
In-Memory Big Graph: A Future
Research Agenda

Deepali Jain, Ripon Patgiri(B) , and Sabuzima Nayak

National Institute of Technology Silchar, Silchar, India
jaindeepali010@gmail.com, ripon@cse.nits.ac.in, sabuzimanayak@gmail.com

Abstract. With the growth of the inter-connectivity of the world, Big
Graph has become a popular emerging technology. For instance, social
media (Facebook, Twitter). Prominent examples of Big Graph include
social networks, biological network, graph mining, big knowledge graph,
big web graphs and scholarly citation networks. A Big Graph consists
of millions of nodes and trillion of edges. Big Graphs are growing expo-
nentially and requires large computing machinery. Big Graph is posing
many issues such as storage, scalability, processing and many more. This
paper gives a brief overview of in-memory Big Graph Systems and some
key challenges. Also, sheds some light on future research agendas of in-
memory systems.

Keywords: Big Graph · Big Data · In-memory Big Graph ·
Large graph · Semi-structured data · Social networks

1 Introduction

Today, every domain ranging from social networks to web graphs implements Big
Graph. There are diverse graph data that are growing rapidly. Big Graph has
found its application in many domains, in particular, computer networks [19],
social networks [23,39], mobile call networks [40], and biological networks [13].
A prominent example of Big Graph in the field of computer network is Mobile
Opportunistic Networks (MONs) [19]. It is a challenging task to understand
and characterize the properties of time-varying graph, for instance, MONs. Big
Graph has major applications in social networking sites, for example, Facebook
friends [39], and Twitter tweets [23]. In Facebook, there are millions of nodes
which represent people and billion of edges which represent the relationships
between these people. In Twitter, “who is following whom” is represented by Big
Graphs. In mobile call networks, Wang et al. [40] uses Big Graph to understand
the similarity of two individual relationships over mobile phones and in the
social network. In Bioinformatic, Big Graph is used to represent DNA and other
protein molecular structure. Moreover, the graph theory is used for analysis and
calculation of molecular topology [13].

Handling Big Graph is a complex task. Moreover, there are many challenges
associated with large graphs as they require huge computation. Therefore, there
c© Springer Nature Switzerland AG 2019
W. Abramowicz and R. Corchuelo (Eds.): BIS 2019, LNBIP 353, pp. 18–29, 2019.
https://doi.org/10.1007/978-3-030-20485-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20485-3_2&domain=pdf
http://orcid.org/0000-0002-9899-9152
https://doi.org/10.1007/978-3-030-20485-3_2


In-Memory Big Graph: A Future Research Agenda 19

is a great need for parallel Big Graph systems. Most of the Big Graph frame-
works are implemented based on HDD. A few in-memory Big Graph frameworks
are available. Because, RAM is volatile storage media, small in size and costly.
However, the cost of the hardware is dropping sharply. Therefore, in the future,
RAM will be given prime focus in designing a Big Graph framework. Currently,
Flash/SSD-based Big Graph framework is developing. Flash/SSD based frame-
works are faster than HDD. Naturally, Flash/SSD based Big Graph frameworks
are slower than in-memory Big Graph frameworks. Thus, in coming future, more
RAM-based Big Graph frameworks will be designed for storing Big Graph. In-
memory Big Graph is a key research to be focused on. A few research questions
(RQ) on in-memory Big Graph are outlined as follows: (a) RQ1: Can In-memory
Big Graph able to process more than trillions of nodes or edges? (b) RQ2: Can
In-memory Big Graph able to handle the Big Graph size beyond terabytes?
(c) RQ3: Is there any alternative to HDD, SSD or Flash memory (NAND)? (d)
RQ4: What are the real-time Big Graph processing engines available without
using HDD, SSD, or Flash?

The research questions RQ1, RQ2, RQ3, and RQ4 motivate us to exam-
ine the insight on massively scalable in-memory Big Graph processing engine.
Besides, implementing in-memory Big Graph Database is a prominent research
challenge. Thus, in this paper, we present a deep insight on scalable in-memory
Big Graph processing engine as well as a database for future research.

2 Big Graph

A Big Graph comprises of billions of vertices and hundreds of billion of edges.
Big Graph is applied in diverse areas [40], namely, biological networks, social net-
works, information networks and technological network. Big Graph is unstruc-
tured and irregular that makes the graph processing more complex. In real world
cases, Big graph is dynamic, i.e., there are some temporal graphs which changes
with time [29]. Particularly, new nodes are inserted and deleted frequently. Han-
dling the frequent changes in edges and vertices are truly a research challenge.

