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Abstract. As more and more machine learning based systems are being
deployed in industry, monitoring of these systems is needed to ensure
they perform in the expected way. In this article we present a frame-
work for such a monitoring system. The proposed system is designed and
deployed at Mastercard. This system monitors other machine learning
systems that are deployed for use in production. The monitoring system
performs concept drift detection by tracking the machine learning sys-
tem’s inputs and outputs independently. Anomaly detection techniques
are employed in the system to provide automatic alerts. We also present
results that demonstrate the value of the framework. The monitoring
system framework and the results are the main contributions in this
article.
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1 Introduction

The human body receives more sensory inputs than it can cope with so it has
evolved to filter out most of them automatically, only focusing on what is anoma-
lous. Enterprises have grown in complexity to a point where an analogy with the
human body is apt. The need for autonomous agents monitoring enterprises for
anomalies is felt as well. In this article, we look through the lens of concept
drift to illustrate such a monitoring system applied to another machine learning
based system. The monitored system can be a classifier, such as those presented
in the work of Arvapally et al. [1], other machine learning based applications, or
any source of data that displays traceable patterns over time. The monitoring
system described herein currently operates at Mastercard.

The remainder of this article is organized as follows. A brief review of concept
drift and related work is given in Sect. 2. Section 3 introduces framework of the
monitoring system. In Sect. 4, the monitoring system is discussed in detail under
the design framework along with the results.
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2 Related Work

A machine learning model can malfunction every so often due to production
issues or changes in input data. A monitoring system is needed to promptly flag
model performance glitches. The essence of the monitoring system is to detect
concept drift which is defined as [2]:

∃X : Pt0(X, y) �= Pt1(X, y) (1)

where Pt0 denotes the joint distribution between input variable X and output
variable y at time t0. There has been a substantial research into concept drift
detection methodologies [2,4–7] for various types of drifts [2], demonstrated by
Figs. 1 and 2. Because of the slowly changing nature of the underlying data in
our application, we are more concerned about sudden drifts than others.

Fig. 1. Types of drift: circles represent instances; different colors represent different
classes

Fig. 2. Patterns of concept change

Moreover, probability chain rule,

P (X, y) = P (y|X) ∗ P (X) (2)

allows us to monitor a model’s inputs P (X) and outputs P (y|X) separately
during operation. In other words, we can track changes in P(X, y) by comparing
Pt0(X) to Pt1(X), and Pt0(y|X) to Pt1(y|X). This division of supervision, or
modular design, simplifies business operation.

In recent research, we noticed some researchers developing methods that can
detect concept drift when concept drift is labeled [16]. This is based on applica-
tion of both single classifier as well as ensemble classification techniques [16,17].
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These ensemble methods use multiple algorithms for concept drift detection fol-
lowing which a voting procedure will be conducted. These methods also study
how to handle when limited labeled data is available. The underlying challenge
here is, in most cases concept drift labels are either unavailable or very expensive
to come up with. Availability of concept drift labels is very useful in developing
accurate models. Our proposed framework is suitable when the concept drift
labels are unavailable. In addition, our proposed framework can monitor both
supervised and unsupervised learning models.

In addition, our framework does not specifically focus on any particular kind
of dataset. Some recent research shows methods to detect concept drift in twit-
ter [18]. Though the underlying nature of the data is streaming, the proposed
methods in [18] are more applicable to specific Twitter data rather than gen-
eral datasets. Some recent studies have shown fuzzy logic based windowing for
concept drift detection in gradual drifts [15]. These adaptive time-windowing
methods are definitely useful since they will increase the accuracy of the overall
methodology. This fuzzy-logic based windowing concept can go with any existing
framework. Finally, the modular design of our framework is novel and adds value.
For the proposed framework, we applied anomaly detection techniques [8–11]
to monitor model inputs and outputs independently, and to ultimately detect
concept drift. There is a solid business reason to monitor these distributions.
Namely, an event would have to manifest itself in such a way that leaves the
distribution unchanged to go unnoticed. This seems unlikely.

3 Framework of the Monitoring System

As we have seen, the probability chain rule allows us to monitor the inputs and
outputs of a machine learning system independently. As a result, the proposed
framework consists of two components namely the input tracer and the out-
put tracer. Figure 3 presents the proposed framework of the monitoring system.
Input and output tracers monitor the anomalies in the input and output data
respectively of a machine learning system.

