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Abstract. Advanced capabilities in artificial intelligence pave the way for
improving the prediction of material requirements in automotive industry
applications. Due to uncertainty of demand, it is essential to understand how
historical data on customer orders can effectively be used to predict the quan-
tities of parts with long lead times. For determining the accuracy of these
predications, we propose a novel data mining technique. Our experimental
evaluation uses a unique, real-world data set. Throughout the experiments, the
proposed technique achieves high accuracy of up to 98%. Our research con-
tributes to the emerging field of data-driven decision support in the automotive
industry.

Keywords: Predictive manufacturing � Material requirements planning �
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1 Introduction

Predictive manufacturing has become a major challenge to the industrial production
sector [1]. Manufacturers integrate business information systems into their production
environment to create competitive advantages and to enhance efficiency and produc-
tivity [2]. These information systems increasingly use artificial intelligence for planning
and controlling manufacturing operations [3]. In particular, the automotive industry is
progressively adopting methods from artificial intelligence research in a wide range of
industrial applications. For instance, Audi has developed intelligent Big Data capa-
bilities to optimize their production and sales processes [4].

Cars are subject of increasing individualization, which exemplifies in the high
number of possible variants. This complexity puts a burden on supply chain manage-
ment in the automotive industry and calls for intelligent business information systems,
which integrate supply and demand [5, 6]. For instance, BMW offers more than 1032 car
variants, out of which several thousands are in fact ordered by customers [7]. Due to the
high variance in products given globally distributed production plants, car manufac-
turers use planned orders based on forecasts to optimize their material requirements
planning. As manufacturers transit from build-to-stock to build-to-order strategies,
planning processes are reorganized by implementing advanced planning systems such as
predictive manufacturing. In particular, quantities of car parts with long lead times must

© Springer Nature Switzerland AG 2019
W. Abramowicz and R. Corchuelo (Eds.): BIS 2019, LNBIP 354, pp. 147–161, 2019.
https://doi.org/10.1007/978-3-030-20482-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20482-2_13&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20482-2_13&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20482-2_13&amp;domain=pdf
https://doi.org/10.1007/978-3-030-20482-2_13


be predicted accurately to prevent shortages and excess stock, respectively. Predictive
manufacturing systems provide tools and methods to process historical data about
customized orders into information that can explain planning uncertainties and support
managers in making more informed decisions. These decisions typically concern
strategies for planning material requirements along the entire supply chain.

To facilitate an efficient production in the presence of long lead time suppliers,
manufacturers depend on accurate estimates about the material requirements for pro-
duction. The increasing number of available options and option combinations for vehicle
equipment entails highly complex and interdependent parts requirements lists (PRL) that
are necessary to build a vehicle. Due to uncertainties emerging from suppliers with long
lead times, however, manufacturers do not know in advance the exact quantity of the
parts and components needed at each production plant [8]. While manufacturers use
historical customer orders to estimate future sales and analytical high-level models for
production planning, they have not yet exploited the full potential of their data to predict
fine-grained material requirements. Therefore, we contribute a technique that exploits a
unique dataset of fully specified vehicle orders with all product options and required
material parts for predicting the material requirements of parts with long lead times.

Given the incomplete vehicle specifications of estimated future customer orders, it
is essential to understand how historical orders can be used more effectively to improve
the prediction for parts with potentially long lead times. We aim to enhance this
understanding by proposing a data mining technique for predicting the quantities of
parts with long lead times. These parts must be ordered at a time where the associated
customer orders are not yet available. Therefore, we base our prediction on historical
customer orders. We represent these orders as vectors in which each element corre-
sponds to the frequency of a product option ordered by a set of customers. First, we
exploit the concept of cosine similarity for quantifying the similarity between orders of
different customer sets [9]. Then, we select the most similar set of customer orders and
use the associated set of known required parts as predicted parts for the estimated set of
future orders. Finally, we quantify the prediction quality of our approach using accu-
racy defined as the ratio between the predicted quantity and the actual quantity of parts.

