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Abstract. Load Forecasting plays a key role in the efficient operation
of the building energy management systems. In this work, a framework is
proposed for effective scalable implementation of long-term (month and
quarter ahead) building load forecasting. It comprises of techniques to
deal with outliers and missing values, dynamic input feature selection
as well as a hybrid algorithm combining direct and recursive strategies
for forecasting. The solution is successfully validated using the real con-
sumption data of six office buildings and further the average accuracies
of 92–95% and 88–92% for month and quarter ahead respectively, cor-
roborates its usefulness.

1 Introduction

Continuous power supply is vital for the effective functioning of commercial
buildings. Electrical load forecasting solutions help commercial building man-
agers assess their energy demands, and at the same time, help electrical utilities
in planning their supply operations. These aspects help to avoid revenue losses
due to power supply disruptions and align supply with the demand and vice-
versa. Needless to say, this is vital for present-day demand-supply conditions.
To help in such energy management, a range of load forecasting solutions have
been developed of late for short term, medium term and long term, depending
on the horizon of the forecast. These horizons may cater to the requirements of
hours ahead, day-ahead, quarter-ahead and month-ahead forecasting of power
consumption. Usually, Short-term Load Forecasts, such as hours-ahead and day-
ahead forecasts, help the building manager to streamline the power consumption
by adopting peak-load shaving, time-of-use pricing/demand response and energy
bidding approach [1,3,4]. The Medium-term or Long-term building energy fore-
casts, i.e month and quarter-ahead forecasts, respectively, are useful in assessing
fuel resources required for the continuous operation of the building, budgeting
etc. Medium-term and Long-term forecasts also can be used at the distribution
level so that electrical utilities can plan their operations of the electrical power
system efficiently.

In the literature, various solutions were proposed for Short-term load fore-
casting of building-level power consumption, based on statistical and machine
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learning approaches [2,3,5,6,10]. However limited attention was given to Long-
term forecasting. Recently, Naveen et al. [4] have proposed Non-linear AutoRe-
gressive with eXogenous (NARX) Neural Network and SVR based month ahead
forecasting. One of the major challenges in long-term building load forecasting
is the time horizon for which independent (explanatory) variables also need to
be forecasted. Therefore, in the current work, we focus mainly on the strategy
to be used for long-term forecasting rather than resolve the function to be used
to model the time-series. There are two well-known strategies in the literature
for forecasting (i) Direct Forecast (DF) and (ii) Recursive Forecast (RF). Direct
Forecast uses the data until the current instant and maps all the future values as
a function of the past values of the time series. On the other hand, RF forecasts
one value in future and the forecasted value is augmented to the input while fore-
casting the second value and so on until the last forecast value. Both of these
strategies have their own strengths and weaknesses [11]. RF performs better
when the model is correctly specified [9], else the forecasts will be largely biased.
With DF, it is robust to model misspecification but the approach may lead to
too much variance in the forecast with respect to the time-series data input. The
selection of any one of these methods is a compromise between bias and vari-
ance. In order to take advantage of strengths in both the methods, a Hybridized
Direct-Recursive multi-step ahead strategy is proposed in this paper. The whole
proposed solution consists of many stages to implement long-term building load
forecasting.

Fig. 1. Block diagram for building load forecasting

The block diagram in Fig. 1 depicts the framework for the proposed hybrid
recursive-direct forecasting strategy. The solution includes a pre-processing stage
to deal with outliers/missing values, followed by synchronization of smart meter
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data with other sensory data. In feature derivation stage additional features nec-
essary for the forecast are derived. The algorithm or the method to be employed
for modelling the building load consumption depends on the time horizon of
forecasting and the granularity of the data. Figure 1 captures this aspect as well.

The major contributions of this paper are

– An effective algorithm for detecting the outliers and treatment of missing
values.

– An useful strategy for long-horizon forecasting using hybridized direct and
recursive methods.

The organization of the paper is as follows. Data pre-processing and Syn-
chronization steps are detailed in Sect. 2. The proposed hybridized algorithm
is explained in Sect. 3.3. The month ahead load forecasting algorithms and the
associated results are explained in Sect. 4. Corresponding details for quarter-
ahead are provided in Sect. 5. There is a discussion on the results in Sect. 6 and
conclusions are presented in Sect. 7.