2.1 In-Memory Big Graph

Big Graph represents a huge volume of data. This huge sized data are usually
stored in secondary memory. However, storing graphs in RAM improves the
performance of graph processing and analysis. But, in-memory Big Graph sys-
tem requires a huge amount of resources [34]. Numerous Big Graph processing
systems are designed based on in-memory Big Graph with the backing of sec-
ondary storage. For example, PowerGraph [15], GraphX [16], and Pregelix [6].
The ability of continuous holding data in RAM in a fault-tolerant manner makes
in-memory big graph systems more suitable for many data analytic applications.
For instance, Spark [44] uses the elastic persistence model to keep the dataset in
memory, or disk or both. However, state-of-the-art Big Graphs do not provide
intrinsic in-memory Big Graph without using secondary storage.



20 D. Jain et al.

3 In-Memory Big Graph Framework

As the data keeps on growing, there should be a system which can efficiently
work with the incremental data and has a large memory to hold the data. As
the data is growing rapidly, processing of large graph becomes the key barrier.
There is also scalability issue associated with in-memory Big Graph systems. So,
there is a great need for Big Graph processing systems that can overcome the
issues. There are many existing in-memory Big Graph systems like Power Graph
[15], GraphX [16]. These systems handle the issues like storage, scalability, fault
tolerance, communication costs, workload. In this section some in-memory Big
Graph engines are discussed. Table 1 illustrates the evaluation of in-memory Big
Graph on the basis of various parameters. Moreover, Table 2 exposes the various
sizes of nodes and edges with data sources.

The power-law degree distribution graphs are challenging task to partition.
Because, it causes work imbalance. Work imbalance leads to communication and
storage issue. Hence, PowerGraph [15] uses Gather-Apply Scatter (GAS) model.

Table 1. Evaluation of existing framework

Name In-memoryHybridScalabilityFault tolerance
issue

Communication
overhead

Framework

PowerGraph [15]� × � × × Vertex-centric

GraphX [16] � × � × × RDD [16]

Ringo [31] � × × × × SNAP [22]

Trinity [33] � × � � × Distributed
graph engine

Pregelix [6] � × � × × Distributed
graph
system

GraphBig [24] � × � × - Vertex-centric

GraphMP [45] × � � × × VSW [35]

GraphH [34] � × � × × Vertex-centric

Table 2. Evaluation of existing framework. M = Million, B = Billion

Name Nodes Edges Data source

PowerGraph [15] 40M 1.5B Twitter [20]

GraphX [16] 4.8M 69M twitter-2010 [4], uk-2007-05 [3]

Ringo [31] 4.8M,42M 69M,1.5B Twitter [20], LiveJournal [1]

Trinity [33] 1B 13B Social Graph, Web Graph

Pregelix [6] 6.9M 6 B BTC [10], Webmap [37]

GraphBig [24] 1.9M 2.8M CA Road Network [22]

GraphMP [45] 1.1B Twitter Graph

GraphH [34] 788M 47.6B Twitter Graph



In-Memory Big Graph: A Future Research Agenda 21

It uses vertices for computation over edges. In this way, PowerGraph maintains
the ‘think like a vertex’ [38] philosophy. And, it helps in processing trillion of
nodes. It exploits parallelism, to achieve less communication and storage costs.
PowerGraph supports both asynchronous and synchronous execution. It provides
fault-tolerance by vertex replication and data-dependency method.

There is another system, called GraphX [16] which is built on Spark. GraphX
supports in-memory system by using Spark storage abstraction, called Resilient
Distributed Dataset (RDD) which is essential for iterative graph algorithms.
RDD helps in handling trillions of nodes. It also has enough in-memory replica-
tion to reduce the re-computation in case of any failure. GraphX retains low-cost
fault tolerance by using distributed dataflow networks. GraphX provides ease of
analyzing unstructured and tabular data.