Fig. 3. Monitoring system

Although different techniques are employed in each tracer, both the input
tracer and the output tracer follow the same design sequence, inspired by the
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work of Trotta et al. [3]. Figure 4 presents three steps of the design sequence
which is common to both tracers.

Fig. 4. Design framework

The three steps in the design sequence are explained below.
Step 1 - Detecting concept drift in data is the goal of our proposed framework.
One way to detect drift is to track the distributional changes in data, where
a baseline must be defined to make comparison. Domain understanding and
data observation help in selecting a baseline. One has to consider three different
criteria in selecting baselines: which historical values are included in the baseline?
Whether to apply a smoothing technique? How frequently should the baseline
be updated? Unavailability or inadequate labeled data is commonly observed.
This leaves us with the option to leverage historical distributions of the data as
our baseline.

Step 2 - After determining the baseline, a comparison measure is needed for
benchmarking. Since there are several similarity measures for distributions avail-
able, the following criteria should be taken into account:

• Does the quantitative measurement align with the qualitative features of
objects being measured?

• Can a threshold be created?
• The computational complexity to assess the scalability

Step 3 - In step 3, a flagging mechanism is designed and developed to automate
the alerting effort. The goal of step 3 is to automatically alert on out-of-pattern
values generated by step 2. The mechanism consists of two different functions.
The first function is developed based on anomaly detection algorithms and the
second function is based on heuristic rules provided by the domain experts.
Identified anomalies are served as output to the business users to take informed
business decisions. This step may involve further processing of the result, for
example, providing a ranked list of anomalies.

Both the input and output tracers we are describing follow the three steps
in the design sequence described above. Although these three steps are common
to the tracers, the data fed into tracers exhibits different characteristics. Input
tracer monitors the input data that goes into our machine learning system.
While the output tracer monitors the output provided by the machine learning
system. Detailed explanations of both input and output tracer are provided in
the following sections.
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4 The Monitoring System

This section presents the details of the developed monitoring system. The objec-
tive of the system is to monitor machine learning based systems. We are referring
to a classifier which takes feature variables as inputs and maps the input data
to one of several target classes. Each of the following sub-sections explains the
business background, the solution, and the results.

4.1 Input Tracer

Business Background. Feature variables (FVs) are category profiles, created
for each system account at Mastercard. Table 1 presents a snippet of how FVs
are stored in a database. Equivalent to an index, a FV reflects recent activities
of an account in a category. FVs are constructed periodically (weekly) for each
account, and fed into a classifier. The data quality of FVs is crucial to the success
of the classifier. The input tracer is designed to track the data quality of all FVs
with the following expectations:

• Effective at alerting data quality incidents
• Scalable to handle large data volume
• Provide guidance for debugging when a data quality incident occurs

Table 1. Feature Variable (FV) examples in a database

Account number FV FV values Creation date

1 FV 22 3.2 01-01-2018

1 FV 22 3.5 01-08-2018

1 FV 5 17.8 01-01-2018

1 FV 5 12.6 01-08-2018

2 FV 22 100.9 01-01-2018

2 FV 5 0 01-01-2018

Solution. The solution is based on the three steps presented in the framework.

Step 1 - Baseline selection: For the input tracer, the baseline is the FV value
distribution from the previous week. This baseline is selected because of the
following reasons:

• Values of a single FV are observed to have stable distribution over time.
• FV value distribution contains a large number of data points and hence noise

can be tolerated.
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• FV values can have cyclical fluctuations and hence a long term average is
unsuitable.

Step 2 - Comparison Measurements: In order to track distribution changes,
weekly FV value distributions are compared to those from the previous week.
Multiple metrics are considered by leveraging information theory such as
Kullback-Leibler divergence, Jeffrey’s divergence and squared Hellinger distance.
Despite being successful at signaling distribution changes, KL divergence and
the other two measurements can only be computed after distributions are trans-
formed to probability mass functions. The transformation is expensive when a
distribution contains a large number of data points. This poses a scalability
challenge in production and results in the abandonment of the metrics in this
case. Then we turn to moment matching to compare two distributions while
addressing the scalability challenge. If moments of two samples are matched, we
assume both sample batches come from the same underlying distribution. Here,
a moment M at time t is the expectation of a random variable X raised to a
power p where p can be any positive integer, given N samples in a sample set:

