ �)
◦̂�(b ← ¬•a ∧ •�)

telingo = ASP+ Time 265

This is strongly equivalent to the rules obtained in the previous step of the
translation. Once the negative occurrence of ◦b is eliminated from the first rule
(as shown above), we get a set of present-centered dynamic rules being equivalent
to the one in (7).

Finally, let us consider the treatment of an inductive operator, and have a
look at the eventually operator in the head of the following rule:

�(♦a ← �) (8)

♦a means that a is true now or at some point in the future; its unfolding relies
on the temporal law ♦a ↔ a ∨ ◦♦a.

By letting •0ϕ = ϕ and •iϕ = ••i−1ϕ for i > 0, we obtain in step one:

�(a ∨ ◦♦a ← •0�)
�(•1a ∨ a ∨ ◦♦a ← •1�)

...
�(•ia ∨ · · · ∨ •1a ∨ a ∨ ◦♦a ← •i�)

Taken together, these rules are equivalent to the rule in (8) but differ in the
number of applications of the law ♦a ↔ a ∨ ◦♦a.8

For each i ≥ 0, we can then add the double negations as in the example
above:

�(¬¬•ia ∨ · · · ∨ ¬¬•1a ∨ a ∨ ¬¬◦♦a ← •i�)

And finally, we can shift the double negated literals into the rule body:

�(a ← ¬•ia ∧ · · · ∧ ¬•1a ∧ ¬◦♦a ∧ •i�)

Once all negative occurrences of ◦♦a are eliminated (as shown above), we get
once more a linear number of present-centered dynamic rules (of successively
increasing size) being equivalent to the one in (8). In this case, we thus get a
translation of quadratic size.

In general, the unfolding of future formulas may result in an exponential
translation whereas the one for past formulas is linear in size. Currently, telingo
unfolds without introducing shortcuts. We might be able to use a full Tseitin-
style translation introducing auxiliary atoms to keep the translation compact,
along with a good strategy guaranteeing compactness, which might be more
difficult in the presence of inductive operators.

4.3 Solving Regular Logic Programs Incrementally

The above translation results in two (non-ground) regular logic programs corre-
sponding to P0 and Pk in (2) and (3), respectively. A control loop, similar to the
8 Unlike in the example above, we do not obtain strongly equivalent rules because we

do not introduce weak next operators. This is safe in this context because the literal
•i� does not apply for horizons smaller i.

266 P. Cabalar et al.

one in [13], starts with P0 and successively adds Pk for increasing k, grounds it,
and solves the accumulated program until a stop criterion is met. In other words,
telingo computes the stable models of P0 ∪ ⋃

k≥0 Pk for k ≥ 0. This process is
controlled by three options: --imin and --imax, the minimum and maximum
number of solving steps, respectively, and --istop, the stop criterion, which
defaults to sat and offers alternatives unsat and unknown.

An interesting detail concerns the treatment of the final rule in Line 29 of List-
ing 1, viz. ‘:- at(X,river_bank).’ standing for .
As described in Sect. 2, final rules are equipped with a special-purpose literal,
¬qk+1, during their translation into regular rules in order to control their range of
applicability in view of increasing k. In terms of module theory, qk+1 is an input
atom, and they are accounted for by #external declarations in clingo. In our
example, the recurrent test of ‘:- at(X,river_bank).’ at the final time point
gives rise to the program:

1 #external q(k+1). [false]
2 :- at(X,river_bank,k), not q(k+1).

The time parameter k is handled by the aforementioned control loop through
clingo’s API. The declaration of q(k+1) as an external exempts it from
simplification and allows for assigning truth values via the API. The trail-
ing [false] gives the initial truth value.9 For brevity, we refrain from
duplicating the rule for all instantiations of X. For k = 0, we thus get
‘:- at(X,river_bank,0), not q(1).’ along with q(1) being false.
Hence, the integrity constraint amounts to requiring that at(X,river_bank)
is false for all instantiations of X at time point 0.

For k = 1, we have two instances of Line 2:

:- at(X,river_bank,0), not q(1).
:- at(X,river_bank,1), not q(2).

However, while as before q(2) is set to false by its declaration as an external
(cf. Line 1 above), the control loop changes the truth of q(1) to true. As a
result, the first integrity constraint becomes vacuous and only the second one
applies, now requiring that at(X,river_bank) is false at time point 1 (for
all instantiations of X). This mechanism ensures that final rules always apply
exclusively to the last point in time. Note that the change of the truth value of
external atoms via the API accounts for the addition of facts in (3).

4.4 Extracting Traces from Regular Stable Models

telingo translates a temporal logic program into a regular one, whose stable mod-
els are incrementally computed by clingo. The obtained model is then translated
back into a temporal trace by reversing translation τ on the atoms in the model.
That is, each atom ak is turned into a and associated with the state numbered k.

9 This feature is introduced with clingo 5.4.

telingo = ASP+ Time 267

5 Experiments

To check whether our approach imposes a significant burden on grounding and
solving, we set up the following experiment: We took the benchmark suite used
in [8] for incrementally solving ASP planning benchmarks.10 This benchmark
suite was obtained in [8] by manually producing incremental ASP encodings from
encodings using a fixed plan length. This includes the benchmark domains hanoi-
tower, labyrinth, no-mystery, ricochet-robots, sokoban, and visit-all, all originat-
ing in recent ASP competitions. In turn, we manually translated the incremental
encodings from [8] into the temporal input language of telingo.11 This resulted
in two benchmark suites, in each case consisting of 69 benchmark instances. We
then contrasted the results obtained by solving the incremental instances with
clingo 5.3 and the temporal ones with telingo 1.0 (also based on clingo 5.3). The
experiments ran under Linux on Intel Xeon E5-2650 v4 processors and 64 GB
memory; we selected instances solvable within 24 h by both clingo and telingo,
and computed a single model.

0 1 2 3

0

1

2

3

Grounding time clingo (s)

G
ro
un

di
ng

ti
m
e
te
lin

go
(s
)

100 101 102 103 104 105

100

101

102

103

104

105

Solving time clingo (s)

So
lv
in
g
ti
m
e
te
lin

go
(s
)

Fig. 1. Grounding and solving times of clingo and telingo

Figure 1 shows two scatter plots comparing the runtime of clingo and telingo
for both grounding and solving. Each point in such a plot displays the runtimes
for one instance; the runtime of clingo is displayed on the x-axis and the runtime
of telingo on the y-axis. Thus, we find easier instances in the lower left part and
harder instances in the upper right part of a plot. Furthermore, the farther a
point is away from the diagonal, the more the runtimes of both systems diverge;
for points in the lower right part of a plot, telingo is faster and for points in
the upper left part, clingo is faster. To highlight runtime differences, we use the

10 https://github.com/potassco/asp-planning-benchmarks.
11 https://github.com/potassco/clingo-vs-telingo-planning/tree/v1.0.0.

https://github.com/potassco/asp-planning-benchmarks
https://github.com/potassco/clingo-vs-telingo-planning/tree/v1.0.0

268 P. Cabalar et al.

colors from a heat map ranging from blue (both systems are equally fast) over
yellow to red (highest runtime deviation of both systems).

First, let us look at the grounding times in the left plot in Fig. 1. We see
that most points are close to the diagonal, showing that both systems perform
quite similarly. All instances could be grounded in less than 3 seconds making
grounding times negligible in the overall runtime. Furthermore, the resulting
ground programs have nearly the same number of rules and atoms (each deviates
by 0.01% on average). These results are not that surprising given that ASP
planning benchmarks only deal with one-step transitions, and do not involve
any complex temporal statements. Here, the translation in telingo boils down to
adding time parameters to atoms. Hence, the translated program passed to the
grounder is very similar to the incremental program used by clingo.

Next, we look at the solving times depicted in the right plot in Fig. 1. Note
that both clingo and telingo find solutions for the smallest horizon where a
problem is satisfiable. Since the difficulty of planning problems increases expo-
nentially with the search horizon, we use logarithmic axes in the plot. We see
that there are runtime fluctuations between both systems. This is due to differ-
ent traversals of the search space of both systems induced by heuristic effects.
Such fluctuations are to be expected with ASP solvers, which are sensitive to
small changes in instances, where even changing the order in which rules are
passed to a solver can make a big difference in runtime.

All in all, our experiments confirm that telingo’s machinery imposes no sig-
nificant encumbrance compared to a direct treatment with clingo.12

6 Discussion

We have described the temporal ASP system telingo, starting from its input
language, over its workflow on top of clingo, to an empirical demonstration of
its lightweight machinery. Previous temporal extensions to ASP [3,12] relied
on different semantics resulting in translations to automata and thus model
checkers. What makes telingo interesting is that it constitutes a true extension
of the ASP system clingo, and provides us with a full-fledged temporal modeling
language. Moreover, it allows for an easy embedding of action languages (cf. [4])
and offers the specification of nested logic programs. For the future, we envisage
the integration of constructs from dynamic logic, as proposed in [2], and the
integration of more flexible reasoning modes, as used in [8].

Acknowledgments. This work was partially supported by MINECO, Spain, grant
TIC2017-84453-P, Xunta de Galicia, Spain (GPC ED431B 2016/035 and 2016-2019
ED431G/01, CITIC), and DFG grant SCHA 550/9.

12 Detailed results are obtainable at https://github.com/potassco/clingo-vs-telingo-
planning/tree/v1.0.0/benchmark-results.

https://github.com/potassco/clingo-vs-telingo-planning/tree/v1.0.0/benchmark-results
https://github.com/potassco/clingo-vs-telingo-planning/tree/v1.0.0/benchmark-results

telingo = ASP+ Time 269

References

1. Aguado, F., Cabalar, P., Diéguez, M., Pérez, G., Vidal, C.: Temporal equilibrium
logic: a survey. J. Appl. Non-Classical Log. 23(1–2), 2–24 (2013)

2. Bosser, A., Cabalar, P., Diéguez, M., Schaub, T.: Introducing temporal stable
models for linear dynamic logic. In: Proceedings of the International Conference
on Principles of Knowledge Representation and Reasoning, pp. 12–21. AAAI Press
(2018)

3. Cabalar, P., Diéguez, M.: STELP: a tool for temporal answer set programming. In:
[7], pp. 370–375 (2011)

4. Cabalar, P., Kaminski, R., Schaub, T., Schuhmann, A.: Temporal answer set pro-
gramming on finite traces. Theory Pract. Log. Program. 18(3–4), 406–420 (2018)

5. Cabalar, P., Pérez Vega, G.: Temporal equilibrium logic: a first approach. In:
Moreno Dı́az, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007.
LNCS, vol. 4739, pp. 241–248. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-75867-9 31

6. De Giacomo, G., Vardi, M.: Linear temporal logic and linear dynamic logic on
finite traces. In: Proceedings of the International Joint Conference on Artificial
Intelligence, pp. 854–860. IJCAI/AAAI Press (2013)

7. Delgrande, J., Faber, W. (eds.): LPNMR 2011. LNCS, vol. 6645. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-20895-9

8. Dimopoulos, Y., Gebser, M., Lühne, P., Romero, J., Schaub, T.: plasp 3: Towards
effective ASP planning. Theory Pract. Log. Program. (2018, to appear)

9. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:
Theory solving made easy with clingo 5. In: Technical Communications of the
International Conference on Logic Programming, vol. 52, pp. 2:1–2:15. OASIcs
(2016)

10. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with
clingo. Theory Pract. Log. Program. 19(1), 27–82 (2019)

11. Gebser, M., Kaminski, R., König, A., Schaub, T.: Advances in gringo series 3. In:
[7], pp. 345–351 (2011)

12. Giordano, L., Martelli, A., Theseider Dupré, D.: Reasoning about actions with
temporal answer sets. Theory Pract. Log. Program. 13(2), 201–225 (2013)

13. Kaminski, R., Schaub, T., Wanko, P.: A tutorial on hybrid answer set solving
with clingo. In: Ianni, G., et al. (eds.) Reasoning Web 2017. LNCS, vol. 10370, pp.
167–203. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61033-7 6

14. Kamp, J.: Tense logic and the theory of linear order. Ph.D. thesis, UCLA (1968)
15. Lifschitz, V.: Answer set planning. In: Proceedings of the International Conference

on Logic Programming, pp. 23–37. MIT Press (1999)
16. Oikarinen, E., Janhunen, T.: Modular equivalence for normal logic programs. In:

Proceedings of the European Conference on Artificial Intelligence, pp. 412–416.
IOS Press (2006)

17. Pnueli, A.: The temporal logic of programs. In: Proceedings of the Symposium on
Foundations of Computer Science, pp. 46–57. IEEE Press (1977)

https://doi.org/10.1007/978-3-540-75867-9_31
https://doi.org/10.1007/978-3-540-75867-9_31
https://doi.org/10.1007/978-3-642-20895-9
https://doi.org/10.1007/978-3-319-61033-7_6

Verifying Strong Equivalence of Programs
in the Input Language of GRINGO

Vladimir Lifschitz1 , Patrick Lühne2 , and Torsten Schaub2,3,4(B)

1 University of Texas at Austin, Austin, USA
2 University of Potsdam, Potsdam, Germany

torsten@cs.uni-potsdam.de
3 Simon Fraser University, Burnaby, Canada
4 Griffith University, Gold Coast, Australia

Abstract. The semantics of the input language of the ASP grounder
gringo uses a translation that converts a logic program, which may con-
tain variables and arithmetic operations, into a set of infinitary proposi-
tional formulas. In this note, we show that the result of that translation
can be replaced in some cases by a finite set of first-order sentences. The
translator anthem constructs that set of sentences and converts it to a
format that can be processed by automated reasoning tools. anthem, in
combination with the first-order theorem prover vampire, allows us to
verify the strong equivalence of programs in the language of gringo.

1 Introduction

The semantics of the input language of the ASP grounder gringo [3] uses a
translation τ that converts a logic program, which may contain variables and
arithmetic operations, into a set of infinitary propositional formulas. In this note,
we show that the set produced by τ can be replaced in some cases by a finite set
of first-order sentences. The translator anthem constructs that set of sentences
and converts it to a format that can be processed by automated reasoning tools.

In combination with the first-order theorem prover vampire [7], anthem
allows us to verify strong equivalence of programs in the language of gringo with
a computer-assisted proof. This relation between logic programs is important
because it guarantees the possibility of replacing one program by the other in
any context [9]. Earlier work on verifying strong equivalence [1,6] was restricted
to programs that do not contain arithmetic operations.

The definition of a logic program in Sect. 2 largely follows [3,5], and it disre-
gards some details of the syntax of gringo. For instance, about the set of sym-
bolic constants we assume only that it is countably infinite and totally ordered;
in gringo, symbolic constants are actually strings, and they are ordered lexi-
cographically. Dropping the condition from the body of a rule in a
gringo program does not change the set of stable models, but this fact is not
reflected in our more abstract theory of strong equivalence.

c© Springer Nature Switzerland AG 2019
M. Balduccini et al. (Eds.): LPNMR 2019, LNAI 11481, pp. 270–283, 2019.
https://doi.org/10.1007/978-3-030-20528-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20528-7_20&domain=pdf
http://orcid.org/0000-0001-6051-7907
http://orcid.org/0000-0001-5902-4152
http://orcid.org/0000-0002-7456-041X
https://doi.org/10.1007/978-3-030-20528-7_20

Verifying Strong Equivalence of Programs 271

The class of programs studied in this note is more restricted than that in
the papers quoted above. In particular, local variables are not allowed. Accord-
ingly, the version of τ defined in Sect. 3 does not use infinite conjunctions and
disjunctions. It produces, generally, an infinite set of finite formulas. Some of the
theorems in this paper refer, however, to infinitary propositional formulas and
to the strong equivalence relation between them [4].

This paper is structured as follows. Sections 2 and 3 revisit background on
logic programs and stable models. Section 4 extends strong equivalence from the
propositional case to logic programs as defined in Sect. 2. Section 5 outlines the
target language of τ∗, our new translation from logic programs to finite sets
of first-order sentences. τ∗ is then introduced in Sect. 6. Section 7 discusses the
important special case of positive programs. The translator anthem is presented
in Sect. 8. Finally, Sect. 9 shows how to programmatically verify the strong equiv-
alence of positive programs with anthem and the theorem prover vampire, and
Sect. 10 concludes this paper with ideas for future work.

2 Background: Logic Programs

We assume that three countably infinite sets of symbols are selected: numerals,
symbolic constants, and program variables. (We talk about “program” variables
to distinguish them from “integer” variables, introduced in Sect. 5 below. Integer
variables are allowed in formulas but not in programs.) We assume that a 1-to-1
correspondence between numerals and integers is chosen; we denote the numeral
corresponding to an integer n by n.

Program terms are defined recursively as follows. (Program terms are to be
distinguished from “formula terms,” defined in Sect. 5.)

– Numerals, symbolic constants, program variables, and the symbols inf and
sup are program terms;

– if t1, t2 are program terms and op is one of the operation names

+ − × / \ . .

then (t1 op t2) is a program term.

If t is a term, then −t is shorthand for 0 − t. A program term, or another syntactic
expression, is ground if it does not contain variables. A ground expression is
precomputed if it does not contain operation names.

We assume that a total order on precomputed program terms is chosen, where

– inf is its least element and sup is its greatest element,
– for any integers m and n, m < n iff m < n, and
– for any integer n and any symbolic constant c, n < c.

An atom is an expression of the form p(t), where p is a symbolic constant
and t is a tuple of program terms. A literal is an atom possibly preceded by one

272 V. Lifschitz et al.

or two occurrences of not . A comparison is an expression of the form (t1 rel t2),
where t1, t2 are program terms and rel is one of the relation names

= �= < > ≤ ≥ (1)

A rule is an expression of the form

Head ← Body , (2)

where

– Body is a conjunction (possibly empty) of literals and comparisons, and
– Head is either an atom (then we say that (2) is a basic rule), or an atom in

braces (then (2) is a choice rule), or empty (then (2) is a constraint).

A program is a finite set of rules.

3 Background: Stable Models

An interpretation is a set of precomputed atoms. We define which interpretations
are stable models of a program Π by first transforming Π into a set τΠ of
propositional formulas formed from precomputed atoms and then referring to
the definition of a stable model (answer set) [2] of a set of propositional formulas.

In propositional formulas, we consider the connectives

⊥ (“false”), ∧, ∨, → (3)

primitives;
 is shorthand for ⊥ → ⊥, ¬F is shorthand for F → ⊥, and F ↔ G
is shorthand for (F → G) ∧ (G → F).

Before defining τ , we define, for every ground program term t, the set [t] of
its values:

– if t is a numeral, a symbolic constant, inf , or sup, then [t] is {t};
– if t is (t1 + t2), then [t] is the set of numerals n1 + n2 for all integers n1, n2

such that n1 ∈ [t1] and n2 ∈ [t2]; similarly when t is (t1 − t2) or (t1 × t2);
– if t is (t1/t2), then [t] is the set of numerals n1/n2� for all integers n1, n2

such that n1 ∈ [t1], n2 ∈ [t2], and n2 �= 0;
– if t is (t1\t2), then [t] is the set of numerals n1 − n2 · n1/n2� for all integers

n1, n2 such that n1 ∈ [t1], n2 ∈ [t2], and n2 �= 0;
– if t is (t1 . . t2), then [t] is the set of numerals m for all integers m such that

some integers n1, n2 satisfy n1 ∈ [t1], n2 ∈ [t2], and n1 ≤ m ≤ n2.

It is clear that values of a ground program term are precomputed program terms.
For example,

– the only value of 2 × 2 is 4;
– the values of 1 . . 3 are 1, 2, 3;
– 1/0 has no values;

Verifying Strong Equivalence of Programs 273

– a + 1, where a is a symbolic constant, has no values.

For any ground terms t1, . . . , tn, by [t1, . . . , tn] we denote the set of tuples
r1, . . . , rn for all r1 ∈ [t1], . . . , rn ∈ [tn].

Now, we can turn to the definition of τ . For any ground atom p(t),

– τp(t) stands for
∨

r∈[t] p(r),
– τ(not p(t)) stands for

∨
r∈[t] ¬p(r), and

– τ(not not p(t)) stands for
∨

r∈[t] ¬¬p(r).

For example,

– τp(1 . . 3) is p(1) ∨ p(2) ∨ p(3),
– τ(not p(1 . . 3)) is ¬p(1) ∨ ¬p(2) ∨ ¬p(3).

For any ground comparison t1 rel t2, we define τ(t1 rel t2) as

–
 if the relation rel holds between some r1 from [t1] and some r2 from [t2];
– ⊥ otherwise.

For example, τ(1 = 1 . . 3) is
.
If each of C1, . . . , Ck is a ground literal or a ground comparison, then τ(C1 ∧

· · · ∧ Ck) stands for τC1 ∧ · · · ∧ τCk.
If R is a ground basic rule p(t) ← Body , then τR is the propositional formula

τ(Body) → ∧
r∈[t] p(r).

If R is a ground choice rule {p(t)} ← Body , then τR is the propositional formula

τ(Body) → ∧
r∈[t](p(r) ∨ ¬p(r)).

If R is a ground constraint ← Body , then τR is ¬τ(Body).
An instance of a rule is a ground rule obtained from it by substituting pre-

computed program terms for program variables. For any program Π, τΠ is the
set of the propositional formulas τR for all instances R of the rules of Π.

For example, the instances of the rule

q(X + 1) ← p(X) (4)

are the ground rules
q(r + 1) ← p(r)

for all precomputed program terms r. If r is a numeral n, then the result of
applying τ to this instance is

p(n) → q(n + 1). (5)

If r is not a numeral, then the result is

p(r) →
 (6)

274 V. Lifschitz et al.

(because the empty conjunction is understood as
). Consequently, the result of
applying τ to rule (4) consists of propositional formulas (5) for all integers n and
propositional formulas (6) for all precomputed program terms r except numerals.

Similarly, the result of applying τ to the rule

q(X) ← p(X − 1) (7)

consists of the propositional formulas

p(n − 1) → q(n) (8)

for all integers n and the propositional formulas

⊥ → q(r) (9)

for all precomputed program terms r other than numerals.
An interpretation is a stable model of a program Π if it is a stable

model of τΠ.

4 Strong Equivalence

Recall that sets Γ1 and Γ2 of propositional formulas are said to be strongly
equivalent to each other if for every set Γ of propositional formulas, Γ1 ∪ Γ has
the same stable models as Γ2 ∪ Γ . Two sets of propositional formulas are strongly
equivalent iff each of them can be derived from the other in the propositional logic
of here-and-there, which is intermediate between classical and intuitionistic [9].

We extend the definition of strong equivalence to programs in the sense of
Sect. 2 as follows: Programs Π1 and Π2 are strongly equivalent to each other if
τΠ1 is strongly equivalent to τΠ2.

For example, one-rule program (4) is strongly equivalent to (7). To justify this
claim, note that the sets of formulas obtained from these two rules by applying
the transformation τ are intuitionistically equivalent. Indeed, the set of formu-
las (5) for all integers n is identical to the set of formulas (8) for all integers n;
on the other hand, all formulas (6) and (9) are provable intuitionistically.

This argument is quite simple, but it involves reasoning about infinite sets of
propositional formulas. It is not immediately clear how to automate generating
proofs of this kind. This is the challenge that we are interested in. Our approach
is to replace τ by a transformation τ∗, defined in Sect. 6 below, which produces a
finite set of first-order sentences. Sets of that kind can be processed by automated
reasoning tools. The transformation τ∗ is somewhat similar to the transforma-
tions defined in [5] and implemented in an earlier version of anthem [8].

To take another example, consider the rules

q(X) ← p(X), (10)

q(X + 1) ← p(X + 1). (11)

Verifying Strong Equivalence of Programs 275

They are not strongly equivalent to each other. Indeed, adding the rule p(a),
where a is a symbolic constant, to the former gives a program with the stable
model {p(a), q(a)}; adding that rule to the latter gives a program with the stable
model {p(a)}.

We call a rule trivial if it is strongly equivalent to the empty program. It
is clear that a rule R is trivial iff τR is provable in the logic of here-and-there.
Removing a trivial rule from a program does not affect its stable models. For
example, the rule

p(4) ← p(2 × 2) (12)

is trivial because the result
p(4) → p(4)

of applying τ to it is intuitionistically provable. The rule

p(1 . . 3) ← p(1 . . 3) (13)

is not trivial because the program obtained by adding it to the fact p(1) has p(2)
and p(3) in its stable model.

Other examples of strong equivalence are given in Sect. 9.

5 Formulas

In this section, we define the target language of the new translation τ∗. This
is a first-order language with variables of two sorts. First, we include program
variables, introduced in Sect. 2; they range over precomputed program terms.
Second, integer variables range over numerals (or, equivalently, integers).

Arithmetic terms are formed from numerals and integer variables using the
operation symbols +, −, and ×. Note that / and \ are not allowed in arithmetic
terms. This is because division by 0 is undefined, and in first-order logic, a
function symbol is expected to denote a total function. Intervals are not allowed
either because an interval expression, generally, does not have a single value.

We collectively refer to arithmetic terms, symbolic constants, program vari-
ables, and the symbols inf and sup as formula terms. Thus, the set of program
terms (defined in Sect. 2) and the set of formula terms partially overlap. In a
program term, integer variables are not allowed; on the other hand, in a for-
mula term, arithmetic operations cannot be applied to symbolic constants and
program variables. It is clear that the only precomputed arithmetic terms are
numerals. Precomputed formula terms are identical to precomputed program
terms so that we can talk simply about “precomputed terms.”

Atomic formulas are expressions of the forms

– p(t), where p is a symbolic constant and t is a tuple of formula terms (sepa-
rated by commas, possibly empty), and

– (t1 rel t2), where t1, t2 are formula terms and rel is one of relation names (1).

276 V. Lifschitz et al.

Formulas are formed from atomic formulas using propositional connectives (3)
and the quantifiers ∀ and ∃ as usual in first-order logic. It is clear that every
propositional formula in the sense of Sect. 3—a propositional combination of
precomputed atoms—is a closed formula in the sense of this definition.

The satisfaction relation between interpretations and propositional formulas
is extended to arbitrary closed formulas as usual in classical logic; program
variables range over precomputed program terms, and integer variables range
over numerals. Two closed formulas are classically equivalent to each other if
they are satisfied by the same interpretations.

For describing the relationship between the translations τ and τ∗, we need a
translation that converts closed formulas in this language into infinitary propo-
sitional formulas formed from precomputed atoms. The infinitary propositional
formula F prop corresponding to a closed formula F is defined as follows:

– if F is p(t), then F prop is obtained from F by replacing each member of t by
its value;

– if F is (t1 rel t2), then F prop is
 if the values of t1 and t2 are in the relation rel ,
and ⊥ otherwise;

– ⊥prop is ⊥;
– (F � G)prop is (F prop � Gprop) for every binary connective �;
– (∀XF (X))prop is the conjunction of the formulas F (r)prop over all precom-

puted terms r if X is a program variable, and over all numerals r if X is an
integer variable;

– (∃XF (X))prop is the disjunction of the formulas F (r)prop over all precom-
puted terms r if X is a program variable, and over all numerals r if X is an
integer variable.

