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Abstract. This paper presents a novel method to determine the optimal Multi-
layer Perceptron structure using Linear Regression. Starting from clustering the
dataset used to train a neural network it is possible to define Multiple Linear
Regression models to determine the architecture of a neural network. This
method work unsupervised unlike other methods and more flexible with dif-
ferent datasets types. The proposed method adapt to the complexity of training
datasets to provide the best results regardless of the size and type of dataset.
Clustering algorithm used to impose a specific analysis of data used to train the
network such us determining the distance measure, normalization and clustering
technique suitable with the type of training dataset used.
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Pattern recognition � Artificial neural network

1 Introduction

Determining the structure of Multi-layer Perceptron is a critical issue in the design of a
Neural Network [1]. Until now, there is no general equation to define the structure of
Multi-layer Perceptron, which can deal with different kind of problems to be resolved
by the neural network. Each problem needs a particular structure that responds to his
requirements. Methods currently used do not rely on the complexity of the problem
must be solved by the Multi-layer Perceptron. Most currently used methods are very
limited, time-consuming and supervised [2] such us Growing and Pruning Algorithms,
Exhaustive Search, Evolutionary Algorithms and so on. In this paper, a novel method
to determine the optimal Multi-layer Perceptron structure using Linear Regression will
be introduced. The idea is to group the dataset used to train the Multi-layer Perceptron
using conventional methods of pattern recognition [3, 4] according to specific criteria
until we get a set of useful parameters, which will be used in the design of Multi-layer
Perceptron structure. The results obtained from clustering the dataset used to train the
network are used as independent variables to define a linear regression models [5] used
to determine the Multi-layer Perceptron structure. The equation defined by the linear
regression used to minimize the distance between a fitted line and all the data points.
The regression model aims to achieve maximum accuracy in determining the number
of hidden layers and the number of neurons in these layers.
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2 Related Work

The design of the structure of a neural network is an extremely active area of research
and does not yet have any definitive guiding theoretical principles. The currently used
methods are very limited and time-consuming such as Growing and Pruning algorithms
[6], exhaustive search, and evolutionary algorithms [7]. Here are some widely spread
methods for determining the number of hidden neurons.

Many researchers use numerous thumb rules such as the number of hidden neurons
should be between the size of the input and output layers. The number of hidden
neurons should be: (number of inputs + outputs) * (2/3). The number of hidden neu-
rons should be less than twice the number of input layer neurons [8]. These rules
provide a starting point but do not achieve the best architecture only after a number of
tests based on trial and error. Trial and Error approach does not yield good results
except by accident, sometimes called exhaustive search [9]. Exhaustive Search
approach makes searching through all possible topologies and then select the one with
the least generalization error. The disadvantage of this method is time-consuming.

The Growing neural network algorithm was initially proposed by Vinod et al. [10].
Growing Algorithms method makes searching through all possible topologies and then
select the one with the least generalization error. Search in this method stops if the
generalization error does not have remarkable change, unlike exhaustive search.

Pruning Algorithms method tries to train an oversized network, and then deter-
mines the relative importance of weights by analyzing them. This method prunes the
weights with the least importance and then repeats the task. The disadvantage of this
method is that the analysis of weights is time-consuming.

In this paper, we proposed a method to determine the structure of a Multi-layer
Perceptron based on the complexity level of the considered problem making it more
flexible with different datasets types than classical methods. In addition, this method
makes the design of Multi-layer Perceptron unsupervised.

3 Multiple Linear Regression Method Used

Following a set of criteria in the analysis of clusters obtained through hierarchical
clustering of the dataset used to train the neural network, which results a number of
parameters can be useful to define a linear regression model to determine the structure
of Multi-layer Perceptron [11]. Parameters obtained from clustering will be evaluated
using statistical hypothesis testing [12] to be able to identify whether it exists depen-
dencies between these parameters and the number of hidden layers and the number of
hidden neurons. The parameters selected through this evaluation used as independent
variables of the regression models [13].

