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Abstract. The potential to predict the productivity and the specific electric-
energy furnace consumption is very important for the economic operation and
performance of a Consteel electric-arc furnace. In this work, these two variables
were predicted based on specific operating parameters with the use of machine
learning. Actually, three different algorithms were tested for this study: the BRF
method of support vector machine (SVM), the light gradient boosting method
(lightGBM), and the Keras system with TensorFlow as backend. The results
appear to be good enough for production scheduling, and are presented and
discussed in this work.
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1 Introduction

The need for the potential of predicting the productivity, and specific electrical-energy
consumption based on process parameters has been always the desire in steelmaking
plants worldwide. It facilitates procurement and results in a more rational approach in
the schedule of actions. Budget development is then performed in a faster and more
reliable basis. In a monumental work, Koehle [1] had come up with a very compact
formula based on regression analysis from data collected from a relatively large number
of electric-arc furnaces (EAF) worldwide. This equation had taken under consideration
the specific electric-energy reduction from installations with scrap preheating, like
Consteel. On the other hand, in a more recent work, Memoli [2] elaborated data from
Consteel installations and pointed out the effect of liquid heel upon productivity in
addition to the installed and operating electric-arc power. However, each Consteel
installation has its own peculiarities depending upon scrap quality, furnace condition,
and operating personnel skills. In this study, process parameters that are recorded daily
per heat were selected and an attempt to predict the expected productivity and specific
electric-furnace energy consumption was carried out. Machine learning was applied in
order to derive supervised models that could be used in off-line scheduling from the
scrap yard till the secondary metallurgy treatment of liquid steel.
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2 Preparation for the Computations

2.1 EAF Installation

The SOVEL plant, which is part of the VIOHALCO/SIDENOR group of companies, is
located at a seacoast area of Almyros next to the city of Volos in the middle of Greece.
In 2006, SOVEL decided to convert to a Consteel operation in order to increase
production capacity and decrease electrical energy consumption. The furnace is a
3-phase EBT EAF with a 120 MVA transformer, and 600-mm-diameter electrodes.

Table 1. Considered operating parameters (independent variables).

No. | Symbol Description
1 |YIELD Yield (t of good billet per t of scrap)
2 |POW_ON Power on time (min)
3 |TAP_TAP Tap-to-tap time (min)
4 | POWER _AVG Average power per heat (MW)
5 |SPEC_OX Specific oxygen consumption (Nm?/t)
6 |SPEC_LIME Specific lime consumption (kg/t)
7 |SPEC_MGO Specific MgO consumption (kg/t)
8 | SPEC_CHRG_CARBON | Specific charged carbon (kg/t)
9 |SPEC_INJ_CARBON Specific injected carbon (kg/t)
10 | TEMP Tapping temperature (°C)
11 | ppmO Oxygen content (ppm)
12 |PC_HMS_1 Scrap type HMS #1 (percentage)
13 |PC_HMS_2 Scrap type HMS #2 (percentage)
14 | PC_SHREDDED Shredded scrap (percentage)
15 | PC_BUSHELLING Busheling scrap (percentage)
16 | PC_RETURNS Returns (percentage)
17 | PC_TURNINGS Turnings (percentage)
18 | PC_PIG_IRON Pig iron (percentage)

It has the necessary modules to supply chemical energy as well as to inject carbon
units in order to retain the appropriate volume of foaming slag. The meltshop has a
ladle furnace (LF) for the secondary metallurgy treatment of liquid steel, and a 6-strand
continuous caster (CCM) that mainly casts 140 x 140 mm x mm billets. The furnace-
tapped weight is 130 t and the annual capacity is around 1 million tons of steel. The
interested reader may refer to [3] for a more detailed description of the furnace
installation.

2.2 Parameters Considered in the Computations

Two dependent parameters were analyzed: productivity in t/h (TON_PER_HR), and
specific electrical-energy consumption in kWh/t good billet (SPEC_ENRGY_BILLET).
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However, since these two parameters are very critical with respect to the economics
policy of a company, only scaled data/results were presented in this study. Neverthe-
less, the degree of correlation achieved in the analysis is mostly important to the data
scientist and not the actual values.