It is clear that a closed formula F is satisfied by the same interpretations
as the corresponding infinitary propositional formula F prop. Closed formulas F
and G are classically equivalent iff the infinitary propositional formulas F prop

and F prop are classically equivalent. If F prop and Gprop are strongly equivalent,
then F and G are classically equivalent.

For example, if F is

∀X∃N(N ≥ 0 ∧ p(X,N)),

where X is a program variable and N is an integer variable, then F prop is
∧

r

(∨
n≥0(
 ∧ p(r, n)) ∨ ∨

n<0(⊥ ∧ p(r, n))
)

,

where r ranges over precomputed terms and n ranges over integers. This formula
is strongly equivalent to ∧

r

∨
n≥0 p(r, n).

6 Transforming Programs into Formulas

Prior to defining τ∗, we define, for every program term t, a formula val t(Z),
where Z is a program variable that does not occur in t. That formula expresses,

Verifying Strong Equivalence of Programs 277

informally speaking, that Z is one of the values of t. This property is made
precise in Proposition 1 below.

The definition is recursive:

– if t is a numeral, a symbolic constant, a program variable, inf , or sup, then
val t(Z) is Z = t;

– if t is (t1 op t2), where op is +, −, or ×, then val t(Z) is

∃IJ(Z = I op J ∧ val t1(I) ∧ val t2(J)),

where I, J are fresh integer variables;
– if t is (t1/t2), then val t(Z) is

∃IJQR(I = J × Q + R ∧ val t1(I) ∧ val t2(J)
∧ J �= 0 ∧ R ≥ 0 ∧ R < Q ∧ Z = Q),

where I, J , Q, R are fresh integer variables;
– if t is (t1\t2), then val t(Z) is

∃IJQR(I = J × Q + R ∧ val t1(I) ∧ val t2(J)
∧ J �= 0 ∧ R ≥ 0 ∧ R < Q ∧ Z = R),

where I, J , Q, R are fresh integer variables;
– if t is (t1 . . t2), then val t(Z) is

∃IJK(val t1(I) ∧ val t2(J) ∧ I ≤ K ∧ K ≤ J ∧ Z = K),

where I, J , K are fresh integer variables.

For example, valX+1(Z) is

∃IJ(Z = I + J ∧ I = X ∧ J = 1),

where I, J are integer variables.

Proposition 1. For any ground program term t and any precomputed term r,
the formula val t(r)prop is strongly equivalent to
 if r ∈ [t] and to ⊥ otherwise.

This assertion can be proved by induction on t.
The last thing to do in preparation for defining τ∗ is to define the transla-

tion τB that is applied to expressions in the body of the rule:

– τB(p(t1, . . . , tk)) is

∃Z1 . . . Zk(val t1(Z1) ∧ · · · ∧ val tk(Zk) ∧ p(Z1, . . . , Zk));

– τB(not p(t1, . . . , tk)) is

∃Z1 . . . Zk(val t1(Z1) ∧ · · · ∧ val tk(Zk) ∧ ¬p(Z1, . . . , Zk));

278 V. Lifschitz et al.

– τB(not not p(t1, . . . , tk)) is

∃Z1 . . . Zk(val t1(Z1) ∧ · · · ∧ val tk(Zk) ∧ ¬¬p(Z1, . . . , Zk));

– τB(t1 rel t2) is

∃Z1Z2(val t1(Z1) ∧ val t2(Z2) ∧ Z1 rel Z2);

where each Zi is a fresh program variable.
From Proposition 1, we conclude:

Proposition 2. If L is a ground literal or ground comparison, then (τBL)prop

is strongly equivalent to τL.

Now, we define

τ∗(Head ← B1 ∧ · · · ∧ Bn)

as the universal closure of the formula

τB(B1) ∧ · · · ∧ τB(Bn) → H,

where H is

– ∀Z1 . . . Zk(val t1(Z1) ∧ · · · ∧ val tk(Zk) → p(Z1, . . . , Zk))
if Head is p(t1, . . . , tk);

– ∀Z1 . . . Zk(val t1(Z1) ∧ · · · ∧ val tk(Zk) → p(Z1, . . . , Zk) ∨ ¬p(Z1, . . . , Zk))
if Head is {p(t1, . . . , tk)};

– ⊥ if Head is empty;

where each Zi is a fresh program variable.
For example, the result of applying τ∗ to rule (4) is

∀X(∃Z(Z = X∧p(Z)) → ∀Z1(∃IJ(Z1 = I+J∧I = X∧J = 1) → q(Z1))). (14)

The result of applying τ∗ to rule (7) is

∀X(∃Z(∃IJ(Z = I−J∧I = X∧J = 1)∧p(Z)) → ∀Z1(Z1 = X → q(X))). (15)

From Proposition 2, we conclude:

Proposition 3. For any rule R, (τ∗R)prop is strongly equivalent to τR.

For any program Π, τ∗Π stands for the set of formulas τR for all rules R
of Π. From Proposition 3, we conclude:

Proposition 4. A program Π1 is strongly equivalent to a program Π2 iff
(τ∗Π1)prop is strongly equivalent to (τ∗Π2)prop.

Verifying Strong Equivalence of Programs 279

For example, the question about the strong equivalence of rule (4) to rule (7),
resolved in Sect. 4, can be reformulated as the question about the strong equiv-
alence of the propositional counterparts of formulas (14) and (15).

With Proposition 4 available, our goal of verifying strong equivalence of pro-
grams using automated reasoning tools for classical logic is not yet within reach;
what we need in addition is a way to use these tools to verify the condition

(τ∗Π1)prop is strongly equivalent to (τ∗Π2)prop. (16)

This can be achieved using an additional transformation that replaces each pred-
icate symbol by two, corresponding to the two worlds of the logic of here-and-
there, and thus reduces that logic to classical. A transformation of this kind is
part of the design of selp [1]. Implementing this idea in the context of anthem is
a topic for future work. In the next section, we show, however, that for “positive”
rules, such as (4), (7), and (10)–(13), condition (16) can be replaced by

τ∗Π1 is classically equivalent to τ∗Π2,

which can be verified by vampire and similar systems directly.

7 Positive Programs

A positive rule is a basic rule or constraint such that its body is a conjunction
of atoms and comparisons.

Proposition 5. A positive program Π1 is strongly equivalent to a positive pro-
gram Π2 iff τΠ1 is classically equivalent to τΠ2.

This is immediate from the following lemma:

For any positive program Π and any positive ground rule R, if τR is derivable
from τΠ classically, then τR is derivable from τΠ intuitionistically.

This lemma can be proved using [10, Theorem 3].
Proposition 3 shows that for any program Π, τΠ is classically equivalent to

τ∗Π. In view of this fact, from Proposition 5, we can conclude:

Proposition 6. A positive program Π1 is strongly equivalent to a positive pro-
gram Π2 iff τ∗Π1 is classically equivalent to τ∗Π2.

This theorem justifies the use of anthem for verifying strong equivalence of
positive programs described below.

8 ANTHEM

anthem 0.2 implements τ∗ as specified in Sect. 6. anthem supports input pro-
grams in the input language of gringo of the form described in Sect. 2, includ-
ing nonpositive programs (Sect. 7), and generates output formulas in human-
readable form by default. For example, anthem translates the simple positive
program consisting of rule (7),

280 V. Lifschitz et al.

into the formula

In the output language of anthem, integer variables are denoted by , ,
etc., while all other variables are program variables. For this program, anthem
additionally prints a note that the input program was detected to be positive:

When instead passing a nonpositive program to anthem, such as

anthem still performs the translation to

but issues the following note:

anthem’s implementation takes advantage of gringo’s library functionality
for accessing the abstract syntax tree (AST) of a nonground program. The AST
obtained from gringo is taken by anthem and turned into the AST of the
collection of formulas representing the rules of the program according to τ∗.
Since both the input and output of anthem are small, its runtime is negligible.

anthem’s source code and usage instructions are available at GitHub.1

9 Proving Strong Equivalence of Programs with VAMPIRE

When given two input programs, anthem generates an output formula express-
ing that the collections of formulas obtained by applying τ∗ to both programs are
equivalent. For positive programs, it is sufficient to prove equivalence classically
to conclude that both programs are strongly equivalent (because of Proposi-
tion 6).

In order to verify the strong equivalence of two positive programs progra-
matically, anthem is able to communicate with automated first-order theorem
provers supporting integer arithmetic such as vampire. To that end, anthem
can be instructed to generate output in the syntax of TPTP [11], a standard
input language for theorem provers. More precisely, anthem leverages the typed
first-order form (TFF) of TPTP with interpreted integer arithmetic.

In the output of anthem, there are variables of two sorts—integer and pro-
gram variables (see Sects. 5 and 8), where the domain of integer variables is a

1 https://github.com/potassco/anthem.

https://github.com/potassco/anthem

Verifying Strong Equivalence of Programs 281

subset of the domain of program variables. In TPTP, there may be variables
of multiple sorts, but it is not clear how to express that one sort is a subsort
of another. anthem works around this limitation by applying an additional
transformation to the output formulas when TPTP output is requested. For this
purpose, a custom sort object is introduced; all integer and symbolic constants
are then mapped to distinct values of type object through auxiliary functions
integer and symbolic. Then, all variables in the output formulas are changed to
the object domain; if a quantifier binds an integer variable, anthem restricts it
to the condition that the value of the variable is in the range of the function
integer. For example, the TPTP counterpart of

is

With this transformation, anthem can be used in combination with a first-
order theorem prover to verify the strong equivalence of positive programs. The
remainder of this section presents experimental results obtained with vampire.
The experiments were conducted on a Linux system with an Intel Core i7-7700K
(4 physical cores, 4.5 GHz) and 16 GB of RAM. vampire was invoked with the
options

Example 1: Predecessor/Successor

These two programs represent rules (4) and (7) from Sect. 3. vampire proves
the strong equivalence of these programs in about 2.4 s.

Example 2: Multiplication by 2

vampire proves the strong equivalence of Programs 1 and 2 in about 5 ms. The
strong equivalence of the other combinations is proved in about 3.0 s.

Example 3: Integer Between 3 and 5

vampire proves the strong equivalence of these two programs in about 3.5 s.
This result is particularly interesting because Program 1 contains an unsafe rule.
While the program would be rejected by gringo, anthem is able to prove the
strong equivalence to Program 2.

282 V. Lifschitz et al.

Example 4: Trivial Rule

vampire verifies that the rule in Program 1 is trivial by checking that Program 1
is strongly equivalent to Program 2. The trivial rule is used here because
anthem does not support the empty program yet. vampire proves the strong
equivalence in about 14 ms.

Example 5: Incorrect Refactoring

These programs contain rules (10) and (11) from Sect. 4, respectively. As
explained earlier, these two programs aren’t strongly equivalent, which might
come as a surprise to a programmer rewriting Program 2 as Program 1. vam-
pire refuses to prove the strong equivalence within 300 s.

Example 6: Infinite Stable Models

vampire proves the strong equivalence of Programs 1 and 2 in about 87 ms. The
stable model of Program 3 is the infinite set of atoms for all precomputed
terms . In contrast, the stable models of Programs 1 and 2 include only if

is an integer. Consequently, vampire does not prove the strong equivalence of
Program 3 to Programs 1 or 2.

10 Future Work

We plan to extend this research effort in several directions. First, investigate
using theorem provers other than vampire to verify strong equivalence. Sec-
ond, enable anthem to use theorem provers for verifying strong equivalence of
nonpositive programs. Third, enable anthem to use theorem provers for veri-
fying the correctness of tight programs in the language of gringo by proving
the equivalence of the given specification to the program’s completion. Fourth,
extend anthem to cover a larger subset of the language of gringo, including
symbolic functions.

Acknowledgements. We would like to thank Pedro Cabalar for his suggestion to use
anthem for verifying the strong equivalence of logic programs.

Verifying Strong Equivalence of Programs 283

References

1. Chen, Y., Lin, F., Li, L.: SELP—a system for studying strong equivalence between
logic programs. In: Proceedings of LPNMR, pp. 442–446 (2005)

2. Ferraris, P.: Answer sets for propositional theories. In: Proceedings of LPNMR, pp.
119–131 (2005)

3. Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V., Schaub, T.: Abstract Gringo.
TPLP 15(4–5), 449–463 (2015)

4. Harrison, A., Lifschitz, V., Pearce, D., Valverde, A.: Infinitary equilibrium logic
and strongly equivalent logic programs. Artif. Intell. 246, 22–33 (2017)

5. Harrison, A., Lifschitz, V., Raju, D.: Program completion in the input language of
GRINGO. TPLP 17(5–6), 855–871 (2017)

6. Janhunen, T., Oikarinen, E.: LPEQ and DLPEQ—translators for automated equiv-
alence testing of logic programs. In: Proceedings of LPNMR, pp. 336–340 (2004)

7. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39799-8 1

8. Lifschitz, V., Lühne, P., Schaub, T.: anthem: Transforming gringo programs into
first-order theories (preliminary report). In: Proceedings of ASPOCP (2018)

9. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. TOCL
2(4), 526–541 (2001)

10. Orevkov, V.: Three ways of recognizing inessential formulas in sequents. J. Math.
Sci. 20, 2351–2357 (1982)

11. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.
Reason. 59(4), 483–502 (2017)

https://doi.org/10.1007/978-3-642-39799-8_1

The Return of xorro

Flavio Everardo3 , Tomi Janhunen1,2 , Roland Kaminski3 ,
and Torsten Schaub3,4,5(B)

1 Aalto University, Espoo, Finland
2 Tampere University, Tampere, Finland

3 University of Potsdam, Potsdam, Germany
torsten@cs.uni-potsdam.de

4 Simon Fraser University, Burnaby, Canada
5 Griffith University, Brisbane, Australia

Abstract. Although parity constraints are at the heart of many rele-
vant reasoning modes like sampling or model counting, little attention
has so far been paid to their integration into ASP systems. We address
this shortcoming and investigate a variety of alternative approaches to
implementing parity constraints, ranging from rather basic ASP encod-
ings to more sophisticated theory propagators (featuring Gauss-Jordan
elimination). All of them are implemented in the xorro system by build-
ing on the theory reasoning capabilities of the ASP system clingo. Our
comparative empirical study investigates the impact of the number and
size of parity constraints on performance and indicates the merits of the
respective implementation techniques. Finally, we benefit from parity
constraints to equip xorro with means to sample answer sets, paving the
way for new applications of ASP.

1 Introduction

Parity constraints constitute the basic building blocks of many relevant reason-
ing modes like sampling or (approximate) model counting [19], not to men-
tion their pertinence to circuit verification and cryptography [18]. Although
their application and computational treatment are very active research topics
(cf. [3,4,11,12,23]) in the neighboring area of Satisfiability Testing (SAT [2]),
almost no attention has so far been paid to their integration into ASP solv-
ing [17]. Modest approaches include the (discontinued) support of #even and
#odd aggregates in gringo series 31 and their usage for sampling in the initial
prototype of xorro2 from 2009. In this earlier prototype, parity constraints were
simply implemented via #count aggregates and a modulo-two operation (see
Listing 1.1). An alternative idea was later used in harvey [13] (see Listing 1.2).
Unlike these approaches, several SAT solvers feature rather sophisticated treat-
ments of parity constraints, most popularly the award-winning solver crypto-
minisat [24]. The difficulty lies in the inadequacy of CDCL-based solvers [9]

1 This is achieved by uncompiling them during grounding using meta-encodings.
2 https://sourceforge.net/p/potassco/code/HEAD/tree/branches/xorro.

c© Springer Nature Switzerland AG 2019
M. Balduccini et al. (Eds.): LPNMR 2019, LNAI 11481, pp. 284–297, 2019.
https://doi.org/10.1007/978-3-030-20528-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20528-7_21&domain=pdf
http://orcid.org/0000-0002-6421-3158
http://orcid.org/0000-0002-2029-7708
http://orcid.org/0000-0002-1361-6045
http://orcid.org/0000-0002-7456-041X
https://sourceforge.net/p/potassco/code/HEAD/tree/branches/xorro
https://doi.org/10.1007/978-3-030-20528-7_21

The Return of xorro 285

(and more precisely their underlying resolution-based learning scheme) to effec-
tively handle parity constraints. In fact, the translation of parity constraints into
conjunctive normal form degrades search [14], although they could be directly
solved with Gauss-Jordan elimination (GJE) in polynomial time [21]. Conse-
quently, solvers like crypto-minisat pursue a hybrid approach, addressing parity
constraints separately with GJE.

In what follows, we present the next generation of xorro, a full re-
implementation, providing a wide spectrum of alternative ways for integrating
parity constraints into ASP solving. On the one hand, this re-implementation
draws upon the advanced interfaces of clingo for integrating foreign constraints
and corresponding forms of inference. On the other hand, xorro takes advantage
of the sophisticated solving techniques developed in SAT for handling parity
constraints, such as GJE. More precisely, we propose two types of approaches
in Sect. 2,3 namely eager ones that rely on ASP encodings of parity constraints,
and lazy ones using theory propagators within clingo’s Python interface. We
then empirically evaluate the different approaches in view of their impact on
solving performance, while varying the number and size of parity constraints.

2 Incorporating Parity Constraints into ASP

We expect the reader to be familiar with the basic syntax and semantics of logic
programs as implemented by clingo (see [6,7] for details). In this section, we
focus on the introduction of non-standard concepts needed in this paper.

Towards the definition of parity constraints, let � and ⊥ stand for the
Boolean constants true and false, respectively. Given atoms a1 and a2, the exclu-
sive or (xor for short) of a1 and a2 is denoted by a1 ⊕ a2 and it is satisfied if
either a1 or a2 is true (but not both). Generalizing the idea for n distinct atoms
a1, . . . , an, we obtain an n-ary xor constraint (((a1 ⊕ a2) . . .) ⊕ an) by multi-
ple applications of ⊕. Since it is satisfied iff an odd number of atoms among
a1, . . . , an are true, it is called an odd xor constraint and it can be written sim-
ply as a1⊕ . . .⊕ an due to associativity. Analogously, an even xor constraint is
defined by a1⊕ . . .⊕ an ⊕ � as it is satisfied iff an even number of atoms among
a1, . . . , an hold. Then, e.g., a1 ⊕ a2 ⊕ � is satisfied iff none or both of a1 and a2
hold. In the sequel, we also refer to even and odd xor constraints as parity con-
straints. As shown in [18], any xor constraint a1⊕ . . .⊕ an can be decomposed
into two xor constraints a1 ⊕ a2 ⊕ aux and aux ⊕ a3⊕ . . .⊕ an ⊕ � where aux
is a new atom not used elsewhere. Finally, xor constraints of forms a ⊕ ⊥ and
a ⊕ � are called unary.

To accommodate parity constraints in the input language, we rely on clingo’s
theory language extension [8] that pertains to the common syntax of aggregates:

3 The distinction of eager and lazy approaches follows the methodology in Satisfiability
modulo theories [1].

286 F. Everardo et al.

More precisely, xorro extends the input language of clingo by aggregate names
&even and &odd that are followed by a set, whose elements are terms conditioned
by conjunctions of literals separated by commas.4 The semantics of aggregates
formed with keywords &even and &odd is defined by even and odd parity con-
straints, respectively. In the current implementation, they are interpreted as
directives that select answer sets satisfying the parity constraint in question.5

For now, parity constraints may not occur in the bodies nor the heads of rules
and the full integration of parity constraints into rules is left as future work. The
parity constraints shown above yield two answer sets, viz. {p(1)} and {p(1),
p(2), p(3)} in the context of a choice rule {p(1..3)}. Hence, the first con-
straint filters out answer sets not containing the atom p(1), while the second
requires that either none or both of the atoms p(2) and p(3) are included.

2.1 Eager Encodings of Parity Constraints

In the following, we present three different ways to encode parity constraints using
primitives available in standard ASP. We refer to these encodings by nicknames
Counting, List, and Tree, respectively. Each encoding leads to an eager evalua-
tion of the corresponding parity constraint in terms of nogoods, which are used to
invalidate answer sets as well as to explain reasons behind conflicts encountered by
solvers. In the eager approach, nogoods resulting from parity constraints are gen-
erated in advance. As a consequence, the underlying answer-set solver may freely
propagate truth values over (parts of) parity constraints during search.

Counting. Our first encoding is essentially the same as used in the previous
generation of xorro. As shown in Listing 1.1, the idea is to introduce an analogous
counting aggregate for the number of terms in the set and, in addition, to check
that this number matches with the given parity. Recalling the preceding example
in this section, the given parity constraints translate into integrity constraints
embedding #count aggregates coupled with appropriate modulo 2 conditions.
The net effect is that the first constraint enforces odd parity within {p(1)},
while the latter concerns even parity for the atoms in {p(2),p(3)}.

List. The encoding presented in Listing 1.2 is based on an ordered list of terms
expressed using predicates term/1, first/1, last/1, and next/2. The idea is
to perform a sequence of tests for odd parity based on this list.6 Line 1 sets the
base case using the first term of the list. Then, Lines 2 and 3 recursively check
for odd parity following the structure of the list. Note that term(T) holds iff the
conditions related with the term T are satisfied. Line 4 determines if the parity

4 In turn, multiple conditional terms within an aggregate are separated by semicolons.
5 Our implementation of parity constraints fits perfectly with the parity constraints

used in sampling and model counting.
6 This is analogous to parity evaluation using binary decision diagrams (BDDs).

The Return of xorro 287

of the entire term sequence is odd based on the status of last term in the list.
Finally, the encoding should be combined with exactly one of the constraints
in Lines 5 and 6. The first eliminates answer sets with odd parity, while the
one commented away in the listing removes the even cases with respect to the
parity constraint in question. The given encoding has been deployed, e.g., in the
previous gringo versions (2 and 3) [10] as well as randomized testing [13].

Tree. Our last eager representation resembles the previous encoding but the
underlying topology for parity checks is different. A balanced binary tree is cre-
ated for each parity constraint and the recursive evaluation proceeds in a bottom-
up fashion. The terms are associated with the leaves of the tree while the root
corresponds to the final outcome of the parity check. The structure of the tree
is expressed using predicates leaf/1, root/1, and edge/2. Line 1 in Listing 1.3
sets the base case using the leaves of the tree. Lines 2 and 3 accumulate the
result of the parity check towards the root of the tree, the value for each parent
P is set based on the values of children C1 and C2 that need not be ordered by
symmetry. The value observed for the root R (see Line 4) sets the result. In addi-
tion to the given rules, we have to include constraints for selecting the intended
parity value as done in Lines 5–6 in Listing 1.2.

2.2 Lazy Evaluation of Parity Constraints

Next, we switch our attention to the lazy evaluation techniques that generate
nogoods related to parity constraints on demand only. This is in contrast with
the eager approaches where such nogoods can be produced a priori. In practice,
we have implemented parity reasoning modules in Python acting as theory prop-
agators [8] for the clingo system. In what follows, we briefly explain how parity
checking can be achieved in a more lazy fashion.

Lazy Counting. In this approach, the idea is to perform counting (modulo 2)
in order to check parity constraints. However, such checks are performed only
when a candidate answer set for the rest of the program has been found. There-
fore, the evaluation of parity constraints does not interfere with the propagation
of truth values while searching for answer sets. If a particular parity constraint
is violated, then a corresponding nogood is generated.

288 F. Everardo et al.

Watched Literals. The propagation of truth values can be performed on
demand by watching certain literals occurring in a constraint (such as 2 lit-
erals per clause [20]). The rough idea is to check the status of the constraint
only if the truth values of the watched literals are changed. As a result, the
constraint might be used for propagation or the literal(s) being watched is/are
changed to some other literal(s). In case of parity constraints, however, all but
one atom involved in a particular constraint must be assigned before the truth
value of the final one is determined [18,24]. E.g., if a1, . . . , ak−1 and ak+1, . . . , an
have been assigned false or, more generally, have an even parity in a1⊕ . . .⊕ an,
then ak must be true. Therefore, we have to keep track of both parity values
(even and odd) by watching 2×2 literals (two literals both phases) for each par-
ity constraint. Is important to mention, that all atoms (or terms) contributing
to parity constraints originate from the underlying logic program. Otherwise,
they are removed by the gringo grounder due to closed world assumption (all
occurrences of ⊥ can be removed from parity constraints).

a ⊕ b ⊕ c
a

b ⊕ c ⊕ �
¬b

¬c

c ⊕ d ⊕ �

¬d

Fig. 1. Unit propagation involving parity
constraints

Figure 1 illustrates unit propaga-
tion over parity constraints a ⊕ b ⊕ c
and c⊕ d⊕ �. Given the truth assign-
ments a and ¬b indicated in gray,
the first constraint simplifies to b ⊕
c ⊕ �. Furthermore, we get ¬c and
¬d through unit propagation. Had the
assumptions originated from a candi-
date answer set {a}, no other answer
sets would be feasible. The inferences
made here can be recorded as learned
nogoods {a,¬b, c} and {¬c, d} in order to perform similar (ordinary) unit prop-
agation later on without consulting the parity propagator again.

Gauss-Jordan Elimination. Sets of parity constraints can also be cast as linear
equation systems whose solutions can be determined using Gauss-Jordan elimina-
tion (GJE) [15,18,24]. The GJE method is complete for parity reasoning because
it can be used to decide whether a conjunction of parity constraints is satisfiable
as well as to find implied literals and equivalences. Plain Gaussian elimination can
efficiently detect satisfiability, but not implied literals nor equivalences. This can
be understood from the difference between the row-echelon and the reduced row-
echelon forms for the matrix representations of parity equation systems.

a b c d p
1 1 1 0 1
0 0 1 1 0
0 1 1 0 0

(a)

a c d p
1 1 0 0
0 1 1 0
0 1 0 1

(b)

a c d p
1 1 0 0
0 1 1 0
0 0 1 1

(c)

a c d p
1 0 0 1
0 1 0 1
0 0 1 1
(d)

Fig. 2. Deducing a, c, and d by GJE after b given

For the sake of
illustrating GJE, let
us use the con-
straints from Fig. 1
along with b ⊕ c ⊕
�. Figure 2(a) rep-
resents the respec-
tive equations as a
matrix where the column “p” indicates parities for the equations. Figure 2(b)
shows a column reduction when b is assigned true and reflected to the parity

The Return of xorro 289

values. Figure 2(c) shows a row-echelon form for the matrix, already indicating
satisfiability and the truth of d. By further simplification into reduced row-
echelon form in Fig. 2(d), we can clearly see how the values for other atoms are
determined: a, c, and d must all be true. After the matrix is reduced, we need
to find either a conflict or implications. If conflict, the nogood is the partial
assignment. If implications, the nogood is the partial assignment coupled with
each of the implication literals in negated form.

3 The xorro System

This re-implementation of xorro allows the user to solve parity constraints on
top of an ASP program using a specific approach.7 xorro is built on top of clingo
5.3, and the system architecture is shown in Fig. 3. xorro follows the standard
grounding-solving workflow of ASP, plus three additional blocks shown in solid
lines which are preprocessing, transformation, and translation. The preprocess-
ing module has two optional flags --split and --pre-gje. The split flag takes
an integer to cut larger constraints into smaller ones using auxiliary variables,
and the pre-gje flag enables xor simplification for more than one constraint. If
both flags are used together, GJE is performed first followed by splitting. The
transformation block is performed before grounding to parse each parity con-
straint into facts and normal ASP rules. The translation block is called before
solving and it is responsible for building additional features for each approach.
Additionally, this implementation of xorro preserves the same functionality as
its predecessor for near-uniform sampling.