Figure 1 presents a framework of the regression model. The model shows how to
use results obtained from clustering the training dataset to determine the regression
model used to generate the optimal number of hidden layers and the number of neurons
in these layers.
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3.1 Regression Analysis

Regression analysis is a statistical technique to predict a quantitative relationship
between a dependent variable and a set of independent variables [14]. The defined
regression equation depends on the assumption concerning the relationship between the
dependent variable and the independent variables [15]. The linear regression equation
seeking to minimize the errors to fit the data points to a straight regression line rep-
resenting the equation. Using information obtained by observations or measurements,
the equation is defined. The indicator of multiple determination coefficient R2 is
required to determine the relationship between the Independent variable and the
dependent variables. R2 expresses the variation of the dependent variable affected by
the variation of independent variables. The indicator of multiple determination coef-
ficient is essential special if supported by other statistical indicators [16].

The mathematically Multiple Linear Regression model having this form:

f ¼ X ! Y

f Xð Þ ¼ w0 þ
Xn

j¼1
wjxj ð1Þ

Fig. 1. The framework of the regression model
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The regression models consist of unknown parameter w, the dependent variable Y and
the independent variable X.

3.2 Statistical Hypothesis Testing

The statistical hypothesis testing [17] are used to examine parameters obtained through
hierarchical clustering of training dataset to select a number of parameters to determine
the regression model. The hypothesis testing used to prove that the regression model is
significant. Depending on the null hypothesis H0, which assume no significant rela-
tionship between the independent variables X and the dependent variable Y.

H0: There is no relationship between the clustering results and the structure of
Multi-layer Perceptron
Ha: There is a relationship between the clustering results and the structure of
Multi-layer Perceptron

The probability coefficients of independent variables (P-value) have a value of less than
0.05 based on parameters proposed to be independent variables of the regression
model.

F-Test analysis [18] used for the analysis of variance will be taken as an evidence to
prove that the structure of Multi-layer Perceptron depends on the selected factors.

3.3 The Independent Factors Selected

Based on statistical hypothesis testing and F-Test a set of factors are proposed to
determine the regression equation in addition to that it has been proven that there is a
link between all factors in models. Moreover, relatively small positive and negative
correlations exist [19]. The selected factors prove the effectiveness and efficiency of the
proposed model through the Multiple Coefficient of Determination [20] and the Mul-
tiple Correlation Coefficient [21] where they obtain results close to 1.

The proposed factors obtained by clustering the training dataset will be used as
independent variables to determine the regression models:

• The number of obtained cluster
• The percentage of grouped items
• The reference distance
• The number of training forms
• The number of features in the input

Moreover, the quality measure of the network structure was considered as an
independent factor. The quality measure factor takes into account the configuration and
interconnection layers [22].

The proposed regression models consist of two models the first model used to
determine the number of hidden layers and the second model used to determine the
number of hidden neurons.

Regression Model to Determine the Number of Hidden Layers. A set of factors
prove the ability to influence on the dependent variable y, which represent the number
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of hidden layers of a Multi-layer Perceptron. Using the statistical hypothesis testing
mentioned previously and experimental results it is turned out that the dependent
variable y depending on changes of the following independent variables.

• X1: The number of obtained cluster multiplied by the reference distance
• X2: The reference distance
• X3: The percentage of grouped items
• X4: The quality measure of the network structure

The independent variables X1, X2, and X3 obtained through clustering of the training
dataset. In addition to that, a quality measure of the network structure X4 is taken as
independent factors. The quality measure factor depends on the reference distance and
the structure of Multi-layer Perceptron.

A Multiple Linear Regression model representing the equation to determine the
number of hidden layers of the Multi-layer Perceptron have the following mathematical
form:

y ¼ a0 þ
X4

j¼1
ajxj ð2Þ

The dependent variable y represents the number of hidden layers and a0, a1, a2, a3, and
a4 present the constants used to predict the dependent variable y. a0 is the intercept
parameter and a1, a2, a3, and a4 are the slope parameters.

Based on the percentage of contribution of each independent variable in the
regression model and the absolute values of partial correlation coefficients let us
concluded that dependent variable y is influenced by several factors. Among these
factors is Reference Distance, which has an important influence on the number of
hidden layers.

Regression Model to Determine the Number of Hidden Neurons. The regression
model used to calculate the number of hidden neurons will be determined using a set of
factors selected in accordance with the above considerations from the results obtained
through clustering of the training dataset. The number of hidden neurons depending on
changes in the following independent variables.

