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Abstract. Training artificial neural networks is a computationally
intensive task. A common and reasonable approach to reduce the com-
putation time of neural networks is parallelizing the training. There-
fore, we present a data parallel neural network implementation written
in Go. The chosen programming language offers built-in concurrency
support, allowing to focus on the neural network instead of the multi-
threading. The multi-threaded performance of various networks was com-
pared to the single-threaded performance in accuracy, execution time and
speedup. Additionally, two alternative parallelization approaches were
implemented for further comparisons. Summing up, all networks ben-
efited from the parallelization in terms of execution time and speedup.
Splitting the mini-batches for parallel gradient computation and merging
the updates produced the same accuracy results as the single-threaded
network. Averaging the parameters too infrequently in the alternative
implementations had a negative impact on accuracy.

Keywords: Neural network simulation · Backpropagation ·
Parallelization · Go programming language

1 Introduction

Parallelization is a classic approach for speeding up execution times and exploit-
ing the full potential of modern processors. Thus, we present in this paper a
data parallel implementation of the training phase of artificial neural networks
and show the feasibility of the Go language as implementation framework. Go is
a fairly new programming language that makes concurrent programming easy.
With the optimal number of threads, Go programs can fully exploit modern
multi-core processors. Still, not every algorithm has to profit from multi-core
execution, as parallel execution might add a non-negligible overhead. This can
also be the case for data parallel neural networks, where accuracy problems usu-
ally occur, as the results have to be merged. The authors of [5] present a parallel
backpropagation algorithm additionally dealing with the accuracy problem by
using a MapReduce and Cascading model. In [3], two novel parallel training
approaches are presented for face recognizing backpropagation neural networks.
The authors use the OpenMP environment for classic CPU multithreading and
CUDA for parallelization on GPU architectures. Aside from that, they differ-
entiate between structural data parallelism and topological data parallelism.
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Most work will just differentiate between data parallelism and model paral-
lelism. [8] offers a comparison of different parallelization approaches on a cluster
computer. The results differ depending on the network size, data set sizes and
number of processors. Besides parallelizing the backpropagation algorithm for
training speed up, alternative training algorithms like the Resilient Backpropa-
gation described in [10] might lead to faster convergence. One major difference to
standard backpropagation is that every weight and bias has a different and vari-
able learning rate. A detailed comparison of both network training algorithms
is given in [9] in the case of spam classification. The authors conclude, that
resilient backpropagation can be a promising choice for training neural networks
for time-sensitive machine learning applications.

The paper is structured as follows: In the next section we introduce the Go
programming language and its characteristics. In Sect. 3 we lay out the funda-
mentals and techniques of the artificial neural network model and our paral-
lelization approach. Accuracy, performance and speedup analysis is presented in
Sect. 4. The lessons learned form our approach are listed in Sect. 5. The paper
closes with the conclusion of our work done.

2 The Go Programming Language

Go, often referred to as Golang, is a compiled, statically typed, open source pro-
gramming language developed by a team at Google and released in November
2009. It is distributed under a BSD-style license, meaning that copying, modi-
fying and redistributing is allowed under a few conditions. It is designed to be
expressive, concise, clean and efficient [1]. Hence, Go compiles quickly and is as
easy to read as it is to write. That being said, built-in support for concurrency is
one of the most interesting aspects of Go, offering a great advantage over older
languages like C++ or Java. One major component of Go’s concurrency model
are goroutines, which can be thought of as lightweight threads with a negligi-
ble overhead, as the cost of managing them is cheap compared to threads. If a
goroutine blocks, the runtime automatically moves any blocking code away from
being executed and executes some runnable code, leading to high-performance
concurrency [7]. Communication between goroutines takes place over channels,
which are derived from “Communicating Sequential Processes” found in [2]. A
channel can be used to send and receive messages from the type associated with
it. Since receiving can only be done when something is being sent, channels can
be used for synchronization, preventing race conditions by design.

3 Fundamentals

Artificial Neural Networks are networks made of artificial neurons. The first
artificial neuron was invented in 1943 by Warren McCulloch and Walter Pitts,
known as the McCulloch-Pitts-Neuron and described in [6]. It is the simplest
form of an artificial neuron, only accepting binary input. If the summed input
is larger than a certain threshold value, the neuron’s output is 1, else 0. Today’s
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neurons have weighted, real number inputs and use an activation function instead
of a threshold value. Although many different kinds of ANNs exist, artificial
neurons are typically organized in layers. The first and the last layer are also
called input and output layer. If the signal in a network moves in only one
direction, that is to say from the input to the output layer, the network is called
a feedforward neural network, also known as multilayer perceptron (MLP).