To validate our proposed technique, we carried out a set of experiments using a
unique data set, covering real-world purchase orders placed at an international auto-
mobile manufacturer during a fixed period of time. These orders contain information
about the specific combinations of product options ordered by customers and associ-
ated required material parts during a fixed production cycle.

We calculated the accuracy of the prediction for customer order groups of varying
sizes and uncertainty levels. We find that larger customer order groups yield higher
accuracy across different uncertainty levels. Specifically, we find that our proposed
technique achieves an accuracy between 88% and 98% throughout all experiments.
This finding is consistent with the growing trend toward modularization in the auto-
motive production industry [10]. As digital technology platforms emerge in smart
production environments, car manufacturers can begin exploiting digitalized infras-
tructures to design and control innovative components of higher levels of standard-
ization [11]. Our findings help explain to what degree the increasing modularization
and standardization of components impact the prediction of the requirements for parts
with long lead times.
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The remainder of this paper is organized as follows. The next section discusses
prior research. In Sect. 3, we present the proposed data mining technique for predicting
material requirements. In Sect. 4, we report on the experimental evaluation and discuss
our findings. Finally, we provide our conclusion in Sect. 5.

2 Prior Research

We discuss prior research on (1) predicting material requirements in industrial pro-
duction under demand uncertainty, and (2) data mining approaches for estimating the
similarity between different sets of product orders.

2.1 Predicting Material Requirements

Manufacturing industries use material requirements planning (MRP) systems for
inventory management and for planning and forecasting the quantities of parts and
components required for production. Since their first implementation in the 1960s,
MRP systems evolved into MRP II and later into enterprise resource planning
(ERP) systems. MRP systems use master and transaction data as input. While master
data include information about structure and variants of each component, transaction
data are created when a customer places an order [12]. In the presence of demand
uncertainty, planning systems typically follow either a supply-oriented or a demand-
oriented approach.

First, in supply-oriented approaches, manufacturers estimate the required quanti-
ties by optimizing a given objective function subject to production capacity, storage, and
market constraints [12]. Gupta and Maranas [13] develop a stochastic model for mini-
mizing the total cost of a multi-product and multi-site supply chain under uncertain
demand. They solve the objective function using optimization methods in two stages.
First, all manufacturing decisions are made before the demand is known. Second,
inventory levels, supply policies, safety stock deficits and customer shortages are
determined after the demand is already knownwhile taking the quantities produced in the
first stage into account. The main difference to our approach is that Gupta and Maranas
analytically solve a model on the level of different products while we use a fully data-
based approach for predicting material parts requirements of products. Whereas Gupta
and Maranas focus on total production and logistics cost, we implicitly optimize cost by
predicting material requirements for reducing potential over- or underproduction.

Second, demand-oriented approaches for production planning focus on fore-
casting future demand and adjusting the production accordingly. Common techniques
used for this purpose include moving averages and exponential smoothing based on
historical customer orders [12]. Zorgdrager et al. [14] compare various regression and
statistical models to forecast the material demand for aircraft non-routine maintenance.
They find that the exponential moving average model offers the best tradeoff between
forecast errors and robustness over time.

Lee et al. [15] model uncertain demand using fuzzy logic theory. They integrate
triangular fuzzy numbers in a part-period balancing lot-sizing algorithm to determine
the optimal lot size under uncertain demand. Chih-Ting Du and Wolfe [16] propose a
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decision support system to determine the optimal ordering quantity for materials and
the safety stock. The system utilizes fuzzy logic controllers and neural networks and
takes variables such as the ordering costs, inventory carry costs and uncertainty into
account. The role of the neural networks is to increase the fault tolerance of the system
and increase rule evaluation performance by learning and replacing imprecise and
complicated fuzzy if-then rules. In contrast to Lee et al., we model uncertainty of
demand in terms of ordered vehicle configurations in a simpler way by randomly
removing product options from individual orders in our dataset.