• X1: The number of features in the input
• X2: The number of obtained cluster
• X3: The reference distance
• X4: The quality measure of the network structure

The independent variable X1 represents the number of features of the training dataset.
X2 and X3 present the obtained number of cluster and the reference distance respec-
tively obtained using clustering of the training dataset.

A Multiple Linear Regression model representing the equation to determine the
number of hidden neurons of the Multi-layer Perceptron have the following mathe-
matical form:
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y ¼ a0 þ
X4

j¼1
ajxj ð3Þ

The dependent variable y represents the number of hidden neurons. The obtained
number of hidden neurons will be evenly distributed to the hidden layers if the number
of hidden layers exceeds one layer. Therefore, each hidden layer contains a number of
neurons equal to others.

The independent factors influence on the number of hidden neurons with varying
levels. The factor that has the highest influence being the Reference Distance.

The number of hidden neurons obtained using regression method will be divided
equally by the number of hidden layers.

3.4 Clustering of the Training Dataset

The proposed regression method depends mainly on the results obtained from clus-
tering of the training dataset. The most convenient clustering algorithm for the pro-
posed method is Agglomerative Hierarchical Clustering algorithm [23]. Each cluster
obtained through Agglomerative Hierarchical Clustering seeks to ensure the highest
similarity of objects within the cluster and at the same time the highest dissimilarity
between clusters [24]. Clusters obtained using Agglomerative Hierarchical Clustering
can contain several sub-clusters then there will be a hierarchical clustering. The hier-
archical clustering is a set of nested clusters that build a cluster tree (Dendrogram) to
represent objects. The root of the tree represents the cluster, which group all other
clusters and objects. In some cases, the leaves of the tree represent clusters of one
objects. The Agglomerative Hierarchical Clustering algorithm [25–29] consider each
object as a single cluster and then try to join the closest clusters until obtaining only one
single cluster. The optimal number of clusters is determined by making a cut of all
segment with a length greater than a predefined value [30]. This reference value
(Reference Distance) is chosen according to specific criteria.

The value of Reference Distance, which is appropriate to obtain the optimal number
of clusters, must attain a set of criteria. Implementation of the following criteria can
make the number of obtained clusters useful for the proposed regression method to
determine the structure of Multi-layer Perceptron.

The first criterion requires grouping at least ninety percent of the items of the
training dataset. The ninety percent of items grouped considered sufficient where the
result could cover the entire training dataset.

The second criterion requires that the number of clusters should be taken as few as
possible in order to minimize the size of the network with reason that the increase of the
number of clusters causes an increase in the number of hidden layers and the number of
hidden neurons using the proposed method. With a few numbers of hidden layers and
neurons the complexity of Multi-layer Perceptron reduce [31].

The third criterion requires a Reference Distance value in which any increase on it
does not affect the number of obtained clusters [32–34]. While taking into account the
condition, which should be avoided such as the very short value of Reference Distance
for which each leaf of the tree, represents a cluster of one object or a relatively large
value of Reference Distance for which grouping all objects in one cluster.
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The fourth criterion requires the right selection of distance metrics (such as Man-
hattan and Euclidean) and linkage methods (single, complete, and average linkage)
appropriate to the clustering algorithm and the type of training dataset [35]. A good
choice of distance metrics increases the accuracy of the proposed method.

By following these criteria, the results of clustering of training dataset can generate
a set of parameters useful to construct the regression models used for determining the
optimal structure of a Multi-layer Perceptron.

4 Experimental Results

A number of experimental tests will be conducted to prove the effectiveness of the
proposed method. The training dataset will be trained using different Multi-layer
Perceptron structure then compared to results of the proposed method.

In this paper, the Waveform Database Generator Version 1 Dataset used to prove the
validity of the proposed method. Waveform dataset consists of 21 attributes and 5000
instances. Dataset classes are generated from a combination of two of three “base”waves.

4.1 Experimental Results Obtained from Clustering of the Training
Dataset

Agglomerative Hierarchical clustering is used to cluster the Waveform dataset. The
number of clusters varies based on the value of Reference Distance. According to the
criteria described above the perfect Reference Distance value is 8.

Figures 2 and 3 below presents the number of clusters and the percentage of objects
clustered and the corresponding values of Reference Distance.

