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Abstract. Random Walks Samplings are important method to analyze any kind
of network; it allows knowing the network’s state any time, independently of the
node from which the random walk starts. In this work, we have implemented a
random walk of this type on a Markov Chain Network through Metropolis-
Hastings Random Walks algorithm. This algorithm is an efficient method of
sampling because it ensures that all nodes can be sampled with a uniform
probability. We have determinate the required number of rounds of a random
walk to ensuring the steady state of the network system. We concluded that, to
determinate the correct number of rounds with which the system will find the
steady state it is necessary start the random walk from different nodes, selected
analytically, especially looking for nodes that may have random walks critics.
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1 Introduction

Actually, most complex systems such as biological cell development networks and
brain activity are studied under their network structure [1] to understand how it
communicate, work, self-organize, evolve, etc. This allows to understand the impor-
tance of the subject of our study within the field of computing, since the application of
random sampling can be seen in various environments such as for the efficient col-
lection of energy data in wireless sensor networks [2], analysis of social networks and
information [3], operations on big data [4], etc. This paper presents the results of
random walks in a graph with characteristics of a Markov Chain, by implementing the
Metropolis-Hastings Random Walks (MHRW) algorithm, with which random samples
can be obtained after a certain number of jumps (rounds), and in such a way that all the
nodes of the network have a uniform probability of being chosen as a sample. The work
has determined the number of rounds with which a uniform sampling distribution is
obtained, and with a stable average error which is called the “steady state of the
network”, regardless of the node by which the walk begins. In addition, experiments
have been carried out starting the random walks from initial nodes chosen in an
analytical way, taking into account the main concepts and metrics on graphs, which has
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allowed executing a possible method of finding nodes that present special character-
istics and provoke that the random path is come back critical.

2 MHRW Algorithm

The importance of the implementation of sampling algorithms and random walks on
networks is studied by Sevilla et al. [5], Arcos [6], among others. According to [7] the
Metropolis-Hastings Algorithm (M–H) is extremely versatile, and is widely used in
physics, the authors use (1) as probability density function:

Z
q x; yð Þdy ¼ 1 ð1Þ

This density is capable of generating a new state y when the current state is
x starting from q(x, y), however (1) does not guarantee that the probability of staying in
the state x is the same as passing to the state y (condition of reversibility), since the
probability of transiting from x to y would be greater. Then, it is convenient to include a
condition that reduces the number of state changes from x to y, by entering a probability
a(x, y) < 1; if a state change does not occur, it remains in x returning this value for the
given distribution. Then, we can establish the following relationship:

pMH x; yð Þ � q x; yð Þa x; yð Þ for x 6¼ y ð2Þ

where a x; yð Þ is still to be determined. With PMH x; yð Þ he reversibility condition can
be satisfied as shown below (consider that a y; xð Þ � 1):

p xð Þq x; yð Þa x; yð Þ ¼ p yð Þq y; xð Þa y; xð Þ
¼ p yð Þq y; xð Þ ð3Þ

where p represents the desired distribution, then:

a x; yð Þ ¼ p yð Þq y; xð Þ
p xð Þq x; yð Þ ð4Þ

Thus, the authors conclude that PMH x; yð Þ is reversible. The probability of
obtaining a new value of the state during the tour is:

a x; yð Þ ¼ min p yð Þq y; xð Þ
p xð Þq x; yð Þ ; 1
h i

; if p xð Þq x; yð Þ[ 0
1; any other case

(
ð5Þ
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3 Concepts and Basic Notions

A network of any nature can be represented by a graph which consists of a finite set of
nodes. Each node represents an element of the network and must have a unique
identifier; the way in which network elements are connected are represented by edges;
an edge is a line joining a pair of nodes; when a node O is directly connected to a node
P by an edge, we can say that O and P are neighboring nodes. In a directed graph each
edge has an address, that is, each edge ai that begins in a source node O allows jump to
a destination node P, but it is impossible to jump from node P to node O using the same
edge ai, Fig. 1. In an undirected graph edges are bidirectional, that is, it is possible to
jump from node O to node P, and form node P to node O using the same edge ai for
both cases, Fig. 2. In an undirected graph the number of edges that are connected to it
determines the degree of a node. A connected graph is a graph in which all its nodes are
connected to each other by edges (Fig. 1). A disconnected graph is a graph in which a
node or group of nodes in the graph are isolated from another group of nodes (Fig. 3).
A weighted graph is a graph in which each ai has an associated weight wi, this weight
represents the cost of jumping from the origin node O to the destination node P using
the edge ai (Fig. 4). An unweighted graph is a graph in which all its edges have the
same associated weight, in this case the weight of each edge ai in the graph is not
graphically represented (Fig. 2). The present study uses an undirected, connected and
unweighted graph, which coincides with the representation of Fig. 2.
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Fig. 1. Directed, connected and unweighted graph.
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Fig. 2. Undirected, connected and unweighted graph.
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In a random walk we call the node in which the state of the network is located at an
instant of time t, that is, if the state of the network at time t is in node O, then, the node
O is the current node at time t, if the next state of the network at time t + 1 is the node
P, then node P is the current node at time t + 1.

