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Abstract. Steel is the most important material in the world of engineering and
construction. Modern steelmaking relies on computer vision technologies, like
optical cameras to monitor the production and manufacturing processes, which
helps companies improve product quality. In this paper, we propose a deep
learning method to automatically detect defects on the steel surface. The
architecture of our proposed system is separated into two parts. The first part
uses a revised version of single shot multibox detector (SSD) model to learn
possible defects. Then, deep residual network (ResNet) is used to classify three
types of defects: Rust, Scar, and Sponge. The combination of these two models
is investigated and discussed thoroughly in this paper. This work additionally
employs a real industry dataset to confirm the feasibility of the proposed method
and make sure it is applicable to real-world scenarios. The experimental results
show that the proposed method can achieve higher precision and recall scores in
steel surface defect detection.
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1 Introduction

The billet is an upstream product of the rod and wire from Sinosteel. The process of
producing billet from casting to production involves cooling, sand-blasting, rusting,
inspection, grinding and heating, and finally rolling into strips. Billets are approxi-
mately 145 mm � 145 mm in size, and can be supplied to strip and wire factories for
rolling into strip steel, wire rods and linear steel. However, inspection is necessary to
ensure the quality of the product before it is sent out.

The surface temperature of billets reaches as high as 700 to 900° [1] in the pro-
duction environment. These conditions make defect detection on billets difficult to
achieve. Traditional billet defect detection methods are divided into visual inspection
[2, 3] and magnetic particle inspection [4]. However, visual inspection is more cost and
time efficient; therefore, we will only focus on visual inspection in this paper. The types
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of defects found can indicate the cause of defect formation and be used to improve the
steelmaking process, since different defects have different causes.

In this paper, we develop a billet defect detection technology based on convolu-
tional neural network. We propose a hierarchical structure to defect defects with
revised SSD and ResNet50 [5, 6]. The experimental results show the effectiveness of
the proposed method.

2 Architecture Overview

2.1 Structure of SSD

With the rise of convolutional neural networks, many models have evolved, such as
Faster RCNN [7], Mask RCNN [8], Single Shot Multibox Detector (SSD) [9], and You
Only Look Once (YOLO) [10]. All of these models have object detection capabilities.
Among them, we chose the SSD300 version as the basic model. The reasons that we
selected SSD300 are as follow:

• Faster RCNN and Mask RCNN are two-stage methods, which means that the
training process is performed in two steps. In contrast, SSD and YOLO are one-
stage methods, which are more efficient.

• The detection speed is better than that of other models. According to the author’s
paper, the detection speed of SSD300 is 59 FPS (frames per second).

• The architecture of SSD300 is simpler than other models’ architectures and easier to
adjust.

• SSD has multi-scale predictions.

The original SSD300 contains anchor boxes that are a combination of horizontal
and vertical rectangles as shown in Fig. 1(a). In this work, we only use three horizontal
rectangles as shown in Fig. 1(b). When there are many prediction boxes on an object,
as shown in Fig. 2(a), non-maximum suppression (NMS) in SSD can solve this
problem as shown in Fig. 2(b).

Fig. 1. (a) Original anchor box. (b) Customized anchor box.
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In Figs. 3–5, we present our revisions to the SSD architecture based on charac-
teristics of collected defect images. Billet defects are mainly small ones. In Fig. 4, a
75 � 75 feature map is added to convolutional block 3 of the VGG16 layer, and the
last two feature maps (3 � 3 and 1 � 1) are removed. In order to compare advantages
and disadvantages of various SSD structures, the original SSD module (SSD300) and
modified SSD module (revised-SSD300) will be trained. In addition, the revised-
SSD300 will be extended to a revised-SSD600 with an input size of 600 � 600 as
shown in Fig. 5. Therefore, in total, three models will be trained for comparison.

2.2 Introduction of SENet and ResNet

In our main task, we need to detect two defects, called “sponge” and “scar” defects.
The task of SSD is to determine whether the defects exist and where they are. We also
added Squeeze-and-Excitation Net (SENet) [11] structure in our model to boost the

Fig. 2. (a) Bounding boxes before NMS. (b) Bounding box after NMS.

Fig. 3. SSD300 architecture.
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results with adaptive weights for each feature map. SENet is not a complete network
structure, but rather a small architecture in between convolution blocks. When SENet is
applied, our method is called Revised-SSDSE, which is shown in Fig. 5.

Sometimes, another non-defect factor, called “rusty factor” as shown in Fig. 9(c),
will be present in the dataset. The rusty factors, which are not defects, have various
shapes and features and significantly affect our results. In order to detect rusty factors in
the dataset, the 3 � 3 and 1 � 1 layers must be added back to the revised SSD network.

After determining the existence and location of defects, ResNet should identify the
name of the defect. In this paper, we use ResNet50 [12] and classify three categories of
defects as shown in Fig. 9. The defect from SSD will be resized to 224 � 224 to fit the
input size for ResNet50. The combination of revised-SSDSE600 and ResNet50 forms
the complete hierarchical structure as shown in Fig. 6.

Fig. 4. Revised-SSD300 architecture.

Fig. 5. Revised-SSDSE600 architecture.
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3 System Requirements

3.1 Hardware and Software

The hardware and software environment used in this paper is given in Table 1. The
software part of the system includes Anaconda and GPU environment settings.

Fig. 6. Final hierarchical structure.

Table 1. Hardware and software environment.