Fig. 2. Clusters obtained based on the percentage of items grouped

Fig. 3. Clusters number obtained vs. the corresponding reference distance of waveform dataset
and items grouped percent vs. number of clusters of waveform dataset
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The appropriate parameters selected in this case study is Normalization type
“standard”, clusters distance “Average Link” and “Manhattan” distance.

Figure 2 presents the obtained Dendrogram and the corresponding number of
clusters obtained according to the reference distance values. Based on criteria listed
above the optimal number of clusters is one cluster.

According to the criteria described above, we conclude that the ideal number of
clusters is one cluster with 93.2% of items clustered for a value of Reference Distance
equal to 8. The results obtained can be useful for determining the regression models
used to construct the optimal structure of Multi-layer Perceptron for training the
Waveform dataset.

4.2 Calculating the Number of Hidden Layers Using Regression Model

Based on the clustering of Waveform dataset the independent factors used to determine
the Eq. (2) for calculating the number of hidden layers has the following values:
X1 = 1 � 8, X2 = 8, X3 = 93.2, X4 = 98.38.

According to the criteria described above, the selected value of Reference Distance
is 8 for a percentage of grouped items more than 90% and the corresponding number of
clusters is one, therefore, the value of X1 will be 8 � 1 equal to 8. X2 represents the
value of Reference Distance therefore, X2 = 8. X3 represents the percentage of grouped
items therefore X3 = 93.2 as we see in Fig. 3. For X4 which represents the quality
measure of the network structure, it was determined by creating a structure based on the
number of hidden layers equal to the obtained number of clusters corresponding to the
selected Reference Distance and for the number of neurons is determined using the
Formula (9). Based on that the quality measure of the network structure X4 = 98.38
corresponding to the selected Reference Distance.

Using the above values in Eq. (2) will result in y = 1.
Y = 1, this concludes that the optimal number of hidden layers using the proposed

method is equal to one layer.
The values of the Multiple Determination Coefficient R2 obtained is close to 1. R2

expresses the level of variation of the number of hidden layers affected by the variation
of selected independent variable X1, X2, X3, and X4. It proves the validation of the
proposed model and the successful choice of independent factors.

4.3 Calculating the Number of Hidden Neurons Using Regression Model

The implementation of Eq. (3) to calculate the number of neurons in the hidden layers
use the following values of independent factors obtained from the clustering of
Waveform dataset.

Based on the clustering of Waveform dataset the independent factor used to
determine the Eq. (3) for calculating the number of hidden layers has the following
values.

X1 = 21, X2 = 1, X3 = 8, X4 = 98.38
Using the above values in Eq. (3) will result in y = 74.
Y = 74, this concludes that the optimal number of hidden neurons using the pro-

posed method is equal to 74 hidden neurons.
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R2 obtained is close to 1. R2 expresses the level of variation of the number of
hidden neurons affected by the variation of selected independent variable X1, X2, X3

and X4. It proves the validation of the proposed model and the successful choice of
independent factors.

4.4 Comparison of the Proposed Method with Classical Methods

To validate the results obtained using the proposed method a comparison with widely
spread methods are conducted. The proposed regression method will be compared with
the classical methods so that we can prove the validity of the proposed method. The
following classical formulas will be used in this comparison:

In – number of input neurons
Out – number of output neurons
Hidden – number of hidden neurons
Training – number of training forms

Hidden ¼ 1=2 In þ Outð Þ ð4Þ

Hidden ¼ SQRT 1=2 In þ Outð Þð Þ ð5Þ

Hidden ¼ In þ Outð Þ � 2=3 ð6Þ

Hidden ¼ Training =10 In þ Outð Þ ð7Þ

Hidden ¼ Training � Outð Þ = In þ Out þ 1 ð8Þ

Hidden ¼ 1=2 In þ Outð Þ þ SQRT Trainingð Þ ð9Þ

Formula (10): The number of hidden neurons should be between the size of the input
layer and the size of the output layer. Formula (11): The number of hidden neurons
should be less than twice the size of the input layer. A set of datasets used such as
Waveform Database Generator dataset, Image Segmentation dataset, Glass identifica-
tion dataset, Landsat dataset, Sonar dataset, ECG dataset, QRS dataset, P-wave dataset
and T-wave datasets. Table 1 Presents specifications of datasets used.

