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Abstract. This work investigates the possible improvements that a stacked
ensemble can provide to NO2 estimations in a monitoring network located in the
Bay of Algeciras (Spain). In the proposed ensemble, ANNs, linear and nonlinear
genetic algorithms models have been used as the individual learners in the first
stage. The non-linear GA models produce better results than linear GA models
as they are able to detect useful relationships between variables that are ignored
in the linear case. The outputs of the individual learners have been employed as
the inputs of the ANN models of the second stage. The most accurate of these
models produced the final NO2 estimation. The obtained results are promising as
this final stage-2 model is able to outperform all the other estimation models
considered in this work. This can be explained due to its ability to exploit the
advantages offered by each individual model from stage-1 and then find an
optimal combination of their outputs in order to increase the global estimation
performance. The improvement of these NO2 estimations can be very useful to
improve the autonomous capacities for monitoring networks.

Keywords: Artificial neural networks � Genetic algorithms � Air pollution �
NO2 � Ensembles

1 Introduction

Ensemble methods are machine learning algorithms where the performance or classi-
fication accuracy is improved as a result of the combination of individual models.
Different variants and approaches can be found in the scientific literature to create these
ensembles. A first approach employs the same learner but changes the training datasets.
Between this type of ensembles Boosting [1], Bagging [2], Random forest [3] and
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AdaBoost [4] can be cited. Another possible approach relies on the use of different
learning methods. In this case, majority voting, weighted voting and averaging are the
most common techniques. Finally, stacking ensembles [5] are based on the use of the
outputs of individual models as inputs of a second stage algorithm as a way to improve
the performance of the models.

Air pollution is one of the most important environmental problems that must be
faced in order to preserve the quality of living of the population. Nitrogen dioxide
(NO2) is one of the main pollutants. Its origins are manifold, but it is very related to
combustion processes [6] and the reactions between nitrogen oxides and ozone [7]. It
has harmful effects on human health [8] and is considered to be the main reason for air
quality loss in urban areas [9].

The main objective of this paper is to improve NO2 estimations in a monitoring
network located in the Bay of Algeciras (Spain). To achieve this goal, a stacking
ensemble is proposed. Artificial neural networks (ANNs), linear and nonlinear genetic
algorithms (GAs) are employed as individual learners. Besides, ANNs are used as the
second stage algorithm. This ensemble produces promising results outperforming all
the individual models and other stacking ensembles that are also calculated. The
importance of improving the NO2 estimations is related to their ability to give moni-
toring networks autonomous capabilities, such as missing data imputation or detection
of decalibration situations.

The rest of this paper is organized as follows. Section 2 describes the area of study
and the database. Section 3 presents the methods used in this work. Section 4 describes
the experimental design. Results are discussed in Sect. 5. Finally, the conclusions are
shown in Sect. 6.

2 Data and Area Description

The Bay of Algeciras area is a heavily industrialized region which is located in the
south of Spain and includes a population of nearly 300,000 inhabitants. The sources of
NO2 are numerous including not only the mentioned industries but very heavy traffic in
the urban areas. Additionally, the Port of Algeciras Bay is one of the most prominent
ship-trading ports in Europe. Thus, vessels constitute another important source of
gaseous air pollution in this area.

All the aforementioned facts highlight the importance that an adequate pollution
control strategy has to preserve the wellbeing of the population. With this purpose, a
pollution monitoring network is located in this area. It is composed of 14 stations and
records hourly measures of NO2. Figure 1 shows the location of the Bay of Algeciras
and the situation of the monitoring stations (depicted using their codes). Table 1 shows
the correspondence between stations and their codes.
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The database used in this work contains hourly NO2 concentration measures that
were obtained by the aforementioned monitoring stations during a period of 6 years
(2010–2015). This database was normalized as a previous step. Then, it was split into
two different datasets. A first one including records from 2010 to 2014, which was used
to select the best parameters of the models and train them. The second one includes
only measures taken in 2015 and was used as the test set. The results are provided using
only the test set in order to determine the performance of the models with unseen data.

