
Bayesian Artificial Intelligence-Based
Driver for Fully Automated Vehicle

with Cognitive Capabilities

Ata Khan(&)

Civil and Environmental Engineering, Carleton University,
1125 Colonel by Drive, Ottawa, ON K1S5B6, Canada

ata.khan@carleton.ca

Abstract. At automation level 5 as defined by the Society of Automotive
Engineers (SAE), a driver will not be in the loop even in a complex driving
environment featuring among other challenges, the presence of vehicles with
automation levels ranging from 1 (no automation) to 5 (fully automated). This
paper defines the safety and ride quality requirements that a fully automated
vehicle should meet when operating in a mixed traffic environment featuring
vehicles of various automation levels and proposes a Bayesian AI-based driver
algorithm as a solution. Design advances that can potentially overcome the
safety and ride quality issues are described. Microscopic level data sourced from
driving simulator studies are used in applications. Finally, conclusions are
presented on the abilities of the Bayesian AI-based driver to meet safety and ride
quality criteria while operating in driving environment characterized by uncer-
tainties. The Bayesian AI-based driver is likely to enhance consumer and safety
regulator acceptance.
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1 Introduction

The Society of Automotive Engineers (SAE) has defined levels of automation that
range from 1 to 5. At automation level 5, a driver will not be in the loop even in a
complex driving environment. There are many factors that can contribute to complexity
in the driving environment. A notable future factor will be the presence of vehicles with
automation levels ranging from 1 (no automation) to 5 (fully automated). According to
the SAE [1] and the U.S. Department of Transportation [2], the level 5 automation has
“The full-time performance by an automated driving system of all aspects of the
dynamic driving task under all roadway and environmental conditions that can be
managed by a human driver”. Here, it is understood that the human driver is not
distracted and also drives in a non-aggressive manner in terms of maintaining safe
distances in the longitudinal and lateral direction as well as accepting a safe gap in
traffic for merging or lane change manoeuver. This vision can become a reality with a
Bayesian artificial intelligence (AI)-based driver algorithm of the “cognitive vehicle”.
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This paper defines the safety and ride quality requirements that a fully automated
vehicle should meet when operating in a mixed traffic environment featuring vehicles
of various automation levels and advances a Bayesian AI-based driver algorithm as a
solution.

2 Cognitive Vehicle

Researchers and automotive industry aim to develop advanced technology vehicle
designs that exhibit ‘cognitive’ features. The cognition capability for a fully automated
vehicle is very challenging but is essential. In addition to non-distracted and non-
aggressive driving, the situation awareness capabilities can be designed that should
extend human driver capabilities. These include faster perception and reaction time to
avoid hazards, based on acquiring and analysing vast amounts of data almost
instantaneously.

Heide and Henning [3], Stiller, Farber, et al. [4], and Hoch, Schweigert, et al. [5],
made the calls for cognitive features of an automated vehicle. This preliminary, but
ground-breaking research work defined capabilities of the “cognitive car” for per-
ceiving itself and its environment, and collecting and analysing information autono-
mously for making driving decisions. That is, the cognitive vehicle is expected to
acquire and process vast amount of data systematically, to make driving decisions
autonomously while enhancing its ability to reason and to learn [3].

On the technology side, The National Research Council of Canada (NRC) devel-
oped a Cognitive Vehicle Technology Platform that featured advanced automotive
information and communication technologies (ICT). The NRC’s R&D was among
early attempts to rationalize application of on-board sensors and electronic controls for
enhancing safety and performance. In addition to safety and performance objectives, it
was also stimulated by rising demand for integrated and wirelessly connected com-
munications and infotainment devices [6].

The cognitive vehicle features are presented in Table 1. Based on occupant and
societal expectations, these should address safety, comfort, efficiency, eco-driving, and
convenience requirements. There is a strong role for artificial intelligence-based
algorithms supported by technology in meeting these objectives. The following sec-
tions of the paper describe these challenges. Here, as an example, progress in tech-
nology in support of situation awareness is briefly noted.