Table 1. Specifications of neural networks

Dataset Sonar ECG P-wave QRS T-wave Landsat Glass Segmentation Waveform

Input
neurons

60 6 2 2 2 4 9 19 21

Output
neurons

2 16 16 16 16 7 7 7 3

Training
items

208 452 452 452 452 6435 214 2310 5000
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Table 2 presents the number of hidden neurons using the classical method:

Table 3 presents the number of hidden neurons using the proposed method:

Comparison Based on the Training Time Using Classical Methods vs. the
Proposed Method. A comparison of the training time using classical methods vs. the
proposed method results that the training time of the proposed method does not have
the best training time for all datasets but for ECG, P-wave and QRS perform well. For
example, the training time of ECG is 0.75 s using the proposed method and the best
classical method record is equal to 1.47 s. The failure of the proposed method with
some datasets to obtain the best training time is because of the number of neurons
selected. The training time depends mainly on the number of neurons in the network
and the size of dataset regardless of the used formula. Since the number of neurons is
selected based on the complexity of the problem, therefore, the training time is affected
by the complexity of the problem using the proposed method.

Table 2. Number of hidden neurons using the classical method

Dataset Formula
(4)

Formula
(5)

Formula
(6)

Formula
(7)

Formula
(8)

Formula
(9)

Formula
(10)

Formula
(11)

Sonar 31 5.75 41 0 6 45 2 < x < 60 x < 120

ECG 11 3.32 14 2 89 32.26 6 < x < 16 x < 12

P-wave 9 3 12 2 235 30.26 2 < x < 16 x < 4

QRS 9 3 12 2 235 30.26 2 < x < 16 x < 4

T-wave 9 3 12 2 235 30.26 2 < x < 16 x < 4

Landsat 5 2.24 7 58 1615 85.22 4 < x < 7 x < 8

Glass 8 2.83 10 1 31 22.63 9 < x < 7 x < 18

Segmentation 13 3.61 17 8 129 62 19 < x < 7 x < 38

Waveform 12 3.46 16 20 241 82.71 21 < x < 3 x < 42

Table 3. Number hidden neurons using the proposed method

Dataset Neurons Layers

Sonar 35 2
ECG 20 1
P-wave 10 2
QRS 21 1
T-wave 20 3
Landsat 24 2
Glass 207 2
Segmentation 75 1
Waveform 74 1
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Comparison Based on the Percentage of Accuracy Using Classical Methods vs. the
Proposed Method. Table 4 below shows a comparison of the results in terms of per-
centage of classification accuracy [36] using classical methods vs. the proposed method.

As observed from Table 4 and Fig. 4, the proposed method has the best percentage
of accuracy for most datasets. The classical methods sometimes get good results but it
depends on the database. For example, formula (7) has a good percentage of accuracy
for ECG dataset and the lowest percentage accuracy for sonar and Landsat datasets.
Formula (8) obtained the highest percentage of accuracy compared to other classical
methods for Glass dataset while getting the lowest percentage for ECG dataset. For-
mula (9) perform well with datasets Glass, Segmentation and waveform but for other
dataset have a medium percentage of accuracy.

Table 4. Comparison of the percentage of accuracy using classical methods vs. the proposed
method

Dataset 
Formula 

(4)
Formula 

(5)
Formula 

(6)
Formula 

(7)
Formula 

(8)
Formula 

(9)
Formula 

(10)
Formula 

(11)
proposed 
method

Sonar 81.25 80.76 80.76 74.5192 81.73 81.25 81.7308 81.25 82.2115
ECG 57.9646 59.292 59.292 60.8407 59.292 59.292 57.9646 59.5133 60.8407

P-wave 53.7611 53.9823 53.9823 53.9823 53.9823 54.2035 53.9823 53.9823 54.2035
QRS 59.0708 58.8496 58.8496 59.5133 59.9558 58.8496 59.5133 59.5133 60.177

T-wave 53.9823 54.2035 53.9823 54.2035 56.1947 56.6372 56.6372 54.2035 56.6372
Landsat 76.7535 50.3006 80.5611 76.7535 82.5651 82.3647 84.8703 85.3213 85.6595
Glass 85.0467 72.8972 82.7103 61.6822 97.6636 94.3925 85.0467 82.7103 98.5981

