
Order Acceptance and Scheduling Problem:
A Proposed Formulation and the Comparison

with the Literature

Papatya S. Bıçakcı1(&) and İmdat Kara2

1 Faculty of Economics and Administrative Sciences, Department of
Management, Başkent University Bağlıca Campus, 06790 Ankara, Turkey

papatyas@baskent.edu.tr
2 Faculty of Engineering, Department of Industrial Engineering,

Başkent University Bağlıca Campus, 06790 Ankara, Turkey

Abstract. In classical scheduling problem, it is assumed that all orders must be
processed. In the order acceptance and scheduling (OAS) problem, some orders
are rejected due to limited capacity. In make-to-order production environment,
in which the OAS problem occurs, accepting all orders may cause overloads,
delay in deliveries and unsatisfied customers. Oğuz et al. (2010) introduced the
OAS problem with sequence-dependent setup times and release dates. In this
paper, we propose a new mixed integer programming formulation with O(n2)
decision variables and O(n2) constraints for the same problem. We conduct a
computational analysis comparing the performance of our formulation with
Oğuz et al. (2010) formulation. We use the benchmark instances, which are
available in the literature. We observe that our formulation can solve all the
instances up to 50 orders in a reasonable time, while Oğuz et al. (2010) for-
mulation can solve only the instances with 10 orders in the same time limit.
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1 Introduction

In scheduling problem, it is mostly assumed that all orders must be processed. How-
ever, in real-life applications this may not be the case. In make-to-order production
environment, accepting all orders may cause overloads, delay in deliveries and
unsatisfied customers. Therefore, firms tend to reject some orders. Order acceptance
and scheduling (OAS) problem consists of deciding which orders to be accepted and
determining the schedule of the accepted orders [1].

The OAS problem considered in this study was introduced by Oğuz et al. [2] in
2010 and a mathematical formulation was proposed. The problem is defined as follows.
In a single machine environment, there is a set of orders shown as N = {1, 2, …, n}.
For each order iεN, let ri be the release date, pi be the processing time, di be the due
date, di be the deadline, ei be the revenue, wi be the unit penalty weight for the tardiness
of the orders and sji be the sequence-dependent setup time occurring if the order i is
processed immediately after order j. The setup operation of order iεN can only be
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performed after its release date. The objective is to select and schedule a subset of
orders that maximizes the total profit.

To the best of our knowledge, there are 27 studies related to single machine OAS
problem in the literature. Only 9 of them include a mathematical formulation. These
studies are summarized in Table 1. In [4]’s study, a job is rejected if it is not finished
before its due date. This study is considered as the first example of OAS problem in the
literature [1]. [5] considered varying prices and customer chosen due dates, while [6]
considered inventory costs. They proposed two different formulations. [2] introduced
the OAS problem with sequence-dependent setup times and release dates. They pro-
posed a formulation and their study has taken remarkable attention by researches. In
[7]’s study, there are obligatory jobs and they proposed two mathematical formulations.
[8] addressed the OAS problem considering resource limits and due windows and
proposed a formulation. In his study, a job is rejected if it cannot be finished within its
due window. [9] studied the OAS problem with sequence-dependent setup times
depending on lot sizes. They considered total available time constraint and proposed a
formulation. [10] defined an upper limit for the number of accepted jobs and considered
sequence-dependent setup times. They proposed a nonlinear formulation. [3] dealt with
the problem as in [2]. They proposed a time-indexed formulation with different revenue
calculation method. [3]’s time indexed formulation has some structural difficulties, so
we did not consider this formulation in detail.

In recent years, the developments on computer technology and softwares enable us
to solve the combinatorial problems to optimality by well-designed mathematical

Table 1. Single machine OAS studies with mathematical formulation

Ref.
#

Year Authors Problem structure Release
date

Setup
time

[4] 1990 Stern and Avivi 1|rej,pmtn|
P

Pi – –

[5] 2004 Charnsirisakskul
et al.

1|rej,pmtn|
P

Pi−
P

wjTj – –

[6] 2006 Charnsirisakskul
et al.