Awareness of position and surroundings is obtained by integration of technology
and methodology. A scan of technology shows that competitive forces are causing the
industry to advance these while bringing the cost down. The following are the com-
monly used technologies for enhancing accuracy and reliability:

(a) Latest available communication system (e.g. G5 when it will become commer-
cially available, dedicated short range communication system (DSRC), long term
evolution (LTE))

(b) Multiple camera surround view
(c) Sensor hub with multi-camera input
(d) Low latency sensor data availability for supporting cameras
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(e) Radar, Lidar, GPS, etc.
(f) Road geometric feature processor
(g) Traffic data in subject and surrounding lanes obtained from multipurpose sensors

and communication system
(h) GPS-map/curve speed processor
(i) Lane tracking sensor data processor
(j) Road weather scanning feature, and static object location scanner.

This list of technologies and methods should be viewed as incomplete since it is
intended to only illustrate advances underway in support of the situation awareness
model that integrates the data inputs and dynamically updates the driving environment
information for making autonomous driving decisions.

3 Challenges of Accuracy and Reliability

Accuracy and reliability attributes are essential for fully automated driving. Although
progress has been made in these areas, setbacks have also been encountered recently by
some developers. The reliability capability ensures that system performance does not
degrade under difficult driving environments characterized by geometric design fea-
tures of facilities, traffic control, traffic flow encompassing vehicles with various
automation levels, vehicular traffic density, cyclist and pedestrian traffic, and envi-
ronmental conditions.

Much uncertainty can be expected in quantifying variables that define in real time
the states of the driving environment. Although the technology in support of the
automated driving is improving, realistically these states will remain uncertain. Two
examples are relevant here. In urban or suburban medium speed driving environment, a
distracted pedestrian may pose a hazard. In the vehicle-following context in highway
driving, stopping distance required by a vehicle in an emergency may not be known
with certainty.

Table 1. Cognitive features and their functions

Cognitive feature Function(s)

• Accurate and reliable awareness of position and surroundings
• Ability to gather, process, and use data for making driving
decisions.

• Ability to transmit data, cooperate/collaborate
• Ability to provide comfort in driving
• Ability to serve as a platform for intelligent transportation
services (e.g. paying tolls, reserving parking space, etc.)

• Communication (with occupants and agents outside the vehicle)
for active safety

• Diagnostic capability
• In case of crash, capability to send and receive information
• Infotainment capability

• Safety
• Safety, efficiency, and
eco-driving

• Safety and efficiency
• Occupant comfort
• Occupant convenience
and efficiency

• Safety and comfort
• Convenience and
efficiency

• Safety and convenience
• Occupant convenience
and efficiency
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Even when the sensors and models that provide tire-pavement friction data are
operational, the safety distance to the vehicle ahead requires information about the road
section ahead of the decelerating vehicle in order to avoid a collision. Although the
connected vehicle technology can source the pavement condition information from the
vehicle ahead, validity of data cannot be assured due to potentially different tire con-
dition. Under automation, the estimation of distance and processing of friction data
enables a better estimate of safety margin as compared to driving under human control.
However, the certainty assumption is not realistic.

The issues of accuracy and reliability have to be overcome for occupant and safety
regulator acceptance of fully automated vehicles. Although safety is of utmost
importance, the requirements of efficiency, comfort, convenience, and eco-driving
should also be met in automated driving. For this reason, the vision of the intelligent
vehicle became increasingly ambitious over the years. From a safety perspective, as
noted earlier, an intelligent vehicle in its advanced form should have cognitive features
that can perform driving tasks in all driving environments. In its fully automated form,
a cognitive vehicle should have the capability to make a corrective active safety
decision under all driving conditions, as an experienced human driver is expected to do.
For this reason, according to a news article, development of ‘human-like’ self-driving
technologies is attracting investor capital [7].

4 Automated Driving Based on Bayesian AI

The high-level architecture of the Bayesian AI-based automated driving system is
shown in Fig. 1. For a general introduction to the subject of Bayesian AI, the reader is
referred to References [8] and [9].

