
Challenging SQL-on-Hadoop Performance
with Apache Druid

José Correia1,2(&) , Carlos Costa1,3 ,
and Maribel Yasmina Santos1

1 ALGORITMI Research Centre, University of Minho, Guimarães, Portugal
{josecorreia,carlos.costa,maribel}@dsi.uminho.pt

2 NATIXIS, on Behalf of Altran Portugal, Porto, Portugal
3 Centre for Computer Graphics - CCG, Guimarães, Portugal

Abstract. In Big Data, SQL-on-Hadoop tools usually provide satisfactory
performance for processing vast amounts of data, although new emerging tools
may be an alternative. This paper evaluates if Apache Druid, an innovative
column-oriented data store suited for online analytical processing workloads, is
an alternative to some of the well-known SQL-on-Hadoop technologies and its
potential in this role. In this evaluation, Druid, Hive and Presto are benchmarked
with increasing data volumes. The results point Druid as a strong alternative,
achieving better performance than Hive and Presto, and show the potential of
integrating Hive and Druid, enhancing the potentialities of both tools.

Keywords: Big Data � Big Data Warehouse � SQL-on-Hadoop � Druid �
OLAP

1 Introduction

We are living in a world increasingly automated, where many people and machines are
equipped with smart devices (e.g. smartphones and sensors) all integrated and gener-
ating data from different sources at ever-increasing rates [1]. For these characteristics
(volume, velocity and variety), Big Data usually arises with an ambiguous definition.
However, there is a consensus defining it as data that is “too big, too fast or too hard” to
be processed and analyzed by traditional techniques and technologies [1–3]. The
organizations that realize the need to change their processes to accommodate adequate
decision-making capabilities, supporting them with Big Data technologies, will be able
to improve their business value and gain significant competitive advantages over their
competitors.

The Big Data concept also impacts the traditional Data Warehouse (DW), leading
to a Big Data Warehouse (BDW) with the same goals in terms of data integration and
decision-making support, but addressing Big Data characteristics [4, 5] such as mas-
sively parallel processing; mixed and complex analytical workloads (e.g., ad hoc
querying, data mining, text mining, exploratory analysis and materialized views);
flexible storage to support data from several sources or real-time operations (stream
processing, low latency and high frequency updates), only to mention a few. Also,
SQL-on-Hadoop systems are increasing their notoriety, looking for interactive and low

© Springer Nature Switzerland AG 2019
W. Abramowicz and R. Corchuelo (Eds.): BIS 2019, LNBIP 353, pp. 149–161, 2019.
https://doi.org/10.1007/978-3-030-20485-3_12

http://orcid.org/0000-0002-7135-0695
http://orcid.org/0000-0003-0011-6030
http://orcid.org/0000-0002-3249-6229
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20485-3_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20485-3_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20485-3_12&domain=pdf
https://doi.org/10.1007/978-3-030-20485-3_12

latency query executions, providing timely analytics to support the decision-making
process, in which each second counts [6]. Aligned with the research trends of sup-
porting OLAP (Online Analytical Processing) workloads and aggregations over Big
Data [7], this paper compares Apache Druid, which promises fast aggregations on Big
Data environments [8], with two well-known SQL-on-Hadoop systems, Hive and
Presto.

This paper is organized as follows: Sect. 2 presents the related work; Sect. 3
describes Druid and the experimental protocol; Sect. 4 presents the obtained results;
and Sect. 5 discusses the main findings and concludes with some future work.

2 Related Work

Several SQL-on-Hadoop systems have been studied to verify their performance, sup-
porting interactive and low latency queries. The work of [9] benchmarks different SQL-
on-Hadoop systems (Hive, Spark, Presto and Drill) using the Star Schema Benchmark
(SSB), also used in [10], testing Hive and Presto using different partitioning and
bucketing strategies. In [6], Drill, HAWQ, Hive, Impala, Presto and Spark were
benchmarked showing the advantages of in-memory processing tools like HAWQ,
Impala and Presto. Although the good performance of these in-memory processing
tools, this work also shows the increase in the processing time that is verified when
these tools do not have enough Random Access Memory (RAM) and activate the “Spill
to Disk” functionality, making use of secondary memory. In terms of scalability,
HAWQ showed the worst result when taking into consideration querying response time
with increased data volumes (in the same infrastructure), while Spark, Presto and Hive
showed good scalability. The results obtained with Spark point that this technology is
appropriate when advanced analysis and machine learning capabilities are needed,
besides querying data, and that Hive can perform similarly to Presto or Impala in
queries with heavy aggregations. Although other benchmarks are available, to the best
of our knowledge, they do not evaluate such diverse set of tools.