Steuer et al. [17] predict the total demand for new automotive spare parts in three
steps. First, they cluster automotive parts with similar product life cycle curves using k-
medoids clustering and chi-square distances. The optimal number of clusters is
determined by calculating the Dunn index and the silhouette width of the clusters for
various number of clusters. Second, their approach identifies common features that
products in the same cluster share. Third, they use a classification model to match new
parts to clusters by estimating the feature similarity between them. They find that
among all evaluated algorithms, support vector machines achieve the highest accuracy
of 68.4%. We extend the cluster method of Steuer et al. by integrating the different
option combinations of the vehicles ordered by customers. Whereas Steuer et al.
focuses on spare parts only, we consider the material requirements for the complete
production process.

In summary, existing approaches do not internalize real-world customer orders that
include all possible option configurations. We contribute a novel data mining technique
for predicting fine-grained material parts requirements given uncertain demand about
vehicle option configurations. To this end, our approach can be used to complement
existing approaches for fine-tuning the prediction of material parts.

2.2 Data Mining Approaches

Data-based prediction of required material parts in a production supply chain relates to
analyzing historical parts requirements in transaction data for a certain product demand
pattern. As such, predicting parts requirements involves comparing imprecisely spec-
ified current demand with closest known demand pattern for which the required parts
are known. Thus, we face two problems: (1) forming clusters in historical transaction
data (containing product options and required parts) to model potential product demand
with respect to certain product options, and (2) measuring closeness of imprecise
current demand vs. historical demand patterns. Because we tackle both problems on the
basis of the vector space model, we first motivate and review the model and specific
approaches for the two outlined problems.

The vector space model is a well-established model in the fields of data mining and
text mining [18]. This model has been widely used for pattern matching and in par-
ticular for text retrieval and text classification [19]. In the scope of this work, we are
interested in comparing and matching patterns of imprecise current demand with fully
specified historical demand, for which required parts are known. Thus, the quantities of
order details (e.g., ten times product type A, five times product option B) are used as
elements of a vector. While the vector-based approach received little attention for
predicting parts requirements in prior research, we contribute to existing literature by
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transferring previous findings from using the vector space model in text mining to
demand prediction for car production.

A major challenge in interpreting demand patterns as vectors in vector space is the
assumption of linear independence of the dimensions of a vector space. It seems
obvious that the dimensions offered by product types and product options are not fully
independent. However, the quantification of text as vectors by interpreting the words of
the vocabulary as dimensions and counting word occurrences in a vector’s elements
also clearly violates the independence assumption. The reason is that words in a
sentence or a full text depend on each other. The same is true for product options, when
cars are configured by customers (e.g., demand for certain luxury product options
might be correlated). Despite the obvious violation of independence, text mining
research has shown that text classification approaches still achieve high accuracy [20].
These findings also apply to our research as reported in Sect. 4.2 and discussed in
Sect. 4.3.

Another challenge includes the imprecise formulation of demand patterns that must
be represented as vectors. Imprecise or uncertain knowledge means that some quantities
might not be known exactly. Furthermore, the quantities for some options might be
completely unknown. Thus, the corresponding vector elements are zero, which leads to
sparsity in the vector. To this respect, text classification research provides evidence for
high performance despite sparse vectors, referring to the application of Support Vector
Machines [21]. Our data mining technique is different because it is based on cosine
similarities at its core. However, our results indicate high predictive performance.

Several clustering approaches are available for addressing the problem of forming
clusters of historical transactions to create synthetic demand patterns. A possible
approach consists in selecting transaction data randomly to form a cluster. Another
option is choosing transactions based on similarity. In this case clustering algorithms
from the field of unsupervised machine learning can be used. A prominent example for
such an algorithm is k-means clustering [22]. K-means clustering partitions transaction
data in the vector space by iteratively forming k clusters around centroid vectors with a
minimum sum of squared distances of all other vectors with respect to the centroid
cluster. Apart from this algorithm, research in data mining examines approaches based
on hierarchy, fuzzy theory, distribution, density, graph theory, grids, fractal theory, and
other models [23].

A number of approaches for addressing the problem of closeness of vectors have
been proposed. Examples include the Minkowski distance, Euclidian distance, cosine
similarity, Pearson correlation distance, and the Mahalanobis distance [23]. In the
context of text mining, the most common approach is the cosine similarity. Cosine
similarity measures the angle between two vectors in the same vector space. Uncertain
demand, represented as vector with elements counting product options, is compared to
fully specified demand vectors by the angles between the vectors. It is then assumed
that the demand vector with the smallest angle is the most similar to the uncertain
demand vector.