Mt,p =
1
N

∗
∑

N
Xp

t (3)

In this context, the first and second moments (mean and the mean of the
squared values) are employed. After first and second moments are calculated
for values of a FV over different weeks, week-over-week percentage changes are
computed:

WOW%t =
Mt,p − Mt−1,p

Mt−1,p
(4)

The percentage changes are given different weights based on business needs.
In the developed system, the first moment WOW percentage change received
66% weight and the second moment WOW percentage change received 33%.
The past 52 weeks of weighted WOW percentage changes are then fed into an
anomaly detection model for training. The visualization of moments can help to
spot anomalies, and provide clues to unravel a data quality incident. However,
an automatic alerting/flagging system is needed, which is discussed below.

Step 3 - Flagging Methods: The objective of this step is to explore ways to
provide automated alerts to the business users. For the input tracer different
clustering algorithms are considered to enable automated alerts. We explored
two different algorithms. DBSCAN, a density based clustering algorithm and
K Means clustering algorithm. Application of these two algorithms present a
need for post-clustering analysis and computation. This involves splitting and/or
combining clusters to identify outlier cluster resulting in additional complexity.
After exploration we settled with Isolation Forest algorithm [14] to identify out-
liers. Isolation Forest is an unsupervised anomaly detection method. Being an
ensemble method, Isolation Forest is efficient at performing outlier detection.
One reason Isolation Forest appeals is that it is a native binary classifier. Iso-
lation Forest also controls the size of each cluster by user-defined parameters
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such as contamination rate. Essentially, the algorithm performs anomaly detec-
tion using a ranking system. Each data point is ranked based on average path
lengths, which is a representation of the likelihood of being an outlier. For more
reading on Isolation Forest please see article [12,14].

One drawback of Isolation Forest in this framework is that normal cyclical
variations can be misclassified as anomalies. When a data series has very little
fluctuation, even a small change, which can be natural noise, makes a difference
in the predictive outcome. This drawback is mitigated by employing a rule-based
exception handler on the results produced by Isolation Forest. For example, in
order to handle seasonal fluctuations, thresholds for anomaly are adjusted for
certain periods of time. These rules are defined by domain experts based on
operational needs.

Because of the reasons explained above, the alerting system consists of two
layers. The first layer is an application of Isolation Forest and the second layer
is a rule based exception handler. The second layer rules are applied on the
output obtained from Isolation Forest algorithm (layer 1). The output from
second layer is offered as results to the business owner. Details about layer 1 and
2 are presented below.

Layer 1: Isolation Forest
Training data: weighted 1st moment WOW% and 2nd moment WOW%
of past 52 weeks
Model parameters:
• Number of estimators
• The number of features to train each base estimator
• Contamination(proportion of outliers in the data set)

Layer 2: Rules Layer
Rule based exception handler, used to adjust the predictive result from
layer 1

(a) Time Series of First Moment, FV 77 (b) Time Series of Second Moment, FV 77

Fig. 5. Plots present time series of first and second moment of FV 77 (Color figure
online)
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Results. The above steps were applied on FV 77. Due to the absence of reliable
labels, we rely on visual data analysis (see Fig. 5) and domain understanding to
judge the effectiveness of the tracer. Figure 6 presents the results produced by
the input tracer. The results in Fig. 6 are after the application of layer 1 and layer
2 rules. The input tracer (see Fig. 6) alerts on the following dates: 2017-01-08,
2017-01-15, 2017-03-26 to 2017-07-16, and 2018-02-04. Based on visual analysis,
we notice there are three periods (highlighted by yellow boxes in Fig. 5a and
b) during which anomalous behavior occurs. The alerts from the input tracer
(Fig. 6) are consistent with our visual data analysis. In addition, the business
owners are in agreement with the alerts produced by the system. The input tracer
has been tested with a variety of FVs. The system is scalable and effective at
capturing outliers.

Input Tracer Conclusion. The proposed input tracer is successful at alerting
data quality incidents that occur among feature variables. Ranking data points
for outliers with Isolation Forest helps business users prioritize and understand
the data behind the drift. This provides information to users to investigate and
debug when a data quality incident occurs.