Ringo [31] is an in-memory interactive graph analytic system that provides
graph manipulation and analysis. Working data set is stored in RAM, and non-
working data set are stored in HDD. The prime objective is to provide faster
execution rather than scalability. Also, Ringo needs a dynamic graph represen-
tation. For efficient graph representation, Ringo uses a Compressed Sparse Row
format [17]. Ringo builds on the Stanford Network Analysis Platform (SNAP) [21].
Ringo is easily adaptable due to the integrated processing of graphs and tables. It
uses an easy-to-use Python interface and execution on a single machine. However,
scalability is a major concern in Ringo. In addition, Ringo is unable to support
more than trillions of edges or higher sized Big Graph.

Trinity [33] is a distributed graph engine build over a memory cloud. Mem-
ory cloud is a globally addressable, distributed key-value store over a cluster
of machines. Data sets can be accessed quickly through distributed in-memory
storage. It also supports online query processing as well as offline analysis large
graphs. The basic philosophy behind designing the Trinity is (a) high-speed
network is readily available today, and (b) DRAM prices will go down in the
long run. Trinity is an all-in-memory system, thus, the graph data are loaded
in RAM before computation. Trinity has its own language called Trinity speci-
fication language (TSL) that minimizes the gap between graph model and data
storage. Trinity tries to avoid memory gaps between large numbers of key-value
pairs by implementing circular memory management mechanism. It uses heart-
beat messages to proactively detect machine failures. Trinity uses Random access
data of distributed RAM storage, therefore, it can support trillions of nodes in
future. There are many advantages of Trinity, specifically, (1) object-oriented
data manipulation of data in the memory cloud, (2) data integration, and (3)
TSL facilitates system extension.

Preglix [6] is an open source distributed graph processing system. It supports
bulk-synchronous vertex-oriented programming model for analysis of large scale
graphs. Pregelix is an iterative dataflow design, and it can effectively handle both
in-memory and out-of-core workloads. Pregelix uses Hyracks [5] engine for exe-
cution purpose. It is a general-purpose shared-nothing dataflow engine. Pregelix
employs both B-Tree and LSM (log-structured merge-tree) B-Tree index struc-
tures. These index structures are used to store partitions of vertices on worker



22 D. Jain et al.

machines and these are imported from the Hyracks storage library. The level
of fault tolerance in Pregelix is same as other Pregel-like systems. Pregelix sys-
tem supports larger datasets, and also strengthen multi-user workloads. Pregelix
explores more flexible scheduling mechanisms. It gives various data redistribution
(allowed by Hyracks) techniques for the optimization of given Pregel algorithm’s
computation time. It is the only open source system that supports multi-user
workloads, has out-of-core support, and allows runtime flexibility. Accommoda-
tion of nodes in memory is based on the available memory.

GraphBig [24] is a benchmark suite inspired by IBM System G project. It
is a toolkit for computing industrial graphs used by many commercial clients.
It is used for performing graph computations and data sources. GraphBig uti-
lizes a dynamic, vertex-centric data representation, which can be oftenly seen in
real-world graph systems. GraphBig uses compact format of CSR (Compressed
Sparse Row) to save memory space and simplify the graph build complexity.
The memory of graph computing shows high cache miss rates on CPUs and also
high branch/memory divergence on GPUs.

GraphMP is a semi-external-memory Big Graph processing system. In SEM
[45] all vertices of the graph are stored in RAM and edges are accessed from the
disk. GraphMP uses vertex-centric sliding window (VSW) computation model. It
initially separates the vertices into disjoint intervals. Each interval has a shard.
The shard contains the edges that have destination vertices within the inter-
val. During computation, GraphMP slides a window on every vertex and the
edges are processed shard by shard. The shard is loaded into RAM for process-
ing. At the end of the program the updates are written to the disk. GraphMP
uses a Bloom Filter for selective scheduling to avoid inactive shards. A shard
cache mechanism is implemented for complete usage of the memory compressed.
GraphMP does not store the edges in memory to handle Big Graph efficiently
with limited memory. However, it requires more memory to store all vertices. In
addition, it does not use logical locks to improve the performance. It is unable
to support trillions of nodes since it is a single machine semi-external memory
graph processing system.

