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Abstract. Selecting the best group of features from high-dimensional
datasets is an important challenge in machine learning. Indeed problems
with hundreds of features have now become usual. In the context of fil-
ter methods, the selected relevance criterion used for filtering is the key
factor of a feature selection method. To select an appropriate criterion
among the numerous existing ones, this paper proposes a list of six nec-
essary properties. This paper describes then three relevance criteria, the
mutual information, the noise variance and the adjusted R-squared, and
compares them in the view of the aforementioned properties. Any new,
or popular, criterion could be analysed in the light of these properties.
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1 Introduction

High-dimensional datasets appear now frequently in various domains such as
healthcare, marketing or social media, especially in regression. Selecting the most
relevant subset of features in high-dimensional datasets has therefore become
essential for many purposes: to increase the interpretability of features, to facil-
itate the learning process, to visualise data, to alleviate the curse of dimension-
ality, etc [14,16].

Many works, in a variety of domains, focus on methods to reduce the number
of features in datasets [2,10,12,17,19,22,23,27]. These methods can be roughly
categorised into filters, wrappers and embedded methods. This paper focuses on
filter methods, which have the advantage to be fast because they do not require
to train any model during the feature selection process, contrarily to wrappers
[18,19] and embedded methods [7].

Filter methods rely on a relevance criterion to reduce the set of features to
only the most relevant ones. This relevance criterion is therefore the key factor
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of a successful filter-based feature selection process. Several relevance criteria
exist and are used in feature selection methods on various datasets.

This paper focuses on the necessary properties of a criterion used in filter
methods for feature selection in regression. What is needed in a filter criterion
in order to obtain the best subset of features with respect to the target or
prediction goal (in classification or regression tasks)? Existing criteria are often
designed to fulfill a unique purpose: for instance to measure a nonlinear relation
or to estimate the noise variance of the distribution. An efficient criterion should
probably combine various goals.

This paper does not intend to propose a new filter criterion but, instead,
focuses on the diverse properties that make a good relevance criterion, in order
to be able to select one among the numerous existing ones. These important
properties are listed and discussed in Sect. 3, after an introduction to feature
selection in regression with filters in Sect. 2.

It is essential to analyse relevance criteria in view of these properties and
these goals in order to understand the strengths and the weaknesses of each of
them, and to understand their behaviour according to the type of dataset at
hand. Existing criteria are described in Sect. 4 and compared with respect to
these properties in Sect. 5. Finally, conclusions are given in Sect. 6.

2 Feature Selection with Filter Methods

Feature selection is an important task in machine learning. It helps to reduce
the dimension of the dataset by eliminating redundant and less useful features.

In the context of filter methods for feature selection in regression, a good rel-
evance criterion is necessary to select the most relevant features among all the
available ones. The relevance criterion aims at measuring the existing relation-
ship between a feature, or a set of features, and the variable to predict. There
exist several relevance criteria based on different measures such as entropy or
noise variance.

Filter methods also need a search procedure to find the best feature subset
among an exponential number (exponential to the dimensionality of the dataset)
of all possible ones that could be extracted from the complete dataset [16].
During the search procedure, the filter criterion is again a strategic factor because
it is used to evaluate the relevance of each subset with respect to the target.
Implicitly, the search procedure is also used to measure the redundancy between
different features or groups of features.

The properties of a filter criterion are therefore essential because they deter-
mine the success of a good feature selection process. Understanding why a filter
criterion is better for a specific dataset or less good for another one is also
important in order to choose the best criterion for every situation.

The next section details some essential properties of a relevance criterion.
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3 Properties of a Relevance Criterion for Feature
Selection

This section introduces the important properties of a good relevance criterion for
feature selection in regression. It also justifies why these properties are impor-
tant. An analysis of these properties with respect to current filter criteria is
realised in Sect. 5.