Fig. 3. Architecture of xorro

The workflow starts with an ASP program with parity constraints. Before
grounding, we preprocess and transform each parity constraint using clingo’s
Abstract Syntax Tree (AST) into auxiliary atoms of the form parity/2 and
parity/3. The atom parity/2 is added as a fact and it contains a numeric

identifier and the parity as odd or even. The atom parity/3 is added in the
head of a new rule where the body corresponds to its conditional literal. This
atom contains the same information as the fact parity/2 plus the tuples of
terms involved in the constraint.8 For example, the transformation of the parity
constraints from Fig. 2a is shown in Listing 1.4.

7 https://github.com/potassco/xorro.
8 The transformation process mimicks the use of a theory grammar for clingo [8].

https://github.com/potassco/xorro

290 F. Everardo et al.

The translation block depends on the given approach which is given by the
flag --approach followed by a keyword indicating one of the approaches from
Sects. 2.1 and 2.2. In the case of an eager approach, we add additional structures
to the program. For the eager count approach, we add the count aggregates with
respect to the atom parity/3 for every parity constraint parity/2. For the
list and tree approaches, we benefit from clingo’s Python API by using clingo’s
backend class to extend a logic program by adding statements directly in the
intermediate format of ASP (aspif [16]).

For the lazy approaches, we benefit from the theory propagator interface
of clingo which consists of four functions, namely init, propagate, undo, and
check. We rely on them, so each lazy approach performs at a specific part of the
search, being during propagation or fixpoints (partial or total assignments). All
propagators keep the state of each parity constraint by its (solver) literals. From
the three lazy approaches, the lazy count works on total assignment whereas the
UP and GJE during propagation. The lazy count approach does not propagate
and do not interfere with clasp propagation. On total assignment under the
check method, we count the number of true literals. In case of conflict, add
the nogood (whole assignment per constraint) and let clasp to propagate again.
The Unit-Propagation (UP) propagator performs plain propagation over parity
constraints. As its name suggests, it is performed in the propagate function. The
check method is not implemented, and the state keeps 2×2-watched literals. For
implementing Gauss-Jordan Elimination, two alternatives are proposed, called
“gje-fp” and “gje-prop”. Their main difference is at which point of the search
GJE is called. Both extend the UP approach. For “gje-fp” two propagators
are registered, the UP followed by the “gje-fp” propagator, performing GJE on
fixpoints. The “gje-prop” alternative registers only one propagator performing
GJE when a unit clause is detected.

As mentioned, this implementation of xorro preserves the functionality of
sampling following the concepts from the XORSample’ algorithm [12], by solving
a program with --s random parity constraints with a density --q. The sampling
components are enabled with --sampling and shown in Fig. 3 in dotted rounded-
corner squares. Unlike the algorithm from [12] which calls a model counter,
xorro enumerates all remaining answer sets, and the last module randomly picks
n (user-defined) answer sets. The sampling mode for xorro corresponds to the
non-iterative algorithm from [12] recalling the possibility to get no answer set
due to unsatisfiable parity constraints. Finally, the flag --display prints the
random xor constraints used in sampling.

The Return of xorro 291

4 Experiments

Different tests are proposed to measure the impact of solving a single or several
parity constraints with xorro. We considered 301 satisfiable instances from 19 (9
tight, 10 non–tight) classes using all aforementioned approaches. However, we kept
only 126 instances from eight classes (5 tight, 3 non-tight) for which clingo’s solv-
ing time surpasses one second. These benchmarks problems were taken from the
second ASP competition [5], using encodings of the Potassco team.9 No encod-
ing or instance has been modified, just parity constraints are appended. The main
objectives of our experiments are built around the following questions:

1. What is the impact of solving a single random parity constraint of different
sizes ranging from 1, 10, 20, 30, 40, and 50% of unassigned variables?

2. Due to SAT solvers’ good performance on small size parity constraints, is
there any benefit of splitting a single parity into small ones? On average
from the literature, the size of a small xor constraint is 4.

3. Due to sampling using high-density constraints (50% of unassigned vari-
ables), what is the impact of solving more than one high-density parity
constraint with and without GJE preprocessing?

4. Do the eager approaches count and list used in the previous xorro version,
gringo up to version 3, and in harvey , respectively, scale when solving high-
density parity constraints?

5. Is there any approach outstanding from the rest?

To address these questions, we designed five experiments, each with different
tests. Each test uses the set of instances from the benchmark classes in Table 1
coupled with a single or several xors. We use clingo, and Python to randomly
build each constraint excluding facts with the only condition that at least one
answer set remains. Table 1 shows the range of atoms per class and the number
of instances under column “#”.

Table 1. Range of atoms per class

Class # MIN AVG MAX

Tight
15Puzzle 16 9841 10514 11332
BlockedNQueens 15 7996 8008 8012
GraphColouring 9 2707 2837 3087
SchurNumbers 13 1291 1291 1291
Solitaire 22 7687 8702 9920
Non-tight
ConnectedDomSet 10 804 1463 2519
Labyrinth 29 56482 91733 120192
WireRouting 12 6085 15546 25330

For the first experi-
ment, we solved all the
instances each with a sin-
gle parity constraint of dif-
ferent sizes ranging from
one, 10, 20, 30, 40, to
50% of unassigned vari-
ables. In the second exper-
iment, we used the same
parity constraints but we
split them into smaller ones
of size four. The auxiliary
atoms were added into each
instance as choice rules. For
the third, fourth, and fifth

9 http://flavioeverardo.com/research/benchmarks/xorro/.

http://flavioeverardo.com/research/benchmarks/xorro/

292 F. Everardo et al.

experiments, we increased the number of high-density xors to two, three, four,
and five. We first solved the instances without preprocessing. Then, we reduced
the length of the xors by applying GJE, and lastly, GJE plus a split of size four.
It is important to remark that the difference between small xors and shorter
ones due to split, is their shared variables. If independently drawn small xors
contain variables in common, they mean the same as a longer xor with equiva-
lence reasoning.

Our tests follow the notation “cNxMperc” where N represents the number
of parity constraints times M percentage or density per parity. For example
the test “c03 × 50perc” solves an instance containing three xors of 50% each.
Our comparison considers solving each instance without parity constraints using
clingo 5.3 in its default setting as benchmark reference. We ran clingo two times,
once for the first two experiments and once more for the last three.

The experiments were run in parallel under Linux on an Intel Xeon E5-2650v4
high performance cluster equipped with 2.20 GHz processors. Each benchmark
instance (in smodels output format, generated offline with gringo plus the par-
ity constraints) was run three times per solver (clingo and xorro). Each run is
restricted to 600 s time with 4 GB RAM. A run finished when the solver found
an answer set or was aborted due to time or memory exhaustion.

4.1 Results

Our experiments’ results are summarized in Tables 2a–3c giving average runtimes
in seconds (using PAR–1 score) and the number of aborted runs is shown in
parentheses.10 All the tables show the experiments and clingo’s runtimes without
parity constraints on the left side followed by the corresponding lazy and eager
approaches. The last row of each table shows the average runtimes followed by
the total number of time or memory exhaustion. All tables show the best score
from each test in bold. Tables 2a and b correspond to the results from the first two
experiments addressing questions 1 and 2, respectively. Both experiments divide
the search space into two parts. However, the results are completely contrasting.
The counting approach with aggregates does not scale from the 10 size when
solving the parity constraint as it is. However, this approach scales when the
xors are split. The grounding becomes the bottleneck on longer xors causing
timeouts or memory exhaustion on most of the instances and runs, whereas
roles switch with shorter xors. Despite the best performance of the lazy count
approach on four out of six tests, the best PAR–1 score belongs to the tree
approach. Both approaches perform better than clingo in five out of six tests in
the first experiment. Contrary, both approaches perform worst when splitting
xors. A similar case occurs with the two worst approaches when solving non-
split xors (the count with aggregates and the UP). Both outperform the rest if
the xors are split. The best PAR–1 score from the second experiment belongs

10 For more detailed benchmarks results, including individual times per classes please
go to http://flavioeverardo.com/research/benchmarks/xorro/.

http://flavioeverardo.com/research/benchmarks/xorro/

The Return of xorro 293

to the UP approach. We can see from both experiments the feasibility to reach
an answer set faster than clingo when solving with a single xor.

To resume, the length of the parity constraint matters depending on the
approach to use. To solve a single parity constraint without a split, better use
the tree or the lazy counting approach. On shorter xors or a longer split xor,
better use UP or the eager counting.

Table 2. Experiments solving a single parity constraint from different sizes.

For the last three experiments, the search space is divided into four, eight,
16 and 32 parts showing the solving performance over more than one parity
constraint. From here on, we include the GJE elimination approaches and we
exclude for now the eager counting approach which only performs on shorter
(or split) xors. Table 3a shows the results from experiment number three. The
hardness of solving dense xors starts to arise. Lazy countinging outperforms
the rest when solving with two xors, opposed to clingo which performs the best
in the remaining tests. Both eager approaches (tree and list) perform badly as
the number of xors increases. Lastly, there is a big difference between both
GJE approaches. One (gje-prop) performing in between the eager and the other
lazy approaches, whereas the other (gje-fp) does not scale at all. Both use the
same routines to operate over columns, rows, detect conflicts, propagation and
so on. Also, both perform exactly the same concerning the number of choices,
restarts, conflicts, backjumps, etc. To recall, GJE outputs one of three results:
variable(s) to propagate, conflict(s) or neither of both. The runtime difference
occurs when performing GJE on fixpoints results in finding neither of both in

294 F. Everardo et al.

most of the time. For example, “gje-prop” solves instances of the 15Puzzle class
with an average of 10 calls to GJE without propagating or conflict. The same
instances with “gje-fp” called on average over 5,000 times more GJE without
finding a conflict or a literal to propagate.

Table 3. Experiments on multiple high-density parity constraints.

The fourth experiment solves the same parity constraints but with a GJE
preprocessing step to reduce their length. The results are shown in Table 3b.
From the five approaches, all except UP benefit from preprocessing. The tree
and the lazy counting approaches got a speedup of 5.2 and 3.6% respectively.
However, the tree approach remains worst, and the lazy counting now performs
better than clingo.

The last experiment takes another notch by splitting the preprocessed xors
after GJE. We include the eager counting approach due to its performance on
split constraints. The results from Table 3c show clingo outperforming the rest in
three out of four tests, and also, in the overall score. The UP has the best score
in only one test. Similarly to experiment number two, the lazy counting and the
tree approaches perform poorly with shorter xors. UP and the eager counting
approach have the best scores but still quite far from clingo’s performance. None

The Return of xorro 295

of the five approaches from the fourth experiment benefit from splitting in the
fifth. It is the opposite. The tree, list, and UP downgrade their performance by
24–26%. The lazy counting by 135% and GJE by 600%. We confirm that split-
ting high-density parity constraints does not scale without further preprocessing.
When split, we add more xors and more variables (rows and columns respec-
tively for GJE). We passed from five dense to 670 smaller constraints in the best
case (Connected Dom Set class) against 100,160 shorter parity constraints in the
worst (Labyrinth class). From a GJE perspective, we increased the size of the
matrix from five rows and 402 columns in the best case, to 670 rows and 536
columns. The worst case passes from five rows and 64,596 columns to 100,160
rows and 86,128 columns. This makes our GJE implementation fail to scale
without additional preprocessing. As stated in [18], so far, for larger matrices,
the computational overhead of Gaussian elimination is significant. Also, [22,24]
state that for efficient solving, the number of parity constraints and their den-
sity should be low. The tests show most of the approaches performed better
with longer xors. Additional preprocessing like equivalence reasoning reduces
the number of constraints by creating longer xors.

After running all experiments, we can see that the eager counting and list
approaches stay behind when solving high-density constraints without any pre-
processing (as in the previous xorro and harvey implementations). In contrary,
they improved their performance especially when a split occurs. Also, it is diffi-
cult to identify an approach outstanding from the rest. From 24 tests, the lazy
counting has the best score on six, followed by the UP and the tree approaches
with four and three respectively. Plain clingo performs best on eight tests. On
the other hand, depending on the number and the density of the parity con-
straints, some approaches perform best. From experiment number two, some
xorro approaches perform better on xors of lower densities than n/2 variables.
This is sufficient for approximate model counting, but not for sampling [11].

5 Discussion

We presented different means of implementing parity constraints, ranging from
ASP encodings to theory propagators. The fully re-implemented system xorro
takes advantage of the hybrid reasoning capacities of the ASP system clingo
for solving parity constraints on top of logic programs, providing an opening
to develop new applications in ASP including sampling, (approximate) model
counting, cryptography, and probabilistic reasoning.

Our experiments show that xorro scales depending on the combination of
the number, density, and preprocessing of the parity constraints. For instance,
cutting the search space by half helps xorro to reach an answer set faster than
clingo even when using a high-density constraint. Some approaches scaled when
splitting a single xor as opposed to others who perform without preprocessing.
On the other hand, solving high-density parity constraints hinders xorro perfor-
mance compared to clingo’s, but there is evidence that preprocessing can lead
to a significant speedup.

296 F. Everardo et al.

For future work, we plan to extend clingo’s input language with parity aggre-
gates and investigate the performance of clingo’s multi-shot capabilities by incre-
mentally solving parity constraints as an application for sampling. Finally, to
improve our GJE approach, and inspired by [18,24], we want to explore an
incremental GJE and strategies like ordered columns and turning GJE on/off
automatically as well as cutoff values, rows and columns elimination with equiv-
alence reasoning.

References

1. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories.
In: Biere et al. [2], chap. 26, pp. 825–885

2. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amster-
dam (2009)

3. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable and nearly uniform gen-
erator of SAT witnesses. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS,
vol. 8044, pp. 608–623. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39799-8 40

4. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable approximate model counter.
In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 200–216. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40627-0 18

5. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The second
answer set programming competition. In: Erdem, E., Lin, F., Schaub, T. (eds.)
LPNMR 2009. LNCS (LNAI), vol. 5753, pp. 637–654. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04238-6 75

6. Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V., Schaub, T.: Abstract Gringo.
Theory Pract. Logic Program. 15(4–5), 449–463 (2015)

7. Gebser, M., et al.: Potassco User Guide, 2 edn. (2015). http://potassco.org
8. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:

Theory solving made easy with clingo 5. In: Carro, M., King, A. (eds.) Techni-
cal Communications of the Thirty-second International Conference on Logic Pro-
gramming (ICLP 2016), vol. 52, pp. 2:1–2:15. Open Access Series in Informatics
(OASIcs) (2016)

9. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
and Claypool Publishers, San Rafael (2012)

10. Gebser, M., Kaminski, R., König, A., Schaub, T.: Advances in gringo series 3.
In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp.
345–351. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20895-
9 39

11. Gomes, C.P., Hoffmann, J., Sabharwal, A., Selman, B.: Short XORs for model
counting: from theory to practice. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT
2007. LNCS, vol. 4501, pp. 100–106. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-72788-0 13

12. Gomes, C., Sabharwal, A., Selman, B.: Near-uniform sampling of combinatorial
spaces using XOR constraints. In: Schölkopf, B., Platt, J., Hofmann, T. (eds.)
Proceedings of the Twentieth Annual Conference on Neural Information Processing
Systems (NIPS 2006), pp. 481–488. MIT Press (2007)

https://doi.org/10.1007/978-3-642-39799-8_40
https://doi.org/10.1007/978-3-642-39799-8_40
https://doi.org/10.1007/978-3-642-40627-0_18
https://doi.org/10.1007/978-3-642-04238-6_75
http://potassco.org
https://doi.org/10.1007/978-3-642-20895-9_39
https://doi.org/10.1007/978-3-642-20895-9_39
https://doi.org/10.1007/978-3-540-72788-0_13
https://doi.org/10.1007/978-3-540-72788-0_13

The Return of xorro 297

13. Greßler, A., Oetsch, J., Tompits, H.: Harvey: a system for random testing in ASP.
In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS (LNAI), vol. 10377,
pp. 229–235. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61660-
5 21

14. Haanpää, H., Järvisalo, M., Kaski, P., Niemelä, I.: Hard satisfiable clause sets for
benchmarking equivalence reasoning techniques. J. Satisfiability Boolean Model.
Comput. 2(1–4), 27–46 (2006)

15. Han, C.-S., Jiang, J.-H.R.: When boolean satisfiability meets gaussian elimination
in a simplex way. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol.
7358, pp. 410–426. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31424-7 31

16. Kaminski, R., Schaub, T., Wanko, P.: A tutorial on hybrid answer set solving with
clingo. In: Ianni, G., et al. (eds.) Reasoning Web 2017. LNCS, vol. 10370, pp.
167–203. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61033-7 6

17. Kaufmann, B., Leone, N., Perri, S., Schaub, T.: Grounding and solving in answer
set programming. AI Mag. 37(3), 25–32 (2016)

18. Laitinen, T.: Extending SAT solver with parity reasoning. Dissertation, Aalto Uni-
versity, November 2014

19. Meel, K.: Constrained counting and sampling: bridging the gap between theory
and practice. Dissertation, Rice University, August 2018

20. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an
efficient SAT solver. In: Proceedings of the Thirty-Eighth Conference on Design
Automation (DAC 2001), pp. 530–535. ACM Press (2001)

21. Schaefer, T.: The complexity of satisfiability problems. In: Lipton, R., Burkhard,
W., Savitch, W., Friedman, E., Aho, A. (eds.) Proceedings of the Tenth Annual
ACM Symposium on Theory of Computing (STOCS 1978), pp. 216–226. ACM
Press (1978)

22. Soos, M.: Enhanced Gaussian elimination in DPLL-based SAT solvers. In: Le Berre,
D. (ed.) Proceedings of the First Workshop on Pragmatics of SAT (PoS 2010).
EPiC Series in Computing, vol. 8, pp. 2–14. EasyChair (2012)

23. Soos, M., Meel, K.: Bird: Engineering an efficient CNF-XOR sat solver and its
applications to approximate model counting. In: Van Hentenryck, P., Zhou, Z.
(eds.) Proceedings of the Thirty-Third National Conference on Artificial Intelli-
gence (AAAI 2019). AAAI Press (2019, to appear)

24. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2 24

https://doi.org/10.1007/978-3-319-61660-5_21
https://doi.org/10.1007/978-3-319-61660-5_21
https://doi.org/10.1007/978-3-642-31424-7_31
https://doi.org/10.1007/978-3-642-31424-7_31
https://doi.org/10.1007/978-3-319-61033-7_6
https://doi.org/10.1007/978-3-642-02777-2_24

Degrees of Laziness in Grounding

Effects of Lazy-Grounding Strategies on ASP Solving

Richard Taupe1,2(B) , Antonius Weinzierl3 , and Gerhard Friedrich2

1 Siemens AG Österreich, Vienna, Austria
richard.taupe@siemens.com

2 Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria
gerhard.friedrich@aau.at

3 Institute of Logic and Computation, Vienna University of Technology,
Vienna, Austria

weinzierl@kr.tuwien.ac.at

Abstract. The traditional ground-and-solve approach to Answer Set
Programming (ASP) suffers from the grounding bottleneck, which makes
large-scale problem instances unsolvable. Lazy grounding is an alterna-
tive approach that interleaves grounding with solving and thus uses space
more efficiently. The limited view on the search space in lazy grounding
poses unique challenges, however, and can have adverse effects on solv-
ing performance. In this paper we present a novel characterization of
degrees of laziness in grounding for ASP, i.e. of compromises between
lazily grounding as little as possible and the traditional full grounding
upfront. We investigate how these degrees of laziness compare to each
other formally as well as, by means of an experimental analysis using a
number of benchmarks, in terms of their effects on solving performance.
Our contributions are the introduction of a range of novel lazy grounding
strategies, a formal account on their relationships and their correctness,
and an investigation of their effects on solving performance. Experiments
show that our approach performs significantly better than state-of-the-
art lazy grounding in many cases.

Keywords: Answer Set Programming · Lazy grounding · Heuristics

1 Introduction

Answer Set Programming (ASP) [2,11,14,15] is a declarative knowledge repre-
sentation formalism that has been applied in a variety of industrial and scientific
applications. The success of ASP is rooted in efficient solvers such as clingo [10]
or DLV [17], which apply the ground-and-solve approach, i.e. they first instanti-
ate the given non-ground program and then apply a number of efficient solving
techniques to find the answer sets of the variable-free (i.e., ground) program.

This approach suffers from the grounding bottleneck since in many practical
and industrial applications the ground program is too large to fit in memory.

c© Springer Nature Switzerland AG 2019
M. Balduccini et al. (Eds.): LPNMR 2019, LNAI 11481, pp. 298–311, 2019.
https://doi.org/10.1007/978-3-030-20528-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20528-7_22&domain=pdf
http://orcid.org/0000-0001-7639-1616
http://orcid.org/0000-0003-2040-6123
http://orcid.org/0000-0002-1992-4049
https://doi.org/10.1007/978-3-030-20528-7_22

Degrees of Laziness in Grounding 299

One example for such applications is scheduling, where instances used in ASP
competitions already yield very large ground programs and real-life instances are
significantly larger [9]. Such problem instances cannot be grounded by modern
grounders such as gringo [12] or I-DLV [3] in acceptable time and/or space [6].

Lazy-grounding ASP systems such as gasp [20], ASPeRiX [16], OMiGA
[5], and most recently Alpha [26] successfully avoid the grounding bottleneck
by interleaving grounding and solving, but suffer from substandard search per-
formance. For practical applications one can now decide between running out
of memory with a ground-and-solve system, or running out of time with a lazy-
grounding system. Since the grounding bottleneck is an inherent issue of the
ground-and-solve approach, improvements of lazy-grounding ASP solving are an
important contribution for dealing with large, real-world problem instances.

Therefore, we equipped Alpha with state-of-the-art heuristics successfully
employed by other ASP solvers, namely MOMs [21] for initialization of heuristic
scores and VSIDS [19] for their dynamic modification. Both have been imple-
mented in a similar fashion as in clasp [13]. Somewhat surprisingly, however,
those heuristics improved performance of lazy-grounding solving by a much
smaller degree than expected. A subsequent investigation revealed that lazy
grounding does not provide sufficient information on the search space for such
heuristics to perform adequately, because by grounding lazily the solver has only
a limited view on the search space. This is a novel challenge for ASP solving,
which traditional ground-and-solve ASP solvers did not have to face.

In order to improve solving performance this work investigates ways to
offset the limited view of the search space in lazy-grounding ASP solving.
We explore various lazy-grounding strategies to find compromises between full
upfront grounding and largely blind search heuristics. In summary, our contri-
butions are:

– the inception of a field of novel lazy-grounding strategies for ASP evaluation,
– a formal investigation of how these grounding strategies compare to each

other and to previously known ones, as well as
– an experimental analysis in terms of their effects on solving performance,

showing that our approach is able to perform significantly better than state-
of-the-art lazy grounding in many cases.

Outline: After preliminaries in Sect. 2, novel lazy-grounding strategies are
introduced in Sect. 3 and their relationships are formally investigated. Section 4
presents experimental results, and Sect. 5 concludes.

2 Preliminaries

Let C be a finite set of constants, V be a set of variables and P be a finite set of
predicates. An atom is an expression p(t1, . . . , tn) where p is an n-ary predicate
and t1, . . . , tn ∈ C ∪ V are terms, and a literal is either an atom a or its default
negation not a. An ASP program P is a finite set of (normal) rules of the form

h ← b1, . . . , bm, not bm+1, . . . , not bn.

300 R. Taupe et al.

where h and b1, . . . , bm are positive literals (i.e. atoms) and not bm+1, . . .,
not bn are negative literals. Given a rule r, we denote by H(r) = {h}, B(r) =
{b1, . . . , bm, not bm+1, . . . ,not bn}, B+(r) = {b1, . . . , bm}, and B−(r) = {bm+1,
. . . , bn} the head, body, positive body, and negative body of r, respectively.
If H(r) = ∅, r is a called a constraint, and a fact if B(r) = ∅. Given a lit-
eral l, set of literals L, or rule r, we denote by vars(l), vars(L), or vars(r)
the set of variables occurring in l, L, or r, respectively. A literal l or rule r
is ground if vars(l) = ∅ or vars(r) = ∅, respectively. The set of all ground atoms
is denoted by Atgrd. A program P is ground if all its rules r ∈ P are. As usual,
in the remainder of this work we only consider safe programs P , where each
rule r ∈ P is safe, i.e., each variable occurring in r also occurs in its positive
body, formally, vars(r) ⊆ vars(B+(r)). The function pred: 2A → 2P maps a
set of atoms to their predicates, e.g. pred({a(1, 2), a(X,Y)}) = {a/2}. The set
heads(P) = {H(r) | r ∈ P} contains the heads of all rules in P , and the set
facts(P) = {r | r ∈ P ∧ B(r) = ∅} contains all facts.

An (Herbrand) interpretation I is a subset of the Herbrand base w.r.t. P , i.e.,
I ⊆ Atgrd. I satisfies a ground rule r, denoted I |= r, if B+(r) ⊆ I∧B−(r)∩I = ∅
implies H(r) ⊆ I and H(r)
= ∅. Given an interpretation I and a ground program
P , the FLP reduct P I of P w.r.t. I is the set of rules r ∈ P whose body is
satisfied by I, i.e., P I = {r ∈ P | B+(r) ⊆ I ∧ B−(r) ∩ I = ∅} [8]. I is an
answer set of a ground program P if I is the subset-minimal model of P I .
A substitution σ : V → C is a mapping of variables to constants. Given an
atom at the result of applying a substitution σ to at is denoted by atσ; this
is extended in the usual way to rules r, i.e., rσ for a rule of the above form
is hσ ← b1σ, . . . , bmσ,not bm+1σ,not bnσ. The grounding of a rule is given by
grd(r) = {rσ | σ is a substitution for all v ∈ vars(r)} and the grounding grd(P)
of a program P is given by grd(P) =

⋃
r∈P grd(r). The answer sets of a non-

ground program P are given by the answer sets of grd(P).
Computing all answer sets such that grd(P) is constructed lazily is typi-

cally done by a loop composed of two phases: given a partial assignment (that
is initially empty), first ground those rules that potentially fire under the cur-
rent assignment, second expand the current assignment (using propagation and
guessing). If the loop reaches a fixpoint, i.e., no more rules potentially fire and
nothing is left to propagate or guess on, and no constraints are violated, then
the current assignment is an answer set (cf. [18,26] for a detailed account of
the Alpha ASP system). A (partial) assignment A is a set of signed atoms
where A+ denotes the atoms assigned a positive value and A− those assigned
a negative value in A. Note that for this work it is sufficient to consider A to
be Boolean (while the solving component of Alpha also considers a third and
positive truth value must-be-true). Also, we consider assignments to be consis-
tent, i.e. A+ ∩ A− = ∅. Given two assignments A,A′ we define the combination
A�A′ = B to be an assignment such that B+ = A+ ∪A′+ and B− = A− ∪A′−.