For Druid, although a very promising tool, few works have studied this technology
and most of them do not use significant data volumes [8, 11] or do not compare the
results against other relevant technologies, typically used in OLAP workloads on Big
Data environments [8]. The work of [12] contributed to this gap by using the SSB to
evaluate Druid, pointing out some recommendations regarding performance opti-
mization. The obtained results were impressive in terms of processing time, but Druid
was not compared with other systems. Thus, this paper seeks to fulfil this gap by
comparing Druid against two well-known SQL-on-Hadoop systems, Hive and Presto, a
work of major relevance for both researchers and practitioners concerned with low
latency in BDW contexts. The two SQL-on-Hadoop systems were selected based on
their advantages, shown in the literature, such as the robustness of Hive with increased
data volumes and the good overall performance of Presto. Moreover, these tools are
here benchmarked using the same infrastructure and the same data as in [10], allowing
the comparison of the results.

150 J. Correia et al.

3 Testing Druid Versus SQL-on-Hadoop

Druid (http://druid.io) is an open source column-oriented data store, which promises
high-performance analytics on event-driven data, supporting streaming and batch data
ingestion. Its design combines search systems, OLAP and timeseries databases in order
to achieve real-time exploratory analytics [8, 12]. Druid has several features, being
important to explain the ones addressed in this work: (i) segment granularity is the
granularity by which Druid first partition its data (e.g. defining this as month generates
12 segments per year); (ii) query granularity specifies the level of data aggregation at
ingestion, corresponding to the most detailed granularity that will be available for
querying; (iii) hashed partitions are responsible for further partitioning the data, besides
segment granularity; (iv) cache stores the results of the queries for future use;
(v) memory-mapped storage engine deals with the process of constantly loading and
removing segments from memory [8, 12].

3.1 Technological Infrastructure and Data

This work compares the obtained results with some of the results available in [12] and
[10], reason why the same technological infrastructure is used. This infrastructure is
based on a 5-node cluster, including 1 HDFS NameNode (YARN ResourceManager)
and 4 HDFS DataNodes (YARN NodeManagers). Each node includes: (i) 1 Intel Core
i5, quad-core, clock speed ranging between 3.1 and 3.3 GHz; (ii) 32 GB of 1333 MHz
DDR3 Random Access Memory; (iii) 1 Samsung 850 EVO 500 GB Solid State Drive
with up to 540 MB/s read speed and up to 520 MB/s write speed; (iv) 1 Gigabit Ethernet
card connected through Cat5e Ethernet cables and a gigabit Ethernet switch. The several
nodes use CentOS 7 with an XFS file system as the operative system. Hortonworks Data
Platform 2.6.4 is used as the Hadoop distribution, with the default configurations,
excluding the HDFS replication factor, which was set to 2. Druid 0.10.1 is used with its
default configurations. Taking into consideration that the main goal of this paper is to
compare the performance of Druid against other SQL-on-Hadoop technologies under
similar circumstances, the SSB [13] must be used, as in [12] and [10]. The SSB is based
on the TPC-H BenchmarkTM (http://www.tpc.org/tpch), but following the principles of
dimensional data modeling with a star schema [14]. This is a reference benchmark often
used to measure the performance of database systems that process large volumes of data,
supporting Data Warehousing applications [13].

Since Druid does not support joins, the SSB was denormalized, originating two
different flat tables: (i) A Scenario, including all the attributes from the SSB; (ii) N
Scenario, containing the attributes strictly needed to answer the queries of the
benchmark. The goal is to compare Druid, Hive and Presto in the A Scenario and
evaluate how the number of attributes affects the processing time of Druid in the N
Scenario. Moreover, Druid’s features, and their impact on performance, are evaluated
whenever possible in both scenarios. Besides this, the 13 SSB queries were also used in
their denormalized version. In order to obtain rigorous results and allow replicability,
several scripts were coded running each query four times and calculating the final time
as the average of the four runs (scripts available at https://github.com/jmcorreia/Druid_
SSB_Benchmark).