GraphH [34] is a memory-disk hybrid approach which maximizes the amount
of in-memory data. Initially, the Big Graph is partitioned using two stages. In
first stage, the Big Graph is divided into a set of tiles. Each set of tiles uses a
compact data structure to store the assigned edges. In the second stage, GraphH
assigns the tiles uniformly to computational servers. These servers run the vertex-
centric programs. Each vertex maintains a replica of all servers during computa-
tion. GraphH implements GAB (Gather-Apply-Broadcast) Computation Model
for updating the vertex. Along the in-edges, the data are gathered from local
memory to compute the accumulator. GraphH implements Edge Cache Mecha-
nism to reduce the disk access overhead. It is efficient in small cluster or single
commodity server. However, it can support trillions of nodes due to GAB model
implementation.



In-Memory Big Graph: A Future Research Agenda 23

4 Key Issues

Power-Law Graph: Power-law graph can be defined as the graph with vertex
degree distribution follows a power-law function. It creates many difficulties in
the analysis and processing of Big Graph. For example, imbalanced workload in
the Big Graph processing systems.

Graph Partitioning: Big Graph uses graph parallel processing technology. The
processing requires partitioning of Big Graph into subgraphs. However, the real
world graph is highly skewed and have a power-law degree distribution. Hence,
Big Graph needs to efficiently partition the graph.

Distributed Graph Placement: Big Graph is stored in cluster of systems.
Hence, issues of distributed system are also applicable to the storage and pro-
cessing of Big Graph. In-memory Big Graph system suffers from scalability issues
because RAM is costly and small sized. In addition, in-memory Big Graph must
ensure consistency. The data are replicated in several nodes to retain the data
even if there is a system fault. In-memory Big Graph systems also has hotspot
issue due to the skewed nature of Big Graph.

Cost: In-memory Big Graph processing systems store the graph in RAM. Hence,
it requires good quality computing infrastructure to handle such huge size graph.
For example, GraphX requires 16 TB memory to process 10 billion edges [16].
During computation the systems require to store the whole graph and also the
network-transmitted messages in RAM [34].

Incompetent to Execute Inexact Algorithm: Big Graphs are incapable
to execute the inexact algorithms due to graph matching. Most of the inexact
algorithms take a very long computational time for processing [8].

5 Key Challenges

Dynamic Graph: Analysis of dynamic graph is an arduous process in which the
graph structure changes frequently. In this type of graph, vertices and edges are
inserted and deleted frequently [42]. As the dynamic graphs keep on changing,
data management and graph analytic takes the responsibility for the sequence
of large graph snapshots as well as for streaming data.

Graph-Based Data Integration and Knowledge Graphs: For the analy-
sis purpose, Big Graph data is extracted from original data sources. However,
data extraction from the data source is full of obstacles. One key challenge is
knowledge graph [12,27]. The knowledge graph provides a huge volume of inter-
related information regarding real-world entities. Moreover, key issues with the
knowledge graph is integration of low quality, highly diverse and large volume
of data.

Graph Data Allocation and Partitioning: Effectiveness of graph processing
highly depends on efficient data partitioning of Big Graph. Along with partition-
ing, load balancing is required for efficient utilization of nodes. Hence, the chal-
lenge is to find a graph partitioning technique that balances the distribution of



24 D. Jain et al.

vertices and their edges such that each subgraph have minimum and same num-
ber of vertices and vertex cut. But, graph partitioning problem is NP-hard [7].

Interactive Graph Analytic: Interactive graphs with proper visualization is
highly desirable for exploration and analysis of graph data. But sometimes this
visualization becomes a major challenge to analyze. For example, k − SNAP
[38] generates summarized graphs having k vertices. The parameter change k in
k − SNAP activates an OLAP-like roll-up and drill-down within a dimension
hierarchy [9]. However, due to its dependency on pre-determined parameter, this
approach is not fully interactive.

6 Future Research Agenda

An ‘in-memory’ system requires backing of the secondary storage for consistency
due to volatility of RAM. The in-memory system stores data in RAM as well
as in HDD/SSD. However, the data of intrinsic ‘in-memory’ system is stored
entirely in RAM. HDD/SSD is used to recover data upon failure of a machine.
A few hybrid system stores working datasets in RAM and non-working dataset
in secondary storage. Read/write cost is high in secondary storage. Neverthe-
less, hybrid system becomes more scalable. Hence, there is a trade-off between
performance and scalability.