A random walk is constructed in the following way: given a graph G and an initial
node O as starting point (current node) in which the state of the network is located at
time t = 0, a neighbor node of O is randomly selected, this can be the node P, then, the
state of the network passes to node P at time t = 1, then P is the current node, then, a
neighbor node of P is selected randomly, this can be the node Q, and the state of the
network passes to node Q which is the current node at time t = 2, this is repeated
successively until a stop condition is reached. It should be noted that in order to
determine that a network passes from one state to another, some condition may be
imposed, in case this condition is not fulfilled, and the node O is the current node, the
network would not change state and the current node would continue being the node
O [8–10], in this work this condition is defined in (6).

Our goal is to demonstrate that by using the MHRW algorithm we can perform a
uniform sampling of the nodes of a connected, undirected and unweighted graph, and
stabilize the mean error with respect to the uniform distribution, understood by uniform
distribution to all the nodes have the same probability of being chosen as a sample.
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Fig. 3. Undirected, disconnected and unweighted graph.
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Fig. 4. Undirected, disconnected and unweighted.
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4 Discussion

We have used a graph with characteristics of Markov chain that was obtained from the
Network Data Repository1, it represents the Facebook network of the Massachusetts
Institute of Technology (MIT), it is composed by 6402 interconnected nodes through
251230 edges. For each experiment, a number of samples equivalent to 100 * number
of graph nodes was obtained uniformly. In the simulation, 100 random walks were
executed by randomly selecting the initial node, and also by taking at convenience
nodes that present relevant characteristics in graph analysis; the results are summarized
in Table 1. The condition of the implementation with which it is satisfied (5), is given
by the generation of a random value p in a uniform manner, such that:

p�min
degree currentnodeð Þ
degree neighborNodeð Þ ; 1

� �
ð6Þ

That is, the higher the degree of the neighbor selected at random, the less likely it is
that it will be visited or chosen as a sample (current node); when the condition of (6) is
met, the current node becomes the selected neighbor. The criterion to stop the exe-
cution of the simulation in each case was given by the stabilization of the mean error
calculated by (7), that is, when the value of the error showed no significant changes, the
experiment was stopped.

E ¼
Pn

i¼1
mi�freq
freq

n
ð7Þ

Where n is the number of nodes in the graph, mi is the number of times the node
i was taken as a sample, and freq is the sampling frequency. For the random selection
of the neighbor, a uniform distribution function was used [11]; it was possible to verify
that this function generates random numbers with a distribution similar to the distri-
bution of the random selection of the neighboring nodes during all the samplings made
in all experiments (Figs. 5 and 6).

Fig. 5. Distribución del muestreo de los nodos seleccionados después de paseos de 20.000
rondas.

1 http://networkrepository.com/.
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Analyzing the results obtained, we conclude that, for the set of tests proposed, the
average error is stabilized at approximately 8%, as shown in Table 1, which is cor-
roborated by making increasingly long random walks, we have conducted experiments
with 20,000 rounds prior to taking the sample. The variation of the average error can be
seen in Fig. 7. The first column of Table 1 shows the identifier of the node, the second
column shows the name of the metric by which the node was chosen, the third column
shows the value of the metric specified in the second column, the fourth column shows
the number of rounds needed for the average error value to reach a steady state, the fifth
column shows the value of the average error obtained during the random walk (� 8%
in all the cases). As can be seen in Table 1, when the random walk was initiated by the
node 1010 whose eigenvector value is the highest of all, the number of necessary
rounds increased considerably compared to the previous nodes, this led us to analyze
the characteristics of this node; it is a node of degree 1 whose only neighbor had a
significantly higher degree, later we verified if there was another node whose degree is
1 and whose only neighbor has an even greater degree than the previous one, this is
how we find the node 4503.