Degrees of Laziness in Grounding 301

3 Lazy-Grounding Strategies

Currently, a ground rule is only returned to the solver if it is of interest, i.e., if
its positive body is fully satisfied. This is a very restrictive grounding strategy in
order to save space and avoid the grounding bottleneck. As experience shows, this
maximally strict grounding strategy employed by Alpha results in non-optimal
search performance, because state-of-the-art search procedures are propositional
and only operate on grounded parts of the problem. With maximally strict lazy-
grounding these search procedures (e.g. branching heuristics) are left mostly
blind when large parts of the given problem instance are not yet grounded.

In the following we thus investigate more permissive lazy-grounding strategies
that lie between the maximally strict one and the full upfront grounding (the
maximally permissive grounding strategy). The more permissive a grounding
strategy, the less restrictions it poses on ground rules returned by the grounder.
Thus, ground rules are produced earlier and in higher quantity.

Definition 1. Let P be an answer-set program, A be the set of assignments,
Gm = 2Atgrd be the set of possible grounder memories, and R ⊆ P the set of
rules of P that are not ground. Then, a lazy-grounding strategy is a function
s : A × Gm × R → Gm × 2grd(P) mapping a triple of assignment, grounder
memory, and a rule with variables to a new grounder memory and a set of
ground instances of the rule, i.e., (A,G, r) �→ (G′, R′) with R′ ⊆ grd(r).

A grounder memory G ⊆ 2Atgrd is a subset of the Herbrand base HBP =
Atgrd and thus can be seen as one half of an assignment, i.e., either A+ or A−.
Since rules in ASP must be safe, a grounding substitution for all variables of
the positive body of a rule is also a grounding substitution for the whole rule.
Therefore, it is sufficient to consider only the positive body for lazy grounding.

Considering both negative and positive body atoms could allow a more
restrictive grounding than currently employed in Alpha, because a grounding
instantiation could be rejected if one of the negative body literals is currently
true. This approach, however, would require the solver to ground additional rules
also when backtracking in the search, because backtracking removes assignments
and those could then lead to negative body atoms no longer being true. Thus
in Alpha grounding only considers the positive body of a rule and we follow
this choice here. In the remainder of this work we therefore identify a grounder
memory G with an assignment A such that A+ = G and A− = ∅, i.e., a grounder
memory identifies a fully positive assignment.

In order to avoid ground instantiations of rules that can never be applicable
we introduce a notion of deterministically inactive rules. Intuitively, a rule is
inactive if it contains a positive literal over a predicate that does not occur in
any rule head (or fact) and hence cannot be derived, or if it contains a negative
literal that also occurs as a fact in the program hence its negation never holds.
Formally, given a ground rule r ∈ grd(P), r is inactive if there exists a ∈ B+(r)
with pred(a) /∈ pred(heads(P)) or a ∈ B−(r) with a ∈ A(facts(P)).1

1 The notion of inactive rule could be generalized to cover more rules, but we decidedly
chose a syntactic condition that is easy to check algorithmically.

302 R. Taupe et al.

Given an assignment A, a ground rule rσ stemming from a non-ground rule
r ∈ P and a substitution σ, rσ is of interest w.r.t. A if B+(rσ) ⊆ A+ holds and
must be grounded, because rσ potentially fires under A.

The formalization of Alpha’s default grounding strategy is as follows.

Definition 2. The default grounding strategy for a program P is a lazy-ground-
ing strategy gsdef(A,G, r) = (G′, R) such that G′ = A+ and R = {r′ ∈ grd(r) |
r′ is not inactive and of interest w.r.t.A}.

The following notion helps to characterize a class of grounding strategies
that are at least as permissive as the maximally strict strategy and strictly less
permissive than the maximally permissive strategy.

Definition 3. A ground rule r ∈ grd(P) is weakly applicable w.r.t. an assign-
ment A if B+(r) ∩ A− = ∅ and r is not inactive.

Intuitively, a ground rule r is weakly applicable if is not inactive and no positive
body atom is assigned false. Given an assignment A, a (non-ground) rule r, and
a substitution σ such that rσ is ground, we call the set LA(r, σ) of positive
literals of r whose grounding is in A, i.e., LA(r, σ) = {l ∈ B+(r) | lσ ∈ A+}, the
assigned literals of rσ w.r.t. A; furthermore, if vars(LA(r, σ)) = vars(r) we say
rσ is all-variable-assigning w.r.t. A.

Definition 4. A ground instance rσ of a non-ground rule r ∈ P is k-unassigned
w.r.t. an assignment A if it is weakly applicable, its set LA(r, σ) of assigned
literals is all-variable-assigning, and |B+(r)\LA(r, σ)| ≤ k, i.e. at most k literals
in the positive body of rσ are still unassigned.

For grounding strategies based on k-unassignedness, we further distinguish
between constraints and normal rules, because these two types affect the search
procedure in different ways (as Sect. 4 shows). A modified grounder then returns
all ground rules that can be produced w.r.t. the current partial assignment and
that are kco-unassigned in the case of constraints or kru-unassigned in the case
of other rules, where kco and kru are parameterizable. Values kco = kru = 0 yield
the maximally strict grounding strategy, i.e., a rule is 0-unassigned if and only
if it is of interest. The field of novel grounding strategies then is as follows.

Definition 5. The k-unassigned grounding strategy for a program P is a lazy-
grounding strategy gskco,kru

(A,G, r) = (G′, R) such that G′ = A+ and R = {r′ ∈
grd(r) | H(r′) = ∅, r′ is kco-unassigned w.r.t. A} ∪ {r′ ∈ grd(r) | H(r′)
= ∅, r′ is
kru-unassigned w.r.t. A}.

Strategies with kco > kru ground more constraints than rules, allowing better-
informed search heuristics and at the same time fewer superfluous ground rules.
Intuitively, these grounding strategies yield a larger grounding in each step of a
lazy-grounding solver, but they are still limited to only yield ground instances
of rules that are very close to the current search path, since k-unassignedness
requires all variables to be bound by instances in the current assignment.

Degrees of Laziness in Grounding 303

To give the grounder more freedom such that ground instances can be
obtained that are further away from the current search path, we introduce accu-
mulator grounding strategies. The core idea is to use the grounder memory to
store ground atoms that were encountered earlier in another branch of the search
for answer sets but are not necessarily true in the current branch of the search.

Definition 6. The default accumulator grounding strategy for a program P is
a lazy-grounding strategy gsaccudef (A,G, r) = (G′, R) such that G′ = G ∪ A+ and
R = {r′ ∈ grd(r) | r′ is not inactive and of interest w.r.t. G′ � A}.

Using such an accumulator the grounder is able to obtain ground instances
resulting from a combination of different search paths. The accumulator can also
be added to the k-unassigned grounding strategy as follows.

Definition 7. The k-unassigned accumulator grounding strategy for a program
P is a lazy-grounding strategy gsaccukco,kru

(A,G, r) = (G′, R) such that G′ = G∪A+

and R = {r ∈ grd(r) | H(r) = ∅, r is kco-unassigned w.r.t. G′ � A} ∪ {r′ ∈
grd(r) | H(r′)
= ∅, r′ is kru-unassigned w.r.t. G′ � A}.

Relationships Between Lazy-Grounding Strategies. Some of the lazy-grounding
strategies introduced above are subsumed by others, i.e., the sets of ground
rules produced by some grounding strategies are subsets of those produced by
others. First, each k-unassigned grounding strategy is subsumed by a k + 1-
unassigned grounding strategy, intuitively because a k-unassigned rule also is a
k + 1-unassigned rule. Formally, and more detailed:

Proposition 1. Given an assignment A, a grounding memory G, and a rule r.
Let gskco,kru

(A,G, r) = (G′, R) and gsk′
co,k

′
ru

(A,G, r) = (G′′, R′), then R ⊆ R′

for any k′
co ≥ kco and k′

ru ≥ kru.

Proof. Let gskco,kru
(A,G, r) = (G′, R) and r′ ∈ R. Then r′ is either a kco-un-

assigned constraint or a kru-unassigned rule and because k′
co ≥ kco and k′

ru ≥ kru
it follows that r′ is either a k′

co-unassigned constraint or a k′
ru-unassigned rule,

respectively. In either case it holds that r′ ∈ R′ for gsk′
co,k

′
ru

(A,G, r) = (G′′, R′).

Second, each k-unassigned strategy subsumes the default grounding strategy.

Proposition 2. Given an assignment A, a grounding memory G, and a rule r.
Let gsdef(A,G, r) = (G′, R) and gskco,kru

(A,G, r) = (G′′, R′), then R ⊆ R′ for
any kco, kru ≥ 0.

Proof. Let gsdef(A,G, r) = (G′, R) and r ∈ R, then r is not inactive and of
interest w.r.t. A, i.e., B+(r) ⊆ A+. By the latter, it holds that r is 0-unassigned
and consequently r ∈ R′ for gs0,0(A,G, r) = (G′′, R′). From Proposition 1 it then
follows that r ∈ R′ for any gskco,kru

(A,G, r) = (G′′, R′) with kco, kru ≥ 0.

Third, the accumulator variant of a grounding strategy subsumes the ground-
ing strategy without accumulator.

304 R. Taupe et al.

Proposition 3. For an assignment A, a grounding memory G, and a rule r:

1. if gsdef(A,G, r) = (G′, R) and gsaccudef (A,G, r) = (G′′, R′) then R ⊆ R′.
2. if gskco,kru

(A,G, r) = (G′, R) and gsaccukco,kru
(A,G, r) = (G′′, R′) then R ⊆ R′

for any kco, kru ≥ 0.
3. if gsaccukco,kru

(A,G, r) = (G′, R) and gsaccuk′
co,k

′
ru

(A,G, r) = (G′′, R′) then R ⊆ R′

for any k′
co ≥ kco and k′

ru ≥ kru.

Proof. 1. Let gsdef(A,G, r) = (G′, R) and r ∈ R, thus by definition it holds
that r is not inactive and of interest w.r.t. G′ = A+. For the accumulator vari-
ant it holds that G′′ = G ∪ A+ and R′ = {r ∈ grd(r) | r is not inactive and
of interest w.r.t. G′′}. Since G′ ⊆ G′′ and the assignment corresponding to a
grounder memory is an assignment A such that A+ = G′ and A− = ∅, it holds
that r is of interest w.r.t. G′′, i.e., r ∈ R′. 2. and 3. are analogous.

Soundness and Completeness. We show in the following that all grounding
strategies are sound and complete, i.e., in a lazy-grounding ASP solver one may
freely exchange one grounding strategy for another.

Proposition 4. Given a lazy-grounding ASP solver S which is sound and com-
plete for the default grounding strategy gsdef , then S is sound and complete for
the k-unassigned grounding strategies gskco,kru

, and their respective accumulator
variants gsaccudef and gsaccukco,kru

.

Proof. Soundness immediately follows from the respective definition, because
every ground rule returned by any of the above grounding strategies is a ground
rule of the original program. Formally, let (G′, R) be the returned pair of any of
these strategies then for all r ∈ R it holds that r ∈ grd(r) and thus r ∈ grd(P)
where P is the input program.

Completeness: S is complete for gsdef intuitively since if a ground rule r fires
under some assignment A then r is of interest w.r.t. A and hence returned by
gsdef . Observe that a rule that is inactive can never be applicable in any answer
set, hence the additional requirement to only consider rules that are not inactive
has no effect on completeness. Completeness for all other grounding strategies
then follows from Propositions 1 to 3, showing that every other grounding strat-
egy produces at least the same ground rules as gsdef .

The lazy-grounding strategies gsdef ,gskco,kru
, gsaccudef , and gsaccukco,kru

are sound
and complete for Alpha, since Alpha is sound and complete for gsdef (cf. [26]).

The Effect of Domain Predicates. It is well-known for practical ASP solving
that the choice of encoding employed for a task can have a major influence
on solving performance, even though the semantics is still declarative. Such
an effect can also be observed in conjunction with grounding strategies based
on k-unassignedness. Assume that dom is a domain predicate in the sense
of [25], i.e. a predicate defining the domain over which p and q are defined,
and consider the constraint c as follows: ← p(X), q(Y). If p(1) ∈ A+ and

Degrees of Laziness in Grounding 305

q(t) /∈ A+ holds for all terms t then c is not 1-unassigned, because Y is not yet
bound and thus c is not all-variable-assigning. Extending c with domain predi-
cates to obtain c′ gives ← dom(X),dom(Y),p(X), q(Y). Assuming that dom(1)
holds together with p(1) ∈ A+ and q(1) /∈ A+ then yields the ground rule
← dom(1),dom(1),p(1), q(1) which is 1-unassigned w.r.t. A+. In such a case,
the 1-unassigned lazy-grounding strategy yields no ground instances for c but
some for c′. Hence an earlier grounding of constraints (and rules) can be initiated
by adding (superfluous) domain predicates.

Adding domain predicates allows finding a solution with fewer backtracks,
because the additional ground constraints support early propagation and inform
the search heuristics better. This is not a guaranteed improvement, however,
since more ground constraints also need more space. A grounder can add domain
predicates automatically or use the heads of previously grounded rules to gen-
erate bindings even if those heads are not true yet. But this is future work.

4 Experimental Results

To asses their impact, we evaluate the novel grounding strategies on three bench-
mark problems: Graph Colouring, House Reconfiguration, and Stable Marriage.

Experimental Setup. Experiments were run on a cluster of machines each with
two Intel R© Xeon R© CPU E5-2650 v4 @ 2.20 GHz with 12 cores each, 252 GB
of memory, and Ubuntu 16.04.1 LTS Linux. Benchmarks were scheduled with
the ABC Benchmarking System [22] together with HTCondor

TM
.2 Time and

memory consumption were measured by pyrunlim,3 which was also used to
limit time consumption to 15 min per instance and swapping to 0.

Encodings and Instances. The encodings for Stable Marriage and Graph Colour-
ing were taken from the Fourth Answer Set Programming Competition [1], the
former without modifications, the latter with a choice rule replacing the equiva-
lent disjunctive rule of the original. The encoding for the House Reconfiguration
Problem was taken from [24] and changed to a decision problem. Instances from
the ASP Competitions [1,4] decidedly were not used, as these are hand-picked to
exercise search techniques of ground-and-solve systems, which are not all avail-
able in lazy-grounding ASP solving, like restarts and equivalence preprocessing.4

Instead, instances for all three problems were generated randomly. For Graph
Colouring, Erdős–Rényi graphs [7] were generated.5 Let (V,E,C) denote a class
of Graph Colouring instances, where V denotes the number of vertices, E the
number of edges, and C the number of colours. A total of 1430 instances were
generated for V ∈ {10, 20, . . . , 190, 200, 250, . . . , 450, 500} and diverse choices for

2 https://github.com/credl/abcbenchmarking, http://research.cs.wisc.edu/htcondor.
3 https://alviano.com/software/pyrunlim/.
4 Graph Colouring benchmark instances, for example, are prohibitive even for Clasp

with those techniques disabled by --sat-prepro=no --eq=0 -r no -d no.
5 Using the Python function networkx.generators.random graphs.gnm random graph.

https://github.com/credl/abcbenchmarking
http://research.cs.wisc.edu/htcondor
https://alviano.com/software/pyrunlim/

306 R. Taupe et al.

E and C based on values used for the ASP competitions. A total of 99 instances
were generated for the House Reconfiguration Problem, where the number of
things T ranged from 5 to 45. For each instance, the number of persons P was
drawn from a uniform distribution U{2, �T

2 � + 1} and the owner of every thing
was drawn from U{1, P}. Every thing had a 50% chance to be in a cabinet and a
random subset of given things was considered as long things. For Stable Marriage,
341 instances with a number of people P ∈ {10, . . . , 70} were generated. The
scores given by each person were drawn from {1, . . . ,max(5, �P

8 �)}, where every
score had the same probability of being drawn except for the lowest and the
highest score, whose probability of being drawn was reduced by 50% each.

Results and Discussion. For each instance, Alpha was instructed to find 10
answer sets. To reduce the numbers of data points in the following scatter plots
only the median performance data for each size and class of problem instances
is shown.6 For example, all 11 Graph Colouring instances of each class (V,E,C)
are condensed into one data point for each pair of grounding strategies.

(a) Time consumption in seconds (b) Number of guesses

Fig. 1. Time and guesses comparing gs0,kru
to gs∞,kru

for kru ∈ {0, 1,∞}

Figure 1 shows the resource usage needed to find the first 10 answer sets of
each benchmark instance, comparing strict (kco = 0) to permissive (kco = ∞)
grounding of constraints. Each data point in the scatter plots corresponds to
one class of problem instances of the same size solved by two different grounder
configurations for kco ∈ {0,∞} and varying kru ∈ {0, 1,∞}. The location of
each data point on the x axis corresponds to resource usage with kco = 0, its y
location to resource usage with kco = ∞.

Hence, a data point on the diagonal corresponds to a problem instance where
strict (kco = 0) and permissive (kco = ∞) perform equally. Data points that are
located below the diagonal indicate that an instance could be solved faster when

6 Computing the median of an odd number of performance data allows to obtain a
measure of central tendency that is unaffected by timeouts.

Degrees of Laziness in Grounding 307

using kco = ∞, while those above the diagonal represent an instance that could
be solved faster when using kco = 0. Instances that exceeded the given time-out
of 900 s line up at the end of each axis. Time usage is shown in Fig. 1a, number
of guesses in Fig. 1b.7 Guesses are scaled logarithmically, with a dashed second
reference diagonal to indicate an improvement of factor 10.

Permissive grounding of constraints is faster in most cases, as most data
points in Fig. 1 are below the diagonal. Figure 1b shows an even greater advan-
tage of permissive grounding when the number of guesses is considered. Com-
paring strict and permissive settings for kru instead of kco, no clear conclusion
can be drawn. Due to space constraints, the corresponding plots are not shown.

(a) Time consumption in seconds (b) Number of guesses

Fig. 2. Time and guesses comparing gsaccu0,kru
to gsaccu∞,kru

for kru ∈ {0, 1,∞}

Figure 2 shows the same instances for the accumulator variants of the
same grounding strategies. Again, the general pattern indicates that permissive
grounding of constraints (kco = ∞) improves performance. Comparing those
plots to Fig. 1 shows a noticeable change of the performance in Graph Colouring
instances. Most of the data points gather along the diagonal near the origin and
a small (but more visible) number of outliers is distributed near both axes, which
means that some Graph Colouring instances were hard to solve for kco = 0 and
some were hard to solve for kco = ∞. Deeper analysis of the solver revealed that
in these cases the branching heuristic completely leads the search astray, result-
ing in more guesses to solve the problem and to invest more time in propagation.

In Fig. 3, we compare results for accumulator grounding strategies to their
variants without accumulator. We observe a similar pattern as in Fig. 2: while
House and Stable Marriage are clearly able to benefit from the accumulator,
effects are mixed for Graph Colouring. Visually, outliers dominate the plot but
most data points are near the origin and below the diagonal.

Figure 4 offers a different perspective on time consumption data for two
classes of Graph Colouring instances. For each instance size (number of nodes),

7 Numbers of guesses omit instances that could not be solved within the time limit.

308 R. Taupe et al.

(a) Time consumption in seconds (b) Number of guesses

Fig. 3. Time and guesses comparing gskco,kru
to gsaccukco,kru

for kco, kru ∈ {0, 1,∞}

(a) E
V

≈ 16, C = 3 (b) E
V

≈ 16, C = 5

Fig. 4. Time for two classes of Graph Colouring instances (without accumulator).

the median time consumption of selected grounding strategies on all 11 instances
is plotted. From the range of lazy grounding strategies, two representatives are
shown, comparing strict to permissive grounding of constraints.8 These are con-
trasted with Alpha’s performance when working on a fully ground input pro-
duced by gringo version 5.2.2. It appears that instances with E

V ≈ 16 and three
colours were able to benefit greatly from permissive grounding of constraints,
while performance was rather unaffected by change of grounding strategies when
five colours were used instead. For both classes we observe that having the
full upfront grounding provides good performance compared to lazy grounding,
which is in line with heuristics being fully informed. The k-unassigned ground-
ing strategy with permissive grounding of constraints, however, performs sim-
ilarly well. We observed that permissive grounding of constraints also reduces

8 In Graph Colouring, changing the value of kru does not show an effect on the number
of guesses needed to find an answer set. This is likely due to the encoding containing
only one non-constraint rule whose body is not fully determined by facts.

Degrees of Laziness in Grounding 309

memory usage. We assume this to be caused by the current lack of learned
nogood forgetting, i.e. the longer Alpha runs the more learned nogoods are
kept in memory.

Overall, we observe that lazy grounding enables a whole range of new lazy-
grounding strategies that face other challenges than previous approaches at
grounding. Most importantly, in lazy grounding rules and constraints grounded
earlier than necessary have a great effect on solving performance, because they
inform the heuristics about the search space. While we cannot give a definite
answer on which grounding strategy is the best, we uncovered a whole new field
of possible strategies and identified some that improve efficiency significantly.

5 Conclusions and Future Work

In this work we introduced a field of novel grounding strategies for lazy-grounding
ASP evaluation. Grounding lazily as little as possible adversely affects heuris-
tics and search performance, because of the limited view of the search space.
Our investigation aimed at new ways to offset this restriction while keeping the
benefits of lazy grounding to avoid the grounding bottleneck. The main contri-
bution of this paper is the introduction and formal characterization of various
classes of grounding strategies (“degrees of laziness”), like k-unassigned ground-
ing strategies and accumulator-based ones, which allow compromises between
lazily grounding as little as possible and the traditional grounding upfront.
Experimental results show a clear improvement over existing lazy-grounding
strategies and that permissive grounding of constraints usually improves solv-
ing performance, while the performance improvements from other grounding
strategies depend on the problem to be solved. Permissive lazy grounding of
constraints could become the new default for Alpha and may be applied in
other lazy-grounding solvers.

Our work considers grounding from a very different (lazy) perspective than
previous works on (upfront) grounding. As such, it cannot provide the conclusion
but rather the beginning of a larger investigation on the effects of lazy-grounding
strategies on solving performance. Future work may explore syntactic features of
answer-set programs to automatically select an efficient grounding strategy and
connect lazy grounding more closely with search heuristics. Investigating the
relationship between our approach and instantiation heuristics for quantified
formulas in SMT [23] as well as generalizing our approach beyond ASP, e.g.
based on lattices, also seem promising.

Acknowledgments. This work was conducted in the scope of the research project
DynaCon (FFG-PNr.: 861263), which is funded by the Austrian Federal Ministry
of Transport, Innovation and Technology (BMVIT) under the program “ICT of the
Future” between 2017 and 2020 (see https://iktderzukunft.at/en/ for more informa-
tion).

https://iktderzukunft.at/en/

310 R. Taupe et al.

References

1. Alviano, M., et al.: The fourth answer set programming competition: preliminary
report. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS (LNAI), vol. 8148,
pp. 42–53. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40564-
8 5

2. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

3. Calimeri, F., Fuscà, D., Perri, S., Zangari, J.: I-DLV: the new intelligent grounder
of DLV. Intell. Artif. 11(1), 5–20 (2017)

4. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: Design and results of the fifth
answer set programming competition. Artif. Intell. 231, 151–181 (2016)

5. Dao-Tran, M., Eiter, T., Fink, M., Weidinger, G., Weinzierl, A.: OMiGA : an open
minded grounding on-the-fly answer set solver. In: del Cerro, L.F., Herzig, A.,
Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol. 7519, pp. 480–483. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33353-8 38

6. Eiter, T., Faber, W., Fink, M., Woltran, S.: Complexity results for answer set
programming with bounded predicate arities and implications. Ann. Math. Artif.
Intell. 51(2–4), 123–165 (2007)

7. Erdős, P., Rényi, A.: On Random Graphs. I. Publicationes Mathematicae 6, 290–
297 (1959). https://users.renyi.hu/∼p erdos/1959-11.pdf

8. Faber, W., Pfeifer, G., Leone, N.: Semantics and complexity of recursive aggregates
in answer set programming. Artif. Intell. 175(1), 278–298 (2011)

9. Falkner, A.A., Friedrich, G., Schekotihin, K., Taupe, R., Teppan, E.C.: Industrial
applications of answer set programming. KI 32(2–3), 165–176 (2018)

10. Gebser, M., Kaminski, R., Kaufmann, B., Romero, J., Schaub, T.: Progress in clasp
series 3. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS
(LNAI), vol. 9345, pp. 368–383. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-23264-5 31

11. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Morgan and Claypool Publishers, San Rafael (2012)

12. Gebser, M., Kaminski, R., König, A., Schaub, T.: Advances in gringo series 3.
In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp.
345–351. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20895-
9 39

13. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from
theory to practice. Artif. Intell. 187, 52–89 (2012)

14. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-Set Programming Approach. Cambridge University
Press, New York (2014)

15. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP, pp. 1070–1080. MIT Press (1988)

16. Lefèvre, C., Béatrix, C., Stéphan, I., Garcia, L.: ASPeRiX, a first-order forward
chaining approach for answer set computing. TPLP 17(3), 266–310 (2017)

17. Leone, N., et al.: The DLV system for knowledge representation and reasoning.
ACM Trans. Comput. Log. 7(3), 499–562 (2006)

18. Leutgeb, L., Weinzierl, A.: Techniques for efficient lazy-grounding ASP solving. In:
Seipel, D., Hanus, M., Abreu, S. (eds.) WFLP/WLP/INAP -2017. LNCS (LNAI),
vol. 10997, pp. 132–148. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-00801-7 9

https://doi.org/10.1007/978-3-642-40564-8_5
https://doi.org/10.1007/978-3-642-40564-8_5
https://doi.org/10.1007/978-3-642-33353-8_38
https://users.renyi.hu/~p_erdos/1959-11.pdf
https://doi.org/10.1007/978-3-319-23264-5_31
https://doi.org/10.1007/978-3-319-23264-5_31
https://doi.org/10.1007/978-3-642-20895-9_39
https://doi.org/10.1007/978-3-642-20895-9_39
https://doi.org/10.1007/978-3-030-00801-7_9
https://doi.org/10.1007/978-3-030-00801-7_9

Degrees of Laziness in Grounding 311

19. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: DAC, pp. 530–535. ACM (2001)

20. Palù, A.D., Dovier, A., Pontelli, E., Rossi, G.: GASP: answer set programming
with lazy grounding. Fundam. Inf. 96(3), 297–322 (2009)

21. Pretolani, D.: Efficiency, and stability of hypergraph SAT algorithms. In: Cliques,
Coloring, and Satisfiability, vol. 26, pp. 479–498. DIMACS/AMS (1993)

22. Redl, C.: Automated benchmarking of KR-systems. In: RCRA@AI*IA, CEUR
Workshop Proceedings, vol. 1745, pp. 45–56. CEUR-WS.org (2016)

23. Reynolds, A., Deters, M., Kuncak, V., Tinelli, C., Barrett, C.: Counterexample-
guided quantifier instantiation for synthesis in SMT. In: Kroening, D., Păsăreanu,
C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 198–216. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21668-3 12

24. Ryabokon, A.: Knowledge-based (re)configuration of complex products and
services. Dissertation, Alpen-Adria-Universität Klagenfurt, Klagenfurt (2015).
https://permalink.obvsg.at/UKL/AC10777791

25. Syrjänen, T.: Omega-restricted logic programs. In: Eiter, T., Faber, W.,
Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 267–280.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45402-0 20

26. Weinzierl, A.: Blending lazy-grounding and CDNL search for answer-set solving. In:
Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS (LNAI), vol. 10377, pp.
191–204. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61660-5 17

https://doi.org/10.1007/978-3-319-21668-3_12
https://permalink.obvsg.at/UKL/AC10777791
https://doi.org/10.1007/3-540-45402-0_20
https://doi.org/10.1007/978-3-319-61660-5_17

Enhancing DLV
for Large-Scale Reasoning

Nicola Leone1 , Carlo Allocca3 , Mario Alviano1 , Francesco Calimeri1,2 ,
Cristina Civili3 , Roberta Costabile1 , Alessio Fiorentino1 ,

Davide Fuscà1 , Stefano Germano1,2 , Giovanni Laboccetta2 ,
Bernardo Cuteri2 , Marco Manna1 , Simona Perri1 , Kristian Reale2 ,

Francesco Ricca1 , Pierfrancesco Veltri2 , and Jessica Zangari1,2(B)

1 Department of Mathematics and Computer Science,
University of Calabria, Rende, Italy

{leone,alviano,calimeri,r.costabile,fiorentino,fusca,
manna,perri,ricca,zangari}@mat.unical.it

2 DLVSystem L.T.D., Polo Tecnologico Unical, Rende, Italy
{calimeri,germano,laboccetta,reale,veltri}@dlvsystem.com,

cuteri@mat.unical.it
3 Samsung R&D Institute, Staines, UK
{c.allocca,c.civili}@samsung.com

Abstract. Several real-world applications of DLV made evident the
need for efficiently handling multiple queries and reasoning tasks over
large-sized knowledge bases. In this paper we present some recent
enhancements in the ASP system dlv2 for enabling reasoning over
large-scale domains. In particular, we developed both an optimized
implementation, sensibly reducing memory consumption, and a server-
like behaviour to support efficiently multiple-query scenarios. The high
potential of dlv2 for large-scale reasoning is outlined by the results of an
experiment on data-intensive benchmarks. The applicability of the sys-
tem in real-world scenarios is demonstrated employing dlv2 as reasoning
service to query, in natural language, the large DBpedia knowledge base.
The relevance and the high potential industrial value of this research is
also confirmed by the direct interest of a major international industrial
player, which has stimulated and partially supported this work.