Today, everyone is connected globally through internet. Hence, data is grow-
ing exponentially. But, the size of RAM is fixed. Thus, the challenge starts with
maintaining large scale data in RAM. Similarly, Big Graph size is also growing.
For instance, Twitter and Facebook. Big Graph analytic requires a real-time pro-
cessing engine which demands in-memory Big Graph system. It is a grand chal-
lenge to design a pure in-memory Big Graph database and also a future research
agenda. Intrinsic in-memory Big Graph database can be implemented through
Dr. Hadoop framework [11]. In this paper, future research agenda is categorized
into two categories, namely, data-intensive Big Graph, and compute-intensive
Big Graph.

6.1 Data-Intensive Big Graph

Dr. Hadoop: A Future Scope for Big Graph. Dr. Hadoop is a frame-
work of purely in-memory systems [11]. However, Dr. Hadoop backups the data
in secondary storage periodically [26]. Even though, Dr. Hadoop is developed
for massive scalability of metadata, it can be adapted in various purposes [30].
Dr. Hadoop stores all data in RAM and replicates in other two neighbor RAM,
say, left and right node. Figure 1 demonstrates the replication of data in RAM in
Dr. Hadoop framework. Dr. Hadoop forms 3-node cluster at the very beginning
[30]. Each node must have left and right node for replication of data from RAM.

Any node can leave or join the Dr. Hadoop cluster. Figure 1 illustrates the
insertion of a new node in Dr. Hadoop. Dr. Hadoop implements circular doubly
linked list where a node failure breaks the ring. But, Dr. Hadoop is unaffected
by the failure of any one node at a given time [30]. There are left node and right



In-Memory Big Graph: A Future Research Agenda 25

Fig. 1. Insertion of a node in Dr. Hadoop.

node to serve the data. Moreover, Dr. Hadoop can tolerate many non-contiguous
node failure at a given time. However, Dr. Hadoop is unable to tolerate consecu-
tive three-node failure at a given time. Three contiguous node failure causes loss
of data of a node. Even, Dr. Hadoop can tolerate consecutive two-node failure
at a given time. Big Graph can be stored in the RAM and also replicated to
two neighboring nodes. The backup is stored in HDD/SSD. The key merits of
Dr. Hadoop are- (a) purely in-memory database system, (b) incremental scalabil-
ity, (c) fine-grained fault-tolerance, (d) efficient load-balancing, and (e) requires
least administration. Incorporating Dr. Hadoop with Big Graph can help in
overcoming the issues like scalability, fault tolerance, communication overhead
associated with existing in-memory system. Hence, implementing Big Graph in
Dr. Hadoop framework is future research agendas.

Bloom Filter. Bloom Filter [2] is a probabilistic data structure for approximate
query. Bloom Filter requires a tiny on-chip memory to store information of a
large set of data. A few modern Big Graph engine deploys Bloom Filter to
reduce the on-chip memory requirement. For instance, ABySS [18]. The DNA
assembly requires very large size of RAM. Therefore, DNA assembler deploys
Bloom Filter for faster processing with low sized RAM. In biological graph such
as a de Bruijn graph, Bloom Filter is commonly used to increase it efficiency,
for instance, deBGR [28]. [32] uses cascading Bloom Filters to store the nodes
of the graph. It reduces construction time of the graph. Gollapudi et al. [14]
proposed a Bloom Filter based HITS-like ranking algorithm. Bloom Filter helps
in reducing the query time. Similarly, Najork et al. [25] proposed a Bloom Filter
based query reduction technique to increase the performance of SALSA. Bloom
Filter is used to approximate the neighborhood graph. Bloom Filter has great
potential for its implementation in the Big Graph. Bloom Filter is a simple and
dumb data structure. However, these two are the parameters for its efficiency.



26 D. Jain et al.

Its simple data structure makes it space and time efficient. It’s dumbness makes
its applicable in any field. Regardless, new variants of Bloom Filter are required
which are able to store the relationship among the nodes. Such variants help in
checking the relation among the nodes and reduces the complexity of Big Graph
processing.

6.2 Compute-Intensive Big Graph

In contrast to memory-intensive computation, compute-intensive tasks require
more processing capabilities. Nowadays, data size is growing exponentially. How-
ever, the decline in the growth rate is expected in near future. Therefore, the
future Big Graph will become compute-intensive task. A few research work has
been carried out on Big Graph learning. There are numerous machine learning
algorithms to evaluate the learning capability on Big Graph data. Hierarchical
Anchor Graph Regularization (HAGR) [41] for instance. Deep learning is another
example of extreme learning which requires a huge computation capability [36].
Also, machine learning is deployed in spatio-temporal networks [43].