On-line (or driving simulator)

Estimation of distance needed for emergency stopping

Estimated available distance vs. required distance

Safety surrogate measure simulation (Montecarlo method)
Estimation of probability of safety margin

Speed change and other driving decision module 

Fig. 1. High level architecture
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Major functions of the automated driving system are noted in Fig. 2. A detailed
explanation of these functions is presented in other papers of the author [10, 11]. Here,
due to space limitation, only brief notes can be provided. Likewise, Fig. 3 presents only
highlights of the Bayesian AI-based driver algorithm for longitudinal control of the
vehicle. Details can be found in References [10] and [11]. The capability for lateral
control is almost identical, but it is not included in this paper.

The high level architecture items shown in Fig. 1 are presented in Fig. 2 as major
functions of the automated control system. These are noted below.

• Model of the driving environment
• Location of vehicles and separation distances
• Model for tracking safety margins
• Self-calibration model
• Model for characterizing driving states
• Bayesian AI model for driving decisions:

optimal timing and nature of driving actions
(i.e. acceleration/deceleration, speed level)

In this paper, the primary focus is on the vehicle-following task, but the model is
equally valid for maintaining target side-separation distance between vehicles. The
Bayesian AI-based system treats uncertainties of the traffic environment in making
control decisions.

Driving
envi-
ronment

•Montecarlo model: 
safety margins 

• Driving states 
to avoid rear 
crash & lateral 
collisions

• Driving states 
for reaching the 
target distance  
or desired
speed 

• Bayesian model for 
driving decisions

• Self-calibration
• Optimal timing and 

extent of speed
change 

Timing of speed change action
Extent of deceleration/ acceleration

Location of 
vehicles &
separation 
distances 

Fig. 2. Major functions of the longitudinal and lateral control system
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Figure 3 presents the high level logic diagram of the automated driving algorithm.
According to the formulation of the algorithm, the longitudinal control system in the
vehicle-following context can be deployed any time to perform the following functions:

a. Decelerate to avoid a collision
b. Accelerate to reach the target distance or attain a desired speed
c. Maintain the target distance to the leading vehicle.

Time t Location & distance
measurement

Dynamic driving
condition

Montecarlo simulation of safety margins

Deceleration case Acceleration case Maintain 
target 
distance

Automated 
adjustment of
driving
parameters
& updating of
probabilities

P(dc), 
P(d1.25c), 
P(d1.5c)

P(d1.5c), 
P(d1.75c), 
P(d2.0c)

e0

r0 ew

rc,
r1.25c, 
r1.5c

P(d1.5

r1.5c, 
r1.75c, 
r2.0c

e0

r0 ew

P(r|d,e
)
P(r|d,e) P(r|d,e)

Optimal e & a

P”(d|r,e) P”(d|r,e)

G matrixG matrix

Optimal e & a

Next time interval

Fig. 3. Algorithm for the longitudinal control system (Khan, Reference [11])
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According to the design, the transition from function to function is seamless and
automated under machine control. If the subject automated vehicle is following another
vehicle which is not operating under longitudinal control, or if a vehicle from a
neighbouring lane cuts in front of the subject vehicle, the system has to adapt and to
accommodate these demands.

There is a need to improve the capability to adapt to prevailing traffic flow con-
dition so as to ensure safety and at the same time to avoid abrupt speed changes while
maintaining a target distance to vehicle ahead or to attain the desired speed in the
vehicle-following driving environment. Further, other design challenges of the cog-
nitive vehicle noted in Table 1 have also to be met by the automation system.

For on-line application, the location and distance estimation capability is built in
the cognitive connected vehicle. The system is able to identify driving states with
potential for a rear-end crash. Vehicle speed, road condition and other driving envi-
ronmental factors are used as a basis for this task. The longitudinal control model has
the capability to automatically update key driving parameters, namely the probabilities
of critical and longer distances, as well as the probability of correctly estimating
distance to the leading vehicle.