Fig. 1. Area of study

Table 1. Location of the NO2 monitoring stations

Monitoring station Code Lat. Long.

EPSA Algeciras 1 36°8′11.70″ N 5°27′11.44″ W
Campamento 2 36°10′45.96″ N 5°22′37.9″ W
Los Cortillijos 3 36°11′25.74″ N 5°26′8.73″ W
Esc. Hostelería 4 36°12′13.97″ N 5°23′1.33″ W
Col. Los Barrios 5 36°11′5.154″ N 5°29′18.362″ W
Col. Carteya 6 36°12′34.798″ N 5°23′29.803″ W
El Rinconcillo 7 36°09′42.95″ N 5°26′31.765″ W
Palmones 8 36°10′35.274″ N 5°26′24.648″ W
Est. San Roque 9 36°12′47.218″ N 5°25′55.945″ W
El Zabal 10 36°10′21.47″ N 5°20′30.192″ W
Economato 11 36°11′23.032″ N 5°22′51.85″ W
Guadarranque 12 36°10′55.55″ N 5°24′41.6″ W
La Línea 13 36°09′22.252″ N 5°20′22.823″ W
Madrevieja 14 36°12′6.66″ N 5°24′19.8″ W
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3 Methods

This section presents a brief description of the methods and techniques used in this
work.

3.1 Artificial Neural Networks

Backpropagation feedforward multilayer perceptron [10], which includes at least one
hidden layer different from the input and output layers, is the most widely used design
for ANNs. According to [11], ANNs with enough neurons and a single hidden layer
can be considered as universal approximators of any nonlinear function.

In this work, backpropagation neural networks (BPNNs) with a single hidden layer
have been used to create hourly NO2 estimation models. The Levenberg–Marquardt
algorithm [12] has been employed for optimization purposes. Additionally, the early
stopping technique [13] has been applied to the training process with the aim of
avoiding overfitting and ensuring good generalization capabilities in the models.

So as to determine the optimal number of hidden neurons, authors have used a
5-fold cross validation resampling procedure, which has been used previously with
good results [14–18].

3.2 Genetic Algorithms

Genetic algorithms [19] are search methods inspired by the natural selection processes.
The decision variables for a particular problem are encoded into strings of a certain
alphabet. This strings are known as chromosomes and act as candidate solutions of the
problem (which are known as individuals). The set of all the individuals is known as
the population. In order to determine the goodness of each possible solution, a fitness
value is calculated for each individual of the population.

The general process starts with the generation of a random initial population. This
population evolves from one generation to another through the application of genetic
operators. It moves towards a global optimum solution of the problem according to the
fitness values obtained. Selection, crossover and mutation can be found among the
genetic operators. The process continues and new generations are created until the
stopping criteria are met. The interested reader can find a more detailed explication of
this process in the work of [20].

In this work, four different genetic algorithms models have been developed in order
to estimate the hourly NO2 concentrations at the EPSA monitoring station (see
Table 1). In all these cases, the fitness function that must be minimized is the mean
squared error (MSE) between the dependent variable and the estimation produced as
the output of a function which is specific for each case. This is shown in Eq. 1.

err ¼ MSEðy;byÞ ð1Þ

where y is the dependent variable and by is the estimation produced by the GA model.
The main differences between these models lie on the specific function that is used to
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produce the estimations. Equations 2, 3, 4 and 5 show the estimation functions cor-
responding to GA model 1 (GA-1), GA model 2 (GA-2), GA model 3 (GA-3) and GA
model 4 (GA-4) respectively.

by ¼
Xn

i¼1
ðw1i � ðSðw2i � xiÞþw3i � xi þw4i � xw5i

i þ ew6i � xi þw7iÞÞþ k ð2Þ

by ¼
Xn

i¼1
ðSðw1iÞ � ðSðw2i � xiÞþw3i � xi þw4i � xw5i

i þ ew6i � xi þw7iÞÞþ k ð3Þ

by ¼
Xn

i¼1
ðw1i � xi þ S w2i � xið Þþw3i � xw4i

i þ eðw5i �xiÞÞ þ k ð4Þ

by ¼
Xn

i¼1
ðwi � xiÞþ k ð5Þ

where y is the dependent variable, xi are the independent variables (predictors), n is the
total number of predictors, w1i , w2i , w3i , w4i , w5i , w6i , w7i , wi, and k are the weights
determined by the GA and S is the sigmoid function, which is expressed in Eq. 6.