7 Conclusion

Big Graphs are interdependent among each subgraphs. Whole Big Graph cannot
be stored in RAM. However, storing whole Big Graph in RAM extremely boosts
up the performance. There is future research scope in building in-memory Big
Graph database without using HDD/SSD. Big Graph helps in representing the
relationship between entities in Big Data. Furthermore, in-memory Big Graph
boosts up the system performance. Because, RAM is about 100× faster than
SSD/Flash-based Big Graph representation. Moreover, in-memory Big Graphs
are nearly 1000× faster than HDD-based representations. In-memory Big Graphs
are capable of storing trillions of nodes and edges by using other techniques
such as Bloom Filter. Bloom Filter helps in eliminating the duplication in Big
Graph. In addition, in-memory Big Graphs have to use scalable framework to
increase its storage capacity beyond terabytes. For instance, Dr. Hadoop has
infinite scalability and many merits including fault-tolerant, and load balancing.
Many in-memory Big Graph techniques are proposed which are discussed in the
paper. However, one big challenge in in-memory Big Graph is RAM. RAM is
very costly and using a large size is impractical in current scenario. But high
performance can be achieved through in-memory representations of Big Graph.
The trade-off between cost and performance creates difference among HDD-
based, SSD/Flashed-based and in-memory based representation of Big Graph.
The choice depends on the priority of the applications. Most of the applications
require high performance. Hence, in-memory Big Graph is near future, since
RAM cost is dropping.



In-Memory Big Graph: A Future Research Agenda 27

References

1. Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large
social networks: membership, growth, and evolution. In: Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 44–54. ACM (2006)

2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

3. Boldi, P., Rosa, M., Santini, M., Vigna, S.: Layered label propagation: a multireso-
lution coordinate-free ordering for compressing social networks. In: Proceedings of
the 20th International Conference on World Wide Web, pp. 587–596. ACM (2011)

4. Boldi, P., Vigna, S.: The webgraph framework I: compression techniques. In: Pro-
ceedings of the 13th International Conference on World Wide Web, pp. 595–602.
ACM (2004)

5. Borkar, V., Carey, M., Grover, R., Onose, N., Vernica, R.: Hyracks: a flexible and
extensible foundation for data-intensive computing. In: Proceedings of the 2011
IEEE 27th International Conference on Data Engineering, ICDE 2011, pp. 1151–
1162. IEEE Computer Society (2011)

6. Bu, Y., Borkar, V., Jia, J., Carey, M.J., Condie, T.: Pregelix: Big(ger) graph ana-
lytics on a dataflow engine. Proc. VLDB Endow. 8(2), 161–172 (2014). https://
doi.org/10.14778/2735471.2735477

7. Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in
graph partitioning. In: Kliemann, L., Sanders, P. (eds.) Algorithm Engineering.
LNCS, vol. 9220, pp. 117–158. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-49487-6 4

8. Carletti, V., Foggia, P., Greco, A., Saggese, A., Vento, M.: Comparing performance
of graph matching algorithms on huge graphs. Pattern Recognit. Lett. (2018)

9. Chen, C., Yan, X., Zhu, F., Han, J., Philip, S.Y.: Graph OLAP: towards online
analytical processing on graphs. In: Eighth IEEE International Conference on Data
Mining, ICDM 2008, pp. 103–112. IEEE (2008)

10. Cheng, J., Ke, Y., Chu, S., Cheng, C.: Efficient processing of distance queries in
large graphs: a vertex cover approach. In: Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, pp. 457–468. ACM (2012)

11. Dev, D., Patgiri, R.: Dr. Hadoop: an infinite scalable metadata management for
Hadoop–How the baby elephant becomes immortal. Front. Inf. Technol. Electron.
Eng. 17(1), 15–31 (2016). https://doi.org/10.1631/FITEE.1500015

12. Dong, X., et al.: Knowledge vault: a web-scale approach to probabilistic knowledge
fusion. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2014, pp. 601–610. ACM (2014)

13. Gao, W., Wu, H., Siddiqui, M.K., Baig, A.Q.: Study of biological networks using
graph theory. Saudi J. Biol. Sci. 25, 1212–1219 (2017)

14. Gollapudi, S., Najork, M., Panigrahy, R.: Using bloom filters to speed up HITS-
like ranking algorithms. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007. LNCS,
vol. 4863, pp. 195–201. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-77004-6 16

15. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: PowerGraph: dis-
tributed graph-parallel computation on natural graphs. In: Proceedings of the 10th
USENIX Conference on Operating Systems Design and Implementation, OSDI
2012, pp. 17–30. USENIX Association (2012)

https://doi.org/10.14778/2735471.2735477
https://doi.org/10.14778/2735471.2735477
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1631/FITEE.1500015
https://doi.org/10.1007/978-3-540-77004-6_16
https://doi.org/10.1007/978-3-540-77004-6_16


28 D. Jain et al.

16. Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica, I.:
Graphx: graph processing in a distributed dataflow framework. In: OSDI, vol. 14,
pp. 599–613 (2014)

17. Gregor, D., Willcock, J., Lumsdaine, A.: Compressed sparse row graph. https://
www.boost.org/doc/libs/1 57 0/libs/graph/doc/compressed sparse row.html.
Accessed 21 June 2018

18. Jackman, S.D., et al.: Abyss 2.0: resource-efficient assembly of large genomes
using a Bloom filter. Genome Res. 27, 768–777 (2017). https://doi.org/10.1101/
gr.214346.116

19. Kui, X., Samanta, A., Zhu, X., Li, Y., Zhang, S., Hui, P.: Energy-aware temporal
reachability graphs for time-varying mobile opportunistic networks. IEEE Trans.
Veh. Technol. 67, 9831–9844 (2018). https://doi.org/10.1109/TVT.2018.2854832

20. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news
media? In: Proceedings of the 19th International Conference on World Wide Web,
pp. 591–600. ACM (2010)

21. Leskovec, J.: Stanford network analysis project. http://snap.stanford.edu/.
Accessed 22 June 2018

22. Leskovec, J., Perez, Y., Sosic, R.: Snap datasets. http://snap.stanford.edu/ringo/.
Accessed 20 June 2018

23. Myers, S.A., Sharma, A., Gupta, P., Lin, J.: Information network or social net-
work?: the structure of the Twitter follow graph. In: Proceedings of the 23rd Inter-
national Conference on World Wide Web, pp. 493–498. ACM (2014)

24. Nai, L., Xia, Y., Tanase, I.G., Kim, H., Lin, C.Y.: GraphBIG: understanding graph
computing in the context of industrial solutions. In: SC15: International Conference
for High Performance Computing, Networking, Storage and Analysis, pp. 1–12
(2015). https://doi.org/10.1145/2807591.2807626

25. Najork, M., Gollapudi, S., Panigrahy, R.: Less is more: sampling the neighborhood
graph makes salsa better and faster. In: Proceedings of the Second ACM Interna-
tional Conference on Web Search and Data Mining, pp. 242–251. ACM (2009)

26. Nayak, S., Patgiri, R.: Dr. Hadoop: in search of a needle in a Haystack. In: Fahrn-
berger, G., Gopinathan, S., Parida, L. (eds.) ICDCIT 2019. LNCS, vol. 11319, pp.
99–107. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05366-6 8

27. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine
learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)

28. Pandey, P., Bender, M.A., Johnson, R., et al.: deBGR: an efficient and near-exact
representation of the weighted de Bruijn graph. Bioinformatics 33(14), i133–i141
(2017)

29. Paranjape, A., Benson, A.R., Leskovec, J.: Motifs in temporal networks. In: Pro-
ceedings of the Tenth ACM International Conference on Web Search and Data
Mining, pp. 601–610. ACM (2017)

30. Patgiri, R., Nayak, S., Dev, D., Borgohain, S.K.: Dr. Hadoop cures in-memory
data replication system. In: 6th International Conference on Advanced Computing,
Networking, and Informatics, 04–06 June 2018 (2018)

31. Perez, Y., et al.: Ringo: interactive graph analytics on big-memory machines. In:
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, SIGMOD 2015, pp. 1105–1110. ACM (2015). https://doi.org/10.1145/
2723372.2735369