1|rej,pmtn,prc,rj|
P

Pi−
P

wjTj

✓ –

[2] 2010 Oğuz et al. 1|rej, sij,di,rj|
P

Rj ✓ ✓

[7] 2011 Nobibon and Leus 1|rej|
P

Pj−
P

wjTj – –

[8] 2016 Garcia 1|rej,rj,Dj
−,Dj

+|
P

Pj−RC ✓ –

[9] 2016 Trigos and Lopez 1|rej,batch,sij|
P

Pj – ✓

[10] 2017 Zandieh ve
Roumani

1|rej,sij|
P

Pi−
P

wjTj – ✓

[3] 2018 Silva et al. 1|rej, sij,di,rj|
P

Pi−
P

wjTj

✓ ✓

Note 1: Single machine; rej: rejection; pmtn: preemption; sij: setup time; prc: pricing; ri: release
date; di: deadline; pi: processing time; Ri = max(0, ei−wiTi);

P
Pi: total revenue;

P
Ti: total

tardiness; RC: total rejection cost;
P

ci: total cost;
P

wiTi: total weighted tardiness; OC: total
contract manufacturing cost; Fj: product families;

P
Pj: total profit; Dj

−,Dj
+: due windows. ✓

Included; - Not included
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formulations. Mathematical formulations can be useful in real-life applications and
allow post-optimality analysis. In most of the studies on OAS problem, solving
methods generally focus on heuristic algorithms. However, as [12] express that
mathematical formulations are still useful for the scheduling problems.

In this study, we propose a new formulation for single machine OAS problem with
sequence-dependent setup times and release dates. We conduct a detailed computa-
tional analysis to compare Oğuz et al. [2] formulation and our proposed formulation.

The remainder of this paper is organized as follows. Section 2 introduces the new
integer linear programming formulation for single machine OAS problem with
sequence-dependent setup times and release dates. Section 3 presents the results of the
computational experiments comparing the performance of our proposed and Oğuz et al.
[2] formulation. Finally, Sect. 4 provides the concluding remarks of this work.

2 A New Formulation

In this section we introduce a new mixed integer linear programming formulation for
OAS problem with sequence-dependent setup times and release dates. Let “0” and “n
+1” be the dummy orders, which indicate the first order of the schedule and the last
order of the schedule respectively. Decision variables are given as follows. Let Ti be
the tardiness of order i, for iεN. Let Zij be the completion time of order j, if order j is
processed immediately after order i. Let Yi be 1, if order i is accepted, 0 otherwise. Let
Xij be 1, if order j is processed immediately after order i, 0 otherwise. Our proposed
formulation is given below:

max
Xn

i¼1
Ri ð1Þ

s.t.

Xn

i¼1
X0i ¼ 1 ð2Þ

Xn

i¼1
Xi;nþ 1 ¼ 1 ð3Þ

Xnþ 1

j¼1;i 6¼j
Xij ¼ Yi 8i ¼ 1; . . . ; n ð4Þ

Xn

j¼0;i 6¼j
Xji ¼ Yi 8i ¼ 1; . . .; n ð5Þ

Xnþ 1

j¼1
Zij �

Xn

k¼0
Zki ¼

Xnþ 1

j¼1
ðrj þ sij þ pjÞXij i 6¼ j; 8i ¼ 1; . . .; n;

8j ¼ 1; . . .; nþ 1
ð6Þ

Z0i ¼ ri þ s0i þ pið ÞX0i 8i ¼ 1; . . .; n ð7Þ
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Xn

k¼0
Zki � diYi 8i ¼ 1; . . .; n ð8Þ

Zij � dmaxXij i 6¼ j; 8i ¼ 0; . . .; n; 8j ¼ 1; . . .; nþ 1 ð9Þ

Ti �
Xn

k¼0
Zki � diYi 8i ¼ 1; . . .; n ð10Þ

Ti �ðdi � diÞYi 8i ¼ 1; . . .; n ð11Þ

Ti � 0 8i ¼ 1; . . .; n ð12Þ

Ri ¼ eiYi � Tiwi 8i ¼ 1; . . .; n ð13Þ

Ri � 0 8i ¼ 1; . . .; n ð14Þ

Yi 2 0; 1f g 8i ¼ 1; . . .; n ð15Þ

Xij 2 0; 1f g i 6¼ j; 8i ¼ 0; . . .; n; 8j ¼ 1; . . .; nþ 1 ð16Þ

Zij � 0 i 6¼ j; 8i ¼ 0; . . .; n; 8j ¼ 1; . . .; nþ 1 ð17Þ

In the objective function (1), the difference between total revenue of accepted
orders and total tardiness penalty of accepted orders is maximized. With constraint
(2) and (3), it is guaranteed that “0” is assigned to the first position and “n+1” is
assigned to the last position of the schedule. Constraint set (4) ensures that if an order is
accepted, another order is processed immediately after this order; and constraint set
(5) ensures that if an order is accepted another order is processed immediately before
this order. Constraint set (6) calculates the completion time of the orders. Constraint set
(7) calculates the completion time of the first processed order in the sequence. Con-
straint set (8) guarantees that if an order is not completed before its deadline, then the
order is not accepted. Constraint set (9), where dmax ¼ maxi¼1; ...; nfdig, provides Xij be
zero, when Zij be zero, and gives an upper bound to Zij’s. Constraint set (10) calculates
the tardiness of the orders. Constraint set (11) gives an upper bound to Ti’s, while
constraint set (12) provides a lower bound to Ti’s. Constraint set (13) calculates the
revenue of the orders, while constraint set (14) bounds it. Constraint sets (15) and
(16) define the binary variables. Constraint set (17) gives a lower bound to Zij’s. Our
proposed formulation has 2n2+10n+2 constraints and n2+2n binary decision variables.