4.2 Output Tracer

Business Background. Often it is possible to see the effect of a production
incident on a classifier by examining a machine learning model’s output. Given
the slowly changing nature of the input data, a dramatic shift in the distribution
of model outputs signals a potential issue/incident. An incident is an unplanned
interruption to an IT service or reduction in the quality of the service impact-
ing customers. A production issue/incident could be a result of one of several
reasons. For example, applying the classifier to incorrectly scored accounts or
misprocessed feature variables (input data i.e. FVs) may lead to incidents.

The focus of the output tracer is on the outputs produced by a machine
learning system. The output tracer is therefore designed to identify anomalous
classifier behaviors. By examining the distribution of all classes, the output tracer
can alert out-of-pattern class distributions so that swift corrective actions can
be taken.

Solution. The key observation and assumption here are similar to the one made
by the input tracer: aggregate account activities for each account family should
not change dramatically over time. The output from a machine learning system is
categorized into one of the target classes (mapped classes). The mapped classes
produced by the classifier are expected to have a stable distribution for each
account family. This statement is true unless an incident or a technical issue
occurs while the system is in use. The output tracer is turned into a problem
of monitoring the distribution changes of classes over time. The solution follows
the three steps outlined in the framework (Sect. 3).
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Fig. 6. Weighted First and Second Moment WOW% Scatter Plots, Colored Based on
Isolation Forest Outcomes (Best Viewed in Color). Circle: test data, Crosses: training
data (prior 52weeks), Green: inliers, Red: outliers (Color figure online)
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Step 1 - Baseline selection: The first step to identify anomalous behavior is to
define what is normal. Taking both business context and potential seasonality into
account, the baseline, or the reference distribution is defined by averaging past ten
same day-of-week’s class distributions. For example, given Monday 7/16/2018, the
reference distribution is calculated by taking the average of class distributions of
previous Monday (7/9), the Monday before (7/2) and so on. This granularity was
determined by domain experts. In comparison to the input tracer, the baseline of
the output tracer involves more computation, by averaging class distributions of
the past ten same days-of-week. However, although the computational complexity
is high in output tracer, the size of the output data is smaller. Therefore the scala-
bility challenge is easier to handle. A large time window is selected to minimize the
impact of noise because the number of data points in a class distribution could be
small. On the other hand, the window should not be oversized, so that the latest
trend can be reflected. Equal weight is given to each of the ten distributions, and
hence no single distribution is dominating the reference distribution. Since data
labels are unavailable, abnormally mapped classes are currently included in build-
ing the reference distribution. Abnormal class mappings can be removed in future
after they are detected and recorded.

Step 2 - Comparison Measurements: Unlike feature variables (inputs), the class
data (outputs) has less of a scalability challenge but is more volatile in nature.
With those differences in mind, different similarity measurements and anomaly
detection methods are evaluated and selected. Kullback-Leibler divergence, also
known as relative entropy (RE), is chosen to measure the difference between
the reference distribution q(x) and the current distribution p(x). The higher the
relative entropy value is, the more skewed current distribution is compared to
the reference distribution.

D(p||q) =
∑

p(x) ln(
p(x)
q(x)

) (5)

For Eq. (5), p(x) is the current distribution, and q(x) is the reference distri-
bution. The current distribution p(x) is calculated at the end of each day.

Unlike squared Hellinger distance, KL divergence is not restricted between
zero and one. A sizable distribution change will be translated to a change of
large magnitude in KL divergence, which facilitates the creation of a threshold.
KL divergence lacks symmetry but this can be solved by averaging D(p‖q) and
D(q‖p). A small positive number replaces all zero probability densities.

Step 3 - Flagging Methods: Account families that have fewer observations tend
to have more volatile class distributions which lead to higher RE values. So,
relative entropy alone cannot be used to detect anomaly. As a result, a second
factor is introduced to measure the size of an account family. The second factor
is computed by taking the natural logarithm of the average number of activities
performed under the account family. Visualization of RE values against the size
of account family can be used to identify which account families have skewed
class distributions. The objective of this step is to automate the alerting system
using the two variables mentioned above.
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The alerting system comprises of two layers: the first layer is based on
DBSCAN. The second layer consists of human-defined rules. These rules are
applied on top of the cluster results produced by DBSCAN. Details about layer
1 and 2 are presented below.

Layer 1: DBSCAN
The first factor – the RE values of all account families for one day
The second factor – the ”size” of an account family derived from the
number of activities under the account family
Model parameters:
• The maximum distance (eps) for a neighborhood
• The minimum number of samples in a neighborhood for core points

Layer 2: Rules Layer - rule based exception handler, used
to adjust the predictive result from layer 1 and to handle cases
in which a large number of account families go wrong.