Segmentation 97.5325 95.2381 97.9221 95.8442 97.6623 98.8312 95.7576 98.8312 99.1342
Waveform 95.74 89.28 97.32 97.86 98.22 98.4 96.82 97.86 98.6

Fig. 4. Comparison of the percentage of accuracy using classical methods vs. the proposed
method
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Comparison Based on the Error/Epoch Using Classical Methods vs. the Proposed
Method. Table 5 presents a comparison of the error/epoch [37] using classical
methods vs. the proposed method:

As observed in Table 5 and Fig. 5, the proposed method has the lowest values of
error/epoch for most datasets. The classical methods sometimes get good results with
formulas (8) (9) (10) these results somewhat acceptable compared to other classical
methods. Formulas (5) and (7) have the highest values of error/epoch.

Table 5. Comparison of the error/epoch using classical methods vs. the proposed method

Dataset 
Formula 
(4)

Formula 
(5)

Formula 
(6)

Formula 
(7)

Formula 
(8)

Formula 
(9)

Formula 
(10)

Formula 
(11)

proposed 
method

Sonar 0.014593 0.035628 0.013602 0.046503 0.013424 0.014582 0.00485 0.01448 0.00487

ECG 0.031626 0.034692 0.031409 0.035248 0.031574 0.030976 0.03186 0.03314 0.03507

P-wave 0.042172 0.042182 0.042169 0.042182 0.042229 0.042180 0.04216 0.04218 0.04209

QRS 0.035101 0.035733 0.035060 0.036108 0.035463 0.035133 0.03524 0.03610 0.03548

T-wave 0.041593 0.042493 0.041322 0.042407 0.039277 0.039284 0.03913 0.04240 0.03913

Landsat 0.046556 0.087793 0.037348 0.046556 0.028518 0.028037 0.02892 0.03111 0.02671

Glass 0.036890 0.061292 0.036047 0.084371 0.003342 0.010134 0.03689 0.03604 0.00267

Segmenta- 0.005022 0.010025 0.004892 0.008103 0.003333 0.002705 0.00941 0.00365 0.00239

Waveform 0.026669 0.052205 0.017591 0.014369 0.011738 0.010616 0.02026 0.01436 0.00934

Fig. 5. Comparison of the error/epoch using classical methods vs. the proposed method
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Comparison of Classical Methods vs. the Proposed Method Conclusion. The
proposed method get the best percentage accuracy for most datasets, unlike the clas-
sical methods. The classical formulas (4) (5) (6) (10) (11) perform well with small
datasets which have a few training items. Whereas Formulas (7) (8) (9) perform well
with large datasets because they take into consideration the number of training items.
Formula (9) is better than (7) and (8) which mean the SQRT of training items have a
positive effect on the results. Formulas (4) (5) (6) depend mainly on the number of
input and output neurons making it effective for a small datasets while do not perform
well with large datasets which have complex problems to solve. The training time
depends mainly on the number of neurons in the network and the size of dataset
regardless the used formula. The results of error/epoch obtained is almost similar to the
result of the percentage of accuracy. Comparison of the proposed method with classical
methods leads us to deduce that the proposed method performs well for the different
type of datasets, which mean that the proposed method is more flexible with different
datasets types than classical methods. The proposed method adapt to the complexity of
datasets to provide the best results regardless of the size of the dataset. In some cases,
the dataset is chosen with a size more than required, which leads to bad results using
classical methods but this problem is avoided by using the proposed method since it
focuses on the complexity of the problem to be solved regardless the size of the dataset.

5 Conclusion

It is noticeable that Pattern Recognition plays a significant role in the determination of
the optimal structure of Multi-layer Perceptron using the proposed method. The pro-
posed method makes the design of Multi-layer Perceptron unsupervised and helps to
dispense with the need for designer experience and the waste of time using trial and
error methods. By clustering the training dataset, we can collect a set of parameters
useful to determine the structure of Multi-layer Perceptron as independent variables
used to determine the regression models of the proposed method. The independent
variable Reference Distance has the highest influence on the results compared to other
variables. Comparison of the proposed method with classical methods leads us to
deduce that the proposed method performs well for the different type of datasets, which
mean that is more flexible with different datasets types than classical methods. The
proposed method adapt to the complexity of datasets to provide the best results
regardless of the size of the dataset.
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