2 Data Pre-processing

While developing the models for long-horizon forecasting, we have considered the
past data of buildings’ power consumption for a period of 1.5 years. The other
sensory information useful in modelling the building’s power consumption like
occupancy and weather information are also considered for the same duration.
Often, such data needs to be cleaned first before being used for using the data
for analysis, due to the discrepancies that enter into the databases during the
data acquisition phase.

2.1 Missing Values and Outliers in Power Data

It is not uncommon for outliers or abnormal deviations from the general or
historical data values at a given time to show up in power consumption values.
Such values are mostly due to cases such as errors arising from sensor placements,
logging failures and other data-acquisition based problems. Further, different
influencing factors such as temperature, weekday/weekend, time of the day etc.
on the pattern of building energy consumption may some times cause sudden
variations in energy consumption. The average power consumption also changes
with seasons and the building location (psychrometric influences) [14]. Therefore,
the possibility to mistake these variations to be outliers also exists. Such being
the case, to detect and replace outliers, we can make use of historical data.

We propose the following process to detect and replace outliers. Let us con-
sider detecting and replacing a value at an instant i (Y (i)) for a particular
building. We prepare a block of data values from the historical data by picking
the values existing during the same season, same day of the week and at the
same time of the day. This block can be further refined by considering whether
the instant i belongs to either a working day or holiday, and correspondingly
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choosing the values from the historical data; this block can be represented by the
vector d(i). The entries in this constructed block are averaged and the result-
ing average is compared with the value in question (Y (i)). If the latter deviates
from the average by a large amount, we can declare the value as an outlier and
is replaced with the average. The deviation can be ascertained by considering a
suitable threshold; denoting the average by μi and the threshold by τ , Y (i) is
an outlier if Y (i) > τ ∗ μi. Similarly, we can handle the missing values; for this
purpose, the missing value at the instant i is estimated as μi, that is, we would
be using Y (i) = μi. It is useful to note that this simple technique is effective in
handling long duration of missing values or a burst of no data, which is often
encountered in the realistic scenarios.

With the good amount of historical data at our disposal, the aforementioned
strategy is adopted in the present work. In fact, when experimented with the
other existing sophisticated techniques, the proposal outscored them; compar-
isons are not captured here. When the prior data is limited, other techniques (for
example, using interpolation/filtering in the graph signal domain) can be used
to negotiate the missing values and outliers to some extent. These are again not
covered in this paper.

2.2 Data Synchronization

The next step, data synchronization, is carried out to have an appropriate mapping
of the power consumption data with other sensory information like occupancy and
temperature. The occupancy and temperature data available with us are at one-
hour granularity. To synchronize, the temperature is interpolated every 15 min
using the hourly values (as temperature varies slowly), occupancy is maintained
constant and replicated every 15 min during the one-hour time-period.

3 Hybridized Recursive-Direct (HRD) Multi-step Ahead
Forecast

Time-series forecasting is defined as an extrapolation of the time series for the
future dates or times and it requires modelling the time-series in terms of its
components like the trend, seasonality, cyclic patterns, and exogenous variables
if any. Forecasting involves developing the models using the historical data and
forecasting the future values of the time-series [12].

Let Y be a stationarized time series and Y (t+1) the value of the time series
Y at (t + 1). Then Y (t + 1) can be modeled as follows:

Ŷ (t + 1)|t = f(Y,X) (1)

where f is a function and its properties are decided by the learning algorithm
considered for modelling the time series. In the linear case, Y (t + 1) would be
the linear function of lag values of Y and other independent variables xi, then
the function f takes the following form
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Ŷ (t + 1)|t =
n∑

i=1

φi ∗ Zi + εt (2)

where, φ represents the parameters of the function learnt and Z represents the
vector consisting of both lagged values of Y and independent variables X that
impact Y . In general, all the past data might not be used for modelling, only
appropriate lags that are useful are used. There are many ways suggested in the
literature to decide upon the lag-length, such as Akaike information criterion
(AIC), Bayesian Information Criteria (BIC) and auto-correlation function or
correlogram.