We address both problems in vector space, i.e., forming clusters and measuring
closeness. Thus, we evaluate the suitability and performance (i.e., prediction quality) of
our approach and contribute to the transfer of knowledge in text-related research in
information systems (e.g., [24]) for predicting material requirements.
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3 Data Mining Technique

We describe our data mining technique for predicting material parts by providing
formal notations, illustrating its use in an example, and defining an accuracy measure.
The proposed technique predicts quantities for parts with long times based on historical
customer orders.

3.1 Measuring Similarity of Customer Order Groups

A single customer order describes a fully customized vehicle as ordered by a customer
(e.g., through a web-based car configurator). A typical customer order includes a car
configuration such as car model, engine type, navigation system, electric exterior
mirrors, sunroof, and so on. Each customer order is accompanied by a parts require-
ments list (PRL). This list is used by the production plant to assemble the vehicle.

Now suppose the manufacturer wants to predict the quantity of parts required to
produce a set of cars X given a basic configuration of product options. To achieve this,
all historical customer orders are divided into groups randomly. All groups are sized
equally by a pre-determined size. Let G ¼ fg1; . . .; gng be the set of all customer order
groups. Further, let O ¼ fo1; . . .; omg be the set of distinct options present in G and X.
Each group and also X are then represented by an m-dimensional vector og!. Further, let
f g; oð Þ denote the frequency of option o 2 O in group g 2 G. Then, the vector rep-
resentation is given by

og
!¼ f g; o1ð Þ; . . .; f g; omð Þð Þ ð1Þ

The vector representation assumes linear independence of the dimensions, which
may not hold, but still the approach has achieved good results in other fields [20]. Once
the vectors for all groups are formed, we measure the similarity between the set X of
cars to produce and a historic group of cars g 2 G by calculating the cosine of the
associated angles. We use cosine similarity because of its simplicity and effectiveness
to get an initial validation of our data mining technique. The cosine similarity between
vectors og! and oX

�! can be derived using the Euclidean dot product formula,

S og
!; oX

�!� �
:= cosðhÞ ¼ og

!� oX�!
og
!� oX�!

ð2Þ

Because each dimension within the vectors og
! and oX

�! equals the frequency of a
distinct option in the corresponding groups and these frequencies cannot be negative,
the cosine similarity is bounded in the interval 0; 1½ �. Thus, the closer S gets to 1, the
more similar are X and g. If S ¼ 1, X and g are said to be identical. In other words, we
use the required parts to produce cars in group g 2 G with highest associated similarity
value regarding X as prediction for required parts in X.
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3.2 Illustrative Example

We provide a simple example to illustrate our data mining technique for estimating the
parts requirements based on historical customer orders. Suppose a manufacturer seeks
to forecast the number of parts required for producing a set X of 10 cars out of which 8
will have option o1 (e.g., navigation system) and 4 will have option o2 (e.g., sunroof).
All other options are unknown to the manufacturer at this point in time. Implicitly, the
frequency of unknown options is assumed to be zero. Hence, the vector representation
for set X is given by

oX
�! ¼ f X; o1ð Þ; f X; o2ð Þð Þ ¼ 8; 4ð Þ ð3Þ

To predict the number of parts in the presence of uncertainty about the final
configuration, we divide the complete set of customer orders into 10 random groups of
size 10 respectively; that is, G ¼ fg1; . . .; g10g. Each of these groups contain a set of
distinct options. For instance, suppose customer order group g1 consists of 10 cars out
of which 9 are configured with option o1 (i.e., navigation system), 7 are configured
with option o2 (i.e., sunroof), and 3 are configured with option o3 (e.g., electric exterior
mirrors). The vector representation of this group is then given by

og1
�! ¼ f g1; o1ð Þ; f g1; o2ð Þ; f g1; o3ð Þð Þ ¼ 9; 7; 3ð Þ ð4Þ

Likewise, all other groups fg2; . . .; g10g are represented by vectors containing the
frequency of product options over all orders of a group. Using cosine similarity, our
data mining technique now discovers the group that is most similar to set X:

S og1
�!; oX

�!� � ¼ 9; 7; 3ð Þ � 8; 4; 0ð Þ
9; 7; 3ð Þ � 8; 4; 0ð Þ � 0:9483 ð5Þ

The cosine similarity between set X and the remaining groups fg2; . . .; g10g is
calculated analogously. Suppose group g1 is closest to X according to cosine similarity;
that is, among all cosine similarities, 0:9483 is closest to 1. Thus, we use PRL of group
g1 as prediction for the PRL of set X.

3.3 Measuring the Accuracy of Predictions of Parts Requirements

Each individual customer order is associated with a unique parts requirements list
PRL ¼ fi1; i2; . . .; iNg, where N is the number of unique parts required to produce the
vehicle, and il2f1;...;Ng denotes the quantity of each part. For example, PRL ¼ f12; 3; 5g
means that part 1 is required twelve times, part 2 three times, and part 3 five times.

We use an accuracy measure to quantify the quality of our prediction of required
parts as follows. First, we subtract the quantity of each part in the predicted PRL from
the respective quantity of that part in the benchmark PRL. Then, we aggregate the
absolute differences in quantities and divide the resulting value by the total quantity of
parts occurring in the benchmark PRL. Let PRLBenchmark ¼ fI1; I2; . . .; IKg and
PRLPrediction ¼ fJ1; J2; . . .; JKg denote the benchmark PRL and the predicted PRL,
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respectively, where K is the total number of unique parts in the union of both lists.
Then, the difference between PRLBenchmark and PRLPrediction is given by

D :¼ PRLBenchmark � PRLPrediction ¼
XK

k¼1

Ik � Jkj j ð6Þ

Given this notation, the accuracy A is

A ¼ 1� DPK
k¼1 Ik

ð7Þ

Accuracy A gives the percentage of correctly predicted quantities within the
benchmark PRL. For instance, if A ¼ 0:97, the predicted PRL deviates by 3% from the
benchmark PRL in the quantities of parts.

4 Evaluation

This section reports an experimental evaluation of the proposed data mining technique.
We describe the setup, report the empirical results, and discuss the findings.

4.1 Experimental Setup

Our experiments used a unique data set of 47,499 actual orders received by a car
manufacturer within a given time period. These orders contain fully customized car
orders (i.e., including all configured options), associated with the specific PRL for each
vehicle. For instance, in a random group of 20 orders, 9 vehicles were ordered with
rear-view camera, 11 with active parking assist, 10 with cruise control, 2 with traffic
sign recognition, and so on. The complete data set contained 55 different options for
customers to choose from. Figure 1 shows an excerpt of the frequency of the config-
ured options in this group taken from our unique data set.

We consider a scenario where the manufacturer does not know the exact option
configurations for future orders. For example, the manufacturer estimates that from
within 20 future orders, 5 orders contain a rear-view camera, 10 an active parking
assist, and 12 a cruise control. At this point in time, the manufacturer does not have
more information concerning all other potential options. In the presence of incomplete
information, the manufacturer now wants to predict the quantities of those parts with
long lead times that are required to produce these 20 vehicles.

To predict the PRL in this scenario, we randomly selected groups of varying sizes
from {20, 100, 200, 500} as benchmark groups. Then, we systematically removed
varying sets of options from these groups. By removing these sets of options, we mimic
the incomplete option estimate provided by the sales manager. Next, we applied our
data mining technique to identify the group in the historic order data set that is most
similar to the benchmark group. Finally, we compared the aggregated PRL of the most
similar group to that of the benchmark group. Figure 2 depicts the flow chart of the
proposed data mining technique for predicting the PRL.
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In step 1, we randomly select group X as the benchmark group, for which the PRL
is known. Then, the historic order set is randomly divided into n distinct groups of
equal size (step 2). Group X and groups 1 to n are then vectorized using the frequency
of each option in the associated group (steps 3 and 4). In step 5, we define three
uncertainty levels of the ordered vehicle configuration: low, medium, and high. For this
purpose, we randomly remove a varying number of options from group X by setting the
associated frequency to zero. When 13 out of 55 total options are removed, the level of
uncertainty is said to be low (i.e., 23.6%). When 26 of 55 options are removed, the
level of uncertainty is said to be medium (i.e., 47.3%). Finally, when 39 of 55 options
are removed, the level of uncertainty is said to be high (i.e., 70.9%). In steps 6 and 7,