Table 1 presents the 18 independent operating parameters considered as the
important factors that were supposed to have an influence upon the two dependent
variables. The main parameters related to the electrical energy consumption are the
average power of the heat (POWER_AVG), and the time duration in which the energy
was supplied (POW_ON). The tap-to-tap time (TAP_TAP) influences productivity and
electrical energy consumption; it reflects the proper condition of a furnace not only
with respect to operations but with respect to maintenance, as well. The specific oxygen
consumption (SPEC_OX) plays an important role not only to the selected dependent
variables but also to the chemistry of the tapped liquid steel. The specific addition of
lime (SPEC_LIME) and magnesia (SPEC_MGO) play a paramount role in the proper
chemical composition of the slag for foaming. In practice, we aim for FeO =~ 20%,
MgO = 6%, and B3 ~ 2.0; the index Bj is given by the following equation [4]:

By= 0 (1)
Sl02 +A1203

We wanted to keep the derived supervised results as close as possible to the
operating parameters that we controlled more easily in practice. For that reason, we
decided to employ only the specific additions of the slag fluxes than including the slag
chemical analyses into the computations. The liquid steel temperature (TEMP) and
oxygen (ppmO) as measured by the CELOX probe [5] have an effect on energy
consumption and liquid steel cleanliness; the yield (YIELD) plays a great role on
specific consumptions and cost-effective meltshop operation. Finally, seven scrap
parameters related to scrap mix were taken under consideration (Table 1, 12—18). One
may realize that scrap mix is the top factor that greatly influences the two selected
dependent parameters, so it was impossible to proceed in this type of study without
considering it. Nevertheless, a meltshop facility may not have the desired scrap mix all
year around. On this basis, proper management may help eliminate extreme cases and
still make production at desired costs.

2.3 Computational Approach

Pieces of software were developed in order to tackle the process of data, and tune the
selected machine-learning algorithms. Python (version 3.5.4, 64-bit, Anaconda instal-
lation [6]) was the deployed language. The total number of cases (heats) that were selected
for the analysis were 9148 in total, and they belonged in the production period from
January 2016 until July 2018, that is about 1.2 million tons of produced liquid steel. In
fact, the initial number of heats for that period was more but almost one-third of heats were



88 P. Sismanis

filtered out in order to compensate for ambiguous or missing data. The library of pandas
[7] was used for data manipulation, and the scikit-learn library [8] was used for validation
and tuning of the models. Furthermore, the kernel RBF (radial basis function) from the
support vector machine (SVM) library of the scikit-learn package was deployed as one of
the three selected algorithms for machine learning. SVM was selected, as it is a powerful
and widely used machine-learning algorithm. It generally constructs a hyperplane or set of
hyperplanes in a multi-dimensional space which can be used for regression by selecting
the hyperplane that has the largest distance to the nearest training-data point of any class
(margin), since in general the larger the margin, the lower the generalization error of the
derived supervised model. The second selected algorithm was lightGBM [9] (gradient
boosting method) that appears to be reliable, simple, and flexible. LightGBM is a gradient
boosting framework that uses histogram-based algorithms, which bucket continuous
feature (attribute) values into secret bins. This speeds up training and reduces memory
usage. Finally, the last algorithm was Keras [10, 11] with TensorFlow [12] as backend.
Keras uses neural networks for the derivation of the supervised models. Keras is an open-
source neural-network library written in Python. Designed to enable fast experimentation
with deep neural networks, it focuses on being user-friendly, modular, and extensible. It
supports standard, convolutional, and recurrent neural networks. An attempt to apply
machine learning in a Python environment was the triggering mechanism to work with the
three aforementioned machine-learning algorithms after having published another study
in an environment under R [13]. The software was run in a DELL Alienware laptop with
the Intel i7-6700HQ CPU (8 cores) @2.6 GHz, 16 GB RAM, running under a 64-bit
Windows 10 Professional O/S. The data were scaled before further processing. Finally,
two important functions from the scikit-learn package were deployed: the StandardScaler
function was used in order to scale the data so that errors coming from computations
amongst too big and too low values to be minimized; furthermore, the GridSearchCV
function was called in order to fine-tune the machine learning algorithms.

3 Results and Discussion

3.1 Principal Component Analysis

At first, a search was held in order to verify whether the independent variables
exhibited some patterns. For this purpose, the KMeans method from scikit-learn was
applied after scaling in order to identify the optimum number of clusters in which the
independent variables might be included; the average-silhouette-width [14] criterion
was put into effect and proved that the optimum number of clusters was two. Fur-
thermore, applying a principal component analysis (PCA) after filtering the scaled data
through the GradientBoostingRegressor (all scikit-learn [8] functions) for the two
optimum clusters, Fig. 1 was created showing the results.
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Fig. 1. Clusters and PCA analysis.

The two stars in Fig. 1 illustrate the centroids for the two clusters. It seems that the
two clusters are related to the heats that were produced at larger average-power values
(left-hand-side centroid), and smaller average-power values (right-hand-side centroid).