3.1 Property 1: Ability to Detect Nonlinear Relationships

A good relevance criterion should be able to detect nonlinear relationships
between variables (features and target variables) [11,15]. This ability allows the
criterion to detect the relevance between a group of features and the target, but
also to detect the redundancy between features, even when the relationship is
nonlinear, which is most generally the case with real datasets.

3.2 Property 2: Ability to Detect Multivariate Relationships

An efficient relevance criterion must be able to detect any relationship between
two variables or, more importantly, between two groups of variables. Indeed,
measuring the univariate relation between a single input feature and the target
is not sufficient, as some features only contributing to the output when they are
combined would not be detected (an obvious example of that phenomenon is a
problem where the target is determined by the product of two features).

The necessity for a multivariate criterion is also a direct consequence of the
use of greedy search procedures to find the most effective subset of features, such
as forward and backward search, genetic algorithms, etc [6,16,24,27].

3.3 Property 3: Estimator Behaviour

Machine learning methods are always used on finite datasets. However, relevance
criteria are generally defined in terms of integrals over the data space. In order
to use them in practice, an estimator of the criteria, defined on a finite set of
data, is needed. The computational complexity and the statistical properties of
the estimators are important characteristics that should be taken into account
when one needs to choose a criterion for selecting a reduced set of features [3].

3.4 Property 4: Estimator Parameters

In addition to the statistical properties of the estimators, the latter usually
require to adjust a parameter whose influence on the quality of the estimation
might be important. For example, nearest-neighbours based estimators require
to choose the number of neighbours used in the estimation.

The choice of the parameters is sometimes underestimated in the literature,
while in practice this choice may be crucial. Criteria whose estimators that do
not rely on any parameter, or that rely on parameters having only low influence
on the estimation, are therefore more appropriate.



582 A. Degeest et al.

3.5 Property 5: Estimator Behaviour in Small Sample Datasets

The ratio “number of instances/dimensionality” is a very important concept in
all machine learning methods. A small sample dataset is a dataset with few
instances with respect to the number of features. Many estimators do not work
well with these datasets and need many instances to estimate correctly the rel-
evance of features [3,5]. Unfortunately it is not always possible to collect more
instances. Therefore, this property of behaving well in small sample scenarios is
essential as well for the estimator. Section 5.5 analyses how the different relevance
criteria behave in small sample situations.

3.6 Property 6: Invariant Estimator

Among the estimators of relevance criteria, some are not completely invariant
to the gradient of the relation between the features and the target, especially in
small sample scenarios. Depending on the scaling method or the normalisation
method used during the process, the gradient of the relation may vary. However
the importance of a feature, or a group of features, with respect to the target
should not depend on this gradient. The consequence in feature selection could
make a relevance criterion prefer a feature over another one only because of the
gradient of their relation with the target, which should not happen.

Section 5.6 shows practically that some relevance criteria are influenced by
this gradient of the function in small sample, and some are not.

4 Description of Three Popular Criteria

This section reviews three filter criteria, and their most frequently used estima-
tors, in order to illustrate the strategic properties of a good relevance criterion
as listed in Sect. 3.

4.1 Mutual Information

Mutual Information (MI) is a popular criterion for feature selection with filter
methods [1,3,4,14,17,26]. It is a symmetric measure of the dependence between
random variables (or sets of variables), based on entropy, introduced by Shannon
in 1948 [25].

Let X and Y be two random variables, where X represents the set of features
and Y the target. MI measures the reduction in the uncertainty on Y when X
is known

I(X;Y ) = H(Y ) − H(Y |X) (1)

where
H(Y ) = −

∫
Y

pY (y) log pY (y)dy (2)
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is the entropy of Y and

H(Y |X) =
∫
X

pX(x)H(Y |X = x)dx (3)

is the conditional entropy of Y given X. The mutual information between X
and Y is equal to zero if and only if they are independent. If Y can be perfectly
predicted as a function of X, then I(X;Y ) = H(Y ).