Challenging SQL-on-Hadoop Performance with Apache Druid 151

http://druid.io
http://www.tpc.org/tpch
https://github.com/jmcorreia/Druid_SSB_Benchmark
https://github.com/jmcorreia/Druid_SSB_Benchmark

3.2 Experimental Protocol

Figure 1 depicts the experimental protocol, aiming to evaluate Druid’s performance in
different scenarios and comparing these results with the ones obtained by Hive and
Presto under similar circumstances. Three Scale Factors (SFs) are used to evaluate the
performance of the tools for different workloads (30, 100 and 300 GB), using data and
queries from SSB.

Besides studying the impact of different data volumes on query performance, other
Druid features were explored, namely segment granularity, query granularity and
hashed partitions. Some of the obtained results and main conclusions regarding these
properties were retrieved from [12] and are used in this work to: (i) analyze Druid’s
best results [12] with Hive and Presto’s best results [10]; (ii) compare the results
obtained by Druid in scenarios that do not optimize performance to its maximum
potential with the best results obtained by Hive and Presto [10]; and, (iii) study the
potential of integrating Hive and Druid, theoretically and practically, on single and
multi-user environments.

4 Results

This section presents the results for the defined experimental protocol. In Druid, the
several stored tables follow this notation: S{Segment Granularity}_Q{Query Granu-
larity}_PHashed{Number of Partitions}, with the different configurations of segments,
query granularity and hashed partitions [12]. In the A Scenario, the query granularity
property is not used as the existing keys exclude the possibility of data aggregation
when storing the data (all rows are different). In the N Scenario, as it only uses the
attributes required for answering the queries, keys are not present and data aggregation
is possible (using query granularity). In this paper, the goal is to compare Druid’s
potential with other technologies and not to explore Druid properties in deeper detail,
as this was done in [12], reason why here the tables with the best results, for the tested
features, are used exploring the results of [12]. To this end, Fig. 2 summarizes the

Fig. 1. Experimental protocol.

152 J. Correia et al.

selected tables and why they were selected and used in the analysis of the following
subsections. The results presented in this section, if not mentioned otherwise, include
the total average processing time for the execution of the 13 queries.

4.1 Druid Versus Hive and Presto

In this subsection, Druid’s best results are compared with Hive and Presto’s best
results, retrieved from [10], where the authors explored different partition and buck-
eting strategies, in order to identify the most effective strategies to enhance perfor-
mance. The main purpose is to assess if Druid constitutes an alternative to Hive and
Presto, two well-known SQL-on-Hadoop systems. Figure 3 presents the best results
obtained by Hive and Presto, without results for the denormalized table in SF 300, as in
[10] the authors were not able to execute this test, due to memory constraints of the
infrastructure.

Analyzing Fig. 3, we can verify that the denormalized table achieves better pro-
cessing time than the star schema for all the evaluated SFs, both for Hive and Presto. It
is also noticeable that Presto outperforms Hive in all the scenarios. Considering these
aspects and the fact that Druid does not support joins, Fig. 4 considers the processing
time obtained by Presto for the denormalized table, except for the SF 300, in which we
considered the performance obtained for the star schema (because there is no result for
the denormalized version). Figure 4 also presents the best results obtained by Druid for

Fig. 2. Considered Druid tables.

Fig. 3. Best results for Hive and Presto. Processing time based on [10].

Challenging SQL-on-Hadoop Performance with Apache Druid 153

the scenarios A and N, showing that Druid is the fastest technology for all SFs,
presenting improvements between 93.2% and 98.3%. For the SF 300, Druid was only
tested for the N Scenario, as in [12] the SFs 30 and 100 were considered representative
enough in the A Scenario for the analysis of Druid capabilities. So, it is important to
have in mind that the comparison for the SF 300 is made considering a star schema for
Hive and Presto, and a denormalized table with a subset of the attributes for Druid.