Fig. 1. Frequency of configured options in a random group of 20 orders (excerpt).

Fig. 2. Flow chart of the proposed data mining technique.
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we determine the cosine similarity between group X and groups 1 to n to identify the
group that is most similar to the “stripped” group X. Once the most similar group has
been found, we compare the associated PRL to the PRL of the original group X to
estimate the accuracy of the predicted part requirements.

4.2 Results

To validate our data mining technique, we calculated the accuracy of our prediction (of
required parts) as a function of the associated cosine similarity. We divided the 47,499
orders into 475 groups of group size 100. One group was randomly selected as the
benchmark group. Then, we calculated all angles between the benchmark group and the
remaining groups. Next, we determined the accuracy of each group’s PRL compared to
the original PRL of the benchmark group. Figure 3 depicts the accuracy obtained for all
475 groups. Each point in the diagram corresponds to the accuracy obtained for a single
group. The red line illustrates the trend line based on linear regression. As shown in
Fig. 3, the accuracy of the prediction increases as the cosine similarity increases.
Notice that increasing cosine similarities result in decreasing angles between vectors.
This result implies that our data mining technique is valid and can be applied to the
problem studied in this work.

After having successfully validated our approach, we now report on the results
obtained in our simulation study. Table 1 presents the results of the simulation. For

Fig. 3. Accuracy as a function of cosine similarity and linear regression trend line (red) (Color
figure online).
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each group size 20, 100, 200, and 500, we calculated the accuracy of the PRL for the
scenarios “none”, “low”, “medium”, and “high.” Here, scenario “none” corresponds to
a benchmark group that contains all options (no uncertainty). Thus, if that exact group
were contained in the data set, the accuracy would be 100%.

Figure 4 depicts the results graphically. For group size 20 (blue line), the accuracy
is decreasing for increasing uncertainty level, reaching 88.14% at uncertainty level
medium. Then, the accuracy increases up to 88.91% for uncertainty level high. When a
group contains 100 orders (yellow line), the accuracy decreases for all uncertainty
levels with its highest value of 93.02% down to its lowest value of 91.27%. For group
size 200 (green line), the accuracy decreases from 97.3% to 96.18% for all uncertainty
levels. Finally, when 500 orders are grouped (grey line), the accuracy also decreases for
all uncertainty levels, falling from 97.73% to 97.02%.

Table 1. Accuracy for varying group sizes and uncertainty levels.

Group size Accuracy for uncertainty level
0% (none) 23.6% (low) 47.3% (medium) 70.9% (high)

20 91.98 88.16 88.14 88.91
100 93.02 92.92 91.60 91.27
200 97.30 96.50 96.18 96.18
500 97.73 97.41 97.02 97.02

Fig. 4. Accuracy for different uncertainty levels at varying group sizes (Color figure online).

Predicting Material Requirements in the Automotive Industry 157



4.3 Discussion

Our experiments demonstrate the impact of uncertainty about future customer orders on
the accuracy of predicting the material requirements for production in automotive
industry applications. Our findings provide evidence for the efficacy of the proposed
data mining technique to predict the quantities of parts with long lead times based on a
large data set of historical customer orders. In the following paragraphs, we discuss the
insights that can be obtained from our research.