The RE values and account family sizes are fed into a clustering algorithm to
detect anomalies. In this case, DBSCAN (Density-based Spatial Clustering for
Applications with Noise) [13] algorithm is tested and selected to detect anoma-
lies. According to Scikit Learn, DBSCAN views clusters as high-density areas
separated by low density areas [12]. One drawback of the algorithm is that
DBSCAN does not necessarily produce two clusters. Based on the density of
data points and parameters chosen, the algorithm may produce more than two
clusters. In those circumstances, the cluster with the largest number of points is
deemed as the “normal” cluster and all remaining clusters are considered anoma-
lies. The parameters (thresholds) of DBSCAN are selected from both mathemat-
ical and business perspectives.

Other anomaly detection algorithms were also tested, such as isolation forest.
However, the fact that isolation forest always selects a fixed percentage of anoma-
lies does not apply to the condition here in the output tracer. The non-linear
nature of the data (as shown in Fig. 7) also negatively impacts the performance
of isolation forest.

Layer 2 is applied on the results produced by the layer 1. This will handle
cases in which anomalies occur in large number of account families. Rules can
also be added to accommodate special situations. For example, a rule restricting
the size of an account family can be applied here to remove cases where the
sample size is too small to have business values. The alerts from layer 2 are
served as output to business users.

Results. Figure 7a presents relative entropy values against the natural loga-
rithm of account family sizes, which are derived from the output of a machine
learning system. The plot clearly shows a dense cluster with a few scattered
points (see Fig. 7a). This phenomenon aligns with the common assumption of
anomaly detection: anomalies are the minority group that behave substantially
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(a) Relative Entropy Values versus Natural
Logarithm of Account Family Sizes

(b) Anomalies versus Normal Points (Best
View in Color)

Fig. 7. Plots present relative entropy and account family size before and after DBSCAN
algorithm applied (Color figure online)

differently from the majority. Figure 7b presents a plot of data with labels pro-
duced by the DBSCAN algorithm. The figure shows two different clusters (red
and blue). Data points colored blue are outliers captured by the DBSCAN algo-
rithm and red points are inliers.

The results are then verified by comparing baseline distribution with current
distribution. Points from Fig. 7b are randomly selected for verification. The cur-
rent distribution and reference distribution are plotted side by side to check if
the detected anomalies indeed display any anomalous behaviors. Figure 8a is an
example of a normal case (red points in Fig. 7b). Figure 8b is an example of the
distribution of a detected anomaly (blue points in Fig. 7b). From Fig. 8b, we can
clearly notice how current distribution is significantly different from its reference
distribution.

Since there is no labelled data, results are evaluated with feedback from the
business. False positives are tuned to be as low as possible to avoid too many
false alarms, whereas in the meantime incident information is being collected to
evaluate false negatives.

(a) Distribution of a normal point (b) Distribution of a detected anomaly

Fig. 8. Current distributions versus reference distributions (Color figure online)
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Output Tracer Conclusion. Timely response to operational issues or inci-
dents is critical because relevant teams are often unaware of misbehaviors of a
machine learning system until the impact becomes very large. As more machine
learning systems are designed and deployed, a monitoring system is needed to
ensure the systems function in the expected way. With the output tracer, busi-
ness operation can not only receive timely alerts on potential misclassifications
of activities, but also locate the anomalies immediately.

5 Conclusion and Future Research

In this article, we presented methods to detect and to alert when concept drift
occurs. The input and output tracer monitor the data that goes into a classifier
and the classes produced by the classifier respectively. And the modular design
of the developed system ensures the two models work independently. The two
cases supporting the proposed methods demonstrates success in alerting drifts.
Receipt of these alerts allows users to study the data and monitor the system in
detail, and this clearly has a huge benefit.

In the future, we would like to continue research in two different directions.
On one hand, we will continue experimentation to study the relationship between
properties of different data sets and drifts, especially when data changes are
unstable. On the other hand, we would like to study how these alerts can assist
in developing online machine learning algorithms. Exploring drift and anomaly
detection with real time data streams would be interesting as well. In conclusion,
concept drift has a huge role to play in resolving challenges in the area of machine
learning model deployment and model maintenance.
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