3.2 Productivity Analysis-SVM

Figure 2 depicts actual versus predicted scaled-productivity values. One may realize
that there is a relatively good prediction upon productivity. In fact, the analysis of
variance (ANOVA) between actual and predicted values showed that the root-mean-
squared-error (RMSE) was 0.150, with a correlation coefficient (R2_squared) equal to
0.9778. However, in order to deduce these relatively good results with the RBF kernel
of the support vector machine we had to tune the model. Two tuning parameters were
required [15, 16] in order to improve the accuracy of the model: C, and gamma;
actually, after tuning using a grid search (GridSearchCV), the optimum values were
C = 100, and gamma = 0.01.
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SOVEL: Scaled-Productivity - SVM(RBF)

Predicted Productivity

-3 -2 -1 0 1 2
Actual Productivity

Fig. 2. Actual vs. predicted scaled-productivity values using the RBF kernel of the support
vector machine.

3.3 Productivity Analysis-LightGBM

Figure 3 illustrates actual versus predicted scaled-productivity values by the lightGBM
model. Here, the ANOVA showed that the RMSE value was 0.098, with R2_squared
equal to 0.9905. Furthermore, a grid search was held in order to tune the appropriate
parameters. In this case, the optimum parameters were learning_rate = 0.01; n_esti-
mators = 10000.

3.4 Productivity Analysis-Keras

Keras was found more difficult to tune and the attained optimum parameters gave
adequate values for the RMSE = 0.156, and R2_squared = 0.9760. Figure 4 illustrates
the attained training and validation accuracy versus epochs. One may notice that the
error minimizes flattening at epochs equal to 700. Actually, the optimum parameters
were found to be batch_size = 150, and epochs = 700. Figure 5 depicts the actual
versus predicted productivity values by Keras. Two main sequential models were
applied the first with 64 units, and the second 18 units; the activation selected was of
‘relu’ type that is a good choice for regression models, with a 2% dropout percentage,
and an ‘12’ regularizer kernel equal to 0.1%. The ‘rmsprop’ type was selected as the
routine for the mean-squared-error optimizer.
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As a concluding remark, it seems that productivity can be predicted to a reasonable
extent by the operating parameters from all three selected models.

SOVEL: Scaled Productivity - lightGBM

Predicted Productivity
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Actual Productivity

Fig. 3. Actual vs. predicted scaled-productivity values using lightGBM.
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Fig. 4. Training and validation accuracy vs. epochs during grid-search tuning of the Keras
model for productivity.
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SOVEL: Scaled Productivity - KERAS
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Fig. 5. Actual vs. predicted scaled-productivity values using Keras.

3.5 Energy Analysis-SVM

The scaled specific electrical-energy consumption (SPEC_ENRGY_BILLET) was pre-
dicted by the RBF kernel of the support vector machine; a grid search was applied in
order to quantify the tuning parameters (C, gamma) and optimize the mean-squared-
error. Figure 6 depicts the actual and predicted values for the scaled specific-energy
consumption. The ANOVA on the actual and predicted values computed a RMSE
value equal to 0.240, and a R2-squared value equal to 0.9421; these values were
calculated for the optimum values of C = 1000, and gamma = 0.01.

3.6 Energy Analysis-LightGBM

Figure 7 illustrates the actual and predicted values for the specific electrical energy
consumption. A grid search was also performed calculating as optimum values a
learning_rate = 0.010, and n_estimators = 10000.

For Fig. 7 under the optimum parameters the ANOVA resulted in a RMSE value
equal to 0.1858 with a correlation coefficient R2_squared = 0.9654. Nevertheless, what
appears to be interesting is the prediction of the relative importance of the independent
parameters upon the two dependent parameters under study. Figure 8 shows the
variable importance of the selected independent parameters upon the specific energy
consumption; it is worth saying that the same relative importance of the independent
parameters appears true for productivity, as well. One may notice that the independent
parameters related to power and time play a paramount importance upon energy
consumption, as well as productivity. Indeed, POWER_AVG, POW_ON, and TAP_TAP
seem to be very important, as expected from real practice experience. Yield (YIELD)
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cannot be underestimated and energy-inducing factors like oxygen (SPEC_OX) and
carbon (SPEC_CHRG_CARBON, SPEC_INJ_CARBON) are important as well.

We should notify that we operate the furnace at low natural-gas consumptions;
actually, we use natural gas only for the proper operation of modules and not as
burners. Lime is an important slag constituent (SPEC_LIME), and tapping temperature
(TEMP) and oxygen content (ppmO) could not be excluded from the estimating picture.
The influence of the scrap mix is more-or-less expected according to the experience
from our practice. However, the low effect from pig iron (PC_PIG_IRON) comes from
the fact that we do not add more than 3% in most cases, for the heats that we do add it.