S nð Þ ¼ 1
1þ e �nð Þ ð6Þ

It is important to note that w6i in Eqs. 2, 3, and 4 has been constrained within the
[10�12, +∞) interval. The genetic algorithm function provided by MATLAB R2016b
has been used to develop the GA models. In this software, the codification of the
variables in chromosomes is done internally without any intervention by the user. As
can be seen in Eqs. 2–5, GA-1, GA-2, GA-3 present a non-linear behaviour whereas
GA-4 fitness function is linear.

3.3 Stacked Ensembles

Stacked ensembles [21] are techniques which are intended to supply an overall pre-
diction or estimation value based on the combination of the outputs of individual
models. This type of ensemble can be beneficiated from the different perspectives
offered by the individual models and usually improve their results. A brief description
of the ensembles used in this work is presented next:

• Average (avg): The final estimation is calculated as the average of the individual
models’ estimations.

• Weighted average (wavg): In this case, each individual model has a different
contribution to the final estimation according to the goodness of its estimation
power, as is shown in Eq. 7.

Efinal ¼
X j

i¼1
ðwi � EiÞ ð7Þ

where wi 2 0; 1½ � for each i 2 1; . . .; j½ �, P j
i¼1 wi ¼ 1 and Ei represent an individual

estimation model.
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• ANN weighted ensemble (ANNwe): Inspired in the wavg ensemble, this work
proposes a type of ensemble which uses the individual models as inputs of a BPNN.
The obtained model represents the best possible combination of the inputs in order
to produce the aggregated output.

4 Experimental Procedure

The objective of this study is to determine the possible improvements in NO2 esti-
mation models performance when a proposed stacked ensemble is applied. In this
approach, GAs are used in conjunction with ANNs. The proposed fitness functions (see
Eqs. 2–6) let the GA models capture linear and nonlinear relations between variables
and increase their estimation performance.

For estimation purposes, the hourly NO2 values measured at the EPSA monitoring
station (see Table 1) was considered as the dependent variable. In contrast, the hourly
NO2 values corresponding to the rest of the monitoring stations were used as predictor
variables. As an initial step, the original database was normalized and divided into two
disjoint groups. The first one included hourly NO2 records going from 2010 to 2014
and was used as the training set. The second one included records belonging to 2015
and acted as the test set.

The experimental process was divided into two different stages. In the first stage, five
estimation models were developed, one using ANNs and the rest using different genetic
algorithms approaches. In the case of the ANN models, the BPNNs used a single hidden
layer and a different number of hidden neurons (hns) (1 to 50). The Levenberg–Mar-
quardt was selected as the optimization algorithm and the early stopping technique was
employed to improve the generalization capabilities of the models. Starting with the
training set, a random resampling procedure using 5-fold cross-validation was used for
each number of hns and the average performance measures were calculated. This pro-
cess was repeated 20 times to avoid the effect of randomness in the ANN weights
initialization, and the average results were also calculated. Additionally, the individual
results for each repetition were also stored so that a multicomparison procedure could
determine meaningful differences within the models in a later step. Regarding perfor-
mance measures, the Pearson correlation coefficient (R), the mean squared error (MSE),
the index of agreement (d) and the mean absolute error (MAE) [22] were calculated.
These performance indexes are defined in Eqs. (8–11).