Constraints (2), (3), (4) and (5) are traditional assignment constraints, therefore they
are same as in Oğuz et al. [2] formulation. Constraints (11), (12), (13) are due to the
relations between tardiness, targets and revenue, so they are same as in Oğuz et al. [2]
formulation. Constraints (14), (15), (16) and (17) are non-negativity and binary con-
straints. These constraints also are not related with the structure of the formulation directly.

Main difference between our formulation and Oğuz et al. [2] formulation depends
upon the decision variables corresponding to completion times of the orders. Oğuz
et al. [2] defines completion times by indexing with Ci for i

th order and develops main
constraints of their formulation as a function of Ci’s and other decision variables. We
define completely different decision variables for completion time in relation with
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preceding order i and j as Zij, thus our main decision variables are arc-based whereas
Oğuz et al. [2] formulation’s main decision variables are node-based.

In accordance with these above explanations, main body of our formulation which
includes constraints (6), (7), (8), (9) and (10) is completely different from Oğuz et al. [2]
formulation.

3 Computational Experiments

In this section we summarize the results of computational experiments comparing the
performance of Oğuz et al. [2] formulation (OSB) and our proposed formulation (OPF).
Mathematical formulations were coded in C++ and benchmark instances were solved
by CPLEX 12.4 in an Intel Xeon Phi 7290 with 1.5 GHz and 384 GB of RAM.

Benchmark instances were generated by [11] and they are available on the web
address http://home.ku.edu.tr/*coguz*/Research/Dataset_OAS.zip. There are six
instance groups which consist of n = 10,15,20,25,50 and 100. Each instance group has
250 instances, and there are totally 1500 benchmark instances. For the instances with
10,15,20,25 and 50 orders the time limit is set 7200 seconds; for the instances with 100
orders the time limit is set 14400 seconds. Run times and LP relaxations of OPF and
OSB for n = 10 are showed in Table 2.

Table 2. The results of OSB and OPF for n = 10

s R OPV CPU LPR % DEV.
0.1 0.1 OSB OPF OSB OPF OSB OPF

Instance 1 119 90,06 0,49 124 124 0,04 0,04
Instance 2 126 115,9 0,69 131 131 0,04 0,04
Instance 3 90 127,72 0,64 102 102 0,13 0,13
Instance 4 123 40,16 0,29 123 123 0,00 0,00
Instance 5 94 69,26 0,39 96 96 0,02 0,02
Instance 6 111 113,28 0,61 115 115 0,04 0,04
Instance 7 102 117,02 0,51 111 111 0,09 0,09
Instance 8 104 91,76 0,29 114 114 0,10 0,10
Instance 9 117 104,76 0,65 123 123 0,05 0,05
Instance
10

105 76,8 0,31 107 107 0,02 0,02

Avg. 94,67 0,48 0,05 0,05

Note: s and R are the parameters for using to generate benchmark instances.
OPV: optimal value; CPU: run time; LPR: linear programming relaxation; %
DEV: percentage deviation between LPR and OPV which is (LPR-OPV)/(OPV).
OSB: Oğuz et al. [2] formulation; OPF: our proposed formulation.
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From Table 2, we observe that OPF is extremely faster than OSB with the average
run times 0,48 and 94,67 respectively. LPR values are not different and the average
percentage deviation is 0,05 which indicates the LPR values are very close to the
optimal values.

We solved all the instances with n = 10 with each formulation. The average run
time and the average percentage deviation are given in Table 3.

OSB cannot solve the instances greater than 10 orders in given time limit.
Therefore, we continue computational analysis with OPF. Average run times and
average percentage deviations for n = 15, 20, 25 and 50 are given in Table 3. OPF can
solve all the instances up to 50 orders in a reasonable time.

There are no benchmark instances between 50 and 100 orders. OPF cannot solve
the instances with 100 orders in 14400 seconds time limit.

4 Concluding Remarks

In this study we proposed a new arc-based mathematical formulation for solving a
variant of OAS problem that includes sequence-dependent setup times and release
dates. Our proposed formulation and Oğuz et al. [2] formulation were tested on
instances ranging from 10 to 50 orders. Oğuz et al. [2] formulation can solve only the
instances with 10 orders in given time limit. Our proposed formulation can solve the
instances up to 50 orders to optimality in the same time limit. Future studies may
consider proposing new mathematical formulations capable of solving larger instances
in a reasonable time.
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