With this context, in Fig. 4 it is noticeable that the tables of the N Scenario
achieved better processing times than the A Scenario. This happens because this sce-
nario uses a model with less attributes, reducing storage needs and enabling the
application of query granularity (which aggregates data, also reducing storage needs).
This way, the data can be easily loaded into memory, because the segments use less
memory. In addition, as the data is aggregated, the answers for the queries may need
less calculations. However, users must be aware of the trade-off between using query
granularity and the limitations this will impose on the ability to query the data, because
the query granularity represents the deepest level of detail for querying data. These
good results are obtained due to the optimized way used by Druid to store data,
enhancing its efficiency with an advanced indexing structure that allows low latencies.
Besides this, the number of attributes and the use of query granularity also impact
ingestion time, as the tables of the N Scenario take less time to be ingested. For the SF
100, for example, the tables of the A Scenario spent 4 h and 14 min (on average) and
the tables of the N Scenario spent 1 h and 22 min on average (68% less time).
Regarding storage needs, the N Scenario and the use of query granularity were able to
reduce the needed space by more than 85%. For performance, Druid cache mechanisms
and its memory-mapped storage engine also have a relevant impact, as detailed later in
this paper.

4.2 Suboptimal Druid Versus Hive and Presto

In the previous subsection, Druid revealed significantly faster processing time com-
pared to Presto and Hive. However, we used Druid’s best results, which were obtained
using the tables with hashed partitions, an advanced property that should only be used
if it is strictly necessary to optimize Druid’s performance to its maximum potential. In

Fig. 4. Druid and Presto best results. Processing time based on [10, 12].

154 J. Correia et al.

most cases, tables without hashed partitions achieve results that are good enough to
satisfy the latency requirements [12]. Therefore, this subsection does not use Druid’s
best results, but the better ones obtained without hashed partitions. Figure 5 shows the
time obtained by running the 13 queries and the difference between the results obtained
by Druid and Presto. In this case, even with less concerns regarding optimization,
Druid achieves significantly faster processing time when compared to Presto. In the
worst case, Druid was able to use less 90.3% of the time needed by Presto. This result
considers the table SQuarter belonging to the A Scenario, which uses the model with
all the attributes and does not aggregate data during its ingestion, meaning that even
with raw data, Druid performs very well, outperforming Hive and Presto.

Figure 5 also reveals that the most significant performance differences between
Presto and Druid were obtained for the tables belonging to the N Scenario, as expected,
and using the query granularity property to aggregate data during its ingestion, also
expected. As previously mentioned, this happens because this scenario uses a model
with the attributes needed to answer the queries, taking less storage space. Besides, this
model enables the use of the query granularity feature, aggregating data during its
ingestion, which also reduces storage needs and improves performance for the same
reasons mentioned above (see Subsect. 4.1). The table SQuarter_QMonth (in the SF
300), for example, was able to obtain a processing time 98.0% lower than Presto,
taking 8.99 s to execute all the queries. In this case, data is segmented by quarter and
aggregated to the month level, meaning that this table corresponds to a view with less
rows than the ones analyzed by Presto. Although, in this case, Presto uses raw data
while Druid uses aggregated data, this comparison is important to understand how
Druid’s characteristics can be used to enhance data processing efficiency, as in similar
conditions (the same number of rows) Druid outperforms Presto. Looking to the overall
performance, Druid seems to be a credible alternative to well-established SQL-on-
Hadoop tools in scenarios when interactive querying processing is needed, even with
less optimization concerns.

Fig. 5. Druid suboptimal vs. Presto. Processing time based on [10, 12].

Challenging SQL-on-Hadoop Performance with Apache Druid 155

4.3 Scalability

For querying vast amounts of data, the processing tools are designed to be scalable,
meaning that as the data size grows or the computational resources change, the tools
need to accommodate that growth/change. Each tool usually applies specific approa-
ches to scale, either in terms of data size or in terms of the used computational
resources. In this paper, and due to the limited hardware capacity of the used cluster,
the scalability of the tools is analyzed looking into the time needed by the tools to
process the data, as the data size grows. The 30 GB, 100 GB and 300 GB SFs were
used, because we had baseline results for Hive and Presto, under similar circumstances,
available in the literature. Higher SFs were not used due to limitations of the infras-
tructure and because there would be no results available in the literature to make a fair
comparison with Druid. In this case, we believe that the three different SFs used
provide a fair analysis of the scalability of the tools.