In multi-step ahead forecasting, it requires to forecast values at multiple steps
ahead, for example forecasting Y(t+1)−(t+h) at t. There are two methods that are
used in the state-of-art to do multi-step ahead forecasting namely (i) Direct
forecast and (ii) Recursive forecast.

3.1 Direct Forecast

Direct forecast uses a static mapping to forecast future values. Direct forecasts
are made using a horizon specific estimated model. For example, multi-step ahead
forecast for h steps at t for the series y is done in the following way using direct
forecast methodology.

Ŷ (t + 1)|t = f1(Y,X)
Ŷ (t + 2)|t = f2(Y,X)
.
.

Ŷ (t + h)|t = fh(Y,X)

(3)

where Y (t), Y (t − 1), ..Y (1) is the time series Y at time t. X represents the
eXogenous variables. Ŷ (t + 1), Ŷ (t + 2), ..., Ŷ (t + h) are the forecasted values
given the time series Y at t. f1, f2, ..., fh are the different functions trained to
forecast the values of the series at different instants of time. For every step in
the forecast horizon, separate function is trained using the past data of Y .

3.2 Recursive Forecast

On the other hand, recursive forecast involves forecasting the multiple values of
the series each at a time in a recursive fashion. In recursive forecasting, a single
function is trained and parameters of the function are re-estimated at every time
step with the new sample adding to the time series. The recursive forecasting
for multi-step ahead forecast is of the form

Ŷ (t + 1)|t = f(Y,X)
Ŷ (t + 2)|t = f(Ŷ (t + 1)|t, Y,X)
.
.

Ŷ (t + h)|t = f(Ŷ (t + h − 1)|t, Ŷ (t + h − 2)|t, ..Y,X)

(4)
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where Ŷ (t + 1) is forecasted using the data from the beginning to the current
instant t, while forecasting Ŷ (t+2), the forecasted value at instant t+1 i.e Ŷ (t+1)
is added to the input series to re-train the function f , similarly Ŷ (t + h − 1),
Ŷ (t+h−2), ..., Ŷ (t+1) are used while forecasting Ŷ (t+h) in a recursive fashion.

3.3 Hybridized Direct-Recursive (HDR) Forecast

In theory recursive forecasts are more accurate than direct forecasts, if models
are specified correctly [9]. As the direct forecast uses the separate models for
each and every step in the forecast horizon, information between the consecu-
tive points of the time-series is not considered resulting in high variance in the
forecast. Recursive forecasts suffer from biases as the forecasted values are iter-
atively used as inputs to forecast future values in the time series. The error in
forecasted values propagates as these are used as inputs for further forecasts.
Choosing between these two forecasts is a tradeoff between the bias and esti-
mation variance. Therefore a Hybrid Strategy using both direct and recursive
methods is devised to address the weaknesses of both the methods. The proposed
hybridized direct-recursive (HDR) strategy is to have a total forecast horizon H
divided into n slots each of length h. Direct multi-step forecast strategy is used
to forecast the first h values and then these forecasted values of the initial slot (h
steps) are used as an input for forecasting the second slot. This continues until
the last slot.

Ŷ (t + 1, ., t + h)|t = f(Y,X)
Ŷ (t + h + 1, ., t + 2h)|t = f(Ŷ (t + h), ., Ŷ (t + 1), Y,X)
.
.

Ŷ (t + (n − 1)h + 1, ., t + nh)|t = f(Ŷ (t + (n − 1)h), ., Ŷ (t + 1), Y,X)

(5)

Estimation Variance and Bias: In Direct-Forecasting method, multiple func-
tions are used to obtain forecasts at multiple time-instants due to which the
total variance in the forecast is the addition of all the individual variances at
each time-step. In Recursive-Forecasting, a certain bias, bi, is induced at every
time-instant i due to the recursive nature of forecasting. This bias is additive in
nature, in that it adds up to the previous bias at every recursive step.

In HDR, we observe that the sum total variance is restricted to Σh
1 σi, as

against Σn
1 σi in Direct-Forecasting (h << n). Similarly, the total bias in HDR

is Σn
h bi as against Σn

i bi for Recursive-Forecasting. This observation re-affirms
the robustness of HDR against Direct-Forecasting and Recursive-Forecasting
methods.