Keywords: Large-scale reasoning · Data-intensive applications · ASP

1 Introduction

DLV [30] has been one of the first solid and reliable Answer Set Programming
(ASP) systems; its project started a few years after the definition of stable
models/answer set semantics [26], and has been continuously enhanced over the
years, becoming well suited also for real-world applications [23]. Recently, it
underwent a major set of updates, that count modern evaluation techniques and

c© Springer Nature Switzerland AG 2019
M. Balduccini et al. (Eds.): LPNMR 2019, LNAI 11481, pp. 312–325, 2019.
https://doi.org/10.1007/978-3-030-20528-7_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20528-7_23&domain=pdf
http://orcid.org/0000-0002-9742-1252
http://orcid.org/0000-0002-7305-3790
http://orcid.org/0000-0002-2052-2063
http://orcid.org/0000-0002-0866-0834
http://orcid.org/0000-0002-4357-3509
http://orcid.org/0000-0002-3285-8621
http://orcid.org/0000-0002-3298-0256
http://orcid.org/0000-0001-6944-6869
http://orcid.org/0000-0001-6993-0618
http://orcid.org/0000-0002-8048-7343
http://orcid.org/0000-0001-5164-9123
http://orcid.org/0000-0003-3323-9328
http://orcid.org/0000-0002-8036-5709
http://orcid.org/0000-0002-5988-2429
http://orcid.org/0000-0001-8218-3178
http://orcid.org/0000-0003-2804-6628
http://orcid.org/0000-0002-6418-7711
https://doi.org/10.1007/978-3-030-20528-7_23

Enhancing DLV for Large-Scale Reasoning 313

development platforms, fully complying with the ASP-Core-2 language standard.
The new version is referred to as dlv2 [2], and it results as a proper integration
of two sub-systems addressing the two main computational phases: I-dlv [18]
for the grounding phase and wasp [3] for the solving phase. A strong point of
dlv2 is its grounding layer I-dlv, which – thanks to advanced optimization
techniques (like, e.g., Magic Sets [4]) – enables for efficient query answering;
this makes dlv2 a powerful deductive database engine [18,19], employable for
querying knowledge bases of various natures. One of the distinctive points of the
project is the wide usage in real-world applications, some of which are extremely
challenging. This is the case of reasoning tasks over large-scale domains, such
as those emerging in industrial-level applications fostered by the advances in
Industry 4.0, the Internet of Things, and Big Data [16]. When dealing with
high volumes of data, however, performing heavy operations (such as loading
or indexing) multiple times should be definitely avoided; thus, traditional ASP
systems based on one-shot executions are rather unsuited.

In this work, we present an optimized version of dlv2 where key aspects of the
computational process have been properly re-engineered with the aim of reduc-
ing memory consumption and performing efficient tasks over large knowledge
bases. Moreover, we present the new dlv2-server system, extending dlv2 with
a server-like modality, which is able to keep the main process alive and to receive
and process user’s requests on demand. Furthermore, we designed dedicated opti-
mizations and facilities oriented towards effective reasoning over different prac-
tical scenarios. We started to implement enhancements at the grounding stage,
which is internally handled by I-dlv [18], and we are currently integrating also
the solving stage. We conducted an experimental evaluation on data-intensive
benchmarks in order to assess the effectiveness of our approaches; the results
confirm the high potential of the new system for large-scale reasoning. Both
memory consumption and query-answering times are significantly reduced, even
on the one-shot version of dlv2, and the new dlv2-server system turns out to
be well-suited for reasoning over large scale data. The challenge of the industrial
partner was related to LUBM [28] – a standard benchmark for ontology rea-
soning collecting data of universities (in particular, LUBM-8000 collects about
1 billion factual assertions upon 8,000 universities). The challenge was: making
the system able to answer in “near time” the benchmark queries of LUBM-8000
over a machine with 256GB RAM; while the old dlv2 version was very far
from the target, taking about 350 GB and 15,000 s. Eventually, not only the sys-
tem was able to win the general challenge; amazingly, the average time taken
by dlv2-server on the ten bound queries (out of fourteen) of LUBM-8000 (1
billion of assertions) eventually was less than one second. Such a result is due to
the new architecture, novel indexing and body ordering techniques, and improve-
ments to the magic-set technique that, by simulating backward chaining, focuses
the computation on the atoms which are relevant to derive the query result and
drastically prunes the search space.

To practically test this potential, we also report on a use case where
dlv2-server is employed as a reasoning service in a system for querying, in

314 N. Leone et al.

natural language, DBpedia [12]. The latter models the knowledge present in
Wikimedia projects, in a large RDF(S) [40] ontology containing more than 3
billions triples. In the use-case, we developed a fresh instantiation of the ASP-
based question answering framework presented in [21], that is able to exploit the
information in DBpedia. In particular, dlv2-server is exploited to handle the
ontology and process queries under a more expressive entailment regime w.r.t.
the one of [21]. Answers to typical queries are returned to the user in hundredths
of a second, thus confirming the suitability of our system in real-world scenarios.

2 Enhancing the DLV2 Core Engine

In the following we describe the main enhancements implemented in dlv2 for
enabling reasoning on large knowledge bases where main issues come from huge
memory requirements; we focussed both on the design of refined optimizations
and on technical aspects having significant impact both on time and memory
performance. A thorough description of the computational stages of the system
is out of the scope of the this paper; we refer the reader to [18] for more details.

We have singled out and optimized the main sources of inefficiency in the core
of the dlv2 grounder, starting from memory consumption, which appeared the
main obstacle to win the challenge. For instance, we carefully re-designed inter-
nal data structures in order to minimize raw memory allocation, and tuned the
overall computation by optimizing points that, being frequently executed, might
significantly affect performance. Moreover, we designed a memory-releasing pol-
icy that, according to the computational machinery and the structure of the
program at hand, drops data structures as soon as they are no longer needed (as
an example, the extension of a predicate p, along with its associated metadata
such as indices, are removed once all rules depending on p have been grounded).

A further set of optimizations is related to query answering, a largely com-
mon task especially in practical cases. An improvement has been obtained by
identifying and handling relevant predicates w.r.t. the query at hand: a predicate
is relevant if it either appears in the input query or in a rule featuring a rele-
vant predicate in the head. Intuitively, the relevant predicates are the only ones
needed in order to answer the query; hence, when processing the input facts, we
can both speed-up loading times and reduce memory consumption by skipping
all non-relevant ones. Moreover, we speeded up query answering, by improving
our magic-sets query rewriting technique [4]. In particular, we introduced an ad-
hoc postprocessing that identifies redundant rules and predicates. Specifically,
a subsumption check is performed that allows to remove redundant rules, i.e.,
rules whose ground instances are included or turn out to be less general than
those associated with others. Furthermore, the technique has been enhanced to
properly handle the loss of binding propagation, and extended to efficiently deal
with a set of queries to be evaluated at once.

Enhancing DLV for Large-Scale Reasoning 315

3 DLV2-Server

We describe here how dlv2 has been enhanced with the capability of running
in a server-like fashion reusing the loaded program and data for multiple query
sessions. Currently, enhancements concern the grounding phase; a comprehensive
version, including also the solving stage, is under development.

dlv2-server keeps the main process alive while receiving commands
expressed in XML that permit to handle a set of functionalities, such as loading
logic programs and data, removing data, executing reasoning and query answer-
ing tasks, and resetting loaded programs and data. Moreover, it can behave as a
local or a remote service: in the first case, it runs in a console mode via standard
input, and provides results via standard output; in the latter case, the system
listens to a specific port and manages connection requests incoming via network.

In addition, the system has been endowed with advanced facilities oriented
towards the effective query-answering in large-scale contexts: we consider a sce-
nario in which the system is required to repeatedly query a Knowledge Base
(KB) on demand. Such scenario can be further specialized into three different
settings, depending on what is known before the system is actually started to be
queried: (i) KB is known (both data and program), and also the “structure” of
the queries to be executed is known (i.e., as in many database applications, we
know the query patterns, that is, we have the conjunction of the query atoms
and know which arguments will be free or bound to constants at query time);
(ii) KB is known, while no information is available about the incoming queries;
(iii) only data are available. In more detail, our scenario includes a logic pro-
gram (without queries) P, a dataset D and a set of logic programs (containing
queries) {Q1, . . . , Qn}; what is going to be requested is to evaluate each logic
program P ∪ Qi for i ∈ {1, . . . , n} over D. The three scenarios can be described
as (i): P, D and (modulo constant renaming) {Q1, . . . , Qn} are known; (ii): P
and D are known; (iii): only D is known. Such scenario is of practical relevance:
for instance, it fits many real-world applications over ontological domains, where
P and D consist of a TBox and an ABox, respectively.

dlv2-server can be advantageously applied in this context since, differently
from standard dlv2, it allows to avoid to repeatedly perform heavy parts of the
computation such as, for instance, loading and indexing input data. In addi-
tion, dlv2-server features different execution modalities specifically designed
for optimizing query answering times in the depicted settings by properly tak-
ing advantage from what is known in each of them. In the following, we briefly
describe the modalities; all of them act on steps of the grounding process hav-
ing a high impact on overall performance, especially in large-scale contexts. In
particular, they change dlv2 default policies for body orderings and indexing
by anticipating, to a pre-computation phase, the identification of an effective
indexing schema, along with an appropriate body ordering for rules complying
with such indexing schema and the actual index creation. This way the cost of
such optimizations is paid only once before actual query answering. Setting (i)
is the most friendly: indeed, given that also the structure of the incoming queries
is known, the system performs a preliminary run for each query Qi evaluating

316 N. Leone et al.

me mem me mem me mem me mem

Adj. Clusters 8.85 0.47 5.21 0.16 4.16 0.14 2.29 0.57 me mem me mem me mem me mem

Antonyms 4.59 0.23 3.11 0.13 2.05 0.10 0.05 0.64 query1 9,863.77 228.69 3,908.19 71.92 943.07 36.76 0.00 238.12
Dir. Adj. Clusters 4.94 0.25 3.10 0.11 2.06 0.09 0.21 0.64 query2 12,840.03 266.43 4,769.60 81.38 997.31 49.54 172.20 238.12

Dir. Holonyms 5.20 0.26 3.00 0.11 2.05 0.09 0.22 0.64 query3 10,888.88 220.27 3,922.89 74.89 803.00 42.96 0.00 238.12

Dir. Hypernyms 4.37 0.23 2.68 0.09 3.10 0.11 1.14 0.68 query4 14,711.55 286.86 6,025.35 178.61 4,523.44 178.62 0.01 238.12

Dir. Hyponyms 6.67 0.36 3.96 0.13 3.10 0.10 1.09 0.71 query5 10,162.18 235.92 4,936.03 118.16 2,969.36 105.28 0.03 238.12
Dir. Meronyms 4.94 0.25 3.11 0.11 2.04 0.09 0.21 0.71 query6 5,562.51 92.68 3,325.02 77.30 852.57 247.33
Dir. Troponyms 4.73 0.23 2.78 0.11 1.83 0.09 0.01 0.71 query7 11,813.49 234.35 5,273.65 136.08 3,033.78 120.70 0.01 247.33
Glosses 6.52 0.36 3.85 0.15 3.11 0.13 0.76 0.74 query8 12,259.71 249.34 5,496.10 139.65 3,900.14 138.48 0.33 247.33
Holonyms 7.82 0.40 4.63 0.14 3.31 0.12 1.70 0.78 query9 5,979.65 93.25 3,439.40 77.30 1,009.05 250.37
Hypernyms 21.54 1.08 12.68 0.32 11.90 0.28 9.25 0.82 query10 10,667.09 262.05 5,308.87 134.73 3,007.82 119.35 0.01 250.37
Hyponyms 21.26 1.05 12.42 0.29 11.40 0.27 9.15 0.82 query11 9,241.15 211.59 3,693.48 71.91 17.73 1.24 0.00 250.37
Meronyms 7.60 0.39 4.52 0.14 3.31 0.11 1.58 0.82 query12 11,816.31 235.67 5,080.11 114.91 2,904.69 99.52 0.03 250.26
Same Synset 7.30 0.42 4.16 0.15 3.10 0.12 1.39 0.82 query13 12,246.33 245.66 5,132.99 103.92 2,926.40 88.94 6.64 250.26
Troponyms 4.47 0.23 2.79 0.11 1.83 0.09 0.02 0.82 query14 11,865.39 234.77 3,694.86 71.91 244.74 12.84 14.40 250.26
Loading Loading

Se ng Configura on Se ng Configura on

Total Time Total Time

Max Memory Max Memory

Out of Memory

Old DLV2 DLV2 no filter DLV2
Query

DLV2 no filter

WordNet-3.1

DLV2-server

DLV2-server

Query

- -

Out of Memory

DLV2Old DLV2

LUBM-8000

33,035.8968,784.27

1.08 0.32 0.28

- - -

- - -

120.78 72.00 58.35

3.71

2.48

0.82

35.24

2,961.27

3,657.47

8,674.02

250.37

-

- - -

349.12 178.61 178.62

167,798.97

Fig. 1. Comparison of different dlv2 versions; times are in seconds and memory is in
GB. Bound queries are reported in bold.

P ∪Qi∪D in order to pre-compute indices and body orderings that will be of use
when the system will be actually queried; roughly, it saves the choices that dlv2
would make in case of a “one-shot” execution. When D is significantly large and
a given subset of data is available, that is fairly representative of the whole set,
the preliminary run can be performed over it in order to further save time and
computational resources. In setting (ii), which is less informed, a more general
strategy is adopted: the system performs a single preliminary run over P ∪ D
(without any query) and similarly to the previous case, it stores information
about body ordering and indexing for all rules in P that dlv2 would choose in
a one-shot execution. Then, it analyses P trying to predict how, in case of an
incoming query, rules could be rewritten if magic-sets are applied and enriches
the set of created indices accordingly. Setting (iii), where body orderings can’t
be pre-computed, is dealt via an aggressive indexing policy: all possible indices
are computed over input data right after loading; this will save the expensive
creation of indices at execution time, at the price of high memory consumption
due to the creation of possibly useless indices. The approach of setting (iii) is
also used as default strategy whenever the system is executed using a setting
which is not suitable for the scenario at hand.

4 Experiments and Benchmarks

We now describe an experiment devised to check the improvements of the new
systems dlv2 and dlv2-server over Old dlv2, and to assess their potential in
two data-intensive contexts such as WordNet and LUBM [28] as they require to
handle meaningful data and to perform non-trivial query answering tasks.

Benchmark Problems and Data. We next provide a description of considered
benchmarks, specifying the used dataset and encodings. Tests on WordNet were

Enhancing DLV for Large-Scale Reasoning 317

performed on a machine having two 2.8 GHz AMD Opteron 6320 processors and
128 GB of RAM; for LUBM we relied on a machine with an Intel Xeon Gold 6140
CPU clocked at 2.30 GHz with 297 GB of RAM. The WordNet benchmarks have
been extracted from the well-known OpenRuleBench suite [31]; they consist of
real-life tests dealing with common tasks from natural language processing with
the WordNet semantic lexicon. As input data we used the latest released dataset
at the time of writing (v. 3.1); as queries we used the ones in OpenRuleBench.
The LUBM benchmarks consist of an OWL 2 ontology over a university domain
with synthetic data and 14 queries. The whole LUBM ontology falls in Horn-
SHIQ [29], thus, the ontology and the queries have been properly rewritten
into ASP via techniques generalizing those presented in [22], still ensuring both
soundness and completeness of query answering. Data generation has been car-
ried out via the LUBM data generator. The used dataset is LUBM-8000 with
“8000” universities and features about 1 billion of facts.

Results and Discussion. The experimental analysis has been designed in order
to test both the effects of the enhancements introduced in dlv2 (cf. Sect. 2) and
the general applicability of the newborn dlv2-server (cf. Sect. 3).

In Fig. 1 we compare on WordNet and LUBM, respectively, four different
versions of dlv2: (i) [Old dlv2], (ii) [dlvdue no filter], (iii) [dlvdue] and (iv)
[dlv2-server]. [Old dlv2] is the latest stable release (I-dlv v.1.1.2); [dlvdue no
filter] and [dlvdue] are new versions of dlv2 both empowered with all enhance-
ments described in Sect. 2, except for the filtering mechanism on input data
based on “relevant” predicates, which is disabled in version (ii) and enabled
in version (iii); [dlvdueserver] is the server version of dlv2 executed by using
setting (ii), as described in Sect. 3. Given that dlv2-server remains alive until
all queries are answered, we were able to exactly determine the maximum used
memory, while memory consumption for each query has been internally detected
via facilities provided by the operating system. Moreover, since loading and set-
ting configuration times are relevant only for the server version, corresponding
fields for the other versions are marked with a dash (-). It is easy to see that
significant improvements are obtained by the new versions of the system, both in
terms of time and memory; indeed, [dlv2 no filter] behaves systematically better
than [Old dlv2], showing, on the overall, a gain of about 40% in terms of time,
and a reduction of about 60% in terms of memory consumption. Moreover, the
filter mechanism allows to optimize the loading phase, thus further contributing
at improving overall performance; notably, in cases of highly selective queries,
as in query11 of LUBM, times and memory improvements of [dlv2] are close to
100%. Concerning dlv2-server, as expected for a server modality, there is an
initial cost due to loading and set-up times; however, query answering is quite
fast in all domains: even for LUBM-8000 almost all bound queries are answered
in less than 0.1 s, with an average time of about 0.7 s.

In order to provide the reader with an overall picture of the improvements
of dlv2, we report a summary of the experimental results in Fig. 2. We consid-
ered all configurations of the enhanced system, both in server and standard
modalities, and compared them over WordNet and LUBM-8000 against the

318 N. Leone et al.

Old DLV2 Old DLV2 Old DLV2

Value Value Gain % Value Gain % Value Value Gain % Value Gain % Value Value Gain % Value Gain %

Avg. Query Time 8.1 3.9 52% 1.9 76% 13,532.1 2,001.6 85% 512.1 96% 11,367.0 2,502.9 78% 0.7 100%

Total Time 120.8 58.4 52% 35.2 71% 54,128.5 1,242.0 98% 8,667.0 84% 113,670.5 24,705.4 78% 6,625.8 94%

Max. Used Memory 1.1 0.3 74% 0.8 24% 349.1 77.3 78% 126.9 64% 286.9 178.6 38% 227.0 21%

LUBM-8000-bound-queries

DLV2 DLV2-server

WordNet

DLV2 DLV2-server

LUBM-8000-unbound-queries

DLV2 DLV2-server

Fig. 2. Summary of the results.

version [Old dlv2]. Moreover, for LUBM-8000 we distinguished between bound
and unbound queries, given that they lead to different computation approaches
(the former enjoy magic sets); for WordNet, no distinction is made, as all queries
are unbound. The figure reports average times for query answering, total time,
including also loading and setting configuration times, and the maximum used
memory; all are computed over all queries. Moreover, for dlv2 and dlv2-server
we report the percentage gain obtained w.r.t. [Old dlv2]. In order to compute
all aggregations, the performance of [Old dlv2] on query6 and query9 (where
it runs out memory) have been suitably estimated in a cautious way, exploit-
ing the regular behaviour we observed on LUBM. Both dlv2 and dlv2-server
show to be superior than [Old dlv2]; significant improvements are observable
on the overall, especially on the LUBM-8000, where the old version was unable
to answer all queries: there, the new versions solved all the tasks consuming at
most 227 GB of RAM and enjoying improvements of up to 100% in terms of
times.

5 Querying DBpedia in Natural Language: A Use Case

Motivated by the interest of a relevant industrial player, we designed a prototype
system for Question Answering (QA) on the well-known DBpedia knowledge
base. The idea is to devise an intelligent service that is able to exploit a large
existing ontology to answer a variety of user questions. In this respect DBpe-
dia [12], which models the knowledge present in Wikimedia projects (using more
than 3 billion of RDF [40] triples), was a natural pick. The use case provides a
useful assessment of the suitability of our system for the efficient implementation
of ontological reasoning tasks on a large real-world knowledge base.

QA System Overview. The architecture of the QA system follows a standard
three-layer pattern. The first layer implements a Web-based user interface that
appears as a simple chat service. The user can ask questions either by speaking
on his/her device microphone or by typing in the chat. The implementation of
the interface uses libraries and speech recognition services that are nowadays
standard in HTML 5. Questions posed by the user are then transformed in a
request for the QA Layer, which has the role of understanding the question and
transforming it in a SPARQL query to be posed on the underlying ontology. The
query answering process is carried out by the Query Layer, which implements a
web service compliant with the SPARQL endpoint specification [41]. The result
of the query is then passed back to the QA Layer that transforms it in the answer
in natural language that is sent to (and displayed by) the user interface.

Enhancing DLV for Large-Scale Reasoning 319

Question Answering Layer. In order to implement the QA Layer we instan-
tiated the ASP-based QA strategy presented in [21] with respect to the use-case
of DBpedia. In the following we illustrate that strategy using an example, the
reader can refer to [21] for a complete description of the technique. Essentially,
the QA process consists of a series of subsequent phases. First, the question is
processed by means of natural language processing (NLP) techniques, namely
named-entity recognition, tokenization, parts-of-speech tagging and dependency
parsing. The result of the NLP phase is transformed into ASP facts that are
fed to dlv2 together with the question templates that are encoded in terms of
ASP rules. The result of the ASP computation contains the best matching tem-
plate and a set of terms extracted from the question. Then, by exploiting word
semantic relations on question terms, a matching template is mapped into an
intent (belonging to a fixed set of available ones) corresponding to a SPARQL
query with empty slots filled by question terms. Next, the query is executed over
the knowledge base (in the Query Layer) and the results are transformed into
natural language. An example of a template rule is the following, which matches
questions of the form who are the X from Y ?

template(template1,terms(X,Y),15) :-

word (1,"who"), word(3,"the"), word(4,X), word(5,"from"),

word(6,Y), word(7,"?"), pos(1,wp), pos(3,dt), pos(5,in), gr(1,2,cop),

gr(4,3,det),gr(1,4,nsubj), gr(6,5,case), gr(4,6,nmod), gr(1,7,punct).

In the example, template1 is a constant that identifies the template, while
terms(X, Y) is a function symbol that allows extracting the two terms from
the input question. The predicates word, pos and gr specify, respectively, words,
parts-of-speech and grammatical relations of the template question pattern. The
integer values in the body identify positions of words, while strings like wp or
nsubj are tags taken from a fixed vocabulary of tags for parts-of-speech and
grammatical relations. In the rule head, the number 15 specifies the weight of
the template. Weights are used to specify the importance of template rules so as
to favor more specific templates over more general templates. The best matching
template (i.e. the matching template with the highest weight), if exists, is the
result of the template matching phase of the question answering. Once the best
template is computed, the QA system determines a question intent and, possibly,
the intent is identified by considering question terms.

As an example of intent, we can consider ARTISTS FROM CITY (i.e. find the
artists born in a certain city). Once the template above matches, we can check
that the intent is indeed ARTISTS FROM CITY by checking that term X is artists
(or a synonym of artists) by using the Babelnet vocabulary [36]. The intent
ARTISTS FROM CITY corresponds to the following SPARQL query:

SELECT DISTINCT ?p

WHERE { ?p dbo:birthPlace ?city. ?p rdf:type dbo:Artist }

In the query above, ?city is the intent empty slot and, at runtime, is filled by a
question term. For example, if the question is who are the artists from Florence?,

320 N. Leone et al.

the variable ?city would be replaced by the constant dbr:Florence (dbr is the
DBpedia namespace for resources). Reasoning capabilities are necessary in this
context. Indeed, if we ignore types inference, the result set of the query in the
example on DBPedia would not contain some artists that belong to a subclass of
dbo:Artist. Note that, approaches that do not implement inference would be
inadequate to answer such types of questions, which are possible in our use-case.
In our prototype QA system we implemented a number of templates (about 50)
and intents (about 20) determined from an initial requirement analysis.

Query Layer. The Query Layer implements a SPARQL Protocol Service [41]
using dlv2-server as reasoning engine. A SPARQL Protocol Service is an
HTTP server that services HTTP requests and sends back responses for
SPARQL Protocol operations. The SPARQL Protocol consists of two opera-
tions: query and update. Currently, the Query Layer supports conjunctive query
operations. A query operation is used to send a SPARQL query to our service
and receive the results of the query, and can be invoked with the HTTP GET
method, where the SPARQL code is URL percent (see https://www.ietf.org/rfc/
rfc3986.txt) encoded and passed as a string parameter within the URI.