Looking first into Hive and Presto best results, Fig. 6 shows that in the denor-
malized version, Hive increases in 1.7 times the time needed to process the data when
the dataset grows from 30 to 100 GB, while Presto increases this value in 2.7 times. In
the star schema, these values are 2.5 and 3.3 times, respectively. In this data model,
moving from 100 from 300 GB has almost no impact on Hive, with a marginal increase
in the needed overall time (1.1), while Presto almost double the needed processing time
(1.8). For Druid, looking both into the best and suboptimal results, the time needed to
process the data seems to increase around 3 times when the data volume increases from
30 to 100 GB, and from 2 to 3 times when the data volume increases from 100 to
300 GB. Datasets higher than 300 GB are needed to have a more detailed perspective
on the scalability of the tools, but Hive seems to be the tool that better reacts to the
increase of data volume, although taking more time than the other two to process the
same amount of data.

Fig. 6. Hive, Presto and Druid scalability analysis.

156 J. Correia et al.

4.4 Hive and Druid: Better Together?

The previous subsection showed Druid as an alternative to Presto and Hive. However,
new versions of Hive include a novel feature named Live Long and Process (LLAP)
[15], allowing the integration between Hive and Druid [16]. Hence, this subsection
studies the relevance of this integration. In theory, the integration of both technologies
adequately combines their capabilities, providing some advantages, such as:
(i) querying and managing Druid data sources via Hive, using a SQL (Structured Query
Language) interface (e.g., create or drop tables, and insert new data); (ii) efficiently
execute OLAP queries through Hive, as Druid is well suited for OLAP queries on event
data; (iii) use more complex query operators not natively supported (e.g. joins) by
Druid; (iv) using analytical tools to query Druid, through ODBC/JDBC Hive drivers;
(v) indexing the data directly to Druid (e.g. a new table), instead of using MapReduce
jobs [16, 17].

Next, in order to study the real impact of integrating Hive and Druid, Fig. 7 shows
the processing time obtained by Hive querying a Druid data source, compared with the
time of Druid itself. The results were obtained querying the table SMonth_QDay from
the SF 300. This table was selected because it is a table of the higher SF used in this
work and it does not use hashed partitions, which is not a trivial property and, as so,
may not be frequently used in real contexts by most users. Besides, the configuration of
the segment granularity “month” and query granularity “day” seems to simulate well a
real scenario, in which users do not want to aggregate data more than the day level,
avoiding losing too much detail and potential useful information. As can be seen, in
terms of performance, it is preferable to query Druid directly, as it reduces processing
time by an average value of 76.4%, probably because Druid tables are optimized to be
queried by Druid. Considering only the first run of the queries (ignoring Druid’s cache
effect), this reduction is of 65.5%. Nevertheless, the results obtained when querying a
Druid data source through Hive are also satisfactory (55.03 s on average), being better
than the results obtained only using Hive (982 s) or Presto (452 s) when querying Hive
tables (Fig. 3). Using Druid to query data stored in Druid was expected to achieve
better results than being queried through Hive, however, Druid does not allow joins or
other more complex operations, thus, in this type of scenario, Hive would achieve
increased performance querying Druid, in a scenario that takes advantages from the
best of both tools.

4.5 Hive and Druid in Multi-user Environments

In a real-world scenario, systems are not just queried by a single user. Thus, it is also
relevant to study these technologies in multi-user environments, in order to verify their

Fig. 7. Hive and Druid integration: single-user.

Challenging SQL-on-Hadoop Performance with Apache Druid 157

behavior compared with the previously obtained single-user results. Therefore, we
included a scenario wherein four users simultaneously query Druid data sources (table
SMonth_QDay from the SF 300, as this was the table used in the Subsect. 4.4), directly
or through Hive. As can be seen in Fig. 8, it is still preferable to query Druid directly
(not using Hive), as it reduces 66.6% of the time on average. However, the difference in
terms of performance was reduced from 76.4% (Fig. 7) to 66.6%, meaning that Hive
was less affected than Druid in multi-user environments. With Hive, from single-user to
multi-user, the processing time increased 49.1% on average, while Druid increased
110.8% (which is still a satisfactory result, as an increase below 300% means that the
system was able to execute the queries faster than executing the queries four times each
in a single-user environment). This scenario also points out the robustness of Hive, a
characteristic already mentioned.