The proposed HDR forecast strategy is used to forecast month and quarter
ahead buildings’ total power consumption. The actual office buildings’ data is
used for demonstrating the performance of the proposed approach.
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4 Buildings’ Month Ahead Load Forecasting

Smart meter measures total buildings’ power consumption once in every 15 min.
The buildings’ power consumption is influenced by many factors like temperature
(HVAC loads), occupancy and other factors like the working day or holiday etc.
making it difficult for the linear algorithms like linear regression (LR), ARIMA
etc., to forecast accurately. Artificial Neural Networks (ANN) and the Support
Vector Regression (SVR) are the two well-known techniques for modelling non-
linear and complex time series as mentioned in [4,7,8]. The modelling of the
time series for the month ahead forecasting includes (i) Data Pre-processing as
explained in Sect. 2. (ii) Feature Derivation and Selection (iii) Modelling of the
time series using ANN/SVR.

4.1 Feature Derivation and Selection

New features derivation and selection are carried out for time-series modelling
of buildings’ power consumption. Dummy variables are created to capture the
contextual information like Day of the week, Time of the Day, Holidays etc. The
lags of buildings’ power consumption are selected using the partial autocorrela-
tion function (pacf). The power consumption lags (order selected using the pacf
function) together with dummy variables used to capture contextual information
forms the Predictor Matrix. Predictor Matrix is the input to the learning model
and the buildings’ power consumption is the output.

4.2 HDR Based Month Ahead Forecasting Using ANN and SVR

The modelling of the month ahead forecasting is carried out as mentioned in
Sect. 3.3. The total forecast horizon for the month ahead forecasting at 15 min
granularity is H = 2880 (30 days with 96 samples every day). The total fore-
casting horizon is divided into 5 slots, i.e. each slot will have 576-time steps. The
direct forecast is used to forecast 576-time steps (6 days) and these forecasted
values are added to input to forecast for the next 6 days of buildings power
consumption. This is repeated five times to get a month ahead forecasting. The
implementation is as explained in the below set of equations (Eq. 6).

Ŷ (t + 1, ., t + 576)|t = f(Y,X)
Ŷ (t + 577, ., t + 1152)|t = f(Ŷ (t + 576), ., Ŷ (t + 1), Y,X)
.
.

Ŷ (t + 2305, ., t + 2880)|t = f(Ŷ (t + 2304), ., Ŷ (t + 1), Y,X)

(6)

ANN is used as the function f in the above equations for performance com-
parison. The performance of the proposed approach is demonstrated using the
actual buildings’ power consumption data.
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Fig. 2. Month ahead forecast comparison

4.3 Results

The proposed strategy is tested on six buildings for the month ahead forecasting.
From Fig. 2, It is clear that the performance of the proposed strategy HDR
is either better than the other two approaches DF and RF or matched with
the best of the two approaches. For performance evaluation, Symmetric Mean
Absolute Percentage Error (sMAPE) and Normalized Root Mean Squared Error
(NRMSE) are considered as the error terms as these are scale independent mak-
ing them applicable for comparing algorithms’ performance across buildings’ of
different capacities. Symmetric MAPE (sMAPE) is considered over MAPE to
avoid over penalty to the negative errors. Figures 3 and 4 clearly indicate that
the proposed approach has improved forecasts for most of the buildings.

Fig. 3. Symmetric MAPE comparison Fig. 4. Normalized RMSE comparison
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5 Quarter Ahead Load Forecasting

Quarter ahead load forecasting is carried out on buildings’ day-wise total energy
consumption (kiloWatt hours). Day-wise aggregated building’s power consump-
tion is calculated by aggregating 15 min smart meter for the whole day. Due to
aggregation, the time series has become less dynamic compared to 15 min granu-
lar smart meter data. But, the major challenge in the long forecast horizon is to
capture the trend, i.e, average increase or decrease in power consumption with
respect to change in season, average temperature, occupancy etc. Linear regres-
sion is considered for modelling the energy time-series because (i) aggregated
data does not have too many variations to be captured like 15 min granular data
and (ii) the linear model can help analyze the impact of various factors on the
building energy consumption.