The implementation of the service relies on the DLVService project [20], a
RESTful Web Service implemented in Java which provides service-oriented fea-
tures for managing and executing ASP programs with DLV, that has been suit-
ably extended for dealing with dlv2-server and to be compliant with the official
SPARQL Protocol Service requirements. In particular, behind the “Entry Point”
that is in charge of handling the REST invocations received by the client, we
developed a “Query Dispatcher” module to decode the received SPARQL query
q, rewrite q into a Datalog conjunctive query q′ and deliver q′ to dlv2-server.
This rewriting works on the subset of SPARQL that corresponds to conjunctive
queries, and it is based on the results presented in [22] to take into account
the ontological schema and correctly implement the reasoning in case it requires
the more expressive entailments of OWL2-QL [39]. The interaction between the
“Query Dispatcher” and dlv2-server is granted by a Java API that we imple-
mented to wrap and integrate dlv2-server (that is written in C++) in any
Java application. In the QA prototype, dlv2-server has been instructed to
load DBpedia in main-memory at the deployment of the application on the web
server. Thanks to the server-like behaviour of dlv2-server, the main process
is kept alive and the data loaded at the beginning are then re-used for every
incoming request received by the client. Results produced by dlv2-server are
caught by the “Result Listener” module that is in charge of producing the JSON
object to be sent back to the client who made the request.

Query Layer Performance. To assess the performance of our query layer
we report next the results of an experiment devised for validating the system
on real-world data. As data source, we employed the DBpedia ontology (Tur-
tle version) available at the DBPedia website. Tests were run on a machine
with an Intel Xeon Gold 6140 CPU clocked at 2.30 GHz with 297 GB of RAM.
For the experiment we considered 10 different queries of varying difficulty that
form a representative sampling of the intents supported by our QA system.

https://www.ietf.org/rfc/rfc3986.txt
https://www.ietf.org/rfc/rfc3986.txt

Enhancing DLV for Large-Scale Reasoning 321

The considered queries range from simple selections to more involved queries
that require to reason on the ontology, and are used to compute the answers to
the following questions: (Q1) who is X ? (Q2) who is the author of X ? (Q3)
who are the artists from X ? (Q4) who are the people that were born in X ? (Q5)
what is the list of materials that X is composed of? (Q6) what are the works by
X ? (Q7) what are the paintings by X ? (Q8) what are the parts of X ? (Q9) what
is the subject of X ? (Q10) what are the islands of X ? In the questions X can
be any instance of a named entity. Note that to answer correctly queries Q8–
Q10 the system computes the inferences due by some subclass of axiom present
in the schema of the ontology. This requirement makes the computation of the
answer more costly; for this reason, these axioms are just ignored by default by
commercial systems for query answering on ontologies (unless the user “enables
ontological reasoning”), thus providing incomplete results. For each query, we
replaced X with three different constants (URI of some individual) from the
ontology, and measured the average time needed to retrieve the result. Since the
system performs static optimization (as, e.g., data indexing) when a query is run
for the first time, we discarded this warm up time (on average 10s per query).
This is acceptable in our use case since all the intents are known in advance and
all queries can be run once the system is deployed for the first time, and the
user never experiences the times measured in the first execution. The average
times for each query amount to few milliseconds (from 0.07 to 0.09 ms): a perfor-
mance surely acceptable in practice, also considering that our system computes
complete answers (i.e., it has “reasoning enabled” by default). The neat result
of this experiment confirms the effectiveness of dlv2-server in handling the
considered use case.

6 Related Work

Traditional ASP systems [32] implement a “one-shot” processing model where an
input program is processed and the one or more answer sets are produced in out-
put. This is the case of the first versions state of the art systems such as DLV [30]
and clingo [25]. Although this mode is adequate for solving a number of prac-
tical applications [1,5–8,24,34], one-shot processing showed its limits in various
application scenarios [25]. Among the system that try to go beyond the tradi-
tional computational scheme, we mention the latest incarnation of clingo [25],
where the idea is to consider evolving grounding and solving processes. This app-
roach is oriented to making more efficient task specifications of high complexity
(e.g., robot planning, complex optimization), but does not provide explicitly a
server-like feature for efficient query answering on large knowledge bases as the
dlv2-server. By focusing on ontological reasoning we also recall RDFox [37]
and Vadalog [14], which however have a limited expressiveness. Systems and
techniques for Ontology Based Query Answering (OBQA) [43] are also related
and can be implemented using our system [9–11]. As for the development of
service-oriented architecture, preliminary efforts in the field of logic program-
ming lead to client-server infrastructures for tuProlog and SWI-Prolog [17,42].

322 N. Leone et al.

Focusing on ASP, a framework for developing service-oriented applications was
presented in [20]; the SPARQL end point developed in our use-case is actually a
proper extension of this framework. Concerning the Question Answering module,
we mention that this is a new instantiation of the ASP-based framework for QA
presented in [21], which also features a more powerful reasoning engine capable
of answering queries in the more expressive OWL2-QL entailment regime. Basi-
cally, the pipeline of NLP tools is the same as in [21], but the syntactic question
templates as well as the intents and queries have been designed from scratch
to suit the needs of a different domain. In the literature there is a number of
question answering systems that are able to translate natural language questions
to queries posed on a knowledge base in SPARQL [15,33,38], as well as systems
elaborating questions by transforming them into logic forms so as to be able to
perform reasoning tasks [13,27,35]. As discussed in more details in [21] our app-
roach requires human intervention to be ported to other domains, but it offers
more control for creating precise NL-to-ontology mappings.

7 Conclusion

Recent real-world applications of dlv2 evidenced the need for efficiently handling
multiple queries and reasoning tasks over large-sized knowledge bases. In this
paper we presented some recent enhancements in dlv2 for enabling reasoning
in these contexts. Key aspects of the computational process have been properly
re-engineered and optimized, with the aim of reducing memory consumption and
performing efficient tasks on high volumes of data. A new version of the system
has been devised, featuring a server-like behaviour that keeps the main process
alive and is capable to be queried on demand; this allows to avoid repeatedly
performing heavy parts of the computation, such as loading/indexing data, when
the same KB has to be queried many times, as often happens in real-world
applications. An experimental evaluation on data-intensive benchmarks confirms
the high potential for large-scale reasoning. On the benchmark ontology LUBM-
8000, the total time for executing the 14 queries falls down from 46 h taken by the
old dlv2 version to 2.4 h taken by the new dlv2-server. Remarkably, most of
the time (nearly 2 h) is spent off line for loading and configuration, once and for
all, since the server does handle updates efficiently, and after updates remains
ready for querying, without the need of any expensive re-configuration. Thus,
at run time, the user experiences very fast answers, taking less than
one second for most queries, even on one billion data in this test.
Moreover, a use case where dlv2 is employed as reasoning service in a system
for querying DBpedia confirms its applicability in real-world scenarios, indeed it
is able to answer typical queries in hundredths of a second, and opens the door
to supporting more questions requiring expressive ontology reasoning.

The relevance and the high-potential industrial value of the present research
are also confirmed by the direct interest of a major international industrial
player, which has stimulated and partially supported this work.

Enhancing DLV for Large-Scale Reasoning 323

Acknowledgments. This work has been partially supported by Samsung under
project “Enhancing the DLV system for large-scale ontology reasoning”, by MISE
under project “S2BDW” (F/050389/01-03/X32) – “Horizon2020” PON I&C2014-20
and by Regione Calabria under project “DLV LargeScale” (CUP J28C17000220006) –
POR Calabria 2014-20.

References

1. Adrian, W.T., Manna, M., Leone, N., Amendola, G., Adrian, M.: Entity set expan-
sion from the web via ASP. In: ICLP (TC), OASICS, vol. 58, pp. 1:1–1:5. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

2. Alviano, M., et al.: The ASP system DLV2. In: Balduccini, M., Janhunen, T. (eds.)
LPNMR 2017. LNCS (LNAI), vol. 10377, pp. 215–221. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-61660-5 19

3. Alviano, M., Dodaro, C., Leone, N., Ricca, F.: Advances in WASP. In: Calimeri,
F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS (LNAI), vol. 9345, pp.
40–54. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23264-5 5

4. Alviano, M., Faber, W., Greco, G., Leone, N.: Magic sets for disjunctive datalog
programs. Artif. Intell. 187, 156–192 (2012)

5. Amendola, G.: Preliminary results on modeling interdependent scheduling games
via answer set programming. In: RiCeRcA@AI*IA, CEUR WS, vol. 2272 (2018)

6. Amendola, G.: Solving the stable roommates problem using incoherent answer set
programs. In: RiCeRcA@AI*IA, CEUR WS, vol. 2272 (2018)

7. Amendola, G., Dodaro, C., Leone, N., Ricca, F.: On the application of answer
set programming to the conference paper assignment problem. In: Adorni, G.,
Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS (LNAI), vol. 10037,
pp. 164–178. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49130-
1 13

8. Amendola, G., Greco, G., Leone, N., Veltri, P.: Modeling and reasoning about NTU
games via answer set programming. In: IJCAI 2016, pp. 38–45 (2016)

9. Amendola, G., Leone, N., Manna, M.: Finite model reasoning over existential rules.
TPLP 17(5–6), 726–743 (2017)

10. Amendola, G., Leone, N., Manna, M.: Finite controllability of conjunctive query
answering with existential rules: two steps forward. In: IJCAI, pp. 5189–5193.
ijcai.org (2018)

11. Amendola, G., Leone, N., Manna, M., Veltri, P.: Enhancing existential rules by
closed-world variables. In: IJCAI, pp. 1676–1682. ijcai.org (2018)

12. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC 2007.
LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-76298-0 52

13. Balduccini, M., Baral, C., Lierler, Y.: Knowledge representation and question
answering. In: Handbook of Knowledge Representation. Foundations of Artificial
Intelligence, vol. 3, pp. 779–819. Elsevier (2008)

14. Bellomarini, L., Sallinger, E., Gottlob, G.: The vadalog system: datalog-based rea-
soning for knowledge graphs. PVLDB 11(9), 975–987 (2018)

15. Benamara, F., Saint-Dizier, P.: WEBCOOP: a cooperative question answering sys-
tem on the web. In: Proceedings of EACL, pp. 63–66 (2003)

16. Bernstein, A., Hendler, J.A., Noy, N.F.: A new look at the semantic web. Commun.
ACM 59(9), 35–37 (2016)

https://doi.org/10.1007/978-3-319-61660-5_19
https://doi.org/10.1007/978-3-319-23264-5_5
https://doi.org/10.1007/978-3-319-49130-1_13
https://doi.org/10.1007/978-3-319-49130-1_13
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52

324 N. Leone et al.

17. Calegari, R., Denti, E., Mariani, S., Omicini, A.: Towards logic programming as
a service: experiments in tuProlog. In: Proceedings of EASSS, CEUR Workshop
Proceedings, vol. 1664, pp. 79–84 (2016)

18. Calimeri, F., Fuscà, D., Perri, S., Zangari, J.: I-DLV: the new intelligent grounder
of DLV. Intell. Artif. 11(1), 5–20 (2017)

19. Calimeri, F., Fuscà, D., Perri, S., Zangari, J.: Optimizing answer set computation
via heuristic-based decomposition. In: Calimeri, F., Hamlen, K., Leone, N. (eds.)
PADL 2018. LNCS, vol. 10702, pp. 135–151. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-73305-0 9

20. Catalano, G., Laboccetta, G., Reale, K., Ricca, F., Veltri, P.: A REST-based devel-
opment framework for ASP: tools and application. In: Calimeri, F., Hamlen, K.,
Leone, N. (eds.) PADL 2018. LNCS, vol. 10702, pp. 161–169. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-73305-0 11

21. Cuteri, B., Reale, K., Ricca, F.: A logic-based question answering system for cul-
tural heritage. In: Proceedings of JELIA (2019, to appear)

22. Eiter, T., Ortiz, M., Simkus, M., Tran, T.-K., Xiao, G.: Query rewriting for Horn-
SHIQ plus rules. In: Proceedings of AAAI (2012)

23. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI
Mag. 37(3), 53–68 (2016)

24. Garro, A., Palopoli, L., Ricca, F.: Exploiting agents in e-learning and skills man-
agement context. AI Commun. 19(2), 137–154 (2006)

25. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with
clingo. TPLP 19(1), 27–82 (2019)

26. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3/4), 365–386 (1991)

27. Green, C.: Theorem proving by resolution as a basis for question-answering sys-
tems. Mach. Intell. 4, 183–205 (1969)

28. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems.
J. Web Semant. 3(2–3), 158–182 (2005)

29. Hustadt, U., Motik, B., Sattler, U.: Data complexity of reasoning in very expressive
description logics. In: Proceedings of IJCAI, pp. 466–471 (2005)

30. Leone, N., et al.: The DLV system for knowledge representation and reasoning.
ACM Trans. Comput. Log. 7(3), 499–562 (2006)

31. Liang, S., Fodor, P., Wan, H., Kifer, M.: OpenRuleBench: an analysis of the per-
formance of rule engines. In: Proceedings of WWW, pp. 601–610 (2009)

32. Lierler, Y., Maratea, M., Ricca, F.: Systems, engineering environments, and com-
petitions. AI Mag. 37(3), 45–52 (2016)

33. Lopez, V., Pasin, M., Motta, E.: AquaLog: an ontology-portable question answering
system for the semantic web. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005.
LNCS, vol. 3532, pp. 546–562. Springer, Heidelberg (2005). https://doi.org/10.
1007/11431053 37

34. Manna, M., Ricca, F., Terracina, G.: Taming primary key violations to query large
inconsistent data via ASP. TPLP 15(4–5), 696–710 (2015)

35. Moldovan, D.I., Clark, C., Harabagiu, S.M., Maiorano, S.J.: COGEX: a logic prover
for question answering. In: Proceedings of HLT-NAACL (2003)

36. Navigli, R., Ponzetto, S.P.: BabelNet: the automatic construction, evaluation and
application of a wide-coverage multilingual semantic network. Artif. Intell. 193,
217–250 (2012)

37. Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., Banerjee, J.: RDFox: a highly-
scalable RDF store. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp.
3–20. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25010-6 1

https://doi.org/10.1007/978-3-319-73305-0_9
https://doi.org/10.1007/978-3-319-73305-0_9
https://doi.org/10.1007/978-3-319-73305-0_11
https://doi.org/10.1007/11431053_37
https://doi.org/10.1007/11431053_37
https://doi.org/10.1007/978-3-319-25010-6_1

Enhancing DLV for Large-Scale Reasoning 325

38. Unger, C., Bühmann, L., Lehmann, J., Ngonga Ngomo, A.-C., Gerber, D., Cimiano,
P.: Template-based question answering over RDF data. In: Proceedings of WWW,
pp. 639–648 (2012)

39. W3C: The OWL standard page. https://www.w3.org/standards/techs/owl
40. W3C: The RDF standard page. https://www.w3.org/standards/techs/rds
41. W3C: The SPARQL standard page. https://www.w3.org/standards/techs/sparql
42. Wielemaker, J., Lager, T., Riguzzi, F.: SWISH: SWI-Prolog for sharing. CoRR,

abs/1511.00915 (2015)
43. Xiao, G., et al.: Ontology-based data access: a survey. In: IJCAI, pp. 5511–5519.

ijcai.org (2018)

https://www.w3.org/standards/techs/owl
https://www.w3.org/standards/techs/rds
https://www.w3.org/standards/techs/sparql

Pruning External Minimality Checking
for ASP Using Semantic Dependencies

Thomas Eiter and Tobias Kaminski(B)

Institute of Logic and Computation, TU Wien, Vienna, Austria
{eiter,kaminski}@kr.tuwien.ac.at

Abstract. hex-programs integrate external computations in ASP. For
hex-evaluation, an external (e)-minimality check is required to prevent
cyclic justifications via external sources. As the check is a bottleneck in
practice, syntactic information about atom dependencies has been used
previously to detect when the check can be avoided. However, the app-
roach largely overapproximates the real dependencies due to the black-
box nature of external sources. We show how the dependencies can be
approximated more closely by exploiting semantic information, which
significantly increases pruning of e-minimality checking. Moreover, we
analyze checking and optimization of semantic dependency information.
An empirical evaluation exhibits a clear benefit of this approach.

1 Introduction

Answer Set Programming (ASP) [10] is a popular approach for declarative prob-
lem solving. The hex-formalism [5] extends ASP to address the increasing need
for integrating external computation sources. It enables a bidirectional exchange
with arbitrary sources via so-called external atoms, and has been employed in
many areas ranging from Semantic Web applications to robot planning [5]. For
instance, an external atom &concat[X,Y](Z) can be used to concatenate strings
in a rule fullname(X) &concat[X,Y](Z), firstname(X), lastname(Y). Exter-
nal atoms may also have predicate input, e.g. in the
rule closeCity(X) &closeTo[city](X), location(X), where the external atom
outputs all cities located close to cities in the extension of the predicate city .

For hex-evaluation, advanced reasoning algorithms are required since exter-
nal atoms must be considered in all solving phases. A notable difference to ordi-
nary ASP is that an external (e-)minimality check is needed to avoid unfounded
support by external atoms. For example, if the locations for the above rule are
osaka, kobe, bratislava and vienna, and the rule city(X) ← closeCity(X) as well
as the fact city(osaka) are added, only the atom city(kobe) should be contained
in an answer set in addition. Even though Bratislava and Vienna are located close
to each other, the atoms city(bratislava) and city(vienna) can only cyclically
support each other via the two rules and the external atom. The e-minimality
check of hex eliminates spurious answer sets containing the latter two atoms.

This research has been supported by the FWF-projects P27730 and W1255-N23.

c© Springer Nature Switzerland AG 2019
M. Balduccini et al. (Eds.): LPNMR 2019, LNAI 11481, pp. 326–339, 2019.
https://doi.org/10.1007/978-3-030-20528-7_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20528-7_24&domain=pdf
http://orcid.org/0000-0001-6003-6345
http://orcid.org/0000-0001-9776-0417
https://doi.org/10.1007/978-3-030-20528-7_24

Pruning External Minimality Checking for ASP 327

On the one hand, performing the e-minimality check efficiently is highly non-
trivial as it is co-NP-complete already for ground Horn programs with polyno-
mial external atoms [4]. On the other hand, if the rule city(X) ← closeCity(X) is
not added above, cyclic support via the external atom can be ruled out indepen-
dent from the external semantics. Based on this observation, a syntactic criterion
was presented in [4] for deciding whether the e-minimality check can be skipped
for a program, which often results in significant speedups.

Alternatively, if the external atom &closeWest[city](X) in the example (only
retrieving cities close to the west of input cities), cyclic support can also be
excluded. This cannot be detected by a syntactic criterion, such that the e-
minimality check needs to be performed in any case by the previous approach.
Moreover, applying a semantic criterion is challenging, as before, external atoms
have largely been considered as black-boxes that conceal semantic dependencies.

Skipping e-minimality checks in more cases is of special interest as it can
often result in drastic speedups. For this reason, we develop a new approach
for pruning e-minimality checking that also exploits semantic dependencies. It
relies on additional information about input-output (io-)dependencies of external
atoms, which may be provided by a user, or even generated automatically. Hid-
den io-dependencies are common in applications involving recursive processing,
e.g. over external graphs or Semantic Web data. At this, supplied dependency
information can be incomplete and added flexibly. The overall goal is to increase
the efficiency of ASP programs with external atoms to promote their practical
applicability.

After preliminaries in Sect. 2, we present our contributions as follows:

• In Sect. 3.1, we provide a novel formalization of io-dependencies that encode
semantic dependency information, and we show under which condition they
can safely be used for pruning the e-minimality check.

• In Sect. 3.2, we state theoretical properties crucial for checking and optimiz-
ing io-dependencies, and show when the associated costs can be reduced.

• In Sect. 4, we present an experimental evaluation using illustrative bench-
mark problems that confirms the advantage of exploiting io-dependencies.

Our new approach not only applies to hex, but may also be employed anal-
ogously for other approaches that integrate external sources into ASP, such as
clingo [8], if external cyclic support is not desired. Proofs and benchmark data
can be found at www.kr.tuwien.ac.at/research/projects/inthex/dep-pruning.

2 Preliminaries

We assume disjoint sets P, C, X and V of predicates, constants, external predi-
cates (prefixed with ‘&’) and variables, respectively. Each p ∈ P has fixed arity
ar(p), and each has fixed input and output arity arI(&g) and arO(&g),
respectively. An atom is of the form p(t), where p ∈ P, t= t1, . . . , t� ∈ C ∪ V.
A (signed) literal is a positive or a negative ground atom Tp(c) or Fp(c). An

http://www.kr.tuwien.ac.at/research/projects/inthex/dep-pruning

328 T. Eiter and T. Kaminski

assignment A over a set A of ground atoms is a set of literals s.t. for each a ∈ A,
either Ta ∈ A or Fa ∈ A, where A(a) = T if Ta ∈ A, and A(a) = F otherwise.
HEX-Programs. hex-programs extend answer set programs with external
atoms in rule bodies (cf. [5] for more details).

Syntax. An external atom is of form &g [X](Y), where , X = X1, . . . , Xk,
with k = arI(&g), are input parameters (variables or predicates w.l.o.g.) and
Y = Y1, . . . , Yl, with l = arO(&g), are output terms. An external atom is
ground if X = X1, . . . , Xk are predicates and Y = Y1, . . . , Yl are constants.
Given a ground external atom &g [X](Y), we call &g [X] a ground external
(ge-)predicate.

Definition 1 (HEX-Program). A hex-program Π is a set of rules of the form
a1 ∨ · · · ∨ ak ← b1, . . . , bm,not bm+1, . . . ,not bn, where each ai, 1 ≤ i ≤ k, is an
atom and each bj, 1 ≤ j ≤ n, is either an ordinary atom or an external atom.

Given a rule r, H(r) = {a1, . . . , ak} is its head, B(r) = {b1, . . . , bm,not bm+1, . . . ,
not bn} its body, and B+(r) = {b1, . . . , bm} resp. B−(r) = {bm+1, . . . , bn}.

Semantics. As safety conditions allow to compute equivalent finite groundings
of hex-programs, in the following we assume assignments are over the set A(Π)
of atoms that occur in a ground program Π at hand. Moreover, definitions are
implicitly parameterized with the according finite vocabulary. Following [6], the
semantics of a ground external atom &g [p](c) , wrt. an assignment A, is given by
a 1+arI(&g)+arO(&g)-ary two-valued (Boolean) oracle function f&g defined for
all possible values of A, p and c s.t. &g [p](c) is true (informally, c is an output
of &g for input p) relative to A iff (A,p, c) = Tf&g . As usual, we assume that
f&g(A,p, c) depends only on the restriction of A to p. Satisfaction of ASP rules
and programs [10] is extended to hex-rules and programs in the obvious way.

The answer sets of a hex-program Π are defined as follows. Let the FLP-
reduct [7] of Π wrt. an assignment A be the set fΠA = {r ∈ Π | A |=
b, for all b ∈ B(r)} of all rules whose body is satisfied by A, and let for assign-
ments A1, A2 denote A1 ≤ A2 that {Ta ∈ A1} ⊆ {Ta ∈ A2}. Then:

Definition 2 (Answer Set). An assignment A is an answer set of a hex-
program Π, if A is a ≤-minimal model of fΠA.

Example 1. Consider , where &id [p]() is true iff p is true.
Then, Π has the answer set A1 = ∅; indeed it is a ≤-minimal model of fΠA1 = ∅.

Evaluation. A hex-program Π can be transformed to an ordinary program by
replacing each external atom &g [p](c) in Π by an ordinary replacement atom
e&g[p](c), and by adding a rule that guesses its evaluation.
An ordinary ASP solver can then be employed to compute the answer sets of the
resulting guessing program Π̂, where each answer set Â is a candidate model. If
all truth values for atoms e&g[p](c) correspond to f&g(Â,p, c), Â is a compatible
set. Still, the projection A of a compatible set Â to A(Π) is not always an answer
set due to the possibility of cyclic support via external atoms.

Pruning External Minimality Checking for ASP 329

Example 2 (cont’d). The guessing program
has the answer sets Â1 = ∅ and . Here, A1 is a ≤-minimal
model of fΠA1 = ∅, but A2 not of fΠA2 = Π since ∅ ≤ A2 is a smaller model.

Consequently, an e-minimality check wrt. fΠA is needed for finding answer
sets of hex-programs. A direct way to ensure minimality of the projection A
of a compatible set Â for a hex-program Π wrt. fΠA consists in explicitly
constructing fΠA and checking that it has no model A′ s.t. A′ ≤ A.

3 Pruning the External Minimality Check

Since an answer set Â of a guessing program Π̂ must be a minimal model
of the FLP-reduct fΠ̂Â, an e-minimality check is under certain conditions
redundant. The criterion in [4] for deciding its necessity relies on an atom
dependency graph induced by the hex-program. Informally, an e-minimality
check is only needed for programs that allow cyclic support via external atoms,
which can be checked efficiently. For instance, the program
allows cyclic support for the atom p via &id [p](), while this is not the case for

, where the truth value of &id [q]() is inde-
pendent of the value of p. If cyclic support via external atoms can be ruled
out as for Π2, the e-minimality check can be skipped for a program, potentially
avoiding to invest many resources into a redundant check. Note, however, that
a minimality check is still needed for computing the answer sets of Π̂.

In this section, we introduce a new technique for skipping the e-minimality
check wrt. a wider class of programs than previous approaches. More precisely,
given Π, we present a new sufficient1 criterion for deciding if every projection
A of a compatible set Â for Π̂ is an answer set of Π. The criterion exploits that
output values of external atoms often do not depend on the complete extensions
of their input predicates, which can be determined given additional information
concerning dependencies between the inputs and outputs of external atoms.

3.1 Dependency Graph Pruning

We start by defining so-called io-dependencies, which specify that certain outputs
of external atoms only depend on specific argument values of their inputs. For
instance, whether a city c is in the output of &closeWest [city](X) from Sect. 1
only depends on cities c′ that are located close to the east of c. Hence, the truth
value of &closeWest [city](kobe) clearly only depends on the atom city(osaka),
and we want to encode that kobe as first output of &closeWest [city](X) only
depends on the element osaka as first argument of the first input predicate city .

1 Deciding the sufficient and necessary criterion is Πp
2 -complete for polynomial-time

decidable external atoms and thus ill-suited for our aim to improve performance.

330 T. Eiter and T. Kaminski

Definition 3 (Io-Dependency). An io-dependency for a ge-predicate &g [p]
is a tuple δ = 〈i, j : J, k : e〉 where , 1 ≤ j ≤ ar(pi),

, J ⊆ C and e ∈ C. The set of all δ for &g [p] is denoted by
(&g [p]).

In the sequel, io-dependencies will be used to constrain the possible depen-
dencies between inputs and outputs of external atoms &g [p](c). Intuitively, an
io-dependency 〈i, j : J, k : e〉 states that if constant e occurs as the kth output of
&g [p](c), then only those input predicates at position i are relevant for its eval-
uation where the jth argument matches some e′ ∈ J . Thus, the io-dependency
δ = 〈1, 1 : {osaka}, 1 : kobe〉 could be specified for the example above. Io-
dependencies induce atom sets relevant for evaluating respective external atoms:

Definition 4 (Compliant Atoms). A ground ordinary atom pi(d), with d =
d1, ..., dl, is compliant with a set of io-dependencies for a ground
external atom &g [p](c) if dj ∈ J for all 〈i, j : J, k : e〉 ∈ D with e = ck. The set
of all atoms compliant with D for &g [p](c) is denoted by (D,&g [p](c)).