Figure 9 shows the processing time obtained by User 1 and User 2 for the table
SMonth_QDay (SF 300), executing queries with and without Druid’s cache
mechanism.

Fig. 8. Hive and Druid integration: multi-user.

Fig. 9. Results by user, with and without cache.

158 J. Correia et al.

It is relevant to highlight that User 1 started executing Q1.1 and finished with Q4.3,
while User 2 started with Q2.1 and finished with Q1.3. In general, the results show that
the use of Druid’s cache mechanism increases performance, although for some cases
the difference is not very noteworthy. This is observable looking into the time of Run 1,
compared with the average time of the four runs. The average total time of the four runs
is always inferior to the total time of the Run 1 of the queries. Even more interesting is
the processing time observed among different queries within the same group. Subse-
quent queries take less time than the previous ones (e.g. Q1.2 takes less time than
Q1.1). This is caused by Druid’s memory-mapped storage engine, which maintains
recent segments in memory, while the segments less queried are paged out. With this
feature, subsequent queries benefit from the fact that some of the needed segments are
already in main memory, avoiding reading data from disk. This storage engine seems to
have more impact than the cache mechanism, since without this mechanism the results
were not so good, but the average time of the four runs remained inferior to the time of
the Run 1. Druid’s cache mechanism and its memory-mapped storage engine allow
different users in a multi-user environment to benefit from each other.

5 Discussion and Conclusion

This paper presented several results comparing the performance obtained by Druid,
Hive and Presto, running a denormalized version of the 13 queries of the SSB for
different SFs. The results show Druid as an interesting alternative to the well-known
SQL-on-Hadoop tools, as it always achieved a significant better performance than Hive
and Presto. Even with less concerns regarding optimization, Druid was more efficient in
terms of processing time. This paper also investigated the performance of Hive
querying Druid tables, which showed to be more efficient than Hive and Presto
querying Hive tables. The integration of Hive and Druid enhances Druid with relevant
features, such as the possibility to execute more complex query operators (e.g. joins), or
the opportunity to manage Druid data sources through Hive’s SQL interface, among
others, avoiding some possible drawbacks in Druid’s adoption. Moreover, this work
also analyzed Hive and Druid in multi-user environments, showing the impressive
influence on performance from Druid’s memory-mapped storage engine and cache
mechanism. Besides this, both the integration of Hive and Druid, or Druid alone,
showed an adequate behavior in this environment.

In conclusion, this work highlighted Druid’s capabilities, but also focused the
integration between this technology and Hive, challenging SQL-on-Hadoop tech-
nologies in terms of efficiency. Although Druid achieved significantly better perfor-
mance than Hive and Presto, other aspects rather than data processing performance
need to be considered in the adoption of a specific technology, such as the technology
maturity, the available documentation and the resources (time, people, etc.) to learn and
implement a new technology. However, the Big Data world is characterized by several
distinct technologies and the community is used to change and to adopt new tech-
nologies. Allied to this fact, the integration of Druid in the Hadoop ecosystem and, in
particular, with Hive, can facilitate the adoption of this technology.

Challenging SQL-on-Hadoop Performance with Apache Druid 159

As future work, it will be relevant to use higher data volumes and to further
explore: (i) Druid’s memory-mapped and cache mechanisms; (ii) Hive and Druid’s
integration, benchmarking complex query operators (e.g. joins); (iii) the possibility to
use Presto to query Druid tables, verifying if Presto performance can be improved
querying data stored in Druid rather than in Hive.

Acknowledgements. This work is supported by COMPETE: POCI-01-0145- FEDER-007043
and FCT – Fundação para a Ciência e Tecnologia within Project UID/CEC/00319/2013 and by
European Structural and Investment Funds in the FEDER component, COMPETE 2020
(Funding Reference: POCI-01-0247-FEDER-002814).