In practice, MI cannot be directly computed because it is defined in terms of
probability density functions. These probability density functions are unknown
when only a finite sample of data is available. Therefore, MI has to be estimated
from the dataset [13]. The estimator introduced by Kraskov et al. [21] is based
on a k-nearest neighbour method and results from the Kozachenko-Leonenko
entropy estimator [20] Ĥ(X) = −ψ(k)+ψ(N)+ log cd + d

N

∑N
i=1 log εk(i), where

k is the number of neighbours, N is the number of instances in the dataset,
d is the dimensionality, cd = (2π

d
2 )/Γ (d2 ) is the volume of the unitary ball of

dimension d, εk(i) is twice the distance from the ith instance to its kth nearest
neighbour and ψ is the digamma function. Kraskov estimator of the mutual
information is then

Î(X;Y ) = ψ(N) + ψ(K) − 1
k
− 1

N

N∑
i=1

(ψ(τx(i)) + ψ(τy(i))) (4)

where τx(i) is the number of points located no further than the distance
εX(i, k)/2 from the ith observation in the X space, τy(i) is the number of points
located no further than the distance εY (i, k)/2 from the ith observation in the
Y space and where εX(i, k)/2 and εY (i, k)/2 are the projections into the X and
Y subspaces of the distance between the ith observation and its kth neighbour.

When using MI for feature selection, the relationships between several subsets
of features and the target Y are computed with a search procedure. Among these
subsets, the one maximising the value of Î(X;Y ) (4) is selected.

4.2 Noise Variance

Noise variance is another popular relevance criterion, whose aim is to estimate
the level of noise in a finite dataset. In the context of regression, the noise may
be considered as the error in estimating the target as a function of the input
features, under the hypothesis that a model could be built.

Let us consider a dataset with N instances, d features Xj , a target Y and N
input-output pairs (xi, yi). The relationship between these input-output pairs is

yi = f(xi) + εi where i = 1, ..., N (5)

where f is the unknown function between xi and yi, and εi is the noise, or
prediction error, when estimating f . The principle is to select the subsets of
features which lead to the lowest prediction error, or lowest noise variance [15].
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In practice the noise variance has also to be estimated. One widely used
estimator is the Delta Test [8,9,28]. The definition of the Delta Test δ is

δ =
1

2N

N∑
i=1

[yNN(i) − yi]
2 (6)

where yNN(i) is the output associated to xNN(i), xNN(i) being the nearest neigh-
bour of the point xi.

For selecting features with the noise variance, the same procedure as for the
mutual information can be used. But instead of selecting the group of features
with the highest mutual information estimation Î(X;Y ), the search procedure
selects the group of features with the lowest value of the noise variance estimator
δ (6).

4.3 R2 and Adjusted R2

R2, also called the coefficient of determination, is the proportion of the variance
in the output variable that can be explained from the input variables; it ranges
between 0% (unpredictable) and 100% (totally predictable). The definition of
R2 is

R2 = 1 − SSres

SStot
(7)

where SSres =
∑

i(yi − f(xi))2 and SStot =
∑

i(yi − y)2 with i = 1,...,n. This
coefficient is a statistical measure of how well the regression approximates the
target. The R2 measure automatically increases when features are added to the
model. This is the reason why we use its alternative, Adjusted R2, or R2

adj , for
feature selection in regression, more suitable for small sample sizes. Its definition
is

R2
adj = 1 − SSres/(n − d − 1)

SStot/(n − 1)
(8)

where d is the number of selected features in the model and n the sample size.
A low R2

adj indicates that the data are not close to the fitted regression line. A
high R2

adj indicates the opposite.
The R2

adj criterion used with a linear regression model cannot capture the
nonlinear relationships between the features and the target. In order to use
the R2

adj in a nonlinear context, local linear approximations are considered. In
practice, for each feature of the dataset, for each point of the function f , a linear
regression is computed with a number of neighbours k from 4 to (n−1). The R2

adj

is computed for every regression. For each value of k, an average of the R2
adj on

every point of f is computed. The best mean R2
adj is then selected; it corresponds

to a specific number of neighbours k. The feature with the highest value of mean
R2

adj is then selected. This is the univariate feature selection strategy, the first
step of a search method. The multidimensional feature selection strategy can be
implemented similarly.
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5 Analysis and Comparison

This section analyses the six strategic properties of a relevance criterion for
feature selection, given in Sect. 3. In the view of these properties, the mutual
information, the noise variance and the Adjusted R2 are compared.