For our example, we have .
The semantics of external atoms is related to io-dependencies as follows.

Definition 5 (Faithfulness). A set is faithful if for any
assignments A,A′ and ground external atom &g [p](c), either A(pi(d)) �=
A′(pi(d)) for some or f&g(A,p, c)= f&g(A′,p, c).

Thus, io-dependencies constrain the set of atoms that poten-
tially impact the evaluation of &g [p](c), i.e. if D is faithful, changing only truth
values of atoms has no effect on the value of &g [p](c) .

In the following, we denote by a set of io-dependencies
specified for &g [p]. By default, we assume that D(&g [p]) is empty, but it can be
utilized to supply additional dependency information. To ensure correctness of
an algorithm that skips e-minimality checks based on D(&g [p]), it is important
that D(&g [p]) is faithful; and we assume in the following that this is the case.
Simultaneously, the goal is to approximate the real dependencies between atoms
as close as possible for maximal performance gains. Note that while an exten-
sional specification of D(&g [p]) might be very verbose, they can often also be
specified more concisely in an intensional manner, as in the following example.

Example 3. Consider &setDiff [dom, set](c), which is true for c ∈ C and assign-
ment A iff {Tdom(c),Fset(c)} ⊆ A. Thus, the presence of an output value c
only depends on atoms with predicate dom or set that have c as first argument.
Hence, is faithful.

We now introduce a notion of atom dependency in hex-programs that
accounts for io-dependencies and generalizes the corresponding notion from [4].

Definition 6 (Atom Dependency). Given a ground hex-program Π, a set
D(&g [p]) for each &g [p] in Π, and ordinary ground atoms p(d) and q(e), we say

Pruning External Minimality Checking for ASP 331

– q(e) depends on p(d), denoted q(e) →d p(d) if for some rule r ∈ Π it holds
that q(e) ∈ H(r) and p(d) ∈ B+(r); and

– q(e) depends externally on p(d), denoted q(e) →e p(d) if some rule r ∈ Π
and some external atom with p ∈ p exist such that
q(e) ∈ H(r) and .

Note that Definition 6 generalizes the corresponding one from [4] in that an
external dependency is only added if the specified io-dependencies are satisfied.
The definitions coincide if for all ge-predicates &g [p].

Example 4. Consider &suc[node](n), which evaluates to true wrt. an assignment
A and an external directed graph G = (V,E) iff n′ → n ∈ E for some node n′

s.t. Tnode(n) ∈ A. It is utilized in the following hex-program Π:

node(a). node(X) &suc[node](X)

Intuitively, the program computes all nodes reachable from node a via the
edges in G. If the external graph has nodes V = {a, b, c, d} and directed edges
E = {a → b, a → c, c → d, e → d}, the grounding of Π produced by the
grounding algorithm of the hex-program solver dlvhex contains the following
rules (omitting facts):

node(b) &suc[node](b). node(c) &suc[node](c). node(d) &suc[node](d)

Without specifying io-dependencies for &suc[node], it holds, e.g., that
node(a) →e node(b) and node(b) →e node(a). However, we can specify

, exploiting that
the presence of output nodes only depends on input nodes to which they are
successors. In this case, node(a) →e node(b) does not hold according to Defini-
tion 6 as b → a �∈ E.

We are now ready to introduce the atom dependency graph for a given pro-
gram Π. From this graph, a property of Π can be derived which is subsequently
employed to decide the necessity of the e-minimality check wrt. Π.

Definition 7 (Dependency Graph). Given a ground hex-program Π, the
dependency graph Gdep

Π = (V,E) has the vertices V = A(Π) and directed edges
E =→d ∪ →e; Π has an e-cycle, if Gdep

Π has a cycle with an edge →e.

While the inverse of →d was additionally included in Gdep
Π by Eiter et al. [4],

we improve their results by showing that our more general definition suffices.
Moreover, the following result differs from the previous result for e-minimality
check skipping [4] in that it is based on our generalized definition of external
dependencies. Consequently, it can be applied to a larger class of hex-programs.

Theorem 1. If a ground hex-program Π contains no e-cycle, then every pro-
jection A of a compatible set Â for Π̂ is an answer set of Π.

332 T. Eiter and T. Kaminski

node(a) node(b)

node(c) node(d)

node(a) node(b)

node(c) node(d)

Fig. 1. Full and pruned dependency graph for Π from Example 4 (all arrows are “→e”).

Example 5 (cont’d). Figure 1 shows the dependency graphs for Π from Exam-
ple 4, with and without specified io-dependencies. The full dependency graph
has an e-cycle, but the pruned graph does not. Hence, Π does not require
e-minimality checks (cf. Theorem 1), but this can only be detected using the
pruned graph.

As a result, we obtain a flexible means for increasing the efficiency of eval-
uating a class of hex-programs where the e-minimality check is performed due
to an overapproximation of the real dependencies between atoms.

3.2 Properties of Faithful IO-Dependencies

We now consider checking, generating and optimizing io-dependencies.
Informally, given , D1 is better than D2 if it induces

less compliant atoms. We thus say that D1 tightens D2, denoted D1 ≤ D2, if
holds for all tuples c. We call D1 tight

if no D2 strictly tightens D1, i.e., D2 ≤ D1 but D1 �≤ D2; furthermore D1 and
D2 are equally tight, denoted D1 ≡ D2, if D1 ≤ D2 and D2 ≤ D1. We then have:

Proposition 1. Suppose are such that D1 ≤ D2. If D1 is
faithful, then D2 is also faithful.

As a consequence, faithfulness is anti-monotonic wrt. set-inclusion, and it
is monotonic wrt. adding subsumed io-dependencies, where δ = 〈i, j : J, k : e〉
subsumes δ′ = 〈i, j : J ′, k : e〉, if J ⊆ J ′ holds.

Corollary 1. If is faithful, then (i) each D′ ⊆D is faithful and
(ii) each D′ =D∪D′′ where each δ′′ ∈ D′′ is subsumed by some δ ∈ D is faithful.

Consequently, we can tighten a faithful set D by sequentially dropping con-
stants c from io-dependencies δ = 〈i, j : J, k : e〉 in D, i.e., check whether D ∪ δ′

for δ′ = 〈i, j : J \ {c}, k : e〉 is faithful and if so, replace D with (D \ {δ}) ∪ {δ′}.
We can simplify D by exploiting the following equivalences; let δ∗(i, j, k:e) =

〈i, j : C, k : e〉 for any possible i, j, and k : e.

Proposition 2. For and , we have
(i) D ≡ D∪{δ∗(i, j, k:e)} ≡ D\{δ∗(i, j, k:e)}, and (ii) for any δ = 〈i, j : J, k : e〉,
δ′ = 〈i, j : J ′, k : e〉 ∈ D that D ≡ D ∪ {〈i, j : J ∩ J ′, k : e〉}.

Pruning External Minimality Checking for ASP 333

That is, δ∗(i, j, k:e) is like a tautology, and we can replace all dependencies
for i, j and k : e in D by one which contains the intersection of all their J-sets.
We thus can normalize D into nf(D) such that for each i, j, and k : e exactly
one io-dependency occurs, and then start tightening. We then obtain:

Proposition 3. Given a faithful , exhaustive tightening of
nf(D) results in a tight faithful D′.

The set D = ∅ is trivially faithful, and nf(∅) consists of all δ∗(i, j, k:c); thus
even without user input, a tight faithful set D′ for &g [p] is constructible. More-
over, semantically faithful sets of compliant atoms have the intersection property.

Proposition 4. If are faithful, then D1 ∪D2 is faithful, and
for every c, .

Consequently, every ge-predicate has a semantically unique tight set of faith-
ful io-dependencies. However, syntactically, different tight faithful sets may exist.

Example 6. Consider a ge-predicate &g [p] which is true for output (a, b) wrt.
an assignment A iff Tp(c) ∈ A, and false for all other output tuples. Then
{〈1, 1 : {c}, 1 : a〉} and {〈1, 1 : {c}, 2 : b〉} are faithful, and both are tight.

To check faithfulness of a set , formally the oracle function
f&g(A,p, c) must be evaluated for all evaluations of predicates p ∈ p and output
tuples c, which naively is often not feasible in practice.

Example 7. Reconsider &suc[node](X) from Example 3. To check faithfulness
of the specified io-dependencies wrt. output a, the oracle function needs to be
evaluated under all possible assignments to atoms with predicate node.

In the worst case, this cannot be avoided by the following result, where we
assume that &g [p](c) is decidable in polynomial time.

Proposition 5. Checking faithfulness of a given set is co-NEXP-
complete in general, and co-NP-complete for fixed predicate arities.

When certain properties of external sources are known, less external calls are
needed for faithfulness checking, e.g. for monotonic functions. An input pi ∈p
of a ge-predicate &g [p] is monotonic, if for any assignment A and output c,
f&g(A,p, c) = T implies f&g(A′,p, c) = T for every A′ ≥ A s.t. A(pj(d)) =
A′(pj(d)) for all predicates pj ∈ p with pj �= pi (cf. [6]). Based on monotonicity,
the number of assignments to consider in a faithfulness check can be decreased.

Proposition 6. If pi ∈ p for &g [p] is monotonic, a set
is faithful for &g [p] iff for any assignments A, A′ s.t. Tpi(d) ∈ A and
Fpi(d) ∈ A′ for every and A(pi(d)) = A′(pi(d)) for
every comp(D,&g [p](c)), it holds that f&g(A,p, c)= f&g(A′,p, c).

334 T. Eiter and T. Kaminski

Example 8 (cont’d). As node is a monotonic input parameter of &suc[node], for
checking faithfulness wrt. a it suffices to evaluate f&suc(A, node, a) under two
assignments At and Af , s.t. At ⊆ {Tnode(a),Tnode(b),Tnode(c), Tnode(d)}
and Af ⊆ {Fnode(a),Fnode(b),Fnode(c),Fnode(d)}.

Under additional conditions, we obtain tractability:

Corollary 2. If all pi ∈ p for &g [p] are monotonic and is
bounded, then checking faithfulness is polynomial for fixed predicate arities.

The same holds for computing a tight faithful set D for &g [p]. In practice,
this applies to Example 3, if the external graph has bounded degree.
Relativized io-dependencies. So far, the context of a given hex-program has
not been exploited for specifying respective io-dependencies. However, without
considering how dependencies in an external source may be affected by input
parameters, all io-dependencies that may hold under any possible extension of
input predicates must be respected. This is illustrated by the following example.

Example 9. Consider &suc[edge, node](X), where edges from edge are inserted
into G before successor nodes are output. If it is unknown which edges can be
added, io-dependencies must account for the complete graph (all edges), which
is a maximal overapproximation. Now, consider the following hex-program.

As edge(b, c) is the only atom with predicate edge that can potentially be true
in the input of &suc[edge, node](b) in any answer set, it suffices to specify io-
dependencies wrt. the graph G′ = (V,E ∪ {b → c}) to ensure e-minimality.

To account for the inputs to external sources that are possible in answer sets,
we define faithfulness wrt. a hex-program Π. Let env(Π) denote the set of all
atoms for Π that are true in some compatible set of Π.

Definition 8 (Relativized Faithfulness). A set is faithful
wrt. a hex-program Π, if for any assignments A, A′ s.t. {a | Ta ∈ A ∪ A′} ⊆
env(Π), and for any output tuple c for &g [p], either A(pi(d)) �= A′(pi(d)) for
some atom .

We show that skipping e-minimality checks based on the relativized definition
of faithful io-dependencies is still safe.

Proposition 7. Theorem1 still holds if the specified io-dependencies are faithful
wrt. to the hex-program Π at hand according to Definition 8.

The properties of above can be adjusted to this setting.

4 Empirical Evaluation

To empirically evaluate our new technique, we integrated it into the hex-solver
dlvhex 2.5.0, which uses gringo 4.4.0 and clasp 3.1.1 as backends [9], and

Pruning External Minimality Checking for ASP 335

Table 1. User access selection results (few cycles)

c-mod c-mod + io-dep part part + io-dep min-part min-part + io-dep #cyclic

10 0.46 (0) 0.43 (0) 0.60 (0) 0.58 (0) 1.53 (0) 1.36 (0) 7/10

15 2.64 (0) 2.18 (0) 4.58 (0) 3.91 (0) 7.41 (0) 4.43 (0) 3/10

20 16.43 (0) 14.71 (0) 44.90 (0) 41.93 (0) 43.87 (0) 31.03 (0) 5/10

25 43.85 (0) 38.25 (0) 102.39 (1) 93.65 (1) 81.51 (0) 67.59 (0) 5/10

30 110.24 (2) 91.01 (2) 192.48 (4) 180.58 (4) 168.80 (2) 99.53 (2) 4/10

35 111.62 (1) 79.69 (1) 217.58 (4) 178.62 (2) 161.86 (2) 83.18 (1) 3/10

40 189.64 (2) 141.12 (2) 262.35 (6) 231.22 (5) 202.95 (3) 143.12 (2) 5/10

45 264.04 (5) 216.89 (4) 269.49 (6) 227.88 (5) 263.40 (5) 202.55 (4) 5/10

50 300.00 (10) 227.15 (4) 300.00 (10) 249.55 (6) 300.00 (10) 220.61 (3) 2/10

tested it on randomly generated instances. Io-depencendies for external atoms
are specified by plugin-methods that compute whether a dependency between
given input and output values exists. We used a Linux machine with two 12-core
AMD Opteron 6238 SE CPUs and 512 GB RAM; the timeout was 300 s and the
memout 8 GB per instance. The average runtime of 10 instances per problem size
is reported (in secs) for computing all answer sets; timeouts are in parentheses.
Configurations. To gain insights into how dependency graph pruning and
other techniques interact, we consider the frequency of external calls as further
factor. While basic evaluation in Sect. 2 evaluates external atoms wrt. candi-
date models, we can evaluate them also wrt. partial assignments [6]. At this,
investigating how e-minimality check skipping interacts with partial evaluation
is of interest as early external evaluation can speed up model search as well as
the e-minimality check and thus, potentially influence the impact of our new
technique.

We compared three different configurations, each with and without depen-
dency graph pruning based on specified io-dependencies (configuration io-dep):

• c-mod: external atoms are only evaluated wrt. candidate models (represent-
ing the standard configuration of dlvhex);

• part: external atoms are evaluated wrt. partial assignments after every
solver guess during the model search; and

• min-part: external atoms are evaluated wrt. partial assignments after every
solver guess during the e-minimality check.

In the result tables, we show combinations of configurations where interac-
tions are expected. We predicted io-dep to decrease the runtime if e-cycles can
be removed from the dependency graph; and that the speedup is larger when
io-dep is combined with part and smaller when combined with min-part, when-
ever partial evaluation is beneficial. If pruning does not skip e-minimality checks,
we expected no significant overhead in terms of runtime with io-dep.
User Access Selection (UAS). Consider a set of computer nodes C and a set
of directed connections A between nodes, where n1 → n2 ∈ A, for n1, n2 ∈ C,
iff node n1 has access to node n2. Hence, a node can be accessed directly, or
indirectly via other nodes. Now, suppose a network admin has to assign access

336 T. Eiter and T. Kaminski

y nd(X) ∨ n nd(X) ←domain(X).

nd(X) ←y nd(X).

nd(X) ←&hasAccess[nd](X).

←nd(X), nd f(X).

←notnd(X), nd a(X).

←#count{X:y nd(X)} > 3.

Fig. 2. User access selection rules

Table 2. User access selection results (many cycles)

c-mod c-mod + io-dep part part + io-dep min-part min-part + io-dep #cyclic

10 0.41 (0) 0.41 (0) 0.35 (0) 0.36 (0) 0.46 (0) 0.46 (0) 10/10

15 7.55 (0) 7.61 (0) 6.17 (0) 6.38 (0) 7.95 (0) 8.15 (0) 10/10

20 44.03 (1) 43.92 (1) 6.52 (0) 6.57 (0) 44.54 (1) 44.66 (1) 10/10

25 107.50 (2) 107.95 (2) 51.60 (1) 51.62 (1) 87.53 (1) 87.51 (1) 10/10

30 84.97 (0) 84.64 (0) 44.23 (0) 44.73 (0) 85.64 (0) 85.42 (0) 10/10

35 223.56 (5) 222.95 (5) 111.29 (1) 110.98 (1) 223.26 (5) 224.26 (5) 10/10

40 268.27 (7) 268.73 (7) 152.53 (1) 153.28 (1) 268.86 (7) 269.44 (7) 10/10

45 284.12 (8) 284.33 (8) 251.08 (4) 252.54 (4) 286.90 (8) 286.56 (8) 10/10

50 300.00 (10) 300.00 (10) 300.00 (10) 298.61 (9) 300.00 (10) 300.00 (10) 10/10

rights by selecting nodes C ′ ⊆ C to which some user will be granted access, s.t.
every node in a set Ca ⊆ C (required access) is accessible from some n ∈ C ′ and
no node in a set Cf ⊆ C (forbidden nodes) is accessible from any n ∈ C ′.

We assume the network is not known initially, but each node can be queried
for its connections. For this, we use an external atom &hasAccess[nodes](n),
which interfaces external network information, and outputs all nodes that can
be accessed by some node in the extension of nodes. Accordingly, it evaluates to
true for an output node n2 wrt. an assignment A iff Tnodes(n1) ∈ A for some
(n1, n2) ∈ A. Moreover, we specify D(&hasAccess[nodes])=

{〈2, 1 : {n1 | n1 →
n2 ∈ A}, 1 : n2〉 | n2 ∈ C

}
, i.e. there is a dependency of an output on an input

node whenever the latter has access to the former. The hex-program in Fig. 2
with facts domain(n) for n ∈ C, facts node a(n) for n ∈ Ca, and facts node f(n)
for n ∈ Cf encodes UAS, where at most three nodes can be accessed directly.

First, we generated networks with N ∈ [10, 50] nodes, where each node has
access to another node with probability 1

2×N (cf. Table 1). This yields networks
about half of which have no cycles and thus, dependency pruning can have
an effect on the number of required e-minimality checks. Next, we increased the
access probability to 2

N (cf. Table 2). This effects that nearly all networks contain
cycles, which allowed us to investigate the effect of pruning when this does not
impact the need for an e-minimality check. The rightmost column shows the
fraction of instances where the computer network has a cycle.
Sequential Allocation of Indivisible Goods (SAIG). Next, we considered
a problem from Social Choice, namely dividing a set G of m items among two
agents a1 and a2 by allowing them to pick items in specific sequences σ =
o1o2...om ∈ {a1, a2}m [11]. Each agent ai has a linear preference order >i over
G; and the utility of g ∈ G for ai is ui(g) = |{g′ | g >i g′ ∈ G}|. We assume that

Pruning External Minimality Checking for ASP 337

Table 3. Sequential Allocation Results

c-mod c-mod + io-dep part part + io-dep min-part min-part + io-dep

3 0.19 (0) 0.19 (0) 0.25 (0) 0.24 (0) 0.38 (0) 0.19 (0)

4 2.74 (0) 1.73 (0) 0.74 (0) 0.64 (0) 2.54 (0) 1.72 (0)

5 300.00 (10) 78.28 (0) 152.33 (5) 2.42 (0) 141.76 (1) 78.02 (0)

6 300.00 (10) 300.00 (10) 300.00 (10) 8.22 (0) 300.00 (10) 300.00 (10)

7 300.00 (10) 300.00 (10) 300.00 (10) 26.63 (0) 300.00 (10) 300.00 (10)

8 300.00 (10) 300.00 (10) 300.00 (10) 89.97 (0) 300.00 (10) 300.00 (10)

9 300.00 (10) 300.00 (10) 300.00 (10) 284.17 (4) 300.00 (10) 300.00 (10)

10 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10)

turn(a 1, P) ∨ turn(a 2, P) ←position(P).

picked(A,P,G) ←&pick [alreadyP icked](A,P,G), turn(A,P), item(G).

alreadyP icked(P,G) ←position(P), position(P1), P1 < P, picked(, P1, G).

←not&envyFree[picked]().

Fig. 3. Sequential allocation rules

an agent always picks the remaining item with maximal utility. The goal is to
find a sequence σ resulting in an envy-free division of items, i.e. where no agent
prefers the items of the other agent over its own items.

We use an external atom to obtain the choices of the agents, while their com-
plete preferences are hidden, and a further one that checks whether an alloca-
tion is envy-free. The atom &pick [alreadyP icked](ai, p, g) evaluates to true wrt.
assignment A iff p ∈ [1,m] and g >i g′ for all g′ s.t. TalreadyP icked(p−1, g) �∈
A, where p represents the positions in a respective sequence. Furthermore, let
G(A, i, j) =

∑
g∈{g|Tpicked(ai,p,g)∈A} uj(g). Then, the atom &envyFree[picked]()

is true iff G(A, 1, 1)< G(A, 2, 1) and G(A, 2, 2)< G(A, 1, 2). The encoding is
shown in Fig. 3. Together with facts position(p) and item(g) for all p, g ∈ [1,m],
its answer sets encode all sequences that induce an envy-free allocation.

We set D(&pick [alreadyP icked])=
{〈1, 1:{p1}, 2:p2〉 | p1, p2 ∈ [1,m], p2 =

p1+1
}
, i.e. items already picked at a sequence position only depend on previ-

ous positions. The io-dependencies eliminate all cyclic dependencies via exter-
nal atoms in the instances; thus e-minimality checks can always be skipped. We
tested instances with random preference orders and N ∈ [3, 10] items (cf. Table 3).
Findings. When dependency graph pruning skips e-minimality checks, io-dep
significantly improves the runtimes for all instance sizes and independent from
the configuration it is combined with (cf. Tables 1 and 3). In many cases, we
are able to solve significantly more instances than before. In Table 2, io-dep has
only a negligible impact on the runtimes. As io-dep has no advantage for cyclic
instances, this shows that dependency pruning yields not much overhead. Partial
evaluation was only beneficial both in the model search and the e-minimality
check for SAIG. As predicted, the speedup for part + io-dep is larger than for
min-part + io-dep since min-part already reduces the runtimes required for

338 T. Eiter and T. Kaminski

e-minimality checks, while part needs to invest more time in the e-minimality
check. The runtimes for c-mod+io-dep and min-part+io-dep are similar; this
is expected as min-part only applies to the e-minimality check, which is skipped
in both cases. In summary, there is no clear winner among the conditions, but
adding io-dep is suggestive as a default when io-dependencies can be specified.

5 Discussion and Conclusion

We introduced io-dependencies to formalize semantic dependencies over external
atoms that approximate the real dependencies more closely than previously pos-
sible. Based on this, more e-minimality checks can be skipped, which proved to
be beneficial in practice. We also stated properties for checking and optimizing
io-dependencies important for automatically constructing tight faithful depen-
dency sets. While faithfulness checking is intractable in general, we identified
cases where the costs can be reduced for certain oracles, or where checking is
polynomial.

Our approach is related to domain independence techniques in [3], where
external atoms are evaluated wrt. subsets of the domain while correct outputs
are retained. This is similar to our notions of compliant atoms and faithful-
ness. Yet, io-dependencies are more general because in [3], only disjoint domain
partitions for external inputs are considered, and dependencies are not used for
argument positions. Another important difference is that their approach employs
dependencies for program splitting as in [13], while we aim at detecting redundant
e-minimality checks. They do not analyze the costs for generating dependencies.

Apart from hex, there are several other approaches that integrate exter-
nal theories into declarative problem solving, such as clingo [8], SMT [1] and
Constraint-ASP [12]. However, to the best of our knowledge, external minimal-
ity has not been considered there. Nevertheless, our technique could also be
employed directly by related rule-based formalisms if minimality involving exter-
nal theories is required. Moreover, cyclic support may arise from external prop-
agators, e.g. in the WASP -solver [2], where our approach could be applied as
well.

While we only exploited semantic dependencies for e-minimality checking,
additional dependency information is also useful for other parts of hex-solving
such as grounding and External Behavior Learning [6]. By limiting oracle calls
to compliant input atoms, the number of external calls during hex-evaluation
could potentially be reduced significantly.

References

1. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-
ries. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satis-
fiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 825–885.
IOS Press, Amsterdam (2009)

Pruning External Minimality Checking for ASP 339

2. Dodaro, C., Ricca, F., Schüller, P.: External propagators in WASP: preliminary
report. In: Bistarelli, S., Formisano, A., Maratea, M. (eds.) RCRA@AI*IA 2016,
CEUR-WS, vol. 1745, pp. 1–9. CEUR-WS.org (2016)

3. Eiter, T., Fink, M., Krennwallner, T.: Decomposition of declarative knowledge
bases with external functions. In: Boutilier, C. (ed.) IJCAI 2009. pp. 752–758
(2009)

4. Eiter, T., Fink, M., Krennwallner, T., Redl, C., Schüller, P.: Efficient HEX-program
evaluation based on unfounded sets. J. Artif. Intell. Res. 49, 269–321 (2014)

5. Eiter, T., Kaminski, T., Redl, C., Schüller, P., Weinzierl, A.: Answer set program-
ming with external source access. In: Ianni, G., et al. (eds.) Reasoning Web 2017.
LNCS, vol. 10370, pp. 204–275. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-61033-7 7

6. Eiter, T., Kaminski, T., Redl, C., Weinzierl, A.: Exploiting partial assignments for
efficient evaluation of answer set programs with external source access. J. Artif.
Intell. Res. 62, 665–727 (2018)

7. Faber, W., Pfeifer, G., Leone, N.: Semantics and complexity of recursive aggregates
in answer set programming. Artif. Intell. 175(1), 278–298 (2011)

8. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:
Theory solving made easy with clingo 5. In: Carro, M., King, A., Saeedloei, N.,
Vos, M.D. (eds.) ICLP-TC 2016. OASICS, vol. 52, pp. 2:1–2:15. Schloss Dagstuhl
(2016)

9. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider,
M.T.: Potassco: the potsdam answer set solving collection. AI Commun. 24(2),
107–124 (2011)

10. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3/4), 365–386 (1991)

11. Kalinowski, T., Narodytska, N., Walsh, T., Xia, L.: Strategic behavior when allocat-
ing indivisible goods sequentially. In: desJardins, M., Littman, M.L. (eds.) AAAI
2013. AAAI Press (2013)

12. Lierler, Y.: Relating constraint answer set programming languages and algorithms.
Artif. Intell. 207, 1–22 (2014)

13. Lifschitz, V., Turner, H.: Splitting a logic program. In: Hentenryck, P.V. (ed.) ICLP
1994, pp. 23–37. MIT Press (1994)

https://doi.org/10.1007/978-3-319-61033-7_7
https://doi.org/10.1007/978-3-319-61033-7_7

Declarative Local Search
for Predicate Logic

Tu-San Pham1(B), Jo Devriendt2, and Patrick De Causmaecker1

1 KU Leuven, Leuven, Belgium
san.pham@kuleuven.be

2 KTH Royal Institute of Technology, Stockholm, Sweden

Abstract. In this paper we introduce a framework built on top of the
Knowledge Base System IDP, which allows local search heuristics to
be synthesized from their formal descriptions. It is introduced as a new
inference to solve optimization problems in IDP. To model a local search
heuristic, users need to specify its components, among which neighbour-
hood moves are the most important. Two types of neighbourhood moves,
namely standard moves and Large Neighbourhood Search moves, are
supported. A set of built-in local search heuristics are provided, allowing
users to combine neighbourhoods in different ways. We demonstrate how
the new local search inference can be used to complement the existing
solving mechanisms for logic programming.