5.1 Feature Extraction

Similar to day-wise energy consumption, day-wise maximum and minimum tem-
peratures, as well as occupancy, are considered as time-series. For the fore-
cast horizon, maximum and minimum temperature forecasts are taken from the
weather websites like [13], and the occupancy is extrapolated using ARIMA.
Contextual information such as working day, month of the year is captured in
the form of dummy variables.

5.2 HDR Based Quarter Ahead Forecasting Using Linear
Regression

Multivariate Linear Regression (LR) is used to model energy time-series. The
input feature vector for the LR function consists of contextual information (day
of the week, working day), minimum and maximum temperatures for a day, day-
wise average occupancy and auto-regressive terms (lagged values). The output
of the function is buildings day-wise energy consumption. As explained in the
Sect. 4.2, the total forecast horizon 90 days is divided into 9 slots, each having
10 days; first slot i.e first 10 days is forecasted using the data available until the
current day. These forecasted values are added to the input for forecasting the
second slot of days (i.e 11th day to 20th day), the parameters of the learning
function are estimated again to forecast. This continues until the last slot. The
linear regression function parameters are re-estimated for every slot as shown in
the following way.

Ŷ (t + 1, ., t + 10)|t = f(Y,X)
Ŷ (t + 11, ., t + 20)|t = f(Ŷ (t + 10), ., Ŷ (t + 1), Y,X)
.
.

Ŷ (t + 81, ., t + 90)|t = f(Ŷ (t + 80), Ŷ (t + 79)., Ŷ (t + 1), Y,X)

(7)

In the above equation, the learning function f is of the form,

Ŷ (t + 1, ., t + 10)|t = φ1 ∗ X1 + φ2 ∗ X2.. + φn ∗ Xn + εt (8)
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where, X1,X2, ...Xn are the inputs for the function, φi represents the
weights/parameters trained which could signify the impact of the input features
on the output i.e buildings’ overall consumption. This model could be of help in
understanding and taking control measures for building energy management.

Fig. 5. Quarter ahead forecast comparison

5.3 Results

The proposed approach is used to forecast the six office buildings future energy
consumption, the forecast is compared over actual consumption data in real-
time. The performance of the proposed algorithms is given in Fig. 5. It could be
clearly noticed that HDR forecast strategy has improved performance compared
to both the techniques (Direct Forecast and Recursive Forecast). Figures 6 and
7 show that HDR forecast strategy has out-performed the other two strategies

Fig. 6. sMAPE comparison Fig. 7. NRMSE comparison
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for all the buildings (A-F ). Building A is exceptional, where direct forecast (DF)
has superior performance compared to the HDR approach.

6 Discussion

HDR strategy is a clear winner compared to Direct and Recursive forecast strate-
gies as shown in the Figs. 3, 6 and 4, 7. From Fig. 5, it could be noticed that (i)
the forecasted values using direct multi-step ahead strategy are much lower than
the actual consumption (the line with triangles); it is because of the static map-
ping of the future values with the auto-regressive terms and the relation among
the consecutive data points is not considered in the forecast horizon and (ii) the
forecasted values of the recursive forecast started predicting well, but the error
in the initial forecasts accumulated as the forecasting horizon increases mak-
ing the forecasted values highly biased. The proposed hybrid strategy (HDR)
as explained in Sect. 3.3 is able to forecast accurately as the forecast horizon
increases as well due to the way it is modelled.

7 Conclusion

An efficient forecasting solution, Hybridized Direct-Recursive (HDR) algorithm
is proposed for the long-horizon buildings’ load forecasting. The proposed frame-
work is efficient due to its (i) effective logic for handling outliers and miss-
ing values (ii) additional contextual features derived to capture the dynamics
of the buildings’ energy consumption and (iii) the algorithms capability in re-
estimating the functional parameters for every new slot in forecast horizon mak-
ing it more efficient in forecasting accurately even as the horizon increases. We
have been able to test the performance of the proposed solution on actual build-
ings’ energy consumption in real-time and the efficacy of the proposed algorithm
is demonstrated in the results Sect. 5.3. The proposed framework covers all the
steps required for the real-time implementation of the algorithm. Additionally,
it scales well in terms of using it across a large number of buildings. Further, the
framework can be adapted for different applications.
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