5.1 Comparison with Property 1: Non-linearity

As explained in Sect. 3, a good relevance criterion must be able to detect non-
linear relationships between variables. Mutual information and noise variance
are both able to measure nonlinear relationships between variables. Intrinsically,
R2

adj only estimates the quality of a linear regression. However, the method used
with R2

adj , described in Sect. 4.3, uses local approximations of the regression and
is thus suitable for nonlinear relations between the features and the target.

This property is therefore non-discriminant for the three relevance criteria
compared in this section. They can all be used with nonlinear relations between
variables (features and target).

5.2 Comparison with Property 2: Multivariate Criterion

As shown in their respective equation, mutual information (1), noise variance (5)
and R2

adj (8) can all be used to measure the relation between groups of features.
This property is therefore also non-discriminant for the three relevance cri-

teria compared in this section.

5.3 Comparison with Property 3: Estimator Behaviour

The estimators of the three relevance criteria compared in this paper are all based
on a k-nearest neighbour method. Therefore, this property is non-discriminant
for them, because the time-complexity is approximately the same.

On the other hand, these estimators behave differently in small sample. This
is discussed in Sect. 5.5.

5.4 Comparison with Property 4: Estimator Parameters

As explained in Sect. 4, the estimators of the three relevance criteria are all based
on a k-nearest neighbour method. Nonetheless, this method is applied differently
for each estimator.

The Kraskov estimator has only this k parameter to adjust. Usually it is
set to a number between 6 and 8 for good results [5,21]. The Delta Test sets by
definition its k to 1 [8,28]. Therefore, this estimator does not have any parameter
to adjust. With Adjusted R2, the range of k is much larger, depending on the
size of the dataset and the variables.

In view of this property, Adjusted R2 has the most complex k parameter to
adjust and the Delta Test is the easiest to adjust.
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5.5 Comparison with Property 5: Estimator in Small Sample

As discussed in [5], Kraskov estimator and the Delta Test suffer from a bias
when comparing smooth and non-smooth features, especially in small sample.
An overestimation of the noise variance and an underestimation of the mutual
information can occur in small datasets when the function to estimate is not
smooth. The biases in the estimations are much more severe when using mutual
information than when using the noise variance [5,8].

Adjusted R2 also underestimates non-smooth functions in small datasets
and behaves approximately as the Delta Test, in the sense that the minimal size
needed to estimate correctly the same nonlinear relation is approximately the
same for Delta Test than for Adjusted R2.

To illustrate this behaviour, experiments have been performed on simple
synthetic datasets. Four different periodic functions have been generated with
two different frequencies and two levels of noise :

y1 = f1(x) = sin(x) + ε where ε ∼ N(0,0.05)
y2 = f2(x) = sin(3x) + ε where ε ∼ N(0,0.05)

y3 = f3(x) = sin(x) + ε where ε ∼ N(0,0.3)
y4 = f4(x) = sin(3x) + ε where ε ∼ N(0,0.3)

(9)

Figures 1(a), (b), (c), (d) represent the four functions f1, f2, f3, f4, respectively.

(a) f1(x) = sin(x)
+ε ∼ N(0, 0.05).

(b) f2(x) = sin(3x)
+ε ∼ N(0, 0.05).

(c) f3(x) = sin(x)
+ε ∼ N(0, 0.3).

(d) f4(x) = sin(3x)
+ε ∼ N(0, 0.3)

Fig. 1. Experimental data generated with two different frequencies and two levels of
noise.