R ¼
PN

i¼1 Oi � O
� � � Pi � P

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðOi � OÞ2 �PN
i¼1ðPi � PÞ2

q ð8Þ

MSE ¼ 1
N

XN

i¼1
ðPi � OiÞ2 ð9Þ

d ¼ 1�
PN

i¼1 Pi � Oið Þ2PN
i¼1 Pi � O

�� ��þ Oi � O
�� ��� �2 ð10Þ
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MAE ¼ 1
N

XN

i¼1
Pi � Oij j ð11Þ

where P indicates predicted values and O indicates observed values.
Finally, the best model was obtained using the Friedman test [23] and the Bon-

ferroni method [24], jointly with the mentioned performance measures. The Friedman
test let us determine if meaningful differences were present between the models. The
Bonferroni method evaluated which of the models were not statistically equivalent.
Following the Occam’s razor principle, the model with fewer hns was selected among
those showing no significant differences with the model that produced best perfor-
mance indexes.

After the model selection, a new BPNN model was trained using the whole training
dataset and the number of hns of the most accurate model. Then, this model was fed
with the inputs of the test set in order to obtain the final NO2 estimation for the year
2015. Finally, performance measures were calculated through the comparison of
observed vs. estimated values.

In the case of the GAmodels, the fitness functions presented in Sect. 3.2 (Eqs. 1 to 6)
were minimized using the training data set. Regarding the parameters that control the
genetic algorithms, different tests were carried out in order to select the best possible
parameter combination and each combination was repeated 20 times. Table 2 shows the
possible values that were tested for each parameter. A detailed description of each
parameter can be found in Matlab’s Genetic Algorithm Options web page [25]. Table 3
shows the final combination selected per each GA model.

Table 2. Parameters tested in the GA models

Population size Crossover
function

Crossover
fraction (%)

Selection
function

Mutation
rate (%)

Max.
generations

200, 250, 350,
450, 550, 650

Scattered
Single point
Two point
Intermediate
Heuristic
Arithmetic

75, 80, 85,
90

Stochastic
uniform
Remainder
Uniform
Roulette
Tournament

2, 4, 6, 8,
10

2000

Table 3. Selected parameters for each AG model

Model Population
size

Crossover
function

Crossover
fraction (%)

Selection function Mutation
rate (%)

GA-1 450 Heuristic 80 Roulette 4
GA-2 450 Heuristic 80 Roulette 8
GA-3 650 Arithmetic 80 Tournament 6
GA-4 650 Arithmetic 80 Stochastic uniform 8
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Once the stopping criteria were met, the corresponding weights were stored for
each specific GA model. As the last step, the final NO2 estimations for the year 2015
were obtained using Eqs. 2, 3, 4, 6 and the corresponding weights and test sets for each
case. Finally, values for R, MSE, d and MAE were calculated after comparing the
observed NO2 values against the estimated ones obtained with each model.

In the second stage, avg, wavg and ANNwe ensembles (see Sect. 3.3) were cal-
culated. In the case of the avg ensemble, the calculation is straightforward as it only
averages the obtained estimations obtained with the individual models. For the wavg
ensemble (see Eq. 7), each of the estimations from stage-1 was weighted according to
its MSE value following an inversely proportional distribution. To calculate the
ANNwe ensemble, ANN models were trained using the outputs from stage-1 as their
inputs and the 2015 NO2 measured values as their targets. In this case, the same
network configuration as stage-1 ANN models was applied. The final output was
obtained as the one which produced a lesser MSE value after 20 repetitions.

5 Results and Discussion

The results of the experimental procedure are presented in this section. In the first stage,
different models have been developed to estimate the hourly NO2 concentration values
at the EPSA monitoring station (station 1). NO2 values measured at the other stations
have been used as inputs of the models (see Table 1 and Fig. 1). The initial data set has
been split into two disjoint datasets and the results are obtained through the comparison
of observed vs. estimated values for the test set (2015). This lets us evaluate the
performance of the models with unseen data. For comparative purposes, a Lasso model
using the same datasets and 5-fold cross validation has also been included. Table 4
shows the performance measures corresponding to stage-1 models.

As can be expected, the best ANN model outperforms all the GA models. However,
it can be noted that non-linear GA models (GA-1, GA-2 and GA3) beat easily the
performance offered by the GA-4 linear model. This indicates that Eqs. 2, 3 and 4 are
able to capture linear and also an important amount of non-linear relations between
input and output variables. However, the proposed fitness functions cannot compete
with ANNs’ ability to act as universal approximator of any nonlinear function, as was
mentioned in Sect. 3.1.