The algorithm shown in Fig. 3 can identify optimal control actions. These are the
timing of deceleration/acceleration action (i.e., immediate or wait) and the magnitude
of speed change. In the case of deceleration, the options are no change, normal
deceleration and emergency deceleration. In the case of acceleration, the options are no
chnage, normal acceleration, and somewhat higher acceleration.

The variabels used in the algorithm are defined as follows:

• dc is critical distance (requires emergency deceleration in order to avoid a crash);
d1.25c and d1.5c are used for monitoring and analysis of deceleration cases

• d1.5c, d1.75c and d2.0c are used for monitoring and analysis of acceleration cases
• P’(d) is the prior probability of distance d
• eo represents no additional information acquisition decision, and therefore calls for

immediate action without waiting for additional information
• ew implies waiting for additional information
• r0 corresponds to e0 (i.e. no new information on distance)
• rc, r1.25c, r1.5c, r1.75c, r2.0c are readings on corresponding distances (i.e. dc, d1.25c,

etc.)
• Reliability in recognizing the driving condition by the longitudinal control system is

expressed as P(r|d,e) – the conditional probability
• P(r|d) is the marginal probability
• P”(d|r,e) is the posterior probability
• G matrix represenre utilities (also called rewards) that apply to a and

d combinations
• For deceleration case, decision options are: a0 no action – maintain target distance,

aN calls for normal deceleration, aE calls for emergency deceleration
• For acceleration case, decision options are a0 (maintain target distance), aN (normal

acceleration) and aH (higher than normal acceleration).
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During a driving mission, the system has to estimate safe target separation distance
between vehicles and also the critical distance (dc) for emergency stopping. This
applies in the longitudinal direction in the vehicle-following driving environment.
Likewise, in order to avoid a lateral collision, the safe distance between the envelopes
of vehicles must be known. These are compared with the available distances on a real-
time basis.

5 Example Application

A distracted driver log was extracted from a driving simulator experiment carried out
with participation of over 80 young drivers. The driver was searching for music (a
song) and did not perceive a hazard posed by the vehicle ahead in the form of abrupt
lane change and brake application. After a perception time of 4 s, which is much higher
than the usual 1.5 s for alert drivers, the distracted driver was able to avoid a collision
as a result of high emergency level deceleration (Fig. 4). Figure 5 shows the speed
profile of the distracted driver and Fig. 6 presents the distance to the vehicle ahead.
This high level of emergency brake action is uncomfortable for the occupants of a
vehicle and also results in a shock wave that travels upstream in the traffic flow and
may result in accidents.

A fully automated vehicle was following the vehicle driven by the distracted driver.
In contrast to the distracted driver, the automated driving system was able to detect the
hazard including the follow-up delayed action of the distracted driver and avoided
abrupt speed change. Figures 5 and 6 present a comparision of speed profiles and
distance to vehicle ahead for the automated vehicle vis-à-vis the distracted human
driver. The Bayesian AI-based algorithm presented in Fig. 3 is credited with the
automated driving system performance.

Fig. 4. High level of deceleration by the distracted human driver
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The results clearly show that the Bayesian AI-based algorithm performed according
to the design. The distance to vehicle ahead ensures safety even under an emergency
condition and the change in speed is comfortable for the occupants.

6 Conclusions

The model development and its application described in the paper lead to the following
conclusions.

1. Bayesian AI-based driver of the fully automated vehicle is likely to overcome the
known deficiencies of current versions of automated drivers as reported in research
literature.

Fig. 5. Comparison of speed profiles of distracted driver and the automation system

Fig. 6. Comparison of distance to vehicle ahead for the distracted driver and the automation
system
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2. The Bayesian AI-based driver will enable the automated cognitive vehicle to meet
safety and ride quality criteria while operating in driving environment characterized
by uncertainties.

3. The cognitive vehicle design is likely to enhance consumer and safety regulator
acceptance and consequently safety and ride quality benefits will be achieved.
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