Forwardpropagation. To calculate an output in the last layer, the input values
need to get propagated through each layer. This process is called forward prop-
agation and is done by applying an activation function on each neuron’s corre-
sponding input sum. The input sum z for a neuron k in the layer l is the sum of
each neuron’s activation a from the last layer multiplied with the weight w:
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Backpropagation. For proper classification the network obviously has to be
trained beforehand. In order to do that, a cost function, telling us how well
the network performs, like the cross entropy error with expected outputs e and
actual outputs x,

C = −
∑

i

eilog(xi) (2)

has to be defined. The aim is to minimize the cost function by finding the
optimal weights and biases with the gradient descent optimization algorithm.
Therefore, a training instance gets forward propagated through the network to
get an output. Subsequently, it is necessary to compute the partial derivatives
of the cost function with respect to each weight and bias in the network:
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As a first step, ∂C
∂zk

needs to be calculated for every neuron k in the last layer L:
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In case of the cross entropy error function, the error signal vector δ of the softmax
output layer is simply the actual output vector minus the expected output vector:

δL =
∂C

∂zL
= xL − eL (6)
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To obtain the errors for the remaining layers of the network, the output layer’s
error signal vector δL has to be back propagated through the network, hence the
name of the algorithm:

δl = (W l+1)T δl+1 � ϕ′(zl) (7)

(W l+1)T is the transposed weight matrix, � denotes the Hadamard product or
entry-wise product and ϕ′ is the first derivative of the activation function.

Gradient Descent. Knowing the error of each neuron, the changes to the
weights and biases can be determined by
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The constant η is used to regulate the strength of the changes applied to the
weights and biases and is also referred to as the learning rate, xl−1

j stands for
the output of the jth neuron from layer l−1. The changes are applied by adding
them to the old weights and biases.

3.1 Parallelism

A fundamental distinction is made between two parallelization techniques. The
approach to parallelism used in the implementation of this work is often referred
to as data parallelism, since all threads or goroutines train identical networks
concurrently on a different subset of the data, see Fig. 1. This stands in contrast
to model parallelism, where the model gets split instead of the data. While
model parallelism produces better results on very large neural networks, data
parallelism profits from large data sets [8] and performs better on networks where
all weights fit into memory.

The difficulty with data parallelism is the combination of the parameters
computed by each network copy. One way to merge the weights and biases is by
averaging them after each thread finished network training on its subset of the
training data. However, this is not recommended, as each individually trained
network might find a different optimum with diverging weights and biases. In
that case, the combined neural network could perform even worse on the whole
data set than the individual networks, which were trained only on a subset of
the training examples. Better accuracy can be achieved by synchronizing the
individual networks from time to time during training. Therefore, the parame-
ters of all neural network copies are averaged periodically, i.e. after a specified
number of mini-batches or after a few minutes. The resulting parameters are
then broadcasted back to the copies.

Another technique is merging the parameter updates instead of the weights and
biases themselves. This can happen asynchronously or synchronously. The asyn-
chronous variant has an increased speedup, as the threads do not wait for each
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Fig. 1. Data parallelism. Identical networks train on different subsets of the data

other. In each iteration, a network instance requests the current parameters from a
separate thread, computes the gradients for a mini-batch and communicates them
to the parameter thread, which applies the updates [12]. By the time one thread
finishes its mini-batch, the parameters might have already been updated several
times. This is called gradient staleness and usually results in accuracy loss, as the
computed gradient is no longer parallel to the steepest descent direction at the cur-
rent weights and biases [11]. The implementation presented in the following section
is a synchronized version. Each thread computes the gradients for a subset of the
mini-batch. When all gradients of the mini-batch are computed by the network
copies and accumulated, one copy updates its weights and biases accordingly and
broadcasts its new parameters to the other copies. Splitting the mini-batches and
synchronizing after every mini-batch update produces exactly the same accuracy
results of the network as the sequential algorithm would do. This comes at the
cost of a decreased speedup because of the frequent synchronization. Evidently,
the algorithms speedup profits from larger mini-batch sizes.