Table 4. Performance indexes for stage-1 estimation models

Model nh R MSE MAE d

ANN 6 0.761 238.769 10.988 0.845
GA-1 - 0.716 276.931 11.904 0.814
GA-2 - 0.713 277.556 11.956 0.811
GA-3 - 0.716 276.093 11.980 0.815
GA-4 - 0.650 326.148 13.512 0.757
Lasso - 0.650 326.155 13.520 0.760
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Table 5 shows the results obtained by the proposed ensembles in the second stage.
These methods combine the outputs of stage-1 models with the aim of improving the
estimation results.

Results show how avg and wavg ensembles constitute an improvement over GA
models but do not reach the estimation goodness offered by the stage-1 ANN model.
This can be explained by the fact that the average and the weighted average operations
(to a lesser extent) are highly influenced by extreme values that are far from the mean of
the individual learners considering a specific instant of time. In our case, this influence
comes primarily from GA4 output. As an example, if AG4 output is removed from the
ensemble, the value of MSE for avg drops to 260.837 and its R-value rises to 0.735.

In the case of the ANNwe ensemble, its performance indexes are far superior when
compared to those belonging to all the proposed models in the first and second stages. As
can be seen, the second stage ANN can take advantage of the different linear and non-
linear relations captured by the GA and ANN of the first stage. Some of them are already
present in the ANN model of the first stage, but other ones are provided by the GA
models. Considering the results, the proposed two-stage approach guarantees a better
estimation performance of the NO2 concentration values at the EPSAmonitoring station.

A comparison between the best models of the first and second stages is presented in
Figs. 2 and 3 where estimated versus measured NO2 hourly values are depicted for
January 2015. As can be seen, the fit and adjustment to the observed values are superior
in the case of ANNwe when compared to the ANN model of the first stage. This
confirms what was stated before about the improvement of the estimation models
provided by the proposed approach (Fig. 3).

Table 5. Performance indexes for stage 2 ensembles

Model nh R MSE MAE d

avg - 0.726 268.741 11.755 0.815
wavg - 0.729 266.139 11.679 0.8175
ANNwe 40 0.784 215.608 10.503 0.8690

Fig. 2. Estimated vs. real values for January 2015 using the stage-1 ANN most accurate model
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6 Conclusions

The aim of this paper is to verify the possible improvements that a stacked ensemble
approach can provide to NO2 estimations over compared to other individual models.
This approach uses artificial neural networks, linear and nonlinear genetic algorithms as
individual learners. Then, their outputs are used as inputs of the ANN models of the
second stage.

Regarding the first stage results, the proposed GA models that use non-linear
functions produce much better results if they are compared to GA using a linear fitness
function. This indicates that their fitness functions can detect useful relationships
between variables that are ignored in the linear approaches. However, ANNs outper-
form them due to their ability to act as universal approximators (see Sect. 3.1).

The results of both stages show how the ANNwe approach outperforms all the other
proposed approaches, ensuring a better estimation performance of NO2 in the moni-
toring network. The main reason can be found in the fact that all stage-1 models capture
different linear and nonlinear relations between the inputs and the targets. Therefore,
the ANNwe approach is able to exploit the advantages offered by each individual
model. Additionally, it is able to find an optimal combination of their outputs in order
to increase the global estimation performance.

The use of the proposed model can provide better and more reliable NO2 estima-
tions if it is compared to the other proposed models. This can be very useful as these
estimations can provide robustness and autonomous capabilities to the monitoring
network. They also can be helpful in missing values or detection of decalibration
situations.

Acknowledgements. This work is part of the coordinated research projects TIN2014-58516-
C2-1-R and TIN2014-58516-C2-2-R supported by MICINN (Ministerio de Economía y
Competitividad-Spain). Monitoring data have been kindly provided by the Environmental
Agency of the Andalusian Government.

Fig. 3. Estimated vs. real values for January 2015 using the stage-2 ANNwe ensemble
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