Fig. 6. Distribution of random numbers generated with the uniform distribution function.

Table 1. Results of executed experiments

Node Metric Value Rounds Avg. error

2411 Random selected node – 400 0.081
6400 Lowest degree 1 470 0.081
2982 Highest degree 708 350 0.080
30 Lowest betweenness 0 750 0.081

1940 Highest betweenness 4.9E + 12 300 0.083
173 Lowest coefficient

clustering
0 400 0.083

3302 Highest coefficient
clustering

1 500 0.080

(continued)
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When the random walk was started by this node, the value of the average error
decreased at a significantly lower speed, so this became the most critical route of the set
of tests performed, the results are shown in the penultimate row of Table 1. The feature
of node 4503 is that its degree is 1, and its only neighbor (node 2720) has a degree of
617, so meeting a condition that satisfies Eq. (6) has a probability of 1/617, then, the
random walks turned out to be longer. Sampling reached a steady state after a walk of
approximately 6,000 rounds. That is why we have verified that the number of rounds
with which it is guaranteed that the random walks in the graph arrive at a stationary
state applying MHRW is 6,000, regardless of the node by which the route begins,
which coincides with the result published in [5].

In Table 2 the first column shows the number of rounds used in each random walk,
the second column indicates the value of the average error obtained in each trip, the
third column shows the identifier of the most sampled node in each random walk, the
fourth column shows the number of times that the most sampled node was selected as a
sample; In this table it can be seen that in random walks that do not reach 6000 rounds
the most sampled node is 4503, that is, due to the small probability of jumping to its
neighbor node, the most sampled node is the same node, which prevents reaching the
steady state. Note also that although at 4000 rounds the mean average error has
decreased to a value of 0.081, the number of times that node 4503 has been sampled is
approximately ten times greater than the desired average, so the uniform distribution

Table 1. (continued)

Node Metric Value Rounds Avg. error

3277 Lowest closeness 0.181 500 0.080
2982 Highest closeness 0.495 300 0.083
558 Lowest eigenvector 0.001 290 0.083
1010 Highest eigenvector 4,9+12 1600 0.079
4503 Critic node – 6000 0.078

Average error 0.081

Fig. 7. Variation of the average error of the random walk initiated by a node chosen randomly
(Node 2411).
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Sampling is achieved only in a walk of 6000 rounds, under these conditions the most
sampled node is a node different from the initial node. Then, a possible method to find
initial nodes that present critical random walks could be taking as initial node the node
whose value of eigenvector is the highest of all.

5 Conclusions

The MHRW algorithm guarantees that the walk in a graph are completely random,
giving all the nodes the same probability of being visited and taken as a sample, so it is
an important tool when performing statistical and predictive analyzes; it should be
considered that the algorithm in its implementation requires a random number gener-
ator engine whose distribution directly influences the mean error value of the sampling.
From the results obtained it can be concluded that it is important to test the random
walks starting from different nodes, but not only randomly, is necessary choosing them
analytically considering the characteristics of the graph, then, is possible deduce ways
of looking for other nodes that are interesting for the analysis and to determine a
number of rounds with greater precision. Finally, we conclude that the value of the
mean error obtained in a sample will be smaller the larger the sample size obtained.

Table 2. Nodes most sampled in random walks that started by node 4503 according to the
number of rounds.

Rounds Avg. error Most sampled node Sampling frequency

100 2 4503 545013
200 1 4503 463663
300 1 4503 394263
400 1 4503 334579
500 0.891 4503 284823
600 0.759 4503 242464
700 0.645 4503 206069
800 0.549 4503 175609
900 0.469 4503 149929
1000 0.398 4503 126889
1100 0.341 4503 107955
1200 0.291 4503 91417
1300 0.254 4503 78415
1400 0.221 4503 66384
1500 0.196 4503 56738
1800 0.144 4503 34783
2100 0.117 4503 21413
3000 0.088 4503 5062
4000 0.081 4503 1054
5000 0.081 4503 291
6000 0.078 3267 138
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Random walks should be carried out by increasing the number of rounds progressively,
in such a way that a sufficient number of rounds can be established to guarantee the
steady state of the network, but that it does not generate unnecessary computational
cost.
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