Environment Description

Operating System Windows 10
Central Processing Unit
(CPU)

Intel(R) Core(TM) i7-7700 CPU @ 3.60 GHz

Graphics processing unit
(GPU)

NVIDIA GeForce GTX 1080 Ti 12G

CPU Memory 8 GB
Distribution Anaconda v4.1.0
Programming Language Python v3.5.4
Python Library TensorFlow v1.8.0, Keras v2.1.6, Matplotlib v2.2.0, PIL

v5.1.0
Editor Visual Studio Community 2017
GPU Platform NVIDIA CUDA 9.0
GPU Library NVIDIA cuDNN 7.0
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3.2 Data Annotation

We use LabelImg v1.6.01 tool to mark defect locations and non-defect classes in the
dataset for the SSD model. LabelImg supports several operating system platforms, like
Windows, Linux and Mac OS X. In this work, we use a Windows environment. After
the labeling process is completed, the label result is saved in an XML format.

4 Experimental Results

The detection results are affected by camera types, illumination, number of defective
samples, and other factors. The training process is performed as follows.

• Collect various defect samples.
• Mark the defect samples and generate corresponding XML files containing defect

information.
• Train marked defect samples through the neural network structure and save the

training results.

4.1 Initial Test

In the initial test, we prepared defect data with 464 Scar and 246 Sponge images in the
dataset, 10% of which were validation and 90% of which were training data. The
experimental results are shown in Table 2. The results in Fig. 7 show that the per-
formance of the revised-SSD300 is similar to that of the revised-SSD600, but better
than SSD300. There are too many redundant boxes when SSD300 is applied, as
presented in Fig. 7b.

We test the daily images provided by the onsite database and used the following
parameters as an accurate benchmark for calculating the system performance [13]:

• True Positive (TP).
• True Negative (TN).
• False Positive (FP).
• False Negative (FN).
• Precision (P) in Eq. (1).
• Recall (R) in Eq. (2).

Table 2. Initial results of models.

Model Sponge ScarRemain

SSD 300 60% 85%
revised-SSD300 74% 95%
revised-SSD600 76% 95%

1 https://github.com/tzutalin/labelImg.
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• F-Measure is a comprehensive evaluation index, which is used to understand
whether two values of Precision and Recall are good, as shown in Eq. (3).

P ¼ TP= TPþ FPð Þ: ð1Þ
R ¼ TP= TPþ FNð Þ: ð2Þ

F-Measure ¼ 2� P� Rð Þ= PþRð Þ: ð3Þ

Fig. 7. (a) Original image. (b) SSD300 prediction results. (c) Revised-SSD300 prediction
results. (d) SSD600 prediction results. (e) Original image. (f) Original image. (g) Revised-
SSD300 prediction results. (h) SSD600 prediction results.
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4.2 Final Test

According to Tables 3 and 4, after a seven-day training period, the highest precision
and recall of the revised-SSD300 were 100% and 77.6%, respectively. The revised-
SSD600 had a better recall due to its high-resolution images. However, the

Fig. 8. Defect samples produced from SSD directly.

Fig. 9. Extension of defect range. (a) Scar. (b) Sponge. (c) Rust.
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combination of the revised-SSDSE600 and ResNet50 achieved the highest precision
and recall rates.

Note that Fig. 10 shows that if we used defect bounding boxes directly from SSD
for ResNet as shown in Fig. 8, the training process was hard to converge because the
bounding boxes were too fitted to the defects. Therefore, we enlarged the range of the
bounding boxes as shown in Fig. 9. After extending the bounding box, the training
process could converge, which enabled the performance in Table 5 to be achieved.

Table 3. Final test results of revised-SSD300.

Time (day) TP TN FP FN P (%) R (%) F-Measure (%)

1 302 19 1 87 99.6 77.6 87.2
2 142 13 4 95 97.2 59.9 74.1
3 102 38 19 88 84.2 53.6 65.5
4 97 38 11 75 89.8 56.3 69.2
5 35 3 0 37 100 48.6 65.4
6 54 5 0 43 100 5.56 71.5
7 73 5 1 51 98.6 58.8 73.7

Table 4. Final test results of revised-SSD600.

Time (day) TP TN FP FN P (%) R (%) F-Measure (%)

1 315 19 1 74 99.6 80.9 89.3
2 183 13 4 54 97.8 77.2 86.3
3 139 38 19 51 87.9 73.1 79.8
4 105 38 11 67 90.5 61.0 72.9
5 45 3 0 27 100 62.5 76.9
6 61 5 0 36 100 62.8 77.2
7 89 5 1 35 98.8 71.7 83.1

Table 5. Final test results of the combination of revised-SSDSE600 and ResNet50.

Time (day) TP TN FP FN P (%) R (%) F-Measure (%)

1 353 19 1 36 99.7 90.7 95.0
2 226 13 4 11 98.2 95.3 96.7
3 179 38 19 11 90.4 94.2 92.2
4 138 38 11 34 92.6 80.2 85.9
5 66 3 0 6 100 91.6 95.6
6 95 5 0 2 100 97.9 98.9
7 118 5 1 6 99.1 95.1 97.1

210 C.-Y. Lin et al.



5 Conclusions

In this paper, we design a hierarchical model to build a defect detection system for steel
billets. We have modified the architecture of SSD by changing the sizes of feature maps
and the sizes of anchor boxes to fit the shape of defects. The experimental results
demonstrate the effectiveness of the proposed method. In further work, we will collect
more rust defect images, because rusty types include many variations.
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