SOVEL: Scaled Spec.Energy Cons. - SVM(RBF)
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Fig. 6. Actual vs. predicted scaled specific-energy-consumption values using the RBF kernel of
the support vector machine.

3.7 Energy Analysis-Keras

Figure 9 illustrates the training and validation accuracy in the tuning process.

Applying a grid search to tune the Keras model it was found that the batch_size =
100, at epochs = 600 gave rise to the best possible optimization of the mean-squared-
error. In fact, the ANOVA gave the value of RMSE = 0.238, at a multiple correlation
coefficient R2_squared = 0.9432. Neural networks seem to be hard to tune in order to
attain the best desirable values. Again in this case, two main sequential units were
applied with the first being 64 dense units, and 18 the second; the optimizer selected
was the type ‘rmsprop’ at a ‘relu’ type of activation. A 2% dropout was applied, too.

Figure 10 illustrates the actual and predicted specific energy-consumption values
from this analysis with Keras.
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SOVEL: Scaled Spec.Energy Cons. - lightGBM
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Fig. 7. Actual vs. predicted scaled specific-energy-consumption values using lightGBM.
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Fig. 8. Relative importance of the independent parameters upon the specific energy consump-
tion (the same holds true for productivity).
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Fig. 9. Training and validation accuracy vs. epochs during grid-search tuning of the Keras
model for specific energy consumption.

SOVEL: Scaled Spec. Energy Consumption-KERAS
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Fig. 10. Actual vs. predicted scaled specific-energy-consumption values using Keras.

3.8 Energy Analysis-Verification by Practice

After the summer-2018 maintenance period, the scrap yard collected enough quantity
of relatively good scrap with minimal gangue content. Consequently, we experienced a
good September-2018 month with high productivities and small specific electrical-
energy consumptions. For this reason, testing the supervised model predictions for
productivity and energy consumption based on the past set of data for the independent
variables would be a good verification about the reliability of these models.
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For illustration purposes, results from lightGBM model predictions were selected
for presentation. Figure 11 shows actual and predicted scaled-productivity values for
the “good” period Aug-Sep’18. The RMSE (standard deviation) was 0.303 with a
multiple correlation coefficient R2_squared equal to 0.9108.

SOVEL Aug-Sep18: Scaled Productivity - lightGBM
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Fig. 11. Actual vs. predicted scaled-productivity values for the period Aug-Sep’18 using
lightGBM.

Similarly, Fig. 12 depicts actual and predicted scaled specific electrical-energy
consumption values for the same period. The standard deviation was in this case 0.699
with a multiple correlation coefficient equal to 0.4463. Since the model had been tuned
with a very small percentage of heats with very low scaled-specific electrical-energy
consumption values, one may conclude that the poor correlation results were to be
expected. However, the salient features of the high productivity and low energy con-
sumption were remarkably achieved albeit to a less reliable base. Nevertheless,
including the Aug-Sep’18 data in the tuning database of the models it was expected that
new and better-supervised models could be computed that will behave much better in
similar cases in the future. Since statistical analysis has exhibited much better results
for the prediction of productivity for the limited data of the Aug-Sep’l8 period,
emphasis was given to energy analysis for that period by encompassing these data into
the initial database and deriving a new lightGBM supervised model in order to check
any potential improvement.
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SOVEL Aug-Sep18: Scaled Spec.Energy Cons.-lightGBM
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Fig. 12. Actual vs. predicted scaled specific-energy-consumption values for the period Aug-
Sep’18 using lightGBM

SOVEL Aug-Sep18: Scaled Spec.Energy Cons.-lightGBM
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Fig. 13. Actual vs. predicted scaled specific-energy-consumption values for the period Aug-
Sep’18 using the new derived lightGBM-model by including the data of this period
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Figure 13 depicts actual and predicted scaled specific electrical-energy consump-
tion values for the new derived model. The model was tuned with a learning_rate =
0.01, and n_estimators = 10000; the ANOVA showed improved model values, RMSE
= 0.1266, and R2_squared = 0.9833. Furthermore, the predictions for the Aug-Sep’18
data exhibited further improved values, RMSE = 0.573, and R2_squared = 0.628. We
would like to point out that this is the ‘heart’ of machine learning: the system is trained
to behave better by getting fresh data by time.

4 Conclusion

Supervised models were developed that predict productivity and specific electrical-
energy consumption for the Consteel furnace at SOVEL. SVM and lightGBM based
models predicted adequately well the dependent parameters with the latter exhibiting
the best correlation characteristics, while Keras was found a bit more difficult to tune.
As a further work, one may propose that a potentially online model can be deduced by
incorporating Level 2 automation data.
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