4 Performance Evaluation

4.1 Data Set

The chosen MNIST database contains a training set of 60000 examples and a
test set of 10000 examples of handwritten digits [4]. It is a widely used data set
for benchmarking classification algorithms. The training data was further split
into 50000 training examples and 10000 validation examples. The network trains
on the 50000 examples, while the evaluation and tuning of the parameters use
the validation set for better generalization. The final performance evaluation is
done on the test set.
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4.2 Alternative Implementations

After 30 epochs on a training set with 50000 examples, a learning rate of 0.25
and a mini-batch size of 256, a network with three hidden layers (440-240-120)
classified 98.31% of the test set correctly. For validation a separate subset of the
MNIST training set comprising 10000 examples was used, meaning that param-
eter finding and training of the network was done completely without the test
set. Still, the frequent synchronization can be a bottleneck in terms of execution
time. Therefore, two further versions were implemented to measure the perfor-
mance loss resulting from it. The first alternative implementation synchronizes
after every epoch simply by averaging the weights and biases, the second one
averages the weights and biases after the specified number of training epochs.
Unlike the first two implementations, the last one mentioned shuffles the data
only once before training instead of every epoch, meaning that the network will
train in the same order and on the same batches for the configured number of
epochs.

4.3 Environment

The tests were carried out on three different systems. The first system has a dual
Intel Xeon X5570 quad-core processor setup and 24 GB memory. The processors
work with a basic clock rate of 2,93 GHz per physical core and support hyper-
threading (thus 16 logical cores in total). Each processor has an 8 MB L3-Cache.
The second system utilizes an AMD Ryzen Threadripper 1950X hexadeca-core
processor and 32 GB memory. The processor comprises 32 logical cores, a 32 MB
L3-Cache and works with a basic clock rate of 3,4 GHz per physical core. The
third system has an Intel Core i7-5820K hexa-core processor and 16 GB memory.
The processor has a 15 MB L3-Cache and also supports hyper-threading. The
basic clock rate is 3,3 GHz. The first system will be further referred to as 8-Core,
the second one as 16-Core and the third one as 6-Core.

4.4 Performance

Each test was performed with the default source (=goSeed(1)) of the math/rand
package, a fixed learning rate of 0.25 and 15 epochs. The networks were trained
on 50000 training set examples. As described earlier, implementation 1 synchro-
nizes after every mini-batch, implementation 2 after every epoch and imple-
mentation 3 at the end of the training (depending on the configured number of
epochs).

Accuracy. Implementation 2 & 3 can not keep up with the first version’s accu-
racy when multithreaded because the parameters get synchronized too infre-
quently. This happens regardless of the network size. Shuffling the data and
averaging the weights and biases after every epoch improves the overall accu-
racy of implementation 2 a bit, but does not affect the accuracy loss curve when
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Fig. 2. 784-800-10 network accuracy on the test data set with a mini-batch size of 128
(solid line) and a mini-batch size of 512 (dotted line)

compared to implementation 3. Decreasing the number of neurons from 800 to
450 and 100 increases the error rate in general, with the smallest network per-
forming worst. As seen in Fig. 2, all three implementations profit from a smaller
mini-batch size and drop in accuracy with a larger size, although networks with
more than one hidden layer generalize better with slightly larger mini-batch
sizes. Splitting 800 neurons into three hidden layers (440-240-120) produces a
bit more irregular results but generally improves the accuracy. Splitting 450 as
well as 100 hidden neurons (250-135-65/55-30-15) affects the curves in a similar
way, although in those cases implementation 1 does not profit from the deeper
networks in each instance because of the irregularities, which get stronger the
smaller the deep network is. Figure 3 shows a comparison between a network with
450 hidden neurons in one hidden layer and a network with 450 hidden neurons
split in three layers. Especially implementation 2 produces noticeably better
results with the deeper network. The accuracy results do not differ between the
systems, since all three computers performed the tests with the same seed.

Execution Time. Shuffling and synchronizing after every epoch in implemen-
tation 2 produces marginal additional execution time overhead compared to
implementation 3. While the difference can be seen in networks with 100 neu-
rons in the hidden layers, where training time is short in general, it vanishes
in larger ones, where the training takes considerably more time. Both versions
outperform implementation 1 in every test case, although the results converge
with a greater mini-batch size as seen in Fig. 4. Besides impacting the error rate,
splitting neurons into three hidden layers also reduces the training time sig-
nificantly in comparison to networks with the same number of hidden neurons
in one hidden layer. Figure 5 shows the execution times of the two 450 hidden
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Fig. 3. 784-250-135-65-10 network accuracy (solid line) on the test data compared to
a 784-450-10 network (dotted line) with a mini-batch size of 256

neuron networks compared in Fig. 3. Interestingly, the 16-core machine and the
8-core machine generally both perform best when run with eight goroutines. The
6-Core system runs fastest with four goroutines, although it should be stated,
that the tests were only carried out with powers of two. Most of the time, the
16-Core and the 6-Core system already outperformed the 8-Core systems peak
performance with only two goroutines, showing that the performance per core
had a greater impact on the training time than the number of cores.