First, we find that the proposed cosine similarity measure suits well for predicting
material requirements. As the cosine similarity of vectors increases, the accuracy
increases also (see Fig. 3). This finding implies that the frequencies of options within a
historical customer order group correlate with the future requirements of parts subject
to long lead times. The fact that the smallest observed cosine similarity between vectors
is approximately 0.99 indicates that different order groups exhibit similar requirement
lists for long lead time parts. In consequence, the quantities required to produce these
vehicles can be predicted with an accuracy of close to 96%. This result indicates that
potential violations of the assumption of linearly independent dimensions in the
underlying vector space are not too detrimental to the accuracy results achieved by our
technique.

Second, we find that larger customer order groups entail higher accuracy. As more
customer orders are pooled, the quantities of parts and components required to produce
these cars converge to those quantities in the associated benchmark group. This finding
implies that the quantity of parts required for production becomes invariant as group
sizes increase. In other words, individual parts and components are re-used by man-
ufacturers for producing different car variants. This finding is consistent with the trend
towards stringent modularization in the automotive production industry [10]. Car
manufacturers implement modularization strategies to manage the increasing com-
plexity and variant diversity of their vehicles by standardizing interfaces and individual
components. As such, the requirements for mass customization can be achieved more
effectively [25]. Moreover, smart production plants benefit from pervasive digital
technology platforms as the central focus of the firm’s innovation process. Car man-
ufacturers can now use the same digital tools to design and control multiple modules
and components that were dispersed among supplies in the past [11]. Hence, digitalized
production promotes the development of innovative modularization concepts which in
turn influences the prediction and procurement of material at distributed production
plants in the automotive industry. The accuracy values obtained for increasing group
sizes in our study thus help explain to what extent product modularity impacts the
prediction of material requirements in automotive production.

Third, one advantage of our approach is that it can deal with high levels of
uncertainty about the demand of possible option configurations. We find that accuracy
decreases for increasing uncertainty levels. It is interesting to observe that for bigger
group sizes the uncertainty level barely impacts the accuracy of the prediction. That is,
if many customer orders are pooled, the number of parts and components required to
produce this group of vehicles virtually matches that of the associated benchmark
group. This finding corroborates that car manufacturers pursue a sustainable platform
strategy for managing the complexity of their product variants. To this end, the
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transformation toward digitalized production encourages the integration of data-driven
analytics into business information systems to advance current prediction methods in
automotive industry applications.

5 Conclusion

The contribution of this research is a data mining technique for predicting the
requirements of parts with long lead times in the automotive industry. To evaluate our
approach, we used a unique data set containing actual customer orders received by an
international car manufacturer. In a first step, our approach incorporates the concept of
cosine similarity to discover similar customer order groups within the data set. Then,
we aggregate the quantities of the required parts and components for producing the
vehicles within these different groups. Finally, we calculate the accuracy of our pre-
diction relative to a predefined benchmark group. We find that increasing group sizes
result in higher accuracy across all uncertainty levels. As car manufacturers continue to
optimize product modularization using digital platform technologies, standardized parts
and components for producing cars facilitate an improved prediction of material
requirements even in the presence of uncertainty concerning future customer orders.

From a managerial perspective, our study can support supply chain managers in
making more informed decisions about choosing the appropriate customer group size
for predicting the demand in parts and components with long lead times. Because larger
group sizes imply higher accuracy, managers can pool heterogenous estimates about
future customer orders based on production capacity. At the same time, managers can
focus on small sets of equipment options when forecasting material requirements
because varying uncertainty levels show little impact on accuracy.

Future research can be pursued in four directions. First, our experimental evaluation
could be extended by implementing k-means clustering on the data set [9, 22]. Unlike
the random group formation used in our technique, the k-means clustering algorithm
divides the data set into k clusters relative to the nearest mean. For benchmarking
purposes, the accuracy obtained by k-means clustering could then be compared to the
accuracy achieved in our study. Second, while the cosine similarity measure suits well
to obtain high accuracy, other measures of similarity such as k-median or k-means +
+ algorithms could be used for comparing customer order groups. Third, for comparing
parts requirements lists, different weights could be placed at different quantities of
components. This change could provide further insights of how economic factors such
as price and economies of scale affect parts requirement predictions. Fourth, future
research can assess the applicability of our approach to other industries in which large
quantities of parts are needed and customers can individualize the products.
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