32. Salikhov, K., Sacomoto, G., Kucherov, G.: Using cascading bloom filters to improve
the memory usage for de Brujin graphs. Algorithms Mol. Biol. 9(1), 2 (2014)

https://www.boost.org/doc/libs/1_57_0/libs/graph/doc/compressed_sparse_row.html
https://www.boost.org/doc/libs/1_57_0/libs/graph/doc/compressed_sparse_row.html
https://doi.org/10.1101/gr.214346.116
https://doi.org/10.1101/gr.214346.116
https://doi.org/10.1109/TVT.2018.2854832
http://snap.stanford.edu/
http://snap.stanford.edu/ringo/
https://doi.org/10.1145/2807591.2807626
https://doi.org/10.1007/978-3-030-05366-6_8
https://doi.org/10.1145/2723372.2735369
https://doi.org/10.1145/2723372.2735369


In-Memory Big Graph: A Future Research Agenda 29

33. Shao, B., Wang, H., Li, Y.: Trinity: a distributed graph engine on a memory cloud.
In: Proceedings of the 2013 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 2013, pp. 505–516. ACM (2013). https://doi.org/10.1145/
2463676.2467799

34. Sun, P., Wen, Y., Duong, T.N.B., Xiao, X.: GraphH: high performance big graph
analytics in small clusters. In: 2017 IEEE International Conference on Cluster
Computing (CLUSTER), pp. 256–266. IEEE (2017)

35. Sun, P., Wen, Y., Duong, T.N.B., Xiao, X.: GraphMP: an efficient semi-external-
memory big graph processing system on a single machine. In: 2017 IEEE 23rd
International Conference on Parallel and Distributed Systems (ICPADS), pp. 276–
283. IEEE (2017)

36. Sun, Y., Li, B., Yuan, Y., Bi, X., Zhao, X., Wang, G.: Big graph classification
frameworks based on extreme learning machine. Neurocomputing 330, 317–327
(2019). https://doi.org/10.1016/j.neucom.2018.11.035

37. Tabaja, A.: Yahoo!webscope program. https://webscope.sandbox.yahoo.com/.
Accessed 20 June 2018

38. Tian, Y., Balmin, A., Corsten, S.A., Tatikonda, S., McPherson, J.: From “think
like a vertex” to “think like a graph”. Proc. VLDB Endow. 7(3), 193–204 (2013).
https://doi.org/10.14778/2732232.2732238

39. Ugander, J., Karrer, B., Backstrom, L., Marlow, C.: The anatomy of the facebook
social graph. arXiv preprint arXiv:1111.4503 (2011)

40. Wang, D., Pedreschi, D., Song, C., Giannotti, F., Barabasi, A.L.: Human mobility,
social ties, and link prediction. In: Proceedings of the 17th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 1100–1108.
ACM (2011)

41. Wang, M., Fu, W., Hao, S., Liu, H., Wu, X.: Learning on big graph: label inference
and regularization with anchor hierarchy. IEEE Trans. Knowl. Data Eng. 29(5),
1101–1114 (2017). https://doi.org/10.1109/TKDE.2017.2654445

42. Yan, D., Bu, Y., Tian, Y., Deshpande, A., Cheng, J.: Big graph analytics systems.
In: Proceedings of the 2016 International Conference on Management of Data, pp.
2241–2243. ACM (2016)

43. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep
learning framework for traffic forecasting. In: Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence (IJCAI-18), pp. 3634–3640
(2017)

44. Zaharia, M., et al.: Resilient distributed datasets: a fault-tolerant abstraction for
in-memory cluster computing. In: Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation, p. 2. USENIX Association (2012)

45. Zheng, D., Mhembere, D., Lyzinski, V., Vogelstein, J.T., Priebe, C.E., Burns, R.:
Semi-external memory sparse matrix multiplication for billion-node graphs. IEEE
Trans. Parallel Distrib. Syst. 28(5), 1470–1483 (2017)

https://doi.org/10.1145/2463676.2467799
https://doi.org/10.1145/2463676.2467799
https://doi.org/10.1016/j.neucom.2018.11.035
https://webscope.sandbox.yahoo.com/
https://doi.org/10.14778/2732232.2732238
http://arxiv.org/abs/1111.4503
https://doi.org/10.1109/TKDE.2017.2654445

	In-Memory Big Graph: A Future Research Agenda
	1 Introduction
	2 Big Graph
	2.1 In-Memory Big Graph

	3 In-Memory Big Graph Framework
	4 Key Issues
	5 Key Challenges
	6 Future Research Agenda
	6.1 Data-Intensive Big Graph
	6.2 Compute-Intensive Big Graph

	7 Conclusion
	References