Speedup. The three test systems achieve different speedup results. While the
16-Core machine performs best in networks with 100 or 450 hidden neurons, the
8-Core machine shows a greater speedup than the others in networks with 800
hidden neurons.

All three systems show better speedup values when training smaller networks,
although the 8-Core machine scales equally and sometimes even better in networks
with 800 hidden neurons than in networks with 450 hidden neurons. This can be
seen in Fig. 6 and compared with the results of the 6-Core and the 16-Core system
visualized in Figs. 7 and 8. Figure 6 also shows the exceptional results of the 8-Core
system in networks with 800 hidden neurons, where the speedup of implementa-
tion 1 and 2 increases even with 64 goroutines. This happens regardless of the mini-
batch size. Although having lower peak values, the 8-Core machine also scales bet-
ter than the other systems in networks with 450 hidden neurons. While the speedup
from implementation 1 with up to eight goroutines and a mini-batch size of 512 is
comparable with the speedup from implementation 2 and 3, it decreases with a
lower mini-batch size as already mentioned earlier and shown in Fig. 4. Networks
with three hidden layers achieve a better speedup than networks with the same
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Fig. 4. 8-Core 784-100-10 network execution time with a mini-batch size of 128 on the
left and a mini-batch size 512 on the right

number of neurons in one hidden layer. Overall, the 8-Core system scales best but
runs slowest with its two quad-core processors.

5 Lessons Learned and Future Work

5.1 Parallelization

Data parallel neural networks can achieve a great speedup compared to sin-
gle threaded networks. Implementation 1, where the mini-batches get split into
equal parts for each thread, probably has limited possible applications, despite
the good accuracy rates. If large mini-batches are usable on the chosen data
set and not too many threads are used, it can be a valuable choice. Otherwise,
particularly with a higher number of threads, parameter averaging with more fre-
quent synchronization than in implementation 2 and 3, or alternative strategies,
for example asynchronous ones, should be chosen. In general, data parallelism is
a simple and effective parallelization strategy, preferably for large data sets.

5.2 Deep Neural Networks

The used hyper-parameters, which were mostly chosen by trial and error, like
the learning rate, are probably not the best ones in each instance. Still, the
results were satisfying, especially for networks with three hidden layers. The
initial purpose was to see if networks executed faster when the neurons from one
hidden layer were split into more hidden layers. Surprisingly, the deep networks,
although not being that deep in fact, proved to be not only noticeably faster
but also more accurate. 800 hidden neurons were split to 440 neurons in the first
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Fig. 5. 16-Core 784-450-10 network (left) execution time compared to a 784-250-135-
65-10 network (right) with a mini-batch size of 256

Fig. 6. 8-Core 784-450-10 network (left) speedup compared to a 784-800-10 network
(right) with a mini-batch size of 512

hidden layer, 240 in the second and 120 in the third. 450 and 100 hidden neurons
were split in a similar way (250-135-65/55-30-15). Distributing the neurons this
way seems to be a good choice.

5.3 Matrix Multiplication

Unfortunately, the implementation presented in this paper does not exploit the
full potential of mini-batches. The features of each training instance are stored
in a vector and multiplied with the weight matrices. The same happens with
the error in the backpropagation phase. Instead of doing these series of matrix-
vector multiplications in a less efficient for-loop, it is highly recommendable to
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Fig. 7. 6-Core 784-450-10 network (left) speedup compared to a 784-800-10 network
(right) with a mini-batch size of 512

Fig. 8. 16-Core 784-450-10 network (left) speedup compared to a 784-800-10 network
(right) with a mini-batch size of 512

save the features of all mini-batch examples in a weight matrix and to perform
a more efficient matrix-matrix multiplication for each mini-batch. Particularly
GPUs should profit greatly from this variation.

6 Conclusion

Data parallelism proved to be an efficient parallelization strategy. In combination
with the programming language Go, a parallel neural network implementation is
programmed as fast as a sequential one, as no special efforts are necessary for con-
current programming thanks to Go’s concurrency primitives, which offer a simple
solution for multithreading. Further work will focus on comparing the parallel per-
formance of neural networks written in Go with implementations written in other
languages. Necessary to that end is the improvement of the Go implementation,
starting by catching up on the missed opportunities mentioned above.
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