Results are presented in Fig. 2. Figure 2(a) shows that the mutual informa-
tion underestimates the non-smooth function f2 (lower level of noise) over the
smooth function f3 (higher level of noise). Figures 2(b) and (c) show, respec-
tively, that the Delta Test and the Adjusted R2 overestimate the non-smooth
function f2 over the smooth function f3. Figure 2 also shows that the Delta Test
and Adjusted R2 converge quickly than the mutual information.

5.6 Comparison with Property 6: Estimator Stability

In order to study the estimator stability with respect to the gradient of the
relation between the features and the target, illustrative experiments performed
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(a) (b) (c)

Fig. 2. Average values of (a) MI measures, (b) Delta Test, (c) Adjusted R2, for two
functions with a low level of noise and for two functions with a higher level of noise.

in this paper consider three linear functions with various slopes (Fig. 3). These
illustrative experiments are conducted to show the importance of the estimator
stability with respect to this gradient and to compare the three criteria described
in Sect. 4.

Fig. 3. Experimental data generated with three different slopes.

They have been performed with various sizes of samples, from extremely
small to large ones. For each size of the sample, an estimator of the three decision
criteria has been used. Results are shown in Fig. 4. The mutual information shows
the same results for the three different slopes (Fig. 4(a)), the three measures
are superposed, which means that there is no influence of the function slope
on its result. The Delta Test shows an influence of the slope of the results in
small datasets (Fig. 4(b)). This influence tends to disappear when the size of
the datasets sufficiently increases. Adjusted R2 shows (Fig. 4(c)) no influence of
the function slope, the three functions are also superposed, even in small sample
scenarios.

For this property, Adjusted R2 and the mutual information behave better
than the Delta Test, in the sense that they offer the same value for the three
different functions f1, f2 and f3.
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(a) (b) (c)

Fig. 4. Average values of MI measures 4(a), Delta Test measures 4(b) and Adjusted R2

measures 4(c) for three functions f1, f2 and f3, with three different slopes (see Fig. 3).

5.7 Discussion

Table 1 shows a summary of the comparison realised for the three relevance
criteria with respect to the six properties presented in this paper.

Table 1. Comparison of the mutual information with Kraskov, the Delta Test and the
adjusted R2. A ‘+’ indicates a good behaviour of the criterion towards this property.
A ‘-’ indicates a weakness of the criterion towards this property. The signs ‘++’ or ‘- -’
are only there to show a difference between two criteria with a good (or bad) behaviour
towards the property, when one of them is better (or worse) than the other one.

Properties MI with
Kraskov

Noise variance
with DT

Adjusted R2

P1: Non-linearity + + +

P2: Multivariate + + +

P3: Estimator Behaviour + + +

P4: Estimator Parameters + + + -

P5: Estimator in Small Sample - - - -

P6: Estimator Stability + - +

The three filter criteria proposed in Sect. 4 all respect the two first properties,
which make them good candidates for feature selection. The four last properties
help to decide between the three criteria, depending on the dataset and the
problem at hand. Indeed when comparing the three criteria with the fourth
property (P4), the Delta Test does not have any parameter to adjust, which
makes it easier to use with respect to the mutual information and the adjusted
R2. In a small sample scenario (P5), the adjusted R2 seems to behave as the Delta
Test for non-smooth functions, which is better than the mutual information.
Finally when comparing the criteria with the sixth property (P6), the adjusted
R2 and the mutual information are more stable with respect to the gradient of
the function between the features and the target than the Delta Test.
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6 Conclusions

This paper proposes six strategic properties of a good relevance criterion for
feature selection in regression: two properties for the relevance criterion itself
and four properties for the estimator of the relevance criterion. To illustrate the
importance of these properties, this paper describes three interesting relevance
criteria and compares them with the aforementioned properties. Any relevance
criterion used for filters in feature selection could be analysed in the light of
these properties.
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