References

1. IBM, Zikopoulos, P., Eaton, C.: Understanding Big Data: Analytics for Enterprise Class
Hadoop and Streaming Data, 1st edn. McGraw-Hill Osborne Media (2011)

2. Ward, J.S., Barker, A.: Undefined by data: a survey of big data definitions. CoRR,
abs/1309.5821 (2013)

3. Madden, S.: From databases to big data. IEEE Internet Comput. 16(3), 4–6 (2012)
4. Krishnan, K.: Data Warehousing in the Age of Big Data, 1st edn. Morgan Kaufmann

Publishers Inc., San Francisco (2013)
5. Costa, C., Santos, M.Y.: Evaluating several design patterns and trends in big data

warehousing systems. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816,
pp. 459–473. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91563-0_28

6. Rodrigues, M., Santos, M.Y., Bernardino, J.: Big data processing tools: an experimental
performance evaluation. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 9, e1297 (2019)

7. Cuzzocrea, A., Bellatreche, L., Song, I.-Y.: Data warehousing and OLAP over big data:
current challenges and future research directions. In: Proceedings of the Sixteenth
International Workshop on Data Warehousing and OLAP, New York, USA, pp. 67–70
(2013)

8. Yang, F., Tschetter, E., Léauté, X., Ray, N., Merlino, G., Ganguli, D.: Druid: a real-time
analytical data store. In: Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data, pp. 157–168 (2014)

9. Santos, M.Y., et al.: Evaluating SQL-on-Hadoop for big data warehousing on not-so-good
hardware. In: ACM International Conference Proceeding Series, vol. Part F1294, pp. 242–252
(2017)

10. Costa, E., Costa, C., Santos, M.Y.: Partitioning and bucketing in hive-based big data
warehouses. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST’18 2018.
AISC, vol. 746, pp. 764–774. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
77712-2_72

11. Chambi, S., Lemire, D., Godin, R., Boukhalfa, K., Allen, C.R., Yang, F.: Optimizing druid
with roaring bitmaps. In: ACM International Conference Proceeding Series, 11–13 July
2016, pp. 77–86 (2016)

12. Correia, J., Santos, M.Y., Costa, C., Andrade, C.: Fast online analytical processing for big
data warehousing. Presented at the IEEE 9th International Conference on Intelligent Systems
(2018)

13. O’Neil, P.E., O’Neil, E.J., Chen, X.: The Star Schema Benchmark (SSB) (2009)
14. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Definitive Guide to Dimensional

Modeling. Wiley, Hoboken (2013)

160 J. Correia et al.

http://dx.doi.org/10.1007/978-3-319-91563-0_28
http://dx.doi.org/10.1007/978-3-319-77712-2_72
http://dx.doi.org/10.1007/978-3-319-77712-2_72

15. LLAP - Apache Hive - Apache Software Foundation. https://cwiki.apache.org/confluence/
display/Hive/LLAP. Accessed 07 Nov 2018

16. Druid Integration - Apache Hive - Apache Software Foundation. https://cwiki.apache.org/
confluence/display/Hive/Druid+Integration. Accessed 07 Nov 2018

17. Ultra-fast OLAP Analytics with Apache Hive and Druid - Part 1 of 3, Hortonworks, 11 May
2017. https://hortonworks.com/blog/apache-hive-druid-part-1-3/. Accessed 07 Nov 2018

Challenging SQL-on-Hadoop Performance with Apache Druid 161

https://cwiki.apache.org/confluence/display/Hive/LLAP
https://cwiki.apache.org/confluence/display/Hive/LLAP
https://cwiki.apache.org/confluence/display/Hive/Druid%2bIntegration
https://cwiki.apache.org/confluence/display/Hive/Druid%2bIntegration
https://hortonworks.com/blog/apache-hive-druid-part-1-3/

	Challenging SQL-on-Hadoop Performance with Apache Druid
	Abstract
	1 Introduction
	2 Related Work
	3 Testing Druid Versus SQL-on-Hadoop
	3.1 Technological Infrastructure and Data
	3.2 Experimental Protocol

	4 Results
	4.1 Druid Versus Hive and Presto
	4.2 Suboptimal Druid Versus Hive and Presto
	4.3 Scalability
	4.4 Hive and Druid: Better Together?
	4.5 Hive and Druid in Multi-user Environments

	5 Discussion and Conclusion
	Acknowledgements
	References