Keywords: Heuristics · Local search · Knowledge representation ·
Predicate logic

1 Introduction

IDP (Imperative-Declarative Programming [2]) is a Knowledge Base System
(KBS) which consists of two main components: (i) a formal declarative language
that allows describing domain knowledge (as a knowledge base); and (ii) a set of
inference methods that allows solving a wide variety of tasks around a knowledge
base. Its language FO(·) is based on classical first-order logic (FO), extended
with inductive definitions, types, aggregates and arithmetics. In this paper, we
focus on IDP’s ability to solve combinatorial optimization problems, which is
provided through the inference method optimization using MiniSAT(ID) [3] as
the backend engine. As a CP-SAT-based solver, it shows limited performance on
many optimization problems, such as the assignment problem [4], or real-world
problems with large-sized instances. In the field of operational research, local
search heuristics have shown their ability to solve such problems successfully.

In this work, we introduce declarative local search, a framework that allows
specifying local search heuristics declaratively in IDP. Local search is provided
as a new inference method, serving as an alternative to solve optimization prob-
lems. To use the inference, beside a problem’s modelling, users need to specify

c© Springer Nature Switzerland AG 2019
M. Balduccini et al. (Eds.): LPNMR 2019, LNAI 11481, pp. 340–346, 2019.
https://doi.org/10.1007/978-3-030-20528-7_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20528-7_25&domain=pdf
https://doi.org/10.1007/978-3-030-20528-7_25

Declarative Local Search for Predicate Logic 341

necessary components of a local search heuristic, chief of which are the neigh-
bourhood moves. The initial idea was reported in [12] where only the modelling
of a single neighbourhood is supported. In this work, users can specify multi-
ple neighbourhoods and combine them in different ways using a set of built-in
heuristics and metaheuristics. Two types of moves are supported, namely stan-
dard moves and Large Neighbourhood Search moves. This work is similar in
spirit to [1], where neighbourhoods are declaratively modelled in the constraint
programming language MiniZinc [11]. The source code of the solver along with
all the modellings in this paper and experimental results can be found at [10].

Section 2 shortly introduces IDP, while the modelling of local search heuris-
tics is showcased in Sect. 3. In Sect. 4, we present how IDP is extended with a
local search back-end to synthesize local search heuristics. Section 5 concludes
the paper.

2 Modelling TSP in FO(·) with IDP

A thorough introduction to IDP and its language FO(·) can be found at
dtai.cs.kuleuven.be/software/idp. An IDP specification (or modelling) consists
of different components. The four most important components are: vocabularies
specifying the symbols and types used; theories specifying problem constraints;
structures representing both input data and feasible solutions; and terms for
objective functions. These are combined and reused through imperative code
written in the Lua scripting language [8]. As a running example we employ
the Travelling Salesman Problem (TSP), which consists of finding the shortest
Hamiltonian cycle of a given graph. A model for the TSP in IDP can be found
at goo.gl/TTv85c.

Example 1 (TSP). The four components of the TSP modelling are as follows:

– The vocabulary V specifying the parameters (Node, Distance, Depot),
whose values define a problem instance, and the decision variables (Path,
Reachable), whose values define a solution of the problem.

– The theory T built over V , specifying the problem’s constraints:

∀x : ∃!y : Path(x, y).
∀x : ∃!y : Path(y, x).
{ Reachable(Depot).

Reachable(x) ← ∃y : Reachable(y) ∧ Path(y, x).}
∀x : Reachable(x).

The first two lines represent the flow constraints. Line three and four feature
an inductive definition which defines the Reachable predicate, starting from
the depot, and inductively adding neighbouring nodes according to the links
present in Path. The last line then states that all nodes must belong to
Reachable, forming a subtour elimination constraint.

https://dtai.cs.kuleuven.be/software/idp
http://goo.gl/TTv85c

342 T.-S. Pham et al.

– The term Σ(x,y)∈PathDistance(x, y) represents the total travelling distance
and serves as objective function obj.

– A (partial) structure S describing parameter values.

3 Modelling Local Search Heuristics

Local search is a heuristic which iteratively applies local changes – known as
(neighbourhood) moves – on solutions to improve solution quality. In a sim-
ple descent search, a solution becomes the starting point of a new iteration
if it improves the current solution. Descent search ususally ends up in a local
optimum, which can be quite far away from optimality. Metaheuristics are local
search-based heuristics, which use some diversification techniques to escape from
local optima. In this paper, “local search heuristics” indicate both heuristics and
metaheuristics.

To model a local search algorithm in our framework, users first need to extend
the knowledge base with a moves modelling. These are then passed to IDP as
inputs to synthesize the desired local search algorithm – IDP is extended with
some “off-the-shelf” (meta) heuristic techniques to combine moves in various
ways. The following local search techniques are implemented: first improve-
ment search, best improvement search, Tabu search [7], Large Neighbourhood
Search [13] and Iterated Local Search [9]. Two types of moves are supported:
standard moves and Large Neighbourhood Search moves.

3.1 Standard Neighbourhood Moves

To model a standard move, the following information is crucial: (i) how to get
valid moves given a solution; (ii) how to compute a neighbour solution given a
move and a current solution; (iii) how to evaluate a move. To represent these
pieces of information, a user should add the following components to the specifi-
cation: (1) a vocabulary Vmove consisting of functions and predicates represent-
ing a move; (2) a query getValidMoves built over V , describing how to get valid
moves from a given solution; (3) a theory Tnext built over Vnext containing a
definition for a neigbhour solution given a solution and a move, with Vnext is the
vocabulary representing the neighbour solution; and (4) a query getDeltaObj cal-
culating the difference between the objective values of the current solution and
the neighbour solution resulting from a move.

Example 2. To illustrate the standard move modelling, we hereby model the
2-opt move for the TSP, where two edges are removed from the solution and
replaced by two new edges (see Fig. 1). To model the 2-opt move, an auxiliary
predicate Before represents the order of nodes appearing along the solution path.

{∀x : Before(x, x).
∀x, y : Before(x, y) ←Path(x, y) ∧ y �= Depot.

∀x, y : Before(x, y) ←∃z : Path(x, z) ∧ Before(z, y) ∧ z �= Depot.}

Declarative Local Search for Predicate Logic 343

Fig. 1. 2-opt move of the TSP

Vmove consists of 4 constants S1, E1, S2 and E2 representing the
four nodes involved in the 2-opt move. Vnext consists of the predicate
next Path(Node,Node), whose values define a neighbour solution. The 2-opt
move replaces two edges (S1, E1), (S2, E2) by (S1, S2), (E1, E2), and reverses
the segment from E1 to S2. This mapping is defined in the theory Tnext as
below:

{next Path(S1, S2).

next Path(E1, E2).

next Path(x, y) ← Path(x, y) ∧ Before(y, S1) ∧ y �= Depot.

next Path(x, y) ← Path(x, y) ∧ Before(E2, x) ∧ E2 �= Depot.

next Path(y, x) ← Path(x, y) ∧ Before(E1, x) ∧ Before(y, S2) ∧ y �= Depot.}

To complete the modelling, two queries are specified. Query getDeltaObj
evaluates a move by calculating the difference between the total travelling time
of the current solution and its neighbour: Δ = dS1S2 +dE1E2 − (dS1E1 +dS2E2).
Query getV alidMoves defines valid moves of a given solution, which are the
tuples of edges (S1, E1) and (S2, E2) appearing in this order on the solution
path.

3.2 LNS Moves

Large Neighbourhood Search (LNS) [13] allows exploring a large neighbourhood
of a solution by alternating a destroy and a recreate phase to gradually improve
the objective value. In the destroy phase, a part of the solution is destroyed,
resulting in a partial solution which is then repaired in the recreate phase.
Destroying the “bad quality” parts of a solution is more likely to lead to a
better solution in the recreate phase. Therefore, we support users to model the
destroy phase in LNS moves, while the recreate phase is handled by the solver.

To get an intuition on how the destroy phase should be modelled, let us
consider an example of the nurse scheduling problem (NSP) where shifts are
assigned to nurses, subject to more complex constraints. An example of a mean-
ingful LNS move for the NSP is to destroy the schedules of two, often randomly
selected, nurses whose preferences are violated, and then reschedule them in the
recreate phase. To model this move, users should be allowed to specify which
parts of the solution can be destroyed (e.g. shift assignments to nurses whose
preferences are violated).

344 T.-S. Pham et al.

With that intuition in mind, an LNS move can be modelled in our framework
by specifying: (i) random variables – symbols which the framework can randomly
interpret with (tuples of) values (domain elements); (ii) the set of valid inter-
pretations to the random variables; and (iii) which parts of the solution should
be destroyed given the selected values for the random variables. The first piece
of information (i) is encoded in a vocabulary Vmove while (ii) is given through
a query getRandomVars. By solving the query, possible options for the values
to the random variables are obtained, from which the solver selects randomly.
Given the chosen values to the random variables, users then can specify parts
of the solution to be destroyed through (iii) the query getMoves. Besides a user-
defined LNS move, the framework also supports automatic LNS moves, where
parts of the solution to be destroyed are chosen randomly. An example of an
LNS move modelling of the running example of the TSP is presented below.

Example 3. Each solution of the TSP is a Hamiltonian path that visits all
vertices of the graph. Let say users want to destroy a part of this path, from
node S to node E, given that S appears before E in the path starting from
the depot. Vocabulary Vmove then consists of two constants S and E. S and E
are random factors, which are chosen at each iteration of the algorithm. Query
getRandomVars specifies valid values of S and E:

{s, e | Before(s, e) ∧ s �= e ∧ e �= Depot}

Given the chosen values of S and E, the part to be removed from the solution
in the destroy phase of the LNS is the path from S to E, which is encoded in
query getMove:

{x, y | Before(S, x) ∧ Before(y,E)}

4 Metaheuristics Framework

In this section, we explain how the descent first improvement search (FI) with a
single standard move is synthesized in IDP. The synthesis of other local search
algorithms with standard moves is straightforward given the description of FI
while the synthesis of the LNS is straightforward from the description of LNS
moves in Sect. 3.2.

Let us first recall the components of the modelling. A problem’s modelling
consists of a vocabulary V , a theory T , a query getObjVal and a term obj.
Each neighbourhood move modelling consists of a vocabulary Vmove, a query
getValidMoves, a theory Tnext , and finally a query getDeltaObj . Given an input
instance, we let IDP execute its model expansion inference to obtain the first
feasible solution, which will serve as the initial point of our FI search. At each
iteration, a set of valid neighbourhood moves Ω from the current solution s is
achieved by solving the query getValidMoves, using IDP’s query solving infer-
ence. Each move ω ∈ Ω is then evaluated by solving the query getDeltaObj on sω,
where sω is a joined structure between the current solution s and the move ω. If

Declarative Local Search for Predicate Logic 345

the obtained delta objective improves the solution, the corresponding neighbour
solution is created by applying model expansion on sω over theory Tnext , which
contains a definition applying the move to the current solution. This neighbour-
ing solution is the starting point of the next iteration, until a stopping criterion
is met and the best solution found is returned.

Given this declarative local search framework, a user can easily mix-and-
match several modelled neighborhoods and (meta) heuristics. For example, we
modelled a set of neighbourhood moves, including three standard moves and
2 LNS moves, for the running example TSP, from which we synthesized no
less than 15 local search heuristics [10]: 9 local search configurations based on
first improvement, best improvement and tabu search for each standard move; 2
LNS configurations corresponding to two LNS moves; and 4 ILS configurations
with different combination of simple local search configurations. We also ran a
preliminary experiment comparing our framework to two black box approaches:
IDP’s minimization inference and optimization with clingo [6], both in their
default settings. These early results demonstrate the fast prototyping potential
of the framework: most of our local search heuristics outperformed IDP and
clingo, especially two among the four ILS configurations result in a less than
10% average deviation from optimality, which is 7 or 8 times better than the
two logic solvers. These results indicate that declarative local search could be a
good complement to existing logic solvers.

5 Conclusion

In this paper, we propose a local search framework that synthesizes local search
heuristics from their formal, declarative descriptions in predicate logic. Local
search is introduced as an alternative back-end for IDP to solve optimization
problems. The framework is illustrated by the modelling of local search heuristics
for the TSP and some preliminary experiments are conducted.

A thorough experimental analysis of our declarative approach is to be per-
formed in the future. Further work also includes extending the framework to
allow more flexibility in metaheuristics modelling. The combination between
user-defined neighbourhoods and automatically generated neighbourhoods [5] is
also interesting.

Acknowledgements. This research was supported by Swedish Research Council
grant 2016-00782, FWO research grant G.0922.13, and KU Leuven project C24/17/012.

References

1. Björdal, G., Flener, P., Pearson, J., Stuckey, P.J., Tack, G.: Declarative local-
search neighbourhoods in MiniZinc. In: Tsoukalas, L.H., Grégoire, É., Alamaniotis,
M. (eds.) IEEE 30th International Conference on Tools with Artificial Intelligence,
ICTAI 2018, 5–7 November 2018, Volos, Greece, pp. 98–105. IEEE (2018). https://
doi.org/10.1109/ICTAI.2018.00025

https://doi.org/10.1109/ICTAI.2018.00025
https://doi.org/10.1109/ICTAI.2018.00025

346 T.-S. Pham et al.

2. De Cat, B., Bogaerts, B., Bruynooghe, M., Janssens, G., Denecker, M.: Predicate
logic as a modeling language: the IDP system. In: Declarative Logic Programming,
pp. 279–323. Association for Computing Machinery and Morgan & Claypool (2018)

3. De Cat, B., Bogaerts, B., Devriendt, J., Denecker, M.: Model expansion in the
presence of function symbols using constraint programming. In: 25th International
Conference on Tools with Artificial Intelligence, 4–6 November 2013, USA, pp.
1068–1075 (2013)

4. Devriendt, J.: Exploiting symmetry in model expansion for predicate and proposi-
tional logic. Ph.D. thesis, Informatics Section, Department of Computer Science,
Faculty of Engineering Science, February 2017

5. Devriendt, J., De Causmaecker, P., Denecker, M.: Transforming constraint pro-
grams to input for local search. In: The Fourteenth International Workshop on
Constraint Modelling and Reformulation, pp. 1–16 (2015)

6. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP+ control:
preliminary report. arXiv preprint arXiv:1405.3694 (2014)

7. Glover, F., Laguna, M.: Tabu search. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook
of Combinatorial Optimization, pp. 2093–2229. Springer, Boston (1998). https://
doi.org/10.1007/978-1-4613-0303-9 33

8. Ierusalimschy, R., de Figueiredo, L.H., Celes, W.: Lua - an extensible extension
language. Soft.: Pract. Exp. 26(6), 635–652 (1996)

9. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In: Glover, F.,
Kochenberger, G.A. (eds.) Handbook of Metaheuristics, pp. 320–353. Springer,
Boston (2003). https://doi.org/10.1007/0-306-48056-5 11

10. Modelling and instances (2019). https://github.com/tusanpham/
DeclarativeLocalSearch

11. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7 38

12. Pham, T.-S., Devriendt, J., De Causmaecker, P.: Modelling local search in a knowl-
edge base system. In: Daniele, P., Scrimali, L. (eds.) New Trends in Emerging
Complex Real Life Problems. ASS, vol. 1, pp. 415–423. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-00473-6 44

13. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp.
417–431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2 30

http://arxiv.org/abs/1405.3694
https://doi.org/10.1007/978-1-4613-0303-9_33
https://doi.org/10.1007/978-1-4613-0303-9_33
https://doi.org/10.1007/0-306-48056-5_11
https://github.com/tusanpham/DeclarativeLocalSearch
https://github.com/tusanpham/DeclarativeLocalSearch
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-030-00473-6_44
https://doi.org/10.1007/3-540-49481-2_30

Author Index

Abels, Dirk 3
Alferes, José Júlio 18
Ali, Muhammad Intizar 45
Allocca, Carlo 312
Alviano, Mario 241, 312
Amendola, Giovanni 241
Arieli, Ofer 75

Belabbes, Sihem 210
Benferhat, Salem 210
Bertolucci, Riccardo 32
Bertossi, Leopoldo 195
Besnard, Philippe 61
Bisquert, Pierre 61
Bomanson, Jori 181
Brewka, Gerhard 89
Brik, Alex 181

Cabalar, Pedro 120, 134, 148, 256
Calimeri, Francesco 312
Capitanelli, Alessio 32
Chen, Zhijia 51
Chomicki, Jan 210
Civili, Cristina 312
Costabile, Roberta 312
Cuteri, Bernardo 312

De Causmaecker, Patrick 340
Devriendt, Jo 340
Diéguez, Martín 148
Dodaro, Carmine 32, 241
Dupin de Saint-Cyr, Florence 61

Eiter, Thomas 326
Everardo, Flavio 284

Fandinno, Jorge 120, 134
Fariñas del Cerro, Luis 120
Fichte, Johannes K. 105
Fiorentino, Alessio 312
Friedrich, Gerhard 298
Fuscà, Davide 312

Germano, Stefano 312
Gerochristos, Ioannis 18
Gomes, Ana Sofia 18

Hecher, Markus 105
Heyninck, Jesse 75

Janhunen, Tomi 284
Jordi, Julian 3

Kaminski, Roland 256, 284
Kaminski, Tobias 326
Kasalica, Vedran 18
Kern-Isberner, Gabriele 89
Knorr, Matthias 18

Laboccetta, Giovanni 312
Lee, Joohyung 224
Leite, João 18
Leone, Nicola 32, 241, 312
Lifschitz, Vladimir 270
Lühne, Patrick 270
Luis, Fariñas del Cerro 134

Manna, Marco 312
Maratea, Marco 32, 241
Mastrogiovanni, Fulvio 32
Mileo, Alessandra 45
Morkisch, Philip 256

Ostrowski, Max 3

Perri, Simona 312
Pham, Thu-Le 45
Pham, Tu-San 340
Pkhakadze, Sopo 163

Reale, Kristian 312
Ricca, Francesco 241, 312
Rolf, Lena 89

Schaub, Torsten 3, 148, 256, 270, 284

Taupe, Richard 298
Toletti, Ambra 3
Tompits, Hans 163

Vallati, Mauro 32
Veltri, Pierfrancesco 312

Wang, Anduo 51
Wang, Yi 224
Wanko, Philipp 3
Weinzierl, Antonius 298

Zangari, Jessica 312

348 Author Index

	Preface
	Organization
	Abstracts of Invited Contributions
	Logic Programming and Non-monotonic Reasoning from 1991 to 2019: A Personal Perspective
	Integrating AI and Robotics Using Answer Set Programming
	Logic for Machine Learning Based Security
	The ASP Challenge 2019
	Contents
	Applications
	Train Scheduling with Hybrid ASP
	1 Introduction
	2 Background
	3 Real-World Train Scheduling
	4 An ASP-Based Solution to Real-World Train Scheduling
	5 Experiments
	6 Discussion
	References

	Telco Network Inventory Validation with NoHR
	1 Introduction
	2 Background on NoHR
	2.1 Description Logics
	2.2 Hybrid Knowledge Bases

	3 Validating Telco Network Inventory Data
	4 NoHR: Database Integration
	4.1 A Third Component for Hybrid KBs
	4.2 Architecture of NoHR
	4.3 Implementing Database Support

	5 Evaluation
	6 Conclusions
	References

	An ASP-Based Framework for the Manipulation of Articulated Objects Using Dual-Arm Robots
	1 Introduction
	2 Problem Statement and the Reference Scenario
	3 The Robot Architecture
	4 ASP Modules
	4.1 Knowledge Base
	4.2 Consistency Checking Module
	4.3 Action Planning Module
	4.4 Goal Checker

	5 Validation of the Framework
	6 Related Work
	7 Conclusions
	References

	C-ASP: Continuous ASP-Based Reasoning over RDF Streams
	1 Introduction
	2 The C-ASP Processing Model
	3 Implementation: The C-ASP Language
	3.1 C-ASP Reasoning Request
	3.2 Examples of a C-ASP Reasoning Request

	4 Evaluation
	5 Conclusion and Future Work
	References

	Internet Routing and Non-monotonic Reasoning
	1 Introduction
	2 Internet Routing and Non-monotonic Reasoning
	3 An ASP Formulation for Automatic Oscillation Detection
	4 Preliminary Evaluation
	References

	Argumentation
	Assessing Arguments with Schemes and Fallacies
	1 Introduction
	2 Language
	3 Soundness and Completeness of this Framework
	4 Computing Licitness and Soundness of an Argument
	4.1 Example of Implementation of an Hilbert System

	5 Reasoning with Schemes and Fallacies
	5.1 Sound and Fallacious Use of the Expert Scheme
	5.2 Encoding the Schemes of Some Usual Fallacies

	6 Discussion and Related Work
	References

	Simple Contrapositive Assumption-Based Frameworks
	1 Introduction
	2 Preliminaries
	3 Some Generalizations
	3.1 The Well-Founded Extension
	3.2 Lifting the Closure Requirement
	3.3 Using Disjunctive Attacks

	4 Properties of the Induced Entailments
	4.1 Cumulativity, Preferentiality and Rationality
	4.2 Non-interference

	5 Summary and Conclusion
	References

	Argumentation-Based Explanations for Answer Sets Using ADF
	1 Introduction
	2 Preliminaries on ASP and ADF
	3 Related Work
	4 Translations and Relations Between ASP and ADFs
	5 Construction of Explanations
	6 Conclusion and Future Work
	References

	Foundations and Complexity
	Treewidth and Counting Projected Answer Sets
	1 Introduction
	2 Preliminaries
	3 Dynamic Programming on TDs
	4 Dynamic Programming for #PAs
	5 Conclusions
	References

	Splitting Epistemic Logic Programs
	1 Introduction
	2 Motivation
	3 Background of ASP and Epistemic Specifications
	4 Epistemic Splitting
	5 Splitting in Some Existing Semantics
	6 Conclusions
	References

	Founded World Views with Autoepistemic Equilibrium Logic
	1 Introduction
	2 Background
	3 G91 Semantics for Epistemic Theories
	4 Founded World Views of Epistemic Specifications
	5 Founded Autoepistemic Equilibrium Logic
	6 Conclusions
	References

	Towards Dynamic Answer Set Programming over Finite Traces
	1 Introduction
	2 Linear Dynamic Equilibrium Logic
	3 Reducing Converse-Free DELf to Propositional ASP
	4 Discussion and Conclusions
	References

	A Sequent-Type Calculus for Three-Valued Default Logic, Or: Tweety Meets Quartum Non Datur
	1 Introduction
	2 Background
	3 Preparatory Characterisations: Residues and Extensions
	4 A Sequent Calculus for DL3
	5 Conclusion
	References

	Knowledge Representation and Reasoning
	Diagnosing Data Pipeline Failures Using Action Languages
	1 Hybrid ASP
	2 Action Language Hybrid ALE
	3 Compilation
	4 Example
	5 Computation
	6 Conclusion
	References

	Repair-Based Degrees of Database Inconsistency
	1 Introduction
	2 Background on Relational Databases and Repairs
	3 An Inconsistency Measure
	4 ASP-Based Computation of the Inconsistency Measure
	5 Complexity of the Inconsistency Measure Computation
	6 Inconsistency Degree Under Updates
	7 Repair Semantics and Inconsistency Degrees
	8 Adapting inc-degs,g3 to Attribute-Based Repairs
	9 Tuple-Level Inconsistency Degrees
	10 Conclusions
	References

	Elect: An Inconsistency Handling Approach for Partially Preordered Lightweight Ontologies
	1 Introduction
	2 The Description Logic DL-Lite
	3 IAR Semantics for Flat Assertional Bases
	4 Non-defeated Repair for Prioritized Assertional Bases
	5 Partially Preordered Assertional Bases
	5.1 From a Partial Preorder to a Family of Total Preorders
	5.2 Characterizing Elect(A,)

	6 Discussions on How to Go Beyond Elect(A,)
	7 Conclusion
	References

	Elaboration Tolerant Representation of Markov Decision Process via Decision-Theoretic Extension of Probabilistic Action Language pBC+
	1 Introduction
	2 Preliminaries
	2.1 Review: Action Language pBC+
	2.2 Review: Markov Decision Process

	3 DT-LPMLN
	4 pBC+ with Utility
	4.1 Policy Optimization

	5 pBC+ as a High-Level Representation Language of MDP
	6 Related Work
	7 Conclusion
	References

	Systems
	Evaluation of Disjunctive Programs in WASP
	1 Introduction
	2 Preliminaries
	2.1 Propositional Logic
	2.2 Answer Set Programming

	3 Answer Set Computation
	3.1 Completion
	3.2 Reduct-Based Stability Check
	3.3 Unfounded-Based Stability Check

	4 Experiments
	5 Related Work
	6 Conclusion and Future Work
	References

	telingo=ASP+Time
	1 Introduction
	2 Temporal Equilibrium Logic over Finite Traces
	3 The telingo Language
	4 The telingo System
	4.1 Parsing Temporal Logic Programs
	4.2 Translating Temporal Logic Programs into Regular Ones
	4.3 Solving Regular Logic Programs Incrementally
	4.4 Extracting Traces from Regular Stable Models

	5 Experiments
	6 Discussion
	References

	Verifying Strong Equivalence of Programs in the Input Language of GRINGO
	1 Introduction
	2 Background: Logic Programs
	3 Background: Stable Models
	4 Strong Equivalence
	5 Formulas
	6 Transforming Programs into Formulas
	7 Positive Programs
	8 ANTHEM
	9 Proving Strong Equivalence of Programs with VAMPIRE
	10 Future Work
	References

	The Return of xorro
	1 Introduction
	2 Incorporating Parity Constraints into ASP
	2.1 Eager Encodings of Parity Constraints
	2.2 Lazy Evaluation of Parity Constraints

	3 The xorro System
	4 Experiments
	4.1 Results

	5 Discussion
	References

	Degrees of Laziness in Grounding
	1 Introduction
	2 Preliminaries
	3 Lazy-Grounding Strategies
	4 Experimental Results
	5 Conclusions and Future Work
	References

	Enhancing DLV for Large-Scale Reasoning
	1 Introduction
	2 Enhancing the DLV2 Core Engine
	3 DLV2-Server
	4 Experiments and Benchmarks
	5 Querying DBpedia in Natural Language: A Use Case
	6 Related Work
	7 Conclusion
	References

	Pruning External Minimality Checking for ASP Using Semantic Dependencies
	1 Introduction
	2 Preliminaries
	3 Pruning the External Minimality Check
	3.1 Dependency Graph Pruning
	3.2 Properties of Faithful IO-Dependencies

	4 Empirical Evaluation
	5 Discussion and Conclusion
	References

	Declarative Local Search for Predicate Logic
	1 Introduction
	2 Modelling TSP in FO() with IDP
	3 Modelling Local Search Heuristics
	3.1 Standard Neighbourhood Moves
	3.2 LNS Moves

	4 Metaheuristics Framework
	5 Conclusion
	References

	Author Index

